

TOTAL LOW-POWER SCHOTTKY 9LS/25LS/54LS/74LS

350 Ellis Street, Mountain View, California 94042
(415) 968-9211, TWX: 910-379-6481
PAGE
INTRODUCTION
General Description. i
Circuit Characteristics i
Input Characteristics ii
Output Characteristics iii
Ordering Information iii
Quality and Reliability v
Definition of Letter Symbols and Terms. xvi
SECTION 1. SELECTION GUIDE TO DIGITAL PRODUCTS
9LS/54LS/74LS Low-Power Schottky 1-2
Beam Lead Low-Power Schottky. 1-4
25LS High-Performance Low-Power Schottky. 1-5
Standard TTL 2's Complement Multipliers 1-5
54/74 SSI Series 1-6
54/74 MSI Series $1-7$
8200 MSI Series $1-8$
930 DTL Series 1-9
RAY I and II Series TTL. 1-10
RAY III Series TTL 1-15
SECTION 2. 9LS/54LS/74LS LOW-POWER SCHOTTKY
LS00 Quad 2-input NAND gate 2-2
LS01 Quad 2-input NAND gate, open collectors 2-4
LS02 Quad 2-input NOR gate, open collectors 2-6
LS03 Quad 2-input NAND gate, open collectors 2.4
LS04 Hex inverter 2.2
LS05 Hex inverter, open collectors 2-4
LS08 Quad 2-input AND gate 2-7
LS09 Quad 2 -input AND gate, open collectors 2-9
LS10 Triple 3-input NAND gate 2-2
LS11 Triple 3 -input AND gate 2-7
LS12 Triple 3-input NAND gate, open collectors 2.4
LS13 Dual 4-input Schmitt trigger 2-10
LS14 Hex Schmitt trigger 2-10
LS15 Triple 3-input AND gate, open collectors 2-9
LS20 Dual 4-input NAND gate 2-2
LS21 Dual 4-input AND gate 2-7
LS22 Dual 4-input NAND gate, open collectors. 2-4
LS26 Quad 2-input NAND, open collector 15V 2-14
LS27 Triple 3-input NOR gate 2-6
LS28 Quad 2-input NOR buffer. 2-15
LS30 8-input NAND gate 2-2
LS32 Quad 2-input OR gate 2-17
LS33 Quad 2-input NOR buffer, open collectors 2-18
LS37 Quad 2-input NAND buffer 2-15
LS38 Quad 2-input NAND buffer, open collectors. 2-18
LS40 Dual 4-input NAND buffer 2-15
LS42 1-of-10 decoder. 2-19
LS43 Excess 3 to decimal decoder 2-19
LS44 Excess gray to decimat decoder 2-19
LS51 Dual AOI gate 2-22
LS54 2-3-3-2-input AOI gate 2-22
LS55 2-wide, 4-input AOI gate 2-22
PAGE
SECTION 2. 9LS/54LS/74LS LOW-POWER SCHOTTKY (Continued)
LS73 Dual J-K flip-flop 2-24
LS74 Dual D flip-flop. 2.28
LS75 Quad transparent latch 2-30
LS76 Dual J-K flip-flop $2 \cdot 24$
LS77 Quad transparent latch 2-30
LS78 Dual J-K flip-flop 2.34
LS83A 4-bit full adder 2.36
LS85 4-bit magnitude comparator 2-38
LS86 Quad exclusive OR gate 2-42
LS90 Decade counter. 2.44
LS91 8-bit shift register 2-51
LS92 Divide by 12 counter 2-44
LS93 4-bit binary counter 2.44
LS95B 4-bit shift register 2-55
LS107 Dual J-K flip-flop 2-24
LS109 Dual J-K flip-flop 2-58
LS112 Dual J-K edge-triggered flip-flop 2-24
LS113 Dual J-K edge-triggered flip-flop $2-24$
LS114 Dual J-K edge-triggered flip-flop 2.34
LS122 Retriggerable one-shot 2-60
LS123 Dual one-shot $2 \cdot 60$
LS125 Quad 3-state buffer, low enable $2 \cdot 64$
LS126 Quad 3-state buffer, high enable $2 \cdot 64$
LS132 Quad 2-input Schmitt trigger 13-input NAND gate 2-66
LS136 Quad exclusive OR gate, open collectors 2.70
LS138 3-to-8 decoder/demultiplexer $2-72$
LS139 Dual 2-to-4 decoder/demultiplexer 2.72
LS151 8-to-1 line multiplexer 2.75
LS152 8-to-1 line multiplexer 2.75
LS153 Dual 4-to-1 multiplexer. 2.78
LS155 Dual 2-to-4 decoder/demultiplexer 2.80
LS156 Dual 2-to-4 decoder/demultiplexer open collectors 2.80
LS157 Quad 2-to-1 line multiplexer 2.83
LS158 Quad 2-to-1 line multiplexer, inverting 2.83
LS160 Decoder counter, asynchronous clear 2.86
LS161 Binary counter, asynchronous clear 2.86
LS162 Decade counter, synchronous clear 2.86
LS163 Binary counter, synchronous clear 2-86
LS164 8 -bit shift register (SIPO) 2-93
LS170 4×4 register file, open collectors. 2-96
LS174 Hex D-type flip-flop 2-100
LS175 Quad D-type flip-flop 2-100
LS181 4-bit arithmetic logic unit 2-103
LS190 BCD decade counter, mode control 2-110
LS191 4-bit binary counter, mode control 2-110
LS192 BCD decade counter, up/down 2-119
LS193 4-bit binary counter, up/down 2-119
LS194A 4-bit R shift register 2-127
LS195A 4-bit parallel shift register 2-130
LS196 4-bit presettable decade counter 2-133
LS197 4-bit presettable binary counter 2-133
LS221 Dual one-shot (very stable) 2-138
LS251 8-to-1 line multiplexer with tri-state-outputs 2-143
LS253 8-to-1 line multiplexer with tri-state-outputs 2-146
PAGE
SECTION 2. 9LS/54LS/74LS LOW-POWER SCHOTTKY (Continued)
LS255 Dual 2-to-4 decoder/demultiplexer with tri-state outputs 2-148
LS257 Quad 2-to-1 line multiplexer with tri-state outputs 2-150
LS258 Quad 2-to-1 line multiplexer with tri-state outputs 2-150
LS261 2×4 binary multiplier 2-154
LS266 Quad exclusive NOR gate, open collectors 2-70
LS279 Quad set/reset latch 2.157
LS283 4-bit full adder, fast carry (rotated LS83) 2-36
LS295A 4-bit shift register with tri-state outputs 2-159
LS298 Quad 2-multiplexer with output register 2-161
LS365 Hex buffer, tri-state, common enable 2-163
LS366 Hex inverter, tri-state, common enable 2-163
LS367 Hex buffer, tri-state, 4-bit and 2-bit 2-163
LS368 Hex inverter, tri-state, 4-bit and 2-bit 2-163
LS386 Quad exclusive OR gate 2-42
LS395A 4-bit shift register, tri-state 2-165
LS670 4×4 register file, tri-state 2-168
SECTION 3. 25LS HIGH-PERFORMANCE LOW-POWER SCHOTTKY
25LS14 8-bit serial/parallel two's complement multiplier 3-2
25LS15 Quad serial adder/subtractor. 3-6
25LS22 8-bit serial/parallel register with sign extender 3-10
25LS23 8-bit shift/storage register with synchronous clear 3-15
25LS122 Single retriggerable monostable multivibrator with clear 3-18
25LS123 Dual retriggerable monostable multivibrator with clear 3-18
25LS138 3-to-8 line decoder/demultiplexer. 3-21
25LS139 Dual 2-to-4 line decoder/demultiplexer. 3-21
25LS151 8-to-1 line multiplexer, compl. outputs. 3-24
25LS153 Dual 4-to-1 line multiplexer 3-26
25LS157 Quad 2-to-1 line multiplexer. 3-28
25LS158 LS157, inverting 3-28
25LS160 BCD decade counter, asynchronous clear 3-30
25LS161 4-bit binary counter, asynchronous clear 3-30
25LS162 BCD decade counter, synchronous clear 3-30
25LS163 4-bit binary counter, synchronous clear 3-30
25LS170 4×4 register file with open collectors 3-38
25LS174. Hex D-type flip-flop with clear 3-42
25LS175 Quad D-type flip-flop with clear 3-42
25LS181 4-bit arithmetic logic unit. 3-44
25LS190 BCD decade up/down counter, synchronous. 3-50
25LS191 4-bit binary up/down counter, synchronous 3-50
25LS192 BCD decade up/down counter, synchronous. 3-58
25LS193 4-bit binary up/down counter, synchronous 3-58
25LS194A 4-bit bidirectional universal shift register 3-66
25LS195A 4-bit parallel access shift register 3-66
25LS251 8-to-1 line multiplexer with tri-state outputs 3-73
25LS253 Dual 4-to-1 line data selectors/multiplexers with tri-state outputs 3-75
25LS257 Quad 2-to-1 line multiplexer with tri-state outputs 3-79
25LS258 Quad 2-to-1 line multiplexer with tri-state outputs 3-79
25LS299 8-bit universal shift/storage register 3-83
25LS670 4×4 register file with tri-state outputs 3-86
SECTION 4. PACKAGING INFORMATION
Plastic Packages, DIP 4-2
Metal Package, DIP 4-2
Ceramic Packages, DIP 4-3
Ceramic Packages, Flat 4-4
Metal Packages, Flat 4.5
Beam Lead Mechanical Drawings. 4-6

GENERAL DESCRIPTION

The Raytheon Low-Power Schottky TTL family utilizes advanced process technology, Schottky-barrier clamping, shallow diffusions, higher sheet resistivity and small geometries resulting in lower parasitic capacitance to achieve speeds comparable to $5400 / 7400$ at one-fifth the power and 54 H at one-tenth the power. The Raytheon TTL family is completely compatible with most of the popular TTL and DTL logic families and is equivalent in performance to the 9LS series.

Raytheon Schottky Diodes are produced by depositing platinum over the collector and base contact openings of Schottky transistors. A protective layer of Titanium/ Tungsten alloy is deposited by a high-energy sputtering technique over the wafers. An alluminum layer is deposited and the interconnect pattern is etched-out during the final operation.

The tri-metal sandwich produced is one of the most reliable metalization systems available in the industry.

Raytheon has extensive experience in tri-metal metalization. For years similar techniques were used when producing trimetal systems for the fabrication of Beam Lead devices.

FEATURES

- High speed, Low-power

- 5 nsec typical gate propagation delay time.
- 2 mW typical gate power dissipation at 50\% duty cycle.

Table I compares Raytheon's Low-Power Schottky to the other TTL technologies.

Ease of System Design

- Switching times virtually insensitive to power supply, temperature variations.
- Low noise generation.
- High fan-out.
- Schottky-diode-clamped inputs minimize high-speed termination effects.
- Low output impedance gives low noise susceptibility, high capacitance drive capability.
- Power dissipation remains relatively low at operating frequencies up to 30 MHz .
- Smaller, lower-cost power supplies and cooling equipment.

ABSOLUTE MAXIMUM RATINGS

$$
\begin{aligned}
& \text { Supply Voltage, } \mathrm{V}_{\mathrm{CC}} \text { (See Note 1) } \\
& \text { Input Voltage (See Notes } 1 \text { and 2) }
\end{aligned} .
$$

NOTES:

1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. Except 54LS74, 109, 181, 196, 197. For 54LS74, 109, 181, 196,197 rating is 5.5 V .
3. This is the voltage between two emitters of a multiple-emitter transistor.
4. This is the maximum voltage which should be applied to any open-collector output when it is in the off state.

CIRCUIT CHARACTERISTICS

Dynamic Characteristic

The average propagation delay time is relatively insensitive to variations of power supply voltage and temperature. Figure 1 shows typical propagation delay of a gate versus temperature with two different capacitive loads.

TABLE I
SPEED POWER COMPARISON FOR TTL TECHNOLOGIES

	Series	Avg. Gate Propagation Delay	Avg. Power Per Gate	Speed-Power Product
Low-Power Schottky	54 LS (Ray)	5 ns	2 mW	10 PJ
Schottky	$54 \mathrm{LS} / 74 \mathrm{LS}$ (T.I.)	10 ns	2 mW	20 PJ
Standard	$54 / 74$	3 ns	20 mW	60 PJ
Other	$\begin{cases}54 \mathrm{H} / 74 \mathrm{H} \\ 54 \mathrm{~L} / 74 \mathrm{~L}\end{cases}$	10 ns	10 mW	100 PJ

Figure 1. Propagation Delay Change With Temperature

The Raytheon LS family typically has 2 mW per gate power dissipation at 50% duty cycle, nearly constant to frequencies up to 5 MHz . P_{D} increases to 8 mW per gate at 30 MHz . Figure 2 shows the dynamic power dissipation at various frequencies for three different loading configurations.

Figure 2. Dynamic Power Dissipation
With its advanced circuit technology, Raytheon LS devices have inherently low power dissipation and current spiking on the V_{CC} line during transitions. Far less than in standard TTL or high-power Schottky circuits. This advantage increases the "dynamic noise" margin of the overall system designed with 54LS. Figure 3 shows the V_{CC} spikes of Raytheon LS and standard 5400 and 54 circuits.

Figure 3. VCC Current Spiking Raytheon 54LS, 54S, 5400 Comparison

A voltage higher than V_{OH} min should be maintained on the unused inputs of positive AND/NAND gates during dynamic testing. This will eliminate the distributed capacitance associated with the floating inputs, band wire, and package lead, and ensure that no degradation will occur in the propagation delay times. In addition to the circuits mentioned in Note 2, all Raytheon LS devices employ a DTL input circuitry with Schottky diodes. The unused inputs may be connected directly to V_{CC}.

INPUT CHARACTERISTIC

Schottky barrier diode clamping minimizes the high speed termination effects previously associated with TTL devices. Figure 4 shows input clamp diode voltage versus input current.

Figure 4. Clamp Diode Voltage Versus Input Current

OUTPUT CHARACTERISTIC

Figures 5 and 6 show the typical sinking capability of Raytheon Low-Power Schottky devices and the $\mathrm{V}_{\text {IN }}$ vs. $\mathrm{V}_{\text {OUT }}$ curves over the full military temperature range. As shown in the curves, Raytheon LS devices can be guaranteed with ${ }^{1} \mathrm{OL}$ of 8.0 mA at V_{OL} of 0.45 V max. and also high output fan-out of 22 over the full military temperature range.

Figure 5. Typical Output vs. Input Voltage Characteristic

Figure 6

Ordering Information

Package Descriptions

BD	14-Pin Epoxy-B DIP	DB	14-Pin Epoxy-B DIP	L	16-Pin Metal Flatpak
BM	16-Pin Epoxy-B DIP	DC	14-Pin Ceramic DIP	MB	16-Pin Epoxy-B DIP
CJ	14-Pin Ceramic Flatpak	DM	16-Pin Ceramic DIP	MP	16-Pin Epoxy-B DIP
CK	14-Pin Ceramic Flatpak	J	14 or 16-Pin Ceramic DIP	R	24-Pin Ceramic DIP
CL	16-Pin Ceramic Flatpak	DP	14-Pin Epoxy-B DIP	N	24-Pin Glass/Metal Flatpak
CN	24-Pin Ceramic Flatpak	K	TO-3 Power Pack	W	14-Pin Ceramic Flatpak
D	14-Pin Metal DIP				

Ordering Information

Low Power Schottky

930 DTL Series

8200 MSI Series

J Ceramic DIP
W Ceramic Flatpack
CH Gold-backed chip, visually inspected to MIL-STD-883A, method 2012, and packaged in waffle pack.

Optional Processing to MIL-STD-883A, Level B \qquad

RAY I, II and III TTL Series

54/7400 SSI and MSI Series

$54-55$ to $+125^{\circ} \mathrm{C}$
740 to $+70^{\circ} \mathrm{C}$

Function

Package Type

Quality and Reliability

RAYACT-883A PROGRAM

The Raytheon Acceptance Testing Program called Rayact-883A involves in process inspections which assure compliance with MIL.STD.883A test methods and MIL.M-38510 Program Plan Requirements.

Table 1 defines the Standard Process Flow for Raytheon Semiconductor's Mılitary Level Integrated Circuits. After completion of the in-process inspections and 100% production screens, each lot is subjected to a quality conformance inspection as defined in Table 2. The screening and acceptance
testing outlined in Tables 1 and 2 are provided at no extra cost.
In addition to the Standard Process Flow and acceptance test ing, Qualification Tests in accordance with MIL.STD-883A, Method 5005 are conducted every three months on each product line. Generic Summary Data of Groups A, B, and C testing (Table 3) is available upon request.

The level of reliability you desire can be selected from Table 4. These tests are conducted in accordance with Method 5004 of MIL-STD-883A.

APPLICABLE DOCUMENTS:

Military: MIL.STD.883A
MIL.M-38510
Raytheon Semiconductor:
Quality/Reliability Assurance Manual

Table 1-Standard Process Flow Summary for Integrated Circuits

MANUFACTURING OPERATION	MANUFACTURING INSPECTION	QUALITY/RELIABILITY INSPECTION					
Manufacturing Stores	Purchased Item Verification	Receiving Inspection To Applicable M\&SS and Blueprint Number					
Mask Making	Mask Inspection	Mask Inspection	$	$	Materials Preparation	Electrical Probe Check and 100\% Visual Inspection	Q.C. Monitor
:---	:---	:---					
Photoengraving and Diffusion	100% Visual Inspection	Q.C. Wafer Lot Acceptance					
Final Wafer Lot Acceptance	100% Electrical Test	Q.C. Monitor					
Electrical Test of Wafer	100% Visual Inspection	Q.C. Monitor					
Scribing and Dicing	100% Die Sort Inspection	Dice Lot Acceptance					
Visual Die Sort MIL-STD-883A, Method 2010.2, Condition B	Q.C. Monitor						
Die Attach	100% Visual Inspection Lead BondPre-Seal Inspection at 100X Magnification MIL-STD-883A, Method 2010, Condition B	100% Visual Inspection at High-Power Magnification					
Pre-Seal Inspection at 30X Magnification MIL-STD.883A, Method 2010, Condition B	100% Visual Inspection at Low-Power Magnification	Q.C. Lot Acceptance					

Quality and Reliability

Table 1-Standard Process Flow Summary for Integrated Circuits (Cont.)

MANUFACTURING OPERATIONS	MANUFACTURING INSPECTION	QUALITY/RELIABILITY INSPECTION
Final Seal	Visual and Hermeticity	Q.C. Monitor
High-Temperature Bake $150^{\circ} \mathrm{C}-24$ Hours Minimum (MIL-STD-883A, Method 1008, Condition C)	100% Processing	Q.C. Monitor
Temperature Cycling -650^{\prime} to $+150^{\circ} \mathrm{C}, 10$ Cycles (MIL-STD-883A, Method 1010, Condition C)	100% Processing	Q.C. Monitor
Centrifuge 30 KG Minimum Y 1 Axis (MIL-STD-883A, Method 2001, Condition E)	100% Processing	Q.C. Monitor
Lead Form	100% Visual Inspection	Q.C. Monitor
Carrier Load	100% Visual Inspection	Q.C. Monitor
Hermeticity MIL STD-883A, Method 1014	Q.C. Monitor	
External Visual	100% Inspection	Q.C. Monitor
Electrical Test and Sort	100% Inspection	Q.C. Monitor

Table 2-Quality Conformance Inspection (Each Lot)

INSPECTION		LTPD/MAX. ACC. NO.	COMMENTS
External		7/2	MIL-STD-883A, Method 2009
Hermeticity Fine Leak Gross Leak		7/2	MIL-STD-883A, Method 1014, Condition A or B MIL-STD-883A, Mthod 1014, Condition C2
Electrical Static Parameters	$+25^{\circ} \mathrm{C}$	5/1	Per Applicable Electrical Test Specification
	$+125^{\circ} \mathrm{C}$	7/1	
	$-55^{\circ} \mathrm{C}$	7/1	
Dynamic Parameters	$+25^{\circ} \mathrm{C}$	5/1	
	$+125^{\circ} \mathrm{C}$	7/1	
	$-55^{\circ} \mathrm{C}$	7/1	
Package and Ship		Quality Assurance Monitor	

NOTE:
Generic Qualification Data in accordance with MIL-STD-883A, Method 5005, can be supplied if negotiated prior to procurement.

Table 3A-Group A Electrical Tests-MIL-STD-883A

SUBGROUPS	CLASS A LTPD	CLASS B LTPD	CLASS C LTPD
Subgroup 1 Static tests at $25^{\circ} \mathrm{C}$	5	5	5
Subgroup 2 Static tests at maximum rated operating temperature	5	7	10
Subgroup 3 Static tests at minimum rated operating temperature	5	7	10
Subgroup 4 Dynamic tests at $25^{\circ} \mathrm{C}$	5	5	5
Subgroup 5 Dynamic tests at maximum rated operating temperature	5	7	10
Subgroup 6 Dynamic tests at minimum rated operating temperature	5	7	10
Subgroup 7 Functional tests at $25^{\circ} \mathrm{C}$	3	5	5
Subgroup 8 Functional tests at maximum and minimum rated operating temperatures	5	10	15
Subgroup 9 Switching tests at $25^{\circ} \mathrm{C}$	5	7	10
Subgroup 10 Switching tests at maximum rated operating temperature	5	10	15
Subgroup 11 Switching tests at minimum rated operating temperature	5	10	15

NOTE:
The specific parameters to be included for tests in each subgroup shall be as specified in the applicable reliability specification. Where no parameters have been identified in a particular subgroup or test within a subgroup, no group A testing shall be performed for that subgroup or test to satisfy group A requirements.
Table 3B-Group B Tests, MIL-STD-883A, Method 5005

	TEST	MIL-STD-883		CLASS A LTPD	CLASS B LTPD	$\begin{gathered} \text { CLASS C } \\ \text { LTPD } \end{gathered}$
		METHOD	CONDITION			
Subgroup 1	Physical dimensions	2016		10	15	20
Subgroup 2	Resistance to solvents	2015		3 devices (no failures)	3 devices (no failures)	3 devices (no failures)
	Visual and mechanical	2014	Criteria from design and construction requirements of applicable procurement document	1 device (no failures)	1 device (no failures)	1 device (no failures)
	Bond strength	2011		5	15	20
	Thermocompression		Test condition C or D			
	Ultrasonic or wedge		Test condition C or D			
Subgroup 3	Solderability	2003	Soldering temperature of $260^{\circ} \mathrm{C} \pm 10{ }^{\circ}$	10	15	15
Subgroup 4	Lead fatigue	2004	Test condition B2	10	15	15
	Seal: Fine, Gross	1014	As applicable			

Quality and Reliability

Table 3C-Group C Tests, MIL-STD-883A, Method 5005

TEST	MIL-STD-883A		$\begin{aligned} & \text { CLASS A } \\ & \text { LTPD } \end{aligned}$	$\begin{aligned} & \text { CLASS B } \\ & \text { LTPD } \end{aligned}$	$\begin{gathered} \text { CLASS C } \\ \text { LTPD } \end{gathered}$
	METHOD	CONDITION			
Subgroup 1 (Note 1) Thermal shock Temperature cycling Moisture resistance Seal a. Fine b. Gross (Note 7) Visual examination (Note 2) End point electrical parameters	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$	Test condition B as a minimum. Test condition C As applicable As specified in the applicable procurement document.	10	15	15
Subgroup 2 (Note 1) Mechanical shock Vibration, variable frequency Constant acceleration Seal a. Fine b. Gross (Note 7) Visual examination (Note 3) End point electrical parameters	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & 1014 \end{aligned}$	Test condition B Test condition A Test condition E As applicable As specified in the applicable procurement document.	10	15	15
Subgroup 3 Salt atmosphere (Note 4) Visual examination (Note 5)	1009	Test condition A	10	15	15
Subgroup 4 High temperature storage (Note 6) End point electrical parameters	1008	Test condition C 1000 hours. As specified in the applicable procurement document.	7	7	7
Subgroup 5 Operating life test (Note 6) End point electrical parameters	1005	Test condition to be specified in the applicable procurement document (1000 hours). As specified in the applicable procurement document:	5	5	5
Subgroup 6 Steady state reverse bias End point electrical parameters	1005	Test condition A, 72 hours at $150^{\circ} \mathrm{C}$. As specified in the applicable procurement document.	7	-	-

NOTES:

1. Devices used for environmental tests in subgroup 1 may be used for mechanical tests in subgroup 2.
2. Visual examination shall be in accordance with method 1010 or 1011 at a magnification of $5 \times$ to $10 \times$.
3. Visual examination shall be performed at a magnification of $5 \times$ to $10 \times$ for evidence of defects of damage to case, leads,
or seals resulting from testing (not fixturing) such damage shall consitute a failure.
4. Electrical reject devices from the same inspection lot may be used for samples.
5. Visual examination shall be performed in accordance with 3.3.1 of method 1009.
6. See 40.4 of appendix B of MIL-M-38510.
7. When fluorocarbon gross leak testing is utilized, test condition C_{2} shall apply as minimum.

Table 4-Optional Screening-MIL-STD-883A, Method 5004

SCREEN	CLASS A		CLASS B		CLASS C	
	METHOD	REQUIRE. MENT	METHOD	REQUIRE MENT	METHOD	REQUIREMENT
Internal visual (Precap)	$\begin{aligned} & 2010 \\ & \text { test condition A } \end{aligned}$	100\%	$\begin{aligned} & 2010 \\ & \text { test condition B } \end{aligned}$	100\%	$\begin{aligned} & 2010 \\ & \text { test condition B } \end{aligned}$	100\%
Stabilization bake	1008, 24 hrs. test condition C , $150^{\circ} \mathrm{C}$	100\%	1008, 24 hrs. test condition C , $150^{\circ} \mathrm{C}$	100\%	1008, 24 hrs. test condition C , $150^{\circ} \mathrm{C}$	100\%
Thermal shock	1011, test condition A , $0^{\circ} \mathrm{C} \cdot 100^{\circ} \mathrm{C}$ 15 cycles	100\%	Not required		Not required	
Temperature cycling	```1010 test condition C, -650}\textrm{C}\mathrm{ to +150}\mp@subsup{}{}{\circ}\textrm{C 10 cycles```	100\%	$\begin{aligned} & 1010, \\ & \text { test condition } \mathrm{C} \text {, } \\ & -65{ }^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 10 \text { cycles } \end{aligned}$	100\%	$\begin{aligned} & 1010, \\ & \text { test condition C, } \\ & -655^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 10 \text { cycles } \end{aligned}$	100\%
Mechanical shock	2002**	100\%	Not required		Not required	
Constant Acceleration	$2001,$ test condition E Y_{2} plane, then Y_{1} plane, 30,000 G's	100\%	2001, test condition E Y_{1} plane, $30,000 \mathrm{G}$'s	100\%	$\begin{aligned} & 2001, \\ & \text { test condition E } \\ & \text { Y } ~ p l a n e, ~_{\text {pla }} \\ & 30,000 \mathrm{G} \text { s } \end{aligned}$	100\%
Seal Fine, Gross	1014. Condition A Condition C Hermetic devices only	100\%	1014, Condition A Condition C Hermetic devices only	100\%	1014, Condition A Condition C Hermetic devices only	100\%
Critical electrical parameters	*	100\%	Go-No-Go		Not required	
Burn-in test	$\begin{aligned} & 1015,240 \mathrm{hrs} \text { @ } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}^{*} \end{aligned}$	100\%	$\begin{aligned} & 1015,168 \mathrm{hrs} \text { @ } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}^{*} \end{aligned}$	100\%	Not required	
Critical electrical parameters	*	100\%	Not required		Not required	
Reverse bias burn-in	1015, test condition A or C, 72 hrs. @ $150^{\circ} \mathrm{C}$	100\%	Not required		Not required	
Final electrical test	*		*		*	
Static tests $25^{\circ} \mathrm{C}$		100\%		100\%		100\%
Maximum and minimum rated operating temp.		100\%		100\%		
Dynamic tests and switching tests $25^{\circ} \mathrm{C}$		100\%		100\%		
Functional test $25^{\circ} \mathrm{C}$ (subgroup 7, table 1, 5005)		100\%		100\%		100\%
Group A Testing	Per Table 3A		Per Table 3A		Per Table 3A	
Radiographic	2012	100\%	Not required		Not required	
Qualification or quality conformance inspection Groups B and C optional, at extra cost	5005	*	5005	*	5005	*
External visual	2009	100\%	2009	100\%	2009	100\%

[^0]
Introduction

Raytheon's A+ program is designed to provide the Industrial and Commercial marketplace with product reliability. © Reliability consistent with application requirements. © Reliability that avoids an overbuy situation where the user pays for screening beyond the scope of his needs.

Raytheon offers three screening flows under the A+ program. Each having a separate reliability factor and cost saving. When deciding which A+ flow best suits your needs, you should consider the cost savings realized through elimination of outside lab services and the need to tighten incoming inspection. Users who do not presently have their integrated circuits screened should consider the cost of component replacement during system test and in the field. Substantial cost savings can now be realized by specifying Raytheon's A+ program.

The designations $A+1$ and $A+2$ are used for epoxy B packaged devices only. $\mathrm{A}+3$ is reserved for ceramic devices. The appropriate screening level may be specified by simply adding the proper A+ suffix to the Raytheon part number, i.e., - - RC4136DB with A+2 screening would be designated RC4136DB2.

Customers who use the epoxy package may wish to obtain a copy of the Epoxy Encapsulated Linear I.C. Quality Review, available from your local Raytheon sales office.

Basic Reliability Measures

Raytheon has instituted an internal program to assure that products bearing the Raytheon logo are unsurpassed in reliability when used in the industrial environment. Several tests, including some normally reserved for military products, are applied to our industrial products on a continuing basis in support of this effort. A brief summary of these tests is given below.

1. Monitored Burn-In (all packages)

24 hours at $+100^{\circ} \mathrm{C}$ with zero failures allowed. This RVT (reliability verification test), a Raytheon exclusive, is performed on 20 samples from each manufacturing lot.

2. Standard Burn-In (all packages)

168 hours at $+125^{\circ} \mathrm{C}, 1 \%$ PDA. This RVT is performed on 200 samples from each EIA data code.

3. Operating Life (all packages)

1000 hours at $+125^{\circ} \mathrm{C}$, LTPD $=5$. This RVT is performed on all new products and periodically on existing product types as an indicator of long-term reliability.

4. Pressure Cooker (epoxy packages only)

24 hours at $+125^{\circ} \mathrm{C}$ in steam vapor, LTPD $=10$. This RVT is performed on 25 samples from each EIA data code as to assure package and device integrity.

5. 85/85 (epoxy packages only)

168 hours with bias at $+85^{\circ} \mathrm{C}$ and 85% relative humidity, $\mathrm{STPD}=10$. This RVT is performed on 25 samples from each EIA date code also as an indicator of package and device integrity.

6. Temperature Cycle (epoxy packages only)

100 cycles per method $1010.1,0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. This RVT is performed on 25 samples from each EIA date code to mechanically stress the wire bond, die bond and package material.

7. Military Flow (ceramic packages and metal-cans)

Only dice lots which pass MIL-STD-883 condition B visual tests are used in these packages and the 883 class B flow is used up to point of electrical test. This provides military type product reliability at commercial prices.

A+ Programs Increase Reliability

Raytheon's A+ programs were designed to provide an even greater reliability assurance than standard process testing. Starting with devices which are processed with the basic reliability measures, various combinations of temperature cycle, burn-in, Hot Rail testing and tightened AQL lot acceptance are available as shown in the flow chart. The objectives of these 100% screens are:

1. Temperature Cycle (epoxy packages only)

$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ per method 1011 , condition A . This is the first screening for the $A+1$ and $A+2$ flows. ($A+3$ ceramic and metal-can devices received temperature cycles as part of standard product flow.) The purpose of this screening is to stress wire bonds and die bonds mechanically to prove the integrity of the devices.

2. Burn-In (all packages)

168 hours at $+125^{\circ}$ C. This screening is performed in $A+2$ and $A+3$ flows.

3. High Temperature Functional Test (Hot Rail)
 (epoxy packages only)

$+100^{\circ} \mathrm{C}$. This screening serves to further prove bond integrity.

[^1]
DEFINITIONS OF SYMBOLS AND TERMS

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use. The definitions are grouped into sections applying to voltages, currents, switching characteristics, and classification of circuit complexity.

VOLTAGES

$V_{I H}$ High-level input voltage
An input voltage level within the more positive (less negative) of the two ranges of values used to represent the binary variables. A minimum value is specified which is the least-positive (most-negative) value of high-level input voltage for which operation of the logic element withing specification limits is guaranteed.

VIL Low-level input voltage

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables. A maximum value is specified which is the most-positive (least-negative) value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.
$\mathbf{V}_{\mathbf{T}+}$ Positive-going threshold voltage
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negativegoing threshold voltage, V_{T}-.
V_{T} Negative-going threshold voltage
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positivegoing threshold voltage, $\mathrm{V}_{\mathrm{T}+}$.
V_{OH} High-level output voltage
The voltage at an output terminal for a specified output current 1 OH with input conditions applied that according to the product specification will establish a high level at the output.
V_{OL} Low-level output voltage
The voltage at an output terminal for a specified output current IOL with input conditions applied that according to the product specification will establish a low level at the output.

V_{O} (on) On -state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the on state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

$V_{O \text { (off) }}$ Off-state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

CURRENT

IIH High-level input current
The current flowing into* an input when a specified highlevel voltage is applied to that input.

IIL Low-level input current
The current flowing into* an input when a specified lowlevel voltage is applied to that input.
${ }^{\mathrm{I}} \mathrm{OH}$ High-level output current
The current flowing into* the output with a specified highlevel output voltage V_{OH} applied.

Note: This parameter is usually specified for open-collector outputs intended to drive other logic circuits.
'O(off) Off-state output current
The current flowing into* an output with a specified output voltage applied and input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This parameter is usually specified for open-collector outputs intended to drive devices other than logic circuits or for three-state outputs.

IOS Short-circuit output current
The current flowing into* an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

${ }^{\prime} \mathrm{CCH}$ Supply current, output(s) high

The current flowing into* the V_{CC} supply terminal of a circuit when the reference output(s) is (are) at a highlevel voltage.

ICCL Supply current, output(s) low

The current flowing into* the $V_{C C}$ supply terminal of a circuit when the reference output(s) is (are) at a lowlevel voltage.

DYNAMIC CHARACTERISTICS

$f_{\text {max }}$ Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause a change of output state with each clock pulse.

[^2]
DYNAMIC CHARACTERISTICS (continued)

${ }^{\mathbf{t}} \mathrm{HZ}$ Output disable time (of a three-state output) from high level
The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high level to a highimpedance (off) state.
${ }^{\text {t }}$ LZ Output disable time (of a three-state output) from low level
The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a highimpedance (off) state.
tPLH Propagation delay time, low-to-high-level output The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.
tPHL Propagation delay time, high-to-low-level output The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.
${ }^{\mathbf{t}}$ TLH Transition time, low-to-high-level output The time between a specified low-leve! voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.
tTHL Transisition time, high-to-low-level output The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high-level to the defined low-level.
${ }^{\mathrm{t}} \mathbf{w} \quad$ Average pulse width
The time between 50-percent-amplitude points (or other specified reference points) on the leading and trailing edges of a pulse.
$t_{\text {hold }}$ Hold time
The time interval for which a signal or pulse is retained at a specified input terminal after an active transition occurs at another specified input terminal.

$t_{\text {release }}$ Release time

The time interval between the release from a specified input terminal of data intended to be recognized and the occurrence of an active transition at another specified input terminal.

Note: When specified, the interval designated "release time" falls within the setup interval and constitutes, in effect, a negative hold time.
$t_{\text {setup }}$ Setup time
The time interval for which a signal is applied and maintained at a specified input terminal before an active transition occurs at another specified input terminal.
${ }^{\mathrm{t}} \mathrm{ZH}$ Output enable time (of a three-state output) to high level
The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.
${ }^{\text {t }}$ ZL Output enable time (of a three-state output) to low level
The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.
CONTENTS PAGE
9LS/54LS/74LS Low-Power Schottky 1-2
Beam Lead Low-Power Schottky 1-4
25LS High-Performance Low-Power Schottky 1-5
Standard TTL 2's Complement Multipliers 1-5
54/74 SSI Series 1-6
54/74 MSI Series $1-7$
8200 MSI Series 1-8
930 DTL Series 1-9
RAY I and II Series TTL 1-10
RAY III Series TTL 1-15

Digital Circuits

FEATURES

- High Speed, Low Power
- 5 ns typical gate propagation delay time
- 2 mW typical gate power dissipation at 50% duty cycle = speed-power product of 10 pJ
- Ease of System Design
- Switching times virtually insensitive to power supply, temperature variations
- Low noise generation
- High fan-out
- Schottky-diode-clamped inputs minimize high-speed termination effects
- Low output impedance gives low noise susceptibility, high capacitance drive capability
- Power dissipation remains relatively low at operating frequencies up to 30 MHz
- Smaller, lower-cost power supplies and cooling equipment

9LS/54LS/74LS Low Power Schottky

Type Number	Description	Prop Delay ${ }^{1}$ (ns) or Max. Op. Freq. $(\mathrm{MHz})^{2}$	Pwr Diss. (mW)	Available Packages					
				14 Pin		16 Pin		24 Pin	
				J	W	J	W	J	W
9LS/54LS/74LS00	Quad 2-input NAND gate	10	8	X	X				
9LS/54LS/74LS01	Quad 2-input NAND gate, open collectors	20	8	X	X				
9LS/54LS/74LS02	Quad 2-input NOR gate	10	11	X	X				
9LS/54LS/74LS03	Quad 2-input NOR gate, open collectors	20	8	X	X				
9LS/54LS/74LS04	Hex inverter	10	12	X	X				
9LS/54LS/74LS05	Hex inverter, open collectors	20	12	X	X				
9LS/54LS/74LS08	Quad 2-input AND gate	12	17	X	X				
9LS/54LS/74LS09	Quad 2-input AND gate, open collectors	17.5	17	X	X				
9LS/54LS/74LS10	Triple 3-input NAND gate	10	6	X	X				
9LS/54LS/74LS11	Triple 3-input AND gate	12	13	X	X				
9LS/54LS/74LS12	Triple 3-input NAND gate, open collectors	20	6	x	x				
9LS/54LS/74LS13	Dual 4-input Schmitt trigger	20	60	X	X				
9LS/54LS/74LS14	Hex Schmitt trigger	20	60	X	X				
9LS/54LS/74LS15	Triple 3-input AND gate, open collectors	17.5	13	X	X				
9LS/54LS/74LS20	Dual 4-input NAND gate	10	4	X	X				
9LS/54LS/74LS21	Dual 4-input AND gate	17.5	8.5	X	X				
9LS/54LS/74LS22	Dual 4-input NAND gate, open collectors	20	4	X	X				
9LS/54LS/74LS26	LS03, 15 volt outputs	25	8	X	X				
9LS/54LS/74LS27	Triple 3-input NOR gate	10	18	X	X				
9LS/54LS/74LS28	Quad 2-input NOR gate buffer	15	22	X	X				
9LS/54LS/74LS30	Single 8-input NAND gate	13	2	X	X				
9LS/54LS/74LS32	Quad 2-inptu OR gate	11	20	X	X				
9LS/54LS/74LS33	LS28, open collectors	30	22	X	X				
9LS/54LS/74LS37	Quad 2-input NAND gate buffer	15	17	X	X				
9LS/54LS/74LS38	LS37, open collectors	30	17	X	X				
9LS/54LS/74LS40	Dual 4-input NAND gate buffer	15	9	X	X				
9LS/54LS/74LS42	1 of 10 decoder	11 ns	35			X	X		
9LS/54LS/74LS43	Excess 3 to decimal decoder	11 ns	35			X	X		
9LS/54LS/74LS44	Excess gray to decimal decoder	11 ns	35			X	X		
9LS/54LS/74LS51	Dual 2-wide AOI	13	5.5	X	X				

1. Maximum at $25^{\circ} \mathrm{C}$
2. Guaranteed minimum at $25^{\circ} \mathrm{C}$

9LS/54LS/74LS Low Power Schottky (Cont.)

Type Number	Description	Prop Delay ${ }^{1}$ (ns) or Max. Op. Freq. $(\mathrm{MHz})^{2}$	$\begin{aligned} & \text { Pwr } \\ & \text { Diss. } \\ & \text { (mW) } \end{aligned}$	Available Packages					
				14 Pin		16 Pin		24 Pin	
				J	W	J	W	J	W
9LS/54LS/74LS54	4-wide 2-3-3-2 input AOI	13	4.5	X	x				
9LS/54LS/74LS55	2-wide 4-input AOI	13	2.8	X	X				
9LS/54LS/74LS73	Dual J-K flip-flop, negative edge trigger	35 MHz	20	X	X				
9LS/54LS/74LS74	Dual D-type flip-flop	30 MHz	20	x	X				
9LS/54LS/74LS75	Quad transparent latch	12	32			X	x		
9LS/54LS/74LS76	Dual J-K flip-flop, preset and clear	35 MHz	20			X	X		
9LS/54LS/74LS77	Quad transparent latch	10	33	X	X				
9LS/54LS/74LS78	Dual J-K flip-flop, common clock and clear	35 MHz	20	X	x				
9LS/54LS/74LS83A	4-bit binary full adder	18	96			X	x		
9LS/54LS/74LS85	4-bit magnitude comparator	20	52			X	X		
9LS/54LS/74LS86	Quad 2-input exclusive 0 R gate	12	30	x	x				
9LS/54LS/74LS90	Decade Counter	32 MHz	45	x	X				
9LS/54LS/74LS91	8 -bit shift register	32 MHz	45	x	X				
9LS/54LS/74LS92	Divide by 12 counter	32 MHz	45	x	X				
9LS/54LS/74LS93	4-bit binary counter	32 MHz	45	x	x				
9LS/54LS/74LS95B	4-bit bidirectional shift register	30 MHz	65	X	x				
9LS/54LS/74LS107	Dual J-K flip-flop with clear	35 MHz	20	X	X				
9LS/54LS/74LS109	Dual J-K flip-flop, positive edge trigger	30 MHz	20			X	X		
9LS/54LS/74LS112	Dual J-K flip-flop, preset and clear	35 MHz	20			X	X		
9LS/54LS/74LS113	Dual J-K flip-flop with preset	35 MHz	20	X	X				
9LS/54LS/74LS114	Dual J-K flip-flop, common clock	35 MHz	20	X	X				
9LS/54LS/74LS122	Retriggerable one-shot	25	45	X	X				
9LS/54LS/74LS123	Dual one-shot multivibrator	25	30	X	X				
9LS/54LS/74LS125	Quad buffer with tri-state output	15	15	X	X				
9LS/54LS/74LS126	LS125, inverting	15	22	X	X				
9LS/54LS/74LS132	Quad 2-input Schmitt trigger	20	40	X	x				
9LS/54LS/74LS136	LS86 with open collectors	23	30	X	X				
9LS/54LS/74LS138	3-to-8 line decoder/demultiplexer	23	31			X	x		
9LS/54LS/74LS139	Dual 2-to-4 line decoder/demultiplexer	23	34			X	X		
9LS/54LS/74LS151	8 -to-1 line multiplexer, compl. outputs	20	30			x	x		
9LS/54LS/74LS152	8-to-1 line multiplexer	20	34	x	x				
9LS/54LS/74LS153	Dual 4-to-1 line multiplexer	15	31			X	X		
9LS/54LS/74LS155	Dual 2-to-4 line decoder/demultiplexer	40	30			X	X		
9LS/54LS/74LS156	LS155, open collectors	40	31			X	X		
9LS/54LS/74LS157	Quad 2-to-1 line multiplexer	15	49			X	X		
9LS/54LS/74LS158	LS157, inverting	12	24			x	x		
9LS/54LS/74LS160	BCD decade counter, asynchronous clear	30 MHz	93			X	X		
9LS/54LS/74LS161	4-bit binary counter, asynchronous clear	30 MHz	93			X	X		
9LS/54LS/74LS162	BCD decade counter, synchronous clear	30 MHz	93			X	X		
9LS/54LS/74LS163	4-bit binary counter, synchronous clear	30 MHz	93			X	X		
9LS/54LS/74LS164	8 -bit shift register	35 MHz	80	X	x				
9LS/54LS/74LS170	4×4 register file, open collectors	30	25			X	X		
9LS/54LS/74LS174	Hex D-type flip-flop	40 MHz	80			X	x		
9LS/54LS/74LS175	Quad D-type flip-flop	40 MHz	55			X	X		
9LS/54LS/74LS181	4-bit arithmetic logic unit	40	102					X	X

1. Maximum at $25^{\circ} \mathrm{C}$

RAYTHEON
2. Guaranteed minimum at $25^{\circ} \mathrm{C}$

Digital Circuits

9LS/54LS/74LS Low Power Schottky (Cont.)

Type Number	Description	Prop Delay ${ }^{1}$ (ns) or Max. Op. Freq. $(\mathrm{MHz})^{2}$	Pwr Diss. (mW)	Available Packages					
				14 Pin		16 Pin		24 Pin	
				J	W	J	W	J	W
9LS/54LS/74LS190	BCD decade counter, mode control	25 MHz	90			X	X		
9LS/54LS/74LS191	4-bit binary counter, mode control	25 MHz	90			X	X		
9LS/54LS/74LS192	BCD decade counter, up/down	30 MHz	85			X	X		
9LS/54LS/74LS193	4-bit binary counter, up/down	30 MHz	85			X	X		
9LS/54LS/74LS194A	4-bit bidirectional universal shift register	30 MHz	75			X	X		
9LS/54LS/74LS195A	4-bit parallel access shift register	30 MHz	70			X	X		
9LS/54LS/74LS196	4-bit presettable decade counter	35 MHz	60	X	X				
9LS/54LS/74LS197	4-bit presettable binary counter	35 MHz	60	X	X				
9LS/54LS/74LS221	Dual one-shot	40	95*			X	X		
9LS/54LS/74LS251	LS151 with tri-state outputs	25	35			X	X		
9LS/54LS/74LS253	LS153 with tri-state outputs	15	35			X	X		
9LS/54LS/74LS255	LS155 with tri-state outputs	25	35			X	X		
9LS/54LS/74LS257	LS157 with tri-state outputs	18	50			X	X		
9LS/54LS/74LS258	LS158 with tri-state outputs	15	35			X	X		
9LS/54LS/74LS261	2×4 parallel binary multiplexer	35	110			X	X		
9LS/54LS/74LS266	Quad 2-input exclusive NOR open collectors	20	40	X	X				
9LS/54LS/74LS279	Quad latch	27	12			X	X		
9LS/54LS/74LS283	4-bit full adder, fast carry	18	96			X	X		
9LS/54LS/74LS295A	LS95B with tri-state outputs	30 MHz	70	X	X				
9LS/54LS/74LS298	Quad 2 multiplexer with output register	16	65			x	X		
9LS/54LS/74LS365	Hex buffer (tri-state, common enable)	15	68			X	X		
9LS/54LS/74LS366	Hex inverter (tri-state, common enable)	15	60			X	X		
9LS/54LS/74LS367	Hex buffer (tri-state, $4 \times 2 \mathrm{bit}$)	15	68			X	X		
9LS/54LS/74LS368	Hex inverter (tri-state, 4×2 bit)	15	60			X	X		
9LS/54LS/74LS375	Quad latch (rotated LS75)	12	32			X	X		
9LS/54LS/74LS386	Quad 2-input exclusive OR gate	12	30	X	X				
9LS/54LS/74LS395	4-bit shift register (tri-state)	35 MHz	75			X	X		
9LS/54LS/74LS670	4×4 register file (tri-state)	40	150			X	X		

1. Maximum at $25^{\circ} \mathrm{C} \quad$ 2. Guaranteed minimum at $25^{\circ} \mathrm{C}$

Beam Lead Low Power Schottky Devices

Type	Description	Die Size (Mils)	Layout		Mech. Outline Dwg.
			No. of Beams	$\begin{aligned} & \text { EIA } \\ & \text { Std. } \end{aligned}$	
54LS00BL	Quad 2-input NAND gate	45×45	16	X	9
54LS03BL	Quad 2-input NAND gate, open collector outputs	45×45	16	X	9
54LS04BL	Hex inverter	45×45	16	X	9
54LS05BL	Hex inverter, open collector outputs	45×45	16	X	9
$54 \mathrm{LS10BL}$	Triple 3-input NAND gate	45×45	16	X	9
54LS11BL	Triple 3-input AND gate	45×45	16	X	9
54LS15BL	Triple 3-input AND gate, open collector outputs	45×45	16	X	9
54LS153BL	Dual 4-to-1 line multiplexer	55×55	20	X	12
54LS253BL	Dual 4-to-1 line multiplexer, tri-state output	55×55	20	X	12

25LS High-Performance Low Power Schottky

Type Number	Description	Prop Delay ${ }^{1}$ (ns) or Max. Op. Freq. $(\mathrm{MHz})^{2}$	Pwr. Diss. (mW)	Available Packages					
				14 Pin		16 Pin		20 Pin	
				J	W	J	W	J	W
25LS14	8 -bit serial/parallel multiplier	40 MHz	455			X	X		
25LS15	Quad serial adder/subtractor	40 MHz	240					X	X
25LS22	8 -bit serial/parallel register	70 MHz	200					X	X
25LS23	8 -bit shift/storage register	50 MHz	190					X	X
25LS138	3-to-8 line decoder/demultiplexer	12	31			X	X		
25LS139	Dual 2-to-4 line decoder/demultiplexer	10	34			X	X		
25LS151	8-to-1 line multiplexer, compl. outputs	9	30			X	X		
25LS153	Dual 4-in-1 line multiplexer	10	31			X	X		
25LS157	Quad 2-to-1 line multiplexer	6	40			X	X		
25LS158	LS157, inverting	6	24			x	X		
25LS160	BCD decade counter, async. clear	40 MHz	93			X	X		
25LS161	4-bit binary counter, async. clear	40 MHz	93			X	X		
25LS162	BCD decade counter, sync. clear	40 MHz	93			x	X		
25LS163	4-bit binary counter, sync. clear	40 MHz	93			X	x		
25LS170	4×4 register file, open collector	20	125			X	X		
25LS174	Hex D-type flip-flop	50 MHz	80			X	X		
25LS175	Quad D-type flip-flop	50 MHz	55			X	X		
25LS181 ${ }^{3}$	4-bit arithmetic logic unit	12	102						
25LS190	$B C D$ decade counter, mode control	35 MHz	90			X	X		
25LS191	4-bit binary counter, mode control	35 MHz	90			X	X		
25LS192	BCD decade counter, up/down	35 MHz	85			x	X		
25LS193	4-bit binary counter, up/down	35 MHz	85			X	X		
25LS194A	4-bit bidirectional-universal shift register	40 MHz	75			X	X		
25LS195A	4-bit parallel access shift register	40 MHz	70			X	X		
25LS251	LS151 with tri-state outputs	9	35			X	X		
25LS253	LS153 with tri-state outputs	9	35			x	X		
25LS257	LS157 with tri-state outputs	7	50			X	x		
25LS258	LS158 with tri-state outputs	7	35			X	X		
25LS299	8 -bit shift/storage register	50 MHz	190					X	X
25LS670	LS170 with tri-state outputs	20	150			X	X		

1. Maximum at $25^{\circ} \mathrm{C}$
2. Available in 24 -pin J or W package.
3. Guaranteed minimum at $25^{\circ} \mathrm{C}$

Standard TTL 2's Complement Multipliers

Type Number	Description	$\begin{gathered} \text { Prop Delay }{ }^{1} \\ \text { (ns) } \end{gathered}$	Pwr Diss. (mW)	Available Packages	
				N	R
2505	4-bit by 2-bit 2's complement multiplier	20	450	X	X
2506	4-bit arithmetic logic unit/function generator with output latch	20	450	X	X

1. Maximum at $25^{\circ} \mathrm{C}$

Digital Circuits

54/74 SSI Series

Type	Description	Prop Delay (ns) or Max. Op. Freq. (MHz)	$\begin{aligned} & \text { Pwr }{ }^{1} \\ & \text { Diss. } \\ & \text { (mW) } \end{aligned}$	Available Packages 14 Pin	
				DC	CJ
54/7400	Quadruple 2-input NAND gate	10	10	X	X
54/7401	Quadruple 2-input NAND gate, open collectors	22	10	X	X
54/7403	Quadruple 2-input NAND gate, open collectors	22	10	X	X
54/7404	Hex inverter	10	10	X	X
54/7405	Hex inverter, open collectors	22	10	X	x
54/7408	Quadruple 2-input AND gate	15	19	X	x
54/7409	Quadruple 2-input AND gate, open collectors	18.5	19.4	X	X
54/7410	Triple 3-input NAND gate	10	10	X	x
54/7411	Triple 3-input AND gate	15	19	X	x
54/7412	Triple 3-input NAND gate, open collectors	22	10	x	X
54/7415	Triple 3-input AND gate, open collectors	18.5	19.4	X	X
54/7420	Dual 4-input NAND gate	10	10	X	X
54/7421	Dual 4-input AND gate	15	19	X	X
54/7422	Dual 4-input NAND gate, open collectors	22	10	X	X
54/7437	Quad 2-input NAND gate	10	10	X	x
54/7438	Quad 2-input NAND gate, open collectors	10	10	X	x
54/7474	Dual D-type flip-flop	25 MHz	43	X	X
54/7486	Quad 2-input exclusive 0 R gate	14	150	X	X
54/74136	54/7486 with open collectors	27	150	X	X

[^3]
54/74 MSI Series

Type	Description	Prop Delay (ns) or Max. Op. Freq. (MHz)	$\begin{aligned} & \text { Pwr }{ }^{1} \\ & \text { Diss } \\ & (\mathrm{mW}) \end{aligned}$	Available Packages					
				14 Pin		16 Pin		24 Pin	
				DC	CJ	CL	DD	N	R
54/7442	BCD-to-Decimal Decoder	22	140			X	x		
54/7443	Excess 3-to-Decimal Decoder	22	140			X	X		
54/7444	Excess 3 Gray-to-Decimal Decoder	22	140			X	X		
54/7445	BCD-to-Decimal Decoder/Driver (30V Breakdown)	30	215			X	X		
54/7483	4-Bit Binary Full Adder	13	300			X	x		
54/74123	Dual Retriggerable Monostable Multivibrator	21	230			x	X		
54/74145	BCD-to-Decimal recoder Driver (15V Breakdown)	30	215			X	X		
54/74150	16-to-1 Line Data Selector/Multiplexer	11	200					x	x
54/74151	8-to-1 Line Data Selector/Multiplexer	11	145			X	x		
54/74152	8-to-1 Line Data Selector/Multiplexer	11	130			X	x		
54/74153	Dual 4-in-1 Line Data Selector/Multiplexer	14	180			X	x		
54/74154	4-to-16 Line Decoder/Demultiplexer	23	170					x	x
54/74155	Dual 2-to-4 Line Decoder/Demultiplexer	21	250			X	x		
54/74156	Dual 2-to-4 Line Decoder/Demultiplexer (Open Coll.)	21	250			X	x		
54/74157	Quad 2-to-1 Line Data Selector/Multiplexer	9	150			X	x		
54/74158	Quad 2-to-1 Line Data Selector/Multiplexer (Inv. Data)	9	150			X	X		
54/74159	4-to-16 Line Decoder/Demultiplexer (Open Coll.)	24	170					X	X
54/74160	BCD Decade Counter, Async. Clear	32 MHz	305			X	x		
54/74161	4-Bit Finary Counter, Async. Clear	32 MHz	305			X	X		
54/74162	BCD Decade Counter, Sync. Clear	32 MHz	305			X	X		
54/74163	4-Bit Binary Counter, Sync. Clear	32 MHz	305			X	x		
54/74164	8-Bit Parallel-Out Serial Shift Register (S.I.P.O.)	36 MHz	167	X	X				
54/74165	Parallel-Load 8-Bit Shift Register (P.I.S.O.)	26 MHz	210			X	x		
54/74166	8-Bit Shift Register with Clear (P.I.S.O.)	35 MHz	360			X	x		
54/74170	4×4 Register File	20	625			X	x		
54/74174	Hex D-Type Flip-Flop	35 MHz	225			X	x		
54/74175	Quad D-Type Flip-Flop	35 MHz	150			X	X		
54/74180	9-Bit Odd/Even Parity Generator/Checker	32	170	X	X				
54/74181	4-Bit Arithmetic Logic Unit	17	440					X	x
54/74182	Look-Ahead Carry Generator	13	180			X	x		
54/74190	BCD Decade Up/Down Counter	25 MHz	325			X	x		
54/74191	4-Bit Binary Up/Down Counter	25 MHz	325			X	x		
54/74192	BCD Decade Up/Down Counter (Dual Clock)	30 MHz	325			X	x		
54/74193	4-Bit Binary Up/Down Counter (Dual Clock)	30 MHz	325			x	x		
54/74194	4-Bit Bidirectional Universal Shift Register	36 MHs	195			X	x		
54/74195	4-Bit Parallel Access Shift Register	39 MHz	195			X	x		
54/74198	8-Bit Right/Left Shift Register (P.I.P.O.)	35 MHz	360					X	x
54/74199	8-Bit Shift Register (P.I.P.O.)	35 MHz	360					X	x
54/74255	54/74155 with 3-State Outputs	21	250			X	X		
54/74283	4-Bit Binary Full Adder with Fast Carry	13	300			X	x		

1. Power dissipation is given for $\mathrm{V}_{\mathrm{C}}=5.0$ Volts. Propagation delays given are for the average path. Operating temperature range, 5400 Types: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; 7400$ Types: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

8200 MSI Series

Type	Description	Prop Delay (ns) or Max. Op. Freq. (MHz)	$\begin{gathered} \text { Pwr }{ }^{1} \\ \text { Diss } \\ (\mathrm{mW}) \\ \hline \end{gathered}$	Available Packages									
				14 Pin				16 Pin				24 Pin	
				DP	DC	CJ	DB	CL	DD	MB	MP	N	R
RM/RC8T09	Quad Bus Driver (Tri-State Outputs)	16	235		X	X							
RM/RC8T10	Quad D-Type Bus Flip-Flop (Tri-State Outputs)	50 MHz	250										
RM/RC8T20	Bidirectional One-Shot	30	250					x	X	X	X		
RM/RC8200	Dual 5-Bit Buffer Register	35 MHz	400									X	X
RM/RC8201	Dual 5-Bit Buffer Register (Inv. Outputs)	35 MHz	400									X	X
RM/RC8202	10-Bit Buffer Register	35 MHz	400									x	X
RM/RC8203	10-Bit Buffer Register (Inv. Outputs)	35 MHz	400									X	X
RM/RC8230	8-Input Multiplexer	11	184					x	x		x		
RM/RC8231	8 -Input Multiplexer (Open Coll. f Output)	13	184					x	x		X		
RM/RC8232	8 -Input Multiplexer	11	173					x	x		x		
RM/RC8233	2-Input 4-Bit Multiplexer	16	200					x	x		x		
RM/RC8234	2-Input 4-Bit Multiplexer (Open Coll.)	16	160					x	x				
RM/RC8235	2-Input 4-Bit Multiplexer (Open Coll.)	16	230					x	x				
RM/RC8241	Quad Exclusive OR Gate	14	225	X	x	x							
RM/RC8242	4-Bit Comparator (Open Coll.)	14	170		X	x							
RM/RC8243	8-Bit Position Scaler	25	315									x	x
RM/RC8250	Binary-to-Octal Decoder	20	125		X	x							
RM/RC8251	BCD to Decimal Decoder	20	135					x	X		x		
RM/RC8252	(9301) BCD to Decimal Decoder	20	135					x					
RM/RC8260	Arithmetic Logic Element	14	400									X	X
RM/RC8261	Fast Carry Extender	13	115	x	x	x							
RM/RC8262	9-Bit Parity Generator/Checker	30	300		X	x							
RM/RC8263	3-Input 4-Bit Multiplexer	17	378									x	X
RM/RC8264	3-Input 4-Bit Multiplexer (Open Coll.)	25	400									x	X
RM/RC8266	2-Input 4-Bit Multiplexer	14	200					x	x				
RM/RC8267	2-Input 4-Bit Multiplexer (Open Coll.)	17	200					X	X	x			
RM/RC8270	4-Bit Shift Register	23 MHz	168	x	X	X							
RM/RC8271	4-Bit Shift Register	22 MHz	270					X	X	X	X		
RM/RC8273	10-Bit Serial-In, Parallel-Out Shift Register	35 MHz	340					X	X	X	X		
RM/RC8274	10-Bit Parallel-In, Serial-Out Shift Register	25 MHz	380					x	X	X	x		
RM/RC8277	Dual 8-Bit Shift Register	20 MHz	400					X	X	X	X		
RM/RC8280	Decade Counter	25 MHz	185	X	X	x	x						
RM/RC8281	4-Bit Binary Counter	25 MHz	185	X	X	x	x						
RM/RC8284	Binary Hex Synchronous Up/Down Counter	30 MHz	315		X	x							
RM/RC8285	BCD Decade Synchronous Up/Down Counter	30 MHz	315	x	x	x							
RM/RC8290	Presettable High Speed Decade Counter	60 MHz	190	X	x	x	x						
RM/RC8291	Presettable High Speed Binary Counter	60 MHz	190	X	X	X	X						

[^4]

NOTES

1. Operating temperature range; RM types: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; RC types: $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
2. Without collector pull-up resistor, Rc
3. $6 \mathrm{~K} \Omega$ pull-up resistor
4. $2 \mathrm{~K} \Omega$ pull-up resistor

| Y I | d \|| Series TT | | TYPICAL CHARACTERISTICS | | | Available Packages | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Type }{ }^{1} \\ \text { Number } \end{gathered}$ | Description | Fanout Function | $\begin{gathered} \text { Tpd (ns) } \\ \text { or } \\ \text { Toggle } \\ \text { Rate } \\ \text { (Min) } \end{gathered}$ | Avg. Pwr. Function (mW) 50\% Duty | DC
 Noise
 Margin
 (V) | | | |
| | | | | | | 14 Pin | | |
| | | | | | | 3 | x | $\stackrel{\square}{\square}$ |
| RF30 | Single phase SRT flip-flop | 15 | 15 MHz | 30 | +1.1, -1.5 | X | $\mathrm{x} \times$ | x |
| RF31 | Single phase SRT flip-flop | 7 | 15 MHz | 30 | +1.1, -1.5 | x | x | (|
| RF32 | J-K flip-flop (AND inputs) | 12 | 15 MHz | 30 | +1.1, -1.5 | x | $\mathrm{x} \times$ | x |
| RF33 | J-K flip-flop (AND inputs) | 6 | 15 MHz | 30 | +1.1, -1.5 | x | x | x |
| RF50 | J-K flip-flop (AND inputs) | 15 | 20 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF51 | J-K flip-flop (AND inputs) | 7 | 20 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF52 | F-K flip-flop (AND inputs) | 12 | 20 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF53 | J-K flip-flop (AND inputs) | 6 | 20 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF60 | J-K flip-flop (OR inputs) | 15 | 20 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF61 | J-K flip-flop (OR inputs) | 7 | 20 MHz | 55 | +1.1, -1.5 | x | x | (1) |
| RF62 | J-K flip-flop (OR inputs) | 12 | 20 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF63 | J-K flip-flop (OR inputs) | 6 | 20 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF100 | Dual J-K flip-flop (separate clocks) | 11 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF101 | Dual J-K flip-flop (separate clocks) | 6 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | (|
| RF102 | Dual J-K flip-flop (separate clocks) | 9 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | (|
| RF103 | Dual J-K flip-flop (separate clocks) | 5 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF110 | Dual J-K flip-flop (common clock) | 11 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF111 | Dual J-K flip-flop (common clock) | 6 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF112 | Dual J-K flip-flop (common clock) | 9 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x\|x |
| RF113 | Dual J-K flip-flop (common clock) | 5 | 35 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF120 | Dual J-K flip-flop (separate clocks) | 11 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF121 | Dual J-K flip-flop (separate clocks) | 6 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF122 | Dual J-K flip-flop (separate clocks) | 9 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF123 | Dual J-K flip-flop (separate clocks) | 5 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF130 | Dual J-K flip-flop (common clock) | 11 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF131 | Dual J-K flip-flop (common clock) | 6 | 50 MHz | 55/flip-flop | +1.0, -1.5 | X | x | x |
| RF132 | Dual J-K flip-flop (common clock) | 9 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF133 | Dual J-K flip-flop (common clock) | 5 | 50 MHz | 55/flip-flop | +1.0, -1.5 | x | x | x |
| RF200 | J-K flip-flop (AND inputs) | 11 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF201 | J-K flip-flop (AND inputs) | 6 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF202 | J-K flip-flop (AND inputs) | 9 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF203 | J-K flip-flop (AND inputs) | 5 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF210 | J-K flip-flop (OR inputs) | 11 | 50 MHz | 55 | +1.0, -1.5 | x | x x | x |
| RF211 | J-K flip-flop (OR inputs) | 6 | 50 MHz | 55 | +1.0, -1.5 | X | x | x |
| RF212 | J-K flip-flop (OR inputs) | 9 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF213 | J-K flip-flop (OR inputs) | 5 | 50 MHz | 55 | +1.0, -1.5 | x | x | x |
| RF250 | J-K flip-flop (AND inputs) | 11 | 30 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF251 | $J-K$ flip-flop (AND inputs) | 6 | 30 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF252 | $J-K$ flip-flop (AND inputs) | 9 | 30 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF253 | J-K flip-flop (AND inputs) | 5 | 30 MHz | 50 | +1.1, -1.5 | x | x | x |
| RF260 | J-K flip-flop (OR inputs) | 11 | 30 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF261 | J-K flip-flop (OR inputs) | 6 | 30 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF262 | J-K flip-flop (OR inputs) | 9 | 30 MHz | 55 | +1.1, -1.5 | x | x | x |
| RF263 | J-K flip-flop (OR inputs) | 5 | 30 MHz | 55 | +1.1, -1.5 | X | x | X |

[^5]| Y | nd II Series TTL | (t.) | TYPICAL CHARACTERISTICS | | | Available Packages | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { Type }{ }^{1}$Number | Description | Fanout Function | Tpd (ns)
 or
 Toggle
 Rate
 (Min) | Avg. Pwr. Function (mW) 50\% Duty | DC Noise Margin (V) | | | |
| | | | | | | | 14 Pi | |
| | | | | | | 3 | 0 | - |
| RF9601 | Retriggerable monostable multivibrator $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ | 10 mA | 25 | 100 | +1.0, -1.5 | x | | x |
| RF9602 | Retriggerable monostable multivibrator $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ | 12.8 mA | 25 | 100 | +1.0, -1.5 | | | |
| RG40 | Dual 4 input NAND gate | 15 | 10 | 15/gate | +1.1, -1.5 | X | x | x |
| RG41 | Dual 4 input NAND gate | 7 | 10 | 15/gate | +1.1, -1.5 | x | $x \times$ | x |
| RG42 | Dual 4 input NAND gate | 12 | 10 | 15/gate | +1.1, -1.5 | X | $x \times$ | x |
| RG43 | Dual 4 input NAND gate | 6 | 10 | 15/gate | +1.1, -1.5 | x | x | x |
| RG50 | Exp. 4-wide, 2-2-2-3 input AOI gate | 15 | 12 | 30 | +1.1, -1.5 | x | $x \times$ | x |
| RG51 | Exp. 4-wide, 2-2-2-3 input AOI gate | 7 | 12 | 30 | +1.1, -1.5 | x | $x \times$ | x |
| RG52 | Exp. 4-wide, 2-2-2-3 input AOI gate | 12 | 12 | 30 | +1.1, -1.5 | x | x | x |
| RG53 | Exp. 4-wide, 2-2-2-3 input AOI gate | 6 | 12 | 30 | +1.1, -1.5 | x | x | x |
| RG60 | Single 8 input NAND gate | 15 | 12 | 15 | +1.1, -1.5 | x | x | x |
| RG61 | Single 8 input NAND gate | 7 | 12 | 15 | +1.1, -1.5 | x | $x \times$ | x |
| RG62 | Single 8 input NAND gate | 12 | 12 | 15 | +1.1, -1.5 | x | $x \times$ | x |
| RG63 | Single 8 input NAND gate | 6 | 12 | 15 | +1.1, -1.5 | x | $x \times$ | x |
| RG70 | Dual 2 -wide, 2 input AOI gate, one side exp. | 15 | 12 | 20/gate | +1.1, -1.5 | X | $x \times$ | x |
| RG71 | Dual 2 -wide, 2 input AOI gate, one side exp. | 7 | 12 | 20/gate | +1.1, -1.5 | X | x | x |
| RG72 | Dual 2 -wide, 2 input AOI gate, one side exp. | 12 | 12 | 20/gate | +1.1, -1.5 | x | x | x |
| RG73 | Dual 2 -wide, 2 input AO1 gate, one side exp. | 6 | 12 | 20/gate | +1.1, -1.5 | x | x | x |
| RG80 | Dual pulse shaper/delay AND gate | 15 | 11 | 30/gate | +1.1, -1.5 | x | x | x |
| RG81 | Dual pulse shaper/delay AND gate | 7 | 11 | 30/gate | +1.1, -1.5 | x | x | x |
| RG82 | Dual pulse shaper/delay AND gate | 12 | 11 | 30/gate | +1.1, -1.5 | x | x | x |
| RG83 | Dual pulse shaper/delay AND gate | 6 | 11 | 30/gate | +1.1, -1.5 | x | x | x |
| RG90 | Exclusive OR gate with complement | 15 | 11 | 35 | +1.1, -1.5 | x | x | X |
| RG91 | Exclusive OR gate with complement | 7 | 11 | 35 | +1.1, -1.5 | ${ }^{\prime}$ | x | x |
| RG92 | Exclusive OR gate with complement | 12 | 11 | 35 | +1.1, -1.5 | x | x | x |
| RG93 | Exclusive OR gate with complement | 6 | 11 | 35 | +1.1, -1.5 | x | x | x |
| RG 100 | Exp. 3 -wide, 3 input AOI gate | 15 | 12 | 25 | +1.1,-1.5 | x | x | x |
| RG101 | Exp. 3 -wide, 3 input AOI gate | 7 | 12 | 25 | +1.1, -1.5 | x | x | x |
| RG102 | Exp. 3 -wide, 3 input AOI gate | 12 | 12 | 25 | +1.1, -1.5 | x | x | x |
| RG103 | Exp. 3 -wide, 3 input AOI gate | 6 | 12 | 25 | +1.1, -1.5 | x | x | x |
| RG110 | Exp. 2-wide, 4 input AOI gate | 15 | 12 | 20 | +1.1, -1.5 | X | x | x |
| RG111 | Exp. 2-wide, 4 input AOI gate | 7 | 12 | 20 | +1.1, -1.5 | x | x | x |
| RG112 | Exp. 2-wide, 4 input AO1 gate | 12 | 12 | 20 | +1.1, -1.5 | x | x | x |
| RG113 | Exp. 2-wide, 4 input AOI gate | 6 | 12 | 20 | +1.1, -1.5 | x | x | x |
| RG120 | Expandable single 8 NAND gate | 15 | 18 | 15/gate | +1.1, -1.5 | x | x | x |
| RG121 | Expandable single 8 NAND gate | 7 | 18 | 15/gate | +1.1, -1.5 | X | x | x |
| RG122 | Expandable single 8 NAND gate | 12 | 18 | 15/gate | +1.1, -1.5 | x | x | x |
| RG123 | Expandable single 8 NAND gate | 6 | 18 | 15/gate | +1.1, -1.5 | x | x | x |
| RG130 | Dual 4-input line driver | 30 | 15 | 30/gate | +1.1, -1.5 | x | x | x |
| RG137 | Dual 4 input line driver | 30 | 15 | 30/gate | +1.1, -1.5 | x | x | x |
| RG132 | Dual 4 input line driver | 24 | 15 | 30/gate | +1.1, -1.5 | x | $x \times$ | x |
| RG133 | Dual 4 input line driver | 12 | 15 | 30/gate | +1.1, -1.5 | x | x | x |

1. Operating temperature range, final digits 0 or $1:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; final digits 2 or $3: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Digital Circuits

RAY I and II Series TTL (Cont.)			TYPICAL CHARACTERISTICS			Available Packages		
	Descriptio Description	Fanout Function	Tpd (ns or Toggle Rate (Min)	Avg. Pwr. Function (mW) 50\% Duty	DC Noise Margin (V)			
						14 Pin		
Type Number						3	¢	8
RG140	Quad 2 input NAND gate	15	10	15/gate	+1.1, -1.5	x	$\mathrm{x} \times$	x
RG141	Quad 2 input NAND gate	7	10	15/gate	+1.1, -1.5	X	x	x
RG142	Quad 2 input NAND gate	12	10	15/gate	+1.1, -1.5	x	x	x
RG143	Quad 2 input NAND gate	6	10	15/gate	+1.1, -1.5	x	$\mathrm{x} \times$	x
RG150	4-wide, 2-2-2-3 input AOI expander	-	4	5/gate	+1.1, -1.5	X	x	x
RG151	4 -wide, 2-2-2-3 input AOI expander	-	4	5/gate	+1.1, -1.5	x	$x \times$	$x \times$
RG152	4 -wide, 2-2-2-3 input AOI expander	-	4	5/gate	+1.1, -1.5	x	x	x
RG153	4-wide, 2-2-2-3 input AOI expander	-	4	5/gate	+1.1, -1.5	x	x	x
RG160	Triple 2 input buss driver	22	15	15/gate	+1.1, -1.5	x	x	x
RG161	Triple 2 input buss driver	11	15	15/gate	+1.1, -1.5	x	x	x
RG162	Triple 2 input buss driver	18	15	15/gate	+1.1, -1.5	x	x	x
RG163	Triple 2 input buss driver	9	15	15/gate	+1.1, -1.5	x	x	x
RG170	2 -wide, 4 input AOI expander	-	1	5/gate	+1.1, -1.5	x	x	x x
RG171	2 -wide, 4 input AOI expander	-	1	5/gate	+1.1, -1.5	x	x	$x \times$
RG172	2 -wide, 4 input AOI expander	-	1	5/gate	+1.1, -1.5	x	x	x
RG173	2 -wide, 4 input AOI expander	-	1	5/gate	+1.1, -1.5	x	x	x
RG180	Dual 4 input NAND expander	-	1	1	+1.1, -1.5	x	x	$x \mathrm{x}$
RG181	Dual 4 input NAND expander	-	1	1	+1.1, -1.5	x	x	x
RG182	Dual 4 input NAND expander	-	1	1	+1.1, -1.5	x	$\mathrm{x} \times$	x
RG183	Dual 4 input NAND expander	-	1	1	+1.1, -1.5	x	x	x
RG200	Expandable single 8 NAND gate	11	8	22/gate	+1.0, -1.5	x	x	$x \mathrm{x}$
RG201	Expandable single 8 NAND gate	6	8	22/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG202	Expandable single 8 NAND gate	9	8	22/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG203	Expandable single 8 NAND gate	5	8	22/gate	+1.0, -1.5	x	x	x
RG210	Expandable 2-wide, 4 input AOI gate	11	7	30	+1.0, -1.5	x	x	x x
RG211	Expandable 2-wide, 4 input AOI gate	6	7	30	+1.0, -1.5	x	$\mathrm{x} \times$	$x \times$
RG212	Expandable 2-wide, 4 input AOI gate	9	7	30	+1.0, -1.5	x	$x \times$	x
RG213	Expandable 2-wide, 4 input AOI gate	5	7	30	+1.0, -1.5	x	x	$x \times$
RG220	Quad 2 input NAND gate	11	8	22/gate	+1.0, -1.5	x	x	x
RG221	Quad 2 input NAND gate	6	6	22/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG222	Quad 2 input NAND gate	9	6	22/gate	+1.0, -1.5	x	$x \times$	x
RG223	Quad 2 input NAND gate	5	6	22/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG230	4-wide, 2-2-2-3 input AOI expander	-	2	7/gate	+1.0, -1.5	x	x	x
RG231	4 -wide, 2-2-2-3 input $A 01$ expander	-	2	7/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG232	4 -wide, 2-2-2-3 input AOI expander	-	2	7/gate	+1.0, -1.5	x	x	x
RG233	4-wide, 2-2-2-3 input AOI expander	-	2	7/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG240	Dual 4 input NAND gate	11	6	22/gate	+1.0, -1.5	x	x	x
RG241	Dual 4 input NAND gate	6	6	22/gate	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG242	Dual 4 input NAND gate	9	6	22/gate	+1.0, -1.5	x	x	x
RG243	Dual 4 input NAND gate	5	6	22/gate	+1.0, -1.5	x	x	x
RG250	Expandable 4-wide, 2-2-2-3 input AOI gate	11	8	40	+1.0, -1.5	x	$x \times$	x
RG251	Expandable 4-wide, 2-2-2-3 input AOI gate	6	8	40	+1.0, -1.5	x	$x \times$	$x \times$
RG252	Expandable 4-wide, 2-2-2-3 input AOI gate	9	8	40	+1.0, -1.5	x	$\mathrm{x} \times$	x
RG253	Expandable 4-wide, 2-2-2-3 input AOI gate	5	8	40	+1.0, -1.5	\times	x	x x

1. Operating temperature range, final digits 0 or $1:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; final digits 2 or $3: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

RAY I and II Series TTL (Cont.)

RAY I and II Series TTL (Cont.)

1. Operating temperature range, final digits 0 or $1:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; final digits 2 or $3: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. Pin $5, \Delta \leqslant 4.0 \mathrm{nS}$ (add $1 \Delta / 1 \mathrm{pfd}$)

Digital Circuits

RAY III Series TTL (Cont.)

[^6]
SECTION 2
 9LS/54LS/74LS
 Low-Power Schottky

PIN-OUT AND LOGIC DIAGRAMS

NC - No internal connection

Positive-NAND Gates, Hex Inverters

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			10			20	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max, $\mathrm{IOH}=-$	$400 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{~L}}=0.7 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
VOL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.3	0.45	V
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1			0.1	mA
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
I_{IL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Ios	$\mathrm{V}_{C C}=\mathrm{MAX}$,		-15		-100	-15		-100	mA
${ }^{\text {ICCH }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All inputs at 0 V (Per Gate)	LS00,04,10,20		0.2	0.4		0.2	0.4	mA
		LS30		0.35	0.5		0.35	0.5	mA
ICCL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 4.5 (Per Gate)			0.6	1.1		0.6	1.1	mA

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$
\dagger Not more than one output should be shorted at a time.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter		$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)											
$\mathrm{t}_{\text {PLH }}$	LS00,04,										ns
	10,20		6	12	3.0	5.0	10		7	12	
	LS30		7	11	4.0	6	1.1		9	15	
$\mathrm{t}_{\mathrm{PHL}}$	LS00,04,10,		9	15	3.0	5.0	10		8	14	ns
	LS20		10	16	4.0	8.0	12		10	16	
	LS30		18	25	6.0	15	20		10	17	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{PLH}}$	$\begin{aligned} & \text { LSOO,04, } \\ & 10,20 \end{aligned}$	9	15	9	15	10	16	ns
	LS30	8	13	8	13	12	18	
$\mathrm{t}_{\text {PHL }}$	LS00,04,10,	11	17	10	16	10	16	ns
	LS20	12	16	12	16	12	18	
	LS30	27	35	21	28	16	23	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS devices only.

PIN-OUT AND LOGIC DIAGRAMS

NC-No internal connection

Recommended Operating Conditions

		S/54L			S/74L		Unit
	Min	Nom	Max	Min	Nom	Max	Unit
Supply voltage, $\mathrm{V}_{\text {CC }}$ (See Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125			70	${ }^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$				2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
IOH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{V}_{\mathrm{OH}}{ }^{3}=5.5 \mathrm{~V}$	$V_{\text {IL }}=0.7 \mathrm{~V}$			100			100	$\mu \mathrm{A}$
VOL	$V_{C C}=$ MIN, $\quad V_{I H}=2 \mathrm{~V}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$1 \mathrm{OL}=8 \mathrm{~mA}$					0.3	0.5	
1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$					0.1			0.1	mA
$\mathrm{IIH}^{\text {I }}$	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$
IIL	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$					-0.4			-0.4	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 0V (Per Gate)				0.2	0.4		0.2	0.4	mA
$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	All inputs at 4.5V (Per Gate)			0.6	1.1		0.6	1.1	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Figure B, page 2-174)										
tPLH	7.0	16	28	7.0	14	22	7.0	15	28	ns
$\mathrm{tPHL}^{\text {Pr }}$	6.0	12	22	4.0	10	18	4.0	10	18	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Figure B, page 2-174)										
${ }^{\text {tPLH }}$	12	18.0	35	12	20	30	12	21	35	ns
$\mathrm{t}_{\mathrm{PHL}}$	6.0	12	25	6.0	12	20	6.0	12	25	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			10			20	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
V_{OL}	$V_{C C}=$ MIN,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$I_{\text {IH }}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
los	$\mathrm{V}_{C C}=\mathrm{MAX}$,		-15		-100	-15		-100	mA
${ }^{1} \mathrm{CCH}^{+}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All inputs at 0 V	LS02		1.6	3.2		1.6	3.2	mA
		LS27		2.0	4.0		2.0	4.0	
${ }^{\text {ICCL }}$	$V_{C C}=M A X$, All inputs at 5 V	LS02		2.8	5.4		2.8	5.4	mA
		LS027		3.4	6.8		3.4	6.8	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+Not more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)

$t_{P L H}$		5	11		6.0	11		8	13	ns
$t_{\text {PHL }}$		7	14		6.0	12		4	14	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\text {PLH }}$		8	13		8	13		10	15	ns
$\mathrm{t}_{\text {PHL }}$		10	15		7	14		7	15	ns

PIN-OUT AND LOGIC DIAGRAMS

NC-No internal connection

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			11			20	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$				2			2			V
$V_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
V_{OL}			$1 \mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$	$\mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{IIH}^{\text {r }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.4			-0.4	mA
los	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-15		-100	-15		-100	mA
ICCH					0.6	1.2		0.6	1.2	mA
$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	All inputs at 0	(Per Gate)		1.1	2.2		1.1	2.2	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter		$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			+125 ${ }^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A , page 2-174)											
$\mathrm{t}_{\text {PLH }}$	LS08,11		9	4		8.5	13		9	14	ns
	LS21		10	15		9	14		10	15	
$\mathrm{t}_{\mathrm{PHL}}$	LS08,11		6	11		6	10		8	12	ns
	LS21		6	11		6	10		8	12	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)											
$\mathrm{t}_{\text {PLH }}$	LS08,11		11	17		10	15		11	16	ns
	LS21		12	22		12	20		12	23	
$\mathrm{t}_{\mathrm{PHL}}$	LS08,11		10	15		8	12		11	16	ns
	LS21		14	22		12	20		12	23	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

Positive-AND Gates
 With Open-Collector Outputs

PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, $\mathrm{V}_{\text {CC }}$ (See Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, I_{OL}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			100			100	$\mu \mathrm{A}$
${ }^{\mathrm{OH}}$	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ MAX	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{T}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 4.5 V (Per Gate)			0.6	1.2		0.6	1.2	mA
$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 0	All inputs at OV (Per Gate)		1.1	2.2		1.1	2.2	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)										
${ }^{\text {PPLH }}$		14	20		14	21		28	42	ns
${ }^{\text {t }}$ PHL		10	15		8	12		9	13	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)										
tplH		30	38		30	38		40	54	ns
${ }_{\text {tPHL }}$		16	23		12	17		13	17	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS devices only.

Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs

FEATURES

- Operation from Very Slow Transitions
- Temperature-Compensated Threshold Levels
- Temperature-Compensated Hysteresis, Typically 0.8 V
- High Noise Immunity

DESCRIPTION

Each circuit functions as a NAND gate or inverter, but because of the Schmitt action, it has different input threshold levels for positive- and negative-going signals. The hysteresis or backlash, which is the difference between the two threshold levels, is typically 800 millivolts.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

SCHEMATIC (EACH GATE)

PIN-OUT AND LOGIC DIAGRAMS

NC- No internal connection

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\mathrm{T}+}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1.4	1.6	1.9	1.4	1.6	1.9	V
$\mathrm{V}_{\text {T- }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. 5	. 8	1.0	. 5	. 8	1.0	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.4	0.8		0.4	0.8		V
V_{1}	$\mathrm{V}_{C C}=$ MIN, $\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{1}=0.6 \mathrm{~V}$		2.5	3.4		2.7	3.4		V
V_{OL}	$V_{C C}=\mathrm{MIN}, \mathrm{V}_{1}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
$\mathrm{I}_{\mathrm{T}+}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{T}+}$			-0.14			-0.14		mA
I_{T-}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{T}-}$			-0.18			-0.18		mA
$1 /$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }_{1 / 1}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
los	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$		-15		-100	-15		-100	mA
${ }^{\text {ICCH }}$	$V_{C C}=M A X, \quad V_{1}=0 V$	LS13		2.9	6		2.9	6	mA
		LS14		8.6	16		8.6	16	
ICCL	$V_{C C}=\mathrm{MAX}, \quad V_{1}=4.5 \mathrm{~V}$	LS13		4.1	7		4.1	7	
		LS14		12	21		12	21	A

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter		$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{1 5 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)											
$t_{\text {PLH }}$	LS13	16	28			15	22		16	30	ns
	LS14	16	28			15	22		16	30	ns
$\mathrm{t}_{\text {PHL }}$	LS13	22	38			18	27		20	38	ns
	LS14	17	32			15	22		16	30	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

t $_{\text {PLH }}$	LS13	20	38			20	27		20	38	ns
	LS14	20	38			20	27		21	38	ns
$\mathrm{t}_{\text {PHL }}$	LS13	25	42			25	33		25	42	ns
	LS14	21	38			20	27		21	38	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The input waveform is supplied by a generator with the following characteristics:
$Z_{\text {out }}=50 \Omega$ and $P R R \leqslant 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N916 or 1 N3064.

TYPICAL CHARACTERISTICS ${ }^{\dagger}$

[^7]
Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs

TYPICAL APPLICATION DATA

TTL SYSTEM INTERFACE FOR SLOW INPUT WAVEFORMS

MULTIVIBRATOR

PULSE SHAPER

THRESHOLD DETECTOR

PULSE STRETCHER

Quadruple 2-Input High-Voltage

LS26

PIN-OUT AND LOGIC DIAGRAM (OPEN-COLLECTOR OUTPUTS)

Recommended Operating Conditions

NOTE 1: Voltage values are with respect to network ground terminal.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$				2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
IOH	$V_{C C}=$ MIN, $\quad V_{\text {IL }}=V_{\text {IL }}$ max		$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}$			1			1	mA
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$		$1 \mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.4			-0.4	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ All inputs at 0 V				0.8	1.6		0.8	1.6	mA
${ }^{\text {CCCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All inputs at 4.5V				2.4	4.4		2.4	4.4	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)										
tPLH	7.0	16	28	7.0	14	22	7.0	15	28	ns
$\mathrm{t}_{\mathrm{PHL}}$	6.0	12	22	4.0	10	18	4.0	10	18	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)										
tPLH	12	18	35	12	20	30	12	21	35	ns
$\mathrm{t}_{\mathrm{PHL}}$	6.0	12	25	6.0	12	20	6.0	12	25	ns

[^8]PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			60			60	
	Low logic level			30			60	
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2			V
$V_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{OH}}=-1.2 \mathrm{~mA}$	$\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$1 \mathrm{OLL}^{1}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$1 \mathrm{OLL}=22 \mathrm{~mA}$					0.35	0.5	
$1 /$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }_{1 / \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Ios	$V_{C C}=$ MAX		-30		-100	-30		-100	mA
ICCH	$V_{C C}=M A X$, All inputs at $0 V$ (Per Gate)	LS28		0.45	0.9		0.45	0.9	mA
		LS37,40		0.23	0.5		0.23	0.5	
$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\text {CC }}$ MAX, All inputs at 5 V (Per Gate)	LS28		1.7	3.45		1.7	3.45	mA
		LS37,40		1.5	3.0		1.5	3.0	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathbf{c c}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\underline{L}}=45 \mathrm{pF}, \mathrm{R}_{\underline{L}}=667 \Omega$ (See Fig. A, page 2-174)										
${ }^{\text {t PLH }}$		6	10		5	11		6	14	ns
${ }^{\text {t PHL }}$		9	14		7	15		7	15	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=125 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Fig. A, page 2-174)										
${ }^{\text {t PLH }}$		8	16		7	15		8	16	ns
${ }^{\text {t PHL }}$		14	20		10	18		10	20.	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

PIN-OUT AND LOGIC DIAGRAM

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, $V_{C C}$		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			10			20	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{OH}}=-400 \mu$	$\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$1 \mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{1 H}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS^{+}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ All inputs at 5 V			3.1	6.2		3.1	6.2	mA
ICCL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 0 V			4.9	9.8		4.9	9.8	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
†Not more than one output should be shorted at a time.
Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
${ }^{\text {P PLH }}$		7	12		7	11		9	13	ns
${ }^{\text {t }}$ PHL		7	13		7	12		9	14	ns
Test Conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
${ }^{\text {t PLH }}$		9	14		8	13		10	15	ns
$\mathrm{t}^{\text {P }} \mathrm{HL}$		11	17		10	15		12	18	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC} (See Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			22			22	mA
Operating free-air temperature, T_{A}	-55		125				${ }^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
${ }^{\text {IOH }}$	$\mathrm{V}_{\text {CC }}=$ MIN,,$~ V_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			250			250	$\mu \mathrm{A}$
V OL	$V_{C C}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5	V
I	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=$ MAX,,$~ V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
${ }^{\text {cch }}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, All inputs at 0 V	LS33		1.8	3.6		1.8	3.6	mA
		LS38		0.9	2.0		0.9	2.0	
${ }^{\text {c CLL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All inputs at 4.5 V	LS38		6.0	12.0		6.0	12.0	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Figure B, page 2-174)										
$t_{\text {PLH }}$		17	25	7.0	17	25		29	37	ns
tPHL		13	22	4.0	9	16		10	17	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=125 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Figure B, page 2-174)										
tPLH		30	45		32	42		44	56	ns
tPHL		22	36		18	35		15	35	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9LS devices only. All 50pF specifications are for 9LS devices only.

FEATURES

- All Outputs Are High for Invalid Input Conditions
- Also for Application as

4-Line to 16-Line Decoders
3-Line to 8-Line Decoders

DESCRIPTION

These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.
The LS42 BCD-to-decimal decoders, the LS43 excess-3-todecimal decoders, and the LS44 excess-3-gray-to-decimal decoders feature inputs and outputs that are compatible for use with most TTL and other saturated low-level logic circuits.
54 LS circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; 74 LS circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

No.	$\begin{gathered} \text { LS42 } \\ \text { BCD INPUT } \\ \hline \end{gathered}$				$\begin{gathered} \text { LS43 } \\ \text { EXCESS 3-INPUT } \\ \hline \end{gathered}$				LS44EXCESS3-GRAY INPUT				ALL TYPES DECIMAL OUTPUT									
	D	C	B	A	D	c	B	A	D	c	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	L	H	H	L	L	H	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	L	H	L	1	L	H	H	L	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	L.	H	1	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	L	H	H	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	L	H	H	H	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	L	L	L	H	H	L	L	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	L	1	14	H	H	L	H	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	L	H	1	H	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	L	1	H	L	H	L	H	H	H	H	H	H	H	H	H	L
	H	L	H	L	H	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
	H	L.	H	H	H	H	H	1	H	L	L	H	H	H	H	H	H	H	H	H	H	H
J	H	H	L	1	H	H	H	H	H	L	L	L	H	H	H	H	H	H	H	H	H	H
2	H	H	L	H	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H
\leq	H	H	H	L	L	L	L	H	L	L	1	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	L	1	H	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H

[^9]
PIN-OUT DIAGRAM

Die Size $.077 \times .065$

LS43
EXCESS-3-TO-DECIMAL DECODER

Die Size $.077 \times .065$

LS44
EXCESS-3-GRAY-TO-DECIMAL DECODER

LOGIC DIAGRAMS

LS44
EXCESS-3-GRAY-TO-DECIMAL-DECODERS

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max & \mathrm{I}_{\mathrm{OH}}=-400 \end{array}$		2.5	3.5		2.7	3.5		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$I_{\text {IH }}$	$V_{C C}=M A X, \quad V_{1}=2.7 \mathrm{~V}$	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
lost	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
$I_{\text {cc }} \dagger \dagger$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,			7	13		7	13	mA

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
$t \dagger^{\prime} \mathrm{CC}$ is measured with all outputs open and inputs grounded.

Switching Characteristics, $\mathbf{V}_{\text {cc }}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Teet Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)												
${ }^{\text {t PHL }}$	A, B, C or D	Any output 2 gate delay		15	26		14	25		15	26	ns
${ }^{\text {tPHL }}$	A, B, C or D	Any Output 3 gate delay		17	31		17	30		18	31	ns
${ }^{\text {P PLH }}$	A, B, C or D	Any output 2 gate delay		11	27		10	25		11	26	ns
${ }^{\text {P PLH }}$	A, B, C or D	Any output 3 gate delay		22	35		17	30		20	34	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{PHL}}$	A,B,C or D	Any Output 2 gate delay		18	32		18	31		19	33	ns
$\mathrm{t}_{\mathrm{PHL}}$	A,B,C or D	Any Output 3 gate delay		21	35		22	35		23	36	ns
$\mathrm{t}_{\mathrm{PHL}}$	A,B,C or D	Any Output 2 gate delay		21	33		20	32		21	33	ns
${ }^{\mathrm{t} P L H}$	A,B,C or D	Any Output 3 gate delay		29	36		25	38		28	40	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$				2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V OH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$	2.5	3.4		2.7	3.4		V
VOL	$V_{C C}=$ MIN,	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Ios	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-15		-100	-15		-100	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 1	LS51		0.8	1.6		0.8	1.6	mA
			LS54		0.8	1.6		0.8	1.6	
			LS55		0.4	0.8		0.4	0.8	
$\mathrm{I}_{\mathrm{CCL}}$	$V_{C C}=M A X$,	See Note 2	LS51		1.4	2.8		1.4	2.8	mA
			LS54		1.0	2.0		1.0	2.0	
			LS55		0.7	1.3		0.7	1.3	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
NOTES:

1. I CCH is measured with all inputs grounded, and the outputs open.
2. ${ }^{\mathrm{CCCL}}$ is measured with all inputs of one gate at 5 V , the remaining inputs grounded, and the outputs open.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
$\mathrm{t}_{\text {PLH }}$		8	13		8.0	13		8	12	ns
${ }^{\text {t PHL }}$		12	17		8.0	13		9	13	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
$\mathrm{t}_{\text {PLH }}$		13	18		12	18		13	17	ns
${ }^{\text {t PHL }}$		15	20		12	18		13	17	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS devices only.

\bullet Pin-for-Pin and functional equivalents to 5473, 5476, 54107, 54S112, 54 S 113

DESCRIPTION

These monolithic dual J-K flip-flops feature individual J, K, clock, and asynchronous preset and clear inputs to each flip-flop. The preset or clear inputs, when low, set or reset the outputs regardless of the levels at the other inputs. When preset and clear inputs are inactive (high), a high level at the clock input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the function table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

PIN-OUT DIAGRAMS

	PRESET	CLEAR
LS73	x	x
LS76	x	x
LS107	x	x
LS112	x	x

LS73,LS107 FUNCTION TABLE (EACH FLIP-FLOP)

INPUTS				OUTPUTS	
CLEAR	CLOCK	J	K	a	$\overline{\mathrm{a}}$
L	\times	x	\times	L	H
H	+	L	L	a_{0}	$\overline{\mathrm{a}}_{0}$
H	-	H	L	H	L
H	.	L	H	L	H
H	-	H	H	TOG	GE
H	H	\times	\times	O_{0}	$\overline{\mathrm{a}}_{0}$

H . high level (steady-state)
L- low level (steady-state)
X - don't care
$\downarrow=$ transition from high to low level
$Q_{0}=$ the level of Q before the indicated steady-state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

LS113
FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS				OUTPUTS	
PRESET	CLOCK	J	K	0	$\bar{\square}$
L	X	X	X	H	L
H	\downarrow	L	L	a_{0}	$\overline{\mathrm{a}}_{0}$
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	TO	LE
H	H	X	\times	Q_{0}	$\overline{\mathrm{a}}_{0}$

H : high level (steady-state)
L - low level (steady-state)
X - don't care
\downarrow transition from high to low level
Q_{0} the level of Q before the indicated steady-state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

LS76,LS112
FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	K	Q	$\overline{\mathrm{a}}$
L	H	X	X	X	H	L
H	L	X	x	x	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\downarrow	L	L	O_{0}	$\overline{\mathrm{a}}_{0}$
H	H	\downarrow	H	L	H	L
H	H	\downarrow	L	H	L	H
H	H	\downarrow	H	H	TOG	
H	H	H	X	X	Q_{0}	$\overline{0}_{0}$

H high level (steady-state)
L = low level (steady-state)
X = don't care
\downarrow - transition from high to low level
$\mathrm{Q}_{\mathrm{O}}=$ the level of Q before the indicated steady-state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			10			20	
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		35	0		35	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock) (High)		15			15			ns
Width of preset pulse, $\mathrm{t}_{\mathrm{w} \text { (preset) }}$ (Low)		15			15			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear) (Low)		15			15			ns
Input setup time, $\mathrm{t}_{\text {setup }}$		15			15			ns
Input hold time, ${ }_{\text {hold }}$		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0	0	70	${ }^{\circ} \mathrm{C}$

$\mathrm{t}_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the J or K input prior to the falling edge of the clock in order to be recognized and transferred to the outputs.
thold is the minimum time required for the logic level to be maintained at the J or K input after the falling edge of the clock in order to insure recognition. These devices require no hold time.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$V_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	. $\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.50	
J or K					0.1			0.1	mA
11 Clock	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.4			0.4	
Preset or Clear					0.3			0.3	
J or K					20			20	$\mu \mathrm{A}$
1 lH Clock	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				80			80	
Preset or Clear					60			60	
J or K					-0.4			-0.4	mA
IIL Clock	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	
Preset or Clear					-0.8			-0.8	
lost	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
ICctt	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 1			4	8		4	8	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
$\dagger \dagger$ ICC is measured with outputs open, with clock, J, K, and clear grounded and preset at 4.5 V ; then with clock, J, K, and preset grounded and clear at 4.5 V .

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)

$f_{\text {max }}$					35	50					MHz
$\mathrm{t}_{\mathrm{PLH}}$	CLR,PR		8	12		8	12		11	15	ns
$\mathrm{t}_{\mathrm{PHL}}$	CLR,PR		14	19		11	17		13	18	ns
$\mathrm{t}_{\mathrm{PLH}}$	CK		8	12		8	12		10	14	ns
$\mathrm{t}_{\mathrm{PHL}}$	CK		13	18		11	16		11	16	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{f}_{\text {max }}$										MHz	
$\mathrm{t}_{\mathrm{PLH}}$	CLR,PR		10	14		10	15		13	17	ns
$\mathrm{t}_{\mathrm{PHL}}$	CLR,PR		19	24		17	22		18	23	ns
$\mathrm{t}_{\mathrm{PLH}}$	CK		10	14		10	14		14	18	ns
$\mathrm{t}_{\mathrm{PHL}}$	CK		18	23		15	20		15	20	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

Dual D-Type Positive-Edge-Triggered

DESCRIPTION

This monolithic dual edge-triggered D-type flip-flop features individual D, clock, preset, and clear inputs.
Preset and clear inputs are active-low and operate independently of the clock input. When preset and clear are inactive (high), information at the D input is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D-input signal has no effect at the output.

LOGIC DIAGRAM (1/2)

PIN-OUT DIAGRAM

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS				OUTPUTS	
PRESET	CLEAR	CLOCK	D	0	$\overline{\mathbf{0}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H^{*}	H^{*}
H	H	\dagger	H	H	L
H	H	\dagger	L	L	H
H	H	L	X	a_{0}	$\overline{\mathrm{O}}_{0}$

$\mathrm{H}=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
X $=$ don't care
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady-state input conditions were established.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Recommended Operating Conditions

[^10]
Dual D-Type Positive-Edge-Triggered
 Flip-Flop

LS74

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max & \mathrm{I}_{\mathrm{OH}}=-40 \\ \hline \end{array}$		2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.50	
D input					0.1			0.1	mA
$I_{1} \quad$ Clock or preset	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$				0.2			0.2	
Clear					0.3			0.3	
D input					20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$ Clockor preset	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	
Clear					60			60	
D input					-0.4			-0.4	mA
IIL Clockor preset	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	
Clear					-1.2			-1.2	
lost	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
ICCtt	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,			4	8		4	8	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger \dagger$ ICC is measured with outputs open with D, clock, and preset grounded; then with D, clock, and clear grounded.

Switching Characteristics, $\mathbf{V}_{\mathbf{c c}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter		From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Units	
		Min.		Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.			
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Figure A, page 2-174)														
${ }^{\text {f max }}$			maximum	clock frequency				30	45					MHz
${ }^{\text {P PLH }}$		set or clear	Q or $\overline{\mathrm{Q}}$		12	18		10	15		16	23	ns	
${ }^{\text {t PHL }}$	CK Low	set or clear	Q or $\overline{\mathrm{Q}}$		22	29		18	24		21	28	ns	
	CK. High	set or clear	Q or $\overline{\mathrm{Q}}$		29	39		26	35		27	38		
${ }^{\text {tPHL }}$		clock	Q or \bar{Q}		13	20		12	18		13	20	ns	
${ }^{\text {P PHL }}$		clock	Q or $\overline{\mathrm{Q}}$		17	27		14	22		15	24	ns	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Figure A, page 2-174)														
${ }^{\text {t PLH }}$					16	22		13	19		19	26	ns	
${ }^{\text {t PHL }}$	CK Low	set or clear	Q or $\overline{\mathrm{Q}}$		26	33		21	27		24	31	ns	
	CK High	set or clear	Q or $\overline{\mathrm{Q}}$		33	44		29	38		30	41		
${ }^{\text {P PLH }}$		clock	Q or $\overline{\mathrm{Q}}$		17	24		15	22		16	25	ns	
${ }^{\text {t PHL }}$		clock	Q or $\overline{\mathrm{Q}}$		22	31		18	26		19	28	ns	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

DESCRIPTION

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

The LS75 feature complementary Q and Q outputs from a 4 -bit latch, and is available in various 16 -pin packages. For higher component density applications, the 'LS77 4-bit latch is available in $14-\mathrm{pin}$ flat packages.

These circuits are completely compatible with all popular TTL or DTL families. All inputs are diode-clamped to minimize transmission-line effects and simplify system design.

FUNCTION TABLE
(Each Latch)

INPUTS			
OUTPUTS			
D	G	Q	Q
L	H	L	H
H	H	H	L
X	L	O $_{0}$	Q $_{0}$

$H=$ high level, $L=$ low level, $X=$ Irrelevent
$Q_{0}=$ the level of Q before the high-to-low transition of G

FUNCTIONAL BLOCK DIAGRAMS (each latch)

Recommended Operating Conditions

		LS/54			LS/74		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Width of enabling pulse, t_{w}	20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	20			20			ns
Hold time, th	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

PARAMETER	TEST CONDITIONS \dagger		9LS/54LS			9LS/74LS			Unit
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$V_{\text {IH }}$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-8 \mathrm{~mA}$				-1.5			-1.5	V
$\vee^{*} \mathrm{OH}$ High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , \mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A} \end{aligned}$		2.5	3.5		2.7	3.5		V
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
Input current at maximum input voltage	$V_{C C}=$ MAX, $V_{1}=7 \mathrm{~V}$	D input			0.1			0.1	mA
		G input			0.4			0.4	
High-level input current	$V_{C C}=\mathrm{MAX}, V_{1}=2.7 \mathrm{~V}$	D input			20			20	$\mu \mathrm{A}$
		G input			80			80	
Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	D input			-0.4			-0.4	mA
		G input			-1.6			-1.6	
$\text { IOS } \begin{aligned} & \text { Short-circuit } \\ & \text { output current } \oint \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
Supply current	$V_{C C}=$ MAX, See Note 1	'LS75		6.3	12		6.3	12	mA
		'LS77		6.9	13				

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 1: $I_{C C}$ is tested with all input grounded and all outputs open.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	From (Input)	$\begin{gathered} \text { To } \\ \text { (Output) } \end{gathered}$	9LS/54LS75									Unit
			$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Condition: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ (See Fig. A, page 2-174 and Fig. 1, page 2-32)												
tPLH	D	Q		18	31		15	27		18	31	ns
${ }^{\text {tPLH }}$				12	16		9	17		12	16	
tPHL	D	$\overline{\mathrm{Q}}$	\cdots	15	19		12	20		15	19	ns
tPHL			.	10	14		7	15		10	14	
tPLH	G	Q		18	22		15	27		18	22	ns
tPHL				17	21		14	25		17	21	
tPLH	G	$\overline{\mathrm{Q}}$		19	23		16	30		19	23	ns
tPHL				10	14		7	15		10	14	
Test Condition: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 . 0 k}$ (See Fig. A, page 2-174 and Fig. 1, page 2-32)												
tPLH	D	Q		22	37.		19	33		22	37	ns
tPHL				16	22		13	18		16	22	
${ }^{\text {PPLH }}$	D	$\bar{\square}$		19	25		16	21		19	25	ns
tPHL				14	20		11	16		14	20	
tPLH	G	0		22	28		19	24.		22	28	ns
tPHL				21	27		18	23		21	27	
tPLH	G	$\overline{\mathrm{o}}$		23	29		20	25		23	29	ns
tPHL				14	20		11	16		14	20	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS dev̌ices only. All 50 pF specifications are for 9 LS devices only.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	$\begin{aligned} & \text { From } \\ & \text { (Input) } \end{aligned}$	To (Output)	* 9LS/54LS77									Unit
			$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ (See Fig. A, page 2-174 and Fig. 1 page 2-32)												
tplh	D	0		15	24		11	19		14	23	ns
${ }_{\text {tPHL }}$				12	20		9	17		12	20	
tPLH	G	0		13	21		10	18		13	21	ns
${ }^{\text {tPHL }}$				13	21		10	18		13	21	
Teat Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 . 0 k}$ (See Fig. A, page 2-174 and Fig. 1, page 2-32)												
tPLH	D	Q		17	28		15	24		18	28	ns
${ }_{\text {tPHL }}$				16	26		13	22		17	26	
${ }^{\text {tPLH }}$	G	Q		17	27		14	23		18	27	ns
tPHL				17	27		14	23		18	27	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1.
NOTES: A. The pulse generators have the following characteristics: $Z_{\text {out }} \approx 50 \Omega$; for pulse generator $A, P R R \leqslant 500 \mathrm{kHz}$; for pulse generator $B, P R R \leqslant 1 \mathrm{MHz}$. Positions of D and G input pulses are varied with respect to each other to verify setup times.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064.
D. When measuring propagation delay times from the D input, the corresponding G input must be held high.
E. $V_{\text {ref }}=1.3 \mathrm{~V}$.
\dagger Complementary Q outputs are on the 'LS75 only.

Dual J-K Negative-Edge-Triggered Flip-Flops

DESCRIPTION

These monolithic dual J-K edge-triggered flip-flops feature individual J, K, and preset inputs plus common clock and common clear inputs. The preset or clear inputs, when low, set or reset the outputs regardless of the levels at the other inputs. When preset and clear inputs are inactive (high), a high level at the clock input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the function table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC DIAGRAM (1⁄2)

PIN-OUT DIAGRAMS

Recommended Operating Conditions

$t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the J or K input prior to the falling edge of the clock in order to be recognized and transferred to the outputs.
thold is the minimum time required for the logic level to be maintained at the J or K input after the falling edge of the clock in order to insure recognition. These devices require no hold time.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		9LS/54LS			9LS/74LS			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
V_{1}						2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V		
V_{1}		$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V OH		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{I H}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{I L} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V		
$\mathrm{V}_{\text {OL }}$		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{array}$	$1 \mathrm{I}_{\text {OL }}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
11	J or K		$V_{C c}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA	
	Preset					0.3			0.3			
	Clear					0.6			0.6			
	Clock					0.8			0.8			
I_{IH}	J or K	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
	Preset					60			60			
	Clear					120			120			
	Clock					160			160			
$I_{\text {IL }}$	J or K	$V_{C C}=M A X$,				-0.4			-0.4	mA		
	Preset					-0.8			-0.8			
	Clear					-1.6			-1.6			
	Clock					-1.6			-1.6			
los^{\dagger}		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-15		-100	-15		-100	mA		
Icctt		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,			4	8		4	8	mA		

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
$\dagger \dagger I_{C C}$ is measured with outputs open, with clock, J, K, and clear grounded and preset at 4.5 V ; then with clock, J, K, and preset grounded and clear at 4.5 V .

Switching Characteristics, $\mathbf{V}_{\mathbf{c c}} \mathbf{= 5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Figure A , page 2-174)												
$f_{\text {max }}$	maximum clock frequency					35	50					MHz
${ }^{\text {t PLH }}$	clear or preset	Q or $\overline{\mathrm{Q}}$		8	12		8	12		11	15	ns
${ }^{\text {t PHL }}$				15	19		13	17		13	17	ns
${ }^{\text {P PLH }}$	clock	Q or \bar{Q}		8	12		8	12		11	15	ns
${ }^{\text {t PHL }}$				14	19		13	18		13	18	ns
Test Conditions: $\mathrm{C}_{\mathbf{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Figure A, page 2-174)												
${ }^{\text {P PLH }}$	clear or preset	Q or $\overline{\mathrm{Q}}$		10	14		10	14		13	17	ns
${ }^{\text {tPHL }}$				19	24		16	21		16	21	ns
${ }^{\text {P PLH }}$	clock	Q or $\overline{\mathbf{Q}}$		9	14		10	14		13	18	ns
${ }^{\text {t }} \mathrm{PHL}$				19	24		17	21		17	22	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

DESCRIPTION

These improved full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit ${ }_{\text {to }}$ and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.
The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.
The LS83A and the LS283 are identical in performance; only the pin out is different. They are designed to replace the 5483 A and the 54283 respectively. The LS283 is recommended for new designs, $V_{C C}$ and ground on corner pins simplify board layout.

PIN-OUT DIAGRAMS

FUNCTION TABLE

INPUT				OUTPUT					
							WHEN$\mathrm{CO}=\mathrm{H}$		
$\begin{array}{\|c\|} \hline \mathrm{A} 1 / \mathrm{A} 3 \\ \hline \end{array}$		$\mathrm{A} 2$			$\Sigma 2 / \Sigma 4$	$\mathrm{C} / \mathrm{C} 4$		$\sqrt{52}$	$\mathrm{C} 2$
L	L	L	L	L	L	L	H	L	L
H	L	L	L	H	L	L	L	H	L
L	H	L	L	H	L	L	L	H	L
H	H	L	L	L	H	L	H	H	L
L	L	H	L	L	H	L	H	H	L
H	L	H	L	H	H	L	L	L	H
L	H	H	L	H	H	L	L	L	H
H	H	H	L	L	L	H	H	L	H
L	L	L	H	L	H	L	H	H	L
H	L	L	H	H	H	L	L	L	H
L	H	L	H	H	H	L	L	L	H
H	H	L	H	L	L	H	H	L	H
L	L	H	H	L	L	H	H	L	H
H	L	H	H	H	L	H	L	H	H
L	H	H	H	H	L	H	L	H	H
H	H	H	H	L	H	H	H	H	H

[^11]Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$				2			2			V
$V_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1_{1}=-18 \mathrm{~m}$					-1.5			-1.5	V
V_{OH}	$\begin{aligned} & \mathrm{VCC}=\mathrm{MIN}, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-40 \end{aligned}$		2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
1, $\begin{array}{l}\text { Any } \mathrm{A} \text { or } \mathrm{B} \\ \mathrm{Co}\end{array}$	$V_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$			$\begin{array}{\|l\|} \hline 0.2 \\ 0.1 \\ \hline \end{array}$	mA
$\mathrm{I}_{1 \mathrm{H}} . \begin{array}{l}\text { Any A or B } \\ \text { C0 }\end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=2.7 \mathrm{~V}$				$\begin{aligned} & 40 \\ & 20 \end{aligned}$			40 20	$\mu \mathrm{A}$
$\begin{array}{ll} \text { IL } & \text { Any A or B } \\ \text { C0 } \end{array}$	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$				$\begin{aligned} & -0.8 \\ & -0.4 \end{aligned}$			$\begin{aligned} & -0.8 \\ & -0.4 \end{aligned}$	mA
${ }^{\text {O }}{ }^{\dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-15		-100	-15		-100	mA
$I_{\text {cc }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ Outputs open	All inputs	unded		22	39		22	39	mA
		All B low	er inputs at 4.5 V		19	34		19	34	
		All inputs	.5V		19	34		19	34	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\text {PLH }}$	C0	Any Σ	15	20	14	19	15	21	ns
$\mathrm{t}_{\text {PHL }}$			15	21	16	22	20	27	
${ }^{\text {t PLH }}$	A_{i} or B_{i}	Σ_{i}	20	30	18	24	21	27	ns
$\mathrm{t}_{\text {PHL }}$			19	29	15	24	17	25	
$\mathrm{t}_{\text {PLH }}$	C0	C4	9	14	7.	12	11	18	ns
$\mathrm{t}_{\text {PHL }}$			9	14	9	13	11	16	
$\mathrm{t}_{\text {PLH }}$	A_{i} or B_{i}	C4	9	15	8	13	11	17	ns
${ }^{\text {P PHL }}$			10	14	9	14	11	16	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

${ }^{\text {t PLH }}$	CO	Any Σ	16	21	15	20	17	22	ns
${ }^{\text {t PHL }}$			19	25	19	25	25	30	
${ }^{\text {t PLH }}$	A_{i} or B_{i}	$\Sigma_{\text {i }}$	25	32	18	26	25	32	ns
$\mathrm{t}_{\mathrm{PHL}}$			24	30	18	26	25	31	
${ }^{\text {t PLH }}$	C0	C4	11	16	10	15	12	19	ns
${ }^{\text {t }}$ PHL			12	17	10	16	13	18	
$\mathrm{t}_{\text {PLH }}$	A_{i} or B_{i}	C4	11	17	10	15	13	19	ns
$\mathrm{t}_{\mathrm{PHL}}$			13	18	12	16	14	20	

NOTE: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

DESCRIPTION

These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4 -bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The $A>B, A<B$, and $A=B$ outputs of a stage handling less-significant bits are connected to the corresponding $A>B, A<B$, and $A=B$ inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a highlevel voltage applied to the $A=B$ input. The cascading paths of the '85, and 'LS85 are implemented with only a two-gatelevel delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

FUNCTION TABLES

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A3, B3	A2, B2	A1, B1	AO, BO	$A>B$	$A<B$	$A=B$	$A>B$	A<B	$A=B$
A3>B3	X	X	X	X	X	X	H	L	L
A3<B3	X	X	x	X	X	x	L	H	L
$A 3=B 3$	$\mathrm{A} 2>\mathrm{B} 2$	X	X	X	X	X	H	L	L
$A 3=B 3$	A2<B2	X	x	X	X	X	L	H	L
$A 3=B 2$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1>\mathrm{B} 1$	x	x	x	x	H	L	L
$A 3=B 3$	$A 2=B 2$	$\mathrm{A} 1<\mathrm{B} 1$	X	x	x	x	L	H	L
$\mathrm{A} 3=\mathrm{B} 3$	$A 2=B 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0>B 0$	X	X	X	H	L	L
$A 3=B 3$	$A 2=B 2$	$\mathrm{A} 1=\mathrm{B} 1$	A0<BO	X	X	X	L	H	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}=\mathrm{BO}$	H	L	L	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathbf{A 1}=\mathbf{B 1}$	$\mathrm{AO}=\mathrm{BO}$	L	H	L	L	H	L
$A 3=B 3$	$A 2=B 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}=\mathrm{BO}$	L	L	H	L	L	H
$A 3=B 3$	$A 2=B 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	X	X	H	L	L	H
$A 3=B 3$	$A 2=B 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	H	H	L	L	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathbf{A O}=\mathbf{B 0}$	L	L	L	H	H	L

$H=$ high level; $L=$ low level, $X=$ irrelevant

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, $\mathrm{IOH}^{\text {l }}$			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2	\therefore		V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
$l_{1} \quad A<B, A>B$ inputs	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$1{ }^{1}$ all other inputs					0.3			0.3	
$I_{I H} A<B, A>B$ inputs	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
${ }^{1} 1 \mathrm{H}$ A ${ }^{\text {a }}$ all other inputs					60			60	
$\begin{array}{c\|c\|} \hline I_{L} & A<B, A>B \text { inputs } \\ \text { all other inputs } \end{array}$	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
					-1.2			-1.2	
los ${ }^{+}$	$V_{C C}=M A X$		-15		-100	-15		-100	mA
$1 \mathrm{cct} \dagger$	$V_{C C}=$ MAX,			10.4	20		10.4	20	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable
device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger I_{C C}$ is measured with outputs open, $A=B$ grounded, and all other inputs at 4.5 V .

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { Gate } \\ \text { Levels } \end{array}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)													
$t_{\text {PLH }}$	Any A or B data input	$A<B, A>B$	1		14			14			14		ns
			2		20			19			19		
			3		25	42		24	36		24	41	
		$A=B$	4		28	50		27	45		26	48	
$\mathrm{t}_{\text {PHL }}$	Any A or B data input	$A<B, A>B$	1		11			11			12		ns
			2		15			15			16		
			3		21	34		20	30		20	33	
		$A=B$	4		22	48		23	45		22	48	
tPLH	$A<B$ or $A=B$	$A>B$	1		14	27		14	22		14	27	ns
tPHL	$A<B$ or $A=B$	$A>B$	1		12	23		11	17		11	22	ns
tple	$A=B$	$A=B$	2		13	23		13	20		12	22	ns
$\mathrm{t}_{\text {PHL }}$	$A=B$	$A=B$	2		14	30		13	26		14	30	ns
tplh	$A>B$ or $A=B$	$A<B$	1		16	26		14	22		15	25	ns
tphL	$A>B$ or $A=B$	$A<B$	1		12	21		11	17		11	20	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tple	Any A or B data input	$A<B, A>B$	1	20		18		20		ns
			2	26		25		26		
			3	29	42	28	40	29	42	
		$A=B$	4	30	48	32	48	32	48	
${ }^{\text {tPHL }}$	Any A or B data input	$A<B, A>B$	1	15		14		15		ns
			2	18		18		18		
			3	26	36	26	36	26	36	
		$A=B$	4	38	50	36	48	37	49	
tPLH	$A<B$ or $A=B$	$A>B$	1	17	28	17	27	18	30	ns
tpHL	$A<B$ or $A=B$	$A>B$	1	14	21	14	20	15	21	ns
tplH	$A=B$	$A=B$	2	17	25	16	24	16	24	ns
$\mathrm{t}_{\text {PHL }}$	$A=B$	$A=B$	2	15	31	14	30	15	32	ns
${ }_{\text {tPLH }}$	$A>B$ or $A=B$	$A<B$	1	18	27	17	26	17	30	ns
$\mathrm{tPHL}^{\text {che }}$	$A>B$ or $A=B$	$A<B$	1	15	22	14	21	14	22	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PIN-OUT AND LOGIC DIAGRAMS

LS86 and LS386 are electrically identical. The LS386 is a pin-for-pin replacement for the L386.

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
VOL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4	0.25	0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max,	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	. 0.5	
1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$V_{1}=7 \mathrm{~V}$			0.2			0.2	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
I_{IL}	$V_{C C}=M A X, \quad V_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	mA
lost	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
$\mathrm{ICC}^{\dagger \dagger}$	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$,			6.1	10		6.1	10	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{\prime}{ }^{\text {ICC }}$ is measured with the inputs grounded and the outputs open.

Quadruple 2-Input Exclusive-OR Gates

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)		$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$												
tPLH	A or B	Other input low		9	17		8	16		10	18	ns
tPHL				9	14		8	13		10	14	
tPLH	A or B	Other input high		7	14		7	15		10	17	ns
${ }^{\text {tPHL }}$				7	15		6	12		6	12	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$												
tPLH	A or B	Other input low		11	19		20	10		18	12	ns
$\mathrm{t}_{\text {PHL }}$				13	17		17	11		16	12	
tPLH	A or B	Other input high		9	16		19	9		17	12	ns
${ }^{\text {tPHL }}$				12	19		15	9		16	9	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

DESCRIPTION

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 'LS90, divide-bysix for the 'LS92, and divide-by-eight for the 'LS93.
All of these counters have a gated zero reset and 'LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-bytwelve, or four-bit binary) of these counters, the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the 'LS90 counters by connecting the O_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_{A}.

PIN-OUT DIAGRAMS

COUNT	OUTPUT			
	O_{D}	${ }^{0}$	O_{B}	$\mathrm{O}_{\text {A }}$
0	L	L	L	L
1	L	L	L	H
2	L	L.	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

$\begin{gathered} \text { LS90 } \\ \text { BI-QUINARY (5-2) } \\ \text { (See Note B) } \end{gathered}$				
COUNT	OUTPUT			
	$\mathrm{O}_{\text {A }}$	Q_{D}		O_{B}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

RESET/COUNT FUNCTION TABLE

RESET INPUTS				OUTPUT		
${ }^{R} \mathbf{0}$ (1)	${ }^{R} 0(2)$	${ }^{R} 9(1)$	$\mathrm{R}_{9(2)}$	${ }^{0}$	${ }^{\circ}{ }_{C} \mathrm{O}_{B}$	
H	H	L	X	L	L L	L
H	H	X	L	L	L L	L
X	X	H	H	H	L L	H
x	L	X	L		COUNT	
L	x	L	X		COUNT	
L	x	X	L		count	
X	L	L	x		COUNT	

LS92

LOGIC DIAGRAMS

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS90/92			9LS/74LS90/92			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$V_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max , \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
Any reset	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	
 I_{1} A input	$V_{C C}=M A X, \quad V_{1}=5.5 \mathrm{~V}$				0.2			0.2	mA
B input					0.4			0.4	
Any reset	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IH}} \quad$ A input					40			40	
B input					80			80	
$I_{\text {IL }}$	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
					-2.4			-2.4	
B input					-3.2			-3.2	
los^{\dagger}	$\mathrm{V}_{C C}=\mathrm{MAX}$		-15		-100	-15		-100	mA
1 cctt	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	LS90		9	15		9	15	mA
		LS92		9	15		9	15	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger \dagger$ ICC is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
\$ Outputs are tested at specified $I_{O L}$ plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger \dagger I_{C C}$ is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded. f Outputs are tested at specified IOL plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			+ $125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174 and Fig. 1, page 2-49)

$f_{\text {max }}$	LS90	A	Q_{A}			32	42				MHz
		B	O_{B}			16					
$f_{\text {max }}$	LS92	A	O_{A}			32	42				MHz
		B	Q_{B}			16					
$f_{\text {max }}$	LS93	A	$\mathrm{O}_{\text {A }}$			32	42				MHz
		B	O_{B}			16					
tPLH	LS90	A	Q_{A}	13	20		10	16	13	20	ns
tPHL				15	22		12	18	15	22	
${ }^{\text {tPLH }}$	LS92	A	O_{A}	13	20		10	16	13	20	ns
$\mathrm{t}_{\text {PHL }}$				15	22		12	18	15	22	
tPLH	LS93	A	O_{A}	13	20		10	16	13	20	ns
${ }_{\text {tPHL }}$				15	22		12	18	15	22	
tPLH	LS90	A	Q_{D}	35	51		32	48	35	51	ns
${ }_{\text {tPHL }}$				37	56		34	50	37	56	
$\mathrm{t}_{\text {PLH }}$	LS92	A	O_{D}	35	54		32	48	35	54	ns
${ }_{\text {tPHL }}$				37.	56		34	50	37	56	
tPLH	LS93	A	O_{D}	49	76		46	70	49	76	ns
tPHL				49	76		46	70	49	76	
$\mathrm{t}_{\text {PLH }}$	LS90	B	O_{B}	13	20		10	16	13	20	ns
${ }_{\text {PrHL }}$				17	27		14	21	17	27	
${ }_{\text {tPLH }}$	LS92	B	Q_{B}	13	20		10	16	13	20	ns
${ }_{\text {tPHL }}$				17	27		14	21	17	27	
${ }^{\text {tPLH }}$	LS93	B	Q_{B}	13	20		10	16	13	20	ns
tPHL				17	27		14	21	17	27	
tPLH	LS90	B	Q_{C}	24	39		21	32	24	39	ns
${ }_{\text {tPHL }}$				27	42		23	35	27	42	
${ }_{\text {tPLH }}$	LS92	B	O_{C}	13	20		10	16	13	20	ns
${ }^{\text {tPHL }}$				17	27		14	21	17	27	
tPLH	LS93	B	O_{C}	24	39		21	32	24	39	ns
${ }_{\text {tPHL }}$				27	41		23	35	27	41	
${ }_{\text {tPLH }}$	LS90	B	O_{D}	24	39		21	32	24	39	ns
tPHL				27	41		23	35	27	41	
${ }_{\text {tPLH }}$	LS92	B	O_{D}	24	39		21	32	24	39	ns
tPHL				27	41		23	35	27	41	
tPLH	LS93	B	O_{D}	38	57		34	51	38	57	ns
tPHL				38	57		34	51	38	57	
tpHL	LS90	Set-to-0	Any	30	47		26	40.	30	47	ns
$\mathrm{t}_{\text {PHL }}$	LS92	Set-to-0	Any	30	47		26	40	30	47	ns
$\mathrm{t}_{\text {PHL }}$	LS93	Set-to-0	Any	30	47		26	40	30	47	ns
tplH	LS90	Set-to-9	$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{D}}$	24	35		20	30	24	35	ns
tPHL			$\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$	24	47		26	24	24	47	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{L}=50 p \bar{F}, R_{L}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174 and Fig. 1, page 2-49)

$\mathrm{t}_{\text {PLH }}$	LS90	A	$\mathrm{O}_{\text {A }}$	17	25	14	21	17	25	ns
$\mathrm{t}_{\mathrm{PHL}}$				19	27	16	23	19	27	
tPLH	LS92	A	$\mathrm{O}_{\text {A }}$	17	25	14	21	17	25	ns
tpHL				19	27	16	23	19	27	
$\mathrm{t}_{\text {PLH }}$	LS93	A	$\mathrm{O}_{\text {A }}$	17	25	14	21	17	25	ns
tpHL				19	27	16	23	19	27	
tPLH	LS90	A	Q_{D}	39	56	36	52	39	56	ns
tPHL				41	58	38	54	41	58	
tPLH	LS92	A	Q_{D}	39	56	36	52	39	56	ns
tPHL				41	58	38	54	41	58	
tpLH	LS93	A	O_{D}	53	82	50	78	53	82	ns
tPHL				53	82	50	78	53	82	
$\mathrm{t}_{\text {PLH }}$	LS90	B	O_{B}	17	25	14	21	17	25	ns
tPHL				19	27	16	23	19	27	
${ }_{\text {tPLH }}$	LS92	B	O_{B}	17	25	14	21	17	25	ns
$\mathrm{t}_{\mathrm{PHL}}$				19	27	16	23	19	27	
${ }^{\text {tPLH }}$	LS93	B	Q_{B}	17	25	14	21	17	25	ns
tPHL				41	27	16	23	19	27	
$t_{\text {PLH }}$	LS90	B	Q_{C}	29	41	26	37	29	41	ns
$\mathrm{t}_{\text {PHL }}$				30	42	27	38	30	42	
tple	L.S92	B	Q_{C}	17	25	14	21	17	25	ns
$\mathrm{tPHL}^{\text {Prem }}$				19	27	16	23	19	27	
tPLH	LS93	B	O_{C}	29	41	26	37	29	41	ns
tPHL				30	42	27	38	30	42	
tPLH	LS90	B	O_{D}	29	41	26	37	29	41	ns
tPHL				30	42	27	38	30	42	
tPLH	LS92	B	O_{D}	29	41	26	37	29	41	ns
${ }_{\text {tPHL }}$				30	42	27	38	30	42	
tPLH	LS93	B	O_{D}	43	63	40	58	43	62	ns
tphL				43	62	40	58	43	62	
$\mathrm{t}_{\mathrm{PHL}}$	LS90	Set-to-0	Any	33	50	30	46	33	50	ns
$\mathrm{t}_{\mathrm{PHL}}$	LS92	Set-to-0	Any	33	50	30	46	33	50	ns
tpHL	LS93	Set-to-0	Any	33	50	30	46	33	50	ns
tPLH	LS90	Set-to-9	$\mathrm{Q}_{\text {A }}, \mathrm{Q}_{\mathrm{D}}$	28	40	25	36	28	40	ns
$\mathrm{t}_{\mathrm{PHL}}$			$\mathrm{O}_{\mathrm{B}}, \mathrm{Q}_{C}$	33	49	30	45	33	49	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

Decade, Divide-by-Twelve, and

NOTES: A. Input pulses are supplied by a generator having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{Z}_{\text {out }}=50$ ohms
B. Each reset input is tested separately with the other reset at 4.5 V .
C. Reference waveforms are shown with dashed lines.

FIGURE 1. VOLTAGE WAVEFORMS

FEATURES

■ For Use In Digital Computer Systems

- For Use In Data-Handling Systems
- For Use In Control Systems

DESCRIPTION

These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

FUNCTION TABLE

Inputs AT t_{n}		Outputs AT $t_{n}+8$	
A	B	O_{H}	$\overline{\mathrm{Q}}_{\mathrm{H}}$
H	H	H	H
L	X	L	H
X	L	L	H

$H=$ high, $L=$ low,
X = irrelevant
$t_{n}=$ Reference bit time, clock low
$t_{n+8}=$ Bit time after 8
low-to-high clock transitions.

PIN-OUT DIAGRAM

NC-No Internal Connection

SCHEMATICS OF INPUTS AND OUTPUTS

LS91
EQUIVALENT OF EACH INPUT

LS91
TYPICAL OF BOTH OUTPUTS

FUNCTIONAL BLOCK DIAGRAM

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, ${ }^{\text {OL }}$			4			8	mA
Width of clock input pulse, ${ }^{\text {t }}$ W	25			25			ns
Setup time, $\mathrm{t}_{\text {su }}$ (See Figure 1)	25			25			ns
Hold time, t_{n} (See Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions \dagger		9LS/54LS			9LS/74LS			Unit
			Min.	Typ. \ddagger	Max.	Min.	Typ. \ddagger	Max.	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V \\ & V_{I L}=V_{I L} \max , I_{O H}=-400 \mu \mathrm{~A} \end{aligned}$		2.5	3.5		2.7	3.5		V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V \\ & V_{I L}=V_{I L} \max \end{aligned}$	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		${ }^{\prime} \mathrm{OL}^{\prime}=8 \mathrm{~mA}$					0.35	0.5	
Input current at I, maximum input voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{1 H}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL L $^{\text {Low-level input current }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
${ }^{1}$ OS Short-circuit current ϕ	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		15		-100	15		-100	mA
${ }^{\text {I CC }}$ Supply current	$\mathrm{V}_{\text {CC }}=$ Max, See Note 1			12	20		12	20	mA

\dagger For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE ${ }^{1 .}{ }^{I} \mathrm{CC}$ is measured after the eighth clock pulse with the output open and A and B inputs grounded.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ Over Recommended Free-Air Temperature Range.

Test Conditions: $C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ (See Fig. A, page 2-174 and Fig. 1, page 2-55)

$f(\max)$					10	18				MHz
TPLH	clock	Q_{H}	26	42		24	40	26	42	ns
$\mathrm{T}_{\text {PHL }}$	clock	Q_{H}	28	45		27	40	28	45	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ (See Fig. A, page 2-174 and Fig. 1, page 2-55)

$\mathrm{T}_{\text {PLH }}$	clock	Q_{H}	30	47	27	45	30	47	ns
TPHL	clock	Q_{H}	33	52	30	48	33	52	ns

PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS

SWITCHING TIMES VOLTAGE WAVEFORMS

FIGURE 1. SWITCHING TIMES

NOTES: A. The generator has the following characteristics: $t_{w}($ clock $)=500 \mathrm{~ns} ; P R R \leqslant 1 \mathrm{MHz} ; Z_{\text {out }} \approx 50 \Omega ; \mathrm{t}_{\mathrm{r}}=15 \mathrm{~ns}$, and $t_{f}=6 \mathrm{~ns}$.
B. C_{L} includes probe and j :s capacitance
C. All diodes are 1 N 3064 or 1 N 916
D. $V_{r e f}=1.3 \mathrm{~V}$

DESCRIPTION

This 4-bit register features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The register has three modes of operation:

Parallel (broadside) load
Shift right (the direction Q_{A} toward Q_{D})
Shift left (the direction Q_{D} toward Q_{A})
Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_{D} to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

PIN-OUT DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

			INPUTS						OUT	UTS	
MODE	CLO	CKS	SERIAL		PARA	LLEL					
CONTROL	2 (L)	7 (R)	SERIAL	A	B	C	D	O_{A}	a_{B}	${ }_{\text {c }}$	D
H	H	\times	X	X	X	X	X	$\mathrm{a}_{\text {AO }}$	a_{BO}	Q_{CO}	$\mathrm{a}_{\text {D0 }}$
H	\downarrow	X	X	a	b	c	d	a	b	c	d
H	\downarrow	X	x	$\mathrm{O}_{\mathrm{B}}{ }^{\dagger}$	$\mathrm{a}^{+}{ }^{\dagger}$	$\mathrm{O}^{+}{ }^{+}$	d	a_{Bn}	O_{C}	$Q_{\text {Dn }}$	d
L	L	H	X	X	X	X	X	$\mathrm{Q}_{\text {AO }}$	a_{BO}	$\mathrm{Q}_{\mathrm{C} 0}$	$\mathrm{Q}_{\text {DO }}$
L	X	\downarrow	H	x	X	x	x	H	$\mathrm{a}_{\text {A }}$	O_{Bn}	a_{Cn}
L	X	\downarrow	L	x	x	x	x	L	$\mathrm{a}_{\text {An }}$	O_{Bn}	O_{Cn}
\uparrow	L	L	x	x	x	x	X	$\mathrm{a}_{\text {A }}$	a_{BO}	O_{Co}	$\mathrm{a}_{\text {DO }}$
\downarrow	L	L	x	x	X	x	x	$\mathrm{a}_{\text {A }}$	O_{B0}	Q_{Co}	$\mathrm{Q}_{\text {DO }}$
\downarrow	L	H	x	x	x	X	X	$\mathrm{a}_{\text {A }}$	O_{BO}	Q_{Co}	$\mathrm{a}_{\text {DO }}$
\uparrow	H	L	X	X	x	X	X	$\mathrm{a}_{\text {A }}$	$\mathrm{a}_{\text {B0 }}$	Q_{Co}	$\mathrm{a}_{\text {DO }}$
\uparrow	H	H	X	X	X	X	X	$\mathrm{a}_{\text {AO }}$	O_{BO}	O_{CO}	ODO

†Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.
$\mathrm{H}=$ high level (steady state), $\mathrm{L}=$ low level (steady state), $\mathrm{X}=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level, $\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at input, A, B, C, or D, respectively.
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{Dn}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, or Q_{D}, respectively, before the most-recent \downarrow transition of the clock.

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I OL			4			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$	0		20	0		20	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock) (see Figure 2 page 2-57)	25			25			ns
Setup time, high-level or low-level data, $\mathrm{t}_{\text {setup }}$ (see Figure 1 page 2-57)	0			0			ns
Hold time, high-level or low-level data, thold (see Figure 1 page 2-57)	20			20			ns
Time to enable clock 1, tenable 1 (see Figure 2 page 2-57)	20			20			ns
Time to enable clock 2, tenable 2 (see Figure 2 page 2-57)	20			20			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2 page 2-57)	10			10			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 1 page 2-57)	10			10			ns
Operating free-air temperature T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		9LS/54LS			9LS/74LS			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
$\mathrm{V}_{\text {IH }}$						2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V		
V_{1}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V OH		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
V_{OL}		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\text {IL }} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
11	Mode inputs		$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$				0.2			0.2	mA	
	Other inputs					0.1			0.1			
$\mathrm{I}_{\mathbf{H}}$	Mode inputs	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	$\mu \mathrm{A}$		
	Other inputs					20			20			
IIL	Mode inputs	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	mA		
	Other inputs					-0.4			-0.4			
lost		$V_{C C}=\mathrm{VIAX},$		-15		-100	-15		-100	mA		
$\mathrm{Icc}^{\dagger \dagger}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ See Note 1			13	21		13	21	mA		

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger \dagger$ I CC is measured with all outputs and serial inputs open; A B , C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V then ground, applied to both clock inputs.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174 and Fig. 1 and 2, page 2-57)										
$\mathrm{f}_{\text {max }}$				20	30					MHz
tpLH		28	37		27	35		28	37	ns
${ }^{\text {tPHL }}$		32	45		30	40		32	45	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174 and Fig. 1 and 2, page 2-57)										
tPLH		32	42		31	40		32	42	ns
tPHL		36	50		34	45		36	50	ns

[^12]
PARAMETER MEASUREMENT INFORMATION

 FIGURE 1 - SWITCHING TIMES
NOTES:
A. Input pulses are supplied by a generator having the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$, and $Z_{\text {out }} \cong 50 \Omega$. For the data pulse generator, $P R R=500 \mathrm{kHz}$; for the clock pulse generator, $P R R=1 \mathrm{MHz}$. When testing $f_{\text {max }}$, vary $P R R . t_{w}(d a t a) \geqslant 20 \mathrm{~ns}$, $t_{w}($ clock $) \geqslant 15 \mathrm{~ns}$.
B. $V_{\text {ref }}=1.3 \mathrm{~V}$.

NOTES:
A. Input A is at a low level.
B. $V_{\text {ref }}=1.3 \mathrm{~V}$.

DESCRIPTION

This monolithic dual J- \bar{K} edge-triggered flip-flop features individual J, \bar{K}, clock, preset, and clear inputs. A low level at preset or clear sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the J and $\overline{\mathrm{K}}$ inputs meeting the setup time requirements are transferred to the outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the J and \bar{K} inputs may be changed without affecting the levels at the outputs.
The J and $\overline{\mathrm{K}}$ data inputs simplify hardware design as a D-type flip-flop can be implemented by simply tying the J and $\overline{\mathrm{K}}$ inputs together.

PIN-OUT DIAGRAM

LOGIC DIAGRAM (1⁄2)

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	\bar{K}	\mathbf{Q}	
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\uparrow	L	L	L	H
H	H	\uparrow	H	L	TOGGLE	
H	H	\uparrow	L	H	Q_{0}	\bar{Q}_{0}
H	H	\uparrow	H	H	H	L
H	H	L	X	X	Q_{0}	\bar{Q}_{0}

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$\mathbf{Q}_{0}=$ the level of \mathbf{Q} before the indicated steady-state input conditions were established
TOGGLE: each output changes to the complement of its previous level on each \uparrow clock transition.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N	High logic level			20			20	
	Low logic level			10			20	
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		30	0		30	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock) (High)		17			17			ns
Width of preset pulse, $\mathrm{t}_{\text {w }}$ (preset) (Low)		15			15			ns
Width of clear pulse, $\mathrm{t}_{\text {w}}$ (clear) (Low)		15			15			ns
Input setup time $\mathrm{t}_{\text {setup }}$		15			15			ns
Input hold time, $\mathrm{t}_{\text {hold }}$		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

[^13]Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
J or \bar{K}	$V_{C C}=M A X, \quad V_{1}=5.5 \mathrm{~V}$				0.1			0.1	mA
I_{1} clock or preset					0.2			0.2	
Clear					0.4			0.4	
J or \bar{K}	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
I_{1} crestock or preset					40			40	
Clear					80			80	
J or \bar{K}	$V_{C C}=M A X, \quad V_{1}=0.4 V$				-0.4			-0.4	mA
$I_{1 L}$ clock or preset					-0.8			-0.8	
Clear					-1.6			-1.6	
lost	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-15		-100	-15		-100	mA
Icctt	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,			4	8		4	8	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger \dagger I^{C C}$ is measured with outputs open, clock grounded, and J, K, preset, and clear at 4.5 V .
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (See Figure A on page 2-174)

tplH		12	18	10	15	16	23	ns
${ }_{\text {tPHL }}$	CK Low	22	29	12	18	21	28	ns
	CK High	29	39	16	24	27	38	
tplH		13	20	12	18	13	20	ns
$\mathrm{t}_{\text {PHL }}$		17	27	14	22	15	24	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Figure A on page 2-174)								
tplH		16	22	13	19	19	26	ns
${ }^{\text {t PHL }}$	CK Low	26	33	21	27	24	31	ns
	CK High	33	44	29	38	30	41	ns
tplH		17	24	15	22	16	25	ns
tPHL		22	31	18	26	19	29	ns

$t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the J or K input prior to the rising edge of the clock in order to be recognized and transferred to the outputs.
thold is the minimum time required for the logic level to be maintained at the J or K input after the clock transition in order to insure recognition. This device requires no hold time.

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

Single and Dual Retriggerable Monostable Multivibrators with Clear

FEATURES

- Functionally and Mechanically Identical to 54122 and 54123
- Retriggerable for Very Long Output Pulses, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Low Power Dissipation:
‘LS122 . . . 30 mW Typical
‘LS123 . . . 60 mW Typical
- Compensated for VCC and Temperature Variations
- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- 'LS122 Has Internal $10 \mathrm{k} \Omega$ Timing Resistor
- Diode-Clamped Inputs
- Compatible for Use with TTL or DTL

DESCRIPTION

The 'LS122 and 'LS123 multivibrators feature d-c triggering from gated low-level-active (A) and high-level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C. Enough Schmitt hysteresis is provided to ensure jitter-free triggering from the B inputs with transition rates as slow as 1 volt per second. Figure 1 illustrates triggering the one-shot with the high-level-active (B) inputs.

'LS123 FUNCTION TABLE (SEE NOTE 1)

INPUTS		OUTPUTS		
CLEAR	A	B	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	L
H	\downarrow	H	Ω	L
\uparrow	L	H	Ω	L

NOTES: 1. $H=$ high level (steady state), $L=$ low level (steady state), $\uparrow=$ transition from low to high level, $\downarrow=$ transition from high to low level, $\mathrm{H}=$ one high-level pulse, $\mathrm{L}=$ one low-level pulse, $\mathrm{X}=$ irrelevant (any input, including transitions).
2. To use the internal timing resistor of 'LS122, connect $R_{\text {int }}$ to $V_{C C}$.
3. An external timing capacitor may be connected between $C_{e x t}$ and $R_{\text {ext }} / C_{e x t}$ (positive).
4. For accurate repeatable pulse widths, connect an external resistor between $R_{\text {ext }} / C_{e x t}$ and $V_{C C}$ with $R_{\text {int }}$ open circuited.
5. To obtain variable pulse widths, connect external variable resistance between $R_{\text {int }}$ or $R_{\text {ext }} / C_{e x t}$ and $V_{C C}$.

NOTE: Retrigger pulse must not start before $0.22 \mathrm{C}_{\text {ext }}$ (in picofarads) nanoseconds after previous trigger pulse.

FIGURE 1-Typical Input/Output Pulses
These monostables are designed to provide the system designer with compleţe flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. The 'LS122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired.

The output pulse is primarily a function of the external

${ }^{\dagger}$ These values of resistance exceed the maximum recommended for use over the full temperature range of the 9LS $/ 54 \mathrm{LS}$ ' circuits.

FIGURE 2

capacitor and resistor. For $\mathrm{C}_{\text {ext }}>1000 \mathrm{pF}$, the output pulse width (t_{w}) is defined as:

$$
t_{W}=0.4 \cdot R_{T} \cdot C_{e x t}
$$

where
R_{T} is in $\mathrm{k} \Omega$ (either internal or external timing resistor),
$\mathrm{C}_{\text {ext }}$ is in pF ,
t_{w} is in $n s$.
For pulse widths when $\mathrm{C}_{\mathrm{ext}} \leqslant 1000 \mathrm{pF}$, see Figure 2.

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
	A or B inputs high	40			40			
Pulse width, t_{w}	A or B inputs low	40			40			ns
	Clear low	40			40			
External timing resistance, $\mathrm{R}_{\text {ext }}$		5		225	5		360	$k \Omega$
External capacitance, $\mathrm{C}_{\text {ext }}$			restric	tion		restric	tion	
Wiring capacitance at $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ terminal				50			50	pF
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions ${ }^{\dagger}$			9LS/54LS			9LS/74LS			Unit			
		Min.	Typ. ${ }^{\ddagger}$	Max.	Min.	Typ. ${ }^{\ddagger}$	Max.							
$\mathrm{V}_{1 \mathrm{H}}$	High-ievel input voltage							2			2			V
VIL	Low-level input voltage						0.7			0.8	V			
V_{1}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{IOH}_{\mathrm{OH}}=-400 \end{aligned}$		2.5	3.5		2.7	3.5		V			
VOL	Low-level output voltage	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & V_{\text {IL }}=V_{\text {IL }} \max \end{aligned}$	$V_{I H}=2 V$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=7 \mathrm{~V}$				0.1			0.1	mA			
$1 / \mathrm{H}$	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
Ios	Short-circuit output current ${ }^{\phi}$	$V_{C C}=\mathrm{MAX}$			-30		-150	-30		-150	mA			
${ }^{\mathrm{I} C C}$	Supply current (quiescent or triggered)	$V_{C C}=M A X$,	See Note 2	'LS122		6	11		6	11	mA			
				'LS123		12	20		12	20				

t. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ${ }^{\mathrm{I}} \mathrm{CC}$ is measured after a momentary ground, then 4.5 V , is applied to clock.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	$\begin{aligned} & \text { From } \\ & \text { (Input) } \end{aligned}$	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \mathrm{C}_{\text {ext }}=0 \mathrm{pf}$, $\mathrm{R}_{\text {ext }}=5.0 \mathrm{k} \Omega$ (See Fig. 3, page 2-61 and Fig. A, page 2-174)												
tpLH	A	Q		25	37		22	33		25	37	ns
	B			32	48		29	44		32	48	
tPHL	A	$\overline{\mathrm{Q}}$		33	49		30	45		33	49	ns
	B			40	61		37	56		40	61	
tPHL	clear	$\overline{\mathrm{Q}}$		21	31		18	27		21	31	ns
${ }^{\text {tPLH }}$				33	50		30	45		33	50	ns
${ }_{\mathrm{tw}} \mathrm{Q}(\mathrm{min})$	A or B	Q		140	250		116	200		140	250	ns
*twQ	A or B	Q	-	-	-	4.0	4.5	5.0	-	-	-	$\mu \mathrm{s}$
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\text {ext }}=0 \mathrm{pf}$, $\mathrm{R}_{\text {ext }}=5.0 \mathrm{k} \Omega$ (See Fig. 3, page 2-61 and Fig. A, page 2-174)												
tpLH	A	Q		30	43		26	38		30	43	ns
	B			37	54		33	49		37	54	
tPHL	A	$\overline{\mathrm{Q}}$		38	55		34	50		38	55	ns
	B			45	67		41	62		45	67	
tPHL	clear	$\overline{\mathrm{o}}$		26	37		22	32		26	37	ns
tPLH				39	55		35	50		39	55	ns
${ }_{\text {tw }} \mathrm{Q}_{(\text {min }}$	A or B	0		155	270		127	240		155	270	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50pF specifications are for 9 LS devices only.

[^14]
TYPICAL APPLICATION DATA

The basic output pulse width is essentially determined by the values of external capacitance and timing resistance. For pulse widths when $C_{e x t} \leqslant 1000 \mathrm{pF}$.

When $\mathrm{C}_{\text {ext }}>1000 \mathrm{pF}$, the output pulse width is defined as:

$$
\mathrm{t}_{\mathrm{w}}=0.45 \bullet \mathrm{R}_{\mathrm{T}} \bullet \mathrm{C}_{\mathrm{ext}}
$$

where
R_{T} is in $\mathrm{k} \Omega$ (internal or external timing resistance.)
$C_{\text {ext }}$ is in pF
t_{w} is in nanoseconds
For best results, system ground should be applied to the $\mathrm{C}_{\text {ext }}$ terminal. The switching diode is not needed for electrolytic capacitance applications.

FIGURE 3
TIMING COMPONENT CONNECTIONS

Recommended Operating Conditions.

	9LS/54LS			9LS/74LS			Unit
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply Voltage	4.5	5.0	5.5	4.75	5.0	5.25	V
High Level Output IOH			-1.0		-1.0	-2.6	mA
Low Level Output IOL			12		12	24	mA
Operating Free Air Temperature	-55		+125	0		70	C

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter			Test Conditions		9LS/54LS			9LS/74LS			Unit		
			Min.	Typ.	Max.	Min.	Typ.	Max.					
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				Guaranteed Input HIGH Voltage for All Inputs		2.0			2.0			V
$V_{\text {IL }}$	Input LOW Voltage		Guaranteed Input LOW Voltage for All Inputs				0.7			0.8	V		
$V_{C D}$	Input Clamp Diode Voltage		$V_{C C}=$ MIN, $I_{\text {IN }}=-18 \mathrm{~mA}$			-0.65	-1.5			-1.5	V		
VOH Output HIGH Voltage			$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	$V_{C C}=\text { MIN, } V_{I N}=V_{I H} \text { or }$ $V_{\text {IL }}$ per Truth Table	2.4	3.4					V		
			$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$						2.4	3.1	V		
VOL Output LOW Voltage			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ $V_{\text {IL }}$ per Truth Table		0.25	0.4		0.25	0.4	V		
			$1 \mathrm{OL}=24 \mathrm{~mA}$						0.35	0.5	V		
IOZH	Output Off Current HIGH		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\text {IL }}$				20			20	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{O}} \mathrm{ZL}$	Output Off Current LOW		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\text {IL }}$				-20			-20	$\mu \mathrm{A}$		
11 H	Input HIGH Current		$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
			$V_{C C}=M A X, V_{1 N}=10 \mathrm{~V}$				0.1			0.1	mA		
IIL	Input LOW Current		$V_{C C}=M A X, V_{\text {IN }}=0.4 V$				-0.4			-0.4	mA		
'os	Output Short Circuit Current (Note 3)		$\mathrm{V}_{\text {CC }}=\mathrm{MAX} \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-15		-100	-15		-100	mA		
${ }^{1} \mathrm{CC}$	Power Supply Current, Outputs LOW	LS125	$V_{C C}=M A X, V_{\text {IN }}=0 V, V_{E}=0 V$				16			16	mA		
		LS126	$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}, \mathrm{~V}_{E}=4.5 \mathrm{~V}$				20			20	mA		
$\begin{aligned} & \text { I} \mathrm{CC} \quad \begin{array}{l} \text { Power Supply Current, } \\ \text { Outputs Off } \end{array} \\ & \hline \end{aligned}$		LS125	$V_{C C}=M A X, V_{I N}=0 V, V_{E}=4.5 V$				20			20	mA		
		LS126	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$				24			24	mA		

NOTES: 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

Quad 3-State Buffer, High Enable

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameters	$\begin{gathered} \text { From } \\ \text { (Input) } \end{gathered}$	To (Output)	91.S/54LS									Units
			$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125{ }^{\circ} \mathrm{C}$			
			Min	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Flg. C, page 2-174)

$\mathrm{t}_{\mathrm{PLH}}$	D	O		10	15		6	10		10	14	ns
${ }^{\mathrm{t}} \mathrm{PHL}$	D	O		13	20		10	16		13	20	ns
$\mathrm{t}_{\mathrm{PZH}}$	\bar{E} or E	0		13	20		10	16		13	20	ns
${ }^{\mathrm{t}} \mathrm{PZL}$	E or E	0		13	20		10	16		13	20	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Fig. C, page 2-174)

$t_{P L Z}$	\bar{E} or E	O		13	19		10	15		13	20	ns
$\mathrm{t}_{\mathrm{PHZ}}$	$\overline{\mathrm{E}}$ or E			13	27		15	23		18	27	ns

Test Conditions: $C_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Fig. C, page 2-174)

$t_{P L H}$	D	O		13	20		10	15		13	19	ns
$\mathrm{t}_{\mathrm{PHL}}$	D	O		18	25		15	21		18	25	ns
$\mathrm{t}_{\mathrm{PZH}}$	E or E	O		18	25		15	21		18	25	ns
$\mathrm{t}_{\mathrm{PZL}}$	$\overline{\mathrm{E}}$ or E	0		18	25		15	21		18	25	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.
*F or LS125 use E and for LS126 use E.

TRUTH TABLES

9LS125

INPUTS		OUTPUT
E	D	
L	L	L
L	H	H
H	X	(Z)

9LS126

INPUTS		
E	OUTPUT	
H	L	L
H	H	H
L	X	(Z)

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level
$X=$ Don't Care
$(Z)=$ High Impedance (off)

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply voltage, $\mathrm{V}_{\text {C }}$	4.5	5.0	5.5	4.75	5.0	5.25	V
High level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		+125			70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions ${ }^{\dagger}$		9LS/54LS			9LS/74LS			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\mathrm{T}+}$ Positive-going threshold voltage	$V_{C C}=5 \mathrm{~V}$		1.4	1.6	1.9	1.4	1.6	1.9	V
Negative-going threshold voltage Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}_{-}}$)	$V_{C C}=5 \mathrm{~V}$		0.5	0.8	1.0	0.5	0.8	1.0	V
	$V_{C C}=5 \mathrm{~V}$		0.4	0.8		0.4	0.8		V
$V_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad 11=-18 \mathrm{~mA}$			-0.65	-1.5		-0.65	-1.5	V
VOH High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad I O H=M A X, \\ & V_{1}=V_{T-M I N} \end{aligned}$		2.5	3.4		2.7	3.4		V
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I}=V_{T+} M A X, \quad I_{O L}=M A X \end{aligned}$			0.25	0.40		0.35	0.50	V
$\text { IT+ } \begin{aligned} & \text { Input current at } \\ & \text { positive-going threshold } \end{aligned}$	$V_{C C}=5 \mathrm{~V}, \quad V_{1}=V_{T+}$			-0.14			-0.14		mA
$\begin{array}{ll} \text { I } \mathrm{T}-\quad \begin{array}{l} \text { Input current at } \\ \text { negative-going threshold } \end{array} \end{array}$	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}-}$			-0.18			-0.18		mA
I/Input current at maximum input voltage	$V_{C C}=$ MAX	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$I_{1 H}$ High-level input current	$V_{C C}=$ MAX	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=$ MAX	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
IOS Short-circuit output current	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
${ }^{1} \mathrm{CCH}$ Supply Current High	$V_{C C}=\mathrm{MAX} \quad \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			8.6	16		8.6	16	mA
${ }^{\text {I CCL }}$ Supply Current Low	$V_{C C}=$ MAX $\quad V_{\text {IN }}=4.5 \mathrm{~V}$			12	21		12	21	mA

[^15]Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	From (Input)	To (Output)	9LS/54LS									Units
			$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ (See Fig. A, page 2-174)

tpLH	A or B	Y	16	24	13	20	16	24	ns
tPHL			16	24	13	20	16	24	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ (See Fig. A, page 2-174)

t PLH	A or B	Y		20	29		17	25		20	29	ns
			20	29		17	25		20	29	ns	

FIGURE 1

TYPICAL CHARACTERISTICS

NEGATIVE-GOING THRESHOLD VOLTAGE

TYPICAL APPLICATIONS DATA

PULSE STRETCHER

Quadruple 2-Input Exclusive-OR, -NOR Gates With Open-Collector Outputs

PIN-OUT AND LOGIC DIAGRAMS

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		9LS/54LS			9LS/74LS			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
$\mathrm{V}_{\text {IH }}$						2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V		
V_{1}		$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
IOH		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\text { MIN, } & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\text {IL }} \max , & \mathrm{V}_{\mathrm{OH}}=5 . \end{array}$				100			100	$\mu \mathrm{A}$		
O		$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
OL		$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	\checkmark		
$1 /$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.2			0.2	mA		
$\mathrm{I}_{\text {IH }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	$\mu \mathrm{A}$		
IIL		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	mA		
${ }^{1} \mathrm{cc}^{\dagger}$	LS266	$V_{C C}=\mathrm{MAX}$,			8	13		8	13	mA		
	LS136				6.1	10		6.1	10			

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\dagger^{\prime} \mathrm{CC}$ is measured with one input of each gate at 4.5 V , the other inputs grounded, and the outputs open.

Quadruple 2-Input Exclusive-OR,

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega^{\prime}$ (See Figure B on page 2-174)												
tplH	A or B	Other input low		14	18		13	17		20	26	ns
tPHL				10	16		9	14		10	16	
tple	A or B	Other input high		12	16		13	17		8	12	ns
$\mathrm{t}_{\text {PHL }}$				10	16		18	13		7	12	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Figure B on page 2-174)												
$\mathrm{t}_{\text {PLH }}$	A or B	Other input low		31	35		30	35		36	42	ns
$\mathrm{t}_{\text {PHL }}$				16	23		13	19		14	21	
$\mathrm{t}_{\text {PLH }}$	A or B	Other input high		30	35		31	36		35	41	ns
${ }_{\text {tPHL }}$				19	23		13	19		13	19	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

FEATURES

- LS138: 3-Line-to-8-Line Decoder 1-of-8 Demultiplexer
- LS139: Dual 2-Line-to-4-Line Decoder Dual 1-of-4 Demultiplexer
- LS138 is expandable to 5-lines-to-32-lines decoder using 4 LS138's and one inverter.

DESCRIPTION

The LS138 decodes one-of-eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The LS139 comprises two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.
These circuits are designed to be used in high-performance memory-decoding and data-routing applications requiring very short delay times.

LS138
FUNCTION TABLE

PIN-OUT DIAGRAMS

LOGIC DIAGRAMS

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$	-55		125	0		70	${ }^{5} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
VOH	$\begin{array}{ll} V_{C C}=M I N, & V_{1 H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \mu, \end{array}$		2.5	3.4		2.7	3.4		V
Vol	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$1 \mathrm{I}_{\mathrm{L}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	 $\mathrm{V}_{1}=7 \mathrm{~V}$ $10 \mathrm{l}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }_{1 / 1}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$1 / 12$	$\mathrm{V}_{\text {CC }}=$ MAX,,$~ V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
Icc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ Outputs enabled and open	LS138		6.3	10		6.3	10	mA
		LS139		6.8	11		6.8	11	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.

LS138

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$\begin{array}{\|c\|} \hline \text { Levels } \\ \text { of } \\ \text { Delay } \\ \hline \end{array}$	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

${ }^{\text {tPLH }}$	2	Binary Select	Any	11	16	10	15	13	18	ns
${ }^{\text {tPHL }}$	2			17	24	17	24	21	27	ns
${ }^{\text {t PLH }}$	3			16	22	16	21	21	28	ns
${ }^{\text {t PHL }}$				22	30	21	28	24	32	ns
${ }^{\text {t PLH }}$	2	Enable	Any	11	16	10	15	13	18	ns
$\mathrm{t}_{\mathrm{PHL}}$				19	26	18	25	23	30	ns
${ }_{\text {t PLH }}$	3			16	22	16	22	21	27	ns
tPHL				22	30	20	28	24	31	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{PLH}}$	2	Binary Select	Any	13	19	12	17	14	20	ns
$\mathrm{t}_{\text {PHL }}$	2			23	31	22	29	26	33	ns
$\mathrm{t}_{\text {PLH }}$	3			17	24	17	23	23	29	ns
$\mathrm{t}_{\text {PHL }}$				26	35	25	32	28	36	ns
$\mathrm{t}_{\text {PLH }}$	2	Enable	Any	11	16	12	18	15	20	ns
$\mathrm{t}_{\mathrm{PHL}}$				23	30	24	33	26	34	ns
$\mathrm{t}_{\text {PLH }}$	3			18	24	18	23	24	30	ns
$\mathrm{t}_{\mathrm{PHL}}$				26	34	24	32	28	37	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

LS139

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

		From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$	Unit
rameter	Delay			Min	Typ	Max	Min	Typ	Max	Min	

Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tPLH	2	Binary Select	Any	12	21	12	17	13	20	ns
tPHL	2			13	21	12	17	13	20	ns
tPLH	3			16	28	15	22	17	27	ns
tPHL				18	30	17	25	18	30	ns
tPLH	2	Enable	Any	12	22	11	15	11	22	ns
tPHL				11	22	11	16	12	22	ns

Teat Conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

${ }_{\text {tPLH }}$	2	Binary Select	Any	15	26	15	21	16	25	ns
tPHL				16	26	15	21	16	25	ns
tpLH	3			19	33	18	26	20	32	ns
$\mathrm{t}_{\text {PHL }}$				21	35	20	29	21	35	ns
tPLH	2	Enable	Any	15	27	14	19	14	27	ns
$\mathrm{tPH}^{\text {P }}$				14	27	14	20	15	27	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

FEATURES

- Select one of eight data sources
- Perform parallel-to-serial conversion
- LS151 has complementary outputs; LS152 has inverting output only
- LS151 has strobe input

DESCRIPTION

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources. The LS151 has a strobe input which must be at a low logic level to enable the device. A high level at the strobe forces the W output high, and the Y output low.

The LS151 features complementary W and Y outputs whereas the LS152 has an inverted (W) output only.

$\begin{gathered} \text { LS151 } \\ \text { FUNCTION TABLE } \end{gathered}$						$\begin{gathered} \text { LS152 } \\ \text { FUNCTION TABLE } \end{gathered}$			
INPUTS				OUTPUTS		SELECT INPUTS			OUTPUT w
SELECT			$\begin{gathered} \hline \text { STROBE } \\ S \\ \hline \end{gathered}$	\boldsymbol{v} w					
C	B	A				C	B	A	
	X	X	H	L	H		L	L	D0
L	L	L	L		$\overline{\mathrm{DO}}$		L		D1
L	L	H	L		$\overline{\text { D1 }}$		H	L	$\overline{\mathrm{D} 2}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$		H	H	$\overline{\text { D }}$
L	H	H	L	D3	$\overline{\text { D3 }}$		L	L	$\overline{04}$
H	L	L	L		$\overline{\text { D4 }}$		L		$\overline{0}$
H	L	H	L	D5	$\overline{\text { D5 }}$		H	L	$\overline{\text { D6 }}$
H	H	L	L		$\overline{\mathrm{D6}}$		H		$\overline{07}$
H	H	H	L	D7	$\overline{07}$				

$H=$ high level, $L=$ low level, $X=$ don't care $D 0, D 1 \ldots D 7=$ the level of the D respective input

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
$\mathrm{V}_{\text {OH }}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V
$V_{\text {OL }}$	$V_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$1 \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.3	0.45		0.25	0.4	\checkmark
	$V_{I L}=V_{I L} \max$	$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
1	$V_{C C}=$ MAX, $V_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
los ${ }^{+}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
Icc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Outputs open All inputs at 4.5 V	LS151		6.0	10		6.0	10	mA
		LS152		5.6	9		5.6	9	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max*	Min	Typ	Max *	Min	Typ	Max*	

Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (See Fig. A, page 2-174)

tplH	A, B, or C	W	15	22	15	22	18	25	ns
tPHL	(4 levels)	(54LS151 only)	19	26	18	25	20	26	
tPLH	A, B, or C (3 levels)	Y	24	32	24	31	29	36	ns
$\mathrm{t}_{\mathrm{PHL}}$			21	30	20	28	22	31	
tPLH	Strobe	$\begin{array}{\|c\|} \hline \text { W } \\ \text { (54LS151 only) } \end{array}$	12	17	11	17	13	19	ns
${ }_{\text {tPHL }}$			13	20	13	19	14	20	
tPLH	Strobe	$\begin{array}{\|c\|} \hline \mathrm{Y} \\ \hline \text { (54LS151 only) } \\ \hline \end{array}$	18	26	18	26	21	29	ns
$\mathrm{t}_{\mathrm{PHL}}$			18	27	16	24	17	25	
tPLH	Any D	$\begin{array}{\|c\|} \hline \text { W } \\ \text { (54LS151 only) } \\ \hline \end{array}$	8	13	9	14	11	17	ns
${ }_{\text {tPHL }}$			6	12	5	12	6	13	
tPLH	Any D	Y	11	18	11	17	13	19	ns
${ }_{\text {tPHL }}$			14	22	14	20	15	22	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tplH	A, B, or C	W	17	24	17	24	20	27	ns
tpHL	(4 levels)	(54LS151 only)	22	31	21	29	22	31	ns
tplH	$\begin{aligned} & \text { A, B, or C } \\ & \text { (3 levels) } \end{aligned}$	Y	26	33	26	32	29	38	ns
$\mathrm{t}_{\text {PHL }}$			27	37	25	35	29	38	
tple	Strobe	$\begin{array}{c\|} \hline \text { W } \\ \text { (54LS151 only) } \end{array}$	14	20	13	19	15	21	ns
$\mathrm{t}_{\text {PHL }}$			16	24	15	23	16	24	
tpLH	Strobe	$\begin{array}{\|c\|} \hline Y \\ \text { (54LS151 only) } \end{array}$	20	28	20	27	23	30	ns
tpHL			24	35	20	31	21	32	
tPLH	Any D	$\begin{array}{\|c\|} \hline \text { W } \\ \text { (54LS151 only) } \end{array}$	9	15	10	16	13	19	ns
$\mathrm{t}_{\text {PHL }}$			9	16	8	14	8	14	
tpLH	Any D	Y	14	20	14	19	15	21	ns
tpHL			19	30	18	27	20	29	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50pF specifications * Tentative data, subject are for 9LS only.
to change without notice

FEATURES

- Permits multiplexing from \mathbf{N} lines to 1 line
- Performs parallel-to-serial conversion
- Strobe (Enable) line provided for cascading (\mathbf{N} lines to n lines)
- Non-inverting

DESCRIPTION

The LS153 is a high speed Dual 4-Line-to-1-Line Multiplexer with common select inputs and separate strobe (enable) inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form.

LOGIC DIAGRAM

PIN-OUT DIAGRAM

FUNCTION TABLE

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
8	A	CO	C1	C2	C3	G	V
\times	\times	\times	\times	x	x	H	L
L	L	L	x	x	x	L	L
L	L	H	\times	x	x	L	H
L	H	X	L	x	x	L	L
L	H	x	H	x	x	L	H
H	L	x	x	L	x	L	L
H	L	x	x	H	\times	L	H
H	H	x	x	X	L	L	L
H	H	x	X	\times	H	L	H

Select inputs A and B are common to both sections. $H=$ high level, $L=$ low level, $X=$ don't care

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.5	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max , & I_{O H}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$V_{\text {IL }}=V_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$	$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$V_{C C}=\mathrm{MAX}$		-15		-100	-15		-100	mA
${ }_{\text {CCLL }}{ }^{+}$	$V_{C C}=$ MAX			6.2	10		6.2	10	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
${ }^{+1} \mathrm{CCL}$ is measured with the outputs open and all inputs grounded.
Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{PLH}}$	Data	Y		8	13		8	13		11	16	ns
$\mathrm{t}_{\mathrm{PHL}}$	Data	Y		13	18		14	18		17	22	ns
$\mathrm{t}_{\mathrm{PLH}}$	Select	Y		15	21		17	22		22	28	ns
$\mathrm{t}_{\mathrm{PHL}}$	Select	Y		17	23		16	21		21	26	ns
$\mathrm{t}_{\mathrm{PLH}}$	Strobe	Y		14	20		16	21		21	26	ns
$\mathrm{t}_{\mathrm{PHL}}$	Strobe	Y		17	23		16	21		20	25	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{PLH}}$	Data	Y		10	15		10	15		15	22	ns
$\mathrm{t}_{\mathrm{PHL}}$	Data	Y		17	23		17	22		22	27	ns
$\mathrm{t}_{\mathrm{PLH}}$	Select	Y		18	24		19	24		25	30	ns
$\mathrm{t}_{\mathrm{PHL}}$	Select	Y		22	27		19	25		24	30	ns
$\mathrm{t}_{\mathrm{PLH}}$	Strobe	Y		17	23		18	23		23	28	ns
$\mathrm{t}_{\mathrm{PHL}}$	Strobe	Y		21	27		20	24		23	28	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

FEATURES

- LS156 has open-collector outputs
- Applications:

Dual 2-Line-to-4-Line Decoder
Dual 1-Line-to-4-Line Demultiplexer
3-Line-to-8-Line Decoder
1-Line-to-8-Line Demultiplexer

DESCRIPTION

These circuits feature dual 1 -line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16 -pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4 -bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2 C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

FUNCTION TABLES
 2-LINE-TO-4-LINE DECODER OR 1-LINE-TO-4-LINE DEMULTIPLEXER

INPUTS				OUTPUTS			
SELECT		STROBE	DATA				
B	A	16	1 C	1Y0	1 Y 1	$1 Y 2$	193
X	X	H	\times	H	H	H	H
1.	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
\times	\times	\times	L	H	H	H	H

INPUTS				OUTPUTS			
SELECT		STROBE	DATA				
B	A	2G	2C	2 YO	2 Y 1	2 Y 2	2 Y 3
X	X	H	X	H	H	H	H
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
\times	\times	\times	H	H	H	H	H

LOGIC DIAGRAM

FUNCTION TABLE 3-LINE-TO-8-LINE DECODER OR 1-LINE-TO-8-LINE DEMULTIPLEXER

INPUTS				OUTPUTS							
	E		STROBE OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
c^{\dagger}	8	A	G \ddagger	2Yo	2 Y 1	2 V 2	2 V 3	1 YO	iv1	1Y2	1Y3
\times	\times	\times	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	L	H	H	H	H
H	L	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	L	H	H
H	H	L	L	H	H	H	H	H	H	L	H
H	H	H	L	H	H	H	H	H	H	H	L

$\dagger \mathrm{C}=$ inputs 1 C and 2C connected together
$\ddagger G=$ inputs $1 G$ and $2 G$ connected together
$H=$ high level, $L=$ low level, $X=$ don't care

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

	9LS/54LS			9LS/74LS			Unit
	Min	Typ**	Max	Min	Typ**	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Output voltage, V_{OH} (LS156 only)			5.5			5.5	V
Low-level output, $\mathrm{IOL}^{\text {OL }}$			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
${ }^{\mathrm{OH}}$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{\text {IL }}=V_{\text {IL }} \max , & V_{O H}=5.5 \end{array}$	56 only)			100			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
$1 /$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$I_{1 H}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
${ }_{1}{ }_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
$\mathrm{lcct+}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			6.1	10		6.1	10	mA

[^16]
Dual 2-Line-To-4-Line Decoders/Demultiplexers

LS155

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	Levels of Logic	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)													
tPLH	2	2C, 1G, or 2G	Y		11	17		10	16		12	18	ns
tpHL	2	2C, 1G, or 2G	Y		15	24		15	23		17	26	ns
tPLH	3	A or B	Y		16	23		16	24		19	27	ns
tpHL	3	A or B	Y		20	30		19	30		20	31	ns
tpLH	3	1C	Y		15	21		15	22		19	26	ns
tPHL	3	1C	Y		20	30		19	28		21	31	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \boldsymbol{2}$ (See Fig. A, page 2-174)													
tṖ나	2	2C, 1G, or 2G	Y		13	19		13	19		15	21	ns
$\mathrm{t}_{\text {PHL }}$	2	2C, 1G, or 2G	Y		21	29		18	26		22	31	ns
tPLH	3	A or B	Y		18	25		18	25		22	29	ns
tpHL	3	A or B	Y		26	36		22	30		26	36	ns
tpLH	3	1C	Y		18	23		18	24		22	29	ns
tpHL	3	1C	Y		25	35		23	31		25	35	ns

LS156

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	Levels of Logic	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)													
tplH	2	2C, 1G, or 2 G	Y		24	34		22	30		24	34	ns
tPHL	2	2C, 1G, or 2G	Y		18	27		16	24		18	27	ns
tPLH	3	A or B	Y		29	40		27	37		29	40	ns
tPHL	3	A or B	Y		24	34		22	30		24	34	ns
tpLH	3	1 C	Y		27	38		25	34		27	38	ns
${ }^{\text {tPHL }}$	3	1C	Y		25	35		23	31		25	35	ns

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. B, page 2-174)

$\mathrm{t}_{\text {PLH }}$	2	2C, 1G, or 2G	Y		27	39		25	34		27	39	ns
$\mathrm{t}_{\text {PHL }}$	2	2C, 1G, or 2G	Y		21	32		19	28		21	32	ns
$\mathrm{t}_{\mathrm{PLH}}$	3	A or B	Y		32	45		30	41		32	45	ns
$\mathrm{t}_{\mathrm{PHL}}$	3	A or B	Y		27	39		25	34		27	39	ns
$\mathrm{t}_{\mathrm{PLH}}$	3	1C	Y		30	43		28	38		30	43	ns
$\mathrm{t}_{\text {PHL }}$	3	1C	Y		28	40		26	35		28	40	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

DESCRIPTION

These data selectors/multiplexers select a 4-bit word from one of two sources and present it at the four outputs. The LS157 presents true data; the LS158 presents inverted data.

PIN-OUT DIAGRAMS

$H=$ high level, $L=$ low level, $X=$ don't care
Low level at S selects A inputs
High level at S selects B inputs
Strobe is active low

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{\prime} I_{\mathrm{CC}}$ is measured with 4.5 V applied to all inputs and all outpus open.

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min		Max	Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (See Fig. A, page 2-174)

tpLH	LS157	Data	Y	6	11	5	10	9	16	ns
${ }_{\text {tPHL }}$				8	13	7	12	7	13	
tpLH	LS158	Data	Y	6	11	6	11	8	14	ns
$\mathrm{t}_{\mathrm{PHL}}$				7	12	4	9	4	8	
tPLH	LS157	Strobe	Y	10	16	10	16	16	22	ns
tPHL				12	17	9	14	9	14	
tPLH	LS158	Strobe	Y	10	16	9	14	10	15	ns
tPHL				10	15	10	15	12	17	
tplh	LS157	Select	Y	11	17	11	17	16	24	ns
tPHL				13	18	11	16	12	19	
tPLH	LS158	Select	Y	10	16	10	16	13	20	ns
tPHL				10	16	1.0	14	12	17	

Test Conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tPLH	LS157	Data	Y	8	14	7	14	10	17	ns
tPHL				11	16	9	15	10	16	
tpLH	LS158	Data	Y	7	13	8	13	10	16	ns
tPHL				10	16	7	13	7	12	
tPLH	LS157	Strobe	Y	12	17	12	17	18	25	ns
tPHL				15	20	12	17	13	18	
tpLH	LS158	Strobe	Y	12	17	11	16	12	17	ns
tPHL				14	19	13	18	15	21	
tplH	LS157	Select	Y	12	18	13	18	16	21	ns
tPHL				15	21	14	19	14	20	
tpLH	LS158	Select	Y	12	18	12	18	15	22	ns
$\mathrm{t}_{\text {PHL }}$				14	19	13	18	15	21	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

FEATURES

- 4-bit synchronous counters
- Synchronously programmable
- Internal look-ahead counting
- Carry output for n-bit cascading
- Synchronous or asynchronous clear
- Advanced low-power Schottky technology
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

The LS160, LS161, LS162 and LS163 synchronous, presettable counts have internal look-ahead carry and ripple carry output for high-speed counting applications. The LS160 and LS162 are decade counters and the LS161 and LS163 are 4-bit binary counters. Counting or loading occurs on the positive transition of the clock pulse. A LOW level on the load input causes the data on the A, B, C and D inputs to be shifted to the appropriate Q outputs on the next positive clock transition.

The LS160 and LS161 feature an asynchronous clear. A LOW level at the clear input sets the O outputs LOW regardless of the other inputs. The LS162 and LS163 have a synchronous clear. A LOW level at the clear input sets the Q outputs LOW after the next positive clock transition regardless of the enable inputs.
Both count-enable inputs P and T must be HIGH to count. Count enable T is included in the ripple carry output gate for cascading connection.

PIN-OUT DIAGRAM

LS162 synchronous decade counters are similar; however, the clear is synchronous as shown for the LS163 binary counters.

LS161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the LS160 decade counters.

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5.0	5.25	V
High-level output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
				4			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		25	0		25	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)		25			25			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)		20			20			ns
Setup time, $\mathrm{t}_{\text {setup }}$ (see Figures 3 and 4)	Data inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	0			0			ns
	Enable P or T	20			20			
	Load	20			20			
	Clear®	20			20			
Hold time, thold	Data inputs A, B, C, D	251			25			ns
	Other inputs	104			10			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\diamond This applies only for LS162 and LS163, which have synchronous clear inputs.
II The minimum hold time is as specified or as long as the clock input takes to rise from 0.8 V to 2 V , whichever is longer.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=V_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \end{array}$		2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
Data or enable P	$V_{C C}=M A X, \quad V_{1}=7 V$				0.1			0.1	mA
$\begin{array}{\|l\|l\|} & \text { Load, clock, or } \\ \text { enable } T \end{array}$					0.2			0.2	
Clear (LS160,161					0.1			0.1	
Clear (LS162,163)					0.2			0.2	
Data or enable P	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\begin{array}{\|l\|l} & \begin{array}{l} \text { Load, clock, or } \\ \text { enable } T \end{array} \\ \hline \end{array}$					40			40	
Clear (LS160,161)					20			20	
Clear (LS162,163)					40			40	
Data or enable P	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
$\begin{array}{\|l\|l\|} \hline \text { Load, clock, or } \\ \text { enable } T \end{array}$					-0.8			-0.8	
Clear(LS160,161)					-0.4			-0.4	
Clear(LS162,163)					-0.8			-0.8	
lost	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
${ }^{1} \mathrm{CCH}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 1			18	31		18	31	mA
ICCL	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 2			19	32		19	32	mA

[^17]
Synchronous 4-Bit Binary Counters

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
Parameter			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1 and 2 and Notes 3 and 4 and Fig. A, page 2-174)

$\mathrm{f}_{\text {max }}$					30	40				MHz
tple	Clock	Ripple carry	28	39		25	35	28	39	ns
${ }_{\text {tPHL }}$			23	39		20	35	23	39	
tPLH	Clock	Any Q	13	22		10	18	13	22	ns
${ }_{\text {tPHL }}$	(load input high)		18	24		15	20	18	24	
tPLH	Clock	Any Q	13	22		10	18	13	22	ns
${ }_{\text {tPHL }}$	(load input low)		18	24		14	20	18	24	
tPLH	Enable T	Ripple carry	18	25		15	20	18	25	ns
${ }_{\text {tPHL }}$			13	18		9	14	13	18	
${ }_{\text {t }}$	Clear	Any Q	17	32		14	28	17	32	ns

Test Conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. 1 and 2 and Notes 3 and 4 and Fig. A, page 2-174)

tPLH	Clock	Ripple carry	31	44	28	39	31	44	ns
${ }_{\text {tPHL }}$			26	44	23	39	26	44	
tPLH	Clock (load input high)	Any Q	16	27	13	22	16	27	ns
tPHL			21	29	18	24	21	29	
tPLH	$\begin{gathered} \text { Clock } \\ \hline \text { (load input low) } \end{gathered}$	Any 0	16	27	13	22	16	27	ns
tPHL			21	29	17	24	21	29	
$\mathrm{t}_{\text {PLH }}$	Enable T	Ripple carry	21	30	18	24	21	30	ns
$\mathrm{t}_{\text {PHL }}$			16	23	12	18	16	23	
$\mathrm{t}_{\mathrm{PHL}}$	Clear	Any 0	20	37	17	32	20	37	ns

NOTES:
3. Propagation delay for clearing is measured from the clear input for the LS160 and LS161 or from the clock input transition for the LS162 and LS163.
4. AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES

FIGURE 1
LS160, LS162
Illustrated below is the following sequence:

1. Clear outputs to zero
. Preset to BCD seven
2. Count to eight, nine, zero, one, two, and three 4. Inhibit

FIGURE 2
LS161, LS163
Illustrated below is the following sequence:

1. Clear outputs to zero
2. Preset to binary twelve
3. Count to thirteen; fourteen fifteen, zero, one, and two
4. Inhibit

FIGURE 1

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, \mathrm{Z}_{\text {out }} \approx 50 \Omega$; $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
B. Enable P and enable T setup times are measured at $t_{n}=0$.

FIGURE 4
PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The input pulses are supplied by a generator having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega: \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, $t_{f} \leqslant 6 \mathrm{~ns}$. Vary PRR to measure $f_{\text {max }}$.
B. Outputs Q_{d} and carry are tested at t_{n+10} LS160, LS162, and at t_{n+16} for LS161, LS163 where t_{n} is the bit time when all outputs are low.

TYPICAL APPLICATION DATA

N-BIT SYNCHRONOUS COUNTERS

I his application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The LS160 or LS162 will count in BCD and the LS163 will count in binary. Virtually any count mode (modulo-N, N_{1}-to N_{2}, N_{1}-to-maximum) can be used with this fast look-ahead circuit.

FEATURES

- Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

DESCRIPTION

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

9LS/54LS devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; $9 \mathrm{LS} /$ 74 LS devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLES

INPUTS				OUTPUTS		
CLEAR	CLOCK	A	B	Q_{A}	O_{B}.	O_{H}
L	X	X	X	L	L	L
H	L	X	X	$\mathrm{a}_{\text {A0 }}$	$\mathrm{Q}_{\text {B0 }}$	O_{HO}
H	\uparrow	H	H	H	$\mathrm{Q}_{\text {An }}$	O_{Gn}
H	\uparrow	L	X	L	$\mathrm{O}_{\text {An }}$	O_{Gn}
H	\uparrow	X	L	L	$\mathrm{O}_{\text {An }}$	O_{Gn}

PIN-OUT DIAGRAM

$H=$ high level (steady state), $L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level.
$\mathrm{Q}_{\mathrm{A} O}, \mathrm{Q}_{\mathrm{B} O}, \mathrm{Q}_{\mathrm{H} O}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ or Q_{H}, respectively, before the indicated steady state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Gn}}=$ the level of Q_{A} or Q_{G} before the most recent \uparrow transition of the clock; indicates a one-bit shift.

TYPICAL CLEAR, SHIFT, AND CLEAR SEQUENCES

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
${ }^{\dagger}{ }^{C C}$ is measured with outputs open, serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V applied to clear.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1, page 2-95 and Fig. A, page 2-174)										
$\mathrm{f}_{\text {max }}$				25	36					MHz
tPHL		26	38		24	36		26	38	ns
tplH		20	30		17	27		20	30	ns
$\mathrm{t}_{\text {PHL }}$		24	35		21	32		24	35	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1, page 2-95 and Fig. A, page 2-174)										
tPHL		29	42		27	40		29	42	ns
tPLH		23	34		20	31		23	34	ns
tPHL		27	39		24	36		27	39	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9LS devices only. All 50 pF specifications are for 9LS only.

FIGURE 1
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. Q_{A} output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence:
B. Outputs are set to the high level prior to the measurement of tpHL from the clear input.

FEATURES

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing

- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 1024 Words of \mathbf{n}-Bits
- For Use as:

Scratch-Pad Memory

Buffer Storage between Processors
Bit Storage in Fast Multiplication Designs

- Open-Collector Outputs with Low Maximum Off-State Current: 20 $\mu \mathrm{A}$

DESCRIPTION

The 'LS170 MSI 16 -bit TTL register file incorporates the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either writein or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G_{W}, is high, the data inputs are inhibited and their lévels cañí cauise nú cúlanye in díe information stored in the internal latches. When the read-enable input, GR, is high, the data outputs are inhibited and remain high.

PIN-OUT DIAGRAM

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.
This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds typical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

LOGIC

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WRITE INPUTS			WORD			
W_{B}	$W_{\text {A }}$	Gw	0	1	2	3
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{0}	0_{0}	O_{0}
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}	O_{0}
H	L	L	a_{0}	a_{0}	$\mathrm{Q}=\mathrm{D}$	0_{0}
H	H	L	0_{0}	O_{0}	O_{0}	$\mathrm{Q}=\mathrm{D}$
X	X	H	0_{0}	a_{0}	0_{0}	0_{0}

READ FUNCTION TABLE (SEE NOTES A AND D)

READ INPUTS			OUTPUTS			
$\mathbf{R B}_{\mathbf{B}}$	RA $_{\text {A }}$	GR	Q1	Q2	Q3	Q4
L	L	L	W0B1	W0B2	W0B3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	H	H	H	H

NOTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant.
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $\mathrm{Q}_{0}=$ the level of Q before the indicated input conditions were established.
D. WOB1 $=$ The first bit of word 0 , etc.

FUNCTIONAL BLOCK DIAGRAM

Recommended Operating Conditions

NOTES: 1. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, $t_{s u}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during $t_{h}(W)$ will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
2. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter			Test Conditions ${ }^{\dagger}$		9LS/54LS			9LS/74LS			Unit		
			Min.	Typ \ddagger	Max.	Min.	Typ.	Max.					
$V_{\text {IH }}$ High-level input voltage							2			2			V
$V_{\text {IL }}$ Low-level input voltage							0.7			0.8	V		
Ui tinput ciarnp voilage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
${ }^{\prime} \mathrm{OH}$ High-level output current			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$			20			20	mA		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=M I N \\ & V_{I H}=2 V \\ & V_{I L}=V_{I L} \max \end{aligned}$	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
	Input current at maximum input voltage	Any D, R, or W		$V_{C C}=M A X, \quad V_{1}=7 V$				0.1			0.1	mA	
		G_{R} or G_{W}					0.2			0.2	mA		
$1 / \mathrm{H}$	High-level input current	Any D, R, or W	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	A		
		G_{R} or G_{W}					40			40	A		
IIL	Low-level input current	Any D, R, or W	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		G_{R} or G_{W}					-0.8			-0.8			
ICC Supply current			$V_{C C}=M A X$,	See Note 3		25	40		25	40	mA		

\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 3. ICC is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ Over Recommended Free-Air Temperature Range.

Parameter	From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $R_{L}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (See Figs. 1 and 2 and Fig. B, page 2-174)												
${ }^{\text {PPLH }}$	Read enable	Any Q		22	34		20	30		23	34	ns
tPHL				22	34		20	30		23	34	
tPLH	Read select	Any 0		26	44		25	40		28	44	ns
${ }^{\text {tPHL }}$				27	44		24	40		27	44	
${ }^{\text {tPLH }}$	Write enable	Any Q		33	49		30	45		33	49	ns
${ }^{\text {tPHL }}$				29	44		25	40		28	44	
tpLH	Data	Any Q		32	49		30	45		33	49	ns
tPHL				25	39		22	35		25	39	
Test Condition: $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{L}=50 \mathrm{pF}$, (See Figs. 1 and 2 and Fig. B, page 2-174)												
${ }^{\text {tPLH}}$	Read enable	Any Q		27	39		24	35		27	39	ns
tPHL				27	39		24	35		27	39	
${ }^{\text {tPLH }}$	Read select	Any Q		32	49		29	45		32	49	ns
tPHL				31	49		28	45		31	49	
tPLH	Write	Any Q		37	54		34	50		37	54	ns
tPHL				32	49		29	45		32	49	
tplH	Data	Any Q		37	54		34	50		37	54	ns
${ }^{\text {tPHL }}$				29	44		26	40		29	44	

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
FIGURE 1

VOLTAGE WAVEFORM 2

FIGURE 2

NOTES: A. High-level input pulses at the select and data inputs are illustrated in Figure 1; however, times associated with low-level pulses are measured from the same reference points.
B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
C. In Figure 2, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stabilized with $W_{A}=R_{A}$ and $W_{B}=R_{B}$. During the test G_{R} is low.
D. Input waveforms are supplied by generators having the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle $\leqslant 50 \%, t_{r} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
E. $V_{r e f}=1.3 \mathrm{~V}$.

FEATURES

- Positive edge-triggered common clock
- Asynchronous common reset
- Clock-to-output delays of 14 ns

DESCRIPTION

The LS174 is a six-bit register with single-rail outputs and the LS175 is a four-bit register with complementary outputs. Both consist of D-type flip-flops with a buffered common clock and an asynchronous, active-Low buffered clear.
Information at the D inputs meeting the setup time requirements is transferred to the O outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUTS	
CLEAR	CLOCK	D	\mathbf{Q}	$\overline{\mathbf{Q}}+$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{O}	\bar{Q}_{0}

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.
$t=$ LS175 only

PIN-OUT DIAGRAMS

LOGIC DIAGRAMS
LS174

LS175

Recommended Operating Conditions

$t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the data input prior to the rising edge of the clock in order to be recognized and transferred to the output.
thold is the minimum time required for the logic level to be maintained at the data input after the rising edge of the clock in order to insure recognition.
$t_{r e c}$ is the minimum time required between the end of the clear pulse and the rising edge of the clock in order to transfer High data to the Q output.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{1 \mathrm{H}}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.5		2.7	3.5		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ \mathrm{~V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7$				20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
$\mathrm{l}_{\text {OS }}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
${ }^{1} \mathrm{Cc}^{\dagger \dagger}$	$V_{C C}=$ MAX	LS174		16	26		16	26	mA
		LS175		11	18		11	18	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
\dagger +With all outputs open and 4.5 V applied to all data and clear inputs, I_{C} is measured, after a momentary ground, then 4.5 V is applied to clock.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Figure A on page 2-174)												
${ }^{\text {f max }}$	maximum clock frequency					35	45					MHz
${ }^{\text {P PLH }}$	$\begin{gathered} \text { clear } \\ \text { (LS } 175 \text { only) } \end{gathered}$	$\overline{\text { a }}$		19	25		19	25		25	31	ns
${ }^{\text {t }}$ PHL	$\begin{gathered} \text { clear } \\ \text { (LS175 only) } \end{gathered}$	Q		23	29		19	25		22	27	ns
${ }^{\text {t }}$ PLH	clock	Q or $\overline{\mathrm{Q}}$		14	20		13	17		14	19	ns
${ }^{\text {tPHL }}$	clock	Q or $\overline{\mathrm{Q}}$		16	23		13	18		13	18	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Figure A on page 2-174)												
${ }^{\text {t PLH }}$	$\begin{gathered} \text { clear } \\ \text { (LS175 only) } \end{gathered}$	$\bar{\square}$		21	27		22	27		28	35	ns
${ }^{\text {t PHL }}$	$\begin{gathered} \text { clear } \\ \text { (LS175 only) } \end{gathered}$	Q		25	33		23	28		25	30	ns
${ }^{\text {P PLH }}$	clock	O or $\overline{\mathrm{O}}$		16	22		15	19		17	21	ns
${ }^{\text {tPHL }}$	clock	Q or $\overline{0}$		20	28		17	23		17	22	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

FEATURES

- Provides 16 arithmetic operations
- Provides 16 logic operations
- Full look-ahead for high-speed arithmetic operation on long words

DESCRIPTION

The LS181 is an arithmetic logic unit (ALU)/function generator which has a complexity of 75 equivalent gates on a monolithic chip. This circuit performs 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the 182, full carry ahead look-ahead circuits, high-speed arithmetic operations can be performed.

If high speed is not of importance, a ripple-carry input $\left(C_{n}\right)$ and a ripple-carry output $\left(C_{n+4}\right)$ are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.
The LS181 will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Subtraction is accomplished by 1 ' s complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is A-B-1 which requires an end-around or forced carry to provide A-B.

The LS181 can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality $(A=B)$. The $A L U$ should be in the subtract mode with $C_{n}=H$ when performing this comparison. The $A=B$ output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output $\left(\mathrm{C}_{n+4}\right)$ can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs, S3, S2, S1, S0 at L, H, H, L, respectively.

INPUT $\overline{\mathbf{C}}_{\boldsymbol{n}}$	OUTPUT $\overline{\mathbf{C}}_{\boldsymbol{n}+4}$	ACTIVE-HIGH DATA (FIGURE 1)	ACTIVE-LOW DATA (FIGURE 2)
H	H	$\mathrm{A} \leqslant \mathrm{B}$	$\mathrm{A} \geqslant \mathrm{B}$
H	L	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	H	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	L	$\mathrm{A} \geqslant \mathrm{B}$	$\mathrm{A} \leqslant \mathrm{B}$

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

PIN NUMBER	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 7}$
Active-low data (Table 1)	A_{0}	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~F}_{0}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\overline{\mathrm{C}}_{n}$	$\overline{\mathrm{C}}_{\mathrm{n}}+4$	X	Y
Active-low data (Table 2)	$\overline{\mathrm{A}}_{0}$	$\overline{\mathrm{~B}}_{0}$	$\overline{\mathrm{~A}}_{1}$	$\overline{\mathrm{~B}}_{1}$	$\overline{\mathrm{~A}}_{2}$	$\overline{\mathrm{~B}}_{2}$	$\overline{\mathrm{~A}}_{3}$	$\overline{\mathrm{~B}}_{3}$	$\overline{\mathrm{~F}}_{0}$	$\overline{\mathrm{~F}}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	C_{n}	C_{n+4}	$\overline{\mathrm{P}}$	$\overline{\mathrm{G}}$

PIN-OUT DIAGRAM

ALU SIGNAL DESIGNATIONS

The LS181 can be used with the signal designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

FIGURE 1
(FOR TABLE 1)

FIGURE 2
(FOR TABLE 2)

TABLE 1

SELECTION$s_{3} s_{2} s_{1} s_{0}$	ACTIVE-HIGH DATA		
	$M=H$ LOGIC FUNCTIONS	$M=$ L; ARITHMETIC OPERATIONS	
		$C_{n}=H$ (no carry)	$c_{n}=L$ (no carry)
L L L L	$F=\bar{A}$	$F=A$	$F=A$ PLUS 1
L L L H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B) P$ PUS 1
L L H L	$F=\bar{A} B$	$F=A+B$	$F=(A+\bar{B})$ PLUS 1
L L H H	$F=0$	$F=$ MINUS 1 (2's COMPL)	$F=2 E R O$
L HLL	$F=\overline{A B}$	$F=A P$ LUS $A E$	$F=A$ PLUS AE PLUS 1
L H L H	$F=E$	$F=(A+B) P L U S A \bar{B}$	$F=(A+B)$ PLUS $A \bar{B}$ PLUS 1
L H H L	$F=A \oplus B$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L H H H	$F=A B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
$H L L$	$F=\bar{A}+B$	$F=A P L U S A B$	$F=A$ PLUS AB PLUS 1
H L L H	$F=\overrightarrow{A+B}$	$F=A P L U S B$	$F=A$ PLUS B PLUS 1
H L H L	$F=B$	$F=(A+B) P$ LUS $A B$	$F=(A+\bar{B})$ PLUS AB PLUS 1
H L H H	$F=A B$	$F=A B$ MINUS 1	$F=A B$
H H L L	$F=1$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H H L H	$F=A+B$	$F=(A+B)$ PLUS A	$F=(A+B)$ PLUS A PLUS 1
H H H L	$F=A+B$	$F=(A+\bar{B})$ PLUS A	$F=(A+\bar{B})$ PLUS A PLUS 1
H H H H	$F=A$	$F=A$ MINUS 1	$F=A$

TABLE 2

SELECTION$S_{3} S_{2} S_{1} S_{0}$	ACTIVE-LOW DATA		
	$\begin{aligned} & M=H \\ & \text { LOGIC } \end{aligned}$ FUNCTIONS	$M=$ L; ARITHME TIC OPERATIONS	
		$C_{n}=L$ (with carry)	$C_{n}=H$ (with carry)
L L L L	$F=\bar{A}$	F - A MINUS 1	$F=A$
L L L H	$F=\overline{A B}$	$F=A B$ MINUS 1	$F=A B$
L L H L	$F=\bar{A}+B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
L L H H	$F=1$	$F=$ MINUS 1 (2's COMP)	$F=Z E R O$
L H L L	$F=\overline{A+B}$	$F=A P L U S(A+\bar{B})$	$F=A$ PLUS $(A+B) P$ PLUS 1
L H L H	$F=\bar{B}$	$F=A B \operatorname{PLUS}(A+\bar{B})$	$F=A B$ PLUS $(A+\bar{B})$ PLUS 1
L H H L	$F=\overline{A+C B}$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L H H H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
H L L L	$F=\bar{A} B$	$F=A \operatorname{PLUS}(A+B)$	$F=A$ PLUS $(A+B) P$ PLUS 1
H L L H	$F=A \oplus B$	$F=A P L U S B$	$F=A \cdot P L U S B$ PLUS 1
H L H L	$F=B$	$F=A \bar{B} \operatorname{PLUS}(A+B)$	$F=A \bar{B}$ PLUS $(A+B)$ PLUS 1
H L H H	$F=A+B$	$F=A+B$	$F=(A+B) P$ PUS 1
H H L L	$F=0$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H H L H	$F=A B$	$F=A B P$ LUS A	$F=A B$ PLUS A PLUS 1
H H H L	$F=A B$	$F=A \bar{B} P$ LUS A	$F=A \bar{B}$ PLUS A PLUS 1
H H H H	$F=A$	$F=A$	$F=A$ PLUS 1

- Each bit is shifted to the next more significant position.

LOGIC DIAGRAM

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH} (All outputs except $\mathrm{A}=\mathrm{B}$)			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*			9LS/54LS			9LS/74LS			Unit			
		Min	Typ**	Max	Min	Typ**	Max							
$\mathrm{V}_{\text {IH }}$								2			2			V
$V_{\text {IL }}$							0.7			0.8	V			
V_{1}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1$	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
V_{OH}	Any Output except $A=B$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.4		2.7	3.4		V			
$\mathrm{IOH}^{\text {l }}$	$\begin{gathered} \mathrm{A}=\mathrm{B} \\ \text { Output only } \end{gathered}$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , & V_{O H}=5.5 \mathrm{~V} \end{array}$					100			100	$\mu \mathrm{A}$			
V_{OL}	All outputs	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$V_{1 H}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.35	0.6		0.35	0.5				
	Output G			$1 \mathrm{OL}=16 \mathrm{~mA}$		0.47	0.7		0.47	0.7				
11	Mode input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$					0.1			0.1	mA			
	Any A or B input						0.3			0.3				
	Any S input						0.4			0.4				
	Carry input						0.5			0.5				
I_{IH}	Mode input	$V_{C C}=M A X, ~ V$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
	Any A or B						60			60				
	Any S input						80			80				
	Carry input						100			100				
$1: 14$	Mode input						-0.4			-0.4	mA			
	Any A or B input						-1.7			-1.2				
	Any S input						-1.6			-1.6				
	Carry input						-2			-2				
Iost ${ }^{\text {t }}$	$\left.\begin{array}{\|c\|} \hline \text { Any Output } \\ \text { except } A=B \end{array} \right\rvert\,$	$V_{C C}=\mathrm{MAX}$			-15		-100	-15		-100	mA			
$\mathrm{Icc}^{+\dagger}$		$V_{C C}=M A X$		Condition A		20	32		20	34	mA			
		Condition B		21	35		21	37						

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger+$ With outputs open, ICC is measured for the following conditions:
A. SO through $S 3, M$ and A inputs are at 4.5 V , all other inputs are grounded.
B. SO through $S 3$ and M are at 4.5 V , all other inputs are grounded.

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
Parameter			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A on page 2-174)												
tPLH	C_{n}	C_{n+4}		17	28		14	24		17	28	ns
tpHL				16	24		13	20		16	24	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tPLH	Any A or B	$\mathrm{C}_{\mathrm{n}+4}$		27	39		24	35		27	39	ns
$\mathrm{t}_{\mathrm{PHL}}$				20	34		17	30		20	34	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tPLH	Any A or B	C_{n+4}		27	42		24	38		27	42	ns
tPHL				28	42		25	38		28	42	
$\mathrm{M}=0 \mathrm{~V}$, ($\overline{\text { UUM }}$ or $\overline{\text { DIFF }}$ mode)												
tPLH	C_{n}	Any F		15	28		12	24		15	28	ns
tPHL				15	24		12	20		15	24	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tpLH	Any A or B	G		15	33		12	29		15	33	ns
tPHL				18	27		15	23		18	27	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tpliH	Any A or B	G		23	34		20	30		23	34	ns
tPHL				20	30		17	26		20	30	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tpLH	Any A or B	P		17	32		14	28		17	32	ns
$\mathrm{t}_{\mathrm{PHL}}$				23	34		20	30		23	34	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tPLH	Any A or B	P		23	34		20	30		23	34	ns
tPHL				25	37		22	33		25	37	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tPLH	A_{i} or B_{i}	F_{i}		18	34		15	30		18	34	ns
tPHL				16	24		13	20		16	24	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tpLH	A_{i} or B_{i}	F_{i}		24	36		21	32		24	36	ns
tPHL				18	27		15	23		18	27	
$\mathrm{M}=4.5 \mathrm{~V}$ (logic mode)												
tplH	A_{i} or B_{i}	F_{i}		20	34		17	30		20	34	ns
$\mathrm{t}_{\text {PHL }}$				18	33		15	29		18	33	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
$\mathrm{t}_{\text {PLH }}$	Any A or B	$A=B$		36	56		33	50		36	56	ns
$\mathrm{tPHL}^{\text {che }}$				32	50		29	45		32	50	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A on page 2-174)												
tPLH	C_{n}	$\mathrm{C}_{\mathrm{n}+4}$		21	33		18	29		21	33	ns
tPHL				19	29		17	25		19	29	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tplH	Any A or B	C_{n+4}		30	44		28	40		30	44	ns
tPHL				23	39		31	35		23	39	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ (DIFF mode)												
tPLH	Any A or B	C_{n+4}		30	47		28	43		30	47	ns
tPHL				31	47		29	43		31	47	
$\mathrm{M}=0 \mathrm{~V}$, ($\overline{\text { SUM }}$ or DIFF mode)												
tPLH	C_{n}	Any F		18	33		16	29		18	33	ns
$\mathrm{tPHL}^{\text {che }}$				18	29		16	25		18	29	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tPLH	Any A or B	G		18	38		16	34		18	39	ns
tPHL				21	32		19	28		21	32	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tPLH	Any A or B	G		26	39		24	35		26	39	ns
tPHL				23	35		21	31		23	35	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S2}=4.5 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tPLH	Any A or B	P		20	37		18	33		20	37	ns
tPHL				26	39		24	35		26	39	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tPLH	Any A or B	P		26	39		24	35		26	39	ns
tPHL				28	42		26	38		28	42	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S2}=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)												
tPLH	A_{i} or B_{i}	F_{i}		21	39		19	35		21	39	ns
tPHL				19	29		18	25		19	29	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
tPLH	A_{i} or B_{i}	F_{i}		27	41		25	37		27	41	ns
$\mathrm{t}_{\text {PHL }}$				21	32		19	28		21	32	
$\mathrm{M}=4.5 \mathrm{~V}$ (logic mode)												
tplH	A_{i} or B_{i}	F_{i}		23	39		21	35		23	39	ns
$\mathrm{tPHL}^{\text {P }}$				21	38		19	34		21	38	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)												
$\mathrm{tPLH}^{\text {L }}$	Any A or B	$A=B$		39	61		37	55		39	61	ns
tPHL				35	55		33	50		35	55	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

PARAMETER MEASUREMENT INFORMATION LOGIC MODE TEST TABLE
 FUNCTION INPUTS: $\mathbf{S 1}=\mathbf{S 2} \mathbf{= M} \mathbf{= 4 . 5} \mathbf{V}, \mathbf{S O}=\mathbf{S 3}=\mathbf{0 V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		$\begin{array}{\|c} \hline \text { APPLY } \\ \hline 4.5 \mathrm{~V} \\ \hline \end{array}$	APPLY GND	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND		
${ }^{\text {P PLH }}$	A_{i}	$\mathbf{B i}_{\mathbf{i}}$	None	None	Remaining A and B, C_{n}	F_{i}	Out-ot-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {PLLH }}$	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	F_{i}	Out-ot-Phase
${ }^{\text {PPHL }}$							

PARAMETER MEASUREMENT INFORMATION
 SUM MODE TEST TABLE

FUNCTION INPUTS: $\mathbf{S O}=\mathbf{S 3}=\mathbf{4 . 5} \mathrm{V}, \mathrm{S} 1=\mathrm{S} 2=\mathrm{M}=\mathbf{0} \mathrm{V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		APPLY 4.5 V	APPLY GND	$\begin{gathered} \hline \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$	APPLY GND		
tPLH	$\mathrm{A}_{\boldsymbol{i}}$	Bi_{i}	None	Remaining A and B	C_{n}	F_{i}	In-Phase
tPHL							
${ }^{\text {PPLH }}$	B_{i}	A_{i}	None	Remaining A and B	C_{n}	F_{i}	In-Phase
tPHL							
tPLH	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	P	In.Phase
tPHL							
${ }^{\text {tPLH }}$	Bi_{i}	A_{i}	None	None	Remaining A and B, C_{n}	P	In-Phase
tPHL							
${ }_{\text {tPLH }}$	A_{i}	None	B_{i}	Remaining B	$\begin{aligned} & \text { Remaining } \\ & A, C_{n} \end{aligned}$	G	In-Phase
${ }^{\text {TPHL }}$							
tPLH	B_{i}	None	A_{i}	RemainingB	RemainingA, C_{n}	G	In-Phase
${ }_{\text {TPHL }}$							
tPLH	C_{n}	None	None	$\begin{gathered} \text { All } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { All } \\ & \dot{B} \end{aligned}$	Any F or C_{n+4}	In-Phase
${ }^{\text {TPHL }}$							
tPLH	A_{i}	None	B_{i}	Remaining B	$\begin{aligned} & \text { Remaining } \\ & A, C_{n} \end{aligned}$	C_{n+4}	Out-of-Phase
tPHL							
${ }^{\text {PLLH }}$	B_{i}	None	A_{i}	Remaining B	RemainingA, C_{n}	C_{n+4}	Out-of-Phase
${ }^{\text {tPHL }}$							

$\overline{\text { DIFF }}$ MODE TEST TABLE
FUNCTION INPUTS: $\mathrm{S} 1=\mathbf{S 2}=4.5 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		APPLY $4.5 \mathrm{~V}$	APPLY GND	APPLY $4.5 \mathrm{~V}$	APPLY GND		
${ }^{\text {P PLH }}$	A_{i}	None	B_{i}	Remaining A	Remaining B, C_{n}	F_{i}	In-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {PPLH }}$	B_{i}	$\mathrm{A}_{\boldsymbol{i}}$	None	$\begin{gathered} \text { Remaining } \\ A \end{gathered}$	Remaining B, C_{n}	F_{i}	Out-ot-Phase
tPHL							
tPLH	A_{i}	None	B_{i}	None	Remaining A and B, C_{n}	P	In-Phase
tPHL							
${ }^{\text {PPLH }}$	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	P	Out-of-Phase
tPHL							
${ }_{\text {tPLH }}$	A_{i}	Bi	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	G	In-Phase
tPHL.							
${ }^{\text {PPLH}}$	B_{i}	None	A_{i}	None	Remaining A and B, C_{n}	G	Out-of-Phase
${ }^{\text {tPHL }}$							
${ }^{\text {PPLH }}$	A_{i}	None	B_{i}	Remaining A	$\begin{gathered} \text { Remaining } \\ B, C_{n} \end{gathered}$	$A=B$	In-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {PPLH }}$	$\mathrm{B}_{\mathbf{i}}$	A_{i}	None	Remaining A	$\begin{aligned} & \text { Remaining } \\ & \text { B, } C_{n} \end{aligned}$	$A=B$	Out-of Phase
${ }^{\text {tPHL }}$							
${ }^{\text {PLLH }}$	C_{n}	None	None		None	c_{n+4} or any F	In-Phase
tPHL							
${ }^{\text {PLLH }}$	A_{i}	$\mathrm{B}_{\mathbf{i}}$	None	None	$\begin{gathered} \text { Remaining } \\ \text { A, B, } C_{n} \end{gathered}$	C_{n+4}	Out-of-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {tPLH }}$	B_{i}	None	$\mathrm{A}_{\boldsymbol{i}}$	None	RemainingA, B, C_{n}	C_{n+4}	In -Phase
tPHL							

FEATURES

- Single up/down count mode control line
- Asynchronous parallel load
- Count enable, parallel load control inputs
- Cascadable

DESCRIPTION

The LS190 and LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The LS191 is a 4-bit binary counter and the LS190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable and down/up inputs should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo- N dividers by simply mữifiyiing tine counit lengin with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Die Size $.100 \times .077$

LOW INPUT TO LOAD SETS $Q_{A}=A, Q_{B}=B, Q_{C}=C, Q_{D}=D$
LS191

Die Size $.100 \times .077$

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, $V_{C C}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Input clock frequency, $\mathrm{f}_{\text {clock }}$	0		20	0		20	MHz
Width of clock input pulse, $\mathrm{t}_{\text {w (clock) }}$	25			25			ns
Width of load input pulse, $\mathrm{t}_{\text {w }}$ (load)	35			35			ns
Data setup time, $\mathrm{t}_{\text {setup }}$ (see Figures 1 and 2)	20			20			ns
Enable to clock setup time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Data hold time, thold	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		9LS/54LS			9LS/74LS			Unit		
		Min	Typ ${ }^{* *}$	Max	Min	Typ**	Max					
$\mathrm{V}_{\text {IH }}$						2			2			V
$\mathrm{V}_{\text {IL }}$						0.7			0.8	V		
V_{1}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V_{OH}		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
V_{OL}		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V		
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
11	Enable		$V_{C C}=M A X, \quad V_{1}=7 \mathrm{~V}$				0.3			0.3	mA	
	Others					0.1			0.1			
I_{IH}	Enable	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				60			60	$\mu \mathrm{A}$		
	Others					20			20			
$1 / 1$.	Enable	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$				-1.2			-1.2	mA		
	Others					-0.4			-0.4			
lost		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-15		-100	-15		-100	mA		
ICCtt		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			20	35		20	35	mA		

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{\prime} \mathrm{CC}$ is measured with all inputs grounded and all outputs open.

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Test Conditions: $C_{L}=15 p F, R_{L}=2 \mathrm{k} \Omega$ (See Fig. 1 thru 7 on pages 2-115 and 2-116 and Fig. A on page 2-174)

$f_{\text {max }}$					20	25				MHz
tPLH	Load	$\mathrm{a}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	25	37		22	33	25	37	
tPHL			36	54		33	50	36	54	ns
$\mathrm{t}_{\text {PLH }}$	Data A,B,C,D	$\mathrm{a}_{\mathrm{A}}, \mathrm{a}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	17	26		14	22	17	26	ns
$\mathrm{t}_{\text {PHL }}$			38	56		35	50	38	56	
$\mathrm{tPLH}^{\text {cher }}$	Clock	Ripple Clock	16	24		13	20	16	24	
$\mathrm{t}_{\text {PHL }}$			19	28		16	24	19	28	ns
$\mathrm{t}_{\text {PLH }}$	Clock	$\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	19	28		16	24	19	28	
tPHL			27	40		24	36	27	40	ns
tplH	Clock	Max/Min	31	46		28	42	31	46	
tPHL			40	56		37	52	40	56	ns
${ }_{\text {tPLH }}$	Down/Up	Ripple Clock	33.	49		30	45	33	49	ns
${ }_{\text {tPHL }}$			33	49		30	45	33	49	ns
tPLH	Down/Up	Max/Min	24	37		21	33	24	37	ns
${ }_{\text {tPHL }}$			25	38		22	33	25	38	ns
tPLH	Enable	Ripple Clock	24	37		21	33	24	37	ns
$\mathrm{t}_{\text {PHL }}$			25	38		22	33	25	38	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1 thru 7 on pages 2-115 and 2-116 and Fig. A on page 2-174).

tpLH	Load		28	42	25	37	28	42	ns
$\mathrm{t}_{\text {PHL }}$			39	59	36	54	39	59	
tpLH	Data A,B,C,D	$\mathrm{a}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{C}, \mathrm{O}_{\mathrm{D}}$	20	31	17	26	20	31	ns
tPHL			41	61	38	54	41	61	
tpLH	Clock	Ripple Clock	19	29	16	24	19	29	ns
tpHL			22	33	19	28	22	33	
tPLH	Clock	$\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	22	33	19	28	22	33	ns
$\mathrm{t}_{\text {PHL }}$			30	45	27	40	30	45	
tPLH	Clock	Max/Min	34	51	31	46	34	51	ns
$\mathrm{t}_{\text {PHL }}$			43	61	40	56	43	61	
$\mathrm{t}_{\text {PLH }}$	Down/Up	Ripple Clock	36	54	33	49	36	54	ns
$\mathrm{t}_{\text {PHL }}$			36	54	33	49	36	54	
tPLH	Down/Up	Max/Min	27	42	24	37	27	42	ns
$\mathrm{t}_{\text {PHL }}$			28	43	25	37	28	43	
tPLH	Enable	Ripple Clock	27	42	24	37	27	42	ns
tPHL			28	43	25	37	28	33	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50pF specifications are for 9LS only.

Synchronous 4-Bit Binary Up/Down Counter

LS190 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES

Illustrated below is the following sequence:

1. Load (preset) to $B C D$ seven.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), nine, eight, and seven.

LS191 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES

Illustrated below is the following sequence:

1. Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

Synchronous 4-Bit Binary Up/Down Counter

FIGURE 1-DATA SETUP TIME VOLTAGE WAVEFORMS

NOTES:
A. The input pulses are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\leqslant 50 \%, P R R \leqslant 1 \mathrm{MHz}$.

NOTE B: Conditions on other inputs are irrelevant.
FIGURE 3-LOAD TO OUTPUT AND DATA TO OUTPUT

FIGURE 4-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO MAX/MIN

F. to test Q_{A}, Q_{B}, and Q_{C} outputs of LS190: Data inputs A, B, and C are shown by the solid line. Data input D is shown by the dashed line.
G. To test Q_{D} output of LS190: Data inputs A and D are shown by the solid line. Data inputs B and C are held at the low logic level.
H. To test Q_{A}, Q_{B}, Q_{C}, and Q_{D} outputs of LS191: All four data inputs are shown by the solid line.

FIGURE 5-CLOCK TO OUTPUT

NOTE I:
Data inputs B and C are shown by the dashed line for the LS190 and the solid line for the LS191: Data input D is shown by the solid line for both devices.

FIGURE 6-CLOCK TO MAX/MIN

FEATURES

- Separate clock inputs for count-up, count-down
- Asynchronous parallel load and clear
- Cascadable

DESCRIPTION

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The LS192 is a BCD counter and the LS193 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.
These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

PIN-OUT DIAGRAM

Low input to load sets $Q_{A}=A, Q_{B}=B$,

$$
Q_{C}=C, \text { and } Q_{D}=D
$$

LS192

LS193

Die Size $.100 \times .077$ (both types)

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, $\mathrm{IOL}_{\mathrm{OL}}$			4			8	mA
Count frequency, $\mathrm{f}_{\text {count }}$	0		25	0		25	MHz
Width of any input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {setup }}$ (see Figure 1)	20			20			ns
Data hold time, thold	0			0			ns
Operating free-air temperature range, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18$				-1.5			-1.5	V
VOH	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
$1 /$	$V_{\text {CC }}=$ MAX,,$~ V_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
los^{\dagger}	$V_{C C}=$ MAX		-15		-100	-15		-100	mA
${ }^{\text {cc }}{ }^{+\dagger}$	$V_{C C}=$ MAX			19	34		19	34	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$t^{\prime}{ }^{C C}$ is measured with all inputs grounded and all outputs open.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \quad$ (See Fig. 1 and 2)												
$\mathrm{f}_{\text {max }}$						25	32					MHz
tPLH	Count-up	Carry		19	29		17	26		19	29	ns
tPHL				18	28		16	24		18	28	
tPLH	Count-down	Borrow		18	28		16	24		18	28	ns
tPHL				18	28		16	24		18	28	
tPLH	Either Count	Q		27	42		25	38		27	42	ns
tPHL				33	51		31	47		33	51	
tPLH	Load	Q		29	44		27	40		29	44	ns
tPHL				31	44		29	40		31	44	
$\mathrm{t}_{\text {PHL }}$	Clear	Q		24	39		22	35		24	39	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1 and 2)												
												MHz
tPLH	Count-up	Carry		23	34		21	31		23	34	ns
$\mathrm{t}_{\text {PHL }}$				22	32		20	30		22	32	
$\mathrm{t}_{\text {PLH }}$	Count-down	Borrow		22	32		20	30		22	32	ns
${ }_{\text {tPHL }}$				22	32		20	30		22	32	
$\mathrm{t}_{\text {PLH }}$	Either Count	Q		31	47		29	43		31	47	ns
${ }_{\text {tPHL }}$				37	56		34	51		37	56	
tPLH	Load	Q		33	49		31	44		33	49	ns
tPHL				35	49		33	45		35	49	
$\mathrm{t}_{\mathrm{PHL}}$	Clear	Q		28	44		26	40		28	44	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50 pF specifications are for 9LS only.

Synchronous 4-Bit Binary Up/Down Counter

NOTES:
A. The pulse generators have the following characteristics: $Z_{\text {out }}=50 \Omega$ and for the data pulse generator $\operatorname{PRR}<500 \mathrm{KHz}$, duty cycle $=$ 50%; for the load pulse generator PRR is two times data PRR, duty cycle $=50 \%$.
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1N3064.
D. t_{r} and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$.

FIGURE 1 - CLEAR, SETUP, AND LOAD TIMES

PARAMETER MEASUREMENT INFORMATION (Continued)

NOTES:
A. The pulse generator has the following characteristics: $P R R \leqslant 1 M H z, Z_{\text {out }}=50 \Omega$, duty cycle $=50 \%$.
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1N3064.
D. Count-up and count-down pulse shown is for the LS193 binary counter. Count cycle for LS192 decade counter is 1 through 10.
E. Waveforms for outputs Q_{A}, Q_{B}, and Q_{C} are omitted to simplify the drawing.
F. t_{r} and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$.

FIGURE 2-PROPAGATION DELAY TIMES

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to BCD seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES
LS193

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

DESCRIPTION

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and leftshift inputs, operating-mode-control inputs, and a direct over-riding clear line. The register has four distinct modes of operation, namely:

> Parallel (broadside) load Shift right (in the direction Q_{A} toward Q_{D}) Shift left (in the direction Q_{D} toward Q_{A}) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. Clocking of the flip-flop is inhibited when both mode control inputs are low.

PIN-OUT DIAGRAM

FUNCTION TABLE													
INPUTS -..										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{Q}_{\mathbf{A}}$	a_{B}	0_{C}	O_{D}
	S1	S0		LEFT	RIGHT	A	B	C	D				
L	X	x	\times	\times	X	X	X	\times	\times	L	L	L	L
H	X	\times	L	x	x	x	X	\times	X	$\mathrm{a}_{\text {AO }}$	O_{80}	O_{CO}	Q 0
H	H	H	\uparrow	x	x	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	X	x	\times	x	H	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
H	L	H	\uparrow	x	L	X	X	x	x	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
H	H	L	\dagger	H	X	X	X	\times	\times	a_{Bn}	Q_{Cn}	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	x	X	X	x	\times	a_{Bn}	Q_{Cn}	$Q_{\text {Dn }}$	L
H	L	L	\times	x	x	x	\times	\times	\times	O_{AO}	O_{BO}	Q_{C0}	$\mathrm{Q}_{\text {DO }}$

[^18]

PARALLEL OUTPUTS

TYPICAL TIMING SEQUENCES

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{IOH}^{2}=-40 \mathrm{Cl} \end{array}$		2.5	3.5		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
1	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Tost ${ }^{\text {+ }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$\mathrm{lcc}^{+\dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			15	23		12	23	mA

[^19]Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. below)										
$\mathrm{f}_{\text {max }}$				30	40					MHz
$\mathrm{t}_{\text {PHL }}$		27	34		24	30		27	34	ns
tplH		14	22		11	18		14	22	ns
${ }_{\text {tPHL }}$		18	26		15	22		18	26	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. below)										
$\mathrm{t}_{\text {PHL }}$		31	39		28	36		31	39	ns
${ }_{\text {tPLH }}$		18	27		15	23		18	27	ns
${ }_{\text {tPHL }}$		22	31		19	27		22	31	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

PARAMETER MEASUREMENT INFORMATION

LOAD FOR OUTPUT UNDER TEST

TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	S1	SO	OUTPUT TESTED (SEE NOTE E)
A	4.5 V	4.5 V	Q_{A} at $\mathrm{t}_{\mathrm{n}+1}$
B	4.5 V	4.5 V	Q_{B} at $\mathrm{t}_{\mathrm{n}+1}$
C	4.5 V	4.5 V	Q_{C} at t_{n+1}
D	4.5 V	4.5 V	Q_{D} at $\mathrm{t}_{\mathrm{n}+1}$
L Serial Input	4.5 V	0 V	Q_{A} at $\mathrm{t}_{\mathrm{n}+4}$
R Serial Input	0 V	4.5 V	Q_{D} at $\mathrm{t}_{\mathrm{n}+4}$

NOTES:
A. The clock pulse generator has the following characteristics: $Z_{o u t} \approx 50 \Omega$ and $P R R \leqslant 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$. When testing $f_{\text {max }}$, vary PRR.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064 or 1 N916.
D. A clear pulse is applied prior to each test.
E. Proplagation delay times ($\mathrm{t}_{\mathrm{PLH}}$ and tPHL^{\prime}) are measured at $t_{\mathrm{n}+1}$. Proper shifting of data is verified at t_{n+4} with a functional test.
F. $t_{n}=$ bit time before clocking transition.
$t_{n+1}=$ bit time after one clocking transition.
$t_{n+4}=$ bit time after four clocking transitions.

DESCRIPTION

This 4-bit register features parallel inputs, parallel outputs, $J-\bar{K}$ serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The register has two modes of operation:

Parallel (broadside) load

$$
\text { Shift (in the direction } Q_{A} \text { toward } Q_{D} \text {) }
$$

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J- \bar{K} inputs. These inputs permit the first stage to perform as J-K, D-, or T-type flip-flop as shown in the function table.

FUNCTION TABLE

INPUTS										OUTPUTS				
CLEAR	$\begin{aligned} & \text { SHIFT/ } \\ & \text { LOAD } \\ & \hline \end{aligned}$	clock	SERIAL			PARALLEL				O_{A}	O_{B}	${ }^{0} \mathrm{c}$		$\overline{\mathrm{a}}_{\mathbf{D}}$
			J		$\overline{\mathbf{K}}$	A	8	c	D					
L	X	x	X		X	X	\times	\times	\times	L	L	L	L	H
H	L	1	x		x	a	b	c	d	a	b	c	d	d
H	H	L	x		\times	x	\times	\times	\times	$\mathrm{a}_{\text {a }}$	a_{B0}	O_{CO}	Q_{DO}	$\overline{\mathrm{a}}_{\mathrm{D} 0}$
H	H	†	L		H	\times	\times	\times	\times	$\mathrm{a}_{\text {a }}$	$\mathrm{Q}_{\text {AO }}$	O_{8}	O_{C}	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	'	L		L	\times	\times	\times	\times	L	$Q_{A n}$	$\mathrm{O}_{8 n}$	O_{C}	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	\dagger	H		H	x	\times	\times	\times	H	$Q_{A n}$	$\mathrm{O}_{8 \mathrm{n}}$	O_{C}	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	\dagger	H		L	\times	\times	\times	\times	$\overline{\mathrm{a}}_{\text {An }}$	$\mathrm{a}_{\text {An }}$	O_{Bn}	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{C}_{n}^{\prime}}$

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at A, B, C, or D, respectively.
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, hafnre the indingted steedyetcte input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}=$ the level of Q_{A}, Q_{B}, or Q_{C}, respectively, before the most-recent transition of the clock.

PIN-OUT DIAGRAM

PARALLEL OUTPUTS

TYPICAL TIMING SEQUENCES

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		30	0		30	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)		18			18			ns
Width of clear input pulse, $\mathrm{t}_{\text {w }}$ (clear)		20			20			ns
Setup time, $\mathrm{t}_{\text {setup }}$ (see Figure 1)	Shift/load	25			25			ns
	Serial and parallel data	15			15			
	Clear inactive-state	25			25			
Shift/Ioad release time, $\mathrm{t}_{\text {release }}$ (see Figure 1)				0			0	ns
Serial and parallel data hold time, $\mathrm{t}_{\text {hold }}$ (see Figure 1)		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1 on page 2-132)										
$\mathrm{f}_{\text {max }}$				30	40					MHz
${ }^{\mathrm{t}_{\text {PHL }}}$ (from clear)		26	23		26	33		35	49	ns
$\mathrm{t}_{\text {PLH }}$ (from clk)		14	20		14	19		21	31	ns
$\mathrm{t}_{\text {PHL }}$ (from clk)		20	26		18	24		24	32	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. 1 on page 2-132)										
$\mathrm{t}_{\text {PHL }}$ (from clear)		27	36		27	36		37	47	ns
$\mathrm{t}_{\text {PLH }}$ (from clk)		16	22		16	21		24	31	ns
$\mathrm{t}_{\text {PHL }}$ (from clk)		22	29		21	27		33	46	ns

[^20]Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{I H}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.50	
$1 /$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ \mathrm{~V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
lcc ${ }^{\dagger+}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			14	21		10	17	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
tNot more than one output should be shorted at a time.
t+With all outputs open, shift/load grounded and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V , to clear and then applying a momentary ground, followed by 4.5 V to clock.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

LOAD FOR OUTPUT UNDER TEST

NOTES:
A. The clock pulse generator has the following characteristics: $Z_{\text {out }} \approx 50 \Omega$ and $P R R \leqslant M H z, t_{r} \leqslant 15 \mathrm{~ns}$, and $\mathrm{t}_{\mathrm{f}} \leqslant 6$ ns. When testing $f_{\text {max }}$, vary the clock PRR.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064.
D. A clear pulse is applied prior to each test.
E. Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+4} with a functional test.
F. J and \bar{K} are tested the same as data A, B, C, and D inputs except that shift/load input remains high.
G. $t_{n}=$ bit time before clocking transition.
$t_{n+1}=$ bit time after one clocking transition.
$\mathbf{t}_{\mathrm{n}+4}=$ bit time after four clocking transitions.

FEATURES

- BCD, bi-quinary, binary counting modes
- Asynchronous clear
- Fully programmable
- May be used as 4-Bit latches

DESCRIPTION

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops which are internally interconnected to provide either a divide-by-two and a divide-by-five counter (LS196) or a divide-by-two and a divide-by-eight counter (LS197). THese four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.
During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.

These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

TYPICAL COUNT CONFIGURATIONS LS196

The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes:

1. When used as a binary-coded-decimal decade counter, the clock-2 input must be externally connected to the Q_{A} output. The clock-1 input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence function table shown at the right.
2. If a symmetrical divide-by-ten count is desired for frequency synthesizers (or other applications requiring division of a binary count by a power of ten), the Q_{D} output must be externally connected to the clock-1 input. The input count is then applied at the clock-2 input and a divide-by-ten square wave is obtained at output Q_{A} in accordance with the bi-quinary function table.
3. For operation as a divide-by-two counter and a divide-byfive counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-bytwo function. The clock-2 input is used to obtain binary divide-by-five operation at the Q_{B}, Q_{C}, and Q_{D} outputs. In this mode, the two counters operate independently; however, all four flip-flops are loaded and cleared simultaneously.

PIN-OUT DIAGRAM

LS196
LS197

Die Size $.062 \times .074$ (both types)

LS196
 FUNCTION TABLES

(See Note A)

COUNT	OUTPUTS			
	Q_{D}	$\mathrm{O}_{\mathbf{C}}$	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

$H=$ high level, $L=$ low level
NOTES: A. Output Q_{A} connected to clock-2 input.
B. Output Q_{D} connected to clock-1 input.

LS197

The output of flip-flop A is not internally connected to the succeeding flip-flops, therefore the counter may be operated in two independent modes:

1. When used as a high-speed 4-bit ripple-through counter, output Q_{A} must be externally connected to the clock-2 input. The input count pulses are applied to the clock-1 input. Simultaneous divisions by $2,4,8$, and 16 are performed at the $Q_{A}, Q_{B}, Q_{C}, Q_{D}$ output as shown in the function table at right.
2. When used as a 3-bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2,4 , and 8 are available at the $\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$, and O_{D} outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3 -bit-ripple-through counter.

COUNT	OUTPUTS			
	OD		O_{8}	$\mathrm{O}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L.	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

LS197 FUNCTION TABLE (See Note A)
$H=$ high level, $L=$ low level NOTE A: Output Q_{A} connected to clock-2 input.

LOGIC DIAGRAM LS196

LOGIC DIAGRAM LS197

Presettable 4-Bit Binary Ripple Counter

Recommended Operating Conditions

		9LS/54LS			9LS/74LS			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.75	V
High-level output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}				4			8	mA
Count frequency	Clock-1 input	0			0			MHz
	Clock-2 input	0			0			
Pulse width, t_{w}	Clock-1 input	20			20			ns
	Clock-2 input	30			30			
	Clear	15			15			
	Load	20			20			
Input hold time, thold	High-level data	$\mathrm{t}_{\mathrm{w} \text { (load) }}$						ns
	Low-level data	t_{w} (load)						ns
Input setup time, $\mathrm{t}_{\text {setup }}$	High-level data	10			10			ns
	Low-level data	15			15			ns
Count enable time, $\mathrm{t}_{\text {enable }}$ (see Note 1)		20			20			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE1:

Count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-40 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{mAd}$		0.25	0.40		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			-		0.35	0.50	
Data, count/load	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{t}}=7.0 \mathrm{~V}$				0.1		!	0.1	
I Clear, clock 1					0.2			0.2	mA
1 Clock 2 of LS196					0.4			0.4	
Clock 2 of LS197					0.2			0.2	
Data, count/load	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$1_{\text {IH }}$ Clear, clock 1					40			40	
1 H Clock 2 of LS196					80			80	
Clock 2 of LS197					40			40	
Data, count/load	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Clear					-0.8			-0.8	
1 IL Clock 1					-2.4			-2.4	
Clock 2 of LS196					-2.8			-2.8	
Clock 2 of LS197					-1.3			-1.3	
lost	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
Icctt	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			12	20		12	20	mA

[^21]Switching Characteristics, $\mathbf{V}_{\mathbf{c c}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter		From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit	
		Min		Typ	Max	Min	Typ	Max	Min	Typ	Max			
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A on page 2-174)														
$\mathrm{f}_{\text {max }}$	LS196		Clock 1	$\mathrm{Q}_{\text {A }}$				45	70					M Hz
$f_{\text {max }}$	LS197	Clock 1	Q_{A}				45	60					MHz	
tpLH	LS196	Clock 1	$\mathrm{Q}_{\text {A }}$		10	15		8	12		10	15	ns	
$\mathrm{t}_{\text {PHL }}$					14	19		12	16		14	19		
tPLH	LS197	Clock 1	Q_{A}		10	15		8	12		10	15	ns	
$\mathrm{t}_{\text {PHL }}$					14	19		12	16		14	19		
$\mathrm{t}_{\text {PLH }}$	LS196	Clock 2	Q_{B}		13	18		11	15		13	18	ns	
$\mathrm{t}_{\text {PHL }}$					16	22		14	19		16	22		
tPLH	LS197	Clock 2	Q_{B}		12	18		10	15		12	18	ns	
tPHL					15	21		13	18		15	21		
tPLH	LS196	Clock 2	Q_{C}		24	37		22	34		24	37	ns	
$\mathrm{t}_{\text {PHL }}$					31	43		29	40		31	43		
$t_{\text {PLH }}$	LS197	Clock 2	Q_{C}		24	37		22	34		24	37	ns	
$\mathrm{t}_{\text {PHL }}$					28	37		26	34		28	37		
tPLH	LS196	Clock 2	O_{D}		13	21		11	18		13	21	ns	
tPHL					18	23		16	20		18	23		
tPLH	LS197	Clock 2	O_{D}		36	55		34	50		36	55	ns	
tPHL					42	60		40	55		42	60		
tPLH	LS196	A, B, C, D	$\mathrm{a}_{A}, \mathrm{a}_{\mathrm{B}}, \mathrm{O}_{C}, \mathrm{a}_{\mathrm{D}}$		14	22		12	18		14	22	ns	
tPHL					23	38		21	34		23	38		
$t_{\text {PLH }}$	LS197	A, B, C, D	$\mathrm{Q}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$		23	22		21	18		23	22	ns	
tPHL					23	38		21	34		23	38		
tPLH	LS196	Load	Any		22	34		20	30		22	34	ns	
tPHL					33	49		31	45		33	49		
tPLH	LS197	Load	Any		22	34		20	30		22	34	ns	
tPHL					33	49		31	45		33	49		
$\mathrm{t}_{\text {PHL }}$	LS196	Clear	Any		34	49		32	45		34	49		
tPHL	LS197	Clear	Any		34	49		32	45		34	49	ns	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices onlv. All 50 nF snecifications are for 9LS only.

Switching Characteristics, $\mathbf{V}_{\text {cc }}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter		From (Input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit	
		Min		Typ	Max	Min	Typ	Max	Min	Typ	Max			
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)														
$\mathrm{f}_{\text {max }}$	LS196		Clock 1	$\mathrm{Q}_{\text {A }}$				48	74					MHz
$\mathrm{f}_{\text {max }}$	LS197	Clock 1	Q_{A}				48	64					MHz	
tpLH	LS196	Clock 1	$\mathrm{Q}_{\text {A }}$		14	20		11	16		14	20	ns	
${ }^{\text {tPHL }}$					18	24		15	20		18	24		
tPLH	LS197	Clock 1	Q_{A}		14	20		11	16		14	20	ns	
$\mathrm{tPHL}^{\text {P }}$					18	24		15	20		18	24		
tPLH	LS196	Clock 2	Q_{B}		17	23		14	19		17	23	ns	
$\mathrm{t}_{\mathrm{PHL}}$					20	27		17	23		20	27		
tPLH	LS197	Clock 2	Q_{B}		16	23		13	19		16	23	ns	
$\mathrm{t}_{\text {PHL }}$					19	26		16	22		19	26		
tPLH	LS196	Clock 2	Q_{C}		28	42		25	38		28	42	ns	
$\mathrm{t}_{\text {PHL }}$					35	48		32	44		35	48		
${ }^{\text {tPLH }}$	LS197	Clock 2	Q_{C}		28	42		25	38		28	42	ns	
$\mathrm{tPHL}^{\text {Pr }}$					32	42		29	38		32	42		
tPLH	LS196	Clock 2	Q_{D}		17	26		14	22		17	26	ns	
tPHL					22	27		19	24		22	27		
tPLH	LS197	Clock 2	O_{D}		40	60		37	54		40	60	ns	
$\mathrm{tPHL}^{\text {Pr }}$					46	65		$4 \overline{3}$	59		46	65		
tPLH	LS196	A, B, C, D	$\mathrm{a}_{A}, \mathrm{a}_{\mathrm{B}}, \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$		18	27		15	22		18	27	ns	
tPHL					27	43		24	38		27	43		
tPLH	LS197	A, B, C, D	$\mathrm{a}_{A}, \mathrm{a}_{B}, \mathrm{a}_{\mathrm{C}}, \mathrm{o}_{\mathrm{D}}$		27	27		24	22		27	27	ns	
$\mathrm{t}_{\mathrm{PHL}}$					27	43		24	38		27	43		
tPLH	LS196	Load	Any		26	39		23	34		26	39	ns	
${ }_{\text {tPHL }}$					37	54		34	49		37	54		
tpli	LS197	Load	Any		26	39		23	34		26	39	ns	
${ }_{\text {tPHL }}$					37	54		34	49		37	54		
tPHL	LS196	Clear	Any		38	54		35	49		38	54		
$\mathrm{tPHL}^{\text {c }}$	LS197	Clear	Any		38	54		35	49		38	54	ns	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

Dual Monostable Multivibrator with Schmitt-Trigger Inputs

LS221

FEATURES

- LS221 is Dual Version of 54LS123, One Shot on a Monolithic Chip
- Pulse-Width Variance is Typically Less than $\pm 0.5 \%$ for 98\% of the Units
- Pin-Out is Identical to the LS123

DESCRIPTION

The 'LS221 is monolithic dual multivibrators with performance characteristics virtually identical to those of the LS123. Each multivibrator features a negative-transitiontriggered input and a positive-transition-triggered input either of which can be used as an inhibit input.
Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for B input allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with excellent noise immunity of typically 1.2 volts. A high immunity to V_{CC} noise of typically 1.5 volts is also privided by internal latching circuitry.
Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses may be of any duration relative to the output pulse. Output pulse length may be varied from 35 nanoseconds to the maximums shown in the
above table by choosing appropriate timing components. With $R_{\text {ext }}=2 \mathrm{k} \Omega$ and $\mathrm{C}_{\text {ext }}=0$, an output pulse of typically 30 nanoseconds is achieved which may be used as a d -c-triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length. Typical triggering and clearing sequences are illustrated as a part of the switching characteristics waveforms.
Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.
Jitter-free operation is maintained over the full temparature and $V_{C C}$ ranges for more than six decades of timing capacitance (10 pF to $10 \mu \mathrm{~F}$) and $2 \mathrm{k} \Omega$ to $70 \mathrm{k} \Omega$ for 54 LS 221 and $2 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ for the 74 LS 221). Throughout these ranges, pulse width is defined by the relationship: t_{w} (out) $=$ $\mathrm{C}_{\text {ext }} \mathrm{R}_{\text {ext }} \ln 2 \approx 0.7 \mathrm{C}_{\text {ext }} \mathrm{R}_{\text {ext }}$. In circuits where pulse cutoff is not critical, timing capacitance up to $1000 \mu \mathrm{~F}$ and timing resistance as low as $1.4 \mathrm{k} \Omega$ may be used. Also, the range of jitter-free output pulse widths is extended if $V_{C C}$ is held to 5 volts and free-air temperature is $25^{\circ} \mathrm{C}$. Duty cycles as high as 90% are achieved when using maximum recommended R_{T}. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

Pin assignments for this device is identical to that of the LS123 so that the 'LS221 can be substituted for those products in systems not using the retrigger by merely changing the value of $\mathrm{R}_{\mathrm{ext}}$ and/or $\mathrm{C}_{\text {ext }}$.

Positive Logic: Low input to clear resets \mathbf{Q} low and $\overline{\mathrm{Q}}$ high regardless of d-c levels at A or B inputs.

FUNCTION TABLE
(EACH MONOSTABLE)

INPUTS				UTS
CLEAR	A	B	0	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	\square	ち
H	\downarrow	H	\square	■
Also see description and switching characteristics				

$H=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
$\uparrow=$ transition from low to high level
$\downarrow=$ transition from high to low level
$\Omega=$ one high-level pulse
$\square=$ one low-level pulse $X=$ irrelevant

TIMING COMPONENT CONNECTIONS

FIGURE 1

SCHEḾATICS OF INPUTS AND OUTPUTS

Recommended Operating Conditions

			LS/54			LS/74		
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Rate of rise or fall of input pulse, $\mathrm{dv} / \mathrm{dt}$	Schmitt, B	1			1			V / s
	Logic input, A	1			1			$\mathrm{V} / \mu \mathrm{s}$
Input pulse width	A or B, t_{w} (in)	40			40			ns
	Clear, ${ }_{\text {w }}$ (clear)	40			40			
Clear-inactive-state setup time, $\mathrm{t}_{\text {setup }}$		15			15			ns
External timing resistance, $\mathrm{R}_{\text {ext }}$		1.4		70	1.4		100	$k \Omega$
External timing capacitance, $\mathrm{C}_{\text {ext }}$		0		1000	0		1000	$\mu \mathrm{F}$
Output duty cycle	$\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega$			67			67	\%
	$\mathrm{R}_{\mathrm{T}}=\mathrm{MAX} \mathrm{R}_{\text {ext }}$			90			90	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter			Test Conditions ${ }^{\dagger}$			9LS/54LS			9LS/74LS			Unit			
			Min.	Typ. ${ }^{\text {\# }}$	Max.	Min.	Typ ${ }^{\text { }}$	Max.							
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold voltage at A input					$V_{C C}=\mathrm{MIN}$				1.0	2		1.0	2	V
V_{T-}	Negative-going threshold voltage at A input		$V_{C C}=\mathrm{MIN}$			0.7	1.0		0.8	1.0		V			
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold voltage at B input		$V_{C C}=\mathrm{MIN}$				1.0	2		1.0	2	V			
V_{T} -	Negative-going threshold voltage at B input		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.7	0.9		0.8	0.9		V			
V_{1}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5			-1.5	V			
VOH^{2}	High-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}^{\prime} \mathrm{OH}=-40$			2.5	3.5		2.7	3.5		V			
VOL Low-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5					
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					0.1			0.1	mA		
$1 / \mathrm{H}$	High-level input current		$V_{C C}=$ MAX,	$V_{1}=2.7$				20			20°	$\mu \mathrm{A}$			
IIL	Low-level input current	Input A	$V_{C C}=M A X, \quad V_{1}=0: 4 \mathrm{~V}$					-0.36			-0.36				
		Input B						-0.44			-0.44	mA			
		Clear						-0.54			-0.54				
los	Short-circuit output current ${ }^{\dagger}$		$\mathrm{V}_{C C}=\mathrm{MAX}$			-30		-100	-15		-100	mA			
'CC Supply current			$\mathrm{V}_{C C}=\mathrm{MAX}$		Quiescent		4.7	11		4.7	11				
				Triggered		19	27		19	27	m				

[^22]
Dual Monostable Multivibrator with Schmitt-Trigger Inputs

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	From(Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Test Conditions: $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\text {ext }}=80 \mathrm{pF}, \mathrm{R}_{\text {ext }}=2.0 \mathrm{k} \Omega$ (See Fig. 1 on 2-139)												
TW (out)	A or B	Q or $\overline{\mathrm{Q}}$	77	138	175	70	120	150	77	138	175	ns
Test Conditions: $R_{L}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\text {ext }}=0, \mathrm{R}_{\text {ext }}=2.0 \mathrm{k} \Omega$ (See Fig. 1 on page 2-139)												
TW (out)	A or B	Q or $\overline{\mathrm{Q}}$	22	50	80	20	47	70	22	50	80	ns
Test Conditions: $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\text {ext }}=100 \mathrm{pF}, \mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$ (See Fig. 1 on page 2-139)												
TW (out)	A or B	Q or $\overline{\mathrm{Q}}$	600	725	870	600	670	750	620	750	870	ns
Test Conditions: $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\text {ext }}=1 \mathrm{pF}, \mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$ (See Fig. 1 on page 2-139)												
TW (out)	A or B	Q or $\overline{\mathrm{Q}}$	6.0	7.7	8.5	6.0	6.7	7.5	6.0	7.7	8.5	ms
Test Conditions: $R_{L}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\text {ext }}=80 \mathrm{pF}, \mathrm{R}_{\text {ext }}=2.0 \mathrm{k} \Omega$ (See Fig. 1 on page 2-139)												
${ }^{\text {tPLH }}$	A	Q		48	74		45	70		48	74	ns
	B	Q		38	59		35	55		38	59	
tPHL	A	$\overline{\mathrm{Q}}$		53	84		50	80		53	84	ns
	B	$\overline{\mathrm{Q}}$		43	69		40	65		43	69	
tPHL	Clear	Q		38	59		35	55		38	59	ns
${ }^{\text {tPLH }}$	Clear	$\overline{\mathrm{Q}}$		47	69		44	65		47	69	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

PARAMETER MEASUREMENT INFORMATION

Dual Monostable Multivibrator with Schmitt-Trigger Inputs

PARAMETER MEASUREMENT INFORMATION

TRIGGERING FROM POSITIVE TRANSITION OF CLEAR

NOTES: A. Input pulses are supplied by generators having the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{out}} \approx 50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.

8-Line-To-1-Line Multiplexer With Three-State Outputs

FEATURES

- Selects one of eight data sources
- Performs parallel-to-serial conversion
- Complementary 3-state outputs

DESCRIPTION

This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and features a strobe-controlled three-state output. The strobe must be at a low logic level to enable this device. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.
To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

PIN-OUT DIAGRAM

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-2.6	mA
Low-level output current, IOL			8			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2		-	V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=\mathrm{MIN}, \quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$		2.4	3.4		2.7	3.4		V
V_{OL}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=M A X, & \\ \hline \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
IO (off)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Iost	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
ICctt	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	Condition A		6.1	10		6.1	10	mA
		Condition B		7.1	12		7.1	12	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{+} I_{C C}$ is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:
A. Strobe grounded.
B. Strobe at 4.5 V

8-Line-To-1-Line Multiplexer With Three-State Outputs

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
Parameter			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tPLH	A, B, or C	Y	23	32	23	34	27	42	ns
tPHL	(4 levels)	Y	21	29	20	28	24	34	
tPLH	A, B, or C (3 levels)	W	16	24	17	25	21	30	ns
tPHL			16	25	15	24	17	26	
tpLH	Any D	Y	11	17	11	20	18	26	ns
tPHL			12	17	11	16	14	20	
tple	Any D	W	9	16	10	17	13	19	ns
tPHL			5	10	5	10	5	10	
t_{ZH}	Strobe	Y	8	13	8	14	10	16	ns
t_{ZL}			12	18	11	18	15	22	
t_{ZH}	Strobe	W	11	17	14	21	11	17	ns
t_{ZL}			12	19	12	18	13	19	

Test Conditions: $C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C on page 2-174)

t_{Hz}	Strobe	Y	10	15	8	13	7	12	ns
$\mathrm{t}_{\mathrm{L} Z}$			7	11	6	11	8	13	
t_{Hz}	Strobe	W	13	18	11	16	10	15	ns
$\mathrm{t}_{\mathrm{L} Z}$			7	11	6	10	7	14	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tPLH	$A, B \text {, or } C$	Y	25	34	26	37	33	44	ns
tPHL	(4 levels)		27	35	25	32	28	37	
tpLH	$\begin{aligned} & \hline \text { A, B, or C } \\ & \text { (3 levels) } \\ & \hline \end{aligned}$	W	17	25	18	26	22	31	ns
tPHL			19	27	18	27	20	29	
tPLH	Any D	Y	13	20	14	22	20	28	ns
${ }_{\text {tPHL }}$			18	23	16	21	19	25	
tPLH	Any D	W	10	17	11	18	14	21	ns
tPHL			7	13	6	12	6	12	
t_{ZH}	Strobe	Y	11	16	11	17	13	19	ns
t_{ZL}			18	24	17	23	20	27	
t_{ZH}	Strobe	W	13	19	17	23	15	21	ns
t_{ZL}			14	21	16	22	17	23	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50pF specifications are for 9LS only.

FEATURES

- Three-state version of LS153
- Non-inverting
- Permits multiplexing from \mathbf{N} lines to 1 line
- Performs parallel-to-serial conversion

DESCRIPTION

The LS253 is a high-speed dual 4-line-to-1-line multiplexer with common select inputs and separate output control inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level.

FUNCTION TABLE

SELECT INPUTS		DATA INPUTS				OUTPUT CONTRO	OUTPUT
B	A	CO	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs A and B are common to both sections. $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)

PIN-OUT DIAGRAM

LOGIC DIAGRAM

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-2.6	mA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=V_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=\mathrm{MA} \end{array}$		2.4	3.4		2.4	3.1		V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{I H}=2 \mathrm{~V}, \\ \mathrm{~V}_{I L}=\mathrm{V}_{I L} \max & \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.50	
IO (off)	$\begin{aligned} & V_{C C}=M A X \\ & V_{I H}=2 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
1	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }_{1}{ }_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$\mathrm{ICC}^{+\dagger}$	$\mathrm{V}_{C C}=\mathrm{MAX}$	Condition A		7	12		7	12	mA
		Condition B		8.5	14		8.5	14	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{\prime} \mathrm{CC}$ is measured with the outputs open under the following conditions:
A. All inputs grounded.
B. Output control at 4.5 V , all inputs grounded.

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)												
tPLH	Data	Y		9	15		7	12		9	15	ns
tPHL				14	22		12	17		14	22	
tpLH	Select	Y		20	30		18	25		20	30	ns
${ }_{\text {tPHL }}$				20	31		18	27		20	31	
${ }^{\text {t }} \mathrm{ZH}$	Output Control	Y		12	21		10	16		12	21	ns
t_{ZL}				15	23		13	18		15	23	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C on page 2-174)												
t_{Hz}	Output Control	Y		9	16		7	15		9	16	ns
$\mathrm{t}_{\text {LZ }}$				13	22		12	19		13	22	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)												
tPLH	Data	Y		13	20		10	16		13	20	ns
tPHL				18	27		15	21		18	27	
$\mathrm{t}_{\text {PLH }}$	Select	Y		24	35		21	29		24	35	ns
${ }^{\text {tPHL }}$				24	36		21	29		24	36	
t_{ZH}	Output Control	Y		16	26		13	20		16	26	ns
t_{ZL}				19	28		16	21		19	28	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

LS255

FEATURES

- Three-state version of LS155
- Applications:

Dual 2-Line-to-4-Line Decoder
Dual 1-Line-to-4-Line Demultiplexer
3-Line-to-8-Line Decoder
1-Line-to-8-Line Demultiplexer

DESCRIPTION

The LS255 features dual 1 -line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16 -pin package. When both sections are enabled by the output controls, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual controls permit activating or inhibiting each of the 4 -bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3 -to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

FUNCTION TABLE
3-LINE-TO-8-LINE DECODER OR 1-LINE-TO-8-LINE DEMULTIPLEXER

INPUTS			OUTPUTS				
SELECT	CONTRO	DATA					
B	A	1G	1C	1Yo	1Y1	1Y2	1Y3
	X	H	X	Z	Z	Z	Z
L	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
X	X	X	L	H	H	H	H

INPUTS				OUTPUTS			
SELECT			CONTROL	DATA			
B	A	2G	2C	2Yo	2Y1	2Y2	2Y3
	X	H	X	Z	Z	Z	Z
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
X	X	X	H	H	H	H	H

FUNCTION TABLES
2-LINE-TO-4-LINE DECODER
OR 1-LINE-TO-4-LINE DEMULTIPLEXER

INPUTS				OUTPUTS							
	LEC		CONTROL OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
c^{\dagger}	B	A	G \ddagger	2Y0	2Y1	2 Y 2	2 Y 3	1Y0	1Y1	1Y2	183
X	X	X	H	z	z	z	z	z	z	z	z
L	L	L	L	L	H	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	L	H	H	H	H
H	L	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	L	H	H
H	H	L	L	H	H	H	H	H	H	L	H
H	H	H	L	H	H	H	H	H	H	H	L

[^23]PIN-OUT DIAGRAM

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-2.6	mA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \left.\mathrm{I}_{\mathrm{OH}}=\mathrm{MA}\right) \end{array}$		2.4	3.4		2.7	3.4		V
V_{OL}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
10 (off)	$\begin{aligned} & V_{C C}=M A X \\ & V_{I H}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
$1 /$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$I_{\text {IH }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Ios ${ }^{+}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$1 \mathrm{Cct}{ }^{+}$	$V_{C C}=$ MAX	Condition A		6	10		6	10	mA
		Condition B		11	17		11	17	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger{ }^{\prime} \mathrm{I} C \mathrm{C}$ is measured with the outputs open under the following conditions:
A. A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.
B. Same as Condition A except inputs 1 G and 2 G at 4.5 V .

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\underline{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tple	A, B, 1C	Y	15	21	13	18	15	21	ns
$\mathrm{t}_{\text {PHL }}$	or 2C		18	24	16	22	18	24	
tplH	A or B (3 levels)	Y	18	24	16	22	18	24	ns
${ }_{\text {tPHL }}$			22	29	20	26	22	29	
t_{ZH}	Output Control	Y	12	18	10	15	12	18	ns
t_{ZL}			14	20	12	18	14	20	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C on page 2-174)									
t_{Hz}	Output Control	Y	11	18	9	15	11	18	ns
$\mathrm{t}_{\mathrm{L}} \mathrm{L}$			17	23	15	20	17.	23	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)									
tPLH	$\begin{gathered} A, B, 1 C \\ \text { or } 2 C \end{gathered}$	Y	19	27	16	22	19	27	ns
$\mathrm{t}_{\text {PHL }}$			22	30	20	28	22	30	
tPLH	A or B (3 levels)	Y	22	30	20	28	22	30	ns
tPHL			26	34	24	32	26	34	
t_{ZH}	Output Control	Y	16	22	14	20	16	22	ns
t_{ZL}			18	26	16	22	18	26	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50 pF specifications are for 9LS only.

DESCRIPTION

These data selectors/multiplexers select a 4-bit word from one of two sources and present it at the four outputs. The LS257 presents true data; the LS258 presents inverted data. With Output Control HIGH, the outputs are forced to a high impedance state.

INPUTS				OUTPUTY	
OUTPUT CONTROL	SELECT	A	B	LS257	LS258
H	X	X	X	Z	Z
L	L	L	X	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

$H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)
Low level at S selects A inputs.
High level at S selects B inputs.

PIN-OUT DIAGRAMS

LOGIC DIAGRAMS

LS257
LS258

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-2.6	mA
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
${ }^{\dagger}{ }^{\prime} \mathrm{CC}$ is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. C on page 2-174)

tPLH	LS257	Data	Any	8	15	6	- 12	8	15	ns
$\mathrm{t}_{\text {PHL }}$				9	15	7	12	9	15	
tPLH	LS258	Data	Any	10	17	8	14	10	17	ns
$\mathrm{t}_{\text {PHL }}$				7	15	5	12	7	15	
$\mathrm{t}_{\text {PLH }}$	LS257	Select	Any	14	21	12	18	14	21	ns
$\mathrm{t}_{\text {PHL }}$				14	21	12	18	14	21	
tPLH	LS258	Select	Any	14	21	12	18	14	21	ns
$\mathrm{t}_{\text {PHL }}$				12	21	10	18	12	21	
t_{ZH}	LS257	Output Control	Any	12	21	10	18	12	21	ns
t_{ZL}				12	19	10	16	12	19	
t_{ZH}	LS258	Output Control	Any	12	21	10	18	12	21	ns
t_{ZL}				13	21	11	18	13	21	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$\mathrm{t}_{\mathrm{H} Z}$	LS257	Output Control	Any	12	18	10	15	12	18	ns
${ }_{\text {t }}$				12	21	10	18	12	21	
t_{Hz}	LS258	Output Control	Any	11	18	9	15	11	18	ns
$\mathrm{t}_{\mathrm{L}} \mathrm{Z}$				10	18	8	15	10	18	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

tPLH	LS257	Data	Any	12	19	10	17	12	19	ns
${ }_{\text {tPHL }}$				13	20	11	17	13	20	
tPLH	LS258	Data	Any	14	22	12	19	14	22	ns
tPHL				11	19	9	17	11	19	
tPLH	LS257	Select	Any	18	25	16	23	18	25	ns
$\mathrm{t}_{\text {PHL }}$				18	25	16	23	18	25	
tPLH	LS258	Select	Any	18	25	16	23	18	25	ns
tPHL				16	25	14	23	16	25	
t_{ZH}	LS257	Output Control	Any	16	25	14	23	16	25	ns
${ }^{\text {Z }}$ L				16	24	14	21	16	24	
t_{ZH}	LS258	Output Control	Any	16	25	14	23	16	25	ns
t_{ZL}				17	25	15	23	17	25	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50 pF specifications are for 9LS only.

FEATURES

- Fast Multiplication . . 5-Bit Product in 26ns Typ
- Power Dissipation . . . 110mW Typical
- Latch Outputs for Synchronous Operation
- Expandable for m-Bit-by-n-Bit Applications
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families
- Diode-Clamped Inputs Simplify System Design

DESCRIPTION

These low-power Schottky circuits are designed to be used in parallel multiplication applications. They perform binary multiplication in two's-complement form, two bits at a time.
The M inputs are for the multiplier bits and the B inputs are for the multiplicand. The Q outputs represent the partial product as a recoded base-4 number. This recoding effectively reduces the Wallace-tree hardware requirements by a factor of two.

The outputs represent partial products in one's complement form generated as a result of multiplication. A simple rounding scheme using two additional gates is needed for each partial product to generate two's complement.
The leading (most-significant) bit of the product is inverted for ease in extending the sign to square (left justify) the partial-product bits.
The 9LS/54L261 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the $9 \mathrm{LS} / 74 \mathrm{LS} 261$ for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN-OUT DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS				
		TIPL						
	M2	M1	M0	Q4	3	02	01	0
L	x	X	x	O_{0}	$\mathrm{O3}_{0}$	$\mathrm{O2}_{0}$	$\mathrm{Q1}_{0}$	OO_{0}
H	L	L	L	H	L	L	L	L
H	L	L	H	$\overline{\text { B4 }}$	B4	B3	B2	B1
H	L	H	L	B4	B4	B3	B2	B1
H	L	H	H	B4	B3	B2	B1	B0
H	H	L	L	B4	B3	$\overline{\mathrm{B}} 2$	B1	$\overline{\text { B }} 0$
H	H	L	H	B4	B4	B3	B2	B1
H	H	H	L	B4	B4	B3	B2	B1
H	H	H	H	H	L	L	L	L

$H=$ high level, $L=$ low level, $X=$ irrelevant
$\bar{U}_{4}{ }_{0} \ldots U_{0}=$ The logic level of the same output before the high-tolow transition of G.
$B 4 \ldots B 0=$ The logic level of the indicated multiplicand (B) input

LOGIC DIAGRAM

Recommended Operating Conditions

			S/54L			S/74L		
		Min	Nom	Max	Min	Nom	Max	it
Supply voltage, $V_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-1			-1	mA
Low-level output current, I_{OL}				4			8	mA
Width of enable pulse, t_{w}		25			25			ns
Setup time, $\mathrm{t}_{\text {setup }}$	Any M input	17 \downarrow			17 \downarrow			ns
	Any B input	15 \downarrow			15 \downarrow			
Hold time, thold	Any M input	O \downarrow			0 \downarrow			ns
	Any B input	O \downarrow			O \downarrow			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\downarrow The arrow indicates that the falling edge of the enable pulse is used for reference.
Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.2	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{n} \end{array}$		2.5	3.4		2.7	3.4		V
VOL	$\forall_{\text {CC }}=\mathrm{MIN}, \quad V_{\text {IH }}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$\mathrm{I}_{1 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$V_{C C}=M A X, \quad V_{1}=0.4 V$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
lost	$V_{C C}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$I_{\text {cc }}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \quad \text { All inputs at OV } \\ & \text { Outputs open } \end{aligned}$			22	38		22	40	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)												
tPLH	Enable G	Any Q		25	39		22	35		25	39	ns
tPHL				23	34		20	30		23	34	
tplh	Any M input	Any Q		28	44		25	40		28	44	ns
tPHL				25	39		22	35		25	39	
tPLH	Any B input	Any Q		30	46		27	42		30	46	ns
$\mathrm{t}_{\text {PHL }}$				27	41		24	37		27	41	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)												
tplh	Enable G	Any Q		30	44		26	40		30	44	ns
tPHL				28	39		24	35		28	39	
tplH	Any M input	Any Q		33	49		29	45		33	49	ns
tPHL				30	44		26	40		30	44	
$\mathrm{tPLH}^{\text {P }}$	Any B input	Any 0		35	51		31	47		35	51	ns
tpHL				32	46		28	42		32	46	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only.
All 50 pF specifications are for 9LS only.

FEATURES

- Functionally and Mechanically Identical to 54279
- Features Low Power Dissipation of 19 mW Typical
FUNCTION TABLE
(EACH LATCH)

INPUTS	OUTPUT	
\bar{S}^{\dagger}	\bar{R}	Q
H	H	Q_{0}
L	H	H
H	L	L
L	L	H^{*}

$\mathrm{H}=$ high level
L = low level
$Q_{0}=$ the level of Q before the indicated input conditions were established.
*This output level is pseudo stable: that is, it may not persist when the $\overline{\mathrm{S}}$ and $\overline{\mathrm{R}}$ inputs return to their inactive (high) level.
${ }^{\dagger}$ For latches with double $\overline{\mathbf{S}}$ inputs:
$\mathrm{H}=$ both $\overline{\mathrm{S}}$ inputs high
$\mathrm{L}=$ one or both $\overline{\mathrm{S}}$ inputs low

PIN-OUT DIAGRAM

logic: see function table

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, V_{CC} (See Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

[^24]
Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions ${ }^{\dagger}$			9LS/54LS			9LS/74LS			Unit
				Min.	Typ ${ }^{\ddagger}$	Max.	Min.	Typ ${ }^{\ddagger}$	Max.	
$I_{1 H}$ High-level input voltage				2			2			V
$V_{\text {IL }}$ Low-level input voltage						0.7			0.8	V
V_{1} Input clamp voltage	$V_{C C}=\mathrm{MIN}$,	$I_{1}=-18$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$		2.5	3.5		2.7	3.5		V
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{V}_{1 H}=2 \mathrm{~V}$,	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
IIH High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX			-30		-130	-30		-130	mA
ICC Supply current	$V_{C C}=$ MAX,	See Note 2			3.8	7		3.8	- 7	mA

\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\neq}$All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time.
NOTE 2. ICC is measured with all $\overline{\mathrm{R}}$ inputs grounded, all $\overline{\mathrm{S}}$ inputs at 4.5 V , and all outputs open.
Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	From(Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

TPLH	$\overline{\mathrm{S}}$	Q		15	26		12	22		15	26	ns
tPHL	$\overline{\mathrm{S}}$	Q		12	19		9	15		12	19	ns
$\mathrm{Tr}: \mathrm{AL}$	$\overline{\mathrm{S}}$	2		10	30		15	27		10	30	n

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 . 0 k}$ (See Fig. A, page 2-174)

tPLH	\bar{S}	Q		19	30		16	26		19	30	ns
tPHL	$\overline{\mathrm{S}}$	Q		16	23		13	19		16	23	
tPHL	$\overline{\mathrm{R}}$	Q		22	35		19	31		23	35	ns

[^25]
4-Bit Bi-Directional Shift Register With Three-State Outputs

FEATURES

- Three-state version of LS95B parallel-access shift register

DESCRIPTION

This 4-bit register features parallel inputs, parallel outputs, and clock, serial, mode, and output control inputs. The register has three modes of operation:

Parallel (broadside) load Shift right (the direction Q_{A} toward Q_{D}) Shift left (the direction Q_{D} toward Q_{A})

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_{D} to input C, etc.) and serial data is entered at input D.

When the output is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus bus line; however, sequential operation of the register is not affected.

PINOUT DIAGRAM

INPUTS							OUTPUTS			
MODE CONTROL	ClOCK	SERIAL	PARALLEL							
			A	B	c	D		${ }_{8}$		${ }_{D}$
H	H	X	X	X	X	X	Q_{AO}	Q_{BO}	Q_{CO}	QDO
H	\downarrow	x	a	b	c		a	b	c	d
H	\downarrow	x	$\mathrm{a}_{\mathrm{B}}{ }^{\dagger}$	$\mathrm{Q}_{\mathrm{C}}{ }^{\dagger}$	$Q_{D}{ }^{+}$	d	$a_{B n}$	O_{Cn}	$Q_{\text {Dn }}$	d
L	H	X	X	X	X	x	$\mathrm{O}_{\text {AO }}$	$\mathrm{O}_{\text {B0 }}$	$Q_{\text {co }}$	ODO
L	\downarrow	H	x	X	x	x	H	$\mathrm{Q}_{\text {An }}$	$\mathrm{O}_{8 n}$	Q_{Cn}
L	\downarrow	L	X	X	x	X	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.										

Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.
H = high level (steady state), $L=$ low level (steady state), $X=$ irrelevant (any input, including transitions)
$=$ transition from high to low level.
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively.
$Q_{A 0}, Q_{B 0}, Q_{c 0}, Q_{D 0}=$ the level of Q_{A}, Q_{B}, Q_{c}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the most-recent transition of the clock.

4-Bit Bi-Directional Shift Register With Three-State Outputs

LS295A

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{1 H}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=M A \end{array}$		2.4	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.40	V
	$\mathrm{V}_{\text {IL }}=V_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
$\mathrm{I}^{\mathrm{OZH}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{1 \mathrm{~L}}=\mathrm{V}_{1 \mathrm{~L}} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {IL }}$ max,			20			20	$\mu \mathrm{A}$
Iozl	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	$V_{1 H}=2 \mathrm{~V},$			-20			-20	$\mu \mathrm{A}$
I_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
los ${ }^{\text {+ }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-15		-100	-15		-100	mA
$\mathrm{ICC}^{+\dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	Condition A		14	23		14	23	mA
		Condition B		15	25		15	25	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
* * All tvpical values are at $V_{C C}=5 V_{\text {. }} T_{A}=25^{\circ} \mathrm{C}$
\dagger Not more than one output should be shorted at a time.
$\dagger^{\dagger}{ }_{\mathrm{CC}}$ is measured with the outputs open, the serial input and mode control at 4.5 V , and the data inputs grounded under the following conditions:
A. Output control at 4.5 V and a momentary 3 V , then ground, applied to clock input.
B. Output control and clock input grounded.

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
$\mathrm{f}_{\text {max }}$				30	40					MHz
tPLH		29	38		27	35		29	38	ns
tPHL		37	48		35	45		37	48	ns
t_{ZH}		12	21		10	18		12	21	ns
t_{ZL}		12	21		10	18		12	21	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C on page 2-174)										
t_{Hz}		21	32		19	28		21	32	ns
tLZ		26	36		24	32		26	36	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)										
tply		32	42		30	39		32	42	ns
$\mathrm{t}_{\text {PHL }}$		40	52		38	49		40	52	ns
t_{ZH}		15	25		13	22		15	25	ns
t_{ZL}		15	25		13	22		15	25	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9LS devices only. All 50 pF specifications are' for 9LS devices only.

FEATURES

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock.
- Applications:

Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data.

Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability.
Universal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities.

DESCRIPTION

These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (54157/74157 or 54LS157/74LS157 and 54175/74175 or 54LS175/74LS175) in a single 16-pin package.
When the word-select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

$H=$ high level (steady state)
L = low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level
$\mathrm{a} 1, \mathrm{a} 2$, etc. $=$ the level of steady-state input at $\mathrm{A} 1, \mathrm{~A} 2$, etc. $\mathrm{Q}_{\mathrm{A} 0}, \mathrm{Q}_{\mathrm{BO}}$ etc. $=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$, etc. entered on the most recent \downarrow transition of the clock input.

Dynamic input activated by a transition from a high level to a low level

Recommended Operating Conditions

			S/54L			S/74L		
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Width of clock pulse, high or low level, t_{w}		20			20			ns
Setup time, $\mathrm{t}_{\text {setup }}$	Data	15			15			ns
	Word select	25			25			
Hold time, thold	Data	5			5			ns
	Word select	0			0			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V},$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
1	$\mathrm{V}_{\text {CC }}=$ MAX, $V_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
$\mathrm{I}_{1 \mathrm{H}}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
lost	$V_{C C}=$ MAX		-6		-40	-5		-42	mA
Icctt	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,			13	21		13	21	mA

*F'or conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger+$ With all outputs open and all inputs except clock low, ICC is measured after applying a momentary 4.5 V , followed by ground, to the clock input.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

$t_{\text {PLH }}$		20	31		18	27		20	31	ns
$t_{\text {PHL }}$		23	35		21	32		23	35	
Test Conditions: $\mathbf{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathbf{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)										
tpLH		23	36		21	32		23	36	ns
$t_{\text {PHI }}$		26	40		24	37		26	40	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

DESCRIPTION

The LS365/366/367/368 are high speed hex buffers with 3 -state outputs. They are organized as single 6 -bit or 2-bit/ 4 -bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15TTL Unit Loads on 60 Low Power Schottky loads when the Enable ($\overline{\mathrm{E}}$) is LOW.
When Output Enable Input ($\overline{\mathrm{E}}$) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

PIN-OUT DIAGRAMS

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*				9LS/54LS			9LS/74LS			Unit
					Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$	Guaranteed Input HIGH Voltage for All Inputs				2.0			2.0			V
$V_{\text {IL }}$	Guaranteed Input Low Voltage for All Inputs						7	2.0		. 8	V
$\mathrm{V}_{C D}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-0.65	-1.5		-0.65	-1.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{I N}=\mathrm{V}_{I H} \text { or } \mathrm{V}_{\mathrm{IL}}$ per Truth Table		${ }^{1} \mathrm{OH}$	-1.0mA	2.4	3.4					V
			IOH^{\prime}	-2.6mA				2.4	3.1		
VoL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		${ }^{1} \mathrm{OL}=$	12 mA		0.25	0.4		0.25	0.40	V
			Tob	24 mA					0.35	0.5	
Iozh	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {out }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$						20			20	$\mu \mathrm{A}$
IozL	$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \mathrm{V}_{\text {out }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$						-20			-20	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$						20			20	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ \mathrm{~V}_{\text {IN }}=7.0 \mathrm{~V}$						-. 1			-. 1	mA
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$						-0.4			-0.4	mA
lost ${ }^{\text {+ }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				-30		-100	-30		-100	mA
ICC	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=4.5 \mathrm{~V}$		LS365/367		13.5	24		13.5	24	A
				LS366/368		11.8	21		11.8	21	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable
device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	From (input)	To iUutputi	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			IVİn	1 yp	IVIax	Mıın	1 yp	Max	Min	Iуp	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ (See Fig. A, page 2-174)												
tplh $^{\text {(LS365/367) }}$	D_{i}	O_{i}		9	14		7	10		9	14	ns
${ }^{\text {tPHL }}$ (LS365/367)				12	20		10	16		12	20	
${ }^{\text {t PLH }}$ (LS366/368)	D_{i}	O_{i}		9	14		7	10		9	14	ns
${ }^{\text {tPHL }}$ (LS366/368)				12	20		10	16		12	20	
${ }^{\text {t }} \mathrm{ZH}$	$\overline{\mathrm{E}}$	O_{i}		12	20		10	16		12	20	ns
${ }^{\text {t }} \mathrm{ZL}$				20	36		18	30		20	36	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ (See Fig. C, page 2-174)												
${ }^{\text {t }}$ LZ	$\overline{\mathrm{E}}$	O_{i}		12	20		10	15		12	20	ns
${ }^{\text {t }} \mathrm{HZ}$				19	27		17	23		19	27	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=125 \mathrm{pF}$, (See Fig. A, page 2-174)												
${ }_{\text {t }}^{\text {PLH }}$ (LS365/367)	D_{i}	O_{i}		12	20		10	15		12	20	ns
${ }^{\text {tPHL }}$ (LS365/367)				15	26		15	21		15	26	
${ }^{\text {t PLH }}$ (LS366/368)	D_{i}	O_{i}		12	20		10	15		12	20	ns
${ }^{\text {tPHL }}$ (LS366/368)				15	26		15	21		15	20	
${ }^{\text {}}{ }^{\text {ZH }}$	\bar{E}	0		16	26		13	20		16	26	ns
${ }^{\mathrm{t}} \mathrm{ZL}$				24	42		21	35		24	40	

[^26]
FEATURES

\author{

- Three-State, 4-Bit, Cascadable, Parallel-In, Parallel-Out Registers
}
- Schottky-Diode-Clamped Transistors
- Low Power Dissipation . . . 75mW Typical (Enabled)
- Applications: N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N -Bit Storage Register

- Pin for pin compatible with LS395

DESCRIPTION

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, load/shift, output control and direct overriding clear inputs.

Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the reigsters is not affected. During the highimpedance mode, the output at Q_{D}, is still available for cascading.
The 9LS/54LS395A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the $9 \mathrm{LS} / 74 \mathrm{LS} 395 \mathrm{~A}$ is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN-OUT DIAGRAM

InPUTS					3-STATE OUTPUTS				CASCADE OUTPUT Q_{D}
CLEAR	LOAD/SHIFT CONTROL	CLOCK	SERIAL	PARALLEL A b C	$\mathrm{O}_{\mathbf{A}}$	O_{B}	O_{C}	$0_{\text {D }}$	
L	x	x	x	$\mathrm{x} \times \mathrm{x} \times$	L	L	L	L	L
H	H	H	X	$\mathrm{x} \times \times \mathrm{x}$	O_{AO}	$\mathrm{O}_{\text {B0 }}$	$\mathrm{O}_{\mathrm{c} 0}$	O_{DO}	ODO
H	H	\downarrow	X	a b c d	a	b			d
H	L	H	x	$\mathrm{x} \times \mathrm{x} \times$	$\mathrm{O}_{\text {A } 0}$	$\mathrm{O}_{\text {B0 }}$	O_{Co}	$\mathrm{O}_{\text {DO }}$	O_{DO}
H	L	\downarrow	H	$\mathrm{x} \times \mathrm{x} \times$	H	$\mathrm{O}_{\text {An }}$	O_{Bn}	O_{Cn}	O_{Cn}
H	L	\downarrow	L	$\mathrm{x} \times \times \mathrm{x}$	L	$\mathbf{O}_{\text {An }}$	O_{Bn}	O_{Cn}	$0^{0} \mathbf{n}$

When the output control is high, the 3 -state outputs are disabled to the high-impedance state; however, sequential operation of the registers and the output at Q_{D} are not affected.

[^27]Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*			9LS/54LS			9LS/74LS			Unit
				Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$				2			2			V
$V_{\text {IL }}$						0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
VOH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & V_{1 H}=2 \mathrm{~V}, \\ & I_{O H}=M A X \end{aligned}$		2.4	3.4		2.4	3.1		V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & V_{C C}=\text { MIN } \\ & V_{I L}=V_{I L} \text { max, } \\ & V_{I H}=2 \mathrm{~V} \end{aligned}$	$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}$	$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.40	v
		$\mathrm{Q}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	${ }^{\prime} \mathrm{OC}=24 \mathrm{~mA}$					0.35	0.50	
		O_{D}	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.40	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.50	
Iozh	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{a}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}} \\ & \mathrm{a}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}} \end{aligned}$			20			20	$\mu \mathrm{A}$
lozl	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\begin{aligned} & \mathrm{a}_{\mathrm{A}}, \mathrm{a}_{\mathrm{B}} \\ & \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}} \end{aligned}$			-20			-20	$\mu \mathrm{A}$
$1 /$	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
IIH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
${ }^{\text {O }}{ }^{+}$	$V_{C C}=$ MAX			-15	\square	-100	-15		-100	mA
${ }^{1} \mathrm{CC}^{\dagger \dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,		Condition n		10	23		10	25	mA
			Condition B		15	25		15	25	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
${ }^{\dagger \dagger} \mathrm{I} C \mathrm{C}$ is measured with the outputs open, the serial input and mode control at 4.5 V , and the data inputs grounded under the following conditions:
A. Output control at 4.5 V and a momentary 3 V , then ground, applied to clock input.
B. Output control and clock input grounded.

Switching Characteristics, $\mathbf{V}_{\text {cc }}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameters	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C , page 2-174)										
$f_{\text {max }}$				25	35					MHz
$\begin{array}{ll} \hline \text { tPHL } & \begin{array}{l} \text { Clear to } \\ \text { output } \end{array} \end{array}$		27	40		23	35		27	40	ns
tPLH		27	40		23	35		27	40	ns
tPHL		24	35		20	30		24	35	ns
tpZH		17	25		13	20		17	25	ns
${ }^{\text {tPZL }}$		28	41		24	36		28	41	ns
tPHZ		15	22		11	17		15	22	ns
tPLZ		19	27		15	23		19	27	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C, page 2-174)										
t_{HZ}		13	22		11	17		13	22	ns
${ }^{\text {t }}$ LZ		18	27		15	23		18	27	ns
Test Conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C , page 2-174)										
tPHL		30	44		26	39		30	44	ns
tPLH		30	44		26	39		30	44	ns
tPHL		27	38		23	34		27	38	ns
tpZH		20	29		18	24		22	27	ns
tPZL		31	45		27	40		30	45	ns
tPHZ		18	26		14	20		19	26	ns
tPLZ		22	32		18	27		22	32	ns

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS devices only.

LOGIC DIAGRAM

FEATURES

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 512 Words of n-Bits
- For Use as:

Scratch-Pad Memory

Buffer Storage Between Processors
Bit Storage in Fast Multiplication Designs

- 3-State Outputs

DESCRIPTION

The LS670 and MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either writein or retrieve data. This permits simultaneous writing into one location and reading from another word location.
Four data inputs are available which are used to supply the 4 -bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in
its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the writeenable input, GW, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G_{R}, is high, the data outputs are inhibited and go into the highimpedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.
This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

LOGIC

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WRITE INPUTS		WORD				
W_{B}	W_{A}	$\mathrm{G} W$	0	1	2	3
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}	Q_{0}
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}
H	L	L	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}
H	H	L	Q_{0}	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$
X	X	H	Q_{0}	Q_{0}	Q_{0}	Q_{0}

READ FUNCTION TABLE (SEE NOTES A AND D)

READ INPUTS			OUTPUTS			
R_{B}	$\mathbf{R}_{\text {A }}$	$\mathbf{G}_{\mathbf{R}}$	Q1	Q2	Q3	Q4
L	L	L	W0B1	WOB2	W0B3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	Z	Z	Z	Z

NỌTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $Q_{0}=$ the level of Q before the indicated input conditions were established.
D. WOB1 $=$ The first bit of word 0 , etc.

FUNCTIONAL BLOCK DIAGRAM

Recommended Operating Conditions

			LS/54L			LS/74		
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\text {I }} \mathrm{OH}$				-1			-2.6	mA
Low-level output current, IOL				4			8	mA
Width of write-enable or read-enable pulse, t_{w}		25			25			ns
Setup times, high- or low-level data (see Figure 2)	Data input with respect to write enable, $t_{\text {setup }}(D)$	10			10			ns
	Write select with respect to write enable, $t_{\text {setup }}(W)$	15			15			ns
Hold times, high- or low-level data	Data input with respect to write enable, thold(D)	15			15			ns
(see Note 2 and Figure 2)	Write select with respect to write enable, thold(W)	5			5			ns
Latch time for new data, tlatch (see Note 3)		25			25			ns
Operating free-air temparature range, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES 1. Voltage values are with respect to network ground terminal.
2. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, $t_{\text {setup }}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

4-By-4 Register Files with 3-State Outputs

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions ${ }^{\dagger}$			9LS/54LS			9LS/74LS			Unit			
		Min.	Typ ${ }^{\ddagger}$	Max.	Min.	Typ ${ }^{\ddagger}$	Max.							
$\mathrm{V}_{\text {IH }}$	High-level input voltage							2	-		2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
VOH	High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max & \end{array}$		$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.4					V			
				$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$				2.4	3.1					
V_{OL}	Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, \quad V_{I H}=2 V \\ V_{I L}=V_{I L} \max \end{array}$		${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{I}^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
${ }^{1} \mathrm{OZH}$	Off-state output currenț, high-level voltage applied	$V_{C C}=M A X$,	$V_{1 H}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$			
IOZL	Off-state output current, low-level voltage applied	$V_{C C}=M A X$,	$V_{1 H}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$			
11	Input current at maximum input voltage	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=7 V \end{aligned}$	Any, D, R, or W				0.1			0.1	mA			
			G_{W}				0.2			0.2				
			G_{R}				0.3			0.3				
11 H	High-level input current	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{1}=2.7 \mathrm{~V} \end{aligned}$	Any D, R,				20			20	$\mu \mathrm{A}$			
			G_{W}				40			40				
			G_{R}				60			60				
			Any D, R, or W				-0.4			-0.4				
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	G_{W}				-0.8			-0.8	mA			
			G_{R}				-1.2			-1.2				
Ios	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX			-30		-130	-30		-130	mA			
ICC	Supply current	$V_{C C}=M A X$,	See Note 4			30	50		30	50	mA			

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time.
NOTE 4: Maximum I CC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameter	From (Input)	To (Output)	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	Min.	Тур.	Max.	Min.	Typ.	Max.	
Test Conditions: $C_{L}=15 p F, R_{L}=2.0 k \Omega$ (See Figs. 1, 2, 3 on pages 2-172 and 2-173 and Fig. A on page 2-174)												
${ }^{\text {t PLH }}$	Read	Any Q		26	44		23	40		26	45	
${ }^{\text {P PHL }}$	Select			28	49		25	45		28	50	ns
$t_{\text {PLH }}$	Write enable	Any Q		30	49		26	45		30	50	ns
tPHL				31	54		28	50		31	55	
${ }^{t} \mathrm{PLH}$	Data	Any Q		28	49		25	45		28	50	
${ }^{\text {t PHL }}$				26	44		23	40		26	45	,

Test Conditions: $C_{L}=5 p F, R_{L}=2.0 k \Omega$ (See Figs. 1, 2, 3 on pages 2-172 and 2-173 and Fig. C on page 2-174)

${ }^{t} \mathrm{ZH}$	Read enable	Any Q	18	39	15	35	18	40	ns
${ }^{t} \mathrm{ZL}$			25	44	22	40	25	45	
${ }^{\text {t }} \mathrm{HZ}$			33	54	30	50	33	55	
${ }^{t}$ LZ			19	39	16	35	19	40	

Test Conditions: $C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ (See Figs. 1, 2, 3 on pages 2-172 and 2-173 and Fig. A on page 2-174)

${ }^{\text {t PLH }}$	Read	Any 0	30	49	27	44	31	50	ns
${ }^{\text {t PHL }}$	Select		32	54	29	49	33	55	
${ }^{\text {t PLH }}$	Write enable	Any 0	34	54	30	49	35	55	ns
${ }^{\text {t P }}$ HL			35	59	32	54	36	60	
${ }^{\text {tpLH }}$	Data	Any 0	32	53	29	49	33	55	ns
${ }^{\text {t P HL }}$			30	49	27	44	31	50	

Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

FIGURE 1

NOTES: A. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the read-enable input. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the readenable input.
B. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
C. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \%, t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$.

4-By-4 Register Files with 3-State Outputs

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS (S1 AND S2 ARE CLOSED)
FIGURE 2
NOTES: A. High-level input pulses at the select and data inputs are illustrated; however, times associated with low-level pulses are measured from the same reference points.
B. When measuring delay times from a read select input, the read-enable input is low.
C. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 2 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \%, t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$.

VOLTAGE WAVEFORM 2 (S1 AND S2 ARE CLOSED)

FIGURE 3

NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with $W_{A}=R_{A}$ and $W_{B}=R_{B}$. During the test G_{R} is low.
B. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}, Z_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \%, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$.

FIGURE A - FOR TOTEM-POLE OUTPUTS

LOAD CIRCUIT

VOLTAGE WAVEFORMS

FIGURE B - FOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUIT

FIGURE C - FOR THREE-STATE OUTPUTS

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N3064.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
E. All input pulses are supplied by generators having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{out}} \approx 50 \Omega$, and $t_{w}=100 \mathrm{~ns}$.

HIGH-PERFORMANCE LOW-POWER SCHOTTKY

Page
25LS14 8-bit serial/parallel two's complement multiplier 3-2
25LS15 Quad serial adder/subtractor 3-6
25LS22 8-bit serial/parallel register with sign extender. 3-10
25LS23 8-bit shift/storage register with synchronous clear 3-15
25LS122 Single retriggerable monostable multivibrator with clear 3-18
25LS123 Dual retriggerable monostable multivibrator with clear 3-18
25LS138 3-to-8 line decoder/demultiplexer 3-21
25LS139 Dual 2-to-4 line decoder/demultiplexer 3-21
25LS151 8-to-1 line multiplexer, compl. outputs 3-24
25LS153 Dual 4 to 1 line multiplexer 3-26
25LS157 Quad 2-to-1 line multiplexer $3-28$
25LS158 LS157, inverting 3-28
25LS160 BCD decade counter, asynchronous clear 3.30
25LS161 4-bit binary counter, asynchronous clear 3-30
25LS162 BCD decade counter, synchronous clear 3-30
25LS163 4-bit binary counter, synchronous clear 3-30
25LS170 4×4 register file with open collectors 3-38
25LS174 Hex D-type flip-flop with clear 3-42
25LS175 Quad D-type flip-flop with clear 3-42
25LS181 4-bit arithmetic logic unit 3-44
25LS190 BCD decade up/down counter, synchronous 3-50
25 LS191 4-bit binary up/down counter, synchronous 3-50
25LS192 BCD decade up/down counter, synchronous 3-58
25LS193 4-bit binary up/down counter, synchronous 3-58
25LS194A 4-bit universal shift register 3-66
25LS195A 4-bit parallel-access shift register 3-66
25LS251 8-to-1 line multiplexer with tri-state output 3-73
25LS253 Dual 4-to-1 line data selectors/multiplexers with tri-state output 3-75
25 LS257 Quad 2-to-1 line multiplexer with tri-state output. 3-79
25LS258 Quad 2-to-1 line multiplexer with tri-state output. 3-79
25LS299 8-bit universal shift/storage register 3-83
25LS670 4×4 register files with tri-state outputs 3-86

FEATURES

- Two's Complement Multiplication Without Correction
- Magnitude Only Multiplication
- Cascadable for any Number of Bits
- 8-Bit Parallel Multiplicand Data Input
- Serial Multiplier Data Input
- Serial Data Output for Multiplication Product
- 25 MHz Minimum Clock Frequency
- 100\% Reliability Assurance Testing in Compliance With MIL-STD-883

FUNCTIONAL DESCRIPTION

The 25 LS14 is an 8 -bit by 1 -bit sequential logic element that performs digital multiplication of two numbers represented in two's complement form to produce a two's complement product without correction by using Booth's algorithm internally. The device accepts an 8 -bit multiplicand (X input) and stores this data in eight internal latches. The X latches are controlled via the clear input. When the clear input is LOW, all internal flip-flops are cleared and the X latches are opened to accept new multiplicand data. When the clear input is HIGH, the latches are closed and are insensitive to X input changes.
The multiplier word data is passed by the Y input in a serial bit stream-least significant bit first. The product is clocked out the S output least significant bit first.

The multiplication of an m-bit multiplicand by an n-bit multiplier results in an $m+n$ bit product. The 25LS14 must be clocked for $m+n$ clock cycles to produce this two's complement product. Likewise, the n-bit multiplier (Y -input) sign bit data must be extended for the remaining m -bits to complete the multiplication cycle.

The device also contains a K input so that devices can be cascaded for longer length X words. The sum (S) output of one device is connected to the K input of the succeeding device when cascading. Likewise, a mode input (M) is used to indicate which device contains the most significant bit. The mode input is wired HIGH or LOW depending on the position of the 8 -bit slice in the total X word length.

LOGIC DIAGRAM

Recommended Operating Conditions

	Military			Commercial			Units
	Min.	Nom	Max.	Min.	Nom.	Max.	
Supply Voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	4.5	5	5.5	V
High-level Output Current, IOH			-1			-1	mA
Low-level Output Current, IOL		8	12		8	12	mA
Operating Free-Air Temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

8-Bit Serial/Parallel Two's
 Complement Multiplier

Electrical Characteristics Over Operating Temperature Range (Unless Otherwise Noted)

Parameters		Test Conditions (Note 1)		Military			Commercial			Units		
V_{OH}	Output HIGH Voltage			$\begin{aligned} & V_{C C}=\mathrm{MIN}_{1}, \mathrm{I}_{\mathrm{OH}}=1.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.5	3.4		2.7	3.4		V
VOL Output LOW Voltage		$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4			0.40	V		
		$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$			0.45			0.45				
VIH	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs		2.0			2.0			V	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8			0.8	V		
V_{1}	Input Clamp Voltage	$V_{\text {CC }}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2			-1.2	V		
IIL	Input LOW Current	$V_{C C}=M A X ., V_{1 N}=0.4 V$	X, M			-0.48			-0.48	mA		
			$K^{\prime} \overline{\text { CLR }}$			-1.2			-1.2			
			CP			-1.6			-1.6			
			Y			-3.2			-3.2			
$1 / \mathrm{H}$	Input HIGH Current	$V_{C C}=$ MAX., $V_{1 N}=2.7 \mathrm{~V}$	X, M			20			20	$\mu \mathrm{A}$		
			K, CLR			30			30			
			CP			40			40			
			Y			80			80			
11	Input HIGH Current	$V_{\text {CC }}=$ MAX., $V_{\text {IN }}=5.5 \mathrm{~V}$				1.0			1.0	mA		
ISC	Output Short Circuit Current (Note 4)	$V_{C C}=M A X$.		-40		-100	-40		-100	mA		
${ }^{\prime} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX .			91	155		91	155	mA		

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$

Parameter	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)						
${ }^{\text {tPLH }}$	Clock	Y		13	20	ns
${ }^{\text {t PHL }}$	Clock	Y		13	20	ns
${ }^{\text {P P HL }}$	Clear	X		17	25	ns
${ }_{\text {t }}^{\text {s }}$	Set up time	Y to Clock	32			ns
$t_{\text {h }}$	Hold time		0			ns
t_{s}	Set up time	K to Clock	18			ns
$t_{\text {h }}$	Hold time		0			ns
t_{s}	Set up time	Xi to Clear	13			ns
t_{h}	Hold time		0			ns
${ }^{\text {b }}$ pw	Clock Pulse Width	Clock Hi	15			ns
		Clock Low	15			ns
${ }^{\text {tpw }}$	Clear Pulse Width		20			ns
$\mathrm{t}_{\text {s }}$	Clear Recovery Time		18			ns
${ }^{f}$ max	Max. Clock Frequency		25	40		MHz

FUNCTION TABLE

Inputs					Internal	Output	Function	
$\overline{\text { CLR }}$	CP	K	M	$\mathbf{X}_{\mathbf{i}}$	\mathbf{Y}	\mathbf{Y}_{-1}		
-	-	L	L	-	-	-	-	Most Significant Multiplier Device
-	-	CS	H	-	-	-	-	Devices Cascaded in Multiplier String
L	-	-	-	OP	-	L	L	Load New Multiplicand and Clear Internal Sum and Carry Registers
H	-	-	-	-	-	-	-	Device Enabled
H	\uparrow	-	-	-	L	L	AR	Shift Sum Register
H	\uparrow	-	-	-	L	H	AR	Add Multiplicand to Sum Register and Shift
H	\uparrow	-	-	-	H	L	AR	Subtract Multiplicand from Sum Register and Shift
H	\uparrow	-	-	-	H	H	AR	Shift Sum Register

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
$\uparrow=$ LOW to HIGH transition
CS = Connected to S output of higher order device
$\mathrm{OP}=\mathrm{X}_{\mathrm{i}}$ latches open for new data $(\mathrm{i}=0,7$)
$A R=$ Output as required per Booth's algorithm

DEFINITION OF FUNCTIONAL TERMS

$X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}$ The eight data inputs for the multiplicand (X) data.
\mathbf{Y} The serial input for the multiplier $(\mathrm{Y}$) data-least significant bit first.

S The serial output for the product of $\mathrm{X} \cdot \mathrm{Y}$-least significant bit first.

CP Clock. The buffered common clock input for the serial/ parallel multiplier. All functions occur on the LOW-toHIGH transition of the clock.

CLR Clear. The buffered common clear for all flip-flops within the device. When the clear is LOW all flip-flops are cleared. Also the buffered X-input latch enable. When the clear input is LOW, the X latches will accept new X-input data.
\mathbf{K} The sum expansion input to the serial/parallel multiplier. Allows for cascading devices.
M The mode control input for the most significant bit of the multiplier It is used in conjunction with cacoading to determine the most significant bit.

APPLICATIONS

FEATURES

- Four Independent Adder/Subtractors
- Use with Two's Complement Arithmetic
- Magnitude Only Addition/Subtraction
- Advanced Low-Power Schottky Processing
- 100\% Reliability Assurance Testing in Compliance With MIL-STD-883

DESCRIPTION

The 25LS15 is a serial/parallel two's complement adder/ subtractor designed for use in association with the 25 LS14 serial/parallel two's complement multiplier. This device can also be used for magnitude only addition or subtraction.

Four independent adder/subtractors are provided with common clock and clear inputs. The add function is A plus B and the subtract function is A minus B. The clear function sets the internal carry function to logic one in subtract mode. This least significant plus one is self propagating in the subtract mode as long as zeroes are applied at the LSB's.

Note: Pin 1 is marked for orientation

The 25LS15 is particularly useful for recursive or nonrecursive digital filtering or butterfly networks in fast fourier transforms.

LOGIC DIAGRAM

(One of Four Similar Functions)

Recommended Operating Conditions

	Military			Commercial			Units
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply Voltage VCC	4.5	5	5.5	4.75	5.0	5.25	V
High-Level Output Current IOH			-440			-440	$\mu \mathrm{~A}$
Low Level Output Current IOL			8			8	mA
Operating Free Air Temperature	-55		+125	0		+70	${ }^{\circ} \mathrm{C}$

Electrical characteristics Over Operating Temperature Range (Unless Otherwise Noted)

Parameters	Description	Test Conditions (Note 1)		Military			Commercial			Units
				Min.	Typ. (Note 2)	Max.	Min.	Typ.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-440 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.5			2.7			Volts
	Output LOW Voltage	$\mathrm{V}_{\text {CC }}=$ MIN.	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4			0.4	Volts
OL	Output LOW Volage	$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.45			0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.7			0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$				1.5			1.5	Volts
IIL (Note 3)	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 \mathrm{~V}$				-0.36			-0.36	Volts
$I_{1 H}$ (Note 3)	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				20			20	Volts
$1 /$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$				0.1			0.1	mA
ISC	Output Short Circuit Current (Note 4)	$V_{C C}=$ MAX		-30		-85	-30		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 5)	$V_{C C}=M A X$.			48	75		48	75	mA

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Input Load Current \times Input Load Factor (See Loading Rultes).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. All inputs HIGH, measured after a LOW-to-HIGH clock transition.

Switch Characteristics $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 . 0 V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameters	From (Input)	To (Output)		$+25^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)							
tPLH	Clock	F			14	22	ns
tPHL					14	22	
tPHL	Clear	F			20	30	ns
t_{s}	Set up time	A, B, S		10			ns
t_{h}	Hold time			0			
$\mathrm{t}_{\text {S }}$	Clear Recovery time			25			ns
t_{h}	Clear Hold time			0			
${ }^{\text {tpw }}$	Clock Pulse	Clock	HIGH	17			ns
	Width		LOW	17			
$t_{\text {pw }}$	Clear Pulse Width			20			ns
${ }_{\text {f MAX }}$	Max. Clock Frequency			30	40		MHz

FUNCTION TABLE

External								Inputs

[^28]
DEFINITION OF FUNCTIONAL TERMS

$A_{1}, A_{2}, A_{3}, A_{4}$ $B_{1}, B_{2}, B_{3}, B_{4}$ $S_{1}, S_{2}, S_{3}, S_{4}$
$, F_{2}, F_{3}, F_{4}$
CP Clock

CLR Clear is $A-B$. adder/subtractor. HIGH transition.

The " A " input into each adder/subtractor The " $B^{\prime \prime}$ input into each adder/subtractor The add subtract control for each adder/ subtractor. When S is LOW, the F function is $A+B$. When S is HIGH , the F function

The four independent serial outputs of the
The clock input for the device. All internal flip-flops change state on the LOW-to-

When the clear input is LOW, the four independent adder/subtractors are asynchronously reset. The sum flip-flop is always set to logic " 0 ". The carry flip-flop is set to logic " 0 " in the add mode and logic " 1 " in the subtract mode.

APPLICATIONS

The normal butterfly network associated with the CooleyTukey Fast Fourier Transform (FFT) algorithm is shown below. Here we assume A, B, C, D and W are all complex numbers such that:
$A=A_{R}+j A_{I}$
$B=B_{R}+j B_{1}$
$W=W_{R}+j W_{1}$

The outputs C and D are also complex numbers and are evaluated as:
$C=C_{R}+j C_{1}=\left(A_{R}+B_{R} W_{R}-B_{1} W_{1}\right)+j\left(A_{1}+B_{R} W_{1}+B_{1} W_{R}\right)$
$D=C_{R}+j D_{1}=\left(A_{R}-B_{R} W_{R}+B_{1} W_{1}\right)+J\left(A_{1}-B_{R} W_{1}-B_{1} W_{R}\right)$
The four multiplications can be implemented using four 25LS14 serial-parallel multipliers (the appropriate number of bits must, of course, be used). The additions and the subtractions are implemented using the 25LS15 quad serial adder/subtractors. This diagram depicts only the basic data flow; binary weighting of the numbers, rounding, truncation, etc. must be handled as required by the individual design parameters.

FAST FOURIER TRANSFORM (FFT) BUTTERFLY

An FFT butterfly connection for complex arithmetic inputs and outputs.

FEATURES

- Three-State Outputs
- Multiplexed Serial Data Input
- Sign Extend Function
- Advanced Low-Power Schottky Processing
- 100\% Reliability Assurance Testing in Compliance With MIL-STD-883

DESCRIPTION

The 25LS22 is an 8-bit Serial/Parallel register with 3state outputs. Data may also be loaded in a serial manner from inputs DA_{A} or DB_{B} under control of a multiplexer select input A register enable function also provides parallel load, shift and hold functions.
The 25LS22 has a sign extend function which is specifically designed for use with the 25LS14 eight by one serial/parallel two's complement multiplier. Typical shift frequency is 50 MHz . The 25 LS 22 is packaged in a standard 20-pin package.

LOGIC DIAGRAM

Recommended Operating Conditions

		Military			Commercial			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply Voltage $\mathrm{V}_{\text {CC }}$		4.5	5.0	5.5	4.7 .5	5.0	5.25	V
High Level Output Current ${ }^{\text {I }} \mathrm{OH}$	Q_{0}			-0.44			-0.44	mA
	DY_{Y}			-1.0			-2.6	
Low Level Output Current IOL			4	8		4	8	mA
Operating Free Air Temperature		-55		+125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Temp. Range (Unless Otherwise Noted)

	Description	Test Conditions (Note 1)			Military			Commercial			Unit
					Min.	Typ. (2)	Max.	Min.	Typ.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{Q}_{0}, \mathrm{I}^{\prime} \mathrm{OH}=-440 \mu \mathrm{~A}$		2.5			2.7			V
			$D Y_{i},{ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$		2.4			2.4			
			$\mathrm{DY}_{\mathrm{i}}, \mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$		2.4			2.4			
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=\text { MIN. } \\ & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \end{aligned}$		$1 \mathrm{OL}=4.0 \mathrm{~mA}$			0.4			0.4	V
				${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$			0.45			0.45	
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			2.0			V
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.7			0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.5			-1.5	V
IIL (Note 3)	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 V$		SE			-1.08			-1.08	mA
				S			-0.72			-0.72	
				Others			-0.36			-0.36	
IIH (Note 3)	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V} \\ & \text { (Except } D Y_{i} \text {) } \end{aligned}$		$\overline{\mathrm{SE}}$			60			60	$\mu \mathrm{A}$
				S			40			40	
				Others			20			20	
11	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., V_{I N}=5.5 \mathrm{~V} \\ & \text { (Except } D Y_{i} \text {) } \end{aligned}$		SE			0.3			0.3	mA
				S			0.2			0.2	
				Others			0.1			0.1	
${ }^{1} 0$	Off State (High Impedance) Output Current (DY ${ }_{i}$)	$V_{C C}=$ MAX.		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-100			-100	
${ }^{\text {I SC }}$	Output Short Circuit Current (Note 4)	$V_{C C}=$ MAX.			-30		-85	-30		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX				40	65		40	65	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Unit Load Current \times Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameters	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			Units
		Min.	Typ.	Max.		

Test Conditions: $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0 p F}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (see Fig. \mathbf{C} on page 2-174)

tPLH	Clock	DY ${ }_{i}$	16.5	24	ns
tPHL			18	26	
tPHL	Clear	DY ${ }_{i}$	23	30	ns
tPLH	Clock	Q_{0}	16.5	24	ns
${ }^{\text {tPHL }}$			18	26	
tPHL	Clear	Q_{0}	23	30	ns

Test Conditions: $C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=\mathbf{2 k} \Omega$ (see Fig. C on page 2-174)

FỮ̃CTIỮ TÁBLE

Mode	INPUTS							OUTPUTS								
	Clear	Register Enable	Serial/ Parallel	Sign Extend	Mux Select	$\overline{\mathrm{OE}}$ *	Clock	DY7	DY 6	DY5	DY4	DY 3	DY 2	DY 1	DY0	O_{0}
Clear	L	X	x	x	X	L	x	L	L	L	L	L	L	L	L	L
	L	X	X	X	X	H	X	Z	Z	Z	Z	Z	Z	Z	Z	L
Parallel Load	H	L	L	X	X	X	\uparrow	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	D_{0}
Shift Right	H	L	H	H	L	L	\uparrow	$\mathrm{D}_{\text {A }}$	$\mathrm{Y}_{7 n}$	$Y_{6 n}$	$Y_{5 n}$	$\mathrm{Y}_{4} \mathrm{n}$	$Y_{3 n}$	$Y_{2 n}$	Y 1 n	$Y_{1 n}$
	H	L	H	H	H	L	\uparrow	D_{B}	$Y 7 n$	$Y_{6 n}$	$\mathrm{Y}_{5} \mathrm{n}$	$Y_{4 n}$	$\mathrm{Y}_{3} \mathrm{n}$	$Y_{2 n}$	$Y_{1 n}$	$Y_{1 n}$
Sign Extend	H	L	H	L	X	L	\uparrow	$\mathrm{Y}_{7 n}$	$\mathrm{Y}_{7 \mathrm{n}}$	$\mathrm{Y}_{6 n}$	$\mathrm{Y}_{5} \mathrm{n}$	$\mathrm{Y}_{4 n}$	$\mathrm{Y}_{3 n}$	$Y_{2 n}$	$Y_{1 n}$	$Y_{1 n}$
Hold	H	H	X	X	X	L	\uparrow	NC								

$L=L O W$
$H=H I G H$
$\uparrow=$ Clock LOW-to-HIGH Transition
NC= No Change
$X=$ Don't Care
$Z=$ High-Impedance Output State
*When the OE input is HIGH, all input/output terminals are at the high-impedance state; sequential operation or clearing of the register is not affected.
$D_{7}, D_{6} \ldots D_{0}=$ the level of the steady-state input at the respective $D Y_{n}$ terminal is loaded into the flip-flop while the flip-flop outputs (except $\left.Q_{0}\right)$ are isolated from the $D Y_{n}$ terminal.
$D_{A}, D_{B}=$ the level of the steady state inputs to the serial multiplexer input.
$Y_{7 n}, Y_{6 n} \ldots Y_{0 n}=$ the level of the respective Q_{n} flip-flop prior to the last Clock LOW-to-HIGH transition.

DEFINITION OF FUNCTIONAL TERMS

DY $\mathbf{i}_{\text {i }} \quad$ The multiplexed parallel input/output port to the device. Data may be parallel loaded into the register or data can be read in parallel from the register on these pins. These outputs can be forced to the high-impedance state, $\mathrm{i}=0$ through 7 .
$\mathbf{Q}_{\mathbf{0}} \quad$ The continuous output from the Q_{0} flip-flop of the register. This output is used for serial shifting.
$\overline{\mathbf{R E}} \quad$ Register Enable. When $\overline{\mathrm{RE}}$ is LOW, the register functions are enabled. When $\overline{\mathrm{RE}}$ is HIGH, the register functions (parallel load, shift right and sign extended) are inhibited.
S/P Serial/Parallel. When S/P is LOW, the register can by synchronously parallel loaded. This input forces the register output buffers to the high-impedance state independent of the $\overline{\mathrm{OE}}$ input. When S / P is HIGH, the register contents are shifted right on the clock LOW-to-HIGH transition.
$\overline{\mathbf{S E}} \quad$ Sign Extend. When the $\overline{\mathrm{SE}}$ input is LOW, the contents of the Q_{7} flip-flop will be repeated in the O_{7} flip-flop as the register is shifted right. When $\overline{\mathrm{SE}}$ is HIGH, the two-input multiplexer (D_{A} and D_{B}) is enabled to enter data during the serial shift right. The Q_{7} flip-flop (DY 7) is normally considered the MSB of the register for arithmetic definitions.
$\mathbf{D}_{\mathbf{A}}, \mathbf{D}_{\mathbf{B}}$ The serial inputs to the device.
S Multiplexer Select. When S is LOW, the D_{A} serial input is selected. When S is HIGH, the D_{B} serial input is selected.
CLR Clear. The asynchronous clear to the register. When the clear is LOW, the outputs of the flipflops are set LOW independent of all other inputs. When the clear is HIGH, the register will perform the selected function.

CP Clock. The clock pulse for the register. Register operations occur on the LOW-to-HIGH transition of the clock pulse.
$\overline{O E}$
Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH, the eight $D Y_{i}$ outputs are in the high-impedance state. When $\overline{O E}$ is LOW, data in the eight flip-flops will be present at the register parallel outputs unless S / P is LOW.

LOADING RULES (In Unit Loads)

Input/ Output	Pin No.'s	LOW Input Unit Load	Fan-Out		
			Output	Output LOW	
			HIGH	4 mA	8 mA
$\overline{\mathrm{RE}}$	1	1	-	-	-
S/P	2	1	-	-	-
DA	3	1	-	-	-
DY_{7}	4	0.3	50/130	11	22
DY5	5	0.3	50/130	11	22
DY_{3}	6	0.3	50/130	11	22
DY 1	7	0.3	50/130	11	22
$\overline{\mathrm{OE}}$	8	. 1	-	-	-
CLR	9	1	-	-	-
GND	10	-	-	-	-
CP	11	1	-	-	-
Q_{0}	12	-	22	11	22
DY0	13	0.3	50/130	11	22
DY_{2}	14	0.3	50/130	11	22
DY4	15	0.3	50/130	11	22
DY_{6}	16	0.3	50/130	11	22
D_{B}	17	1	-	-	-
$\overline{\mathrm{SE}}$	18	3	-	-	-
S	19	2	-	-	-
V_{CC}	20	-	-	-	-

[^29]

SYSTEM OPERATION	$\begin{gathered} \text { 25LS22 } \\ \text { UPPER BYTE } \end{gathered}$				$\begin{gathered} \text { 25LS22 } \\ \text { LOWER BYTE } \end{gathered}$				FUNCTION
	SE	S/P	RE	OE	SE	S/P	RE	OE	Description
Load lower byte and extend lower byte sign to upper byte	H	H	L	X	X	L	L	X	Load from Bus
	L	H	L	H	X	X	H	H	7 clock cycles to extend sign
Load upper by te and extend upper byte sign while shifting value to lower byte position	X	L	L	X	X	X	X	X	Load from Bus
	H	H	L	H	H	H	L	H	8 clock cycles to extend upper byte sign and shift upper byte into lower byte position
Read 16-bit word to Bus	X	X	X	L	X	X	x	L	Unload

Two 25LS22 8-bit registers can be used to perform the sign extend associated with two's complement 8 -bit bytes for arithmetic operations in a 16-bit machine. If the upper byte value is to be used, it is shifted to the lower bit positions and its sign is extended. If the lower byte value is to be used, it is held in place while the sign is extended downward from the MSB position of the upper byte.

SET-UP, HOLD, AND RELEASE TIMES

Notes: 1. Diagram shown for HIGH data only. Output
2. Cross-hatched area is don't care condition. transition may be opposite sense.

FEATURES

- Synchronous Clear
- Three-State Outputs
- Common Input/Output Pins
- Advanced Low-Power Schottky Processing
- 100\% Reliability Assurance Testing in Compliance With MIL-STD-883

DESCRIPTION

The 25LS23 is an 8 -bit universal shift/storage register with 3 -state outputs. The function is similar to the 25LS299 with the exception of a synchronous clear function. Parallel load inputs and register outputs are multiplexed to allow the use of a 20 -pin package. Separate continuous outputs are also provided for flip-flops A and H.

Four modes of operation are possible-Hold (store), Shiftleft, Shift-right and Load Data. The 25LS23 has a typical shift frequency of 50 MHz . The 25 LS 23 is packaged in a standard 20 -pin package.

LOGIC DIAGRAM

Recommended Operating Conditions

Electrical Characteristics Over Operating Temperature Range (Unless Otherwise Noted)

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Unit Load Current \times Input Load Factor (see Loading Rules).
4. Not more than one output shouid be shorted at a time. Duration of the short circuit test should not exceed one second.
5. ICC-measured with clock input HIGH and output controls HIGH.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{rr}}=5.0 \mathrm{~V}$)

Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

TRUTH TABLE

Function		INPUTS								OUTPUTS		INPUTS/OUTPUTS							
		$S_{\text {R }}$	S_{L}	CLEAR	CLOCK	S_{0}	S_{1}	G_{1}	G_{2}	Q_{0}	Q_{7}	DY0	DY 1	DY 2	DY 3	DY4	DY5	DY 6	DY_{7}
Clear		X	X	L	\uparrow	(No		L	L	L	L	L	L	L	L	L	L	L	L
Output Control		x	x	x	x	x	x	H	L	NC	NC	Z	z	z	z	z	Z	2	Z
		x	x	x	x	x	x	L	H	NC	NC	Z	Z	Z	z	z	Z	Z	z
		X	X	\times	x	X	X	H	H	NC	NC	Z	Z	Z	Z	Z	Z	Z	Z
MODE	Hold	x	x	H	x	L	L	L	L	NC									
	Load (Note 2)	X	x	H	\uparrow	H	H	L	L	A	H	A	B	C	D	E	F	G	H
	Shift Right	L	x	H	\uparrow	H	L	L	L	L	DY 6	L	DY_{0}	DY 1	DY_{2}	DY_{3}	DY_{4}	DY_{5}	DY_{6}
	Shift Right	H	X	H	\uparrow	H	L	L	L	H	DY_{6}	H	DY_{0}	DY ${ }_{1}$	DY_{2}	DY_{3}	DY_{4}	DY 5	DY_{6}
	Shift Left	x	L	H	\uparrow	L	H	L	L	DY 1	L	DY 1	DY_{2}	DY_{3}	DY4	DY 5	DY_{6}	DY_{7}	L
	Shift Left	x	H	H	\uparrow	L	H	L	L	DY1	H	DY 1	DY_{2}	DY_{3}	DY4	DY 5	DY_{6}	DY_{7}	H

$L=$ LOW	$Z=$ High Impedance
$H=$ HIGH	$X=$ Don't Care

$\uparrow=$ Transition LOW-to-HIGH
$N C=$ No Change

Notes: 1. Either LOW to observe outputs. 2. In this mode $D Y_{i}$ are inputs.

DEFINITION OF FUNCTIONAL TERMS

S_{R}	Shift right data input to Q_{7}	$\dot{\bar{G}}_{1}, \overline{\mathrm{G}}_{2}$	Active LOW input to control three-state out-
S_{L}	Shift left data input to Q_{0}		put in active LOW AND configuration.
Clear	Active LOW synchronous input forcing the O_{0} through Q_{7} register to see LOW conditions, visable only if outputs are enabled.	$\mathrm{O}_{0}, \mathrm{O}_{7}$	The only two direct outputs; used to cascade shift operations
Clock	A LOW-to-HIGH transition will result in the register changing state to next state as described by mode and input data condition.	$\mathrm{DY}_{0}-\mathrm{DY}_{7}$	Input/Output line dependent on mode and output control. Input only with mode select
$\mathbf{S}_{\mathbf{0}}, \mathrm{S}_{\mathbf{1}}$	Mode selection control lines used to control input (output during load) conditions		LOAD. Output in all other modes but subject to output select $\left(\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}\right)$.

APPLICATION

FEATURES

- Retriggerable for Very Long Output Pulses, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Low Power Dissipation:

25LS122 . . 30 mW Typical
25LS123 . . 60 mW Typical

- Compensated for VCC and Temperature Variations
- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- 25 LS 122 Has Internal $10 \mathrm{k} \Omega$ Timing Resistor
- Diode-Clamped Inputs
- Compatible for Use with TTL or DTL
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

The 25LS122 and 25LS123 multivibrators feature d-c triggering from gated low-level-active (A) and high-level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C. Enough Schmitt hysteresis is provided to ensure jitter-free triggering from the B inputs with transition rates as slow as 1 volt per second. Figure 1 illustrates triggering the one-shot with the high-level-active (B) inputs.

25LS123 FUNCTION TABLE (SEE NOTE 1)

INPUTS		OUTPUTS		
CLEAR	A	B	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	L
H	\downarrow	H	\square	L
\uparrow	L	H	Γ	L

NOTES: 1. $H=$ high level (steady state), $L=$ low level (steady state), $\uparrow=$ transition from low to high level, $\downarrow=$ transition from high to low level, $H=$ one high-level pulse, $L=$ one low-level pulse, $X=$ irrelevant (any input, including transitions).
2. To use the internal timing resistor of 25 LS 122 , connect $R_{\text {int }}$ to $V_{C C}$.
3. An external timing capacitor may be connected between $C_{\text {ext }}$ and $R_{\text {ext }} / C_{\text {ext }}$ (positive).
4. For accurate repeatable pulse widths, connect an external resistor between $R_{e x t} / C_{e x t}$ and $V_{C C}$ with $R_{\text {int }}$ open circuited.
5. To obtain variable pulse widths, connect external variable resistance between $R_{\text {int }}$ or $R_{\text {ext }} / C_{e x t}$ and $V_{C C}$.

OUTPUT PULSE CONTROL USING RETRIGGER PULSE

\dagger These values of resistance exceed the maximum recommended for use over the full temperature range of the $9 \mathrm{LS} / 54 \mathrm{LS}$ circuits.

FIGURE 2

capacitor and resistor. For $\mathrm{C}_{\mathrm{ext}}>1000 \mathrm{pF}$, the output pulse width (t_{w}) is defined as:

$$
\mathrm{t}_{\mathrm{w}}=0.4 \cdot \mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{ext}}
$$

where
R_{T} is in $\mathrm{k} \Omega$ (either internal or external timing resistor), $\mathrm{C}_{\text {ext }}$ is in pF ,
t_{w} is in ns.
For pulse widths when $\mathrm{C}_{\mathrm{ext}} \leqslant 1000 \mathrm{pF}$, see Figure 2.

Recommended Operating Conditions

		Military			Commercial			Unit
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$				-440			-440	$\mu \mathrm{A}$
Low-level output current, ${ }^{\text {IOL }}$		4		8	4		8	mA
	A or B inputs high	40			40			
Pulse width, t_{w}	A or. B inputs low	40			40			ns
	Clear low	40			40			
External timing resistance, $\mathrm{R}_{\text {ext }}$		5		225	5		360	$k \Omega$
External capacitance, $\mathrm{C}_{\text {ext }}$			restric	tion	N	restric	tion	
Wiring capacitance at $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ terminal				50			50	pF
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions ${ }^{\dagger}$			Military			Commercial			Unit			
		Min.	Typ. ${ }^{\ddagger}$	Max.	Min.	Typ. ${ }^{\ddagger}$	Max.							
$\mathrm{V}_{\text {IH }}$	High-level input voltage							2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
V_{1}	Input clamp voltage	$V_{C C}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V} \\ & \mathrm{IOH}=-440 \end{aligned}$		2.5	3.5		2.7	3.5		V			
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{OLL}=8 \mathrm{~mA}$		0.35	0.45		0.35	0.45				
11	Input current at maximum input voltage	$V_{C C}=$ MAX,	$V_{1}=7 \mathrm{~V}$				0.1			0.1	mA			
I/H	High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
IOS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=\mathrm{MAX}$			-15		-85	-15		-85	mA			
${ }^{\text {I CC }}$	Supply current (quiescent or triggered)	$V_{C C}=\mathrm{MAX}$,	See Note 2	25LS122		6	11		6	11	mA			
				25LS123		12	20		12	20				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\oint Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, $\mathrm{I}_{\mathrm{C}} \mathrm{is}$ measured after a momentary ground, then 4.5 V , is applied to clock.

Switching Characteristics $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}$ Over Recommended Free-Air Temperature Range.

Parameters	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			
			Min.	Typ.	Max.	

Test Conaitions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \mathrm{C}_{\text {ext }}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{ext}}=5.0 \mathrm{k} \Omega$
(See Fig. 3, page 3-19, and Fig. A, page 2-174)

${ }^{\text {P PLH }}$	A	Q		20	30	ns
	B			26	38	
${ }^{\text {tPHL }}$	A	$\overline{\mathbf{Q}}$		28	40	ns
	B			35	48	
${ }^{\text {t }}$ PHL	Clear	Q		16	22	ns
${ }^{\text {t PLH }}$		$\overline{\mathrm{Q}}$		25	40	ns
${ }^{\mathrm{t}} \mathrm{w}^{\mathrm{O}}(\mathrm{min})$	A or B	Q		116	200	ns
${ }^{*} \mathrm{t}_{\mathrm{w}}$ Q	A or B	Q	4.0	4.5	5.0	ns

[^30]
FEATURES

- 25LS138: 3-Line-to-8-Line Decoder

1-of-8 Demultiplexer

- 25LS139: Dual 2-Line-to-4-Line Decoder Dual 1-of-4 Demultiplexer
- Higher Speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

The 25LS138 decodes one-of-eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The 25LS139 comprises two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

These circuits are designed to be used in high-performance memory-decoding and data-routing applications requiring very short delay times.

PIN-OUT DIAGRAMS

25LS138
FUNCTION TABLE

INPUTS					OUTPUTS							
ENABLE		SELECT										
G1	G2*	C	B	A	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y 7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	\times	X	X	\times	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$H=$ high level, $L=$ low level, $X=$ don't care

25LS139

Recommended Operating Conditions

		Military			mmerc		
	Min	Nom	Max	Min	Nom	Max	Unit
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-440			-440	$\mu \mathrm{A}$
Low-level output current, IOL	4		8	4		8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2			V
$V_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , & I_{\mathrm{OH}}=-440 \mu \end{array}$		2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.40	V
	$V_{\text {IL }}=V_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.3	0.45		0.35	0.45	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$i_{\text {IH }}$	$\mathrm{V}_{\text {CC }}=\mathrm{IVIAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36			-0.36	mA
los ${ }^{\text {+ }}$	$V_{C C}=$ MAX		-15		-85	-15		-85	mA
ICC	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ Outputs enabled and open	25LS138		6.3	10		6.3	10	mA
		25LS139		6.8	11		6.8	11	

*For conditions shown as MIN or MA.X, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

25LS138
Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Levels of Delay	From (input)	To (output)	$+25^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (See Fig. A, page 2-174)

${ }^{t}$ PLH	2	Binary Select	Any	10	15	ns
${ }^{\text {P PLH }}$				14	20	ns
tPLH	3			15	23	ns
$t_{\text {PLH }}$				18	27	ns
$t_{\text {PLH }}$	2	Enable	Any	10	15	ns
${ }_{\text {t PLH }}$				15	23	ns
$\mathrm{t}_{\text {PLH }}$	3			12	18	ns
${ }^{\text {P PLH }}$				18	27	ns

25LS139

Switching Characteristics, $\mathbf{V}_{\mathrm{cC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$

Parameters	Levels of Delay	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \dot{\Omega}$ (See Fig. A, page 2-174)							
$t_{\text {PLH }}$	2	Binary Select	Any		10	15	ns
$\mathrm{t}_{\mathrm{PLH}}$					12	18	ns
tPLH	3				13	20	ns
${ }^{\text {t PLH }}$					14	21	ns
t PLH	2	Enable	Any		9	12	ns
${ }^{\text {t }}$ PLH					11	16	ns

FEATURES

- Select one of eight data sources
- Perform parallel-to-serial conversion
- 25LS151 has complementary outputs
- 25LS151 has strobe input
- Higher Speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources. The 25LS151 has a strobe input which must be at a low logic level to enable the device. A high level at the strobe forces the W output high, and the Y output low.
The 25LS151 features complementary W and Y outputs.

PIN-OUT DIAGRAMS
25LS151

25LS151
FUNCTION TABLE

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	S	\checkmark	w
X	X	X	H	L	H
L	L	L	L	DO	$\overline{\text { DO }}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\mathrm{D} 3}$
H	L	L	L	D4	$\overline{04}$
H	L	H	L	D5	$\overline{\square 5}$
H	H	L	L	D6	$\overline{\mathrm{D} 6}$
H	H	H	L	D7	$\overline{\mathrm{D7}}$

$H=$ high level, $L=$ low level, $X=$ don't care D0, D1 . . D7 = the level of the D respective input

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{1 \mathrm{H}}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
VOH	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max & I_{O H}=-4 \\ \hline \end{array}$		2.5	3.4		2.7	3.4		V
Vol	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40			0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.3	0.45		0.35	0.45	
I_{1}	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=7 \mathrm{~V}$	 $\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
los ${ }^{+}$	$V_{C C}=$ MAX		-15		-85	-15		-85	mA
ICC	$V_{C C}=$ MAX, Outputs open All inputs at 4.5 V			6.0	10		6.0	10	mA

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	From (inpuit)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)						
${ }^{\text {t PLH }}$	A, B or C (4 levels)	Y		272	41	ns
$t_{\text {PLH }}$				20	30	
${ }^{\text {tPLH }}$	$A, B, \text { or } C$ (3 levels)	W		16	23	ns
${ }^{\text {t PLH }}$				22	32	
tPLH	Strobe	Y		22	33	ns
tPLH				18	27	
${ }^{\text {t PLH }}$	Strobe	W		13	20	ns
${ }^{\text {t PLH }}$				17	26	
${ }^{\text {t PLH }}$	Any D	Y		17	26	ns
$\mathrm{t}_{\mathrm{PLH}}$				15	23	
${ }_{\text {PPL-H }}$	Any D	W		10	15	ns
${ }^{\text {t PLH }}$				10	15	

FEATURES

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion
- Strobe (Enable) line provided for cascading (\mathbf{N} lines to n lines)
- Non-inverting
- Higher Speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to $9 \mathrm{LS} / 74 \mathrm{LS}$
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

The 25LS153 is a high speed Dual 4 -Line to 1 -Line Multiplexer with common select inputs and separate strobe (enable) inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form.

LOGIC DIAGRAM

PIN-OUT DIAGRAM

FUNCTION TABLE

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	CO	C1	C2	C3	G	Y
\times	\times	\times	x	x	\times	H	L
L	L	L	x	x	x	L	L
L	L	H	X	x	x	L	H
L	H	x	L	x	x	L	L
L	H	x	H	\times	x	L	H
H	L	x,	X	L	x	L	L
H	L	x	x	H	\times	L	H
H	H	x	x	X	L	L	L
H	H	x	X	x	H	L	H

Select inputs A and B are common to both sections.
$H=$ high level, $L=$ low level, $X=$ don't care

Recommended Operating Conditions

	Military			Commercial			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.5	V
High-level output current, I_{OH}			-440			-440	$\mu \mathrm{A}$
Low-level output current, I_{OL}	4		8	4		8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$V_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-44! \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$V_{C C}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40			0.40	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }} \max$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.3	0.45		0.35	0.45	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36			-0.36	mA
lost	$V_{C C}=$ MAX		-15		-85	-15		-85	mA
ICCL $\dagger \dagger$	$V_{C C}=$ MAX			6.2	10		6.2	10	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
+Not more than one output should be shorted at a time.
$\dagger \dagger{ }^{\mathrm{I}} \mathrm{CCL}$ is measured with the outputs open and all inputs grounded.
Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\underline{L}}=15 \mathrm{pF}, \mathrm{P}_{\underline{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)						
${ }^{\text {tPLH }}$	Data	Y		7	13	ns
${ }_{\text {tPLH }}$	Data	Y		10	16	ns
$\mathrm{t}_{\text {PLH }}$	Select	Y		16	24	ns
$\mathrm{t}_{\text {PLH }}$	Select	Y		20	25	ns
${ }^{\text {P PLH }}$	Strobe	Y		13	n -,20	ns
${ }^{\text {t PLH }}$	Strobe	Y		15	20	ns

DESCRIPTION

These data selectors/multiplexers select a 4-bit word from one of two sources and present it at the four outputs. The 25LS157 presents true data; the 25LS158 presents inverted data.

FEATURES

- Higher Speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883

PIN-OUT DIAGRAMS

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*			Military			Commercial			Unit			
		Min	Typ**	Max	Min	Typ**	Max							
$\mathrm{V}_{\text {IH }}$								2			2			V
$\mathrm{V}_{\text {IL }}$							0.7			0.8	V			
V_{1}		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
V_{OH}		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-44 \end{aligned}$		2.5	3.4		2.7	3.4		V			
$\mathrm{V}_{\text {OL }}$		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V			
		$V_{\text {IL }}=$ MAX		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.3	0.45		0.35	0.45				
1	S or G input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					0.2			0.2	mA			
	A or B input						0.1			0.1	mA			
I_{IH}	S or G input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					40			40	$\mu \mathrm{A}$			
	A or B input						20			20				
$1 / 1$	S or G input	$V_{C C}=M A X, \quad V_{1}=0.4 V$					-0.8			-0.8	mA			
	A or B input						-0.4			-0.4				
lost		$V_{C C}=$ MAX			-15		-85	-15		-85	mA			
$\mathrm{ICC}^{+\dagger}$		$V_{C C}=$ MAX		25 LS157		9.7	16		9.7	16	mA			
		25LS158		4.8	8		4.8	8						

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+Not more than one output should be shorted at a time.
$\dagger \dagger$ I CC is measured with 4.5 V applied to all inputs and all outputs open.

Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$

Parameter		From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit	
		Min		Typ	Max			
Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)								
${ }^{\text {t }}$ PLH	25LS157		Data	Y_{i}		5	10	ns
${ }^{\text {P PLH }}$					7	12		
${ }^{\text {t }}$ PLH	25LS158	Data	Y_{i}		7	12	ns	
${ }^{\text {t PLH }}$					5	10		
${ }^{\text {t PLH }}$	25LS157	Strobe	Y_{i}		13	20	ns	
${ }^{\text {t PLH }}$					8	16		
$t_{\text {PLH }}$	25LS158	Strobe	Y_{i}		8	12	ns	
${ }^{\text {P PLH }}$					12	17		
${ }^{\text {t PLH }}$	25LS157	Select	Y_{i}		10	20	ns	
${ }^{\text {t PLH }}$					11	20		
$\mathrm{t}_{\mathrm{PLH}}$	25LS158	Select	Y_{i}		11	20	ns	
$\mathrm{t}_{\mathrm{PLH}}$					10	20		

FEATURES

- 4-bit synchronous counters
- Synchronously programmable
- Internal look-ahead counting
- Carry output for n-bit cascading
- Synchronous or asynchronous clear
- Advanced low-power Schottky technology
- 100% reliability assurance testing in compliance with MIL-STD-883
- Higher speed compared to 9LS/54LS and 9LS/74LS
- - 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current

DESCRIPTION

The 25LS160, 25LS161, 25 LS162 and 25LS163 synchronous, presettable counts have internal look-ahead carry and ripple carry output. for high-speed counting applications. The 25LS160 and 25LS162 are decade counters and the 25LS161 and 25LS163 are 4-bit binary counters. Counting or loading occurs on the positive transition of the clock pulse. A LOW level on the load input causes the data on the A, B, C and D inputs to be shifted to the appropriate Q outputs on the next positive clock transition.
The 25LS160 and 25LS161 feature an asynchronous clear. A LOW level at the clear input sets the Q outputs LOW regardless of the other inputs. The 25LS162 and 25LS163 have a synchronous clear. A LOW level at the clear input sets the Q outputs LOW after the next positive clock transition regardless of the enable inputs.

PIN-OUT DIAGRAM

Both count-enable inputs P and T must be HIGH to count. Count enable T is included in the ripple carry output gate for cascading connection.

LOGIC DIAGRAMS
25LS160
Synchronous Decade Counter

25LS162 synchronous decade counters are similar; however, the clear is synchronous as shown for the 25LS163 binary counters.

25LS163 SYNCHRONOUS
BINARY COUNTER

25LS161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the 25LS160 decade counters.

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

[^31]Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameters	From (Inputs)	$\begin{gathered} \text { To } \\ \text { (Outputs) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=\mathbf{2 k} \Omega$ (see Fig. A on page 2-174)

${ }^{\text {tPLH }}$	Clock	Carry		25	35	ns
${ }^{\text {tPHL }}$				20	35	
${ }^{\text {t PLH }}$	Clock (Load Input High)	Q		10	18	ns
${ }^{\text {tPHL }}$				15	20	
${ }^{\text {t PLH }}$	Clock (Load Input Low)	0		10	18	ns
${ }^{\text {P PHL }}$				14	20	
${ }^{\text {t PLH }}$	Enable T	Carry		15	20	ns
${ }^{\text {t PHL }}$				9	14	
${ }^{\text {tPHL }}$	$\begin{aligned} & \hline \text { Clear } \\ & \text { (Note 1) } \end{aligned}$	Q		14	28	ns
${ }^{t}$ pw	Pulse Width	Clock	25			ns
		Clear	20			
t_{s}	Set up time	Data A,B,C,D	20			ns
		ENABLEP	20			
		Load, Enable T	20			
		Clear (Note 2)	20			
t_{n}	Hold time	Any input	3			ns
${ }^{\text {f max }}$	Maximum Frequency		30	40		MHz

NOTES:

1. Measured from clear input on 25LS160 and 25LS161. Measured from clock input on 25LS162 and 25LS163.
2. Applies to 25LS162 and 25LS163 only.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES

25LS161, 25LS163
Illustrated below is the following sequence:

1. Clear outputs to zero
2. Preset to binary twelve
3. Count to thirteen; fourteen fifteen, zero, one, and two
4. Inhibit

FIGURE 1
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES:
A. The input pulses are supplied by a generator having the following characteristics: $\mathrm{PRR} \leqslant \mathrm{MHz}$, duty cycle $\leqslant 50 \%, \mathrm{Z}_{\mathrm{out}} \approx 50 \Omega$: $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$. Vary PRR to measure $f_{\text {max }}$.
B. Outputs Q_{d} and carry are tested at $t_{n+10} 25$ LS162, and at $t_{n}+16$ for 25 LS 163 where t_{n} is the bit time when all outputs are low.

FIGURE 2
PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The input pulses are supplied by generators having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, \mathrm{Z}_{\text {out }} \approx 50 \Omega$; $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
B. Enable P and enable T setup times are measured at $t_{n}=0$.

Synchronous 4-Bit Binary Counters

TYPICAL APPLICATION DATA

N-BIT SYNCHRONOUS COUNTERS

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The $25 L S 160$ or 25 LS162 will count in BCD and the 25 LS163 will count in binary. Virtually any count mode (modulo-N, N_{1}-to N_{2}, N_{1}-to-maximum) can be used with this fast look-ahead circuit.

FEATURES

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 1024 Words of n -Bits
- For Use as:

Scratch-Pad Memory
Buffer Storage between Processors Bit Storage in Fast Multiplication Designs

- Open-Collector Outputs with Low Maximum Off-State Current: $20 \mu \mathrm{~A}$

DESCRIPTION

The 25LS170 MSI 16 -bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either writein or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the writeenable input, GW, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the intcrinal latches. Wvitell the readenabie inpur, G_{R}, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds typical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except the read enable and write enable of the 25LS170 are buffered to lower the drive requirements to one Series 54LS/74LS standard load, respectively, input-clamp-

ing diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length.

LOGIC

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C).
READ FUNCTION TABLE (SEE NOTES A AND D)

WRITE INPUTS			WORD			
W_{B}	$\mathrm{W}_{\text {A }}$	Gw	0	1	2	3
L	L	L	$\mathrm{Q}=\mathrm{D}$	a_{0}	O_{0}	a_{0}
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	O_{0}	a_{0}
H	L	L	0_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$	0_{0}
H	H	L	0	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$
X	X	H	0_{0}	a_{0}	O_{0}	O_{0}

READ INPUTS			OUTPUTS			
R_{B}	$\mathrm{R}_{\mathbf{A}}$	G_{R}	01	02	03	04
L	L	L	WOB1	W0B2	WOB3	WOB4
L	H	L	W1B1	W1B2	W1B3	W184
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
x	x	H	H	H	H	H

NOTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant.
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $\mathrm{Q}_{0}=$ the level of Q before the indicated input conditions were established.
D. WOB1 $=$ The first bit of word 0 , etc.

FUNCTIONAL BLOCK DIAGRAM

Recommended Operating Conditions

			Military			mmerc		
		Min.	Nom.	Max.	Min.	Nom.	Max.	Unit
Supply voltage, V ${ }_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5	V
Low-level output current, I_{OL}		4		8	4		8	mA
Width of write-enable or read-enable pulse, t_{w}		25			25			ns
Setup times, high- or low-level data	Data input with respect to write enable, $\mathrm{t}_{\text {su (}}$ (D)	10			10			ns
	Write select with respect to write enable, $\mathrm{t}_{\text {su }}(\mathrm{W})$	15			15			ns
Hold times, high- or low-level data (see Note 2 and Figure 2)	Data input with respect to write enable, $t_{h}(\mathrm{D})$	15			15			ns
	Write select with respect to write enable, $t_{h}(W)$	5			5			ns
Latch time for new data, $\mathrm{t}_{\text {latch }}$ (see Note 3)		25			25			ns
Operating free-air temperature range, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 2. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, $t_{s u}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during $t_{h}(W)$ will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

Electrical Characteristics Over Recommended Operating Free-Air Temp. Range (Unless Otherwise Noted)

Parameter			Test Conditions ${ }^{\dagger}$		Military			Commercial			Unit		
			Min.	Typ \ddagger	Max.	Min.	Typ. ${ }^{\ddagger}$	Max.					
$\mathrm{V}_{\text {IH }}$ High-level input voltage							2			2			V
$V_{\text {IL }}$ Low-level input voltage							07			ก.8	V		
$V_{\text {IK }}$ Input clamp voltage			$V_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
${ }^{1} \mathrm{OH}$ High-level output current			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$			20			20	mA		
VOL Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
	Input current at maximum input voltage	Any D, R, or W		$V_{C C}=M A X, \quad V_{1}=7 V$				0.1			0.1	mA	
		G_{R} or G_{W}					0.2			0.2	mA		
$1 / \mathrm{H}$	High-level input current	Any D, R, or W	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	mA		
		G_{R} or G_{W}					40			40	mA		
IIL Low-level input current		Any D, R, or W	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 V$				-0.4			-0.4	mA		
		G_{R} or G_{W}					-0.8			-0.8	A		
ICC Supply current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 6		25	40		25	40	mA		

[^32]Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (See Fig. 1, page 3-41 and Fig. B, page 2-174)						
${ }^{\text {t PLH }}$	Read enable	Any 0		20	30	ns
${ }^{\text {tPHL }}$				20	30	
${ }^{\text {P PLH }}$	Read select	Any Q	25	40		ns
${ }^{\text {tPHL }}$				24	40	
${ }^{\text {P PLH }}$	Write enable	Any Q		30	45	ns
${ }^{\text {t PHL }}$				26	40	
${ }^{\text {P PLH }}$	Data	Any Q		30	45	ns
${ }^{\text {t PHL }}$				22	35	

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

VOLTAGE WAVEFORM 1

FIGURE 2

NOTES: A. High-level input pulses at the select and data inputs are illustrated in Figure 1; however, times associated with low-level pulses are measured from the same reference points.
B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
C. In Figure 2, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stabilized with $W_{A}=R_{A}$ and $W_{B}=R_{B}$. During the test G_{R} is low.
D. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \% \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$ for .
D. $V_{\text {ref }}=1.3 \mathrm{~V}$.

FEATURES

- Positive edge-triggered common clock
- Asynchronous common reset
- Clock-to-output delays of 14 ns
- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

The 25LS174 is a six-bit register with single-rail outputs and the 25LS175 is a four-bit register with complementary outputs. Both consist of D-type flip-flops with a buffered common clock and an asynchronous, active-Low buffered clear.

Information at the D inputs meeting the setup time requirements is transferred to the O outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

FUNCTION TABLE (EACH FLIP-FLOP)

INPUTS			OUTPUTS	
CLEAR	CLOCK	D	O	$\overline{\mathbf{Q}} \dagger$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{0}	\bar{Q}_{0}

$H=$ high level (steady state)
$\mathrm{L}=$ low level (steadv state)
$X=$ irrelevant
$t=$ transition from iow to high level
$\mathrm{Q}_{0}=$ the level of Q before the indicated steady state input conditions were established.
$t=25$ LS175 only

PIN-OUT DIAGRAMS

Recommended Operating Conditions

		Military			Commercial			Unit
		Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-440			-440	$\mu \mathrm{A}$
Low-level output current, I_{OL}		4		8	4		8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		35	0		35	MHz
Width of clock pulse, t_{w} (Low)		15			15			ns
Width of clear pulse, t_{w} (Low)		20			20			ns
Setup time	Data input $\mathrm{t}_{\text {setup }}$	10			10			ns
Setup time	Clear recovery, $\mathrm{trec}^{\text {c }}$	12			12			ns
Data hold time, ${ }_{\text {thold }}$		5			5			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

$t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the data input prior to the rising edge of the clock in order to be recognized and transferred to the output.
thold is the minimum time required for the logic level to be maintained at the data input after the rising edge of the clock in order to insure recognition.
$t_{r e c}$ is the minimum time required between the end of the clear pulse and the rising edge of the clock in order to transfer High data to the Q output.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A} \end{array}$	$\text { or } V_{I L}$	2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll} V_{C C}=M I N, & V_{\text {iH }}=2 V, \\ V_{I L}=V_{\text {IL }} \max & V_{I}=V_{\text {IH }} \text { or } V_{I L} \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40			0.40	V
				0.35	0.45			0.45	
I_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36			-0.36	mA
los^{\dagger}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-85	-15		-85	mA
${ }^{1} \mathrm{CC}^{\dagger \dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	25LS174		16	26		16	26	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger+$ With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured, after a momentary ground, then 4.5 V is applied to clock.

Switching Characteristics, $\mathbf{V}_{c c}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameter	$\begin{aligned} & \text { From } \\ & \text { (input) } \end{aligned}$	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)						
$\mathrm{f}_{\text {max }}$			35	45		MHz
$\mathrm{t}_{\text {PLH }}$ (LS175 only)	Clear	Q		19	25	ns
${ }^{\text {t }}{ }^{\text {PHL }}$	Clear	Q		20	35	ns
$\mathrm{t}_{\text {PLL }}$	Clock	Q		14	23	ns
${ }^{\text {tPHL }}$	Clock	Q		13	20	ns

FEATURES

- Provides 16 arithmetic operations
- Provides 16 logic operations
- Full look-ahead for high-speed arithmetic operation on long words
■ Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

The 25LS181 is an arithmetic logic unit (ALU)/function generator which has a complexity of 75 equivalent gates on a monolithic chip. This circuit performs 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-leve! voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the 182, full carry ahead look-ahead circuits, high-speed arithmetic operations can be performed.

If high speed is not of importance, a ripple-carry input $\left(C_{n}\right)$ and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

The 25LS181 will accommodate active-high or active-low data if the pin designations are interpreted as follows:
Subtraction is accomplished by 1 's complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is A-B-1 which requires an end-around or forced carry to provide A-B.
The 25LS181 can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality ($A=B$). The ALU should be in the subtract mode with $C_{n}=H$ when performing this comparison. The $A=B$ output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output $\left(\mathrm{C}_{\mathrm{n}}+4\right)$ can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs, $S 3, S 2, S 1, S 0$ at L, H, H, L, respectively.

INPUT $\bar{C}_{\mathbf{n}}$	OUTPUT $\overline{\mathrm{C}}_{\boldsymbol{n}+\mathbf{4}}$	ACTIVE-HIGH DATA (FIGURE 1)	ACTIVE-LOW DATA (FIGURE 2)
H	H	$\mathrm{A}<\mathrm{B}$	$\mathrm{A} \geqslant \mathrm{B}$
H	L	$\mathrm{~A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	H	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	L	$\mathrm{A}>\mathrm{B}$	$\mathrm{A} \leqslant \mathrm{B}$

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

PIN NUMBER	2	1	23	22	21	20	19	18	9	10	11	13	7	16	15	17
Active-high data (Table 1)	A_{0}	B_{0}	A_{1}	B_{1}	A_{2}	B_{2}	A_{3}	B3	F_{0}	F_{1}	F_{2}	F_{3}	\bar{C}_{n}	\bar{C}_{n+4}	X	Y
Active-low data (Table	\bar{A}_{0}	\bar{B}_{0}	\bar{A}_{1}	\bar{B}_{1}	\bar{A}_{2}	\bar{B}_{2}	\bar{A}_{3}	\bar{B}_{3}	\bar{F}_{0}	\bar{F}_{1}	F_{2}	F_{3}	C_{n}	C_{n+4}	$\overline{\text { F }}$	G

PIN-OUT DIAGRAM

ALU SIGNAL DESIGNATIONS

The 25LS181 can be used with the signal designations of either Figure 1 or Figure 2
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

FIGURE 2
FIGURE 1
(FOR TABLE 1)
(FOR TABLE 2)

TABLE 1

SELECTION$s_{3} s_{2} s_{1} s_{0}$	ACTIVE-HIGH DATA		
	$M=H$ LOGIC FUNCTIONS	$M=$ L; ARITHMETIC OPERATIONS	
		$C_{n}=H$ (no carry)	$c_{n}=L$ (no carry)
L L L L	$F=\bar{A}$	$F=A$	$F=A P L U S 1$
$L \quad L \quad L \quad H$	$F=\overline{A+B}$	$F=A+B$	$F=(A+B) P$ LUS 1
L L H L	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
L L H H	$F=0$	$F=$ MINUS 1 (2's COMPL)	$F=Z E R O$
L H L L	$F=\overline{A B}$	$F=A P L U S A B$	$F=A P L U S A \bar{B} P L U S 1$
L H L H	$F=\bar{B}$	$F=(A+B) P L U S A \bar{B}$	$F=(A+B) P$ PLUS $A \bar{B}$ PLUS 1
L H H L	$F=A ¢ B$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L H H H	$F=A B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
H L L L	$F=\bar{A}+B$	$F=A P L U S A B$	$F=A$ PLUS AB PLUS 1
H L L H	$F=\overrightarrow{A ¢ B}$	$F=A P L U S B$	$F=A$ PLUS B PLUS 1
H L H L	$F=B$	$F=(A+\bar{B}) P$ LUS $A B$	$F=(A+\bar{B})$ PLUS AB PLUS 1
H L H H	$F=A B$	$F=A B$ MINUS 1	$F=A B$
H H L L	$F=1$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H $\mathrm{H}^{-} \mathrm{L}$	$F=A+B$	$F=(A+B) P$ PLUS A	$F=(A+B)$ PLUS A PLUS 1
H H H L	$F=A+B$	$F=(A+\bar{B})$ PLUS A	$F=(A+B)$ PLUS A PLUS 1
H H H H	$F=A$	$F=A$ MINUS 1	$F=A$

TABLE 2

$\begin{aligned} & \text { SELECTION } \\ & S_{3} s_{2} s_{1} s_{0} \end{aligned}$	ACTIVE LOW DATA		
	$\begin{aligned} & M=H \\ & \text { LOGIC } \end{aligned}$ FUNCTIONS	$M=L$ A ARITHMETIC OPERATIONS	
		$c_{n}=L$ (with carry)	$C_{n}=H$ (with carry)
L L L L	F. \bar{A}	F. A MINUS 1	$F-A$
L L L H	$F \cdot \overline{A B}$	$F=A B$ MINUS 1	$F=A B$
L L H L	F $\bar{A}+B$	$F=A \bar{B}$ MINUS 1	F. $A \bar{B}$
L L H H	$F=1$	F-MINUS 1 (2's COMP)	$F=Z E R O$
L H L L	$F=\overline{A+B}$	$F-A P L U S(A+\bar{B})$	$F=A P L U S(A+B) P$ PLUS 1
L H L H	$F=\bar{B}$	$F=A B P L U S(A+\bar{B})$	$F=A B P L U S(A+\bar{B}) P$ LUS 1
L H H L	$F=\overline{A+C}$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L HHH	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+B) P$ LUS 1
H L L L	$F=\bar{A} B$	$F=A P L U S(A+B)$	$F=A P L U S(A+B) P L U S 1$
$H L L$	$F=A \oplus B$	$F=A P L U S 8$	$F=A \cdot P L U S B P$ PLUS 1
H L H L	$F=B$	$F=A \bar{B} P \operatorname{CLUS}(A+B)$	$F=A \bar{B} P \operatorname{CLUS}(A+B) P$ PLUS 1
H L H H	$F=A+B$	$F=A+B$	$F=(A+B) P L U S 1$
H H L L	$F=0$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
$\mathrm{H} H \mathrm{~L}$ H	$F=A \bar{B}$	$F=A B P$ LUS A	$F=A B$ PLUS A PLUS 1
H H H L	$F=A B$	$F=A \bar{B}$ PLUS A	$F=A \bar{B}$ PLUS A PLUS 1
H H H H	$F=A$	$F=A$	$F=A$ PLUS 1

- Each bit is shifted to the next more significant position.

Recommended Operating Conditions

	Military				Commercial			Unit
	Min	Nom	Max	Min	Nom	Max		
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, I_{OH} (All outputs except $\mathrm{A}=\mathrm{B}$)			-440			-440	$\mu \mathrm{~A}$	
Low-level output current, I_{OL}	4		8	4		8	mA	
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		Military			Commercial			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
$\mathrm{V}_{\text {IH }}$						2			2			V
$V_{\text {IL }}$						0.7			0.8	V		
V_{1}		$V_{C C}=\mathrm{MIN}, \quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V_{OH}	Any Output except $A=B$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-440 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
IOH	$\begin{array}{c\|} \hline \mathrm{A}=\mathrm{B} \\ \text { Output oniy } \end{array}$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & V_{I}=V_{I H} \text { or } V_{I L} \end{array}$				100			100	$\mu \mathrm{A}$		
V_{OL}	All outputs	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & V_{I}=V_{I H} \text { or } V_{I L} \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.40			0.40	V		
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45			0.45			
	Output G		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}(\mathrm{G})$			0.55			0.55			
11	Mode input	$V_{C C}=M A X, \quad V_{l}=5.5 \mathrm{~V}$				0.1			0.1	mA		
	$\begin{gathered} \text { Any } \bar{A} \text { or } \bar{B} \\ \text { input } \end{gathered}$					0.3			0.3			
	Any S input					0.4			0.4			
	Carry input					0.5			0.5			
${ }_{1}{ }_{\text {H }}$	Mode input	$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$					60			60			
	Any S input					80			80			
	Carry input					100			100			
IIL	Mode input	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.5 \mathrm{~V}$				-0.36			-0.36	mA		
	$\begin{gathered} \text { Any } \bar{A} \text { or } \bar{B} \\ \text { input } \end{gathered}$					-1.08			- 1.08			
	Any S input					-1.44			-1.44			
	Carry input					-2			-2			
los^{\dagger}	$\left.\begin{array}{\|c\|} \hline \text { Any Output } \\ \text { except } \mathrm{A}=\mathrm{B} \end{array} \right\rvert\,$	$V_{C C}=M A X$		-15		-85	-15		-85	mA		
$\mathrm{I}^{\text {C }}{ }^{\dagger+}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	Condition A		20	32		20	34	mA		
		Condition B		21	35		21	37				

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{*}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger+$ With outputs open, ICC is measured for the following conditions:
A. SO through $\mathrm{S} 3, \mathrm{M}$ and A inputs are at 4.5 V , all other inputs are grounded.
B. SO through S 3 and M are at 4.5 V , all other inputs are grounded.

Switching Characteristics, $\mathrm{V}_{\mathrm{cC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter 1	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, pä̀ge 2-174)						
tPLH	C_{n}	$\mathrm{C}_{\mathrm{n}+4}$		14	25	ns
tPHL				13	14	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)						
tplH	Any A or B	$\mathrm{C}_{\mathrm{n}+4}$		24	33	ns
tPHL				17	31	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)						
$\mathrm{t}_{\text {PLH }}$	Any A or B	$C^{+}+4$		24	35	ns
tPHL				29	35	
$\mathrm{M}=0 \mathrm{~V}$, ($\overline{\text { SUM }}$ or $\overline{\text { DIFF }}$ mode)						
$\mathrm{t}_{\mathrm{PLH}}$	C_{n}	Any F		12	19	ns
$\mathrm{t}_{\mathrm{PHL}}$				12	18	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)						
$\mathrm{t}_{\mathrm{PLH}}$	Any A or B	G		12	25	ns
$\mathrm{t}_{\mathrm{PHL}}$				15	23	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)						
${ }^{\text {tPLH }}$	Any A or B	G		20	25	ns
$\mathrm{t}_{\mathrm{PHL}}$				17	25	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{SUM}}$ mode)						
tpLH	Any A or B	P		14	26	ns
${ }_{\text {tPHL }}$				20	26	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{IIFF}}$ mode)						
tpLH	Any A or B	P		24	30	ns
$\mathrm{t}_{\mathrm{PHL}}$				22	26	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}}$ mode$)$						
tPLH	A_{i} or B_{i}	F_{i}		15	28	ns
$\mathrm{t}_{\text {PHL }}$				13	19	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)						
tPLH	A_{i} or B_{i}	F_{i}		24	30	ns
$\mathrm{t}_{\mathrm{PHL}}$				15	19	
iví-4.50' (iogic modei						
${ }^{\text {tPLH }}$	A_{i} or B_{i}	F_{i}		17	31	ns
$\mathrm{tPHL}^{\text {che }}$				15	25	
$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode)						
$\mathrm{t}_{\text {PLH }}$	Any A or B	$A=B$		33	50	ns
$\mathrm{t}_{\text {PHL }}$				29	45	

LOGIC MODE TEST TABLE
FUNCTION INPUTS: $\mathrm{S} 1=\mathrm{S} 2=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		$\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$	APPLY GND	APPLY $4.5 \mathrm{~V}$	APPLY GND		
${ }^{\text {t PLH }}$	A_{i}	B_{i}	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	F_{i}	Out-of-Phase
${ }^{\text {P PLH }}$	B_{i}	$\mathrm{A}_{\boldsymbol{i}}$	None	None	Remaining A and B, C_{n}	F_{i}	Out-of-Phase
${ }^{\text {P PHL }}$							

SUM MODE TEST TABLE
FUNCTION INPUTS: $\mathrm{S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		APPLY $4.5 \mathrm{~V}$	APPLY GND	APPLY $4.5 \mathrm{~V}$	APPLY GND		
${ }^{t^{\text {PLLH }}}$	A_{i}	B_{i}	None	Remaining A and B	C_{h}	F_{i}	In-Phase
${ }^{\text {t PLH }}$	B_{i}	A_{i}	None	Remaining A and B	C_{n}	F_{i}	In-Phase
${ }^{\text {tPLH}}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	P	In-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {t PLH }}$	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	P	In-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {P PLH }}$	A_{i}	None	B_{i}	Remaining B	RemainingA, C_{n}	G	In-Phase
${ }^{\text {P P H }}$							
${ }^{\text {tPLH }}$	B_{i}	None	A_{i}	$\underset{\tilde{B}}{\text { Remaining }}$	RemainingA, C_{n}	G	In-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {tPLH }}$	C_{n}	None	None	$\begin{gathered} \text { All } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { B } \end{gathered}$	Any F or $\mathrm{C}_{\mathrm{n}+4}$	In-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {P PLH }}$	A_{i}	None	B_{i}	Remaining B	RemainingA, C_{n}	C_{n+4}	Out-of-Phase
${ }^{\text {tP }}$ HL							
${ }^{\text {P PLH }}$	B_{i}	None	A_{i}	Remaining B	RemainingA, C_{n}	C_{n+4}	Out-of-Phase
${ }^{\text {P PHL }}$							

DIFF MODE TEST TABLE
FUNCTION INPUTS: $\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	input UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	OUTPUT WAVEFORM
		APPLY 4.5 V	APPLY GND	APPLY 4.5 V	APPLY GND		
${ }^{\text {tPLH }}$	A_{i}	None	B_{i}	Remaining A	RemainingB, C_{n}	F_{i}	In-Phase
${ }^{\text {t }} \mathrm{PH} \mathrm{L}$							
${ }^{\text {P PLH }}$	B_{i}	A_{i}	None	Remaining A	RemainingB, C_{n}	F_{i}	Out-of-Phase
${ }^{\text {t PHL }}$							
${ }^{\text {P PLH }}$	A_{i}	None	B_{i}	None	Remaining A and B, C_{n}	P	In-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {P PLH }}$	B_{i}	A_{i}	None	None	Remaining	P	Out-of-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {tPLH }}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	G	In-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {tPLH }}$	B_{i}	None	A_{i}	None	Remaining A and B, C_{n}	G	Out-of-Phase
${ }^{\text {PPHL }}$							
${ }^{\text {P PLH }}$	A_{i}	None	B_{i}	Remaining A	$\begin{aligned} & \text { Remaining } \\ & B, C_{n} \end{aligned}$	$A=B$	In-Phase
${ }^{\text {tPHL }}$							
${ }^{\text {P PLH }}$	B_{i}	A_{i}	None	Remaining A	RemainingB, C_{n}	$A=B$	Out-of-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {P PLH }}$	C_{n}	None	None	$\begin{gathered} \mathrm{All} \\ \mathrm{~A} \text { and } \mathrm{B} \end{gathered}$	None	c_{n+4} or any F	In-Phase
${ }^{\text {tPHL}}$							
${ }^{\text {P PLH }}$	A_{i}	B_{i}	None	None	RemainingA, B, C_{n}	C_{n+4}	Out-of-Phase
${ }^{\text {P PHL }}$							
${ }^{\text {P PLH }}$	B_{i}	None	A_{i}	None	RemainingA, B, C_{n}	C_{n+4}	In-Phase
${ }^{\text {tPHL }}$							

FEATURES

- Single up/down count mode control line
- Asynchronous parallel load
- Count enable, parallel load control inputs
- Cascadable
- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to $9 \mathrm{LS} / 74 \mathrm{LS}$
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

The 25LS190 and 25LS191 are synchronous, reversible up/ down counters having a complexity of 58 equivalent gates. The 25LS191 is a 4-bit binary counter and the 25LS190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable and down/up inputs should be made only when the clock input is high. The
direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

PIN-OUT DIAGRAM

Recommended Operating Conditions

	Military			Commercial			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-440			-440	$\mu \mathrm{A}$
Low-level output current, $\mathrm{IOL}_{\mathrm{OL}}$	4		8	4		8	mA
Input clock frequency, $\mathrm{f}_{\text {clock }}$	0		25	0		25	MHz
Width of clock input pulse, $\mathrm{t}_{\text {w (clock) }}$	25			25			ns
Width of load input puise, $\mathrm{t}_{\text {w }}$ (load)	25			25			ns
Data setup time, $\mathrm{t}_{\text {setup }}$ (see Figures 1 and 2)	12			12			ns
Enable to clock setup time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Data hold time, thold	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		Military			Commercial			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
$V_{\text {IH }}$						2			2			V
$V_{\text {IL }}$						0.7			0.8	V		
V_{1}		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-440 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
$\mathrm{V}_{\text {OL }}$		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max & \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V		
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.30	0.45		0.30	0.45				
11	Enable		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.3			0.3	mA	
	Others					0.1			0.1			
I_{iH}	Enable	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				60			60	$\mu \mathrm{A}$		
	Others					20			20			
$1 / 1 L$	Enable	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$				-1.08			-1.08	mA		
	Others					-0.4			-0.4			
Iost ${ }^{\text {l }}$		$V_{C C}=$ MAX		-15		-85	-15		-85	mA		
$\mathrm{ICC}^{+\dagger}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			20	35		20	35	mA		

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+Not more than one output should be shorted at a time.
$\dagger^{+} \mathrm{CC}$ is measured with all inputs grounded and all outputs open.

Switching Characteristics, $V_{c c}=T_{A}=+25^{\circ} \mathrm{C}$

Parameter	From (input)	To (output)	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	

Test Conditions: $C_{L}=15 p F, R_{L}=2 k \Omega$ (see Fig. 1 and 3 thru 7 on pages 3-56 and 3-57 and Fig. A on page 2-174)

$f_{\text {max }}$			25	35		MHz
$t_{\text {PLH }}$	Load	$\mathrm{a}_{\mathrm{A}}, \mathrm{a}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$		22	33	ns
${ }_{\text {tPHL }}$				30	39	
$\mathrm{t}_{\text {PLH }}$	Data A,B,C,D	$\mathrm{a}_{A}, \mathrm{a}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$		13	22	ns
${ }_{\text {t }}$				29	39	
$\mathrm{t}_{\text {PLH }}$	Clock	Ripple Clock		11	18	ns
tPHL				14	21	
tPLH	Clock	$\mathrm{a}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$		15	21	ns
tPHL				16	30	
${ }^{\text {tPLH }}$	Clock	Max/Min		23	39	ns
${ }_{\text {t }}$				22	39	
$\mathrm{t}_{\text {PLH }}$	Down/Up	Ripple Clock		16	45	ns
$\mathrm{t}_{\text {PHL }}$				25	45	
tpliH	Down/Up	Max/Min		17	33	ns
tPHL				12	33	
tplH	Enable	Ripple Clock		10	19	ns
tPHL				14	27	

LOGIC DIAGRAM

25LS190 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES

Illustrated below is the following sequence.

1. Load (preset) to $B C D$ seven.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), nine, eight, and seven.

25LS191 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES

Illustrated below is the following sequence:

1. Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

PARAMETER MEASUREMENT INFORMATION

NOTE:
A. The inputs pulses are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\leqslant 50 \%, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$.

FIGURE 1-DATA SETUP TIME VOLTAGE WAVEFORMS

NOTE : Conditions on other inputs are irrelevant.

FIGURE 2-LOAD TO OUTPUT AND DATA TO OUTPUT

NOTE: All data inputs are low.

FIGUUR 3-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO MAX/MIN

PARAMETER MEASUREMENT INFORMATION (Continued)

NOTES:
F. To test Q_{A}, Q_{B}, and Q_{C} outputs of 25LS190: Data inputs A, B, and C are shown by the solid line. Data input D is shown by the dashed line.
G. To test Q_{D} output of 25LS190: Data inputs A and D are shown by the solid line. Data inputs B and C are held at the low logic level.
H. To test Q_{A}, Q_{B}, Q_{C}, and Q_{D} outputs of 54LS191: All four data inputs are shown by the solid line.

FIGURE 4-CLOCK TO OUTPUT

FIGURE 5-CLOCK TO MAX/MIN

FEATURES

- Separate clock inputs for count-up, count-down
- Asynchronous parallel load and clear
- Cascadable
- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

These monolithic circuits are synchronous reversible (up/ down) counters having a complexity of 55 equivalent gates. The 25LS192 is a BCD counter and the 25LS193 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

PIN-OUT DIAGRAM

Recommended Operating Conditions

		Militar			mmerc		
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-440			-440	$\mu \mathrm{A}$
Low-level output current, I_{OL}	4		8	4		8	mA
Count frequency, $\mathrm{f}_{\text {count }}$	0		25	0		25	MHz
Width of any input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {setup }}$ (see Figure 1)	20			20			ns
Data hold time, thold	0			0			ns
Operating free-air temperature range, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$V_{\text {CC }}=$ MIN, $\quad I_{1}=-18$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=--4 \end{array}$		2.5	3.4		2.7	3.4		V
V_{OL}	$V_{\text {CC }}=$ MIN, $\quad V_{1 H}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
	$V_{\text {IL }}=V_{\text {IL }}$ max	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.30	0.45		0.30	0.45	
1	$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
${ }_{1 / \mathrm{H}}$	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
OS ${ }^{+}$	$V_{C C}=$ MAX		-15		-85	-15		-85	mA
$\mathrm{ICC}^{+\dagger}$	$V_{C C}=$ MAX			19	34		19	34	mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger^{\prime} \mathrm{CC}$ is measured with all inputs grounded and all outputs open.

Switching Characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

Parameters	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
$\begin{aligned} \text { Test Conditions: } & C_{L}=15 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega \\ & \text { (See Fig. } 1 \& 2 \text { on page 3-62 and 3-63 and Fig. A, page 2-174) }\end{aligned}$						
$f_{\text {max }}$			25	35		MHz
tplH	Count-up	Carry		9	18	ns
tPHL				17	24	
tplH	Count-down	Borrow		9	18	ns
tPHL				17	24	
tPLH	Either Count	Q		19	30	ns
$\mathrm{tPHL}^{\text {Prem }}$				20	32	
tPLH	Load	Q		22	33	ns
tPHL				29	40	
$\mathrm{tPHL}^{\text {P }}$	Clear	Q		23	33	ns

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The pulse generators have the following characteristics: $Z_{\text {out }}=50 \Omega$ and for the data pulse generator $\mathrm{PRR}<500 \mathrm{KHz}$, duty $\mathrm{cycle}=$ 50%; for the load pulse generator PRR is two times data PRR, duty cycle $=50 \%$.
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1N3064.
D. t_{r} and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$.

FIGURE 1 - CLEAR, SETUP, AND LOAD TIMES

PARAMETER MEASUREMENT INFORMATION (Continued)

NOTES:
A. The pulse generator has the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, Z_{\text {out }}=50 \Omega$, duty cycle $=50 \%$.
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1N3064.
D. Count-up and count-down pulse shown is for the 25LS193 binary counter. Count cycle for 25 LS192 decade counter is 1 through 10 .
E. Waveforms for outputs Q_{A}, Q_{B}, and Q_{C} are omitted to simplify the drawing.
F. t_{r} and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$.

TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES
25LS192

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to $B C D$ seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES

25LS193

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

FEATURES

- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to $9 \mathrm{LS} / 74 \mathrm{LS}$
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

The 25LS194A and 25LS195A are 4 -bit registers that exhibit fully synchronous operation in all operating modes. The 25LS195A can either parallel load all four register bits via the parallel inputs (A, B, C, D) or shift each of the four register bits right one place. The shifting or parallel loading is under control of the shift/load input (S/L). When the shift/load input is LOW, data is loaded from the parallel data inputs; when the shift/load input is HIGH, data is loaded from the register bits on the left. The first bit, Q_{A}, is loaded via the J and K inputs in the shift mode.

The 25LS194A operates in four modes under control of the two select inputs, S_{0} and S_{1}. The four modes are parallel load (data comes from the parallel inputs), shift right (data comes from the flip-flop to the left, with the Q_{A} bit input from R), shift left (data comes from the flip-flop to the riaht. with the Q_{D} innut from 1), and hold or do nothing (each flip-flop receives data from its own output).

For both devices the outputs change state synchronously following a LOW-to-HIGH transition on the clock input, CP . Both devices have an active-LOW synchronous clear (CLR) which forces all outputs to the LOW state (O_{D} HIGH) independent of any other inputs.

Because all the flip-flops are D-type they do not catch 0's or 1 's, and the only requirements on any inputs is that they meet the short set-up and hold time intervals with respect to the clock LOW-to-HIGH transition.

PIN-OUT DIAGRAM

25LS194A
FUNCTION TABLE

INPUTS										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{O}_{\mathbf{A}}$	O_{B}	Q_{C}	O_{D}
	S1	S0		LEFT	RIGHT	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	x	x	X	X	x	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	Q_{CO}	$Q_{\text {D0 }}$
H	H	H	\uparrow	x	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	X	X	x	X	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}
H	L	H	\uparrow	X	L	X	X	X	X	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}
H	H	L	\uparrow	H	x	X	X	X	X	Q_{Bn}	Q_{Cn}	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	X	X	X	X	x	Q_{Bn}	Q_{Cn}	$Q_{\text {Dn }}$	L
H	L	L	x	X	X	x	X	X	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	Q_{CO}	$Q_{\text {D0 }}$

$H=$ high level (steady state)
$L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively.
$\mathrm{Q}_{\mathrm{AO}}, \mathrm{Q}_{\mathrm{BO}}, \mathrm{Q}_{\mathrm{C} 0}, 2 \mathrm{Q}_{\mathrm{DO}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{Cn}}, \mathrm{Q}_{\mathrm{Dn}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, respectively, before the most-recent \uparrow transition of the clock.

25LS195A
LOGIC DIAGRAM

INPUTS									SuTPUTS				
CLEAR	SHIFT/ LOAD	CLOCK	SERIAL		PARALLEL				$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathrm{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{D}}$	$\overline{\mathbf{Q}}_{\mathbf{D}}$
				$\overline{\mathrm{K}}$	A	B	C	D					
L	X	X	X	X	X	X	X	X	L	L	L	L	H
H	L	\uparrow	X	X	a.	b	c	d	a	b	c	d	d
H	H	L	X	X	X	X	X	X	$\mathrm{Q}_{\text {A0 }}$	Q_{BO}	Q_{CO}	$\mathrm{Q}_{\text {DO }}$	$\mathrm{Q}_{\text {D0 }}$
H	H	\uparrow	L	H	X	X	x	x	Q_{AO}	$\mathrm{Q}_{\mathrm{A} 0}$	Q_{Bn}	O_{Cn}	Q_{Cn}
H	H	\uparrow	L	L	X	X	X	x	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}	Q_{Cn}
H	H	\uparrow	H	H	X	X	X	X	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}	Q_{Cn}
H	H	\uparrow	H	L	X	X	X	X	$\mathrm{Q}_{\text {An }}$	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}	Q_{Cn}

$\mathrm{H}=$ high level (steady state)
$L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at A, B, C, or D, respectively.
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{Cn}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$, or Q_{C}, respectively, before the most-recent transition of the clock.

4-Bit Parallel-Access Shift Register

Recommended Operating Conditions

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		Military			Commercial			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$\mathrm{V}_{\text {IH }}$			2			2			V
$V_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max, }, & \mathrm{IOH}=--44 \end{array}$		2.5	3.5		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{IOL}^{2}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	v
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	1 l L $=8 \mathrm{~mA}$		0.30	0.45		0.30	0.45	
II	$V_{\text {CC }}=$ MAX, $V_{1}=7 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
${ }_{1 / 1}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\text {cc }}=$ MAX,,$~ V_{1}=0$.				-0.4			-0.36	mA
Tost ${ }^{\text {t }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-85	-15		-85	mA
$\mathrm{ICc}^{+\dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	25LS194A		15	23		15	23	mA
		25LS195A		14	21		14	21	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$\dagger+$ With all outputs open, inputs A through D grounded, and 4.5 V applied to SO, S1, clear, and the serial inputs, 1 CC is tested with a momentary GND, then 4.5 V , applied to clock.

Switching Characteristics, $\mathbf{V}_{\text {cc }}=\mathbf{5 V}$ Over Recommended Free-Air Temperature Range

Parameter	From (Input)	To (Output)	25LS194A			25LS195A			Unit
			Min	Typ	Max	Min	Typ	Max	
Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ (See Fig. $1 \& 2$ on page 3-71 and Fig. A on page 2-174)									
${ }^{\text {P PLH }}$	Clock	O_{i}		13	21		13	21	ns
${ }^{\text {t PHL }}$				12	18		12	18	ns
${ }^{\text {t PHL }}$	Clear	Q_{i}		17	26		17	26	ns
${ }^{\text {pww }}$	Pulse Width	Clock	17			16			ns
${ }^{\text {tpw }}$		Clear	17			12			ns
$\mathrm{t}_{\text {s }}$	Set up time	Mode Control	25			25			ns
t_{s}		Data Input	16			15			ns
$\mathrm{t}_{\text {s }}$	Clear recovery	Clock	20			20			ns
$t_{\text {h }}$	Hold time	Data	0			0			ns
${ }^{t} R$	Shift/Release Time (25LS195A only)				-			10	ns
${ }^{\text {f MAX }}$	Maximum clock frequency		35	55		35	55		MHz

25LS194A

25LS195A
TYPICAL TIMING SEQUENCES

NOTES:
A. The clock pulse generator has the following characteristics: $Z_{o u t} \approx 50 \Omega$ and $P R R \leqslant 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $t_{f} \leqslant 6 \mathrm{~ns}$. When testing $f_{\text {max }}$, vary PRR.
B. A clear pulse is applied prior to each test.
C. $V_{\text {ref }}=1.3 \mathrm{~V}$.

Proplagation delay times ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{tPHL}^{\text {) }}$ are measured at $\mathrm{t}_{\mathrm{n}+1}$. Proper shifting of data is verified at t_{n+4} with a functional test.
$t_{n}=$ bit time before clocking transition.
$\mathrm{t}_{\mathrm{n}+1}=$ bit time after one clocking transition.
$t_{n+4}=$ bit time after four clocking transitions.
FIGURE 1
25LS195A
LOAD FOR OUTPUT UNDER TEST

NOTES:
VOLTAGE WAVEFORMS
A. The clock pulse generator has the following characteristics: $Z_{\text {out }} \approx 50 \Omega$ and $P R R \leqslant M H z, t_{r} \leqslant 15 n s, a n d t_{f} \leqslant 6$ ns. When testing $f_{\text {max }}$, vary the clock PRR.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064.
D. A clear pulse is applied prior to each test.
E. Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+4} with a functional test.
F. J and \bar{K} are tested the same as data A, B, C, and D inputs except that shift/load input remains high.
G. $t_{\mathbf{n}}=$ bit time before clocking transition.
$t_{n+1}=$ bit time after one clocking transition.
$\mathbf{t}_{\mathrm{n}+4}=$ bit time after four clocking transitions.

APPLICATION

12-BIT SHIFT-LEFT, SHIFT-RIGHT, PARALLEL LOAD REGISTER

8-Line-To-1-Line Multiplexer With Three-State Outputs

FEATURES

- Selects one of eight data sources
- Performs parallel-to-serial conversion
- Complementary 3 -state outputs
- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and features a strobe-controlled three-state output. The strobe must be at a low logic level to enable this device. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control ciicuitry is designed so that the average output disable time is shorter than the average output enable time.

FUNCTION TABLE					
INPUTS				OUTPUTS	
SELECT			STROBE	Y	W
C	B	A			
X	X	x	H	Z	z
L	L	L	L	D0	DO
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\mathrm{D} 3}$
H	L	L	L.	D4	$\overline{04}$
H	L	H	L	D5	$\overline{\square 5}$
H	H	L	L	D6	$\overline{\mathrm{D} 6}$
H	H	H	L	D7	$\overline{\mathrm{D7}}$

$H=$ high logic level, $L=$ low logic level
$X=$ irrelevant, $Z=$ high impedance (off)
$D 0, D 1 \ldots D 7=$ the level of the respective D input

Recommended Operating Conditions

	9LS/54LS			9LS/74LS			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-2.6	mA
Low-level output current, I_{OL}	4		8	4		8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter	Test Conditions*		9LS/54LS			9LS/74LS			Unit
			Min	Typ**	Max	Min	Typ**	Max	
$V_{\text {IH }}$			2			2			V
$\mathrm{V}_{\text {IL }}$					0.7			0.8	V
V_{1}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \quad_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH}	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=M A X, & I_{O H}=M A \end{array}$		2.4	3.4		2.4	3.2		V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=M A X, & \end{array}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V
		$1 \mathrm{OL}=8 \mathrm{~mA}$		0.30	0.45		0.30	0.45	
'O (off)	$\begin{aligned} & V_{C C}=M A X \\ & V_{I H}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
$1 /$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
I_{IH}	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Iost	$V_{C C}=$ MAX		-15		-85	-15		-85	mA
$\mathrm{ICC}^{\dagger+}$	$V_{C C}=M A X$	Condition A		6.1	10		6.1	10	mA
		Condition B		7.1	12		7.1	12	

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
${ }^{\dagger} \mathrm{I}_{\mathrm{CC}}$ is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:
A. Strobe grounded.
B. Strobe at 4.5 V

Switching Characteristics, $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Over Recommended Free-Air Temperature Range

| Parameter | From |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | |

Test Conditions: $C_{L}=15 p F, R_{L}=\mathbf{2 k} \Omega$ (See Fig. A, page 2-174)

${ }^{\text {t PLH }}$	A, B, or C	Y	29	44	ns
${ }^{\text {t PHL }}$	(4 levels)		20	30	
${ }^{\text {tPLH }}$	A, B, or C (3 levels)	W	16	24	ns
${ }^{\text {tPHL }}$			21	32	
${ }^{\text {tPLH }}$	Any D	Y	14	24	ns
${ }^{\text {t PHL }}$			11	17	
${ }^{\text {t PLH }}$	Any D	W	8	12	ns
${ }^{\text {t PHL }}$			9	14	
${ }^{\text {²H }}$	Strobe	Y	9	12	ns
${ }^{\text {t }} \mathrm{ZL}$			13	19	
${ }^{\text {t }} \mathrm{ZH}$	Strobe	W	4	15	ns
${ }^{\text {t }} \mathrm{ZL}$			13	18	

Test Conditions: $C_{L}=5 p F, R_{L}=2 k \Omega$ (See Fig. C, page 2-174)

${ }^{\text {H }} \mathrm{HZ}$	Strobe	Y	9	27	ns
${ }^{\text {t }}$ LZ			10	18	
${ }^{\text {t }} \mathrm{HZ}$	Strobe	W	17	29	ns
${ }^{t}$ LZ			10	18	

Dual 4-Line to 1-Line Data Selectors/Multiplexers

DISTINCTIVE CHARACTERISTICS

- Permits multiplexing from \mathbf{N} lines to 1 line
- Performs parallel-to-serial conversion
- Provides three-state outputs for data bus organization data bus organization
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

This dual four-input multiplexer provides the digital equivalent of a two-pole, four position switch with the posi-
tion of both switches set by the logic levels supplied to the select inputs A and B. Each section of the 25LS153 has a separate active-LOW enable (strobe) input that forces the output of that section LOW when a HIGH leve! is applied regardless of the other inputs.
The 25LS253 features a three-state output to interface with bus organized systems. Each section of the 25LS253 has a separate active-LOW output control that disables the output driver (high-impedance state) of that section when a HIGH logic level is applied regardless of the other inputs.

LOGIC DIAGRAM

Recommended Operating Conditions

	Military			Commercial			Units
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply Voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level Output Current, I^{OH}			1.0			1.0	mA
Low-level output current, 1 OL	4		8	4		8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Temperature Range (Unless Otherwise Noted)

Parameters	Test Conditions (Note 1)		Military			Commercial			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$V_{\text {IH }}$	Guaranteed input logical HIGH voltage for all inputs		2			2			V
$V_{\text {IL }}$	Guaranteed input logical LOW voltage for all inputs				0.7			0.8	V
V_{1}	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{aligned} & V_{C C}=\text { MIN., } \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4	3.4					V
		${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA}$				2.4	3.2		
V_{OL}	$\begin{aligned} & V_{C C}=\text { MIN., } V_{I H}=2.0 \mathrm{~V} \\ & V_{I L}=V_{I L} \text { MAX } \end{aligned}$	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$		0.30	0.45		0.30	0.45	
$\mathrm{I}_{\mathrm{IL}}{ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-0.36			-0.36	mA
$\mathrm{I}_{1 \mathrm{H}}(3)$	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
$1 /$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$				0.1			0.1	mA
${ }^{1} \mathrm{O}$	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
${ }^{\text {S }}$ S	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.		-15		-85	-15		-85	mA
${ }^{1} \mathrm{CC}$	$\mathrm{V}_{\text {CC }}=$ MAX (Note 5)			7	12		7	12	mA

Switching Characteristics $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$

Parameters	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			Units
			Min	Typ	Max	
Test Conditions: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)						
${ }^{\text {P PLH }}$	C_{i}	Y_{i}		10	15	ns
${ }^{\text {P PHL }}$				7	12.	
${ }^{\text {PPLH }}$	Select (A or B)	Y_{i}		20	30	ns
${ }^{\text {P PHL }}$				15	23	
${ }^{\text { }} \mathrm{ZH}$	$\mathrm{G}_{\boldsymbol{i}}$	Y_{i}		11	23	ns
${ }^{t} \mathrm{ZL}$				15	23	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. C, page 2-174)						
${ }^{\text {t }} \mathrm{HZ}$				12	18	ns
${ }^{t} \mathrm{LZ}$				12	18	

Dual 4-Line to 1-Line Data Selectors/Multiplexers

FUNCTION TABLE

INPUTS		OUTPUTS \|	
Select	Data	LS253 Output Contro	$\begin{aligned} & \text { LS253 } \\ & \text { Output } \end{aligned}$
B A	$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	G	Y
X X	$\mathrm{x} \times \mathrm{x} \times$	H	Z
L L	L $\mathrm{x} \times \mathrm{x}$	L	L
L L	H X X X	L	H
L H	X L X X	L	L
L H	X H X X	L	H
H L	$\times \times$ L \times	L	L
H L	X X H X	L	H
H H	$\times \times \times \mathrm{L}$	L	L
H H	X X X H	L	H

H = HIGH
L = LOW
X = Don't Care
$\mathrm{Z}=$ High Impedance

NOTE: A \& B are common to both 4 input multiplexers.

DEFINITION OF FUNCTIONAL TERMS:

$\mathbf{1 C}_{\mathbf{i}}, \mathbf{2} \mathbf{C}_{\mathbf{i}}$ Data Inputs. The four data inputs to each multiplexer; $\mathrm{i}=0,1,2$, and 3.

1Y, 2Y Multiplexer Outputs. The output of each fourinput multiplexer.
A, B Select Inputs. The inputs used to determine which of the four data inputs are selected for the output.

G Output Control. An active-LOW three-state control used to enable the output. A HIGH level input forces the output to the high-impedance (off) state.

APPLICATIONS

FEATURES

- Higher speed compared to 9LS/54LS and 9LS/74LS
- 8 mA sink current over full military temperature range
- 50 mV improved V_{OL} compared to 9LS/74LS
- $440 \mu \mathrm{~A}$ source current
- 100% reliability assurance testing in compliance with MIL-STD-883.

DESCRIPTION

These data selectors/multiplexers select a 4-bit word from one of two sources and present it at the four outputs. The 25LS257 presents true data; the 25LS258 presents inverted data. With Output Control HIGH, the outputs are forced to a high impedance state.

Low level at S selects A inputs.
High level at S selects B inputs.

PIN-OUT DIAGRAMS

LOGIC DIAGRAMS

Recommended Operating Conditions

	Military				Commercial		
	Min	Nom	Max	Min	Nom	Max	
	4.5	5	5.5	4.75	5	5.25	V
			-1			-2.6	mA
	4		8	4		8	mA
	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Quadruple 2-Line-To-1-Line
 Multiplexers With Three-State Outputs

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*		Military			Commercial			Unit		
		Min	Typ**	Max	Min	Typ**	Max					
$\mathrm{V}_{\text {IH }}$				Guaranteed input logical high voltage for all inputs		2			2			V
$\mathrm{V}_{\text {IL }}$		Guaranteed input logical low voltage for all inputs				0.7			0.8	V		
V_{1}		$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V_{OH}		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{1 \mathrm{~L}} \text { max }, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	3.4					V		
		$\mathrm{T}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$				2.4	3.1					
V_{OL}			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V	
		$\mathrm{T}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.30	0.45		0.30	0.45			
Iozh		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{HH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} & \end{array}$				20			20	$\mu \mathrm{A}$		
lozl		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{array}$				-20			-20	$\mu \mathrm{A}$		
11	S input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.2			0.2			
	Any other					0.1			0.1	m		
$\mathrm{I}_{\text {IH }}$	S input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40			
	Any other					20			20	A		
IIL	S input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	mA		
	Any other					-0.4			-0.4			
los ${ }^{+}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-15		-85	-15	-15	-85	mA		
ICC+	All outputs high	$V_{C C}=$ MAX	25LS257		5.9	10.0		5.9	10.0	mA		
	All outputs low				8.2	13.5		9.2	13.5			
	All outputs off				10	15.3		10	15.3			
	All outputs high		25LS258		4.1	8.0		4.1	8.0			
	All outputs low				6.2	11.0		6.2	11.0			
	All outputs off				7.0	11.2		7.0	11.2			

[^33]Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter fl		From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit	
		Min		Typ	Max			
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)								
tPLH	25LS257		Data	Any		6	12	ns
tPHL					7	12		
tPLH	25LS258	Data	Any		8	12	ns	
$\mathrm{t}_{\text {PHL }}$					5	12		
$t_{\text {PLH }}$	25LS257	Select	Any		12	18	ns	
$t_{\text {PHL }}$					12	18		
$t_{\text {PLH }}$	25LS258	Select	Any		12	18	ns	
$\mathrm{t}_{\text {PHL }}$					10	18		
${ }^{\text {t }} \mathrm{ZH}$	25LS257	Output Control	Any		10	18	ns	
t_{ZL}					10	16		
t_{ZH}	25LS258	Output Control	Any		10	18	ns	
t_{ZL}					11	18		
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$ (See Fig. A , page 2-174)								
t_{Hz}	25LS257	Output Control	Any		10	15	ns	
$\mathrm{t}_{\text {L }}$					10	18		
t_{Hz}	25LS258	Output Control	Any		9	15	ns	
t_{L}					8	15		

FEATURES

- Four operational modes
- Three-state outputs
- Common input/output pins
- Cascadable shifting
- Advanced Low-Power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883

DESCRIPTION

The 25LS299 is an 8-bit universal shift/storage register with 3-state outputs. Four modes of operation are possibleHold (store), shift left, shift right and load data.
Parallel load inputs and register outputs are multiplexed to reduce the number of package pins. Separate continuous outputs are also provided for flip-flop Q_{0} and Q_{7}. These devices can be cascaded to N -Bit words.

The 25LS299 has a typical shift frequency of 50 MHz ; and is packaged in the standard 20-pin DIP package.
A separate active-LOW asynchronous clear input forces all flip-flops to the LOW state whenever this clear input is LOW.

PIN-OUT DIAGRAM

LOGIC DIAGRAM

Recommended Operating Conditions

	Military			Commercial			Unit
	Min	Nom	Max	Min	Nom	Max	
Supply Voltage, $\mathrm{V}_{\text {cc }}$	4.5	5	5.5	4.75	5	5.25	V
High-Level Output Current, I_{OH}		-0.44	-1.0		-0.44	-2.6	mA
Low-Level Output Current, IOL	4		8	4		8	mA
Operating Free-Air Temperature, T_{A}	-55		125	0		70	C

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted)

Parameter		Test Conditions*			Military			Commercial			Unit			
		Min	Typ**	Max	Min	Typ**	Max							
$\mathrm{V}_{\text {IH }}$					Guaranteed input logical HIGH voltage for all inputs			2			2			V
$\mathrm{V}_{\text {IL }}$		Guaranteed input logical LOW voltage for all inputs					0.7			0.8	V			
V_{1}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.5			-1.5	V			
V_{OH}		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \\ & \mathrm{V}_{I N}=\mathrm{V}_{I H} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{a}_{0}, \mathrm{C}_{7}$	$1{ }^{\mathrm{OH}}{ }^{=-0.44 \mathrm{~mA}}$	2.5			2.7			V			
		$\mathrm{DY}_{0}, \mathrm{DY}_{7}$	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4						V				
			${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA}$				2.4							
V_{OL}			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		${ }^{1} \mathrm{OL}=4.0 \mathrm{~mA}$		0.25	0.40		0.25	0.40	V		
		$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.30	0.45		0.30	0.45				
1	$\mathrm{S}_{0}, \mathrm{~S}_{1}$		$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					0.2			0.2	mA		
	All others						0.1			0.1				
${ }^{\prime} \mathrm{H}$	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					40			40	$\mu \mathrm{A}$			
	All others						20			20	$\mu \mathrm{A}$			
IIL	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$					-0.8			-0.8	mA			
	All others						-0.4			-0.4	mA			
${ }^{1} \mathrm{O}$		$V_{C C}=$ MAX .		$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-100			-100				
			$\mathrm{V}_{0}=2.7 \mathrm{~V}$			40			40	A				
Ios			$\mathrm{V}_{\text {CC }}=$ MAX., See Note 3			-30		-85	-30		-85	mA		
${ }^{1} \mathrm{CC}$		$\mathrm{V}_{\text {CC }}=$ MAX., See Note 4				38	57		38	57	mA			

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Tyipical tinits are ât ${ }^{\prime} \mathrm{v}^{\prime} \mathrm{CC}-5.0 \mathrm{v}^{\mathrm{v}}, 25^{\circ} \mathrm{C}$ ambien and maximum ioading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. ICC - measured with clock input HIGH and output controls HIGH.

Switching Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Test Conditions: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (See Fig. A, page 2-174)						
$t_{\text {PLH }}$	Clock	Q_{i}		19		ns
$\mathrm{t}_{\mathrm{PHL}}$				23		
tplH	Clock	DY ${ }_{\text {i }}$		18		ns
$\mathrm{t}_{\mathrm{p}} \mathrm{HL}$				21		
${ }_{\text {tPHL }}$	Clear	$\mathrm{DY}_{0}-\mathrm{DY}_{7}$		25		ns
$\mathrm{t}_{\mathrm{pHL}}$	Clear	O_{0} or O_{7}		27		ns
${ }^{\text {Z }}$ H	$\mathrm{S}_{1}, \mathrm{~S}_{0}$	DY ${ }_{\text {i }}$		20		ns
${ }^{\text {Z }}$ L				19		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$	DY ${ }_{\text {i }}$		20		ns
t_{ZL}				18		
$\mathrm{t}_{\text {s }}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}$ Set-up Prior to Clock		20			ns
t_{s}	$\mathrm{S}_{\mathrm{R}}, \mathrm{S}_{\mathrm{L}}$ Set-up Prior to Clock		20			ns
t_{pw}	Pulse Width (Clock)		25			ns
t_{n}	Hold Time		3			ns
$\mathrm{f}_{\text {max }}$				50		MHz

Test Conditions: $C_{L}=5 p F, R_{L}=2 k \Omega$ (See Fig. C, page 2-174)

$t_{L Z}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}$	$D Y_{i}$	22	ns
t_{Hz}			20	
$t_{L Z}$	$\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$	DY ${ }_{\text {i }}$	20	ns
t_{HZ}			16	

TRUTH TABLE

FUNCTION		INPUTS						OUTPUTS		INPUTS/OUTPUTS							
		S_{R}	S_{L}	CLEAR	CLOCK	$\mathrm{S}_{0} \quad \mathrm{~S}_{1}$	$\overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$	a_{0}	0_{7}	DY0	DY 1	Dr_{2}	DY_{3}	DY4	DV5	DY6	DY_{7}
	ar	x	x	L	x	(Note 1)	L L	L	L	L	L	L	L	L	L	L	L
Output Control		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$		$\begin{array}{ll} H & L \\ L & H \\ H & H \end{array}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \\ & \text { NC } \end{aligned}$	NC NC NC	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \end{aligned}$
M	Hold	x	x	H	x	L L	L L	NC									
	Load (Note 2)	X	x	H	\uparrow	H H	L L	A	A	A	B	C	D	E	F	G	H
	Shift Right	L	x	H	\uparrow	H L	L L	L	DY_{6}	L	DY0	DY1	DY2	DY_{3}	Dr_{4}	DY 5	DY_{6}
	Shift Right	H	x	H	\uparrow	H L	L L	H	DY_{6}	H	DY0	DY1	DY2	DY_{3}	DY_{4}	DY5	DY6
	Shift Left	X	L	H	\uparrow	L H	L L	DY 1	L	DY 1	DY_{2}	DY_{3}	DY_{4}	DY 5	DY6	DY7	L
	Shift Left	X	H	H	\uparrow	L H	L L	DY ${ }_{1}$	H	DY 1	DY_{2}	DY_{3}	DY_{4}	DY 5	DY6	DY_{7}	H

$L=$ LOW	$Z=$ High Impedence	$\uparrow=$ Transition LOW-to-HIGH
$H=$ HIGH	$X=$ Don't Care	$N C=$ No Change

FEATURES

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing

- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 512 Words of n -Bits
- For Use as:

Scratch-Pad Memory
Buffer Storage Between Processors
Bit Storage in Fast Multiplication Designs

- 3-State Outputs
- The 25LS170 is Similar But Has Open-Collector Outputs

DESCRIPTION

The 25LS670 MSI 16-bit TTL register file incorporates the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gates inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the writeenable input, Gun, is high, the data inputs ait intiouiteu and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G_{R}, is high, the data outputs are inhibited and go into the high-impedance state.

LOGIC

READ FUNCTION TABLE (SEE NOTES A AND D)

READ INPUTS			OUTPUTS			
R $_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{G}_{\mathbf{R}}$	Q1	Q2	Q3	Q4
L	L	L	WOB1	WOB2	W0B3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	Z	Z	Z	Z

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 25LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed double-ended ANND-OR-î̃v'ERT yates are empioyed for the read-address function and have high-sink-current three-state outputs. Up to 120 of these outputs may be wire-AND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

NOTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $\mathrm{Q}_{0}=$ the level of Q before the indicated inpút conditions were established.
D. WOB1 = The first bit of word 0, etc.

FUNCTIONAL BLOCK DIAGRAM

Recommended Operating Conditions

		Military			Commercial			Unit
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Supply vol tage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH				-1			-2.6	mA
Low-level output current, IOL		4		8	4		8	mA
Width of write-enable or read-enable pulse, ${ }^{\text {w }}$ w		25			25			ns
Setup times, high- or low-level data (see Figure 2)	Data input with respect to write enable, $t_{\text {setup }}(\mathrm{D})$	10			10			ns
	Write select with respect to write enable, $\mathrm{t}_{\text {setup }}(\mathrm{W})$	15			15			ns
Hold times, high- or low-level data (see Note 2 and Figure 2)	Data input with respect to write enable, thold(D)	15			15			ns
	Write select with respect to write enable, thold(W)	5			5			ns
Latch time for new data, tlatch (see Note 3)		25			25			ns
Operating free-air temparature range, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES 1. Voltage values are with respect to network ground terminal.
2. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, $t_{\text {setup }}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold (W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless otherwise Noted)

Parameter	Test Conditions ${ }^{\dagger}$			Military			Commercial			Unit
				Min.	Typ ${ }^{\text { }}$	Max.	Min.	Typ ${ }^{\ddagger}$	Max.	
$V_{1 H}$ High-level input voltage				2			2			\checkmark
$V_{\text {IL }}$ Low-level input voltage						0.7			0.8	V
$\mathrm{V}_{\text {I }}$ Input clamp voltage	$V_{C C}=$ MIN,	$1 \mathrm{I}=-18 \mathrm{~mA}$				-1.5			-1.5	V
High-level output vol tage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \end{array}$		$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.4					V
			$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$				2.4	3.1		
Low-level output voltage	$\begin{array}{ll} V_{C C}=M \mid N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \end{array}$		$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{IOL}=8 \mathrm{~mA}$		0.35	0.45		0.35	0.45	
IOZH $\begin{aligned} & \text { Off-state output current, } \\ & \text { high-level voltage applied }\end{aligned}$	$V_{C C}=$ MAX,	$\mathrm{V}_{1 H}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
Off-state output current, IOZL low-level voltage applied	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1 H}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$
Input current at maximum input voltage	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=7 V \end{aligned}$	Any, D, R, or W				0.1			0.1	mA
		G_{W}				0.2			0.2	
		G_{R}				0.3			0.3	
High-level input current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=2.7 \mathrm{~V} \end{aligned}$	Any D, R, or W				20			20	$\mu \mathrm{A}$
		G_{W}				40			40	
		G_{R}				60			60	
		Any D, R, or W				-0.4			-0.4	
Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}$	Gw				-0.8			-0.8	mA
		G_{R}				-1.2			-1.2	
IOS Short-circuit output current ${ }^{\phi}$	$V_{C C}=$ MAX			-15		-85	-15		-85	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 4				30	50		30	50	mA

[^34]Switching Characteristics, $\mathbf{V}_{\mathbf{c c}}=\mathbf{5 V}$, Over Recommended Free-Air Temperature Range.

Parameter	From (Input)	To (Output)	$+25^{\circ} \mathrm{C}$			Min.

Test Conditions: $C_{L}=15 p F, R_{L}=2.0 \mathrm{k} \Omega$ (See Fig. $1 \& 2$ on page 3-90 \& 3-91 and Fig. A on page 2-174)

${ }^{\text {t PLH }}$	Read Select	Any 0	23	40	ns
${ }^{\text {tPHL }}$			25	45	
${ }^{\text {P PLH }}$	Write enable	Any Q	26	45	ns
${ }^{\text {t }}$ PHL			28	50	
${ }^{\text {tPLH }}$	Data	Any 0	25	45	ns
${ }^{\text {tPHL }}$			23	40	

Test Conditions: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ (See Fig. C, page 2-174)

${ }^{t} \mathrm{ZH}$	Read enable	Any Q	15	35	ns
${ }^{t} \mathrm{ZL}$			22	40	
${ }^{\text {t }} \mathrm{HZ}$			30	50	ns
${ }^{t} \mathrm{~L} Z$			16	35	

FIGURE 1

NOTES: A. High-level input puises at the select and data inputs are illustrated; however, times associated with low-level pulses are measured from the same reference points.
B. When measuring delay times from a read select input, the read-enable input is low.
C. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 2 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \%, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$.

FIGURE 2

NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with $W_{A}=R_{A}$ and $W_{B}=R_{B}$. During the test G_{R} is low.
B. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle \leqslant $50 \%, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$.
CONTENTS PAGE
Plastic Packages, DIP 4-2
Metal Packages, DIP 4-2
Ceramic Packages, DIP 4-3
Ceramic Packages, Flat 4-4
Metal Packages, Flat 4-5
Beam Lead Mechanical Drawings 4-6

Packaging Information

Plastic Packages

16-LEAD PLASTIC DIP BM/MB

Metal Package

14-LEAD METAL DIP
D

Packaging Information

Ceramic Packages

24-LEAD
CERAMIC PACKAGE
R/J

Ceramic

14-LEAD CERAMIC FLAT PACKAGE CK

24-LEAD CERAMIC FLAT PACKAGE CN/W

Metal

14-LEAD METAL FLAT PACKAGE

K

.065

16-LEAD METAL FLAT PACKAGE

L

24-LEAD METAL
FLAT PACKAGE
N

RAYTHEON

```
RAYTHEON COMPANY SEMICONDUCTOR DIVISION 350 ELLIS STREET
MOUNTAIN VIEW, CALIFORNIA 94042
(415) 968-9211 TWX:910-379-6481
```


[^0]: - Per applicable procurement document
 * Test Condition F one shock pulse in Y_{1} plane only or five shock pulses at Condition B in Y_{1} plane only.

[^1]: - Must be expressed as a range since a normally controlled environment (constant power and temperature) cannot be assured.

[^2]: *Current flowing out of a terminal is a negative value.

[^3]: ${ }^{1}$ Power dissipation is given for $V_{C C}=5.0$ volts. Propagation delays given are for the average path. Operating temperature range, 5400 Types: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; 7400$ Types: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

[^4]: ${ }^{1}$ Power dissipation is given for $\mathrm{V}_{C C}=5.0$ volts; propagation delays are given for the average path. Operating temperature range, RM Types: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; RC Types: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

[^5]: 1. Operating temperature range, final digits 0 or $1:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; final digits 2 or $3: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
[^6]: ${ }^{1}$ Operating temperature range, final digit $0:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; final digit $2: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

[^7]: ${ }^{\dagger}$ Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and supply voltages below 4.75 V and above 5.25 are applicable for $9 \mathrm{LS} / 54 \mathrm{LS} 13$, and 9LS/54LS14.

[^8]: Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

[^9]: $H=$ high level, $L=$ low level

[^10]: $t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the D input prior to the rising edge of the clock in order to be recognized and transferred to the outputs.
 thold is the minimum time required for the logic level to be maintained at the D input after the rising edge of the clock in order to insure recognition. This device requires no hold time.

[^11]: $H=$ high level, $L=$ low level
 NOTE:
 Input conditons at A1, B1, A2, B2, and CO are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C2. The values at C2, A2, B3, A4, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and C 4 .

[^12]: Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

[^13]: $t_{\text {setup }}$ is the minimum time required for the correct logic level to be present at the J or K input prior to the rising edge of the clock in order to be recognized and transferred to the outputs.
 thold is the minimum time required for the logic level to be maintained at the J or K input after the clock transition in order to insure recognition. This device requires no hold time.

[^14]: *For this test $R_{\text {ext }}=10 k \Omega, C_{e x t}=1000 \mathrm{pF}$.

[^15]: \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[^16]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 $+{ }^{+} \mathrm{CC}$ is measured with outputs open, A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.

[^17]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 NOTES:

 1. ${ }^{\mathrm{I}} \mathrm{CCH}$ is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
 2. ${ }^{\mathrm{I}} \mathrm{CCL}$ is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.
[^18]: $\mathrm{H}=$ high level (steady state)
 $\mathrm{L}=$ low level (steady state)
 $X=$ irrelevant (any input, including transitions)
 $\uparrow=$ transition from low to high level
 $a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively.
 $Q_{A 0}, Q_{B 0}, Q_{C 0}, 2 Q_{D 0}=$ the level of Q_{A}, Q_{B}, Q_{c}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
 $Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most-recent \uparrow transition of the clock.

[^19]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 $\dagger \dagger$ With all outputs open, inputs A through D grounded, and 4.5 V applied to SO, S1, clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5 V , applied to clock.

[^20]: Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9LS only.

[^21]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

 - Q_{A} outputs are tested at specified $I_{O L}$ plus the limit value of $I_{I L}$ for the clock-2 input. This permits driving the clock-2 input while maintaining full fan-out capability.
 ${ }^{\dagger \dagger}{ }^{\circ} \mathrm{CC}$ is measured with all inputs grounded and all outputs open.

[^22]: \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 ${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
 \oint Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

[^23]: $\dagger \mathrm{C}=$ inputs 1 C and 2 C connected together
 $\ddagger \mathrm{G}=$ inputs 1 G and 2 G connected together
 $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)

[^24]: NOTE 1. Voltage values are with respect to network ground terminal.

[^25]: Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS devices only.

[^26]: Note: AC specification shown under $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ are for 9 LS devices only. All 50 pF specifications are for 9 LS only.

[^27]: $\mathrm{H}=$ high level (steady state), $\mathrm{L}=$ low level (steady state), $\mathrm{X}=$ irrelevant (any input, including transitions) $\downarrow=$ transition from high to low level.
 $Q_{A 0}, Q_{B 0}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
 $\mathrm{Q}_{A n}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{Cn}}, \mathrm{Q}_{\mathrm{Dn}}=$ the level of $\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, or Q_{D}, respectively, before the most recent \downarrow transition of the clock.

[^28]: C = Data In the Carry Flip-Flop Before the Clock Transition
 $C_{1}=$ Data In the Carry Flip-Flop After the Clock
 $X=$ Don't Care
 NC = No Change
 $\mathrm{H}=\mathrm{HIGH}$
 L = LOW
 $\uparrow=$ LOW-to-HIGH Transition

[^29]: Low-Power Schottky TTL unit load is defined as $20 \mu \mathrm{~A}$ measured at 2.7 V HIGH and -0.36 mA measured at 0.4 V LOW.

[^30]: *For this test $R_{e x t}=10 \mathrm{k} \Omega, C_{e x t}=1000 \mathrm{pF}$.

[^31]: ${ }^{*}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 NOTES:

 1. ${ }^{\mathrm{C}} \mathrm{CCH}$ is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
 2. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.
[^32]: \dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 ${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 4. ICC is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

[^33]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 $t+1 \mathrm{CC}$ is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

[^34]: TFor conditions shown as MIN or MAX, use the appropriațe value specified under recommended operating conditions.
 ${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \oint Not more than one output should be shorted at a time.
 NOTE 4: Maximum I CC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.

