

TELECOMS INTEGRATED CIRCUIT HANDBOOK
 nhamin
 PLESSEY Semiconductors

© The Plessey Company plc 1985
Publication No. P.S. 1913 December 1985
This publication is issued to provide outline information only and (unless specifically agreed to the contrary by the
Company in writing) is not to be reproduced or to form part of any order or contract or to be regarded as a representation relating to the products or services concerned. Any applications of products shown in this publication are for illustration purposes only and do not give or imply any licences or rights to use the information for any purposes whatsoever. It is the responsibility of any person who wishes to use the application information to obtain any necessary licence for such use. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service. PLESSEY and the Plessey symbol, Plessey Megacell, Plessey Microcell, Plessey Paracell and Plessey Supracell are registered trademarks of The Plessey Company plc.

Contents

Page5
Selection guide 6
The quality concept 7
Screening to BS9400 8
Plessey Hi-Rel screening 9
Semi-custom design 10
Plessey Megacell 11
Thermal design 12
Technical data 15
Package outlines 181
Ordering information 188
Plessey Semiconductors World-Wide 189

Product index

TYPE NO. DESCRIPTION PAGE
N-channel MOS
MJ1410 8-bit format converter 17
MJ1440 HDB3 encoder/decoder 23
MJ1444 Time slot zero transmitter 29
MJ1445 Time slot zero receiver 33
MJ1446 Time slot access 37
MJ1471 AM1/HDB3 encoder/decoder 41
MJ1472 PCM receiving circuit 47
MJ1473 PCM transmitter circuit 51
MJ1474 PCM elastic store 55
N -channel silicon gate
MS2002EXP Digital switch module (DSM) for CCITT 32-channel PCM 59
MS2014 Digital filter and detector (FAD) 67
CMOS
MV1441 HDB3 encoder/decoder/clock regenerator 75
MV1448 HDB3 encoder/decoder 81
MV3506 A-law codec with filter 87
MV3507 μ-law codec with filter 87
MV3507A μ-law codec with filter and A / B signalling 87
MV4320 Keypad pulse dialler with M1 masking 99
MV4325 Programmable keypad pulse dialler with M1 masking 103
MV4330 30-bit static shift register/LCD driver 109
MV4332 32-bit static shift register/LCD driver 109
MV5087 DTMF generator 113
MV5089 DTMF generator 119
MV8804 8×4 analog switch array 125
MV8860 DTMF decoder with 4-bit binary output 131
MV8865 DTMF filter 139
MV8870EXP DTMF receiver 145
MV9009EXP V21 modem TX/RX 153
Bipolar
SL650B,C Modulator/phase lock loop circuits for modems 159
SL651B,C Modulator/phase lock loop circuits for modems 159
SL652C Modulator/phase lock loop 163
SL8204 Telephone tone ringer 167
SL9009EXP Adaptive cancellation filter 171
SP1404BW High voltage interface circuit 175
D3702 High voltage interface circuit to BT Spec. 175
SP1450B 34Mbit/s PCM signal monitor 177
SP1450B(B) As SP1450B but screened to MIL-STD-883, Method 5004, Class B 177
SP1455B 140Mbit/s PCM signal monitor 177
SP1455B(B) As SP1455B but screened to MIL-STD-883, Method 5004, Class B 177EXP products are new designs designated 'Experimental' but which are, nevertheless, seriousdevelopment projects. Details given may, therefore, change without notice and no undertaking is givenor implied as to future availability. Please consult your local Plessey sales office for details of the currentstatus

Selection guide

TYPE NO. DESCRIPTION PAGE
NMOS PCM circuits
MJ1410 8 -bit format converter 17
MJ1440 HDB3 encoder/decoder 23
MJ1444 Time slot zero transmitter 29
MJ1445 Time slot zero receiver 33
MJ1446 Time slot access 37
MJ1471 AM1/HDB3 encoder/decoder 41
MJ1472 PCM receiving circuit 47
MJ1473 PCM transmitter circuit 51
MJ1474 PCM elastic store 55
CMOS PCM circuits
MV1441 HDB3 encoder/decoder/clock regenerator 75
MV1448 HDB3 encoder/decoder 81
MV3506 A-law codec with filter 87
MV3507 $\quad \mu$-law codec with filter 87
MV3507A $\quad \mu$-law codec with filter and A / B signalling 87
Telephone communications circuits SL8204
Tone ringer 167
SP1450B 34Mbit/s PCM signal monitor 177
SP1450B(B) As SP1450B but screened to MIL-STD-883, Method 5004, Class B 177
SP1455B 140Mbit/s PCM signal monitor 177
SP1455B(B) As SP1455B but screened to MIL-STD-883, Method 5004, Class B 177
Interface circuits
SP1404BW High voltage interface 175
D3702 High voltage interface (BT Spec.) 175
CMOS telephone dialling circuits - loop disconnect
MV4320 Keypad pulse dialler with M1 masking 99
MV4325 Programmable keypad pulse dialler with M1 masking 103
CMOS telephone dialling circuits - DTMF/MF4
MV5087 DTMF generator (Form A keypad) 113
MV5089 DTMF generator (active keypad) 119
MV8860 DTMF decoder with 4-bit binary output 131
MV8865 DTMF filter 139
MV8870EXP DTMF receiver (combined filter and decoder) 145
Signal processing and switching
MS2002EXP 256×256 digital switch module for CCITT 32-channel PCM 59
MS2014 Digital filter and detector (FAD) 67
MV8804 Bi-directional 8×4 analog switch array 124
Data transmission modems
MV9009EXP V21 modem RX/TX 153
SL9009EXP Adaptive cancellation filter 171
SL650B,C Modulator/PLL 159
SL651B,C Modulator/PLL 159
SL652C Modulator/PLL 163
CMOS interface circuits
MV4330 30-bit static shift register/LCD driver 109
MV4332 32-bit static shift register/LCD driver 109

The quality concept

In common with most semiconductor manufacturers, Plessey Semiconductors perform incoming piece parts check, in-line inspections and final electrical tests. However, quality cannot be inspected into a product; it is only by careful design and evaluation of materials, parts and processes - followed by strict control and ongoing assessment to ensure that design requirements are still being met - that quality products will be produced.

In line with this philosophy, all designs conform to standard layout rules (evolved with performance and reliability in mind), all processes are thoroughly evaluated before introduction and all new piece part designs and suppliers are investigated before authorisation for production use.

The same basic system of evaluation, appraisals and checks is used on all products up to and including device packing for shipment. It is only at this stage that extra operations are performed for certain customers in terms of lot qualification or release procedure.

By working to common procedures for materials and processes for all types of customers advantages accrue to all users - the high reliability user gains the advantage of scale hence improving the confidence factor in the quality achieved whilst the large scale user gains the benefits associated with basic high reliability design concepts.

Plessey Semiconductors have the following factory approvals. BS9300 and BS9400 (BSI Approval No. 1053/M).
DEF-STAN 05-21 (Reg. No. 23H POD).
In addition a number of U.S., European and British customers manufacturing electronics for space have approved our facilities.

Screening to BS9400

Plessey Hi-Rel screening

The following Screening Procedures are available from Plessey Semiconductors.

*Plessey Semiconductors reserve the right to change the Screening Procedure for Standard Products.

Semi-custom design

Plessey Semiconductors' advanced work in the Semi-Custom field enables us to offer our customers the opportunity to develop their own high performance circuits using our CLASSIC software. Among the many advantages are:

- CLASSIC is cost effective and user friendly • Prototypes in 6 weeks • Close coordination with customer throughout design and production process • State-of-the-art high performance produces • Up to 10044 gates available

Microgate-C (Si-Gate CMOS)

CLA 2000 SERIES

- Double layer metallisation
- 5 micron channel length
- Product family: CLA 21XX 840 Gates CLA 23XX 1400 Gates CLA 25XX 2400 Gates
- 7ns max. prop delay (2 input NAND fanout of 2 with 2 mm track $0-70^{\circ} \mathrm{C} 4.5-$ 5.5 V)
- 14 MHz system clock rate
- 30 MHz toggle rate
- Fully auto-routed

CLA 3000 SERIES

- Double layer metallisation
- 4 micron channel length
- Product family: CLA 31XX 840 Gates CLA 33XX 1440 Gates CLA35XX 2400 Gates CLA 37XX 4200 Gates CLA 39XX 6000 Gates
- 5ns max. prop delay
- 20 MHz system clock rate
- 50 MHz toggle rate
- Fully auto-routed

CLA 5000 SERIES

- Double layer metallisation
- 2 micron channel length
- Product family:

CLA 51XX 640 Gates CLA 52XX 1232 Gates CLA 53XX 2016 Gates CLA 54XX 3060 Gates CLA 55XX 4408 Gates CLA 56XX 5984 Gates CLA 58XX 8064 Gates CLA 59XX 10044 Gates

- 2.5ns max. prop delay
- 40 MHz system clock rate
- 100 MHz toggle rate
- Fully auto-routed

Plessey Megacell ${ }^{\text {TM }}$

Now there's a VLSI design system available that's perfect for solving your Application Specific Integrated Circuit (ASIC) problems. It's PLESSEY MEGACELL - a complete set of advanced computer-aided engineering and design tools coupled with an advanced CMOS process for implementing VLSI integrated circuits in the system design environment.

PLESSEY MEGACELL redefines semicustom integrated circuit design. It allows system engineers to design complex circuits with a high level of confidence of first time success in silicon - thanks to one of the best simulation facilities available in the world. This greatly reduces time to market, eliminating the many prototyping iterations that are all too common now in VLSI design.
PLESSEY MEGACELL is just about as close as you can get to achieving hand-crafted results short of full custom itself. System engineers can directly create their designs using the advanced layout and routing tools provided - without the aid of integrated circuit designers. So none of the system designers' application expertise is ever lost in transition, while chips of the smallest size and lowest production cost are regularly achieved.
Supporting the PLESSEY MEGACELL design capability is one of the most advanced CMOS processes available. It uses a 2-micron geometry capable of providing performance comparable with advanced Schottky TTL, with clock speeds to 40 MHz and toggle rates of 100 MHz achievable. And Plessey has established a 200,000 square foot dedicated processing facility to guarantee the manufacturing capacity required by even the most aggressive volume considerations.

PLESSEY MEGACELL is truly the gateway to the future - custom VLSI performance, with confidence of first time success and fast time to market. And it's going to stay that way - with Plessey's commitment to add future capabilities for high-speed ECL processes, 1 micron and submicron CMOS processes, and advanced analog capabilities.

Thermal design

The temperature of any semiconductor device has an important effect upon its long term reliability. For this reason, it is important to minimise the chip temperature; and in any case, the maximum junction temperature should not be exceeded.

Electrical power dissipated in any device is a source of heat. How quickly this heat can be dissipated is directly related to the rise in chip temperature: if the heat can only escape slowly, then the chip temperature will rise further than if the heat can escape quickly. To use an electrical analogy: energy from a constant voltage source can be drawn much faster by using a low resistance load than by using a high resistance load.
The thermal resistance to the flow of heat from the semiconductor junction to the ambient temperature air surrounding the package is made up of several elements. These are the thermal resistance of the junction-to-case, case-to-heatsink and heatsink-to-ambient interfaces. Of course, where no heatsink is used, the case-to-ambient thermal resistance is used.

These thermal resistances may be represented as

$$
\begin{aligned}
& \theta_{\mathrm{ia}}=\theta_{\mathrm{ic}}+\theta_{\mathrm{ch}}+\theta_{\mathrm{ha}} \\
& \text { where } \theta_{\mathrm{ja}} \text { is thermal resistance junction-to-ambient }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{jc}} \text { is thermal resistance junction-to-case }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{ch}} \text { is thermal resistance case-to-heatsink }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\text {nais }} \text { thermal resistance heatsink-to-ambient }{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

The temperature of the junction is also dependent upon the amount of power dissipated in the device - so the greater the power, the greater the temperature.
Just as Ohm's Law is applied in an electrical circuit, a similar relationship is applicable to heatsinks.

```
Tj = Tamb + Po ( }\mp@subsup{|}{\textrm{ja}}{\textrm{a}
Tj = junction temperature
Tamb = ambient temperature
PD = dissipated power
```

From this equation, junction temperature may be calculated, as in the following examples.

Example 1

A device is to be used at an ambient temperature of $+50^{\circ} \mathrm{C} . \theta_{\text {ja }}$ for the DG14 package with a chip of approximately 1 mm sq is $107^{\circ} \mathrm{C} / \mathrm{W}$. Assuming the datasheet for the device gives $\mathrm{PD}=$ 330 mW and $\mathrm{T}_{j} \max =175^{\circ} \mathrm{C}$.

$$
\begin{aligned}
T_{j} & =T_{a m b}+P_{D} \theta_{j a} \\
& =50+(0.33 \times 107) \\
& =85.31^{\circ} \mathrm{C} \text { (typ.) }
\end{aligned}
$$

Where operation in a higher ambient temperature is necessary, the maximum junction temperature can easily be exceeded unless suitable measures are taken:

Thermal design (cont'd)

Example 2

A device with $\mathrm{T}_{\text {amb }}$ max. $=+175^{\circ} \mathrm{C}$ is to be used at an ambient temperature of $+150^{\circ} \mathrm{C}$. Again, $\theta_{\mathrm{ja}}=107^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{P}_{\mathrm{D}}=330 \mathrm{~mW}$ and $\mathrm{T}_{\mathrm{j}} \max .=+175^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{j}} & =150+(0.33 \times 107) \\
& =+185.3^{\circ} \mathrm{C} \text { (typ.) }
\end{aligned}
$$

This clearly exceeds the maximum permissible junction temperature and therefore some means of decreasing the junction-to-ambient thermal resistance is required.

As stated earlier, θ_{ja} is the sum of the individual thermal resistances; of these, θ_{jc} is fixed by the design of device and package and so only the case-to-ambient thermal resistance, θ ca, can be reduced.

If θ_{ca}, and therefore θ_{ja} is reduced by the use of a suitable heatsink, then the maximum $\mathrm{T}_{\mathrm{amb}}$ can be increased:

Example 3

Assume that an IERC LIC14A2U dissipator and DC000080B retainer are used. This device is rated as providing a θ_{ja} of $55^{\circ} \mathrm{C} / \mathrm{W}$ for the DG14 package. Using this heatsink with the device operated as in Example 2 would result in a junction temperature given by:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{j}} & =150+(0.33 \times 55) \\
& =168^{\circ} \mathrm{C}
\end{aligned}
$$

Nevertheless, it should be noted that these calculations are not necessarily exact. This is because factors such as θ_{jc} may vary from device type to device type, and the efficacy of the heatsink may vary according to the air movement in the equipment.

In addition, the assumption has been made that chip temperature and junction temperature are the same thing. This is not strictly so, as not only can hot spots occur on the chip, but the thermal conductivity of silicon is a variable with temperature, and thus the θ_{jc} is in fact a function of chip temperature. Nevertheless, the method outlined above is a practical method which will give adequate answers for the design of equipment.

It is possible to improve the dissipating capability of the package by the use of heat dissipating bars under the package, and various proprietary items exist for this purpose.

Under certain circumstances, forced air cooling can become necessary, and although the simple approach outlined above is useful, more factors must be taken into account.

Technial data

MJ1410

8 BIT FORMAT CONVERTER

The MJ1410 is realised in N-channel MOS technology and operates from a single 5 V supply. The circuit can be clocked from d.c. up to 2.5 MHz and has 3 -state output buffers capable of driving two LSTTL loads. All inputs are TTL compatible.
The MJ1410 performs the complementary functions of serial-to-parallel and parallel-to-serial data conversion on 8 bits of data. Both these conversions are achieved using the same time-position matrix, which has eight inputs and eight outputs.
An 8-bit parallel word clocked into the eight inputs appears as a serial 8 -bit data stream on one of the eight outputs. Successive parallel words at the inputs appear as serial data streams on each of the eight outputs in turn.
Conversely, a serial 8-bit data stream on one of the eight inputs appears as an 8-bit parallel word on the eight outputs. Successive parallel words appearing at the eight outputs correspond to the serial data on each of the eight inputs in rotation.
The conversion can be 'programmed' to start in any register by setting the appropriate binary value on the counter pre-load inputs and applying a pulse to the Sync input. If the loading sequence produced by the counter is not required it can be disabled by connecting 'clock' to 'sync'. At each positive clock edge the register loaded will depend on the data on the counter inputs on the previous positive clock edge.

Fig. 1 Pin connections

FEATURES

FUNCTIONAL DESCRIPTION

Pin No.	Title	Function
1	H	Data i/p p)
2	G	Data i/p G
3	F	Data i/p F
4	E Data	Data i/p E $\}$ See Figs. 3 and 4
5	D $\}$ inputs	Data i/p D See Figs. 3 and 4
6	C	Data i/p C
7	B	Data i/p B
9	Vcc	Positive supply, $5 \mathrm{~V} \pm 5 \%$
10	2	Counter preset i/p bit 2 The counter is preset to the data on these i/ps
11	2	Counter preset i/p bit 1 d on the 3rd positive clock edge following a
12	2°	Counter preset i/p bit 0 年 negative edge on the 'sync' input.
13	SYNC	A negative edge on this $1 / p$ initiates the counter preset sequence which causes the conversion cycle to start in the register which corresponds to the binary value of the counter preset i / ps.
14	ClOCK	System clock
15	GND	Zero volts
16	0	Three state data 0/p 00 ')
17	1	Three state data o/p '1'
18	2	
19 20	$\left.\begin{array}{l}3 \\ 4\end{array}\right\} \begin{aligned} & \text { Data } \\ & \text { Outputs }\end{aligned}$	Three state data o/p 3^{\prime} ' $\left.{ }^{\text {Three state data } 0 / \mathrm{p}^{\prime} 4^{\prime}}\right\} \quad$ See Figs. 3 and 4
21	5 Outputs	Three state data o/p ${ }^{\text {c }}$
22	6	Three state data o/p '6'
23	7 7	Three state data $0 / \mathrm{p}{ }^{\prime} 7$ '
24	O/PEN	A logic ' 1 ' on this i / p forces all the data outputs to a high impedance state.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Vcc $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, Test circuit: Fig. 6.
Supply voltage Vcc $5 \mathrm{~V} \pm 10 \%$
Ambient operating temperature $\mathrm{Tamb}-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
STATIC CHARACTERISTICS

DYNAMIC CHARACTERISTICS

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Max.clock frequency	$F_{\text {max }}$.	2.4		10	MHz	
Min. clock frequency	$F_{\text {min }}$	0			MHz	
Sync. pulse width (positive)	tspp	60			ns	Fig. 6
Sync. pulse width (negative)	tspN	100			ns	Fig. 6
Lead of sync. clocking edge on positive clock edge	tst	130			ns	Fig. 6
Set up time of counter inputs ($2^{0}, 2^{1}, 2^{2}$)	tsc	70			ns	Fig. 6
Hold time of counter inputs	the	60			ns	Fig. 6
Set up time of data inputs (A-H)	tso	80			ns	Fig. 6

DYNAMIC CHARACTERISTICS

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Hold time of data inputs	tho	85			ns	Fig. 6
Propagation delay, data out valid from output ENABLE Iow	tpoe			100	ns	Fig. 6
Propagation delay, data out disabled from output ENABLE high	tpod			100	ns	Fig. 6
Propagation delay, clock to data out valid	tpco			200	ns	Fig. 6

Fig. 2 Block diagram

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin w.r.t. ground $=7 \mathrm{~V}$ max.
Storage temperature $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 3 Data conversion

Fig. 4 Input and output waveforms

Fig. 6 Test conditions

MJ1410

2 MBIT PCM SIGNALLING CIRCUIT MJ 1440 HDB3 ENCODER/DECODER

The 2.048 MBit PCM Signalling Circuits comprise a group of circuits which will perform the common signalling and error detection functions for a 2.048 MBit PCM transmission link operating to the appropriate CCITT recommendations. The circuits are fabricated in N -channel metal gate MOS and operate from a single 5 volt supply, relevant inputs and outputs are TTL compatible.
The MJ1440 is an encoder/decoder for the pseudoternary transmission code, HDB3 (CCITT Orange Book Vol III. 2 Annex to Rec. G703). The device encodes and decodes simultaneously and asynchronously. Error monitoring functions are provided to detect violations of HDB3 coding, all ones detection and loss of input (all zeroes detection). In addition a loop back function is provided for terminal testing.

FEATURES

$5 v \pm 5 \%$ Supply - 50 mA Max HDB3 Encoding and Decoding to CCITT rec. G703.

- Asynchronous Operation.
- Simultaneous Encoding and Decoding.
- Clock Recovery Signal Generated from Incoming HDB3 Data.
- Loop Back Control.
- HDB3 Error Monitor
- 'All Ones' Error Monitor
- Loss of Input Alarm (All Zeros Detector).
- Decode Data in NRZ Form.

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings

+ Vcc	7 V
Inputs	$\mathrm{Vcc}+0.5 \mathrm{~V}$ Gnd -0.3 V
Outputs	Vcc, Gnd -0.3 V

Inputs
Outputs
$\mathrm{Vcc}+0.5 \mathrm{~V}$ Gnd -0.3 V
Vcc , Gnd -0.3 V

Thermal Ratings

Max Junction Temperature $175^{\circ} \mathrm{C}$
Thermal Resistance: Chip to Case $40^{\circ} \mathrm{C} /$ Watt

Fig. 1 Pin connections

Fig. 2 Block diagram

MJ1440

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient temperature, $\mathrm{T}_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Static characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min	Typ	Max		
Low level input voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V	
Low level input current	$\mathrm{I}_{1 /}$	$\left\{\begin{array}{l}1,2,5,6 \\ 10,11,12,13\end{array}\right.$			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
High level input voltage	$\mathrm{V}_{1 H}$		2.5		V_{cc}	V	
High level input current	I_{IH}				50	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H}}=5 \mathrm{~V}$
Low level output voltage	V_{OL}	$\begin{aligned} & 10,14,15 \\ & 3,4,7,9 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	v	$\begin{aligned} & \text { Isink }=80 \mu \mathrm{~A} \\ & \text { Isink }=1.6 \mathrm{~mA} \end{aligned}$
High level output voltage	V_{OH}	$\begin{aligned} & 3,4,7,9 \\ & 14,15 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.8 \\ & 2.8 \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \text { Isource }=60 \mu \mathrm{~A} \\ & \text { Isource }=2 \mathrm{~mA} \\ & \text { Isource }=1 \mathrm{~mA} \end{aligned}$
Supply current	$I_{\text {cc }}$			20	50	mA	All inputs to $0 V$ All outputs open circuit

Dynamic Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. Clock (Encoder) frequency	$\mathrm{fmax}_{\text {enc }}$	4.0			MHz	Figs.10, 15
Max. Clock (Decoder) frequency	$\mathrm{fmax}_{\text {dec }}$	2.2			MHz	Figs.11, 15
Propagation delay Clock (Encoder) to $\mathrm{O}_{1}, \mathrm{O}_{2}$	tpd1A/B			100	ns	Figs.10, 15. See Note 1
Rise and Fall times $\mathrm{O}_{1}, \mathrm{O}_{2}$				20	ns	Figs.10, 15
tpd1A.tpd1B				20	ns	Figs.10, 15
Propagation delay Clock (Encoder) to Clock	tpd3			150	ns	Loop test enable $=$ Figs.13, 15
Setup time of NRZ data in to Clock (Encoder)	ts3	30			ns	Figs.8, 10, 15
Hold time of NRZ data in	th3	55			ns	Figs.10, 15
Propagation delay $\mathrm{A}_{\text {in }}, \mathrm{B}_{\text {in }}$ to Clock	tpd2			150	ns	Loop test enable $=$ ' 0 ' Figs.9, 13, 15
Propagation delay Clock (Decoder) to loss of input				150	ns	
Propagation delay Clock (Decoder) to error	tpd4			200	ns	Figs.12, 15
Propagation delay Reset AIS to AIS	tpd5			200	ns	Loop test enable $=$ ' 0 ' Figs.14, 15
Propagation delay Clock (Decoder) to NRZ data out	tpd6			150	ns	Figs.9, 11, 15. See Note 2
Setup time of $A_{\text {in }}, B_{\text {in }}$ to Clock (Decoder)	ts1	75			ns	Figs.9, 11, 15
Hold time of $\mathrm{A}_{\text {in }}, \mathrm{B}_{\text {in }}$ to Clock (Decoder)	th1	5			ns	Figs.9, 11, 15
Hold time of Reset AIS $={ }^{\prime} 0$	th2	100			ns	Figs.9, 14, 15
Setup time Clock (Decoder) to Reset AIS	ts2	200			ns	Figs.9, 14, 15
Setup time Reset AIS $=1$ to Clock (Decoder)	ts2	0			ns	Figs.14, 15

NOTES

1. Encoded HDB3 outputs ($\mathrm{O}_{1}, \mathrm{O}_{2}$) are delayed by $31 / 2$ clock periods from NRZ data in (Fig.3).
2. The decoded NRZ output is delayed by 3 clock periods from the HDB3 inputs (Ain, Bin) (Fig.4).

FUNCTIONAL DESCRIPTION

Functions Listed by pin number

1. NRZ Data in

Input data for encoding into ternary HDB3 form. The NRZ data is clocked by the negative edge of the Clock (Encoder).

2. Clock (Encoder)

Clock for encoding data on pin 1
3. Loss of input alarm

This output goes to logic ' 1 ' if eleven consecutive zeroes are detected in the incoming HDB3 data. The output is set to logic ' 0 ' on receipt of a ' 1 '.

4. NRZ data out

Decoded data in NRZ form from ternary HDB3 input data $\left(\mathrm{A}_{\mathrm{in}} \mathrm{B}_{\mathrm{in}}\right)$, data is clocked out by positive going edge of clock (Decoder).

5. Clock (Decoder)

Clock for decoding ternary data $A_{\text {in }}, B_{i n}$.

6, 7. Reset AIS, AIS

Logic ' 0 ' on Reset AIS resets a decoded zero counter and either resets AIS outputs to zero provided 3 or more zeroes have been decoded in the preceding Reset AIS $=1$ period or sets AIS to ' 1 ' if less than 3 zeroes have been decoded in the preceding two Reset AIS $=1$ periods.

Logic ' 1 ' on Reset AIS enables the internal decoded zero counter.
8. Ground

Zero volts

9. Error

A logic ' 1 ' indicates that a violation of the HDB3 coding has been received i.e. 3 ' 1 's of the same polarity.
10. Clock
'OR' function of $\overline{\mathrm{A}_{\text {in }}}, \overline{\mathrm{B}_{\text {in }}}$ for clock regeneration when pin $12=$ ' O^{\prime} ', OR' function of O_{1}, O_{2} when pin $12=$ ' 1 '.
11,13. $\overline{\mathbf{A}}_{n}, \bar{B}^{n}$
Inputs representing the received ternary HDB3 PCM signal. $\overline{A_{i n}}=$ ' 0 ' represents a positive going ' 1 ', $\overline{B_{\text {in }}}=$ ' 0 ' represents a negative going ' 1 '. A_{in} and \bar{B}_{in} are sampled by the positive going edge of the Clock (Decoder). $\overline{\mathrm{A}_{\text {in }}}$ and $\overline{\mathrm{B}_{\text {in }}}$ may be interchanged.

12. Loop test enable

Input to select normal or loop back operation. Pin $12=$ ' 0 ' selects normal operation, encode and decode are independent and asynchronous. When pin $12=$ ' 1 ' O_{1} is connected internally to $\mathrm{A}_{\mathrm{in}} . \mathrm{O}_{2}$ is connected internally to B_{in}. Clock becomes the OR function $\mathrm{O}_{1}+\mathrm{O}_{2}$. The delay from NRZ in to NRZ out is $6 \frac{1}{2}$ clock periods in the loop back condition.
14, 15. $\mathrm{O}_{1}, \mathrm{O}_{2}$
Outputs representing the ternary encoded data for line transmission $\mathrm{O}_{1}={ }^{\prime} 1$ 'representing a positive going ' 1 ', $\mathrm{O}_{2}=$ ' 1 ' represents a negative going ' 1 '. O, and O_{2} may be interchanged.
16. V_{cc}

Positive supply, $5 \mathrm{~V} \pm 5 \%$

Fig. 3 Encode waveforms

Fig. 4 Decode waveforms

Fig. 5 HDB3 error output waveforms

Fig. 6 AlS error and reset waveforms

Fig. 7 Loss of input waveforms

Fig. 8 Encoder timing relationship

Fig. 9 Decoder timing relationship

Fig. 10

Fig. 12

Fig. 14

DEFINITION OF THE HDB3 CODE

Coding of a binary signal into an HDB3 signal is done according to the following rules:

1. The HDB3 signal is psuedo-ternary; the three states are denoted $\mathrm{B}_{+}, \mathrm{B}_{-}$and O .
2. Spaces in the binary signal are coded as spaces in the HDB3 signal. For strings of four spaces however, special rules apply (see 4. below).
3. Marks in the binary signal are coded alternately as \mathbf{B}_{+} and B_{-}in the HDB3 signal (alternate mark inversion). Violations of the rule of alternate mark inversion are introduced when coding strings of four spaces (see 4. below).
4. Strings of four spaces in the binary signal are coded according to the following rules:
a The first space of a string is coded as a space if the

Fig. 11

Fig. 13

Fig. 15 Test timing definitions

preceding mark of the HDB3 signal has a polarity opposite to the polarity of the preceding violation and is not a violation by itself; it is coded as a mark, i.e. not a violation (i.e. B_{+}, B_{-}), if the preceding mark of the HDB3 signal has the same polarity as that of the preceding violation or is by itself a violation.
This rule ensures that successive violations are of alternative polarity so that no DC component is introduced.
b The second and third spaces of a string are always coded as spaces.
c The last space of a string of four is always coded as a mark, the polarity of which is such that it violates the rule of alternate mark inversion. Such violations are denoted V_{+}or V_{-}according to their polarity.

MJ1440

2 MBIT PCM SIGNALLING CIRCUIT MJ 1444
 PCM SYNCHRONISING WORD GENERATOR

The 2.048 Mbit PCM signalling circuits comprise a group of circuits which will perform the common signalling and error detection functions for a 2.048 Mbit 30 channel PCM transmission link operating to the appropriate CCITT recommendations. The circuits are fabricated in N -channel metal gate MOS and operate from a single 5 volt supply. Relevant inputs and outputs are TTL compatible.

The MJ1444 generates the synchronising word in accordance with CCITT recommendations G732. The MJ1445 has been designed to detect this synchronising word when received at the remote end of the transmission system.

The synchronising word is injected onto the PCM data highway during time slot 0 in alternate frames. The spare time slot 0 data bits, bit 1 in every frame and bits 3 to 8 inclusive in alternate frames (i.e. those not containing the synchronising word) are available as parallel inputs and are output onto the PCM data highway.

The data output of the MJ1444 is 'open collector' and can be wire-OR'd directly onto the highway.

The device also provides a time slot 0 channel pulse 'TSO', time slot 0 non-sync. frame 'TSO $\overline{\text { SF }}$ ', and time slot 16 'TS16' outputs.

FEATURES

$5 \mathrm{~V} \pm 5 \%$ Supply - 20 mA Typical
Fully Conforms to CCITT Recommendation G732

- Outputs Directly Onto PCM Data Highway
- Provides Both Time Slot 0 and Time Slot 16 Channel Pulses
- All Inputs and Outputs are TTL Compatible

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings

+Vcc	7 V
inputs	$\mathrm{VCc}+0.5 \mathrm{~V}$ Gnd -0.3 V
Outputs	Vcc, Gnd -0.3 V

Thermal Ratings
Max Junction Temperature $175^{\circ} \mathrm{C}$
Thermal Resistance: Chip to Case
Chip to Amb $120^{\circ} \mathrm{C} /$ Watt

Fig. 2 MJ1444 block diagram

MJ1444

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient operating temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Static Characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min.	Typ.	Max.		
Low level input voltage	$V_{\text {IL }}$	$\begin{gathered} 1,2,3,4,5 \\ 7,11,12,13 \\ 14 . \end{gathered}$	-0.3		0.8	V	
Low level input current High level input current $\}$	$\mathrm{I}_{\text {N }}$	11		1	50	$\mu \mathrm{A}$	
High level input voltage	V_{IH}	11	2.4		V_{cc}		
Low level output voltage	$V_{\text {OL }}$	$\begin{gathered} 6,9,15 \\ 10 \end{gathered}$			$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	V	$\begin{aligned} & I_{\text {sink }}=2 \mathrm{~mA} \\ & I_{\text {sink }}=5 \mathrm{~mA} \end{aligned}$
High level output voltage	V_{OH}	6, 9, 15	2.8			V	$\mathrm{I}_{\text {source }}=200 \mu \mathrm{~A}$
High level output leakage current	$\mathrm{IOH}_{\mathrm{OH}}$	10			20	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
Supply current	I_{cc}			20	40	mA	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$

Dynamic Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Max clock frequency	$F_{\text {max }}$	3			MHz	
Propagation delay, clock to TS0, TSO $\overline{\mathrm{SF}}, \mathrm{TS} 16$ and combined data outputs.	t_{p}	80		200	ns	See Figs. 5 and 6
Set up time channel reset to clock	$\mathrm{T}_{\mathrm{s} 1}$	100		450	ns	$\mathrm{f}_{\text {clock }}=2.048 \mathrm{MHz}$
Hold time of channel reset input	$t_{\text {H1 }}$	20		400	ns	
Set up time of bit 1 (SF) to datum B	$\mathrm{t}_{\text {s2 }}$	100			ns	
Hold time of bit 1 (SF) wrt datum B	$t_{\text {H2 }}$	300			ns	
Set up time of bit $1(\overline{S F})$ and data bits $3-8$ to datum B	$\mathrm{t}_{\text {s2 }}$	100			ns	
Hold time of bit $1(\overline{S F})$ and data bits $3-8$ wrt datum B	$\mathrm{t}_{\mathrm{H} 2}$	300			ns	

Fig. 3 Data timing

FUNCTIONAL DESCRIPTION

Functions Listed by pin number

1, 2, 5, 7, 13, 14. 8its 3 to 8

Parallel data on these inputs is asynchronously loaded into bits 3 to 8 of the PISO shift register for transmission during Time slot 0 of non-sync. frames.

3. Channel Reset

A low going pulse at this input synchronises the MJ1444 with the other devices at the transmit end of the PCM link. It may be applied as a start pulse or repeated at the same instant in successive frames.

4. Clock

System clock input (2.048 MHz for a 2 Mbit PCM system).
6. TS16

This output provides a positive pulse equivalent to 8 clock periods during time slot 16 of every $30+2$ channel PCM frame.

8. GND

Zero volts.

9. $\mathrm{TSO} \overline{\mathrm{SF}}$

This output provides a positive pulse equivalent to 8 clock periods during time slot 0 of non-sync. frames.

Fig. 4 Sync. timing

10. Combined data

This 'open collector' output injects the contents of the PISO shift register onto the PCM data highway during time slot 0 in successive frames. The contents of the PISO shift register are defined as follows:

	Silt 1	2	3	4	5	6	7	8
Sync. Frame	X	0	0	1	1	0	1	1
Non-sync. frame	X	1	X	X	X	X	X	X

X-indicates that these bits may be set according to the parallel data inputs.

11. Bit 1 SF

Data on this input is asynchronously loaded into bit 1 of the PISO shift register for transmission during time slot 0 of sync. frames.

12. Bit $1 \overline{\mathrm{SF}}$

Data on this input is asynchronously loaded into bit 1 of the PISO shift register for transmission during time slot 0 of non-sync. frames.
15. TSO

This output provides a positive pulse equivalent to 8 clock period during time slot 0 of every 30 channel PCM frame.
16. V_{cc}

Positive supply, $5 \mathrm{~V} \pm 5 \%$.

Fig. 5 Test conditions (all outputs)

MJ1444

PCM SYNCHRONISING WORD RECEIVER
 MJ1445

 2 MBIT PCM SIGNALLING CIRCUIT

 2 MBIT PCM SIGNALLING CIRCUIT}

The 2.048 Mbit PCM signalling circuits comprise a group of circuits which will perform the common signalling and error detection functions for a 2.048 MBii 30 channel PCM transmission link operating to the appropriate CCITT recommendations. The circuits are fabricated in N -channel metal gate MOS and operate from a single 5 volt supply. Relevant inputs and outputs are TTL compatible.

The MJ1445 establishes synchronisation by detecting the synchronising word when it is received at the remote end of the transmission system. The MJ1444 has been designed to generate this synchronisation word at the sending end of the system in accordance with CCITT recommendation G732.

Corruption of individual synchronisation words is signified by an 'Error' output, loss of synchronisation is indicated by a 'Sync Alarm' output and follows CCITT G732 in that loss of synchronism is assumed when 3 consecutive synchronisation words have been received with errors.

The 'Channel Reset' output goes low for the first period of the clock after time slot 0 in sync frames whenever the MJ1445 has established that the receiver terminal is in synchronisation in order that the rest of the receiver terminal may be reset.

The 'TSO'output is high for a period of 8 bits starting from the end of the first bit of the synchronising word. The spare data bits from the synchronising word are provided as parallel outputs.

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings

+ Vcc	$7 V$
Inputs	Vcc $+0.5 V$ Gnd $-0.3 V$
Outputs	Vcc, Gnd -0.3 V

Thermal Ratings

Max Junction Temperature $175^{\circ} \mathrm{C}$
Thermal Resistance: Chip to Case
Chip to Amb. $120^{\circ} \mathrm{C} /$ Watt

Fig. 1 Pin connections

FEATURES

- $5 \mathrm{~V} \pm 5 \%$ Supply - 20 mA Typical.
- Conforms to CCITT Recommendation G732
- Synchronising Word Error Monitor
- Out of Sync. Alarm
- All Inputs and Outputs are TTL Compatible

Fig. 2 Block diagram MJ1445

ELECTRICAL CHARACTERISTICS

Test conditions (uniess otherwise stated):
Supply voltage, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient temperature, $\mathrm{T}_{\text {amb }}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Static Characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min.	Typ.	Max.		
Low level input voltage	V_{IL}	4,7	-0.3		0.8	V	
Low level input current \} High level input current \}	$\mathrm{I}_{\mathbf{N}}$	4,7		1	50	$\mu \mathrm{A}$	
High level input voltage	V_{iH}	4,7	2.4		$v_{\text {cc }}$	V	
Low level output voltage	$V_{\text {OL }}$	$\begin{gathered} 1,2,3,5,6 \\ 9,10,11,12 \\ 13,14,15 \end{gathered}$			0.5	V	$\mathrm{I}_{\text {sink }}=2 \mathrm{~mA}$
High level output voltage Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{CC}} \end{aligned}$		2.8	20	40	mA	$\begin{aligned} & I_{\text {source }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$

Dynamic Charactoristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. clock frequency	$\mathrm{f}_{\text {max }}$	2.2			MHz	
Input delay of data input	td data	20		200	ns	$\mathrm{fclock}=2.048 \mathrm{MHz}$
Propagation delay, clock to TSO output	ta TSo	40		200	ns	Fig. 3
Propagation delay clock to error output, sync alarm and CH . Reset output high	td	50		400	ns	Fig. 3
Propagation delay, clock to CH .	t_{p}	100		450	ns	Fig. 3
Reset output low ($\mathrm{T}-\mathrm{t}_{\mathrm{p}}$) Propagation delay clock to spare bits	td SB	50		300	ns	Fig. 3

Fig. 3 Test conditions, all outputs

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. Blt 1 SF

This output is set to the level of data bit 1 during time slot 0 of non sync frames. The data becomes true on the first falling edge of the clock during TS1.

2. Blt SF

This output is set to the level of data bit 1 during time slot 0 of sync frames. The data becomes true on the first falling edge of the clock during TS1.

3. TSO

This output provides a positive pulse of 8 clock periods in every frame starting from the end of the first bit of the synchronising word of the received data.

4. Clock

System clock input (2.048 MHz for a 2 MBit PCM system).
5.Error

This output goes high at the end of time slot 0 in the 2 nd sync frame following the frame with sync word errors. If consecutive sync words occur with errors this output will remain high. If a sync alarm is generated this output will remain high until sync is regained.

6. Sync Alarm

This output goes high at the end of time slot 0 output in the 3rd consecutive sync frame containing sync word errors. It returns low at the end of TSO output in the 3rd consecutive frame received correctly (sync and non sync).

7. Data Input

Serial data ($2 \mathrm{MBit} / \mathrm{s}$) at this input is clocked through the SIPO shift register and examined by the sync word detector.

8. GND

Zero volts

$9,10,11,12,14,15$. Bits 3 to 8

These parallel outputs are set to the level of the spare data bits (3 to 8) of time slot 0 of non sync frames. The data becomes true on the first falling edge of the clock during TS1.

13. Channel reset

This output goes low for the first period of the clock after time slot 0 of the received data as long as synchronisation has been established. This pulse can be used to reset the rest of the receiver terminal.
16. $V_{c c}$

Positive supply $5 \mathrm{~V} \pm 5 \%$.

Fig. 4 Timing diagram and output waveforms

MJ1445

2 MBIT PCM SIGNALLING CIRCUIT MJ1446
 TIME SLOT 16 RECEIVER AND TRANSMITTER

The 2.048 Mbit PCM signalling circuits comprise a group of circuits which will perform the common signalling and error detection functions for a 2.048 Mbit 30 channel PCM transmission link operating to the appropriate CCITT recommendations. The circuits are fabricated in N -channel metal gate MOS and operate from a single 5volt supply. Relevant inputs and outputs are TLL compatible.

The MJ1446 has two modes of operation dependent on the state of the mode control input. With the mode control high the device is in the transmit mode and with the mode control low the device is in the receive mode.

In the transmit mode the device accepts 64 k bits/sec signalling information in either binary or AMI format and outputs it at $2 \mathrm{Mbits} / \mathrm{sec}$ on to the digital highway during time slot 16.

In the receive mode the device accepts $2 \mathrm{Mbit} / \mathrm{sec}$ information from the digital highway, during time slot 16 and output is at $64 \mathrm{kbits} / \mathrm{sec}$ in both binary and AMI format.

In both receive and transmit mode there is an AMI coded clock output, AMI output and $\overline{\text { AMI output which }}$ conforms to CCITT recommendation no G372 for a 64 k bits $/ \mathrm{sec}$ contradirectional interface. The alarm inhibit input causes the 8 kHz timing signal to be removed from the AMI clock output.

The device is reset in both modes by a time slot 16 channel pulse and the alarm output provides an indication that the internal counter is operating correctly.

Also provided are $64 \mathrm{kHz}, 16 \mathrm{kHz}$ and 8 kHz clock outputs.

Fig. 1 Pin connections

FEATURES

- $5 \mathrm{~V} \pm 5 \%$ Supply - 20 mA Typical
- Conforms to CCITT Recommendations
- Provides Both AMI and Binary Format Data Outputs
- Single Chip Receive or Transmit
- All Inputs and Outputs are TL Compatible.

Fig. 2 Block diagram

MJ1446

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient temperature $\mathrm{T}_{\mathrm{amb}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Static Characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min.	Typ.	Max.		
Low level input voltage	$V_{\text {IL }}$	$\begin{gathered} 3,4,7,9,11 \\ 12,13,14 \end{gathered}$	-0.3		0.8	V	
Low level input current High level input current	$\mathrm{I}_{\text {IN }}$	11		1	50	$\mu \mathrm{A}$	
High level input voltage	V_{IH}	11	2.4		V_{cc}	\checkmark	
Low level output	V_{OL}	$\begin{gathered} 1,2,5,6,7 \\ 9,10,11,15 \\ 12 \end{gathered}$			0.5 0.5	V	$\begin{aligned} & \mathrm{I}_{\text {sink }}=2 \mathrm{~mA} \\ & \mathrm{I}_{\text {sink }}=5 \mathrm{~mA} \end{aligned}$
High level output voltage	V_{OH}	$\begin{gathered} 1,2,10,5,6 \\ 15 \end{gathered}$	2.8			V	$\mathrm{I}_{\text {source }}=200 \mu \mathrm{~A}$
High level output leakage current	I_{CH}	7, 9, 11, 12			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Supply current	$I_{\text {cc }}$			20		mA	$V_{C C}=5.25 \mathrm{~V}$

Dynamic Characteristics ($\mathbf{f}_{\text {clock }}=\mathbf{2 . 0 4 8} \mathbf{~ M H z}$)

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Propogation delay clock to data out to digital highway	t_{p}	20		200	ns	Fig.7
Propogation delay clock to 64 kHz out	t_{p}	20		200	ns	Fig. 7
Input delay, clock to digital highway access	$\mathrm{t}_{\mathrm{d} \text { DATA }}$	20		200	ns	
Input delay, clock to time slot 16	$\mathrm{t}_{\mathrm{dTS} 16}$	80		200	ns	
Output delay 64 kHz to 16 kHz output	$\mathrm{t}_{\mathrm{p} 16}$			70	ns	Fig.7
Output delay, 64 kHz to 8 kHz output			170	ns	Fig.7	
Output delay, 64 kHz to binary data output $(64 \mathrm{kHz})$	$\mathrm{t}_{\mathrm{p} 8 \mathrm{BIN}}$	20		450	ns	Fig.8
Output delay 64 kHz to AMI, AMI, AMI data \&	$\mathrm{t}_{\mathrm{pAMI}}$	20		400	ns	Fig.8
AMI data o/p's			100	ns		
Input delay, 64 kHz to binary data in $(64 \mathrm{kHz})$	$\mathrm{t}_{\mathrm{dBIN}}$			100		

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1.8 kHz

8 kHz square wave output.
2. 16 kHz

16 kHz square wave output.
3. Clock

System clock input (2.048 MHz for a 2Mbit PCM system)
4. Alarm inhibit

A high level on this input inhibits the 8 kHz timing signal on the AMI clock outputs.
5. AMI output

Alternative Mark Inversion coded 64 kHz .
6. AMI output
7. AMI Data in/out

In the transmit mode 64 kHz signalling data in AMI format is accepted at these inputs for output to PCM highway during time slot 16 .

8. GND

Zero volts.

9. AMI Data in/out

In the receive mode data accepted from the PCM highway during time slot 16 appears on these outputs at $64 \mathrm{kbits} / \mathrm{sec}$ in AMI format.

10.64 kHz

64 kHz square wave output.

11. Binary data in/out

In the transmit mode 64 k bit/sec signalling data in binary form is accepted at this input for output to the PCM data highway during time slot 16. In the receive mode data is accepted from the PCM highway during TS16 and appears at this output at $64 \mathrm{kbits} / \mathrm{sec}$ in binary format.

12. Digital Highway access in/out

In the receive mode $2 \mathrm{Mbit} / \mathrm{sec}$ signalling data is accepted at this input during time slot 16 from the PCM digital highway. In the transmit mode signalling data is output to the PCM digital highway during time slot 16 at 2Mbits/sec.

13. Mode control

A high level on this input causes the MJ1446 to operate in the transmit mode while a low level causes it to operate in the receive mode.

14. TS16

This input should be connected to time slot 16 channel pulse of the PCM system to synchronise the MJ1446 with the rest of the system.
15. Alarm output

A high level on this output indicates that the internal counter has stopped or is out of synchronisation with the time slot 16 channel pulse.
16 V cc
Positive supply $5 \mathrm{~V} \pm 5 \%$.

Fig. 3 2MBit/s operation

Fig. 4 64kBit/s operation

Fig. 5 Timing diagram

MJ1446

Fig. 6 Timing diagram

Fig. 7 Test conditions (transmit mode)

Fig. 8 Test conditions (receive mode)

2 MBIT PCM SIGNALLING CIRCUIT MJ1471
 HDB3 OR AMI ENCODER/DECODER

The MJ1471 is an encoder/decoder for pseudo-ternary transmission codes. The codes are true Alternate Mark Inversion (AMI) or AMI modified according to HDB3 rules (CCITT Orange Book Vol 111-2, Annex to Rec.G703). The device encodes and decodes simultaneously and asynchronously. Error monitoring functions are provided to detect violations of HDB3 coding and all ones detection (AIS). In addition a loop test function is provided for terminal testing.

FUNCTIONS

$5 \mathrm{~V} \pm 5 \%$ Supply - 40 mA Max.
AMI or HDB3 Operation -TTL Selectable
Loop Back Facility
'All Ones' Error Monitor to Detect Loss of
Synchronising Word (Time Slot Zero)
Error Monitor of HDB3 Incoming Code
Decoded Data in NRZ Form

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. NRZ data in

Input data for encoding into ternary form. The data is clocked by the negative-going edge of the Clock (Encoder).
2. Clock (Encoder)

Clock for encoding data on pin 1.

3. AMI/HDB3

MJ1471 operates in HDB3 if pin 3 is at logic ' 1 '. AMI If pin 3 is at logic ' 0 '.

4. NRZ Data out

Decoded data from ternary inputs $A_{i n}, B_{i n}$.
5. Clock (Decoder)

Clock for decoding ternary data $A_{\text {in }}, B_{\text {in }}$.

6, 7. Reset AIS, AIS

Logic ' 0 ' on Reset AIS resets a decoded zero counter and either resets AIS outputs to zero provided 3 or more zeroes have been decoded in the preceding Reset AIS = 1 period or sets AIS to ' 1 ' if less than 3 zeroes have been decoded in the preceding two Reset AIS $=1$ periods.

Logic ' 1 ' on Reset AIS enables the internal decoded zero counter.
8. Ground

Zero volts.

9. Error

A logic ' 1 ' indicates that a violation of the HDB3 encoding law has been decoded lie. 3 ' 1 's of the same polarity.

Fig. 1 Pin connections
10. Clock

OR function of $A_{1 n}, B_{\text {in }}$ for clock regeneration when pin $12=$ ' 0 ', OR function of O, O_{2} when pin $12=$ ' 1 '. 11, 13. $A_{1!}, B_{11}$

Inputs representing the received ternary PCM signal. $A_{\text {in }}$ $=$ ' 1 ' represents a positive going ' 1 ', $\mathrm{B}_{\text {in }}=$ ' 1 ' represents a negative going ' 1 '. $\mathrm{A}_{\text {in }}$ and $\mathrm{B}_{\text {in }}$ are sampled by the positive going edge of the clock decoder. $\mathrm{A}_{\text {in }}$ and $\mathrm{B}_{\text {in }}$ may be interchanged.

12. Loop test enable

TTL input to select normal or loop back operation. Pin 12 = ' 0 ' selects normal operation, encode and decode are independent and asynchronous.

When pin $12=$ ' 1 ' $O_{\text {, }}$ is connected internally to $\mathrm{A}_{\text {in }}$ and O_{2} to $\mathrm{B}_{\text {in }}$. Clock becomes the OR function of $\mathrm{O}_{1} \mathrm{O}_{2}$. N.B. a decode clock has to be supplied. The delay from NRZ in to NRZ out is $7 \frac{1}{2}$ clock periods in loop back.
14,15, $\mathrm{O}_{1}, \mathrm{O}_{2}$
Outputs representing the ternary encoded PCM AMI/HDB3 signal for line transmission. O_{1} and O_{2} are in Return to zero form and are clocked out on the positive going edge of the encode clock. The length of O, and O_{2} pulses is set by the positive clock pulse length. 16. $+V_{c c}$

Positive $5 \mathrm{~V} \pm 5 \%$ supply.

MJ1471

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient temperature $\mathrm{T}_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Static Characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min	Typ	Max		
Low level input voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	volts	
Low level input current	IIL	$\left\{\begin{array}{l}1,2,3,5,6 \\ 10,11,12,13\end{array}\right.$			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
High level input voltage	$\mathrm{V}_{\text {iH }}$	10,11,12,13	2.5		V_{cc}	\checkmark	
High level input current	$I_{1 H}$				50	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H}}=5 \mathrm{~V}$
Low level output voltage	V_{OL}	$\begin{aligned} & 10,14,15 \\ & 4,7,9 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \text { Isink }=800 \mu \mathrm{~A} \\ & \text { Isink }=1.6 \mathrm{~mA} \end{aligned}$
High level output voltage	V_{OH}	$\begin{array}{\|l} 4,7,9 \\ 14,15 \\ 10 \end{array}$	$\begin{aligned} & 2.7 \\ & 2.8 \\ & 2.8 \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \text { Isource }=60 \mu \mathrm{~A} \\ & \text { Isource }=2 \mathrm{~mA} \\ & \text { Isource }=1 \mathrm{~mA} \end{aligned}$
Supply current	$I_{\text {cc }}$			20	40	mA	All inputs to 0 V All outputs open circuit

Dynamic Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. Clock (Encoder) frequency	$\mathrm{fmax}_{\text {enc }}$	4.0			MHz	Figs.9, 14
Max. Clock (Decoder) frequency	f max $_{\text {dec }}$	2.2			MHz	Figs.10, 14
Propagation delay Clock (Encoder) to $\mathrm{O}_{1}, \mathrm{O}_{2}$	tpd1A/B			100	ns	Figs.8, 9, 14. See Note 1
Rise and Fall times $\mathrm{O}_{1}, \mathrm{O}_{2}$				20	ns	Figs.9, 14
tpd1A-tpd1B				20	ns	Figs.9, 14
Propagation delay Clock (Encoder) to Clock	tpd3			150	ns	Loop test enable $=1$, Figs.9, 14
Setup time of NRZ data in to Clock (Encoder)	ts3	30			ns	Figs.7, 9, 14
Hold time of NRZ data in	th3	55			ns	Figs.7, 9, 14
Propagation delay $A_{\text {in }}, \mathrm{B}_{\text {in }}$ to Clock	tpd2			150	ns	Loop test enable $=$ '0' Figs.12, 14
Propagation delay Clock (Decoder) to error	tpd 4			200	ns	Figs.11, 14
Propagation delay Reset AIS to AIS	tpd5			200	ns	Loop test enable $=$ '0' Figs.13, 14
Propagation delay Clock (Decoder) to NRZ data out	tpd6			150	ns	Figs.7, 10, 14. See Note 2
Setup time of $A_{i n}, B_{\text {in }}$ to Clock (Decoder)	ts1	75			ns	Figs.7, 10, 14
Hold time of $\mathrm{A}_{\text {in }}, \mathrm{B}_{\text {in }}$ to Clock (Decoder)	th1	5			ns	Figs.7, 10, 14
Hold time of $\overline{\text { Reset AIS }}$ = 0 '	th2	100			ns	Figs.7, 13, 14
Setup time Clock (Decoder) to $\overline{\text { Reset AIS }}$	ts2	200			ns	Figs.7, 13, 14
Setup time $\overline{\text { Reset AIS }}=1$ to Clock (Decoder)	ts2'	0			ns	Figs.13, 14

NOTES

1. The Encoded ternary outputs $\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)$ are delayed by $31 / 2$ clock periods from NRZ data in (Fig.3).
2. The decoded NRZ output is delayed by 3 clock periods from the HDB3 inputs (AIN, Bin) (Fig.4).

Fig. 2 MJ1471 Block diagram

Fig. 3 Encode waveforms

Fig. 4 Decode waveforms

Fig. 5 HDB3 error output waveforms

Fig. 6 A/S error and reset waveforms

Fig. 7 Decoder timing relationship

Fig. 8 Encoder timing relationship

DEFINITION OF THE HDB3 CODE

Coding of a binary signal into an HDB3 signal is done according to the following rules:

1. The HDB3 signal is psuedo-ternary; the three states are denoted $\mathrm{B}_{+}, \mathrm{B}_{-}$and O .
2. Spaces in the binary signal are coded as spaces in the HDB3 signal. For strings of four spaces however, special rules apply (see 4. below).
3. Marks in the binary signal are coded alternately as B_{+} and B_{-}in the HDB3 signal (alternate mark inversion). Vioiations of the rule of alternate mark inversion are introduced when coding strings of four spaces (see 4. below).
4. Strings of four spaces in the binary signal are coded according to the following rules:
a The first space of a string is coded as a space if the preceding mark of the HDB3 signal has a polarity opposite to the polarity of the preceding violation and is not a violation by itself; it is coded as a mark, i.e. not a violation (i.e. B_{+}, B_{-}), if the preceding mark of the HDB3 signal has the same polarity as that of the preceding violation or is by itself a violation.
This rule ensures that successive violations are of alternative polarity so that no DC component is introduced. b The second and third spaces of a string are always coded as spaces.

Fig. 9

Fig. 11
c The last space of a string of four is always coded as a mark, the polarity of which is such that it violates the rule of alternate mark inversion. Such violations are denoted V . or V_{-}according to their polarity.

© International Telecommunications Union

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings

+Vcc	7 V
Inputs	$\mathrm{Vcc}+0.5 \mathrm{~V}$ Gnd -0.3 V
Outputs	Vcc, Gnd -0.3 V

Thermal Ratings

Max Junction Temperature $175^{\circ} \mathrm{C}$
Thermal Resistance: Chip to Case
Chip to Amb. $120^{\circ} \mathrm{C} /$ Watt

Fig. 10

Fig. 12

MJ1471

Fig. 13

Fig. 14 Test timing definitions

ADVANCE INFORMATION

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

MJ1472

PCM RECEIVING CIRCUIT

The MJ1471/1742/1473 circuits have been designed specifically for use in 30 channel PCM systems. All circuits conform to the appropriate CCITT recommendations. The range of circuits is realised in N -channel MOS technology. They all operate from a single 5 V supply and all inputs and outputs are TTL compatible. Operating speed of 2.048 MHz is guaranteed over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.
The MJ1472 block diagram is shown in Figure 2.

FEATURES

Line Time Generation (From 9 Stage Clock Driven Counter)

Alarm Signals FAT + MIR, ATL, AW, EPAT
Test Points TP1, TP2, TP3, MR
Inputs and Outputs LSTTL Compatible

Fig. 1 Pin connections (top view)

Fig. 2 Block diagram

MJ1472

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient operating temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package thermal resistance $60^{\circ} \mathrm{C} /$ watt

DC CHARACTERISTICS

Characteristic	Symbol	Inputs/outputs	Value			Units	Test conditions
			Min.	Typ.	Max.		
High-level input voltage	VIH	All inputs	2.0			V	
Low-level input voltage	VIL	All inputs			0.8	V	
High-level output voltage	VOH	All inputs	2.7			V	Іон-60رA
Low-level output voltage	Vol	All inputs			0.5	V	$\mathrm{loL}=0.8 \mathrm{~mA}$
High-level input current	liH	All inputs			50	$\mu \mathrm{A}$	$\mathrm{VIN}^{\prime}=5.25 \mathrm{~V} 25^{\circ} \mathrm{C}$
High-level output current	Іон	All outputs	-60			$\mu \mathrm{A}$	$\mathrm{VOH}=2.7 \mathrm{~V}$
Low-level output current	la	All outputs	0.8			mA	$\mathrm{VOL}=0.5 \mathrm{~V}$
Input capacitance	Cin	All inputs			10	pF	1 MHz 100 mV
Supply current	Icc			40	60	mA	$\mathrm{Vcc}=5.25 \mathrm{~V}$

AC CHARACTERISTICS

Propagation delays	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Qa to Q_{1}	$t_{\text {pd } 1}$			50	ns	Fig 5 for loading Measure from CKL LE
MKL \& PR	$t_{\text {pod }}$			100	ns	As above
ATL \& FAT + MIR	$t_{\text {pd }}$			100	ns	As above
AW	$t_{\text {pca }}$			300	ns	As above
EPAT	$t_{\text {pd }}$			100	ns	Fig 5 for loading Measure from TP3 LE
TP2	$t_{\text {pab }}$			150	ns	Fig 5 for loading Measure from TP1 TE
TP2	$t_{\text {po7 }}$			250	ns	Fig 5 for loading Measure from CKL LE
Required delay from DIN transition to CKE TE	t1	50		430	ns	

FRAME ALIGNMENT

Frame alignment is described by the flow chart of Figure 3 where the A and B words are defined.

Position	1	2	3	4	5	6	7	8
Word A	X	0	0	1	1	0	1	1
Word B	X	1	X	X	X	X	X	X

Table 1
$A(T A)$ represents the presence of word A in TSO of frame TA. $B(T B)$ likewise represents the presence of word B in TSO of frame TB. $\bar{A}(T A)$ and $B(T B)$ represent the absence of the words in TSO of the respective frame.
Frame alignment is assumed lost when 3 consecutive words $A(T A)$ or $B(T B)$ have been received with error. Frame alignment is recovered when the following sequence is detected in successive frames. Word $\mathrm{A} \rightarrow$ word B (TB) and finally $A(T A)$. To avoid the possibility of a state in which no frame alignment can be achieved due to the presence of an imitative frame alignment signal, the following procedure is followed. Should A(TA) be followed by absence of word $B(T B)$ a new search for A is started a frame later.

Fig. 3 Frame alignment procedure

LINE TIMING

Nine stage clock (CKL) driven counter. All outputs (QA to QI) available externally.
MKL One bit positive pulse corresponding to 8 th bit of TS15.
PR One bit positive pulse corresponding to position 8 of TS30 of frame A.

TRANSMISSION ALARM DETECTION

As already outlined in Fig.3. Three consecutive words $A(T A)$ or $B(T B)$ set an R-S flip-flop. This condition can also be forced by the external signal MIR.
MIR Input to R-S flip-flop.
FAT + MIR Output indication of state of R-S flip-flop.

Fig. 4 Propagation delay test circuit

ATL Output high when logic ' 1 ' is detected in position 3 of TSO. TB for two consecutive TB frames. Output low when logic ' O ' is detected in position 3 of TSO, TB. ATL output inhibited by the presence of output FAT + MIR.
AW Output high whenever $\bar{A}(T A)$ is detected. Output is removed only when word $\AA(T A)$ is detected.
EPAT The output is high when for eight consecutive times at least 15 words A(TA) are detected in 512 ms . EPAT alarm is removed (EPAT $=0$) when less than $15 \overline{\mathrm{~A}}(\mathrm{TA})$ words are detected in $(512 \times 8) \mathrm{ms}$. The 512 ms timer interval is obtained by an 11 bit binary counter clocked every double frame.

TEST POINTS

TP1, TP2, TP3 and Master Reset MR are test points.

Fig. 5 Waveforms for tpd

MJ1472

MJ1473

PCM TRANSMITTER CIRCUIT

The MJ1400 Series of circuits have been specifically designed for use in 30 channel PCM systems.
The MJ1473 is designed to simplify the transmit section of a 30 channel, 2 MBit PCM link by converting NRZ PCM data to either AMI or HDB3 format after inserting a synchronising word in channel 0 (conforming to CCITT recommendations G. 703 and G.732).

The data is output in pseudo-ternary form to facilitate driving the line interface via a transformer and AMI or HDB3 code may be remotely selected using bits 2 and 3 in channel 0 of the incoming data stream.

FEATURES

- $5 \mathrm{~V}-30 \mathrm{~mA}$ Power Requirements
- $0-70^{\circ} \mathrm{C}$ Operation
- Complies with Relevant CCITT Recommendations
- Control Signals Compatible with MJ1472,4
- NRZ, AMI or HDB3. Transmission Format
- Transmission Format Controlled Locally or Remotely Via TSO Data
- Fabricated in NMOS Technology

Inputs and Outputs TTL Compatible

Fig. 1 Pin connections - top view

Bit	1	2	3	4	5	6	7	8
Channel 0 TS0.TA	x	0	0	1	1	0	1	1
Channel 0 TSO.TB	x	1	ATL	x	x	x	x	x

Table 1

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin with respect to Vss : 7 V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

MJ1473

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Supply voltage $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient operating temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package thermal resistance $95^{\circ} \mathrm{C} /$ watt

DC CHARACTERISTICS

Characteristic	Symbol	Inputs/outputs	Value			Units	Test conditions
			Min.	Typ.	Max.		
High-level input voltage	V_{1}	All inputs	2.0			V	
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	All inputs			0.8	V	
High-level output voltage	Vor	Outputs L \& Dout	2.7			V	$-60 \mu \mathrm{~A}$
Low-level output voltage	Vol	Outputs L \& Dout			0.5	V	0.8 mA
High-level input current	liH	All inputs			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} 25^{\circ} \mathrm{C}$
High-level output current	lOH_{1}	Outputs L \& Dout	60			$\mu \mathrm{A}$	$\mathrm{VOH}=2.7 \mathrm{~V}$
High-level output current	loh2	Outputs $\mathrm{O}_{1} \& \mathrm{O}_{2}$	2			mA	V OH $=2.8 \mathrm{~V}$
Low-level output current	lol	Outputs L \& Dout	0.8			mA	$\mathrm{V} \mathrm{OH}=0.5 \mathrm{~V}$
Input capacitance	Cin 1	All inputs except CKE			10	pF	1 MHz 100 mV
	Cina	Input CKE			20	pF	
Supply current	Icc			30	45	mA	$\mathrm{Vcc}=5.25 \mathrm{~V}$

AC CHARACTERISTICS

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
$\mathrm{O}_{1} \& \mathrm{O}_{2}$	tpd^{1}			100	ns	Fig. 4 for loading; measure from CKE leading edge. See Fig. 5 for definition: total delay in $\mathrm{t}_{\mathrm{pd} 1}+4$ CKE periods.
L Propagation delays	$\mathrm{t}_{\mathrm{pd} 2}$			200	ns	Fig. 3 for loading; measure from CKE trailing edge. See Fig. 5 for definition.
Dout	$t_{\text {pd }}$			180	ns	Fig. 3 for loading; measure from CKE leading edge. See Fig. 5 for definition: total delay is tpd3 +8 CKE periods.
Rise and fall times of O_{1} \& O_{2}	t.tt			20	ns	Fig. 4 for loading. Measured between 0.5 V and 2.4 V points.
Required delay from Din P1.P2 transition to CKE TE	t_{1}	50		430	ns	
Required delay from FAT + MIR transition to CKE LE	t2	50		430	ns	
Required delay from CS transition to CKE TE	t_{3}	50		430	ns	

CIRCUIT DESCRIPTION

The MJ1473 generates exchange timing by a synchronous 9 -bit counter driven by exchange clock CKE and preset by P1,P2. The exchange clock also clocks data, Din,through the channel 0 former and to Dout via an eight bit shift register. In the channel 0 former, data bits of channel 0 are modified as shown in Table 1.

An X in Table 1 indicates transparency through the circuit, bits 2 and 3 of the shift register are concerned with the loop command circuitry. When '01' is detected an internal latch is set and the loop condition on output L is registered.

Dout may also be routed through the HDB3/AMI Encoder. The CS control is logic ' 0 ' for AMI and logic ' 1 ' for HDB3. Encoded data is then output to O : and O_{2} in a form suitable for driving the PCM interface.

The line code converter can also be controlled by the
remote control commands present on bits 2 and 3 of the shift register. These commands are as follows:

1. The presence of ' 00 ' in the first frame yields AMI transmission except channel 0 and 1 , which are transmitted in a code determined by CS.
The presence of ' 00 ' in each consecutive frame yields unipolar transmission except in channel 0 and 1 as above. The polarity of unipolar transmission is constant for any number of consecutive ' 00 ' frames but will alternate with respect to the previous unipolar transmission provided there has been an intermediate frame where ' 00 ' was not detected.
2. The presence of ' 11 ' in any frame yields AMI transmission except for channel 0 and 1 which are transmitted in a code determined by CS.

ATL is forced to a ' 1 ' by the presence of the external signal FAT + MIR, or by the presence of one of the two remote control commands or by the loop comand.
An 'all ones' condition on the encoded data outputs ($\mathrm{O}_{1} \mathrm{O}_{2}$) is forced in the presence of a ' 1 ' in position 4 of channel 0 , when the loop condition is met.
For normal operation $\overline{M R}=T P 1=1$. The test point TP1 is provided as an input independent of the line code converter. In order to enable this input when $\overline{\mathrm{MR}}=0$.

All inputs and outputs are compatible with LSTTL.

Fig. 3 Propagation delay test circuits

Fig. 4

Fig. 5 Waveforms for $t_{p d}$

Fig. 6 Timing diagram

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

MJ1474

PCM ELASTIC STORE

The MJ1400 Series of circuits have been specifically designed for use in 30 channel PCM systems.
The MJ1474 retimes the received $30(+2)$ channel PCM data stream to the exchange clock and also produces a 5 -bit output which identifies the individual channels within the retimed data stream.
Slip is handled by control logic which causes a repetition (or jump) of channel 0 for two consecutive frames whenever the Store capacity is about to be exceeded.

FEATURES

- 5V-50mA Power Requirements

Performance Guaranteed Over $0-70^{\circ} \mathrm{C}$
Temperature Range

- Performs Slip/Alignment Function in 2.048 MBit PCM Systems
- Conforms to Relevant CCITT Recommendations
- Compatible with MJ1472, 3 Control Formats
- Fabricated in NMOS Technology

Inputs and Outputs TTL Compatible

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin with respect to Vss : 7V
Storage temperature : $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

Fig. 2 Block diagram of MJ1473

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Ambient operating temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package thermal resistance $60^{\circ} \mathrm{C} /$ watt

DC CHARACTERISTICS

Characteristic	Symboi	Inputs/outputs	Value			Units	Test condilions
			Min.	Typ.	Max.		
High-level input voltage	V_{IH}	All inputs	2.0			V	
Low-level input voitage	VIL	All inputs			0.8	V	
High-level output voltage	VOH	All outputs	2.7			V	-60 ${ }^{\text {A }}$
Low-level output voltage	Vol	All outputs except $10-14$			0.5	V	0.8mA
High-level input current	lin	All inputs			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} 25^{\circ} \mathrm{C}$
Low-level output voltage	Vol1	Outputs 10-14			0.4	V	3 mA
High-level output current	Іон	All outputs	60			$\mu \mathrm{A}$	$\mathrm{VOH}=2.7 \mathrm{~V}$
Low-level output current	10LO	All outputs except $10-14$	0.8			mA	$\mathrm{VOH}=0.5 \mathrm{~V}$
Low-level output current	loL 1	Outputs 10-14	3.0			mA	$\mathrm{VoL}=0.4 \mathrm{~V}$
Input capacitance	Cin	All inputs			10	pF	1 MHz 100 mV
Supply current	lcc			50	80	mA	

AC CHARACTERISTICS

Characteristics	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Dout	tpd 1			100	ns	Fig. 4 for loading; measure from CKE leading edge. See Fig. 5 for definition.
TP1 \quad Propagation delays	tpd2			150	ns	Fig. 3 for loading; measure from CR and CKL. See Fig. 5 for definition.
TP2	tpd3			150	ns	Fig. 3 for loading; measure from CKL trailing edge. See Fig. 5 for definition.
10-14	$t_{\text {pda }}$			200	ns	Fig. 4 for loading: measure from CR trailing edge.
Required delay from Din transition to CKL leading edge	t_{1}	50		430	ns	
Required delay from FAT + MIR transition to CKL leading edge	t2	50		430	ns	
Required delay from CS transition to CKL trailing edge	t_{3}	50		430	ns	

CIRCUIT DIAGRAM

The line timing circuit consists of a 9-bit counter clocked by CKL and preset by PR. Counter states are decoded to form slip commands for the slip control logic and enable signals for the data inserter. The counter also controls the switching logic that delivers the write signals for the two elastic stores, i.e. channel and address, and the guard signals for the slip control circuit.
The channel elastic store has the function of retiming the 32 channels from Din, clocked by CKL, to Dout clocked by the exchange clock CKE. The address elastic store has the function of retiming the address of the 32 channels from the line clock CKL to parallel to to 14 outputs clocked by the exchange clock CKE.
The elastic stores are controlled by a slip control logic, which compares guard signals and the read reference signal. The read reference is generated together with 4 read signals from a 2 -bit counter, driven by CR, in the exchange timing circuit. When the store capacity is about to be exceeded the slip control logic becomes active. The effects are a repetition (or jump) of channel zero for the two consecutive frames. Full capacity is always recovered after a normal slip. The
contents of all other channels are unchanged during a slip.
A slip may also be forced in the presence of signal EN. This effect is a repetition (or jump) of channel 0 and address 0 for one frame only.
The data inserter modifies channel 0 data out according to Table 1:

Position	1	2	3	4	5	6	7	8
Frame TA	X	X	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Frame TB	X	1	Y_{7}	SL	X	X	X	X

Table 1 TSO format
Where SL is generated by the slip control logic Y_{1} to Y_{7} are external inputs and X indicates transparency through the circuit.

The circuit also has a master reset (MR) input for initialization of slip control and exchange timing circuits. TP1 and TP2 are also available as test points.
All inputs and outputs are compatible with LSTTL. Outputs $10-14$ are capable of sinking 3 mA at 0.4 V .

Fig. 6 Timing diagram

MJ1474

PRELIMINARY INFORMATION
Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

MS2002EXP
 DIGITAL SWITCH MODULE (DSM)

The Plessey MS2002 is an n-channel MOS LSI integrated circuit providing digital switching for 256 channels in PCM systems. The device is unidirectional in operation and is capable of switching data from any incoming channel to any outgoing channel. Input data can be either serial or parallel. The DSM is designed to be easily expandable to provide a greater switching capacity.

FEATURES

- Single 5 V Supply
- TLL Compatible
- Interfaces Directly with European Standard CCITT 32 Channel $2.048 \mathrm{Mb} / \mathrm{s}$ Format
- 256 input/256 Output Channels
- Inputs and Outputs can be either Serial or Parallel
- Open Drain Outputs Allow Easy Expansion
- Only One System Clock Required with One Frame Synchronisation Pulse
APPLICATION
Circuit Switched PCM or Data Systems

Fig. 1 Pin connections - top view

MS2002

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply voltage	Vdo	4.75	5	5.25	V	
High input voltage	VIH	2.4		Vod	V	
Low input voltage	VIL	-0.5		0.8	V	
O/P pull up resistor Cbs capacitor	Rpu	950	1		${ }_{\mathrm{n}}^{\mathrm{n}} \mathrm{F}$	+1 Schottky load

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply current	100		40		mA	
Input current	Ін			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{HH}}=2.7 \mathrm{~V}$ Logic
	IIL			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ inputs
Output voltage	VOH	2.7			V	Rpu $=1 \mathrm{k} \Omega$ Logic
	Vol			0.5	v	Rpu $=1 \mathrm{k} \Omega$ outputs
Input capacitance	Ci			5	pF	Logic inputs
Output capacitance	C			5	pF	Logic outputs

AC CHARACTERISTICS

Test conditions (unless otherwise stated):
Tamb $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$)

Characteristic	Symbol	Value		Units
		Min.	Max.	
System clock period	to	243	245	ns
System clock low period	tcl	82		ns
System clock high period	tch	82		ns
Frame sync period	ti	512	512	Clock periods
Frame sync set up time	tiss	60		ns
Frame sync hold time	tish	90		ns
input data set up time	tds	60		ns
Input data hold time	tah	90		ns
Clock to output delay *	tcd	5	150	ns

* Loaded with 7 similar outputs +1 Schottky TTL input $+1 \mathrm{k} \Omega$ pull up resistor to VDD +16 pF .

PIN NAMES

DIO-7 Speech data input channels
DO0-7 Speech data output channels
COO Control data out
CO1 Control word out
CIO Control data in
Cl 1 Control word in
P1-3 Programming pins
CLK Clock
FS Frame sync. pulse
Vss \quad Negative supply (OV)
Vod Positive supply (5V)
Свв Substrate bias decoupling

ABSOLUTE MAXIMUM RATINGS

$$
\begin{array}{lr}
\text { Supply voltage range (VDD) } & -0.5 \mathrm{~V} \text { to }+7 \mathrm{~V} \\
\text { Input voltage } & -0.5 \mathrm{~V} \text { to }+7 \mathrm{~V} \\
\text { Output voltage } & -0.5 \mathrm{~V} \text { to }+7 \mathrm{~V} \\
\text { Temperature: Storage } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\quad \text { Operating } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

NOTE
All voltages with respect to Vss

PIN DESCRIPTIONS

Symbol	Pin No.	Pin name and description
P1-P3	22-24	Programming Pins allow up to 8 DSMs to share a common control highway ($\mathrm{ClO}, \mathrm{Cl} 1$) and simplify the control structure when arrays of DSMs are used to construct larger switches. The Programming Pins should be hardwired to Vss or Voo to give each DSM a unique address. The state of the P1-P3 pins in combination with the S1-S3 and Wbits (Control Word Format) of the control word determine how the control store is modified and also influence the contents of the outgoing CO and CO words. The complete control flow is shown in Fig.3. Table 1 summarises the effects on the control memory.
CLK	26	Clock input requires a 4.096 MHz TTL level signal. All input signals are strobed in on alternate negative clock edges, the active edge being denoted by the position of the frame sync. signal FS, as shown in Fig. 4.
FS	28	Frame Sync. provides a frame datum for the incoming data (both speech and control), marks the active edge of the system clock, and controls the speech input and output formats (serial or parallel) Fig. 4 shows the timing relationship of the frame sync. signal to clock and data. The duration of the frame sync. low period determines the I/O format as shown in Table 2. Following a change in I/O mode the operation of the DSM is undefined for the remainder of that frame and the whole of the following frame.

\mathbf{W}	$\mathbf{S 3}=\mathbf{P 3}$	$\mathbf{S 2}=\mathbf{P 2}$	$\mathbf{S 1}=\mathbf{P 1}$	Action on Control Store
0	$\mathbf{1}$	1	1	$\mathrm{C} 10 \rightarrow$ Control Store, BEXT \rightarrow BINT
0	1	0	1	${ }^{*} \mathrm{FF} \rightarrow$ Control Store, $1 \rightarrow$ BINT
0	1	1	0	${ }^{*} \mathrm{FF} \rightarrow$ Control Store, $1-\mathrm{BINT}$
0	1	0	0	${ }^{\mathrm{F} F F} \rightarrow$ Control Store, $1-\mathrm{BINT}$
X	0	X	X	No action on Control Store
$\mathbf{1}$	X	X	X	No action on Control Store

Table 1 Control Store modification
*Denotes hexadecimal notation.

OPERATION

The DSM (block diagram is shown in Fig.2) is a 256 channel non-blocking digital switch capable of connecting all 256 incoming channels to all 256 outgoing channels in any desired order. Alternatively, selected input channels may be broadcast to any number of output channels. Each output channel may, however, receive from only one input channel at a time, i.e. conferencing facilities are not provided. Speech input to the device is via 8 lines (DIO-DI7) that can accept 8 bit data in either serial or parallel format at a $2.048 \mathrm{Mb} / \mathrm{s}$ rate. Speech output is via a further 8 lines which may be set independently of the input lines to give out serial or parallel format data.

Call routings are held in an on-chip control memory in the form of a nine bit word for each outgoing speech channel, bit nine (Bint) indicating the busy status of the channel $0=$ busy). In the case of a busy outgoing channel the remaining eight bits denote the number of the input channel to be connected to that outgoing channel. The numbering system for incoming channels is shown in Fig.5(a). If Bint indicates the channel is free then the remaining eight bits of the control word are used as the contents of the outgoing channel, hence allowing free choice of idle code. The contents of the control store can be modified, and speech or control store interrogated, via control messages received over the control interface CIO, CI1. Data generated by interrogation of either the control or speech memories appears on the two control output lines COO, CO1.

SPEECH PATH DELAY CHARACTERISTICS

The switching function of the DSM is achieved by storing the incoming speech channels sequentially in the 256×8
speech memory (after conversion to parallel format) and then sending them to the output channels in the order specified by the control memory. The delay encountered by each channel consists of a fixed delay, determined by the format conversion circuitry and the memory read/write cycle time, and a variable delay determined by the time spent in memory waiting for the relevant outgoing timeslot. The delay is given by the relations:
$D=21+(N-M)$ for $N \geqslant M$
$D=277+(N-M)$ for $N<M$
$D=21+\left(\right.$ INT $\left.\left.\frac{N}{8}-\operatorname{INT}\right) \times 8 N \geqslant M\right)$
$D=277+\left({ }^{\prime} N^{8} \frac{N^{8}}{8}-I N T\right) \times 8 N<M$
where $D=$ delay in bit periods (488ns)
$\mathrm{M}=$ incoming channel No. (as shown in Fig.5)
$\mathrm{N}=$ outgoing channel No.

CONSTRUCTION OF 512 CHANNEL SWITCH

Fig. 6 demonstrates the use of the address facilities of the DSM control structure to build larger switches (512 channels in this case). The four devices share common control and speech highways, each device being assigned a unique address designated by the programming pins P1-P3. It should be noted that devices sharing a common output highway have been allocated a common value for P3. This allocation of addresses reduces the number of control messages required to set up or clear down calls as inspection of table 1 reveals; a message sent to one DSM setting or clearing a channel will automatically clear the same channel on any DSM which outputs to the same highway (has the same P3 value).

Fig. 4 Clock, data, and frame sync timing relationships

SPEECH DATA OUTPUTS	DOO	D01	DO2	DO3	004	005	006	D07	(PARALLEL MODE)
	1	4	4	4	4	1	4	4	
SPEECH Store data	DIO	DI1	D12	D13	D14	D15	D16	D17	
	4	4	4	1	4	4	4	4	
CONTROL STORE DATA	7	6	5	4	3	2	1	0	

Fig.5(a) Correspondence of Speech and Control data

Fig.5(b) Format of Control data input

Fig.5(c) Channel numbering for incoming speech data (serial mode)

Fig.5(d) Channel numbering for incoming speech data (parallel mode).

MS2002

ADVANCE INFORMATION

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

MS2014

DIGITAL FILTER AND DETECTOR (FAD)

The MS2014 is a real time general purpose digital signal processor (DSP) which is easily programmed to perform digital filtering and level detection. The architecture of the FAD comprises a cascadable second order recursive filter and level detector using dedicated multipliers, adders and delay elements.
The data controlling the response of the MS2014 is stored in an external PROM or RAM and consists of a list of filter coefficients and comparison levels. This simple data format means that the user does not need an expensive development system at the design stage (in contrast to other DSP devices, which use microprocessor-based structures and require considerable software development effort to realise their function). The off-chip data memory allows for easy adaptive control, even when complicated algorithms are to be implemented.
The filter and detector have been designed to give maximum flexibility in use and can easily generate most of the functions required in tone detector, spectral analysis, adaptive filter and speech synthesis systems.

FEATURES

```
    Linear 16-Bit Data
    13-Bit Coefficient
    2MHz Operating Clock Frequency
    Serial Operation
    4 4 8 \text { Bits of On-Chip Shift Register Data Storage for}
    8th Order Multiplex
- Nth Order Multiplexing ( }\textrm{N}\leqslant8
- TTL Compatible
Single +5V Supply
```


APPLICATIONS

- Low Cost Digital Filtering

```
- Level Detection
- Spectral Analysis
- Tone Detectors (Multi-Frequency Receivers)
- Speech Synthesis and Analysis
- Data Modems
- Group Delay Equalisers (All-Pass Networks)
```


ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.5 V to +7 V
Input voltage	-0.5 V to +7 V
Maximum output voltage	+7 V
Temperature: Storage	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
NOTE	
All voltages with respect to Vss	

Fig. 1 Pin connections - top view

PIN NAMES

	Name	Function	1/0
1	Clock	Single phase clock input	1
2	Detect 2 Out	Output from detector 2	0
3	Int.Coeff	Integrator coefficients	1
4	DET 1 In	Detector 1 input	1
5	Mult In	Input to NR B multiplier	1
6	R Output	Output of recursive section	0
7	NR Coeff	Non-recursive (NR) coefficient input	1
8	R Coeff	Recursive coefficient input	1
9	Filter In	Data input to filter section	,
10	Mult Out	Output from B multiplier	0
11	B Input	Input from B multiplier	
12	$\mathrm{V}_{\text {ss }}$	OV	
13	Delay In 1	Input from filter external delay	
14	Delay Out 1	Output to filter external delay	O
15	Filter Out	Data output from filter section	O
16	Comp 1 In	Comparison level 1 input	1
17	Sync	Synchronisation pulse input	1
18	Comp 2 In	Comparison level 2 input	1
19	DET 2 In	Input for detector 2 via FWR	1
20	FWR Out	FWR output from Det 2 In data	0
21	Delay Out 2	Output from detectors 1 and 2, and connection to detector external delay	0
22	Delay In 2	Input from detector external delay	1
23	Delay Select	Internal/External delay selector	1
24	Vod	+5V supply	

Fig. 2 Block diagram

PERFORMANCE

A sample throughput of 64000 samples/s is guaranteed. Thus using a sampling period of $125 \mu \mathrm{~s}$ (8000 samples/s) the following may be realised:

8 bi-quadratic 2nd-order recursive filter sections;
plus 16 full-wave rectification operations;
plus 16 1st-order leaky integrations;
plus 16 level comparisons.
Filters of more than 16 th order are possible but will require a lower sampling rate or more than one MS2014.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value		Units	Conditions
		Min.	Max.		
Supply voltage	Vdo	4.75	5.25	V	
Input voltage (high state) except clock	$\mathrm{V}_{\text {i }}$	2.2	-	V	
Input voltage (low state) except clock	$V_{\text {IL }}$	-	0.7	V	
Input voltage (high state) clock	Vihc	4.5	-	V	
Input voltage (low state) clock	Vilc	-	0.5	V	
Clock rise and fall time	$t \mathrm{t}$		30	ns	10\%-90\% (Note 1)
Clock frequency	f_{cl}	0.5	2.048	MHz	
Operating temperature	Tamb	0	70	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$V_{D D}=+5 \mathrm{~V} \quad T_{\text {amb }}=25^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply current	IDD		90	120	mA	
Output voltage, low	Vol	-	-	0.5	V	$\mathrm{IoL}=0.4 \mathrm{~mA}($ Note 2)
Output voltage, high	Vor	2.7	3.4	-	V	$\mathrm{IoH}=-40 \mu \mathrm{~A}($ Note 2)
Input capacitance (except clock)	Cin		5	7	pF	
Input capacitance (clock)	Cinc		25		pF	
Input data set up time	tis	50	-	-	ns	Fig. 7
Input data hold time	tin	150	-	-	ns	Fig. 7
Output data delay time	tos	-	-	200	ns	Fig. 7

NOTES

1. An operating clock frequency of 2.048 MHz is guaranteed over the supply voltage range and the full operating temperature range.
2. The output stage is designed to drive a standard TTL LS gate (74LS series).

FUNCTIONAL DESCRIPTION

The Filter Section

The filter section provided in the MS2014 is a second order recursive type (see Fig.3). This structure was chosen because of its good coefficient sensitivity and predictable round-off, limit-cycle and overflow properties. Higher order filters are easily produced by cascading sections in a similar manner to analogue active filter design.
The transfer function of the section is given by:

$$
\begin{equation*}
H(z)=M \frac{\left[1+A z^{-1}+B z^{-2}\right]}{\left[1-a z^{-1}-b z^{-2}\right]} \tag{1}
\end{equation*}
$$

The coefficients a and b define a pair of complex poles, whilst A and B define a pair of complex zeros. The Scaling Factor M is necessary because many filters have greater than unity gain, hence there is a danger of numeric overflow in the filter arithmetic. In the MS2014 this scaler multiplies by a factor of

$$
M=(1 / 2)^{n} \text { where } 0 \leqslant n \leqslant 13
$$

The multipliers in the MS2014 are serial/parallel types which require the coefficient data as a static parallel word. To minimise the number of pins on the device, this data is loaded serially and stored in a SIPO shift register. Each multiplier requires the coefficient data to be in 2 s complement form with 12 bits for the fractional part of the number.
The range for the coefficients are:

$$
\begin{aligned}
& 2>A \geqslant-2 \\
& 2>a \geqslant-2 \\
& 1 \geqslant B \geqslant-1 \\
& 1>b \geqslant-1
\end{aligned}
$$

For the A, a coefficients there is an added bit ($a_{s} A_{s}$) to give the extra ± 1 range, which gives a total of 14 bits for the A, a coefficients and 13 bits for B, b.
The second-order filter is very easily multiplexed by increasing the delay function in steps of T (where T is the computation period*) and time-sharing the arithmetic elements. The limit on this process is the maximum clock rate of the MS2014. With a 32 bit computation cycle the clock rate $f_{c l}$ is given by:

$$
f_{c t}=32 \times f_{s} \times Y
$$

Fig. 3 Basic 2 nd order filter section
where Y is the number of times the filter is multiplexed and f_{s} is the sampling rate (the reciprocal of the sampling period $T_{s}{ }^{* *}$). In telephony applications it is usual for f_{s} to be 8000 samples/s; hence at the maximum guaranteed clock rate of $2048 \mathrm{kHz}, Y$ must be less than or equal to 8 .

By presenting an input sample during every 32-bit computation cycle, 8 separate second-order filters can be implemented. As the inputs can be independent of each other the filter is then said to be 'channel multiplexed'.

Filters of higher order can be built by feeding the output data emerging from one second-order section back to the input via an on-chip data selector, which is enabled by the control bit C_{1}; since the delay between the input and output of the filter section is 32 clock periods, the data arrives at the beginning of the next computation cycle. Thus by controlling the data selector two or more second-order filter sections can be cascaded. This arrangement allows any combination of filter and channel multiplexing to be achieved.

Higher orders of channel or filter multiplex require the connection of additional delay. For 8 th-order multiplex, a delay of $7 T$ (224 bits) is provided on chip; together with the inherent delay T (32 bits) of the computation cycle, this

[^0]
MS2014

makes up the necessary $8 T$ delay. Other orders of multiplex require the external connection of $(Y-1) \times 32$ bits of delay.
The detector function is carried out by 'full wave rectifiers' followed by comparators and leaky integrators. By interconnecting these in different ways various absolute and relative level decisions can be made.

The 'Full Wave Rectifiers'

Data entering the 'full wave rectifiers' is inverted if the sign bit of the word is a ' 1 ' (i.e. negative). The 1LSB error generated by this is insignificant and does not materially affect operation of the detector.

The Integrators

The integrators in the MS2014 are unity gain variable-leakfactor types. Fig. 4 shows the internal arrangement. The leak factor

$$
1-2^{-(K+1)}
$$

controls the rise time of the integrator, the relationship is given in Table 1.

Level Detection

Both relative and absolute level detectors can be implemented in the MS2014. Fig. 5 shows the arrangement for an absolute level detector. The sign bit of the data word emerging from the integrator is ' 1 ' if the mean level of the filter output is greater than the comparator input level.

Relative level detection can be achieved by using the arrangement of Fig.6. In most applications where relative level sensing is required, the filtering can be arranged such that $B=1$ (i.e. the complex zeros are located on the unit circle in the z plane), this allows the B multiplier to be used for scaling the relative levels. In this application the B coefficient must be negative.

Leak factor	Rise time (0 to $\mathbf{9 0 \%} \mathbf{\%}$)
$1 / 2$	$3 \mathrm{Ts}+\mathrm{T}$
$3 / 4$	$8 \mathrm{Ts}+\mathrm{T}$
$7 / 8$	$17 \mathrm{Ts}+\mathrm{T}$
$15 / 16$	$35 \mathrm{Ts}+\mathrm{T}$
$31 / 32$	$72 \mathrm{Ts}+\mathrm{T}$
$63 / 64$	$146 \mathrm{Ts}+\mathrm{T}$
$127 / 128$	$293 \mathrm{Ts}+\mathrm{T}$
$255 / 256$	$588 \mathrm{Ts}+\mathrm{T}$

Table 1 Integrator rise times

Fig. 4 Leaky integrator

Fig. 5 Simple level detector

Fig. 6 Relative level detection

FILTER DESIGN WITH THE MS2014

One of the commonest techniques for designing analogue filters is to factor the transfer function into blocks which can be realised by second order filter sections. Most designs of this type are done using tables which give coefficients for equations of the form:

$$
\begin{equation*}
H(s)=\frac{C s^{2}+D s+K}{E s^{2}+F s+1} \tag{2}
\end{equation*}
$$

Since the MS2014 filter section is a general second-order structure, the same design technique can be employed. By using the Bilinear Transform:

$$
\begin{equation*}
s=\frac{2\left(1-z^{-1}\right)}{T\left(1+z^{-1}\right)} \tag{3}
\end{equation*}
$$

it is possible to design digital filters from analogue prototypes. By substituting equation (3) into (2) and rearranging the result into the form of equation (1) the following relationships are derived:

$$
\begin{align*}
& A=\frac{2 K T^{2}-8 C}{4 C+2 D T+T^{2}} \\
& a=\frac{8 E-2 T^{2}}{4 E+2 F T+T^{2}} \\
& M=\frac{4 C+2 D T+K T^{2}}{4 E+2 F T+T^{2}} \tag{4}\\
& B=\frac{4 C-2 D T+K T^{2}}{4 C+2 D T+K T^{2}} \\
& b=\frac{2 F T-4 E-T^{2}}{4 E+2 F T+T^{2}}
\end{align*}
$$

These five equations allow an analogue filter design to be transformed into digital form.

In addition to the four coefficients required by the filter section the data streams fed to the NR and R coefficient inputs include the four bits setting the Scaling Factor $M\left(M_{1}\right.$ to M_{4}) and two selector control bits C_{1} and C_{2}
When $\mathrm{C}_{1}=1$, data applied to FILTER IN $(\operatorname{pin} 9)$ goes to the filter section, when $\mathrm{C}_{1}=0$ data emerging on FILTER OUT (pin 15) is fed back to the filter at the start of the next computation cycle.

When $\mathrm{C}_{2}=0$ the B multiplier is by-passed by a direct connection, setting $B=1$.

Table 2 shows the format of the serial data words for the NR and R coefficient inputs. The timing diagram (Fig.7) shows where this fits into the computation cycle. The synchronising pulse (SYNC) is coincident with the first clock pulse of the cycle and must be low before the rising edge of

Table 2 Filter data format
the clock. The SYNC pulse is applied every Y clock pulses, where $Y=$ CLOCK RATE/SAMPLING RATE.

Coefficient Conversion

After the coefficients have been obtained (from the Bilinear Transform or FAD Development Program) they must be assembled in the format given in Table 2. The FAD Development Program gives the multiplier coefficients in a ready-to-use binary string format, other techniques will give numerical values for the coefficients which must be converted into binary strings.

Coefficient Conversion Algorithm for ' A '

The algorithm for converting A or a to binary is as follows:
Obtain $A=\frac{|A|}{2} .8191$
Convert A into a binary number (13 bits)
If A is positive INVERT THE MSB AND APPEND ' 0 ' AS NEW MSB.

If A is negative INVERT ALL BITS AND APPEND ' 1 ' AS NEW MSB, then ADD ' 1 ' LSB.

Conversion of ' B ' Coefficients

Obtain $B=B .4096$
Convert B into a binary number (12 bits)
If B is negative INVERT ALL BITS, ADD ' 1 ' LSB AND APPEND ' 1 ' AS NEW MSB.
If B is positive APPEND ' 0 ' AS NEW MSB.
In addition to the coefficient data streams one further input must be set up. DELAY SELECT (pin 23) is the control pin used to select the internal $7 T$ delay. A' 1 ' maintained on pin 23 selects the internal delay and a ' 0 ' the external option. The B multiplier is independent of the rest of the circuit and may be used for any purpose, although usually it will form part of either the filter or detect functions. In each case the appropriate connections must be made externally.

Table 3 Detector data format

Programming the Detector

Control data for the detect function is supplied by an external memory to the INT COEFF input (pin 3) and to the COMP 1 IN and COMP 2 IN inputs (pins 16 and 18) of the MS2014. The relative positions in time of the input sample data, detect function control data and output sample data are shown on the timing diagram (Fig.7).
Note that it is possible to economise on memory by strapping pin 3 either to pin 16 or to pin 18, since valid data for either combination of pins occurs at different times in the computation cycle. There are two integrator scaling factors in the INT COEFF data stream. The $j_{1,} j_{2}, j_{3}$ data bits determine the integrator coefficient for the data stream applied to DET 1 IN (pin 4) and the $k_{1,} k_{2}, k_{3}$ data bits for the DET $2 \mathbb{N}$ (pin 19) data stream; their definitions and clock pulse positions are given in Table 3.

In most applications, the comparison levels/and m applied to COMP 1 IN (pin 16) and COMP 2 IN (pin 18) will be negative quantities, and as they are coded in two's complement, each sign bit at clock pulse 32 will be a ' 1 '. However, a positive quantity can be input by setting the sign bit to ' 0 '. In this case, care must be taken to ensure that the addition of the DET data and the COMP data does not result in a number greater than unity and cause overflow, since no protection against overflow is provided in either detect function.
NOTE Round-off errors in the detector section may result in the integrator 'jamming' if the signal is below the 4 LSBs. Consequently, the available dynamic range is limited to the 12 MSBs.

TYPICAL APPLICATIONS CIRCUITS

A Second-Order High Sampling Rate Filter (Fig.8)

This is the simplest filter arrangement for the MS2014. No external delay is required so that DELAY 1 IN is connected to DELAY 1 OUT and DELAY SELECT is grounded.
$A \div 32$ counter generates the 5 -bit wide address for the coefficient ROM. A 5 -input OR gate on the address lines generates the SYNC pulse every 32 clock cycles so that at a 2.048 MHz clock rate the sample rate is 64000 samples/second giving a maximum bandwidth of 32 kHz .

If the desired B coefficient is not unity then Rout (pin 16) must be connected to MULT IN (pin 5) and MULT OUT (pin 10) to B INPUT (pin 11).

A 16th Order Filter 8kHz Sample Rate Fig.9)

In this example DELAY SELECT (pin 23) is high so that the internal $7 T$ delay is switched in. Input data is applied during the first computation cycle (the one with the SYNC pulse in it) and coefficient data is loaded in the last computation cycle.

Fig. 8 2nd order 32 kHz bandwidth filter

Channel Multiplexed Second Order Filter 8kHz Sampling

The hardware for this filter is identical to Fig.9. However, input data is provided during each computation cycle and each cycle contains a separate output. If the filter required for each channel is identical, then the coefficient memory need only be 32×2 bits.

Other Configurations

Sampling rates other than 64 kHz and 8 kHz can be achieved either by reducing the clock rate and/or by using external delays in place of the internal 0/7T. The use of external delay also allows different orders of multiplexing.

Fig.9 A 16th order 4 kHz bandwidth filter

MS2014

PLESSEY
 Semiconductors

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

2MBIT PCM SIGNALLING CIRCUIT MV1441

HDB3 ENCODER/DECODER/CLOCK REGENERATOR

The 2.048 MBit PCM Signalling Circuits comprise a group of circuits which will perform the common signalling and error detection functions for a 2.048 MBit PCM transmission link operating to the appropriate CCITT recommendations. The circuits are fabricated in CMOS and operate from a single 5 volt supply with relevant inputs and outputs TTL compatible.

The MV1441 is an encoder/decoder for the pseudo-ternary transmission code, HDB3 (CCITT Orange Book Vol.III. 2 Annex to Rec. G703). The device encodes and decodes simultaneously and asynchronously. Error monitoring functions are provided to detect violations of HDB3 coding, all ones detection and loss of input (all zeros detection). In addition a loop back function is provided for terminal testing. A clock recovery circuit is provided using a 16.384 MHz crystal (12.352 MHz for 1.544 MHz operation), which may be shared between several separate devices.

FEATURES

On-Chip Digital Clock Regenerator
HDB3 Encoding and Decoding to CCITT rec. G703
Asynchronous Operation
Simultaneous Encoding and Decoding
Clock Recovery Signal allows Off-Chip Clock
Regeneration
Loop Back Control
HDB3 Error Monitor
'All Ones' Error Monitor
Loss of Input Alarm (All Zeros Detector)
Decode Data in NRZ Form
Low Power Operation
2.048 MHz or 1.544 MHz Operation

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which. operating life may be shortened or specified parameters may be degraded.

$$
\begin{array}{lr}
\text { Electrical Ratings } & \\
+V \mathrm{Cc} & -0.5 \mathrm{~V} \text { to }+7 \mathrm{~V} \\
\text { Inputs } & \mathrm{Vcc}+0.5 \mathrm{~V} \text { Gnd }-0.3 \mathrm{~V} \\
\text { Outputs } & \mathrm{VcG}, \text { Gnd }-0.3 \mathrm{~V}
\end{array}
$$

Fig. 1 Pin connections - top view

Fig. 2 Block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $\mathrm{Vcc}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Ambient temperature $\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Static characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min	Typ	Max		
Low level input voltage	VIL	All inputs	-0.3		0.8	V	
Low level input current	$1 / 1$				50	$\mu \mathrm{A}$	$\mathrm{VIL}_{\text {IL }}=0 \mathrm{~V}$
High level input voltage	V IH		2.0		Vcc	V	
High level input current	lin				50	$\mu \mathrm{A}$	$\mathrm{V}_{1+}=5 \mathrm{~V}$
Low level output voltage	Vol	All outputs			0.4	V	$\mathrm{I}_{\text {sink }}=2.0 \mathrm{~mA}$
High level output voltage	VOH		2.8			V	$\left.I_{\text {source }}=2 \mathrm{~mA}\right)$ both
			V co-0.75			\checkmark	${ }_{\text {s }}^{\text {source }}$ = $=1 \mathrm{~mA}$) apply
Supply current	Icc			2	4	mA	All inputs to 0 V All outputs open circuit

Dynamic Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min	Typ	Max		
Max. Clock (Encoder) frequency	$\mathrm{f}_{\text {maxenc }}$	4.0	10		MHz	Figs.10,15
Max. Clock (Decoder) frequency	$\mathrm{f}_{\text {maxdec }}$	2.2	5		MHz	Figs.11,15
Propagation Delay Clock (Encoder) to $\mathrm{O}_{1}, \mathrm{O}_{2}$	$t_{\text {pdiA }}$			100	ns	Figs.8,10,15 See Note 1
Rise and Fall times $\mathrm{O}_{1}, \mathrm{O}_{2}$				20	ns	Figs.10,15
$\mathrm{tpd1A}^{\text {- }} \mathrm{tpd} 1 \mathrm{~B}^{\text {difference }}$				20	ns	Figs.10,15
Propagation Delay Clock (Encoder) to Clock Regenerate	$t_{\text {pd3 }}$			150	ns	Loop test enable $=$ ' 1 ', Figs. 10,15
Setup time of NRZ data in to Clock (Encoder)	ts3	75			ns	Figs. $7,10,15$
Hold time of NRZ data in	th3	55			ns	Figs.7,10,15
Propagation delay $\bar{A}_{1 N}, \bar{B}_{\text {IN }}$ to Clock Regenerate	$t_{\text {pd2 }}$			150	ns	Loop test enable $={ }^{\prime} 0$ ' Figs. 13,15
Propagation delay Clock (Decoder) to error	$t_{\text {pd } 4}$			200	ns	Figs.12,15
Propagation delay Reset AIS falling edge to AIS output	$t_{\text {pd5 }}$			200	ns	Loop test enable $={ }^{\prime} 0$ ', Figs. 14,15
Propagation delay Clock (Decoder) to NRZ data out	$t_{\text {pd } 6}$			150	ns	Figs.7,11, 15 See Note 2
Setup time of \bar{A} IN, $\overline{\text { Bin }}$ to Clock (Decoder)	tsi	75			ns	Figs.7,11,15
	thr^{1}	5			ns	Figs.7,11,15
Hold time of Reset AIS $=$ '0'	$t_{\text {n } 2}$	30			ns	Figs.7,14,15
Setup time Clock (Decoder) to Reset AIS	$\mathrm{t}_{\mathbf{5} 2}$	100			ns	Figs.7,14,15
Setup time Reset AIS $=1$ to Clock (Decoder)	$\mathrm{t}_{\text {s2 }}$	0			ns	Figs.14,15
Propagation Delay Clock (Decoder) to LIP				150	ns	

NOTES

1. The Encoded ternary outputs $\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)$ are delayed by 3.5 clock periods from NRZ Data \ln (Fig.3).
2. The decoded NRZ output is delayed by 3 clock periods from the HDB3 inputs (AN, BiN) (Fig.4).

High Density Bipolar 3 (HDB3) is a pseudo-ternary signal in which the number of consecutive zeros that may occur is restricted to a maximum number of three. In any sequence of four consecutive binary zeros, the ultimate zero is substituted by a 'mark' (+ or -) of the same polarity as the previous mark, i.e. it violates AMI code (Alternate Mark

Inversion) and is termed a 'violation'. To ensure parity between marks of opposite polarity, the first zero is substituted by an additional mark when there would otherwise be an even number of marks between 'violations'. Thus violations alternate in polarity.

FUNCTIONAL DESCRIPTION

Functions Listed by pin number

1. NRZ data in

Input data for encoding into ternary form. The data is clocked by the negative-going edge of the Clock (Encoder).

2. Clock (Encoder)

Clock for encoding data on pin 1.
3. LIP

Loss of input circuit detects eleven consecutive zeros at the decoder input and then gives an output high. Any logic ' 1 ' at the input ($\overline{\mathrm{A}}_{\mathrm{IN}}$ or $\overline{\mathrm{B}}_{\mathrm{IN}}={ }^{\prime}{ }^{\prime}$) resets this count.

4. $\mathbf{N R Z}$ data out

Decoded binary data from pseudo-ternary inputs $\overline{\text { AiN }}, \overline{\text { BIN }}$
5. Clock (Decoder)

Clock for decoding data on $\bar{A}_{1 n}$ and $\bar{B}_{1 N}$, or O_{1} and O_{2} in loop test mode.

6,7. $\overline{\text { Reset AIS, AIS }}$

Logic ' 0 ' on Reset AIS resets a decoded zero counter and either resets AIS output to ' 0 ' provided 3 or more zeros have been decoded in the preceding Reset AIS $=1$ period, or sets AIS to ' 1 ' if less than 3 zeros have been decoded in the preceding Reset AIS $=1$ period to indicate loss of time slot Zero. Logic ' 1 ' on Reset AIS enables the internal decoded zero counter.

8. Mode

Mode at logic '1' selects internal crystal controlled clock regeneration and Mode at logic ' 0 ' selects external clock regeneration using, for example, a tuned circuit.

9. Ground

Zero volts.

10. Crystal In

Input to amplifier forming crystal oscillator when crystal is connected between pins 10 and 12. This pin may also be used as a 16.384 MHz clock input if one oscillator is to be shared over several. HDB3 encoders/decoders.

11. Error

A logic ' 1 ' indicates that a violation of the HDB3 encoding law has been detected i.e. 3 ' 1 's of the same polarity.

12. Clock R/Crystal Out

If pin 8 is at ' 0 ' pin 12 is Clock Regenerate, giving OR function of $\bar{A}_{\text {IN }}, \overline{\mathrm{B}}_{\text {In }}$ for clock regeneration when pin $14=$ ' 0 ', OR function of $\mathrm{O}_{1}, \mathrm{O}_{2}$ when pin $14=$ ' 1 '. If pin 8 is at ' 1 ' then pin 12 becomes Crystal Out and forms oscillator with pin 10. 13,15. Ā IN, $\bar{B}_{\text {IN }}$
Inputs representing the received ternary PCM signal. $\bar{A}_{I N}=$ ' 0 ' represents a positive going ' 1 ', $\bar{B}_{\mathrm{BN}}=$ ' 0 ' represents a negative going ' 1 '. $\bar{A}_{I N}$ and \bar{B} in are sampled by the positive going edge of the clock decoder. $\overline{\text { AIN }}$ and $\overline{\text { Bin may be }}$ interchanged.

14. Loop test enable

TTL input to select normal or loop back operation. Pin 14 $={ }^{\circ} 0$ ' selects normal operation, encode and decode are independent and asynchronous. When pin $14=$ ' 1 ' O^{\prime}, is connected internally to Ais and O_{2} to Bin. Clock R becomes the OR function of $\mathrm{O}_{1}, \mathrm{O}_{2}$. N.B. A decode clock has to be supplied, or regenerated. The delay from NRZ in (pin 1) to NRZ out (pin 4) is about $71 / 2$ clock periods in loop back.

$16,17 . \mathrm{O}_{1}, \mathrm{O}_{2}$

Outputs representing the ternary encoded PCM HDB3 signal for line transmission. O_{1} and O_{2} are in Return to zero form and are clocked out on the positive going edge of the encode clock. The length of O_{1} and O_{2} pulses is set by the positive clock pulse length. Use suitable line drivers from these two outputs such that O_{1} gives positive going pulse and O_{2} gives negative going pulse.
18. + Vcc

Positive $5 \mathrm{~V} \pm 10 \%$ supply.

Fig. 3 Encode waveforms

Fig. 4 Decode waveforms

Fig. 5 HDB3error output waveforms

Fig. 6 AIS error and Reset waveforms

Fig. 7 Decoder timing relationship

Fig. 8 Encoder timing relationship

Fig. 9 Loss of input waveforms

Fig. 10

Fig. 12

Fig. 11

Fig. 13

MV1441

Fig. 14

Fig. 15 Test timing definitions

Fig. 16 A typical application of the MV1441 with the interfacing to the transmission lines included

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

8.5MBIT PCM SIGNALLING CIRCUIT MV1448 HDB3 ENCODER/DECODER

This 8.544 MBit PCM Signalling Circuit will perform the signalling and error detection functions for a 8.544 MBit PCM transmission link operating to the appropriate CCITT recommendations. The circuit is fabricated in CMOS and operates from a single 5 V supply with TTL compatible inputs and outputs.
The MV1448 is an encoder/deocder for the pseudo-ternary transmission code, HDB3 (CCITT Orange Book Vol. III. 2 Annex to Rec. G703). The device encodes and decodes simultaneously and asynchronously. Error monitoring functions are provided to detect violations of HDB3 coding, all ones detection and loss of input (all zeros detection). In addition a loop back function is provided for terminal testing.

FEATURES

- HDB3 Encoding and Decoding to CCITT rec. G703
- Asynchronous Operation
- Simultaneous Encoding and Decoding
- Clock Recovery Signal Allows Clock Regeneration from incoming HDB3 Data
- Loop Back Control
- HDB3 Error Monitor
- 'All Ones' Error Monitor
- Loss of Input Alarm (All Zeros Detector)
- Decoded Data in NRZ Form
- Low Power Operation
- 2.048 MHz or 8.544 MHz Operation
$+\mathrm{Vcc}$
Outputs

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings	
+Vcc	-0.5 V to +7 V
Inputs	$\mathrm{Vcc}+0.5 \mathrm{~V}$ to GND -0.3 V
Outputs	Vcc to GND -0.3 V

$\mathrm{Vcc}+0.5 \mathrm{~V}$ to GND -0.3 V
Vcc to GND -0.3 V

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $\mathrm{Vcc}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Ambient temperature $\mathrm{Tamb}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Static characteristics

Characteristic	Symbol	Pins	Value			Units	Conditions
			Min.	Typ.	Max.		
Low level input voltage	VIL	All inputs	-0.3		0.8	v	
Low level input current	IIL				50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
High level input voltage	V IH		2.0		Vcc	V	
High level input current	lin				50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{H}}=5 \mathrm{~V}$
Low level output voltage	Vol	All outputs			0.4	V	Isink $=2.0 \mathrm{~mA}$
High level output voitage	VOH		$\begin{gathered} 2.8 \\ \mathrm{~V} c \mathrm{c}-0.75 \end{gathered}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\left.\begin{array}{l} \text { Isource }=2 \mathrm{~mA} \\ \text { Isource }=1 \mathrm{~mA} \end{array}\right\} \begin{aligned} & \text { both } \\ & \text { apply } \end{aligned}$
Supply current	Icc			2	4	mA	All inputs to OV All outputs open circuit

Dynamic characteristics

Characteristic	Symbol	Value			Units	Condilions
		Min.	Typ.	Max.		
Max. clock (encoder) frequency	Fmaxenc	10			MHz	Figs. 10,15
Max. clock (decoder) frequency	Fmaxdec	10			MHz	Figs. 11, 15
Propagation delay clock encoder to $\mathrm{O}_{1}, \mathrm{O}_{2}$	tpd1A/B		50		ns	Figs. 8, 10, 15 See Note 1
Rise and fall times $\mathrm{O}_{1}, \mathrm{O}_{2}$				20	ns	Figs. 10, 15
tpd1A - tpd1B difference				20	ns	Figs. 10, 15
Propagation delay clock to clock regenerate (clock R)	tpd3		50		ns	Loop test enable $=$ ' 1 ', Figs. 10, 15
Setup time of NRZ data in to clock (encoder)	ts3		40		ns	Figs. 7, 10, 15
Hold time of NRZ data in	th3		40		ns	Figs. 7, 10, 15
Propagation delay $\bar{A}_{I N}, \bar{B}_{I N}$ to clock regenerate	tpd2		50		ns	Loop test enable $=$ ' 0 ', Figs. 13, 15
Propagation delay clock (decoder) to error	tpd4		50		ns	Figs. 12, 15
Propagation delay Reset AIS falling edge to AIS output	tpd5		50		ns	Loop test enable $=$ ' 0 ', Figs. 14, 15
Propagation delay clock (decoder) to NRZ data out	tpd6		50		ns	Figs. 7, 11, 15 See Note 2
Setup time of $\bar{A}_{I N}, \bar{B}_{\text {IN }}$ to clock (decoder)	ts 1		40		ns	Figs. 7, 11, 15
Hold time of $\bar{A}_{I N}$, $\bar{B}_{\text {IN }}$ to clock (decoder)	th1		5		ns	Figs. 7, 11, 15
Hold time of $\overline{\text { Reset AIS }}={ }^{\prime} 0$ '	th2	30			ns	Figs. 7, 14, 15
Setup time clock (decoder) to Reset AIS	ts2		50		ns	Figs. 7, 14, 15
Setup time $\overline{\text { Reset AIS }}={ }^{\prime} 1$ ' to clock (decoder)	ts2	0			ns	Figs. 14, 15
Propagation delay clock (decoder) to LIP			50		ns	

High Density Bipolar 3 (HDB3) is a pseudo-ternary signal in which the number of consecutive zeros that may occur is restricted to a maximum number of three. In any sequence of four consecutive binary zeros, the ultimate zero is substituted by a 'mark' (+ or -) of the same polarity as the previous mark, i.e. it violates AMI code (Alternate Mark Inversion) and is termed a 'violation'. To ensure parity between marks of opposite polarity, the first zero is substituted by an additional mark when there would otherwise be an even number of marks between 'violations'. Thus violations alternate in polarity.

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. NRZ data in

Input data for encoding into ternary form. The data is clocked by the negative going edge of the Clock (Encoder).

2. Clock (Encoder)

Clock for encoding data on pin 1.

3. LIP

Loss if input circuit detects eleven consecutive zeros at the decoder input and then gives an output high. Any logic ' 1 ' at the input (Ain or $\operatorname{Bin}={ }^{\circ} 0^{\prime}$) resets this count.

4. NRZ data out

Decoded binary data from pseudo-ternary inputs Ain and Bin.
5. Clock (Decoder)

Clock for decoding data on $\mathrm{A}_{1 \mathrm{~s}}$ and $\mathrm{Bin}_{\text {, or }} \mathrm{O}_{1}$ and O_{2} in loop test mode.

6,7. Reset AIS, AIS

Logic ' 0 ' on Reset AIS resets a decoded zero counter and either resets AIS output to '0' provided 3 or more zeros have been decoded in the preceding Reset AIS $=1$ period, or sets AIS to ' 1 ' if less than 3 zeros have been decoded in the
preceding $\overline{\text { Reset } A I S}=1$ period to indicate loss of time slot zero. Logic ' 1 ' on Reset AIS enables the internal decoded zero counter.

8. Ground

Zero volts.
9. Error

A logic ' 1 ' indicates that a violation of the HDB3 encoding law has been detected i.e. 3 ' 1 's of the same polarity.

10. Clock R

OR function of $\overline{\text { Aln }}$, Bin for clock regeneration when pin 12 $=$ ' 0 ', OR function of $\mathrm{O}_{1}, \mathrm{O}_{2}$ when pin $12=$ ' 1 '.
11,13. Ain , Bin
Inputs representing the received ternary PCM signal. $\bar{A}_{1 N}=$ ' 0 ' represents a positive going ' 1 ', $\overline{\mathrm{B}}_{\mathrm{IN}}={ }^{\prime} 0$ ' represents a negative going ' 1 '. \bar{A} In and \bar{B} In are sampled by the positive going edge of the clock decoder. Ain and Bin may be interchanged.
12. Loop test enable

TTL input to select normal or loop back operation. Pin 14 $={ }^{\circ} 0$ ' selects normal operation, encode and decode are independent and asynchronous. When pin $14=$ ' 1 ' O_{1}, is connected internally to Ain and O_{2} to Bin. Clock R becomes the OR function of $\mathrm{O}_{1}, \mathrm{O}_{2}$ N.B. A decode clock has to be supplied, or regenerated. The delay from NRZ in (pin 1) to NRZ out (pin 4) is about $63 / 4$ clock periods in loop back. 14,15. $\mathrm{O}_{1}, \mathrm{O}_{2}$

Outputs representing the ternary encoded PCM HDB3 signal for line transmission. O_{1} and O_{2} are in Return to zero from and are clocked out on the positive going edge of the encode clock. The length of O_{1} and O_{2} pulses is set by the positive clock pulse length. Use suitable line drivers from these two outputs such that O1 gives positive going pulse and O_{2} gives negative going pulse.
16. +Vcc

Positive $5 \mathrm{~V} \pm 10 \%$ supply.

Fig. 3 Decode waveforms

Fig. 4 Encode waveforms

Fig. 5 HDB3 error output waveforms

Fig. 6 AlS error and Reset waveforms

Fig. 7 Decoder timing relationship

Fig. 8 Encoder timing relationship

Fig. 9 Loss of input waveforms

MV1448

Fig. 14

Fig. 15 Test timing definitions

MV3506 A-LAW CODEC WITH FILTER MV3507 μ-LAW CODEC WITH FILTER MV3507A μ-LAW COdEC WITH FILTER AND A/B SIGNALLING

The MV3506 and MV3507 are silicon gate CMOS Companding Encoder/Decoder integrated circuits designed to implement the per channel voice frequency Codecs used in PCM systems. The chips contain the band-limiting filters and the analogue to digital conversion circuits that conform to the desired transfer characteristic. The MV3506 provides the European A-Law companding and the MV3507 provides the North American μ-Law companding characteristic.

These circuits provide the interface between the analogue signals of the subscriber loop and digital signals of the PCM highway in a digital telephone switching system. The devices operates from dual power supplies of $\pm 5 \mathrm{~V}$.

For a sampling rate of $8 \mathrm{kHz}, \mathrm{PCM}$ input/output data rate can vary from $64 \mathrm{~kb} / \mathrm{s}$ to $2.1 \mathrm{Mb} / \mathrm{s}$. Separate transmit/receive timing allows synchronous or asynchronous operation.
in 22-pin packages (0.400 in centres) the MV3506/MV3507 are ideally suited for PCM applications: Exchange, PABX, Channel Bank or Digital Telephone as well as fibre optic and other non-telephone uses. A 28 pin version, the MV3507A, provides standard μ-Law A/B signalling capability.

FEATURES

- Independent Transmit and Receive Sections with 75 dB Isolation
- Low power CMOS 80 mW (Operating) 10mW (Standby)
- Stable Voltage Reference On-chip
- Meets or Exceeds AT\&T D3, and CCITT G.711, G. 712 and G. 733 Specifications
- Input Analogue Filter Eliminates Need for External Anti-aliasing Prefilter
- Input/Output Op. Amps for Programming Gain
- Output Op. Amp Provides $\pm 3.1 \mathrm{~V}$ Into a 1200 Ohms load or Can Be Switched Off for Reduced Power (70 mW)
- Special Idle Channel Noise Reduction Circuitry
- Encoder has Dual-speed Auto-zero Loop for Fast Acquisition on Power-up
- Low Absolute Group Delay $=410 \mu \mathrm{sec}$. at 1 kHz

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage VDD: +6.0 V
DC Supply Voltage Vss: -6.0 V
Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature: $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}: 1000 \mathrm{~mW}$
Digital Input: $V_{\text {ss }}-0.3 \leqslant V_{i N} \leqslant V_{D D}-0.3$
Analogue Input: $V_{S S}-0.3 \leqslant V_{I N} \leqslant V_{D D}-0.3$

Fig. 2 MV3506/MV3507/MV3507A block diagram. Pin numbers for the MV3507A are shown in brackets.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Supply Requirements

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Positive supply	VDo	4.75	5.0	5.25	V	
Negative supply	$V_{\text {ss }}$	-4.75	-5.0	-5.25	v	
Power dissipation (operating)	Popr		80	110	mW	
Power dissipation (operating w/o output op. amp	PopR		70		mW	$\} V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=-5.0 \mathrm{~V}$
Power dissipation (standby)	Pstby		10	20	mW	

AC Characteristics (see Fig. 6)

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
System clock duty cycle	Dsys	40	50	60	\%	At 1.544 MHz or 2.048 MHz
Shift clock frequency	fsc	0.064		2.048	MHz	
Shift clock duty cycle	Dsc	40	50	60	\%	
Shift clock rise time	trc			100	ns	
Shift clock fall time	tic			100	ns	
Strobe rise time	trs			100	ns	
Strobe fall time	tis			100	ns	
Shift clock to strobe (On) delay	tsc	-100	0	200	ns	
Strobe width	tsw	600ns		$124.3 \mu \mathrm{~s}$		At $2.048 \mathrm{MHz}, 700 \mathrm{~ns}$ min at
Shift clock to PCM out delay	tcd		100	150	ns	1.544 MHz
Shift clock to PCM in set-up time	tac	60			ns	
PCM output rise time $\mathrm{CL}=100 \mathrm{pF}$	trd		50	100	ns	To $3 \mathrm{~V} ; 510 \Omega$ to $\mathrm{V}_{\text {D }}$
PCM output fall time $\mathrm{CL}_{L}=100 \mathrm{pF}$	tid		50	100	ns	To 0.4V;510 to VDD
A / B select to strobe trailing edge	tdss	100			ns	

DC Characteristics at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=-\mathbf{5 V}, \mathrm{V}_{\text {ref }}=-3.075 \mathrm{~V}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Analogue input resistance	Rina	100			k Ω	
Input capacitance	Cin		7	15	pF	All logic and analogue inputs
Logic input low current (Shift clock, PCM IN, System clock)	lint			1	$\mu \mathrm{A}$	$\mathrm{VIL}=0.8 \mathrm{~V}$
Logic input high current	linh			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
Logic input low current (Strobe, A/B Sel, A IN B IN PDN)	lint			600	$\mu \mathrm{A}$	$\mathrm{VIL}=0.8 \mathrm{~V}$
Logic input high current	linh			600	$\mu \mathrm{A}$	$\mathrm{V} \mathrm{VH}=2.0 \mathrm{~V}$
Logic input 'low' voltage	VIL			0.8	V	
Logic input 'high' voltage	$\mathrm{V}_{\text {IH }}$	2.0			V	
Logic output 'low' voltage (PCM out)	VoL			0.4	V	510Ω pull-up to Vod +2 LS TTL
Logic output 'low' voltage (A/B out)	Vol			0.4	v	$\mathrm{loL}=1.6 \mathrm{~mA}$
Logic output 'high' voltage	VOH	2.6			V	$\mathrm{IoH}=40 \mu \mathrm{~A}$
Output load resistance Vout	RL	1200			Ω	$C \mathrm{~L}=50 \mathrm{pF}$ max .

Transmission Delays

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Encoder			125		$\mu \mathrm{s}$	From Tstrobe to the start of digital transmitting
Decoder		30	$8 \mathrm{~T}+25$		$\mu \mathrm{s}$	$T=$ Period in $\mu \mathrm{s}$ of Rshift Clock
Transmit section filter				182	$\mu \mathrm{s}$	At 1 kHz
Receive section filter				110	$\mu \mathrm{s}$	At 1 kHz

MV3506 Single-Chip A-Law Filter/Codec Linear Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Idle channel noise (weighted noise)	ICNw		-85	-73	dBm0p	CCITT G. 7125.1
Idle channel noise (single frequency noise)	ICNsf			-60	dBm0	CCITT G. 7125.2
Idle channel noise (receive section)	ICNR			-78	dBm0p	CCITT G. 7125.3
Spurious out-of-band signals at the channel output				-30	dBmo	CCITT G. 7127.1
Intermodulation (2 tone method)	IMD_{2}			-35	dBm0	CCITT G. 7128.1
Intermodulation (1 tone + power frequency)	IMDpf			-49	dBmo	CCITT G. 7128.2
Spurious in-band signals at the channel output port				-40	dBmo	CCITT G. 71210
Inter-channel crosstalk Vin-vout		75	80		dB	CCITT G. 71212
Max.coding analogue input level	Vin (max)		± 3.1		Voph	
Max.coding analogue output level	Vout(max)		± 3.1		Vopk	$\mathrm{RL}_{\mathrm{L}}=1.2 \mathrm{k} \Omega$
Gain variation with temperature and power supply	ΔG		± 0.25		dB	
Transmit gain repeatability			± 0.1	± 0.2	dB	
Receive gain repeatability			± 0.1	± 0.2	dB	
Zero transmission level point (decoder) (see Fig. 3)	OTLPr		+5.8		dBm	Vout digital milliwatt response
Zero transmission level point (encoder)	OTLPT		+5.8		dBm	Vin to yield same as digital milliwatt response at decoder

MV350(7)A Single-Chip μ-Law Filter/Codec Linear Characteristics

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Idle channel noise (weighted noise)	ICNw		5	17	dBrnc0	CCITT G. 7125.1
Idle channel noise (single frequency noise)	ICNsF			-60	dBmo	CCITT G. 7125.2
Idle channel noise (receive section)	ICNR_{8}			15	dBrnc0	CCITT G. 7125.3
Spurious out-of-band signals at the channel output				-28	dBm0	CCITT G. 7127.1
Intermodulation (2 tone method)	$1 \mathrm{MD}_{\text {2F }}$			-35	dBm0	CCITT G.7128.1
Intermodulation (1 tone + power frequency)	IMDpF			-49	dBm0	CCITT G. 7128.2
Spurious in-band signals at the channel output port				-40	dBm0	CCITT G. 71210
Inter-channel crosstalk Vin-Vout		75	80		dB	CCITT G. 71212
Max.coding analogue input level	Vin(max)		± 3.1		V opk	
Max.coding analogue output level	Vout(max)		± 3.1		Vopk	$\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega$
Gain variation with temperature and power supply	$\Delta \mathrm{G}$		± 0.25		dB	
Transmit gain repeatability			± 0.1	± 0.2	dB	
Receive gain repeatability			± 0.1	± 0.2	dB	
Zero transmission level point (decoder) (see Fig. 3)	OTLPR		+5.8		dBm	Vout Digital milliwatt response
Zero transmission level point (encoder)	OTLPT		+5.8		dBm	Vin to yield same as digital milliwatt response at decoder

PIN/FUNCTION DESCRIPTIONS

Name	Pin		Description
	MV3506/ MV3507	MV3507A	
SYS CLK	4	5	System Clock This pin is a TTL compatible input for either a 1.544 MHz or a 2.048 MHz clock that is divided down to provide the filter clocks. The status of CLK SEL pin must correspond to the provided clock frequency.
T-SHIFT	3	4	Transmit Shift Clock This TTL compatible input shifts PCM data out of the coder on the positive going edges after receiving a positive edge on the T-STROBE input. The clocking rate can vary from 64 kHz to 2.048 MHz .
R-SHIFT	9	13	Receive Shift Clock This TTL compatible input shifts PCM data into the decoder on the negative going edges after receiving a positive edge on the R-STROBE input. The clocking rate can vary from 64 kHz to 2.048 MHz .
T-STROBE	5	6	Transmit Strobe This TTL compatible pulse input (8 kHz) is used for analogue sampling and for initiating the PCM output from the coder. It must be synchronised with the T-SHIFT clock with its positive going edges occurring after the falling edge of the shift clock. The width of this signal is not critical. An internal bit counter generates the necessary timing for PCM output.
R-STROBE	10	14	Receive Strobe This TTL compatible pulse input (typ. 8 kHz) initiates clocking of PCM input data into the decoder. It must be synchronised with the R-SHIFT clock with its positive going edges occurring after the falling edge of the shift clock. The width of the signal is not critical. An internal bit counter generates necessary timing for PCM input.
CLK SEL	2	3	Clock Select This pin selects the proper divide ratios to utilise either 1.544 MHz or 2.048 MHz as the system clock. The pin is tied to $\mathrm{VoD}(+5 \mathrm{~V})$ for 2.048 MHz and to $\mathrm{V}_{s s}(-5 \mathrm{~V})$ for 1.544 MHz operation. If this pin is connected to DGND, 256 kHz may be used as the system clock.
PCM OUT	6	7	PCM Output This is a LS TTL compatible open-drain output. It is active only during transmission of PCM output for 8-bit periods of T-SHIFT clock signal following a positive edge on the T-STROBE input. Data is clocked out by the positive edge of the T-SHIFT clock into one 510Ω pull-up per system plus 2 LS TTL inputs.
PCM IN	11	15	PCM Input This is a TTL compatible input for supplying PCM input data to the decoder. Data is clocked in by the negative edge of T-SHIFT clock.

PIN/FUNCTION DESCRIPTIONS

Name	Pin		Description
	$\begin{aligned} & \hline \text { MV3506/ } \\ & \text { MV3507 } \end{aligned}$	MV3507A	
Caz	8	11	Auto Zero Capacitor A capacitor of $0.1 \mu \mathrm{~F} \pm 20 \%$ should be connected between these pins for coder auto zero operation.
CazGND	14	18	Sign bit of the PCM data is integrated and fed back to the comparator for DC offset cancellation.
Vref	1	28	Output of the internal Band-gap Reference Voltage (-3.075 V) generator is brought out to Vref pin.
IN+ IN-	15 16	19	Analogue input. $I N$ - and $I N+$ are the inputs of a high input impedance op. amp and $V_{i N}$ is the output of this op. amp. These three pins allow the user
Vin	17	21	complete control over the input stage so that it can be connected as a unity gain amplifier, amplifier with gain, amplifier with adjustable gain of as a differential input amplifier. The adjustable gain configuration will facilitate calibration of the transmit channel. channel.
FLT OUT	19	23	Filter Out This is the output of the low pass filter which represents the recreated analogue signal from the received PCM data words. The filter sample frequency of 256 kHz is down 37 dB at this point. This is a high impedance output which can be used by itself or connected to the output amplifier stage which has a low output impedance. It should not be loaded by less than $20 \mathrm{k} \Omega$.
OUTVout	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	Output and input of the uncommitted output amplifier stage. Signal at the FLT OUT pin can be connected to this amplifier to realise a low output impedance with unity gain, increased gain or reduced gain. This allows easier calibration of the receive channel. The Vout pin has the capability of driving 0 dBm into 600Ω load. (See Fig. 3.) If OUT- is connected directly to $V_{\text {ss }}$ the op. amp will be powered down, reducing power consumption by 12 mW , typically.
Vod Vss	$\begin{aligned} & 22 \\ & 12 \end{aligned}$	$\begin{aligned} & 27 \\ & 16 \end{aligned}$	Power supply pins. VDD and Vss are positive and negative supply pins, respectively (typ. $+5 \mathrm{~V},-5 \mathrm{~V}$).
A GND D GND	$\begin{gathered} 13 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 8 \end{gathered}$	Analogue and Digital Ground pins are separate for minimising crosstalk and digital interference.
PDN	18	22	Power Down This TTL compatible input when held low puts the chip into the powered down mode regardless of strobes. The chip will also power down if the strobes stop. The strobes can be high, low or floating, but as long as they are static, the powered down mode is in effect.
A IN B IN T-A/B SEL		$\begin{gathered} 2 \\ 1 \\ 26 \end{gathered}$	The Transmit A/B select input (T-A/B SEL) selects the A signal input in a positive transition and the \mathbf{B} signal input on the negative transition. These inputs are TTL compatible. The A/B signalling bits are sent in bit 8 of the PCM word in the frame following the frame in which T-A/B SEL input makes a transition. A common A / B select input can be used for all channels in a multiplex operation, since it is synchronised to the T-STROBE input in each device.
$\begin{gathered} \text { A OUT } \\ \text { B OUT } \\ \text { R-A/B SEL } \end{gathered}$		$\begin{gathered} 10 \\ 9 \\ 12 \end{gathered}$	In the decoder the A/B signalling bits received in the PCM input word are latched to the respective outputs in the same frame in which the Receive A/B select (R-A/B SEL) input makes a transition. A bit is latched on a positive transition and B bit is latched on a negative transition. A common A / B select input can be used for all channels in a multiplex operation.

(Note: The 1.58 V value is that value of reference voltage that would allow the peak value of +3.17 dBm as the maximum coded value, resulting in a OTLP of 0 dBm . For A-Law it would be 1.57 V for +3.14 dBm .)

Since the output buffer amplifier is designed to drive 1200Ω, a 600Ω resistor in series with the 600Ω load divides the available voltage in half resulting in a OTLPout to the load of -0.2 dBm .

For a system where OTLP is chosen to be 0 dBm the input op. amp. should be configured for 5.8 dB gain and the output op. amp. for 0.2 dB gain. Rin should be $\geqslant 20 \mathrm{k} \Omega$.

Fig. 3 MV3507 and MV3507A μ-law Codec input/output reference signal levels

Power Down Logic

Powering down the Codec can be done in several ways. The most direct is to drive the PDN pin to a low level. Stopping both the transmit strobe and the receive strobe will also put the chip into the stand-by mode. The strobes can be held high, low or disconnected.

Voltage Reference Circuitry

A temperature compensated band-gap voltage generator $(-3.075 \mathrm{~V})$ provides a stable reference for the coder and decoder. Two amplifiers buffer the reference and supply the coder and decoder independently to minimise crosstalk. This reference voltage is trimmed to within $\pm 27 \mathrm{mV}$ during assembly to ensure a minimum gain error of $\pm 0.2 \mathrm{~dB}$ due to all causes.

FUNCTIONAL DESCRIPTION

Figure 2 shows the simplified block diagram of the MV3506/MV3507. The device contains independent circuitry for processing transmit and receive signals. Switched capacitor filters provide the necessary bandwidth limiting of voice signals in both directions. Circuitry for coding and decoding operates on the principle of successive approximation, using charge redistribution in a binary weighted capacitor array to define segments and a resistor chain to define steps. A band-gap voltage generator supplies the reference level for the conversion process.

Transmit Section

Input analogue signals first enter the chip at the uncommitted op. amp terminals. This op. amp allows gain trim to be used to set OTLP in the system. From the Vin pin the signal enters the 2 nd Order analogue anti-aliasing filter. This filter eliminates the need for any off-chip filtering as it provides attenuation of 34 dB (typ) at 256 kHz and 44 dB (typ)
at 512 kHz . From the cosine filter the signal enters a 5 th Order low-pass filter clocked at 256 kHz , followed by a 3rd Order high-pass filter clocked at 64 kHz . The resulting band-pass characteristics meet the CCITT G.711, G. 712 and G. 733 specifications. Some representative attenuations are 26 dB (typ) from 0 to 60 Hz and 35 dB (typ) from 4.6 kHz to 100 kHz . The output of the high pass filter is sampled by a capacitor array at the sampling rate of 8 kHz . The polarity of the incoming signal selects the appropriate polarity of the reference voltage. The successive approximation analogue-to-digital conversion process requires $91 / 2$ clock cycles, or about $72 \mu \mathrm{~s}$. The 8 bit PCM date is clocked out by the transmit shift clock which can vary from 64 kHz to 2.048 MHz . A switched capacitor dual-speed, auto-zero loop using a small non-critical external capacitor ($0.1 \mu \mathrm{~F}$) provides DC offset cancellation by integrating the sign bit of the PCM data and feeding it back to the non-inverting input of the comparator.

Included in the circuitry of the MV3507 is 'All Zero' code suppression so that negative input signal values between decision values numbers 127 and 128 are encoded as 00000010 . This prevents loss of repeater synchronisation by TI line clock recovery circuitry as there are never more than 15 consecutive zeroes.
An additional feature of the Codec is a special circuit to eliminate any transmitted idie channel noise during quiet periods. When the input of the chip is such that for 250 ms the only code words generated were $+0,-0,+1$ or -1 , the output word will be a +0 . The steady +0 state prevents alternating sign bits or LSB from toggling and thus results in a quieter signal at the decoder. Upon detection of a different value, the output resumes normal operation resetting the 250 ms timer. This feature is a form of Idle Channel Noise 'Squelch' or 'Crosstalk Suppression'. It is of particular importance in the MV3506 A-Law version because the A-Law transfer characteristic has 'mid-riser' bias which enhances low level signals from crosstalk.

Receive Section

A receive shift clock, variable between the frequencies of 64 kHz to 2.048 MHz , clocks the PCM data into the input buffer register once every sampling period. A charge proportional to the received PCM data word appears on the decoder capacitor array. A sample and hold initialised to zero by a narrow pulse at the beginning of each sampling period integrates the charge and holds for the rest of the sampling period. A switched-capacitor 5th Order low-pass filter clocked at 256 kHz smooths the sampled and held signal. It also performs the loss equalisation to compensate for the sin x / x distortion due to the sample and hold operation. The filter output is available for driving electronic hybrids directly as long as the impedance is greater than $20 \mathrm{k} \Omega$. When used in this fashion the low impedance output amp can be switched off for a considerable savings in power consumption. When it is required to drive a 600Ω load the output is configured as shown in Fig. 3 allowing gain trimming as well as impedance matching. With this configuration a transmission level of OdBm can be delivered into the load with the +3.14 dB or +3.17 dB overload level being the maximum expected level.

Timing Requirements

The internal design of the Single-Chip Codec paid careful attention to the timing requirements of various systems. In North America, central office and channel bank designs follow the American Telephone and Telegraph Company's TI Carrier PCM format to multiplex 24 voice channels at a data rate of $1.544 \mathrm{Mb} / \mathrm{s}$. PABX designs, on the other hand, may use their own multiplexing formats with different data rates. Nevertheless, in digital telephone designs, Codec's may be used in a non-multiplexed form with a data rate as low as $64 \mathrm{~kb} / \mathrm{s}$. The MV3507 and MV3507A fulfil these requirements.
In Europe, telephone exchange and channel bank designs follow the CCITT carrier PCM format to multiplex 30 voice channels at a data rate of $2.048 \mathrm{Mb} / \mathrm{s}$. The MV3506 is designed for this market and will also handle PABX and digital telephone applications requiring the A-Law transfer characteristics.

The timing format chosen for the Plessey Codec allows operation in both multiplexed or non-multiplexed form with data rates variable from $64 \mathrm{~kb} / \mathrm{s}$ to $2.048 \mathrm{Mb} / \mathrm{s}$. Use of separate internal clocks for filters and for shifting of PCM input/output data allows the variable data rate capability. Additionally, the MV3506/MV3507 does not require that the 8 kHz transmit and receive sampling strobes be exactly 8 bit periods wide. The device has an internal bit counter that counts the number of data bits shifted. It is reset on the leading (+)edges of the strobe, forcing the PCM output in high impedance state after the 8th bit is shifted out. This allows the strobe signal to have any duty cycle as long as its repetition rate is 8 kHz and transmit/receive shift clocks are synchronised to it. Figures 4 and 5 show the waveforms in typical multiplexed uses of the Codec.

System Clock

The basic timing of the Codec is provided by the system clock. This 2.048 MHz or 1.544 MHz clock is divided down internally to provide the various filter clocks and the timing for the conversions. In most systems this clock will also be used as the shift clock to clock in and out the data. However, the shift clock can actually be any frequency between 64 kHz and 2.048 MHz as long as one of the two system clock frequencies is provided. Independent strobes and shift clocks allow asynchronous operation of transmit and receive.

Signalling In μ-Law Systems

The MV3506 and MV3507 are compact 22-pin devices to meet the two worldwide PCM standards. In μ-Law systems there can be a requirement for signalling information to be carried in the bit stream with the coded analogue data. This coding scheme is sometimes called $75 / 6$ bit rather than 8 bit because of the LSB every 6th frame being replaced by a signalling bit. This is referred to as A/B Signalling and if a signalling frame carries the ' A ' bit, then 6 frames later the LSB will carry the ' B ' bit. To meet this requirement, the MV3507A is available in a 28 -pin package, as 6 more pins are required for the inputs and outputs of the A / B signalling.

Fig. 4 Waveforms in a 24 channel PCM system

Fig. 5 Waveforms in a 30 channel PCM system

Fig. 6 Waveform details

	Min.	Max.
tow	195nsec	9.384 sec
trs		100 ns
tfs		100ns
tsc	-100ns	200ns**
trc		100ns
tic		100 ns
tsw	600ns*	$124.3 \mu \mathrm{sec}$
$t c d$	100 ns	150ns
tac	60 ns	
trdi		100ns
t di		100ns

[^1]
Signalling Interface

In the AT\&T Ti carrier PCM format an A/B signalling method conveys channel information. It might include the on-or-off hook status of the channel, dial pulsing (10 or 20 pulses per second), loop closure, ring ground, etc., depending on the application. Two signalling conditions (A and B) per channel, giving four possible signalling states per channel are repeated every 12 frames (1.5 milliseconds). The A signalling condition is sent in bit 8 of all 24 channels in frame 6. The B signalling conditions is sent in frame 12. In each frame, bit 193 (the S bit) performs the terminal framing function and serves to identify frames 6 and 12.
The MV3507A in a 28 -pin package is designed to simplify the signalling interface. For example, the A / B select input pins are transition sensitive. The Transmit A/B select pin selects the A signal input on a positive transition and the B
signal input on the negative transition. Internally, the device synchronises the A / B select input with the strobe signal. As a result, a common A / B select signal can be used for all 24 transmit channels in the channel bank. The A and B signalling bits are sent in the frame following the frame in which the A / B select input makes the transition. Therefore, A/B select input must go positive in the beginning of frame 5 and negative in the beginning of frame 11 (see Fig. 7).
The decoder uses a similar scheme for receiving the A and B signalling bits, with one difference. They are latched to the respective outputs in the same frame in which the A / B select input makes a transition. Therefore, the Receive A / B select input must go high at the beginning of frame 6 and go low at the beginning of frame 12.

Fig. 7 Signalling waveforms in a TI carrier system

In the Tl carrier system, 24 voice channels are multiplexed to form the transmit and receive PCM highways, 8 data bits from each channel plus a framing bit called the S bit form a 193 bit frame. Since each channel is sampled 8000 times per second, the resultant data rate is $1.544 \mathrm{Mb} / \mathrm{s}$. Within the channel bank the transmit and receive channels of a Codec can occupy the same time slot for a synchronous operation or they can be independent of each other for asynchronous operation. Asynchronous operation helps minimise switching delays through the system. Since the timing interface for the coder and decoder sections is independent of each other in the MV3507A, it can be operated in either manner.

In the CCITT carrier system 30 voice channels and 2 framing and signalling channeis are multiplexed to form the transmit and receive PCM highways, 8 data bits from each channel. Since each channel is sampled 8000 times per
second, the resultant data rate is $2.048 \mathrm{Mb} / \mathrm{s}$.
The line supervision and control circuitry within each subscriber line interface can generate all the timing signals for the associated Codec under control of a central processor. Alternatively, a common circuitry within the channel bank can generate the timing signals for all channels. Generation of the timing signals for the MV3506 and MV3507A is straightforward because of the simplified timing requirements (see timing requirements for details). Figures 9 and 10 show design schemes for generating these timing signals in a common circuitry. Note that only three signals; a shift clock, a frame reset pulse (coincident with the S bit) and a superframe reset pulse (coincident with the S bit in Frame 1) are needed. These signals are generated by clock recovery circuitry in the channel bank. Since the Plessey Codec does not need channel strobes to be exactly 8-bit periods wide, extra decoding circuitry is not needed.

Fig. 8 A subscriber line interface circuit

Fig. 9 Generating timing signals in a CCITT carrier system ($30+2$ channels)

Fig. 10 Generating timing signals in a TI carrier system

A Digital Telephone Application

Most new PABX designs are using PCM techniques for voice switching with an increasing trend toward applying them at the telephone level. The simplest form of a digital telephone design uses four wire pairs of interface to the switch. Two pairs carry transmit and receive PCM voice date. One pair supplies an 8 kHz synchronising clock signal and the remaining pair supplies power to the telephone. More sophisticated techniques minimise the number of wire pairs. The Plessey Single-Chip Codec is ideally suited for this application because of the low component count and its simplified timing requirements. Figure 11 shows a schematic
for a typical digital telephone design.
Since asynchronous operation is not necessary, transmit and receive timing signals are common. A phase-lock-loop derives the 2048 kHz system clock and 64 kHz shift clock from the 8 kHz synchronising signal received from the switch. The synchronising signal also serves as the transmit/receive strobe signal since its duty cycle is not important for Codec operation. Microphone output directly feeds into the coder input while the decoder output drives the receiver through an impedance transformer to complete the design.

Fig. 11 Voice processing in a digital telephone application

MV4320

KEYPAD PULSE DIALLER

The MV4320 series is fabricated using ISO-CMOS high density technology. The device is a pin-for-pin replacement for the DF320 Loop Disconnect Dialler and offers wider operating supply voltage range and lower power dissipation. The MV4320 accepts up to 20 digits from a standard 2 of 7 keypad and offers a REDIAL option activated by key \#. The device provides dial pulsing and muting outputs and has a.HOLD pin for interrupting a dialling sequence. Outpulsing mark/space ratio and dialling speed are pin selectable.
The MV4320 is available in Ceramic DIL (DG, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$).

FEATURES

Pin for Pin Replacement for the DF320 2.5 V to 5.5 V Supply Voltage Operating Range 375μ W Dynamic Power Dissipation at 3VUses Inexpensive 3.58 MHz Ceramic Resonator or Crystal

- Stores up to 20 Digits

E Selectable Outpulsing Mark/Space Ratio

- Selectable Dialling Speeds of 10, 16, 20 and 932 HzLow Cost

Fig. 1 Pin connections (top view)

APPLICATIONS

- Pushbutton Telephones
- Tone to Pulse Converters
- Mobile Telephone
- Repertory Dialers

Fig. 2 MV4320 functional block diagram

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$V_{\text {DD }}=3.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{CLK}}=3.579545 \mathrm{MHz}$
All voltages wrt $V_{S S}$

	CHARACTERISTICS			SYMBOL	MIN	TYP*	MAX	UNITS	TEST	
1	U	Supply Voltage Operating Range		$V_{D D}$	2.5		5.5	V		
2	P	Standby Supply Current		IDOS		1.0	10.0	$\mu \mathrm{A}$	$C E=V_{S S}$	
3		Operating Supply Current		$I_{\text {DD }}$		125	200	$\mu \mathrm{A}$	3.579545 MHz	XTALOUT $=12 \mathrm{pF}$
4	$\begin{array}{l\|} I \\ N \\ P \\ U \\ U \end{array}$	Pull-Up Transistor Source Current		1 L	-0.5	-3.0	-12.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	X_{1}, X_{2}, X_{3}
5		Input Leakage Current		$\mathrm{IIH}^{\text {H }}$		0.1		nA	$V_{\text {IN }}=V_{\text {DD }}$	$Y_{1}, Y_{2}, Y_{3}, Y_{4}$
6		Input Leakage Current		$\mathrm{I}_{\text {IL }}$		-0.1		nA	$V_{\text {IN }}=V_{\text {SS }}$	M/S,IDP,F01,
7		Pull-Down Transistor Sink Current		$I_{1 H}$	0.5	3.0	12.0	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}$	F02,FD,HOLD
8		Logic '0' Level		V_{IL}			0.9	\checkmark	All inputs	
9		Logic ' 1 ' Level		V_{IH}	2.1			\checkmark		
10	$\begin{array}{l\|l} \mathrm{O} & \text { Voltage } \\ \mathrm{U} & \text { Levels } \end{array}$		Low-Level	V_{OL}			0.01	V	No Load	DP, M1/M2
11			High-level	V_{OH}	2.99	3		V		
12	$\begin{aligned} & \text { U } \\ & \mathbf{T} \end{aligned}$	Drive Current	N-Channel Sink	102	0.8	2.0		mA	$\mathrm{V}_{\text {OUT }}=2.3 \mathrm{~V}$	
13			P-Channel Source	IOH	-0.8	-2.0		mA	$V_{\text {OUT }}=0.7 \mathrm{~V}$	

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$V_{\text {DD }}=3.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{CLK}}=3.579545 \mathrm{MHz}$
All voltages wrt $V_{S S}$

	CHARACTERISTICS	SYMBOL	MIN	TYP*	MAX	UNITS	TEST CONDITIONS
14	Output Rise Time	t_{R}		1.0		us	DP, M ${ }_{1}$.
15	Output Fall Time	t_{F}		1.0		us	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
16	Maximum Clock Frequency	$t_{\text {CLK }}$	3.58			MHz	3.579545 MHz Crystal
17	Mark to	M/S		2:1			Note 1
18				3:2			
19	Impulsing Rate $=\frac{1}{T}$			10		Hz	Note 1
20				16			
21				20			
22				932			
23	Clock Start Up Time	$t_{\text {on }}$		1.5	4	ms	Timed from CE '1'
24	Input Capacitance	$\mathrm{C}_{\text {in }}$		5.0		pF	Any input

* Typical parametric values are for Design Aid Only, not guaranteed and not subject to production testing. Timing waveforms are subject to production functional test.
NOTES:

1. See Pin Function, Table 1.

OPERATING NOTES

The first key entered in any dialling sequence initiates the oscillator by internally taking CE high. Digits may be entered asynchronously from the keypad. Dialling and mute functions are output as shown in figures 3 and 4. Figure 3 shows use of the circuits with external control of CE. This mode is useful if a bistable latching relay is used to mute and switch the complete pulse dialler circuit. In
this mode, the pulse occurring on M1 when CE is taken high, with no keypad input, can be used to initiate the bistable latching relay. Figure 4 shows the timing diagram for the CE internal control mode. Initially CE is low and goes high on recognition of the first valid key input. Keypad data is entered asynchronously.

Fig. 3 Keypad pulse dialer timing diagram, CE-External control

Fig. 4 Keypad pulse dialer timing diagram, CE-Internal control

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

	MIN.	MAX.
$V_{\text {DO }}-V_{S S}$	-0.3 V	10 V
Voltage on any pin	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Current at any pin	$-40^{\circ} \mathrm{C}$	10 mA
Operating Temperature	$-65^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Storage Temperature		$+150^{\circ} \mathrm{C}$
Power Dissipation	1000 mW	
Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$. All leads soldered to PC board.		

Fig. 5 Application diagram

MV4320

PIN FUNCTIONS

V_{DD}	Positive voltage supply						
DP	Dial Pulsing Output Buffer						
M1	Mute Output (Off Normal) Buffer						
M/S	Mark/Space (Break/Make) Ratio select. On-chip pull-down transistor to $\mathrm{V}_{\text {SS }}$.					O/C $2: 1$	
				Note: $\quad \mathrm{O} / \mathrm{C}=$ Open Circuit		$\mathrm{V}_{\text {DD }}$	3:2
F01,F02	Impulsing Rate Selection. On-chip pull-down transistor to $\mathrm{V}_{\text {SS }}$. - Assumes ${ }^{\mathrm{f}} \mathrm{CLK}=3.579545 \mathrm{MHz}$.	F01	F02	Nominal Impulsing Rate	$\begin{gathered} \text { Actual* } \\ \text { Inpulsing Rate } \\ \hline 10.13 \mathrm{H} 7 \end{gathered}$		System Clock frequency
		O/C	O/C	$\frac{10 \mathrm{~Hz}}{}$			- 303.9 Hz
		O/C	V 0 O	20 Hz	19.42 Hz		582.6 Hz
		VOD	O/C	932 Hz	932.17 Hz		27,965.1Hz
		V_{DD}	$V_{D D}$	16 Hz	15.54 Hz		466.1 Hz
CE	Chip Enable. An active input. Control is internal via static keyboard decode, or by external forcing.						
XTAL IN	Crystal Input. Active, clamped low if $\mathrm{CE}={ }^{\prime} 0$ ', high impedance if $\mathrm{CE}={ }^{\prime} 1$ '.						
XTAL OUT	Crystal Output Buffer to drive crystal.						
$V_{S S}$	System ground						
x_{1}, x_{2}, x_{3}	Column keyboard Inputs. On-chip pull-up transistors to V_{DO} Active LOW.						
$Y_{1}, Y_{2}, Y_{3}, Y_{4}$	Row keyboard Inputs. On-chip pull-up transistors to $V_{D D}$ Active LOW.						
	O/C ${ }^{\text {Normal }}$ Operation						
	$V_{\text {DD }}$ No impulsing. If activated during impulsing, hold occurs when the current digit is complete						
HOLD	Prevents further impulsing. On-chip pull-down transistor to V_{SS}.						

MV4325

MV4325

PROGRAMMABLE KEYPAD PULSE DIALLER

The MV4325 Keypad Pulse Dialler contains all the logic necessary to interface a 2 of 7 keypad and convert this key information to control and mute pulses simulating a telephone rotary dial. The MV4325 has programmable access pause capability to provide automatic interruption of dialling needed when accessing the toll network, WATS line or public network. The device is fabricated using Plessey Semiconductors' ISO-CMOS technology which enables the device to function down to 2.0 V making it ideal for long loop operation.

The MV4325 will accept up to 20 digits and access pauses and will redial stored information at a later time by activation of \# key. Device current in standby is less than $1 \mu \mathrm{~A}$ at 1.0 V .
The MV4325 is available in Ceramic DIL (DG, $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$).

E
Last Number Redial
Multiple Access Pause Programming
Any Valid Keypad Input or HOLD IN Causes Exit from Access Pause

- Oscillator Start Up Controlled from Keypad Input
- Oscillator Power Down whilst not Dialling
- 300 Hz Key Tone indicates Valid Key
- 2.0 V to 7.0 V Supply Voltage Operating Range
- Stores up to 20 Digits and Access Pauses
- Digit Memory Retained down to 1.0 V at $1 \mu \mathrm{~A}$
- Selectable Mark/Space Ratio $66 \frac{2}{3}: 33 \frac{1}{3}$ or $60: 40$
- 10 Hz Dialling Speed (932 Hz Fast Test):)

Fig. 1 Pin connections (top view)
FEATURES
DG18

APPLICATIONS

Fig. 2 MV4325 function diagram

MV4325

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

	MIN	MAX		MIN	MAX
$V_{D D}-V_{S S}$	-0.3V	10 V			
Voltage on any pin	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$			
Current at any pin		10 mA			
Operating Temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	Power Dissipation		1000 mW
Storage Temperature	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$			
* Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$. All leads soldered to PC board.					

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=3.579545 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$
All voltages wrt $\mathrm{V}_{\text {ss }}$

- Typical parametric values are for Design Aid Only, not guaranteed and not subject to production testing. Timing waveforms are subject to production functional test.

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{CLK}}=3.579545 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$

CHARACTERISTIC			SYMBOL	MIN	TYP*	max	UNITS	TEST CONDITIONS
1	$\begin{aligned} & D \\ & \mathrm{Y} \\ & \mathrm{~N} \\ & \mathrm{~A} \\ & \mathrm{M} \\ & 1 \\ & \mathrm{C} \end{aligned}$	Output Rise Time	${ }^{\text {t }}$ R		1.0		$\mu \mathrm{s}$	DP, M_{1}
2		Output Fall Time	${ }^{\text {t }}$ F		1.0		$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
3		Maximum Clock Frequency	${ }^{\text {f CLK }}$	3.58			MHz	3.579545 MHz Crystal
4		Mark to Space Ratio	M/S		2:1			$\mathrm{M} / \mathrm{S}=\mathrm{O} / \mathrm{C}\left(\mathrm{V}_{S S}\right)$
5					3:2			$M / S=V_{D D}$
6		System Clock Frequency (Internal)			300		Hz	F01 $=V_{\text {SS }}$
7		Impulsing Rate $=1 / \mathrm{T}$			10		Hz	F01 $=V_{\text {SS }}$
8		Fast Test Impulsing Rate			14.9		Hz	$\mathrm{F} 01=\mathrm{V}_{\mathrm{DD}}$
9		Clock Start Up Time	${ }^{\text {ton }}$		1.5	4	ms	Timed from CE \uparrow '1'
10		Input Capacitance	$\mathrm{C}_{\text {in }}$		5.0		pF	Any Input

Fig. 3 MV4325 timing diagram, CE External control

Fig. 4 MV4325 timing diagram, CE Internal control

MV4325

PIN FUNCTIONS

$V_{\text {DD }}$	Positive voltage supply						
DP	Dial Pulsing Output Buffer						
M1	Mute Output Buffer						
M/S	Mark/Space (Break/Make) Ratio select. On-chip pull-down transistor to V_{SS}. Note: $\quad \mathrm{O} / \mathrm{C}=$ Open Circuit					O/C	2:1
						$\mathrm{V}_{\text {DD }}$	3:2
F01	Impulsing Rate Selection. On-chip pull-down transistor to V_{SS}. * Assumes ${ }^{\dagger}$ CLK $=3.579545 \mathrm{MHz}$.			F01	Nominal Impulsing Rate	Actual* Inpulsing Rate System Clock frequency	
				O/C	10 Hz	10.13 Hz	303.9 Hz
				$V_{D D}$	932 Hz	932.17 Hz	27,965.7Hz
CE	Chip Enable. An active input. Control is internal via static keyboard decode, or by external forcing.						
XTAL IN	Crystal Input. Active, clamped low if $\mathrm{CE}=$ ' 0 ', high impedance if $\mathrm{CE}=$ ' 1 '.						
XTAL OUT	Crystal Output. Buffer to drive crystal. Capacitive load on-chip.						
$V_{\text {SS }}$	System ground						
x_{1}, x_{2}, x_{3}	Column keyboard Inputs. On-chip pull-up transistors to $\mathrm{V}_{\text {DD }}$. Active LOW.						
$Y_{1}, Y_{2}, Y_{3}, Y_{4}$	Row keyboard Inputs. On-chip pull-up transistors to V_{DD}. Active LOW.						
HOLD IN/ ACCESS PAUSE OUT	INPUT/OUTPUT O/C Normal Operation						
	INPUT	$V_{\text {DD }}$	No impulsing. If activated during impulsing, hold occurs when the current digit is complete.				
	OUTPUT	$V_{\text {DD }}$	Logic " 1 " level output indicates access pause condition.				
KT	300 Hz Square wave bursts indicate valid keypad input.						

	KEYPAD INPUT CODE							
No. of O/P Pulses	Digit	Y_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}	\mathbf{Y}_{4}	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	\mathbf{X}_{3}
1	1	0	1	1	1	0	1	1
2	2	0	1	1	1	1	0	1
3	3	0	1	1	1	1	1	0
4	4	1	0	1	1	0	1	1
5	5	1	0	1	1	1	0	1
6	6	1	0	1	1	1	1	0
7	7	1	1	0	1	0	1	1
8	8	1	1	0	1	1	0	1
9	9	1	1	0	1	1	1	0
10	0	1	1	1	0	1	0	1
RE-DIAL	1	1	1	0	1	1	0	
ACCESS PAUSE	1	1	1	0	0	1	1	

Table 1

Fig. 5 Keypad input debounce timing diagram

OPERATING NOTES

The MV4325 programmable keypad pulse dialer is optimized for use in key operated pulse dialling telephone sets and contains features which make it particularly suitable for applications where redial of last number dialled and repertory dial facilities are required.

Keypad information is accepted directly from a dual contact keypad having two single pole switches per key: one switch common to the column and one switch common to the row. The common row contacts are connected Y 1 to Y 4 and the common column contacts connected X1 to X3. The other side of each switch is connected to a common VSS line. The keypad code is shown in Table 1.

The MV4325 will accept up to 20 digits and access pauses, e.g. 18 digits plus 2 access pauses or alternately 19 digits plus 1 access pause. Prior to a keypad input being accepted contact bounce is eliminated by a circuit which ensures that any input which is valid for less than 10 ms is rejected and any input valid for greater than 17 ms is accepted as a valid key input. This circuit operates similarly on the trailing edge of a valid key input preventing multiple digit recognition in the presence of noise. Debounce operation is shown in Fig.5.

The first key entered in any dialling sequence initiates the oscillator on the MV4325 by internally taking CE high. Digits may be entered asynchronously from the keypad. Dialling and mute functions are output as shown in Fig. 3 and Fig.4. Fig. 3 shows use of the MV4325 with external control of CE. This mode is useful if a bistable latching relay is used to mute and switch the complete pulse dialer circuit. In this mode the pulse occurring on M1 when CE is taken high with no keypad input can be used to initiate the bistable latching relay.
Fig. 4 shows the timing diagram of the MV4325 including access pause and redial mode. Initially CE is low and goes high on recognition of the first valid key input. Keypad data is entered asynchronously and dialling commences after recognition of the leading edge of the first valid key input. When an access pause is reached M1 goes low and Hold In/Access Pause Out goes high indicating the device is in an access pause. This output signal can be used to enable an external dial tone recognition circuit. Exit from the access
pause is achieved by one of two methods. One method is by the next valid key operation. If a valid digit is entered, the digit will be entered in the next consecutive storage location in the digit memory. If the key $\#$ is activated, redialling of the number in memory will occur only if the device is in the redial mode. The alternative method to exit from an access pause is to pulse Hold In/Access Pause Out low, resetting the output latch associated with this input/output pin.

Fig. 4 shows a pause in dialling between the completion of dialling digit 4 and keying digit 1 . In this condition, the oscillator powers down to minimize power consumption and interfering signals, whilst CE remains high. On recognition of the next digit, the digit is entered in the next consecutive memory location and dialling resumes.

The end of a key entry sequence is indicated to the MV4325 by externally pulsing or clamping CE low. This causes the on-chip latch holding CE high to reset.

If the first key entered after a CE low period is \#, redial of the last number dialled will occur. Access pause operation is as previously described. In the standby condition the MV4325 dissipates less than $1.0 \mu \mathrm{~W}$.

Fig. 6 Application diagram

MV4325

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

MV4330 MV4332
 CMOS/LSI 30/32-BIT STATIC SHIFT REGISTERS WITH PARALLEL TRUEJCOMPLEMENT OUTPUTS

The MV4330 and MV4332 are CMOS/LSI 30 and 32-bit static shift registers incorporating selectable true/complement outputs for each bit. These devices are well suited to drive LCD readouts directly since the AC signals required for the display may be generated simply by applying a low frequency signal directly to the True-Complement input pin and to the backplane of the display. One of these devices can drive four 7 -segment displays or two 14 -segment alpha-numeric displays plus decimal points or two 16segment alpha-numeric displays directly.
The devices are available in 40-pin plastic DIL (DP) package.

FEATURES

Direct LCD Drive
CMOS Low Power ($1 \mu \mathrm{~A}$)
3 to 18 Volt Operation
On-Chip Wave-Shaping
High Speed (Typ. 3MHz) Shift Register

Fig. 1 Pin connections (top view)

Fig. 2 Block diagrams

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	TEST			LIMIT			UNIT
		CONDITIONS		VDO Volts	Min.	Typ.	Max.	
Quiescent Device Current	' L			5	-	0.5	50	uA
				10	-	1	100	
Low-Level	VOL			5	-	0	0.01	V
				10	-	0	0.01	
Output Voltage High-Level	VOH			5	4.99	5	-	
				10	9.99	10	-	
Noise Immunity (Any Input)	VNL		0.8	5	1.5	2.25	-	V
			1.0	10	3	4.5	-	
	VNH		4.2	5	1.5	2.25	-	
			9.0	10	3	4.5	-	
Output Drive Current	IDN	N-Channel	0.5	5	0.8	1.7	-	mA
			0.5	10	1.0	3.0	-	
	$1 \mathrm{D}^{P}$	P-Channel	4.5	5	-0.35	-0.9	-	
			9.5	10	-0.8	-1.9	-	
	10 N	N-Channel	0.5	10	50	250	-	$u \mathrm{~A}$
	${ }_{10}{ }^{\text {P }}$	P-Channe	9.5	10	-50	-250	-	
Input Current	1				-	10	-	pA

AC ELECTRICAL CHARACTERISTICS

Test conditions (uniess otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
All input rise and fall times $=20 \mathrm{~ns}$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMIT			UNIT
			VDD Volts	Min.	Typ.	Max.	
Propagation Delay Time	TPHL TPLH		10	-	300	-	ns
Transition Time	tTHL	DOUT (CL=50pF)	10	-	70	130	ns
	tTLH	QOUT (CL= 15 pF)	10	-	300	-	ns
Maximum Clock Frequency	fCL		10	1.0	3.0	-	MHz
Minimum Clock Pulse Width	TWL TWH		10	-	200	-	ns
Minimum Reset Pulse Width	tWH(R)		10	-	200	-	ns
Input Capacitance	Cl	Any Input		-	5	-	pF

Note 1.Voltages with respect to $V_{\text {ss }}$ d
Note 2.Typical temperature coefficient for all values $=0.3 \% /{ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

PARAMETER	SYMBOL	LIMIT	UNIT
DC Supply Voltage	VDD	-0.5 to 18	V
Input Voltage	VIN	-0.5 to VDD +0.5	V
DC Current Drain per Pin	1	10	mA
Operating Temperature Range	TA	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		65 to 125	${ }^{\circ} \mathrm{C}$

OPERATING NOTES

The MV4330 and MV4332 accept a serial input DI which is shifted into the register on the positive transition of the clock (CLK) input. A feature of these devices is that the clock input and the true/complement control (T/C) input have waveshaping circuits (Fig.3) to ensure fast edges on-chip regardless of the shape of the incoming signals.
The MV4330 also has the reset (RST) input gated with the clock input for synchronous reset on the positive transition of the clock. The MV4332 has asynchronous reset (RST) inputs which are active HIGH.

The parallel outputs of the shift registers are available in either true or complementary form dependent on the state of the true/complement control input. When input is logiclevel LOW, the true form is available at all parallel outputs and when the input goes HIGH, the parallel outputs immediately revert to the complementary form of the data stored in each register. This action is independent of the clock input condition. A serial data (DO) output is provided for applications using longer shift registers, etc. This output is the true form of the last stage of the register.

Fig. 3 Wave shaping circuit

Fig. 4 One stage of shift register

Fig. 5 Typicalapplication

MV5087

DTMF GENERATOR
The MV5087 is fabricated using Plessey Semiconductors' ISO-CMOS high density technology and offers low power and wide voltage operation. An inexpensive 3.58 MHz TV crystal completes the reference oscillator. From this frequency are derived 8 different sinusoidal frequencies which, when appropriately mixed, provide Dual-Tone MultiFrequency (DTMF) tones.
Inputs are compatible with either a standard 2-of-8, or single contact (form A), keyboard. The keyboard entries determine the correct division of the reference frequency by the row and column counters.
D-to-A conversion, using R-2R ladder networks, results in a staircase approximation of a sinewave with low total distortion.
Frequency and amplitude stability over operating voltage and temperature range are maintained within industry DTMF specifications.

Fig. 1 Pin connections - top view

FEATURES

- Pin-for-Pin Replacement for MK5087

Low Standby Power
Minimum External Parts Count
3.5 V to 10 V Operation

2-of-8 Keyboard or Calculator-Type Single Contact
(Form A) Keyboard Input

APPLICATIONS

DTMF Signalling for

- On-Chip Regulation of Output Tone
- Mute and Transmitter Drivers On-Chip

High Accuracy Tones Provided by 3.58 MHz
Crystal Oscillator
Telephone Sets
Mobile Radio
Remote Control
Point-of-Sale and Banking Terminals
Process Control

- Pin-Selectable Inhibit of Single Tone Generation

ABSOLUTE MAXIMUM RATINGS

	MIN.	MAX		MIN.
$\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\text {SS }}$	-0.3 V	10.5 V	Power dissipation	
Voltage on any pin	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$	850 mW
Current on any pin		10 mA	(All leads soldered to PCB)	
Operating temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$		
Storage temperature	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$		

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}$ do $=3.5 \mathrm{~V}$ to 10 V

CHARACTERISTICS			SYMBOL	MIN	TYP	MAX	UNITS							
S	Operating Supply Voltage		$V_{D D}$	3.5		10	V	Ref. to $V_{S S}$						
	Standby Supply Current		Iods		0.2	100	uA	$\mathrm{V}_{\text {DD }}=3.5 \mathrm{~V}$	No Key Depressed All outputs Unloaded					
				0.5	200	UA	$V_{D D}=10 \mathrm{~V}$							
	Operating Supply Current			IDD		1.0	2.0	mA	$V_{D D}=3.5 \mathrm{~V}$	One Key Depressed All outputs Unloaded				
					5.0	10.0	mA	$V_{D D}=10 \mathrm{~V}$						
1	$\frac{\text { SINGLE TONE }}{\frac{\text { INHIBIT }}{}}$	INPUT HIGH VOLTAGE	V_{1+}	0.7VDD		$V_{D D}$	V							
N		INPUT LOW VOLTAGE	V_{LL}	0		0.3Vdo	V							
		INPUT RESISTANCE	$\mathrm{R}_{\text {IN }}$		60		Kı1							
T	ROW 1-4	INPUT HIGH VOLTAGE	$V_{\text {IH }}$	0.9 VDD			V							
S		INPUT LOW VOLTAGE	$\mathrm{V}_{\text {IL }}$			0.3VdD	V							
	COLUMN 1-4	INPUT HIGH VOLTAGE	$\mathrm{V}_{\text {IH }}$	0.7Vdo			V							
		INPUT LOW VOLTAGE	$\mathrm{V}_{\text {IL }}$			0.1 VDD	V							
	XMITR	SUURCE CURRENT	I_{OH}	-15	-25		mA	$\mathrm{VDD}=3.5 \mathrm{~V}, \mathrm{VOH}=2.5 \mathrm{~V}$		NoKeyboardEntry				
U				-50	-100		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=8 \mathrm{~V}$						
T		LEAKAGE CURRENT	I_{oz}		0.1	10	UA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{OV}$		$\begin{gathered} \text { Keyboard } \\ \text { Entry } \end{gathered}$				
U	MUTE	SINK CURRENT	I_{OL}	0.5			mA	$\mathrm{VDD}^{2}=3.5 \mathrm{~V}, \mathrm{VoL}=0.5 \mathrm{~V}$		$\begin{gathered} \text { No } \\ \text { Keyboard } \\ \text { Entry } \end{gathered}$				
T				1.0			mA	$\begin{array}{\|l\|} \hline V_{D D}=10 \mathrm{~V}, V_{\mathrm{OL}}=0.5 \mathrm{~V} \\ V_{D D}=3.5 \mathrm{~V}, \mathrm{VOH}=3.0 \mathrm{~V} \end{array}$						
S		SOURCE CURRENT	I_{OH}	-0.5			mA			Keyboard Entry				
				-1.0			mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{~V}$						

AC ELECTRICAL CHARACTERISTICS
Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=3.5 \mathrm{~V}$ to 10 V

CHARACTERISTICS		SYMBOL	MIN	TYP	MAX	UNITS	
TONE OUT	ROW TONE OUTPUT VOLTAGE	$\mathrm{V}_{\text {OR }}$	320	400	500	$\mathrm{mV}_{\text {RMS }}$	Single Tone$R_{L}=1 K \Omega$
	COLUMN TONE OUTPUT VOLTAGE	V_{OC}	400	500	630	$\mathrm{mV}_{\text {RMS }}$	
	EXTERNAL LOAD IMPEDANCE	R_{L}	700			5	$\mathrm{V}_{\text {DD }}=3.5 \mathrm{~V}$
			330			12	$V_{D D}=10 \mathrm{~V}$
OUTPUT DISTORTION					-20	dB	Total out-of-band power relative to sum of row and column fundamental power
PRE EMPHASIS, High Band			1		3	dB	
Tone Output Rise Time		$t_{\text {r }}$		3	5	ms	

PIN FUNCTIONS

$\begin{aligned} & \text { PIN } \\ & 1 \end{aligned}$	NAME $V_{D D}$	DESCRIPTION Positive Power Supply
2	XMITR	Emitter output of a bipolar transistor whose collector is connected to V_{DD}. With no keyboard input this output remains at $\mathrm{V}_{D D}$ and a keyboard input changes the output to a high impedance state. The state of Single Tone Inhibit input has no effect on XMITR output.
3,4,5,9	Column 1-4	These inputs are held at $\mathrm{V}_{\text {SS }}$ by resistors Rc and sense a valid logic level (approx $1 / 2 V_{D D}$) when tied to a Row input.
6	$\mathrm{V}_{\text {SS }}$	Negative Power Supply (OV)
7,8	$\begin{aligned} & \text { OSC In, } \\ & \text { OSC Out } \end{aligned}$	On-chip inverter completes the oscillator when a $3,579545 \mathrm{MHz}$ crystal is connected to these pins. OSC In is the invertor input and OSC Out is the output.
10	Mute	This CMOS Output switches to $V_{S S}$ with no keyboard input and to $V_{D D}$ with a keyboard input. This output is unaffected by the state of Single Tone Inhibit.
11,12,13,14	Row 1-4	These inputs are held at $V_{D O}$ by resistors R_{R} and sense a valid logic level (Approx $1 / 2 V_{D D}$) when tied to a column input.
15	$\frac{\text { Single Tone }}{\text { Inhibit }}$	This input has a pull-up resistor to $V_{D D}$ and when left unconnected or tied to $V_{D D}$, single or dual tones may be generated. When $\mathrm{V}_{\text {ss }}$ is applied dual tones only are generated and no input combinations will cause generation of a single tone.
16	Tone Out	Emitter output of a bipolar NPN transistor whose collector is tied to $V_{D D}$. Input to this transistor is from an op-amp which mixes, and regulates the output level of, the row and column tones.

ROW AND COLUMN INPUTS

These inputs are compatible with the standard 2-of-8 keyboard, single contact (form A) keyboard and electronic input. Figures 3 and 4 show these input configurations, and Fig. 5 shows the internal structure of these inputs.
When operating with a keyboard, dual tones are generated when any single button is pushed. Single tones are generated when more than one button is pushed in any row
or column. No tones are generated when diagonallypositioned buttons are simultaneously pressed.
An electronic input to a single column generates that single column tone. Inputs to multiple columns generates no tone. An electronic input to a single row generates no tone and a single row tone may be generated only by activating 2 columns and the desired row.

Fig. 3 Keyboard configuration

Fig. 4 Electronic input

Fig. 5 Row and column inputs

MV5087

OUTPUT FREQUENCY

Table 1 shows the output frequency deviation from the standard DTMF frequencies when a 3.58 MHz crystal is used as the reference.
The row and column output waveforms are digitally synthesised using R-2R D-to-A converters (see Fig.6), resulting in a 'staircase' approximation to a sinewave. An opamp mixes these tones to produce a dual-tone waveform. Single tone distortion is typically better than 7% and all distortion components of the mixed dual-tone should be 30 dB relative to the strongest fundamental (column tone).

	Standard DTMF (Hz)		Tone Output Frequency Using 3.579545 MHz Crystal	$\%$ Deviati From Stand	
			701.3	$+0.62$	
			771.4	+0.19	
	f_{3}	852	857.2	+0.61	Group
		941	935.1	-0.63	
Column		1209	1215.9	$+0.57$	HighGroup
		1336	1331.7		
	f,	1477	1471.9	-0.35	
		1633	1645.0	$+0.73$	

Table 1 Output frequency deviation

Fig. 6 Typical sinewave output (a) Row tones (b) Column tones

DISTORTION MEASUREMENTS

THD for the single tone is defined by:

$$
100\left(\frac{\sqrt{V_{2 f}^{2}+V_{3 f}^{2}+V_{4 f}^{2}+\cdots-V_{n f}^{2}}}{V_{\text {fundamental }}}\right) \%
$$

Where $\mathrm{V}_{2 f}-\mathrm{V}_{\text {nf }}$ are the Fourier components of the waveform.
THD for the dual tone is defined by:

$$
100\left(\frac{\sqrt{V_{2 R}^{2}+V_{3 R}^{2}-V_{n R}^{2}+V_{2 C}^{2}+V_{3 C}^{2}-V_{n c}^{2}+V_{i M D}^{2}}}{\sqrt{V_{\text {ROW }}^{2}+V_{C O L}^{2}}}\right)
$$

where $V_{\text {row }}$ is the row fundamental amplitude
VCoL is the column fundamental amplitude
$V_{2 R}-V_{\mathrm{VR}}$ are the Fourier component amplitudes of the row frequencies
$V_{2 c}-V_{n c}$ are the Fourier component amplitudes of the column frequencies
$V_{\text {ImD }}$ is the sum of all intermodulation components.

Fig. 7 Connection diagram

MV5089

DTMF GENERATOR

The MV5089 is fabricated using Plessey Semiconductors' ISO-CMOS high density technology and offers low power and wide voltage operation. An inexpensive 3.58 MHz TV crystal completes the reference oscillator. From this frequency are derived 8 different sinusoidal frequencies which, when appropriately mixed, provide Dual-Tone MultiFrequency (DTMF) tones.
Inputs are compatible with a standard 2-of-8 active-low keyboard and the keyboard entries determine the correct division of the reference frequency by the row and column counters. D-to-A conversion, using R-2R ladder networks, results in a 'staircase' approximation of a sinewave with low total distortion.

Frequency stability over operating voltage and temperature range are maintained within industry DTMF standards.

Fig. 1 Pin connections - top view

FEATURES

- Pin-for-Pin Replacement for MK5089
- Low Standby Power
- Minimum External Parts Count
- 2.75 V to 10 V . Operation
- 2-of-8 Keyboard Input
- High Accuracy Tones Provided by 3.58 MHz Crystal Oscillator
- Pin-Selectable Inhibit of Single Tone Generation

APPLICATIONS

DTMF Signalling for

- Telephone Sets
- Mobile Radio
- Remote Control
- Point of Sale and Banking Terminals
- Process Control

ABSOLUTE MAXIMUM RATINGS

	MIN.	MAX		MIN.
$V_{D D}-V_{S S}$	-0.3 V	10.5 V	Power dissipation	850 mW
Voltage on any pin	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$	
Current on any pin		10 mA	(All leads soldered to PCB)	
Operating temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$		
Storage temperature	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$		

DC ELECTRICAL CHARACTERISTICS
Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{VoD}=3 \mathrm{~V}$ to 10 V

CHARACTERISTICS			SYMBOL	MIN	TYP	MAX	UNITS			
S	Operating Supply Voltage		$V_{D D}$	2.75		10	V	Ref. to $V_{\text {SS }}$		
P	Standby Supply Current		IdDS		0.2	100	UA	$V_{D D}=3 \mathrm{~V}$	No Key Depressed	
P				0.5	200	UA	$V_{D D}=10 \mathrm{~V}$	All outputs Unloaded		
$\stackrel{L}{\text { L }}$	Operating Supply Current			${ }^{\text {d }}$		1.0	2.0	mA	$V_{D D}=3 \mathrm{~V}$	One Key Depressed All outputs Unloaded
					5.0	10.0	mA	$V_{D D}=10 \mathrm{~V}$		
INPUTS	SINGLE TONE INHIBIT.	INPUT HIGH VOLTAGE	$\mathrm{V}_{1 H}$	0.7Vod		$V_{D D}$	V			
		INPUT LOW VOLTAGE	$\mathrm{V}_{\text {IL }}$	0		0.3VDD	V			
	TONE DISABLE	INPUT RESISTANCE	$\mathrm{R}_{\text {IN }}$		60		K Ω			
	ROW 14	INPUT HIGH VOLTAGE	V_{IH}	0.7VDD		$V_{D D}$	V			
	COLUMN 1-4	INPUT LOW VOLTAGE	$\mathrm{V}_{\text {IL }}$	0		0.3VDD	V			
0	ANY KEY DOWN	SINK CURRENT	lol	0.5			mA	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=0.5 \mathrm{~V}$		
U				1.0			mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		
T		LEAKAGE CURRENT	I_{oz}		1		UA	$V_{D D}=3 \mathrm{~V}$		
U S										

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$T_{\text {amb }}=+25^{\circ} \mathrm{C}, V_{D D}=3 \mathrm{~V}$ to 10 V

CHARACTERISTICS		SYMBOL	MIN	TYP	MAX	UNITS	
TONE OUT	OUTPUT LEVEL, ROW	VOUT	-10	-8	-7	dBm	$V_{\text {OD }}=3 V$. Single Tone. $\mathrm{R}_{\mathrm{L}}=100 \mathrm{K!}!$
PRE EMPHASIS, High Band		2.4	2.7	3.0	dB		
OUTPUT DISTORTION (Dual TOne)				-20	dB	Total out-of-band power relative to sum of row and column fundamental power	
Tone Output Rise Time							

PIN FUNCTIONS

PIN	NAME	DESCRIPTION
1	$V_{D D}$	Positive Power Supply
2	TONE DISABLE	This input has an internal pull-up resistor to $V_{D D}$. When connected to $V_{S S}$ no tones are generated by any key depression allowing the keyboard to be used for purposes other than DTMF signalling.
3,4,5,9	$\overline{\text { COLUM }} 1$ 1-4	These CMOS inputs are held at $V_{D D}$ by an internal pull-up resistor and are activated by the application of $\mathrm{V}_{\text {SS }}$.
6	$\mathrm{V}_{\text {ss }}$	Negative Power Supply (OV)
7,8	OSC IN, OSC OUT	On-chip inverter completes the oscillator when a $3,58 \mathrm{MHz}$ Crystal is connected to these pins. OSC IN is the inverter input and OSC OUT is the output.
10	Any Key Down	This is an NMOS transistor output which switches to Vss while any key is depressed. Otherwise this output is high impedance. Switching is independent of Tone Disable and Single Tone Inhibit.
11,12,13,14	Row 1-4	As Column 1.4 inputs.
15	$\stackrel{\text { Single Tone }}{\text { Inhibit }}$	This input has a pull-down resistor to V_{ss}. When left unconnected or tied to V_{ss}, dual tones may be generated, but keyboard input combinations resulting in single tone generation are inhibited. When V_{DD} is applied single or dual tones may be generated.
16	Tone Out	Emitter output of a bipolar NPN transistor whose collector is tied to V Vo $^{\text {. }}$ Input to this transistor is from an op-amp which mixes the Row and Column tones.

ROW AND COLUMN INPUTS

These inputs are compatible with the standard 2 -of- 8 keyboard or with an electronic input. Figures 3 and 4 show these input configurations and Fig. 5 shows the internal chip structure of these inputs.
When operating with a keyboard, dual tones are generated when any single button is pushed.
With Single Tone Inhibit at Vod, connection of Vss to a single column causes the generation of that Column tone. Connection of Vss to more than one Column will result in no Column tones being generated. Connection of Vss to Rows only generates no tone-a Column must be connected to $V_{\text {ss }}$.
A single Row tone only may be generated by connecting 2 columns, and the desired row, to Vss.

OUTPUT TONE LEVEL

The output tone level of the MV5089 is proportional to the applied DC supply voltage.
A regulated supply will normally be used which may be designed to provide stability over the temperature range.

Fig. 32 of 8 DTMF keyboard

Fig. 4 Electronic input

Fig. 5 Row and Column inputs

MV5089

OUTPUT FREQUENCY

Table 1 shows the output frequency deviation from the standard DTMF frequencies when a 3.58 MHz crystal is used as the reference.

The row and column output waveforms are digitally synthesised using R-2R D-to-A converters (see Fig.6) resulting in staircase approximations to a sinewave. An opamp mixes these tones to produce a dual-tone waveform. Single tone distortion is typically better than 7% and all distortion components of the mixed dual-tone should be 30 dB relative to the strongest fundamental (column tone).

	Standard DTMF$(H z)$		Tone Output Frequency Using 3.579545 MHz Crystal	\% Deviatio From Stand	dard
Row		697	701.3	+0.62	
			771.4	+0.19	
	f_{3}	852	857.2	+0.61	Group
		941	935.1	-0.63	
Column		1209	1215.9	$+0.57$	High
			1331.7	-0.32	
		1477	1471.9	-0.35	
		1633	1645.0	+0.73	

Table 1 Output frequency deviation

Fig. 6 Typical sinewave output (a) Row tones (b) Column tones

DISTORTION MEASUREMENTS

THD for the single tone is defined by:

$$
100\left(\frac{\sqrt{V_{2 f}^{2}+V_{3 f}^{2}+V_{4 f}^{2}+\cdots-V_{n f}^{2}}}{V_{\text {fundamental }}}\right) \%
$$

Where $\mathrm{V}_{2 f}-\mathrm{V}_{\text {nf }}$ are the Fourier components of the waveform.
THD for the dual tone is defined by:

$$
100\left(\frac{\sqrt{V_{2 R}^{2}+V_{3 R}^{2} \cdots V_{n R}^{2}+V_{2 C}^{2}+V_{3 C}^{2} \cdots V_{n c}^{2}+V_{\mathrm{IMD}}^{2}}}{\sqrt{\mathrm{~V}_{\mathrm{ROW}}^{2}+\mathrm{V}_{\mathrm{COL}}^{2}}}\right)
$$

where $V_{\text {row }}$ is the row fundamental amplitude
VCoL is the column fundamental amplitude
$\mathrm{V}_{2 R}-\mathrm{V}_{\text {nR }}$ are the Fourier component amplitudes of the row frequencies
$V_{2 \mathrm{C}}-\mathrm{V}_{\mathrm{nc}}$ are the Fourier component amplitudes of the column frequencies
Vimd is the sum of all intermodulation components.

Fig. 7 connection diagram

MV5089 availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

MV8804 EXP
 8×4 BIDIRECTIONAL ANALOGUE SWITCH ARRAY

The MV8804 is a CMOS/LSI 8×4 Analogue Switch Array incorporating control memory (32 bits), decoder and digital logic level converters. The circuit has digitally-controlled analogue switches having very low 'ON' resistance and very low 'OFF' leakage current. The switches will operate with analogue signals at frequencies up to 40 MHz and up to 13.0 V peak-to-peak. A 'HIGH' on the Master Reset input switches all channels 'OFF' and clears the memory. The MV8804 is ideal for crosspoint switching applications. .

FEATURES

- Microprocessor Compatible Control Inputs
- On-Chip Control Memory And Address Decoding
- Row Addressing
- Master Reset
- 32 Crosspoint Switches in 8×4 Array
- 5.0 V to 13.0 V Operation
- Low Crosstalk Between Switches
- Low On Resistance: $90 \boldsymbol{\Omega}$ (typ.) At 10 V

Fig. 1 Pin Connections - top view

- Matched Switch Characteristics
- Switches Frequencies Up To 40 MHz

APPLICATIONS

- PABX And Key Systems
- Data Acquisition Systems
- Test Equipment/Instrumentation
- Analogue/Digital Multiplexers

ABSOLUTE MAXIMUM RATINGS

Exceeding these ratings may cause permanent damage. Functional operation under these conditions is not implied.

	Min.	Max.		Min.	Max.
VDD - VSS	-0.3V	16 V	Storage temperature	$-65^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Vdo - Vee	-0.3V	16 V	(DP package)		
Vss - Vee	-0.3V	16 V	Power dissipation		$1200 \mathrm{mW*}$
Voltage on any logic pin	Vss -0.3V	$V_{\text {do }}+0.3 \mathrm{~V}$	(DG package)		
Voltage on any line (V_{L}) or junctor (V_{J})	Vee -0.3V	$V_{D D}+0.3 V$	Power dissipation		$600 \mathrm{~mW}{ }^{* *}$
Current at any logic pin		$10 \mathrm{~mA}$	(DP package)		
Operating temperature (all packages)	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$			
Storage temperature (DG package)	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$			

* Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$. All leads soldered to PC board.
** Derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. All leads soldered to PC board.

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{is}}=5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20$ ns (input signal)

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Sine wave response (distortion)	tps		0.1		\%	$V_{D D}=13 \mathrm{~V}$
			0.2		\%	$\left.V_{D D}=10 \mathrm{~V}\right\} \mathrm{fin}_{\text {in }}=1 \mathrm{kHz}$
			1.0		\%	$V D D=5 \mathrm{~V}$
Frequency response channel 'ON' (sine wave input) Feedthrough channel 'OFF'			40		MHz	$V_{C}=V_{D D}=10 \mathrm{~V}, \frac{V_{0}}{V_{1}}=-3 \mathrm{~dB}$
			-40		dB	$\begin{aligned} & V_{D D}=10 \mathrm{~V}, V_{c}=V_{E E}, R L=1 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} \end{aligned}$
Crosstalk between any two channels			-40		dB	$\mathrm{fin}_{\text {in }}=1.0 \mathrm{MHz}, V_{D D}=10 \mathrm{~V}$, Switch A
			-90		dB	fin $=3.4 \mathrm{kHz}$ \{'ON',Switch B 'OFF'
Propagation delay Signal input to signal output			10		ns	$V_{D D}=10 \mathrm{~V}$, Switch 'ON'
Turn 'ON' propagation delay Data input to signal output Address enable to signal output	tPLH		200		ns	$V_{D D}=10 \mathrm{~V}$
	tPHL		400		ns	$V_{D D}=5 \mathrm{~V}$
	trae		300		ns	$V_{D D}=10 \mathrm{~V}$
			600		ns	$V_{D D}=5 \mathrm{~V}$
Minimum address enable (AE) Pulse width	$t_{\text {AE }}$		90		ns	$V D D=10 \mathrm{~V}$
			225		ns	$V_{D D}=5 \mathrm{~V}$
Minimum set-up time Address to AE Data in to AE						
	ts	0	50		ns	$V_{D o}=10 \mathrm{~V}$
	ts	0	50		ns	VDD $=5 \mathrm{~V}$ $V D D$
			90		ns	$V_{D D}=5 \mathrm{~V}$
Minimum Hold Time Address or data in to address enable	th		50		ns	$V_{D D}=10 \mathrm{~V}$
			90		ns	$V_{D D}=5 \mathrm{~V}$
Memory reset time	tMR		175		ns	$V_{D O}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$
Memory reset recovery time	TMRR		150		ns	$V_{D D}=10 \mathrm{~V}, \quad R \mathrm{~L}=1 \mathrm{k} \Omega$
			250		ns	$V D D=5 \mathrm{~V}\} \mathrm{RL}=1 \mathrm{k} \Omega$

DC ELECTRICAL CHARACTERISTICS
Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$

NOTES

1. Typical parametric values are for Design Aid Only, not guaranteed and not subject to production testing.
2. Vis is the analogue switch input voltage, Vin is digital input voltage.

Fig. 3 Visual indication of MV8804 control memory status

Fig. 4 Timing waveforms

PIN DESCRIPTION

Pin	Name	Description
1	L2	Analogue Switch Array Input/Output Line
2	L1	Analogue Switch Array Input/Output Line
3	Lo	Analogue Switch Array Input/Output Line
4	Do	Control Memory Data Line Input
5	Jo	Analogue Switch Array Input/Output Junctor
6	D1	Control Memory Data Line Input
7	J_{1}	Analogue Switch Array Input/Output Junctor
8	D_{2}	Control Memory Data Line Input
9	J_{2}	Analogue Switch Array Input/Output Junctor
10	D_{3}	Control Memory Data Line input
11	J3	Analogue Switch Input/Output Junctor
12	Vss	Negative Digital Power Supply
13	Vee	Negative Analogue Power Supply
14	Ao	Control Memory Address Input
15	A_{1}	Control Memory Address Input
16	A_{2}	Control Memory Address Input
17	AE	Control Memory Address Enable Input (Strobe)
18	MR	Master Reset
19	L7	Analogue Switch Array Input/Output Line
20	L6	Analogue Switch Array Input/Output Line
21	L5	Analogue Switch Array Input/Output Line
22	L4	Analogue Switch Array Input/Output Line
23	L3	Analogue Switch Array Input/Output Line
24	VDD	Positive Analogue/Digital Power Supply

FUNCTIONAL DESCRIPTION

The analogue switch array is arranged in 8 rows and 4 columns. The row input/outputs are referred to as LINES (LO-L7) and the column input/outputs as JUNCTORS (JOJ3). The crosspoint analogue switches interconnect the lines and junctors when turned 'ON' and provide a high degree of isolation when turned 'OFF'. Interchannel crosstalk is minimal despite the high density of the analogue switch array.

The control memory of the MV8804 can be treated as an 8word by 4 -bit random access memory. The 8 words are selected by the ADDRESS (AO-A2) inputs through the onchip address decoder. Data is presented to the memory via the 4 DATA inputs (DO-D3). This data is asynchronously written into the control memory whenever the ADDRESS ENABLE (AE) input is high. A high level written into a memory cell turns the corresponding crosspoint switch 'ON' while a low level causes the crosspoint to turn 'OFF'.

Only the crosspoint switches corresponding to the addressed memory word are affected when data is written
into the memory. The remaining switches retain their previous states. By establishing appropriate patterns in the control memory, any combination of lines and junctors may be interconnected. A high level on the MASTER RESET (MR) input returns all memory locations to a low level and turns all crosspoint switches 'OFF', effectively isolating the lines from the junctors. The digital logic level converters allow the digital input levels to differ from limits of the analogue levels switched through the array. For example, with $V_{D D}=5 \mathrm{~V}$, $\mathrm{V}_{s \mathrm{~s}}$ $=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-6 \mathrm{~V}$, the control inputs can be driven by a 5 V system while the analogue voltages through the crosspoint switches can swing from +5 V to -6 V .

8×8 ANALOGUE/DIGITAL SWITCH

Two MV8804s configured as shown in Fig.7, implement an 8×8 analogue/digital switch. The switch capacity can be expanded to an $\mathrm{M} \times \mathrm{N}$ array of inputs/outputs. Expansion in the N dimension is as shown and connecting the lines (LOL7) from the MV8804s in common.

LOGIC TRUTH TABLE

Memory reset	Address enable		didre		Addreseed line		Input ntrol	$\begin{aligned} & \text { ata } t \\ & \text { neme } \end{aligned}$				$\begin{aligned} & \text { nne } \\ & \text { od } \end{aligned}$	
	AE	A2	A1	A0		D3	D2	D1	0	J_{3}	J_{2}	J_{1}	Jo
$\begin{gathered} H \\ L \end{gathered}$	$\underset{L}{X}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	All None	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	All switches 'Off' No change of state			
L	H	L	L	L	LO	L	L	L	L	-	-	\bullet	\bullet
L	H	L	L	L	LO	L	L	L	H	-	-	\bullet	+
L	H	L	L	L	LO	L	L	H	L	-	-	+	\bullet
L	H	L	L	L	LO	L	L	H	H	-	-	+	+
L	H	L	L	L	LO	L	H	L	L	\bullet	+	-	-
L	H	L	L	L	LO	L	H	L	H	-	+	\bullet	$+$
L	H	L	L	L	LO	L	H	H	L	-	+	$+$	\bullet
L	H	L	L	L	LO	L	H	H	H	-	+	+	+
L	H	L	L	L	LO	H	L	L	L	+	-	-	\bullet
L	H	L	L	L	LO	H	L	L	H	+	-	-	$+$
L	H	L	L	L	LO	H	L	H	L	+	\bullet	+	\bullet
L	H	L	L	L	LO	H	L	H	H	+	-	+	$+$
L	H	L	L	L	LO	H	H	L	L	+	$+$	-	-
L	H	L	L.	L	LO	H	H	L	H	+	+	-	+
L	H	L	L	L	LO	H	H	H	L	+	+	+	-
L	H	L	L	L	LO	H	H	H	H	+	$+$	+	$+$
L	H	L	L	H	L1			Each addressed line may have 16 different combinations of junctors connected to it by inputing data to the control memory as shown for LO .					
L	H	L	H	L	L2								
L	H	L	H	H	L3								
L	H	H	L	L	L4								
L	H	H	L	H	L5								
L	H	H	H	L	L6								
L	H	H	H	H	L7								

NOTES
L = Low Logic Leve!
H = High Logic Level
X = Don't Care Condition

+ = Indicates Connection Between Junctor and Addressed Line
- = Indicates No Connection Between Junctor and Addressed Line

Expansion in the N dimension is accomplished by replicating the circuit shown and connecting the MV8804 junctors ($\mathrm{JO}-\mathrm{J} 3$) in common. The address and data control inputs of the MV8804s can be connected in common for any size and switch provided that the address enable (AE) inputs are driven individually, for example by an MV74SC601 programmable AND gate.
A particular signal path is connected by setting up the appropriate signals or the address and data lines and taking the corresponding address enable input high. The master reset (MR), when taken high, disconnects all signal paths.

Fig. 5 ON resistance vs temperature
Expanding MV8804s (input signal voltage = supply voltage/2)

Fig. 6 ON resistance vs input signal voltage

MV8804

Fig. 7 Expanding MV8804s

MV8860

DTMF DECODER

The MV8860 detects and decodes all 16 DTMF tone pairs. The device accepts the high group and low group square wave signals from a DTMF filter (MV8865) and provides a 3-state buffered 4-bit binary output. The clock signals are derived from an on-chip oscillator requiring only a single resistor and low cost crystal as external components. The MV8860 is implemented in CMOS technology and incorporates an on-chip regulator, providing low power operation and power supply flexibility.

The MV8860 is available in Plastic DIL (DP) and Ceramic DIL (DG), both with an operating temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FEATURES

18 Pin DIL Package
Central Office Quality Detection
Excellent Voice Talk-Off
Detect Times down to 20 ms
Single Supply 5V, or 8 to 13 V Operation
Latched 3-State Buffered Outputs
Detects All 16 DTMF Combinations
Uses Inexpensive 3.58 MHz Crystal
Low Power CMOS Circuitry
Adjustable Acquisition and Release Times
Equivalent to MT8860X

Fig. 1 Pin connections (top view)

APPLICATIONS

In DTMF Receivers For:
End-to-end Signalling
Control Systems
PABX
Central Office
Mobile Radio
Key Systems
Tone to Pulse Converters

Fig. 2 MV8860 functional block diagram

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=3.579545 \mathrm{MHz}$
5 V operation: $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{E E}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}$, connections as Fig. 5 a
12 V operation: $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=12 \mathrm{~V}, \mathrm{R}_{\text {SSEE }}=900 \Omega$, connections as Fig.5b
Outputs not loaded
For input current parameters only, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IHO}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{ILO}}=\mathrm{V}_{\mathrm{SS}}$
All voltages referenced to V_{EE} unless otherwise noted.

All "typical" parametric information is for design aid only, not guaranteed and not subject to production testing.

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} ; \mathrm{f}_{\mathrm{c}}=3.579545 \mathrm{MHz}$

		Characteristic		Symbol	Min	Typ	Max	Unit	Test Con	ditions	
1		Tone Frequency Deviation Accept		Δf_{A}			± 2.5	\% Nom.			
2	,	Tone Frequency Deviation Reject		$\Delta f_{\text {b }}$	± 3.5			\% Nom.			
3	E	Tone Present Detection Time		$t_{\text {dP }}$	6		10	ms			
4		Tone Absent Detection Time		$t_{\text {DA }}$	0.6	4	10	ms			
5	C	Guard Time (Adjustable)		$\mathrm{t}_{\text {GT(P or E) }}$		20		ms	See Fig. 3		
6		Time to Receive $=\left(\mathrm{t}_{\text {DP }}+\mathrm{t}_{\text {GTP }}\right)$		$t_{\text {REC }}$	28	30	35	ms	Fig. 7 a R $=$	O0k Ω	
7	T	Invalid Tone Duration (f_{n} of $\mathrm{t}_{\text {REC }}$)		$t_{\text {REC }}$			20	ms	$\mathrm{C}=$	0.1uF	
8	$\begin{aligned} & 0 \\ & \mathrm{R} \end{aligned}$	Interdigit Pause $=\left(\mathrm{t}_{\text {DA }}+\mathrm{t}_{\text {GTA }}\right)$		t_{10}	30			ms			
9		Acceptable Drop Out (f_{n} of $t_{i D}$)		${ }^{\text {to }}$			20	ms			
10	I/P	FL FH Input Transition Time		${ }_{T}$			1.0	us	10\% - 90\% V		
11		Capacitance Any Input		C		5	7.5	pF			
12	0	Propogation Delay St to $L_{1}-L_{4}$		${ }^{\text {P PL }}$		8	11	$\mu \mathrm{s}$	$V_{D D} 5 \mathrm{~V}$		
13					8	11	us	$\mathrm{V}_{\text {DD }} 12 \mathrm{~V}$			
14	T	Propogation Delay St to StD			$t_{\text {PStD }}$		12	14	$\mu \mathrm{s}$	$\mathrm{V}_{\text {DD }} 5 \mathrm{~V}$	
15						12	14	$\mu \mathrm{s}$	$\mathrm{V}_{\text {DD }} 12 \mathrm{~V}$		
16	1	Propogation Delay TOE to $L_{1} \cdot L_{4}$	Enable	$\mathrm{t}_{\text {PTE }}$		300		ns	$\mathrm{V}_{\text {DD }} 5 \mathrm{~V}$		
17	T					200		ns	$\mathrm{V}_{D D}{ }^{12 \mathrm{~V}}$		
18	S		Disable	$t_{\text {PTD }}$		300		ns	$V_{D D} 5 \mathrm{~V}$		
19						200		ns	$\mathrm{V}_{\text {DD }} 12 \mathrm{~V}$		
20		Crystal/Clock Frequency		$\mathrm{f}_{\text {c }}$. 5759	3.5795	3.5831	MHz	OSC 1	OSC 2	
21		$\begin{aligned} & \text { Clock } \\ & \text { Input } \\ & \text { (OSC 1) } \end{aligned}$	Rise Time	$\mathrm{t}_{\mathrm{LHCl}}$			110	ns	10\% - 90%	Externally	
22			Fall Time	$\mathrm{t}_{\mathrm{HLCl}}$			110	ns	$\mathrm{V}_{D D}=\mathrm{V}_{S S}$	Applied	
23	0		Duty Cycle	$\mathrm{DC}_{\mathrm{Cl}}$	40	50	60	\%		Clock	
24	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	Clock Output (OSC 2)	Capacitive Load	$\mathrm{C}_{\text {LOC }}$			30	pF	With Clock D	rive to OSC 1	
25				$\mathrm{C}_{\text {LOX }}$				nF	Sinusoidal O With Crystal	utput	

ABSOLUTE MAXIMUM RATINGS
The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Parameter		Min	Max				Max
$V_{D D} \cdot V_{E E}$			16	V	Power Dissipation	DG Package*	1000 mW
$\begin{aligned} & V_{D D}-V_{S S} \text { (Low } \\ & \text { Impedance Supply) } \\ & \hline \end{aligned}$			5.5	V		DP Package**	450 mW
					* Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$ ** Derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ All leads soldered to PC board.		
Voltage on any pin except OSC1 OSC2		$V_{\text {EE }}-0.3$	$V_{D D}+0.3$	V			
Voltage OSC1 OSC2		$V_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{DD}}+0.3$	V			
Max current at any pin (except $V_{D D} \& V_{E E}$)			10	mA			
Operating Temperature	DPIDG Package	-40	+85	${ }^{\circ} \mathrm{C}$			
Storage	DG Package	-55	+175	${ }^{\circ} \mathrm{C}$			
Temperature	DP Package	-55	+125	${ }^{\circ} \mathrm{C}$			

Table 1 Coding data

Fig. 3 Timing diagram

PIN FUNCTIONS

Pin	Name	Description		
1	OSC2	CLOCK OUTPUT	3.58 MHz crystal with parallel $5 \mathrm{M} \Omega$ resistor connected between these pins completes internal oscillator, running between V_{DD} and V_{SS}.	
2	OSC1	CLOCK INPUT		
3	IC	Internal connection for testing only (reset) Note 1		
4	FH	High frequency group input. Accepts single rectangular wave High group tone from DTMF filter		
5	L1	Data Outputs. 3 state buffered Provides 4 Bit binary word corresponding to the tone pair decoded, when enabled by TOE See Table 1 for state table		
6 7 8	$\begin{aligned} & \text { L2 } \\ & \text { L3 } \\ & \text { L4 } \end{aligned}$			
9	TOE	3 state output enable input. Logic high on this input enables outputs L1-L4. Internal pull up		
10	$\mathrm{V}_{\text {ss }}$	Internal logic ground. For $\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\mathrm{EE}}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}$ connected to V_{EE}. For $V_{D D}-V_{E E}>8 V, V_{S S}$ connected via resistor to $V_{E E}$ see Fig. 5		
11	V_{EE}	Negative power supply. External logic ground		
12	INH	Inhibit input. Logic high inhibits detection of tones representing characters \#, *, A, B, C, D. Internal pull down		
13	FL	Low frequency group input. Accepts single rectangular wave low group tone from DTMF filter		
14	St	Steering input. A voltage greater than $\mathrm{V}_{\text {TSt }}$ on this input causes the device to accept validity of the detected tone pair and latch the corresponding codeword at the outputs Voltage $<\mathrm{V}_{\text {TSt }}$ on this pin frees the device to accept a new tone pair. See Table 1c and Functional Description		
15	StD	Delayed Steering Output. Flags when a valid tone pair has been received. Presents logic high when output latch updated. When St voltage exceeds $\mathrm{V}_{\text {TSt }}$. Returns to logic low when St voltage falls below $\mathrm{V}_{\text {TSt }}$		
16	ESt	Early Steering Output. Presents a logic high immediately the digital algorithm detects a recognisable tone pair. Any momentary loss of the incoming tone or excessive distortion of the tone will cause ESt to return to a logic low		
17	GT	Guard Time Output. 3 state output. Normally connected to St, is used in the steering algorithm and is a function of St and ESt (See Table 1c)		
18	$V_{D D}$	Positive power supply		

Note 1: Must be left open circuit.

MV8860

OPERATING NOTES

The MV8860 is a CMOS Digital DTMF detector and decoder. Used in conjunction with a suitable DTMF filter (MV8865) it can detect and decode all 16 Standard DTMF tone pairs, accurately discriminating between adjacent frequencles in both high and low groups in the presence of noise and normal voice signals.

To form a complete DTMF receiver the MV8860 must be preceded by a DTMF filter, the function of which is to separate the high group and low group components of the composite dual tone signal and limit the resulting pair of sinewave signals to produce rectangular wave signals having the same frequencies as the individual components of the composite DTMF input. The high group and low group rectangular waves are applied to the MV8860s FH and FL inputs, respectively. The MV8865 DTMF filter provides these functions.

Within the MV8860 the FL and FH signais are operated on by a complex averaging algorithm. This is implemented using digital counting techniques (Control/Discriminators, Fig.2) to determine the frequencies of the incoming tones and verify that they correspond to standard DTMF frequencies. When both high group and low group signals have been simultaneously detected, a flag ESt (Logic High), is generated. ESt is generated (cancelled) rapidly on detecting the presence (absence) of a DTMF tone pair (see Fig.3) and is used to perform a final validity check.

The final validity check requires the input DTMF signal to be present uninterrupted by drop out or excessive distortion (which would result in ESt being cancelied) for a minimum time (t_{fEC}) before being considered valid. This contributes greatly to the talk off performance of the system. The check also imposes a minimum period of 'tone absent' before a valid received tone is recognised as having ended. This allows short periods of drop out ($t_{\text {DO }}$) or excessive noise to occur during a received tone, without it being misinterpreted as two successive characters by the steering circuit (ESt, St, GT). A capacitor C (Fig.7a) is charged via resistor R from ESt which a DTMF tone pair is detected. After a period $\mathrm{t}_{\mathrm{GTP}}, \mathrm{V}_{\mathrm{C}}$ exceeds the St input threshold voltage V_{TS}, setting an internal flag indicating the detected signal is valid. Functioning of the check algorithm is completed by the three state output GT which is
normally connected to St and operates under the control of ESt and St. Its mode of operation is shown by the steering state table (Table 1c) and timing diagram (Fig.3).

Internaily the presence of the ESt flag allows the control/discriminator to identify the detected tones to the code converter which in turn presents a 4 bit binary code word, corresponding to the original transmitted character, to the output latch. The appearance of the internal St flag clocks the latch, presenting the output code at the tristate outputs L_{1} to L_{4}. The St internal flag is delayed (by $t_{\text {PStD }}$) and appears at the StD output to provide a strobe output function indicating that a new character has been received and the output updated. StD will return to a logic low after the St flag has been reset by V_{C} (Fig.7a) falling below $\mathrm{V}_{T S}$.

Increasing the 'time to recelve' ($\mathrm{t}_{\mathrm{REC}}$) tends to further improve talk off performance (discrimination against voice simulation of a DTMF tone pair) but degrades the acceptable signal to nolse ratio for the incoming signal. Increasing interdigit pause $t_{I D}$ further reduces the probability of receiving the same character twice and improves acceptable signal to noise ratio but imposes a longer interdigit pause. Reducing $t_{\text {REC }}$ or $t_{I D}$ has the opposite effect respectively. The values of $t_{\text {REC }}$ and $t_{i D}$ can be tailored by adjusting $\mathrm{t}_{\text {GTP }}$ and $\mathrm{t}_{\text {GTA }}$ as shown in Fig.7.

When L_{1} to L_{4} are connected to a data bus TOE may be controlled by external circuitry or connected directly to StD automatically enabling the outputs whenever a tone is received. In elther case StD may be used to flag external circultry indicating a character has been received.

The MV8860 may be operated from either a 5 V or 8 to 13 V supply by use of the internal zener reference. The relevant connection diagrams are shown in Fig. 5.

When using the MV8860 with the MV8865 DTMF filter it is only necessary to use the MV8865 crystal oscillator (see Fig.6). When using the higher supply voltage range the MV8865 OSC2 output should be capacitively coupled to the MV8860 OSC1 input as shown in Fig.6.

Where it is desirable to receive only the characters available on a rotary dial telephone, taking INH to a logic high inhibits detection of the additional DTMF characters. Incidentally this also further improves talk off due to the reduced number of detectable tones.

Fig. 4 DTMF matrix, indicating character-tone pair correspondence

Fig. 5 Power supply connection options

Fig. 6 Single-ended input receiver using the MV8865 (5V operation)

Fig. 7 Guard time adjustment

PLESSEY
Semiconductors

MV8865

DTMF FILTER

The MV8865 contains both the high group and low group filtering and comparator functions required to implement a Dual Tone Multi Frequency tone receiver using a DTMF Digital Detector (i.e. MV8860/62/63). Switched capacitor techniques are used to implement the filters and the device is fabricated using Plessey Semiconductors' high density ISO/CMOS technology. The filter clocks are derived from an on-chip oscillator requiring only a low cost TV crystal as an external component. The MV8865 offers single supply operation over a wide supply voltage range and incorporates a logical power down facility.

- PABX

Fig. 1 Pin connections (top view)

APPLICATIONS

In DTMF Receivers for:

- End to End Signalling
- Control Systems
- Central Office
- Mobile Radio
- Key Systems
- Tone to Pulse Converters

FEATURES

- Provides DTMF High and Low Group Filtering
- Hard Limiting on Filter Outputs
- 6 Pole Band Pass High and Low Group Filters
- 38 dB Intergroup Attenuation
- Dial Tone Suppression
+5 to +12 V Single Supply Operation
Logical Power Down
Uses Inexpensive 3.58 MHz Crystal
Wide Dynamic Range 30 dB
Equivalent to MT8865X

Fig. 2 MV8865X functional block diagram

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwlse stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{CLK}}=3.579545 \mathrm{MHz}$
All voltages wrt V_{ss}

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Parameter		Min	Max		Parameter		Max
$\mathrm{V}_{\text {DD }} \cdot \mathrm{V}_{\text {SS }}$			15	V	Power Dissipation	DG package ${ }^{1}$	850 mW
Voltage on any pin		$v_{\text {ss }}-0.3$	$V_{D D}+0.3$	V			
Max. current at any pin			10	mA	${ }^{1}$ Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75{ }^{\circ} \mathrm{C}$		
Operating Temperature		$40^{\circ} \mathrm{C}$	+85	${ }^{\circ} \mathrm{C}$			
Storage	DG package	$-65^{\circ} \mathrm{C}$	+150	${ }^{\circ} \mathrm{C}$			

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{t}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=3.579545 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 13 V

NOTES

1. The sensitivity characteristic specifies correct operation of the post-comparator outputs at minimum input signal levels. It is valid for each of the four DTMF tones in each passband.

$\begin{aligned} & \text { Dip } \\ & \text { Pin } \end{aligned}$	Name	Description	
1	FL	Low group limiter output.	
2	FLT	Test output. Monitors low group filter output. Decouple to $\mathrm{V}_{\text {ss }}$ with 680pF capacitor.	
3	NC	Not connected.	
4	INPUT	Tone signal input (single ended).	
5	$V_{\text {REF }}$	Internal reference, can be used to bias input via $2 \mathrm{M} \Omega$ resistor.	
6	PDWN	Power down active high. Internal pull down transistor. A high level signal powers down the device and inhibits the oscillator.	
7	NC	Not connected.	
8	$\mathrm{V}_{\text {ss }}$	Negative (OV) power supply.	
9	NC	Not connected.	
10	FH	High group limiter output.	
11	FHT	Test output. Monitors high group filter output. Decouple to V_{ss} with 680 pF capacitor.	
12	NC	Not connected.	
13	NC	Not connected.	
14	OSC 2	Clock Output.	3.58 MHz crystal connected between these pins completes internal oscillator.
15	OSC 1	Clock Input.	
16	V_{DD}	Positive power supply.	

Fig. 3 Typical filter characteristics

OPERATING NOTES

The MV8865 separates the high group and low group components of the dual tone signal and limits the resulting pair of sine waves, to produce square waves having the same frequencies as the individual input tones. These limited low group and high group tones appear at the FL and FH outputs respectively. To implement a complete DTMF receiver the FL and FH outputs are connected to the FL and FH inputs of one of Plessey Semiconductors' range of DTMF Digital Decoders (MV8860/62/63), see Fig.4.

Separation of the low group and high group tones is achieved by applying the dual tone signal simultaneously to the inputs of two sixth order switched capacitor bandpass filters, the bandwidths of which correspond to the bands enclosing the low group and high group tones. The frequency characteristic of each filter (see Fig.3) also incorporates a notch at 440 Hz to provide dial tone rejection. Each filter output is followed by a single order switched capacitor section which operates as an interpolator smoothing the signals prior to limiting.

The limiting functions are performed by high gain com-
parators which are provided with hysteresis to prevent detection of unwanted low level signals and noise. The comparator outputs are buffered to drive the FL and FH output pins and detector device inputs. The MV8865 has a single ended input allowing connection either to a PCM decoder, radio receiver (Fig.4) or via a differential buffer to a telephone line (Fig.5). The signal input (Pin 4) should be biased at $V_{D D} / 2$. With the input capacitively coupled, this is achieved by connecting the signal input to $V_{\text {REF }}(\operatorname{Pin} 5)$ via a $2 \mathrm{M} \Omega$ resistor.

FLT and FHT allow the filter outputs to be monitored prior to limiting, and should each be decoupled to $\mathrm{V}_{\text {ss }}$ by 680 pF capacitors.

Unbalanced Loads

Presenting a high unbalanced capacitive load to the oscillator crystal can cause attenuation of the oscillator output signal and increased supply current (see Fig.6). Where the MV8865 oscillator is required to drive a high capacitive load such as a number of other MV8865/8860s it is desirable to connect a capacitor between OSC1 and Vss, the value of this capacitor being equal to the capacitive loading at OSC2.

Fig. 4 Single-ended input receiver using the MV8860 (5 V operation)

Fig. 5 Connection to a telephone line

MV8865

Fig. 6 Crystal oscillator loading

Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

MV8870EXP

DTMF RECEIVER

The MV8870 is a complete DTMF receiver integrating both the bandsplit filter and digital decoder functions, fabricated on Plessey Semiconductors' double-poly ISO²-CMOS 2 technology. The filter section uses switched capacitor techniques for high- and low- group filters and dial-tone rejection; the decoder uses digital counting techniques to detect and decode all 16 DTMF tone-pairs into a 4-bit code. External component count is minimised by on-chip provision of a differential input amplifier, clock oscillator and latched 3-state bus interface.

Fig. 1 Pin connections (top view)
FEATURES
Full Receiver in Single 18-Pin Package
Central Office Quality
Lower Power Consumption
Adjustable Acquisition and Release Times

Fig. 2 Functional block diagram

MV8870

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Parameter	Min.	Max.	Unit
Power supply voltage Vod - Vss		6	V
Voltage on any pin	$\mathrm{V}_{\mathrm{ss}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Current at any pin		10	mA
Operating temperature	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
Package power dissipation (Note 2)		1000	mW

NOTES

1. Exceeding these ratings may cause permanent damage. Functional operation under these conditions is not implied
2. Derate above $75^{\circ} \mathrm{C}$ at $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. All leads soldered to board.

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$V_{\text {do }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Unit	Conditions
		Min.	Typ.	Max.		
Operating supply voltage	VDD	4.75		5.25	\checkmark	
Operating supply current	IDD		3.0	7	mA	
Power consumption	Po		15	35	mW	$\mathrm{f}=3.579 \mathrm{MHz}$
Low level input voltage	VIL			1.5	V	
High level input voltage	V_{H}	3.5			V	
Input leakage current	$\mathrm{lih/IL}$		0.1		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$ or $\mathrm{V}_{\text {do }}$
Pull up source current	Iso		7.5	15.0	$\mu \mathrm{A}$	TOE (Pin 10) $=0 \mathrm{~V}$
Input impedance (pins 1 \& 2)	Rin		10		$\mathrm{M} \Omega$	At 1 kHz
Steering threshold voltage	$\mathrm{V}_{\text {TSt }}$	2.2	2.35	2.5	V	
Low level output voltage	Vol		0.03		V	No load
High level output voltage	Vон		4.97		V	No load
Output low (sink) current	loL	1.0	2.5		mA	Vout $=0.4 \mathrm{~V}$
Output high (source) current	IOH	0.4	0.8		mA	Vout $=4.6 \mathrm{~V}$
Output voltage, pin 4	Vref	2.4		2.7	V	No load
Output resistance, pin 4	Ror		10		k Ω	

OPERATING CHARACTERISTICS, GAIN SETTING AMPLIFIER

Test conditions (unless otherwise stated):
$V_{\text {DD }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {Ss }}=0 \mathrm{~V}$, $\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Unit	Conditions
		Min.	Typ.	Max.		
Input leakage current	lin		± 100		nA	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DD }}$
Input resistance	Rin		10		$\mathrm{M} \Omega$	
Input offset voltage	Vos		± 25		mV	
Power supply rejection	PSRR		60		dB	1 kHz
Common mode rejection	CMRR		60		dB	VIN $=\mathrm{V}_{\text {ref }} \pm 1.3 \mathrm{~V}$
DC open loop voltage gain	Avol		65		dB	
Open loop unity gain bandwidth	f_{c}		1.5		MHz	
Output voltage swing	Vo		4.5		V p-p	$\mathrm{RL} \geqslant 100 \mathrm{k} \Omega$ to V ss
Tolerable capacitive load (GS)	CL		100		pF	
Tolerable resistive load (GS)	RL		50		k ת	
Common mode range	V cm		3.0		$\vee \mathrm{p}$-p	No load

MV8870

AC CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{fcIk}=3.579545 \mathrm{MHz}$, using test circuit of Fig. 3 .

Characteristic			Symbol	Value			Unit	Notes	
			Min.	Typ.	Max.				
Valid input signal level (each tone of composite signal)	Min.						-29	dBm	1,2,3,5,6,9
						27.5	mVRMS	1,2,3,5,6,9	
	Max.			+1			dBm	1,2,3,5,6,9	
				883			mVRMS		
Twist accept limit		Positive			10		dB	2,3,6,9	
		Negative			10		dB	2,3,5,9	
Freq. deviation accept limit						$\begin{gathered} \pm 1.5 \% \\ \pm 2 \mathrm{~Hz} \end{gathered}$	Nom.	2,3,5,9	
Freq. deviation reject limit				± 3.5 \%			Nom.	2,3,5	
Third tone tolerance					-16		dB	2,3,4,5,9,10	
Noise tolerance					-12		dB	2,3,4,5,7,9,10	
Dial tone tolerance					+18		dB	2,3,4,5,8,9,10	
Tone present detection time			tbp	5	11	14	ms	Refer to Fig	
Tone absent detection time			toa	0.5	4	8.5	ms	Rer to Fig	
Tone duration accept			trec			40	ms		
Tone duration reject			trec	20			ms	(User adjustable)	
Interdigit pause accept			tio			40	ms	Time Adjustment'	
interdigit pause reject			too	20			mis		
Propagation delay (St to Q)			tPQ		8	11	$\mu \mathrm{s}$		
Propagation delay (St to StD)			tPStD		12		$\mu \mathrm{s}$	$\mathrm{TOE}=\mathrm{V}_{\mathrm{DD}}$	
Output data set up (Q to StD)			tosto		3.4		$\mu \mathrm{s}$		
Propagation delay (TOE to Q)		Enable	tpte		50	60	ns	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	
		Disable	tpto		300		ns	$\mathrm{CL}=50 \mathrm{pF}$	
Crystal/clock frequency			falk	3.5759	3.5795	3.581	MHz		
Clock output (OSC2)		$\begin{gathered} \hline \text { Capacitive } \\ \text { load } \end{gathered}$	CLo			30	pF		

NOTES

1. $\mathrm{dBm}=$ decibels above or below a reference power of 1 mW into a 600 ohm load.
2. Digit sequence consists of all 16 DTMF tones.
3. Tone duration $=40 \mathrm{~ms}$. Tone pause $=40 \mathrm{~ms}$.
4. Nominal DTMF trequencies are used.
5. Both tones in the composite signal have an equal amplitude.
6. Tone pair is deviated by $\pm 1.5 \% \pm 2 \mathrm{~Hz}$.
7. Bandwidth limited (0 to 3 kHz) Gaussian Noise.
8. The precise dial tone frequencies are 350 Hz and $440 \mathrm{~Hz} \pm 2 \%$.
9. For an error rate of better than 1 in 10,000 .
10. Reference to lowest level frequency component in DTMF signal.

MV8870

INPUT CONFIGURATION

The input arrangement of the MV8870 provides a differential input operational amplifier as well as a bias source (Vref) which is used to bias the inputs at mid-rail.

Provision is made for connection of a feedback register to the op-amp output (GS) for adjustment of gain.

Fig. 3 Single ended input configuration

In a single-ended configuration the input pins are connected as shown in Fig. 3 with the op-amp connected for unity gain and Vref biasing the input at $1 / 2$ Vdd. Fig. 4 shows the differential configuration, which permits the adjustment of gain with the feedback resistor Rs.

VOLTAGE GAIN (Av diff) $=\frac{R_{1}}{R_{2}}$
INPUT IMPEDANCE
$(Z I N$ diff $)=2 \sqrt{R 1^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}}$
Fig. 4 Differential input configuration

A. Short tone bursts detected; tone durations invalid. B. Tone \#n detected; tone duration valid; decoded to outputs. C. End of tone \#n detected and validated. D. 3-state outputs disabled (high impedance). E. Tone ($\# n+1$) detected; tone duration valid; decoded to outputs. F. 3-state outputs enabled; acceptable drop-out of tone $(\# n+1)$ does not register at outputs. G. Fnd of tone $(\# n+1)$ detected and validated.

PIN DESCRIPTIONS

Pin	Name	Description		
1	$\underline{N+}$	Non-inverting input	Connections to the front-end differential amplifier	
2	IN-	Inverting input		
3	GS	Gain select. Gives access to output of front-end differential amplifier for connections of feedback resistor.		
4	Vabf	Reference voltage output, nominally $V_{D D / 2}$. May be used to bias the inputs at mid-rail (see application diagram).		
5	SEL	Logic '1' or '0' selects one of two truth tables (see Table 1).		
6	Pown	Power down active high, internal pulldown resistor. A high level signal powers down and inhibits the oscillator.		
7	OSC1	Clock input	3.579545 MHz crystal connected between these pins completes internal oscillator.	
8	OSC2	Clock output		
9	Vss	Negative power supply, normally connected to OV.		
10	TOE	3-state output enable (input). Logic high enables the outputs Q1- Q4. Internal pull-up.		
11	Q1	3-state data outputs. When enabled by TOE, provide the code corresponding to the last valid tone-pair received (see Table 1).		
12	Q2			
13	Q3			
14	Q4			
15	StD	Delayed steering output presents a logic high when a received tone-pair has been registered and the output high latch updated; returns to logic low when the voltage on $\mathrm{St} / \mathrm{GT}$ falls below V TSt.		
16	ESt	Early steering output. Presents a logic high immediately when the digital algorithm detects a recognisable tone-pair (signal conditions). Any momentary loss of signal condition will cause ESt to return to a logic low.		
17	St/GT	Steering input/guard time output (bidirectional). A voltage greater than $\mathrm{V}_{\text {TSt }}$ detected at St causes the device to register the detected tone-pair and update the output latch. A voltage less than $V_{\text {TSt }}$ frees the device to accept a new tone-pair. The GT output acts to reset the external steering timeconstant; its state is a function of ESt and the voltage on St (see Table 1).		
18	Vod	Positive power supply.		

FUNCTIONAL DESCRIPTION

The MV8870 monolithic DTMF receiver offers small size, low power consumption and high performance. Its architecture consists of a bandsplit filter section, which separates the high and low tones of a received pair, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus.

Filter Section

Separation of the low-group and high-group tones is achieved by applying the dual-tone signal to the inputs of two sixth-order switched-capacitor bandpass filters, the bandwidths of which correspond to the bands enclosing the low-group and high-group tones (see Fig.6).
The filter section also incorporates notches at 350 Hz and 440 Hz for exceptional dial-tone rejection. Each filter output is followed by a single-order switched capacitor section to smooth the signals prior to limiting.
Limiting is performed by high-gain comparators which are provided with hysteresis to prevent detection of unwanted
low-level signals and noise; the outputs of the comparators provide fuil-rail logic swings at the frequencies of the incoming tones.

Decoder Section

The decoder uses digital counting techniques to determine the frequencies of the limited tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm protects against tone simulation by extraneous signals, such as voice, while providing tolerance to small frequency deviations and variations. The averaging algorithm has been developen to ensure an optimum combination of immunity to 'talk-off' and tolerance to the presence of interfering signals ('third tones') and noise. When the detector recognises the simultaneous presence of two valid tones (referred to as 'signal condition' in some industry specifications), it raises the 'Early Steering' flag (ESt). Any subsequent loss of signal condition will cause ESt to fall.

Fig. 6 Typical filter characteristic

Flow	Fhigh	KEY	TOE	SEL	Q_{4}	Q3	Q2	\mathbf{Q}_{1}
697	1209	1	H	L	0	0	0	1
697	1336	2	H	L	0	0	1	0
697	1477	3	H	L	0	0	1	1
770	1209	4	H	L	0	1	0	0
770	1336	5	H	L	0	1	0	1
770	1477	6	H	L	0	1	1	0
852	1209	7	H	L	0	1	1	1
852	1336	8	H	L	1	0	0	0
852	1477	9	H	L	1	0	0	1
941	1336	0	H	L	1	0	1	0
941	1209	*	H	L	1	0	1	1
941	1477	\#	H	L	1	1	0	0
697	1633	A	H	L	1	1	0	1
770	1633	B	H	L	1	1	1	0
852	1633	C	H	L	1	1	1	1
941	1633	D	H	L	0	0	0	0
697	1209	1	H	H	0	0	0	1
697	1336	2	H	H	0	0	1	0
697	1477	3	H	H	0	0	1	1
770	1209	4	H	H	0	1	0	0
770	1336	5	H	H	0	1	0	1
770	1477	6	H	H	0	1	1	0
852	1209	7	H	H	0	1	1	1
852	1336	8	H	H	1	0	0	0
852	1477	9	H	H	1	0	0	1
941	1336	0	H	H	0	0	0	0
941	1209	*	H	H	1	0	1	0
941	1477	\#	H	H	1	0	1	1
697	1633	A	H	H	1	1	0	0
770	1633	B	H	H	1	1	0	1
852	1633	C	H	H	1	1	1	0
941	1633	D	H	H	1	1	1	1
		ANY	L	ANY	Z	Z	Z	Z

$L=$ Logic low, $H=$ Logic high, $Z=$ High impedance

STEERING CIRCUIT

Before registration of a decoded tone-pair, the receiver checks for a valid signal duration (referred to as 'character recognition condition'). This check is performed by an external RC time constant driven by ESt. A logic high on ESt causes Vc (see Fig.7) to rise as the capacitor discharges. Provided signal-condition is maintained (ESt remains high) for the validation period ($\mathrm{tGTP}_{\mathrm{G}}$), V_{c} reaches the threshold ($\mathrm{V}_{\mathrm{TSt}}$) of the steering logic to register the tone pair, latching its corresponding 4-bit code (see Table 1) into the output latch. At this point, the GT output is activated and drives V_{c} to VDD. GT continues to drive high as long as ESt remains high. Finally, after a short delay to allow the output latch to settle, the 'delayed steering' output flag, StD, goes high, signalling that a received tone pair has been registed. The contents of the output latch are made available on the 4-bit output bus by raising the 3 -state control input (TOE) to a logic high. The steering circuit works in reverse to validate the interdigit pause between signals. Thus, as well as rejecting signals too short to be considered valid, the receiver will tolerate signal interruptions ('drop-out') too short to be considered a valid pulse. The facility, together with the capability of selecting the steering time-constants externally, allows the designer to tailor performance to meet a wide variety of system requirements.

Guard Time Adjustments

In many situations not requiring independent selection of receive and pause, the simple steering circuit of Fig. 7 is applicable. Component values are chosen according to the following formulae:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{REC}}=\mathrm{t}_{\mathrm{DP}}+\mathrm{t}_{\mathrm{GTP}} \\
& \mathrm{tID}=\mathrm{T}_{\mathrm{DA}}+\mathrm{t}_{\mathrm{GTA}}
\end{aligned}
$$

The value of tDP is a parameter of the device (see AC Characteristics) and trec is the minimum signal duration to be recognised by the receiver. A value for C of $0.1 \mu \mathrm{~F}$ is recommended for most applications, leaving R to be selected by the designer. For example, a suitable value of R for a trec of 40 ms would be $300 \mathrm{k} \Omega$.

Different steering arrangements may be used to select independently the guard times for tone-present (tGTP) and tone-absent (tgita). This may be necessary to meet system specification which place both accept and reject limits on both tone duration and interdigital pause.

Guard time adjustment also allows the designer to tailor system parameters such as talk-off and noise immunity. Increasing trec improves talk-off performance, since it reduces the probability that tones simulated by speech will maintain signal condition for long enough to be registered. On the other hand, a relatively short trec. with a long toowould be appropriate for extremely noisy environments where fast acquisition time and immunity to drop-outs would be requirements. Design information for guard time adjustment is shown in Fig. 8.

Fig. 7 Basic steering circuit

Fig. 8 Guard time adjustment

MV8870

PRELIMINARY INFORMATION

Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your locat Plessey Semiconductors sales outlet for details of the current status.

MV9009 EXP

V21 MODEM TX/RX

The MV9009 is a single chip modulator/demodulator fabricated in silicon gate ISO-CMOS and designed for use in V21 modems. The device can be used alone, or in conjunction with the SL9009 Adaptive Cancellation Filter.

FEATURES

300 Baud V21 Operation
Square or Sinewave Transmit Output Waveforms
Baseband Shaping to Reduce Out-of-Band
Modulation Products
2nd Order Digital PLL Receiver
Lock Detect Output
Off-Chip Post Detection Filter Enables Optimisation
of Received Data Jitter
Meets R20/SCVF Specification when used with
SL9009

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Operating temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply voltage range	-0.3 V to +7 V
Input voltage range	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output voltage range	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$

Fig. 2 Block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$ All potentials referred to pin 8

Characteristic	Pin	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply						
Voltage	9	4.5	5	5.5	V	For defined parametrics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Current	9			2	mA	7.5 MHz clock $\mathrm{VDO}=5.25 \mathrm{~V}$
	9			100	$\mu \mathrm{A}$	Static
Clock input	10					
Input voltage high		3.3			v	$V_{\text {DD }}=4.75 \mathrm{~V}$
Input voltage low				1.58	V	$V_{D D}=5.25 \mathrm{~V}$
Input current				20	$\mu \mathrm{A}$	$V_{\text {DD }}=5.25, V_{\text {IN }}=5.5 \mathrm{~V}$
Other inputs	13,14,15,16					
Input voltage high		1.8			V	$V_{\text {DD }}=4.75 \mathrm{~V}$
Input voltage low				0.9	V	$V_{D D}=5.25 \mathrm{~V}$
Input current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$
Hysteresis		30			mV	
Sine outputs (open drain)	1,2,3,4,5,6,7					
RDS (ON)		20	32	47	Ω	$V_{O D}=4.75 \mathrm{~V}$
$\triangle \mathrm{RDS}(\mathrm{ON})$				10	Ω	$\mathrm{loL}=5 \mathrm{~mA}, \mathrm{VOL}=0.5 \mathrm{~V}$
Lock detect	12					
Output voltage high		4.27			V	$V_{\text {DO }}=4.75,10=4.75 \mathrm{~mA}$
Output voltage low				0.525	V	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{lo}=5.25 \mathrm{~mA}$
PLL out	11					
Output voltage high		4.995				
Output voltage low				0.005	V	$10=25 \mu \mathrm{~A}, V_{D D}=5 \mathrm{~V}$
Output s/c current				50	mA	$V_{D D}=5.25 \mathrm{~V}$

OPERATING NOTES

If it is desired to simplify the transmit filtering, the on-chip sine shaping circuit can be used. If this is not needed (for example when using the Reticon R5631 modem filter) then the square wave from pin 4 is used with a pull-up resistor.

The chip produces a sinewave output by scanning an array of 7 resistors as shown in Fig.3. The smallest resistor value should be chosen to be of the order Ron $x 1000 \simeq 50 \mathrm{k} \Omega$.

Each resistor is successively connected to ground by N channel MOS transistors within the chip then successively disconnected, as shown by Fig.4. Correct weighting of the resistors should give a sinewave output. If 1% matching of resistors is attained, the worst case distortion will be 2nd harmonic 47 dB down on the fundamental. In Fig. 4 a ' 0 ' indicates a closed switch, a ' 1 ' an open switch.

Fig. 3 Output array scanning

Fig. 416 step sinewave produced by scanning 7 resistors

OPERATING FREQUENCIES

fсьоск $=5.24288 \mathrm{MHz}$

Parameter	Conditions	Frequency (Hz)
CH1 Mark FZ	Pins $13,14=0 \mathrm{~V}$	1650
CH1 Space FA	Pin $13=0 \mathrm{~V}$ Pin $14=5 \mathrm{~V}$	1850
CH2 Mark FZ	Pin $13=5 \mathrm{~V}$ Pin $14=0 \mathrm{~V}$	980
CH2 Space FA	Pins $13,14=5 \mathrm{~V}$	1180
Receiver characteristics		
Centre frequency CH1		1080
Lock range CH1		398
Centre frequency CH2		1750
Lock range CH2		335

CIRCUIT DESCRIPTION

The MV9009 forms a digital transmitter and 2nd order PLL for modulation/demodulation of 300 Baud FSK signals. The chip transmits on one channel and receives on the other as defined by the truth Table 1.
The transmitter works by dividing a 5.24288 MHz crystal clock as follows:

CH1 \& 2
Mark or Space
Fundamental Frequency

Baseband shaping is also provided for the data signal, to reduce out of band modulation products. This is performed digitally by taking 8 steps to change the Binary Rate Multiplier from FA to FZ.

MV9009

EXAMPLE

If the transmitter is operating at a continuous 980 Hz output frequency and the data input goes to ' 1 ', the binary rate multiplier output is stepped from $\times 98 / 256$ to $\times 118 / 256$ as shown in Fig. 5.

The receiver is a 2nd order digital phase locked loop, with an exclusive OR gate phase comparator. CMOS or TTL level FSK inputs are applied to the FSK input pin 16 and the demodulated signal appears at pin 11 as a twice carrier

CHIP TRUTH TABLE

Fig. 5
$' 1$ ' $=+5 \mathrm{~V} \quad{ }^{\prime} 0$ ' $=0 \mathrm{~V}$

Channel Select		Data IN	Data Clamp	$\begin{aligned} & \text { FSK } \\ & \text { in } \end{aligned}$	Transmitter Outputs	PLL Out	Lock Detect
Pin	13	14	15	16	1 to 7	11	12
0		0	0	$\begin{aligned} & 980 \mathrm{~Hz} \\ & 1180 \mathrm{~Hz} \end{aligned}$	1650Hz	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0
0		1	0	$\begin{aligned} & 980 \mathrm{~Hz} \\ & 1180 \mathrm{~Hz} \end{aligned}$	1850Hz	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	0
1		0	0	$\begin{aligned} & 1650 \mathrm{~Hz} \\ & 1850 \mathrm{~Hz} \end{aligned}$	980 Hz	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0
1		1	0	$\begin{aligned} & 1650 \mathrm{~Hz} \\ & 1850 \mathrm{~Hz} \end{aligned}$	1180 Hz	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0
X		X	1	Valid input signal	$\begin{aligned} & \text { S1-S4 } 0 \\ & \text { S5-S7 OFF } \end{aligned}$	still demodulating	0
0		X	X	Inside Lock range	X	Undefined	1
1		X	X	Outside $970-1190 \mathrm{~Hz}$ and $1640-1860 \mathrm{~Hz}$	X	Undefined	1
0		X	X	Outside Lock range	X	Undefined	Mainly 1
1		X	X	Outside	X	Undefined	Mainly 1

NOTE
The lock detector is mainly ' 1 ' when the input signal is outside the lock range. If a continuous signal is required a timer circuit is required to time out ' 0 ' intervals. Fig. 6 shows a suggested circuit.

Fig. 6

Fig. 7 System block diagram

Fig. 8 Basic V21 modem

SL650B \& C SL651B \& C

MODULATOR/PHASE LOCKED LOOP CIRCUITS FOR MODEMS

The SL650/1 are versatile integrated circuits capable of performing all the common modulation functions (AM, PAM, SCAM, FM, FSK, PSK, PWM, tone-burst, delta-modulation, etc.). A wide variety of phase-locked loops can be realised using the SL650 or SL651, with all parameters accurately controllable; they can also be used to generate precise waveforms at frequencies up to 0.2 MHz .

The highly accurate and stable variable frequency oscillator is programmable over a wide range of frequency by voltage, current, resistor or capacitor. In addition direct selection of one of four spot frequencies is facilitated by using the on-chip binary interface, which accepts standard logic levels at very low logic ' 1 ' input currents.

The differential input phase comparator has a wide common mode input voltage range. It has a high gain limiting amplifier at its input requiring only 1 mV input to maintain lock range in a typical phase-locked loop. The current output is programmable from zero to over 2 mA by an external resistor or current input, and the gain is voltage - , current - , or resistance - programmable from zero to greater than 10,000.

An auxiliary amplifier with a voltage gain of, typically, 5000 is incorpated in the SL650 for use when it is required to interface to specified levels and impedances. The auxiliary amplifier features low bias current (typically 25 nA), fast recovery from overload, and a short-circuit output current of $\pm 7.5 \mathrm{~mA}$.

The auxiliary amplifier is omitted from the SL651.

Fig. 1 Pin connections (top view)

FEATURES

- VFO Frequency Variable Over 100:1 Range With Same Capacitor: Linearity 0.2\%
- VFO Temperature Coefficient:
'B' Types $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max.
'C' Types $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ.
- Supply sensitivity $20 \mathrm{ppm} / \%$ Typ.
- VFO Phase-Continuous at Transitions
- Binary Interface
- Phase Comparator O/P Can Swing to Supply Voltages
- On-Chip Auxiliary Amplifier (SL650)

APPLICATIONS

Modems

- Modulators
- Demodulators
- Tone Decoders
- Tracking Filters
- Waveform Generators

QUICK REFERENCE DATA

[^2]
ELECTRICAL CHARACTERSTICS

Test conditions (unless otherwise stated)
Supply voltage $\pm 6 \mathrm{~V}$
Temperature $\mathrm{T} A+22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$)

Characteristics	Pins	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply current ICC	17,19			3	mA	
Variable frequency oscillator						
Initial frequency offset error		-3	± 1	+3	\%	
Normal mark/space ratio		0.98	1.00	1.02	-	
Temp. coefficient of frequency			± 20		ppm/ ${ }^{\circ} \mathrm{C}$	See note 1
Frequency variation with supplies	17, 19		± 20		ppm/\%	
Voltage at timing current inputs	6, 7, 8, 9		± 10		mV	See note 2
VFO output, 'low' state	2		0	0.2	V	
VFO output, 'high' state	2	+1.1	+1.3		V	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$
Max. freq. of oscillation			0.5		MHz	
Binary inputs						
$V_{\text {in }}$ to guarantee logic 'low'	10, 11			+0.6	v	See note 3
$\mathrm{V}_{\text {in }}$ to guarantee logic 'high'	10, 11	+2.4			V	
Input current	10, 11		0.05	0.25	mA	$V_{\text {in }}=+3.0 \mathrm{~V}$
Phase comparator						
Differential I/P offset voltage	23, 24		± 2		mV	$V_{\text {out }}=0 \mathrm{~V}$
Input bias current	23, 24		0.05	2.5	$\mu \mathrm{A}$	$V_{\text {in }}=0 \mathrm{~V}$
Differential input resistance	23, 24		100		$\mathrm{k} \Omega$	
Common mode I/P voltage range	23, 24	± 4			\checkmark	
Differential I/P to limit (AC)	23, 24		1.0	10	mV rms	See note 4
Output current	21, 22	± 1.0	± 2.0	± 5.0	mA	$\mathrm{I}_{22}=250 \mu \mathrm{~A}$
Current gain (pin 22 to pin 21)	21, 22	± 4	± 10		-	See note 5
Transconductance, O/P/diff.1/P	21,23,24	± 100	± 250		mA / V	See note 5
Output voltage, linear range	21	± 5	± 5.5		V	
Output current	21			± 2	$\mu \mathrm{A}$	$\mathrm{I}_{22}=0$
Phase comparator I/P 'low'	1	-4		-0.2	V	
Phase comparator I/P 'high'	1	+1.9		+5.3	V	
Auxiliary amplifier (SL650 only)						
Differential I/P offset voltage	13, 14		± 2		mV	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$
Input bias current	13, 14		0.025	0.5	$\mu \mathrm{A}$	$V_{\text {in }}=0 \mathrm{~V}$
Differential 1/P resistance	13, 14	0.2	3		$\mathrm{M} \Omega$	
Common mode I/P voltage range	13, 14	± 4			\checkmark	
Voltage gain (13-14) to 15	13,14,15	1000	5000		-	
Output voltage range	15	± 4	± 4.8		V	$R_{L} \geqslant 2 k \Omega$
Output current limit	15	± 4	± 6.5	± 12	mA	

NOTES

1. With a timing current of $60 \mu \mathrm{~A}$ and $f=1 \mathrm{kHz}(\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=100 \mathrm{k} \Omega$, supply voltages $= \pm 6 \mathrm{~V})$, the temperature coefficient of frequency of the SL650C is typically $\pm 2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the range $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
2. This voltage applies for timing currents in the range $20 \mu \mathrm{~A}$ to 2 mA and with the relevant input selected. In the unselected state the voltage is typically +0.6 V .
3. The 'low' state is maintained when the inputs are open-circuited.
4. Limiting will occur earlier if the output (pin 21) voltage-limits first
5. For a control current input to pin 22 of $250 \mu \mathrm{~A}$ The sign of the transconductance is positive when the signal input is positive and the VFO output (or phase comparator input) is 'high.'

ABSOLUTE MAXIMUM RATINGS

Supply voltages
Storage temperature Operating temperature Input voltages
$\pm 7.5 \mathrm{~V}$
-55° to $+175^{\circ} \mathrm{C}$
-55° to $+125^{\circ} \mathrm{C}$
Not greater than supplies

Fig. 2 Circuit diagram of SL650/SL65t

OPERATING NOTES

Basic VFO Relationships

The VFO free-running frequency is inversely proportional to the value of the tuning capacitor C , connected to pins 4 and 5 , and directly proportional to the VFO timing current (see Fig.3). Four cuirrent switches, controlled by TTLcompatible logic inputs on pins 10 and 11 select a combination of external resistors (connected to pins 6, 7, 8 and 9) which determine the VFO timing current. When both logic inputs are low, open-circuit, or connected to OV however, then only the current switch associated with pin 7 is closed. the VFO timing current is then determined solely by the value of one resistor (R2 in Fig.3), and by the negative voltage connected to that resistor.

In this simplified configuration, as shown in Fig. 4 the VFO frequency is determined by the relationship.

$$
f=\frac{1}{C R} \cdot \frac{V_{R}}{V_{3}}
$$

where f is in $k H z, V$ in volts, C in μF and R in $k \Omega$.
If the timing resistor R is returned to the VFO negative supply (pin 3), then

$$
\begin{aligned}
V_{R} & =V_{3} \\
\text { and } f & =\frac{1}{C R}
\end{aligned}
$$

Pin 3 is normally connected to the chip negative supply; if, however, pin 3 is connected to a separate
negative supply then the VFO can be voltage-controlled, and the VFO frequency will be:

$$
f=\frac{1}{C R} \cdot \frac{V}{V_{C}}
$$

where V - is the chip and timing resistor negative supply and V_{C} is the control voltage connected to pin 3

Fig. 3 VFO and binary interface

Fig. 4 VFO basic configuration

The timing current I should be between $20 \mu \mathrm{~A}$ and 2 mA , corresponding to a value for R between $3 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$ with supplies of $\pm 6 \mathrm{~V}$. For accurate timing, CR should be greater than $5 \mu \mathrm{~s}$.

When the binary interface is used as shown in Fig. 3 the VFO free-running frequency is dependent on the logic input states, as shown in Table 1.

Pin 10	Pin 11	Timing Pins	VFO Frequency
LO	LO	7	$\frac{1}{\mathrm{CR}_{2}}$
HI	HI	$6 \& 7$	$\frac{1}{\mathrm{CR}_{2}}+\frac{1}{\mathrm{CR}_{1}}$
HI	HI	$8 \& 9$	$\frac{1}{\mathrm{CR}_{3}}$
HR_{3}			

Table 1 Binary interface relationships

Auxiliary amplifier

Internal compensation provides stability down to a closed loop gain of typically 20 dB . A 30pF capacitor connected between pins 16 and 15 will give compensation down to a closed loop gain of unity. The output is short circuit protected but is not recommended for driving loads less than $2 k$

Phase Comparator

The phase comparator parameters are defined as follows (see Fig.5):

$$
\text { Overall transconductance }=\frac{I_{21}}{V_{24}-V_{23}}
$$

$$
\text { Overall voltage gain }=\frac{V_{21}}{V_{24}-V_{23}}
$$

The input amplifier will limit when the peak input $\left(V_{24}-V_{23}\right)$ exceed $\pm 5 m V$ (typ.). It is recommended that R_{L} is kept below $5 k \Omega$ to avoid saturating the output and introducing de-saturation delays.

Fig. 5 Phase comparator

SL652C

MODULATOR/PHASE LOCKED LOOP

The SL652C is a versatile integrated circuit capable of performing all the common modulation functions (AM, PAM, SCAM, FM, FSK, PSK, PWM, tone-burst, delta-modulation, etc.). A wide variety of phase-locked loops can be realised using this device, with all parameters accurately controllable; they can also be used to generate precise waveforms at frequencies up to 0.2 MHz .

The highly accurate and stable variable frequency oscillator is programmable over a wide range of frequency by voltage, current, resistor or capacitor. In addition direct selection of one of four spot frequencies is facilitated by using the on-chip binary interface, which accepts standard logic levels at very low logic ' 1 ' input currents.

The differential input phase comparator has a wide common mode input voltage range. It has a high gain limiting amplifier at its input requiring only 1 mV input to maintain lock range in a typical phase-locked loop. The current output is programmable from zero to over 2 mA by an external resistor or current input, and the gain is voltage - current - or resistance - programmable from zero to greater than 10,000.

FEATURES

- VFO Frequency Variable Over 100: 1 Range With Same Capacitor: Linearity 0.2\%
- VFO Temperature Coefficient: $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ.
- Supply sensitivity 20 ppm/\% Typ.
- VFO Phase-Continuous at Transitions
- Binary Interface

QUICK REFERENCE DATA

- Supply Voltages
 $\pm 6 \mathrm{~V}$

- Operating Temperature

Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
■ Supply Currents $\quad 1.5 \mathrm{~mA}$ typ.

Fig. 1 Pin connections (top view)

APPLICATIONS

- Modems

Modulators
Demodulators

- Tone Decoders
- Tracking Filters

Waveform Generators
Stable Current-Controlled Oscillators

ABSOLUTE MAXIMUM RATINGS

Supply voltages	$\pm 7.5 \mathrm{~V}$
Storage temperature	-55° to $+175^{\circ} \mathrm{C}$
Operating temperature	-55° to $+125^{\circ} \mathrm{C}$
Input voltages	Not greater than supplies

SL652C

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):
Supply voltage: $\pm 6 \mathrm{~V}$
$\mathrm{T}_{\mathrm{A}}:+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Characteristics	Pins	Value			Units	Conditions
		Min.	Typ.	Max.		
Variable frequency oscillator Initial frequency offset error Normal mark/space ratio Temp. coefficient of frequency Frequency variation with supplies Voltage at timing current inputs Max. freq. of oscillation						
		-3	± 1	+3	\%	
		0.98	1.00	1.02	-	
			± 20		ppm $/{ }^{\circ} \mathrm{C}$	See note 1
	11, 12		± 20		ppm/\%	
	4, 5, 6, 7		± 10		mV	See note 2
			0.5		MHz	
Binary inputs						
$\mathrm{V}_{\text {in }}$ to guarantee logic 'low'	8,9			+0.6	V	See note 3
$\mathrm{V}_{\text {in }}$ to guarantee logic 'high'	8,9	+2.4			V	
Input current	8,9		0.05	0.25	mA	$V_{\text {in }}=+3.0 \mathrm{~V}$
Phase comparator						
Differential I/P offset voltage	15, 16		± 2		$m V$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$
Input bias current	15, 16		0.05	2.5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
Differential input resistance	15, 16		100		k Ω	
Common mode I/P voltage range	15, 16	± 4			V	
Differential I/P to limit (AC)	15, 16		1.0	10	mV	See note 4
Output current	13, 14	± 1.0	± 2.0	± 5.0	mA	$1_{14}=250 \mu \mathrm{~A}$
Current gain (pin 14 to pin 13)	13, 14	± 4	± 10		-	See note 5
Transconductance, O/P/diff.I/P	13, 15, 16	± 100	± 250		mA/V	See note 5
Output voltage, linear range	13	± 5	± 5.5		V	
Output current	13			± 2	mA	$\mathrm{I}_{14}=0$

notes

1. With a timing current of $60 \mu \mathrm{~A}$ and $\mathrm{f}=1 \mathrm{kHz}(\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=100 \mathrm{k} \Omega$, supply voltages $= \pm 6 \mathrm{~V})$, the temperature coefficient of frequency of the SL652C is typically $\pm 2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the range $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
2. This voltage applies for timing currents in the range $20 \mu \mathrm{~A}$ to 2 mA and with the relevant input selected. In the unselected state the voltage is typically +0.6 V .
3. The 'low' state is maintained when the inputs are open-circuited.
4. Limiting will occur earlier if the output (pin. 13) voltage-limits first.
5. For a control current input to pin. 14 of $250 \mu \mathrm{~A}$. The sign of the transconductance is positive when the signal input is positive and the VFO output (or phase comparator input) is 'high'

Fig. 2 SL652C block diagram

Fig. 3 Circuit diagram of SL652

OPERATING NOTES

Basic VFO Relationships

The oscillator output is normally taken from the phase comparator output by biasing the signal inputs a few hundred millivolts apart. If a direct oscillator output is required when the phase comparator is otherwise employed, it should be taken from pin 2 or 3 (which may affect oscillator stability). Alternatively, an SL651C can be used in place of the SL652C.

The VFO free-running frequency is inversely proportional to the value of the tuning capacitor C , connected to pins 2 and 3, and directly proportional to the VFO timing current (see Fig.4). Four current switches, controlled by TTL-compatible logic inputs on pins 8 and 9 select a combination of external resistors (connected to pins 4, 5, 6 and 7) which determine the VFO timing current. When both logic inputs are low, open-circuit, or connected to OV however, then only the current switch associated with pin 5 is closed. The VFO timing current is then determined solely by the value of one resistor (R 2 in Fig. $\overline{4})$, and by the negative voltage connected to that resistor.

In this simplified configuration, as shown in Fig. $\underline{\overline{5}}$ the VFO frequency is determined by the relationship.

$$
f=\frac{1}{C R} \frac{V_{R}}{V_{1}}
$$

If the timing resistor \mathbf{R} is returned to the VFO negative supply (pin 1) then

$$
\begin{aligned}
V_{R} & =V_{1} \\
\text { and } f & =\frac{1}{C R}
\end{aligned}
$$

Pin 1 is normally connected to the chip negative supply; if, however, pin 1 is connected to a separate negative supply then the VFO can be voltage-controlled, and the VFO frequency will be:

$$
f=\frac{1}{C R} \frac{V}{V_{C}}
$$

where V_{-}is the chip and timing resistor negative supply and V_{C} is the control voltage connected to pin 1.

The timing current should be between $20 \mu \mathrm{~A}$ and 2 mA , corresponding to a value for R between $3 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$ with supplies of $\pm 6 \mathrm{~V}$. For accurate timing, CR should be greater than 5μ s.

When the binary interface is used as shown in Fig. $\overline{\underline{4}}$, the VFO free-running frequency is dependent on the logic input states, as shown in Table 1.
where f is in kHz, V in volts, C in $\mu \mathrm{F}$ and R in $\mathrm{k} \Omega$.

Pin 8	Pin 9	Timing Pins	VFO Frequency
LO	LO	5	$\frac{1}{\mathrm{CR}_{2}}$
HI	LO	$6 \& 5$	$\frac{1}{\mathrm{CR}_{2}}+\frac{1}{\mathrm{CR}_{1}}$
HI	HI	$6 \& 7$	$\frac{1}{\mathrm{CR}_{3}}$
$\frac{1}{\mathrm{CR}_{3}}+\frac{1}{\mathrm{CR}_{4}}$			

Table 1 Binary interface relationships

Phase Comparator

The phase comparator parameters are defined as follows (see Fig. 6):

$$
\begin{gathered}
\text { Overall transconductance }=\frac{l_{13}}{V_{16}-V_{15}} \\
\text { Overall voltage gain }=\frac{V_{13}}{V_{16}-V_{15}}
\end{gathered}
$$

The input amplifier will limit when the peak input $\left(V_{16}\right.$ - V_{15}) exceeds $\pm 5 \mathrm{mV}$ (typ.). It is recommended that R_{L} is kept below $5 \mathrm{k} \Omega$ to avoid saturating the output and introducing de-saturation delays.

Fig 6. Phase comparator

Fig. 4 VFO and binary interface

Fig. 5 VFO basic configuration

PRELIMINARY INFORMATION
Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outiet for details of the current status.

SL8204
 TELEPHONE TONE RINGER

The SL8204 is a telephone set tone ringer IC. It is packaged in an 8 pin DIL Minidip. The unit is designed for use as a telephone set bell replacement, or as an extension ringer. The SL8204 will drive a speaker in place of the existing bell, using power supplied from the telephone line.
Two audio oscillators are incorporated. The low frequency oscillator shifts the high frequency oscillator between 508 and 635 Hz at a 10 Hz rate. These frequencies are determined by external components which may be changed as desired. The IC has a built-in threshold circuit with hysteresis which prevents false triggering, eliminates rotary dial 'chirps', and provides positive switching operation.
The IC may also be used for other applications requiring an attention-getting sound. Output power from the built-in amplifier is nominally 35 mW , and will produce a maximum 90 dBA sound pressure-level from a properly baffled 2 inch speaker.

FEATURES

- Low Current Drain \quad Small Size (mini-DIP)
- Threshold Circuit Prevents False Triggering and Rotary Dial 'Chirps'
- Built-In Hysteresis For Positive Enable
- Few External Components

Up To 90dBA Sound Pressure Level

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage
30 V d.c.
Storage temperature range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating temperature range $\quad-45^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test condifions (uniess otherwise stated):

Tamb $=-45^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

Characteristic	Value			Units	Condlitions	
	Min.	Typ.	Max.			
Initiation supply voltage $\mathrm{V}_{\text {sı }}$	17	19	21	V	See Fig. 4	
Sustaining voltage Vsus	9.7	11.5	13	v	See Fig. 4	
Supply current Isi	1.4	2.5	4.2	mA	No load. See Fig. 4	
Supply current Isus	0.7	1.4	2.5	mA	See Fig. 4	
K1, fti (constant) See Eq. 1 $\mathrm{f}_{\mathrm{H} 1}$ (frequency)	$\begin{gathered} 1 / 1.681 \\ 458 \end{gathered}$	$\begin{gathered} 1 / 1.515 \\ 508 \end{gathered}$	$\begin{array}{\|c} 1 / 1.380 \\ 558 \end{array}$	Hz	$\mathrm{R}_{2}=191 \mathrm{k} \quad \mathrm{C}_{2}=6800 \mathrm{pF}$	
K2, fh2 (constant) See Eq. 2 ith2 (frequency)	$\begin{gathered} 1.190 \\ 545 \end{gathered}$	$\begin{gathered} 1.250 \\ 635 \end{gathered}$	$\begin{gathered} 1.310 \\ 731 \end{gathered}$	Hz	$\mathrm{R}_{2}=191 \mathrm{k} \quad \mathrm{C}_{2}=6800 \mathrm{pF}$	
K3, fL (constant) See Eq. 3 fL (frequency)	$\begin{gathered} 1 / 1.367 \\ 9 \end{gathered}$	$\begin{gathered} 1 / 1.234 \\ 10 \end{gathered}$	$\begin{gathered} 1 / 1.118 \\ 11 \end{gathered}$	Hz	$R_{1}=173 \mathrm{k} \quad \mathrm{C}_{1}=0.47 \mu \mathrm{~F}$	
Operating voltage	-	-	29	V		
Output voltage high	18.0	19.0	20.0	V	$\left\lvert\, \begin{array}{ll} V c c=21 \mathrm{~V} & 1(\operatorname{Pin} 8)=-15 \mathrm{~mA} \\ \operatorname{Pin} 6=6 \mathrm{~V} & \operatorname{Pin} 7=G N D \end{array}\right.$	
Output voltage low	0.5	0.9	1.3	v	$\begin{cases}V c c=21 \mathrm{~V} & l(\operatorname{Pin} 8)=15 \mathrm{~mA} \\ \operatorname{Pin} 6=G N D & \operatorname{Pin} 7=6 \mathrm{~V}\end{cases}$	
Trigger voltage V_{T}	8.5	9.5	10.5	v	$V c c=15 \mathrm{~V}$ See Note 1	
Trigger current IT		20.0	1000	$\mu \mathrm{A}$	See Notes 1 and 3	
Disable voltage Vo		0.4	0.8	V	$T_{\text {amb }}=25^{\circ} \mathrm{C}$ See Note 2	
Disable current	-40	-50		$\mu \mathrm{A}$	$T_{\text {amb }}=25^{\circ} \mathrm{C}$ See Note 2	
lin (Pin 3)	-	-	500	nA	Pin $3=6 \mathrm{~V} \quad \operatorname{Pin} 4=\mathrm{GND}$	
$\operatorname{lin}(\operatorname{Pin} 7)$	-	-	500	nA	$\operatorname{Pin} 7=6 \mathrm{~V} \quad \operatorname{Pin} 6=\mathrm{GND}$	
1 (Pin 4) Source Vcc = Vsus	150	300	600	$\mu \mathrm{A}$	$\operatorname{Pin} 3=$ GND $\operatorname{Pin} 4=$ GND	
1 (Pin 4) Sink Vcc = Vsus	100	200	350	$\mu \mathrm{A}$	$\operatorname{Pin} 3=6 \mathrm{~V} \quad \operatorname{Pin} 4=5 \mathrm{~V}$	
1 (Pin 6) Source Vcc $=$ Vsus	80	175	350	$\mu \mathrm{A}$	$\operatorname{Pin} 6=$ GND $\operatorname{Pin} 7=$ GND	$\operatorname{Pin} 4=$ GND
1 (Pin 6) Source Vcc = Vsus	125	250	500	$\mu \mathrm{A}$	$\operatorname{Pin} 6=$ GND $\operatorname{Pin} 7=$ GND	$\operatorname{Pin} 4=8 \mathrm{~V}$
1 (Pin 6) Sink Vcc $=$ Vsus	70	125	250	$\mu \mathrm{A}$	$\operatorname{Pin} 6=5 \mathrm{~V} \quad \operatorname{Pin} 7=6 \mathrm{~V}$	$\operatorname{Pin} 4=$ GND
1 (Pin 6) Sink Vcc = Vsus	100	200	300	$\mu \mathrm{A}$	$\operatorname{Pin} 6=5 \mathrm{~V} \quad$ Pin $7=6 \mathrm{~V}$	Pin $4=8 \mathrm{~V}$

NOTES

1. V_{T} and I_{T} are the conditions applied to P in 2 to start oscillation for $V_{s u s}<V_{c c}<V_{S I}$
2. V_{D} and ID are the conditions applied to P in 2 to inhibit oscillation for $V s \mid<V c c$
3. Trigger Current must be limited externally

ADDENDUM
ADD 29V ZENER AS SHOWN FOR HIGH LINE VOLTAGE PROTECTION

Fig. 3 Circuit diagram - tone ringer

Fig. 6 Typical power output

Fig. 5 Typical RMS current

Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

SL9009EXP
 ADAPTIVE CANCELLATION FILTER

ThelSL9009 is a bipolar integrated circuit designed for use in duplex modems on 600Ω telephone lines. It automatically optimises the duplexer such that the transmitted signal is cancelled at the input to the receiver.

- Automatically Simulates Impedance Characteristic of Line
- Independently Variable L,C,R Impedance Components
- Achieves Typical 40dB Rejection of Transmitted Signal
- Requires Only 2 External Op-Amps for Complete Adaptive Duplexer
- 16 Pin DIL Package
- ± 4.5 to $\pm 7 \mathrm{~V}$ Supply Range

Fig. 1 Pin connections - top view

Fig. 2 Block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\pm 4.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$ supply, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PRINCIPLES OF OPERATION

The cancellation principle is to use the conductance cells to simulate the characteristics of the line, in a bridge circuit to separate out the received signal from the transmitted signal. The bridge output goes to two phase-sensitive detectors which detect the out-of-balance signal components in phase and in quadrature with the cancellation signal, derived from the transmit signal. These out-of-balance currents are integrated and fed back to the conductance cells, to adjust the effective resistance and capacitance or inductance until the bridge is balanced and the transmit signal is completely cancelled out. The current source characteristics are arranged to keep the loop stable for all normal line characteristics.

Description of Conductance Cell

Each conductance cell is effectively a variable-gain current amplifier with a gain approximately equal to

CONTROL CURRENT
 $20 \mu \mathrm{~A}$

The input roughly follows the output voltage, with an effective input series resistance of about $5 \mathrm{k} \Omega$. Therefore, with an impedance Z connected from the input to ground, the impedance seen at the output is approximately

$$
(Z+5 k \Omega) \times \frac{20 \mu \mathrm{~A}}{\text { CONTROL CURRENT }}
$$

Fig. 3 Simplified circuit illustrating cancellation principle

Fig. 4 Conductance cell schematic

Fig. 5 Typical line circuit for modem ($900-3000 \mathrm{~Hz}$ transmit frequency)

SP1404BW, D3702

HIGH VOLTAGE INTERFACE CIRCUIT

The SP1404 is a bipolar integrated circuit comprising five individual digital current amplifier circuits. Each circuit accepts a logic input from TTL, CMOS or a similar source and drives a high-current load at the output. The outputs are capable of withstanding high negative voltages in the 'off' state, making the SP1404 particularly suited to telecommunications applications.

The D3702 is a version of the SP1404BW in 14 pin plastic package approved to BT specification.

CIRCUIT DESCRIPTION (FIG.2)

The SP1404 operates as a power amplifier interfacing from a voltage-level sensitive input to a high-current output switch. The input threshold is TTL-compatible, with a low input current requirement enabling one standard TTL output to drive many interfaces. The low input current requirement also makes it possible to use series current-limiting resistors to protect the SP1404 inputs.

Each element of the device performs an inverting function, i.e. a low voltage level on the input causes a high current in the output. If the input is left open-circuit, the output will be off and the output current will be zero.

The isolation of the integrated circuit is biased to the more negative of the two earth points by diodes D1 and D2 so that differences of up to ($\mathrm{VCC}-1$) volts can be tolerated between the 'noisy' exchange earth and the 'quiet' electronic earth.

Fig. 1 Pin connections (viewed from underside)

Fig. 2 Circuit diagram of one element

ELECTRICAL CHARACTERISTICS

Test Conditions (unlèss otherwise stated)
Temperature range $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{c c}=+5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Input current	50	-20	$\begin{aligned} & 1.5 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$	$V_{\text {in }}=0 \mathrm{~V}$
		-2		$\mu \mathrm{A}$	$V_{\text {in }}=V_{\text {cc }}$
Output voltage				V	$V_{\text {in }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {out }}=50 \mathrm{~mA}$
Output current (Off state)				$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=2 \mathrm{~V}, \mathrm{~V}_{\text {out }}=-60 \mathrm{~V}$
Output current (On state)		80		mA	$\mathrm{Vin}=0.8 \mathrm{~V}$
VCC supply current		30		mA	$V_{\text {cc }}=5 \mathrm{~V}$, all inputs low
Total power dissipation		450		mW	$V_{c c}=5 \mathrm{~V}$, all inputs low all outputs $\mathrm{I}_{\text {out }}=50 \mathrm{~mA}$

SP1404BW

ABSOLUTE MAXIMUM RATINGS

Storage temperature	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Chip operating temperature	$+150^{\circ} \mathrm{C}$
Ambient temperature (lout $^{\circ}=50 \mathrm{~mA}$)	$+85^{\circ} \mathrm{C}$
Load current	80 mA
Voltage between output	
and 'noisy' earth	-65 V
$\mathrm{~V}_{\mathrm{cc}}$ to output voltage	75 V
$\mathrm{~V}_{\mathrm{cc}}$ to electronic earth	7 V
Input voltage	$\mathrm{V}_{\mathrm{cC}}+1 \mathrm{~V}$

SP1450B(B) \& SP1455B(B)

PCM SIGNAL MONITOR CIRCUITS

The SP1450 and SP1455 are bipolar integrated circuits designed to monitor errors in three-level digital signals modulated by a three-alphabet 4B3T code such as MS43. They can also indicate the failure of positive or negative pulses in the signal. The high frequency capability allows operation in PCM systems up to 34M bit/s (SP1450) and 140M bit/s (SP1455). Facilities are provided to adjust input thresholds independently on each polarity of input and the error output can be interfaced with low speed CMOS circuitry or high speed ECL.
The SP1450B(B) and SP1455B(B) are similar to the SP1450B and SP1455B but are screened to MIL-STD-883, Method 5004, Class B.

FEATURES

- Suitable for 34, 120 and 140 M bit/s PCM
- Positive and Negative Input Signal Fail Outputs
- High Speed Error Output
- Low Speed 'Stretched' Output
- Low Power Consumption

QUICK REFERENCE DATA

- Supply Voltage -4.4 V to -5.25 V
- Operating Temperature Range $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Power Consumption 100 mW typ
- Input Voltage Range $\pm 450 \mathrm{mV}$ to $\pm 1100 \mathrm{mV}$ (SP1450)
$\pm 450 \mathrm{mV}$ to $\pm 600 \mathrm{mV}$ (SP1455)
- Thermal Resistance θ_{j}-a $100^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 1 Pin connections (top view)

APPLICATIONS

- PCM Telephone Transmission Terminal Equipment
- PCM Repeaters
- Error Checking Test Equipment

ABSOLUTE MAXIMUM RATINGS

Supply voltage -8 V
Reverse input current (pin 4) 5mA (continuous) 20 mA (10us max)
Forward input current (pin 4) 20 mA (10us max)
Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction temperature $150^{\circ} \mathrm{C}$

SP1450B(B)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{Vcc}=$ Pins $1-16=0 \mathrm{~V}$
$V_{e e}=\operatorname{Pin} 8=-5.0 \mathrm{~V}$
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$
Input voltage range (pins $3,4,6$) $=-0.9 \mathrm{~V}$ to -3.1 V

DC CHARACTERISTICS

Characteristic	Pin	Value			Units	Conditions
		Min.	Typ.	Max.		
Output low, current	2	0.9	1.2	1.9	mA	$\operatorname{Pin} 2=O V$ $\operatorname{Pin} 3=-1.7 \mathrm{~V}$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$
Output low, current	2	0.7	-	-	mA	$\operatorname{Pin} 2=O V$ $\operatorname{Pin} 3=-1.95 \mathrm{~V}$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$
Output high, current	2	-	-	1	$\mu \mathrm{A}$	$\operatorname{Pin} 2=O V$ $\operatorname{Pin} 3=-2.3 V$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$
Output high, current	2	-	-	0.4	mA	$\operatorname{Pin} 2=O V$ $\operatorname{Pin} 3=-2.05 \mathrm{~V}$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$
Output low, current	5	0.9	1.2	1.9	mA	$\begin{aligned} & \operatorname{Pin} 4=-2.0 \mathrm{~V} \\ & \operatorname{Pin} 5=\mathrm{OV} \\ & \operatorname{Pin} 6=-2.3 \mathrm{~V} \end{aligned}$
Output low, current	5	0.7	-	-	mA	$\begin{aligned} & \operatorname{Pin} 4=-2.0 \mathrm{~V} \\ & \operatorname{Pin} 5=\mathrm{OV} \\ & \operatorname{Pin} 6=-2.05 \mathrm{~V} \end{aligned}$
Output high, current	5	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \operatorname{Pin} 5=O V \\ & \operatorname{Pin} 4=-2.0 \mathrm{~V} \\ & \operatorname{Pin} 6=-1.7 \mathrm{~V} \end{aligned}$
Output high, current	5	-	-	0.4	mA	$\operatorname{Pin} 5=O V$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$ $\operatorname{Pin} 6=-1.95 \mathrm{~V}$ $\left(\begin{array}{l} \operatorname{Pin} 13,15=\mathrm{OV} \\ \operatorname{Pin} 3=-1.7 \mathrm{~V} \end{array}\right.$
Output low, current	13	6.0	7.0	9.0	$\mathrm{mA}\}$	$\left\{\begin{array}{l}\text { Pin } 4=-2.0 \mathrm{~V} \\ \text { Pin } 6=-2.3 \mathrm{~V} \\ \text { Pins } 25=0 \mathrm{~V}\end{array}\right.$
Output high, current	15	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \text { Pins } 2,5=0 \mathrm{~V} \\ & 470 \Omega \text { pin } 12 \text { to }-5 \mathrm{~V} \\ & 27 \mathrm{k} \Omega \text { pin } 14 \text { to }-5 \mathrm{~V} \\ & \text { Six pos. or neg. pulses on pin } 4 \end{aligned}$
Output high, current	13	-	-	1	$\mu \mathrm{A}\}$	$\left\{\begin{array}{l}\text { Pin 13, 15 }=\text { OV } \\ \operatorname{Pin} 3=-2.3 \mathrm{~V} \\ \operatorname{Pin~} 4=-2.0 \mathrm{~V} \\ \operatorname{Pin} 6=-1.7 \mathrm{~V}\end{array}\right.$
Output low, current	15	0.5	0.75	-	mA)	$\left(\begin{array}{l} \text { Pins } 2,5=0 \mathrm{~V} \\ 470 \Omega \text { pin } 12 \text { to }-5 \mathrm{~V} \\ 27 \mathrm{k} \Omega \text { pin } 14 \text { to }-5 \mathrm{~V} \end{array}\right.$
Current consumption	1,16	-	20	25	mA	(Pins 2,5,13,15 = OV (Pins 3,6 $=-2.3 \mathrm{~V}$ (Pin $4=-2.0 \mathrm{~V}$ ($27 \mathrm{k} \Omega$ resistor between (Pin 14 and -5V (Pin 12 open
Input bias current	3	-	-	40	$\mu \mathrm{A}$	$\operatorname{Pin} 2=O V$ $\operatorname{Pin} 3=-1.7 \mathrm{~V}$ $\operatorname{Pin} 4=-2 V$
Input bias current	6	-	-	40	$\mu \mathrm{A}$	$\begin{aligned} & \operatorname{Pin} 4=-2.0 \mathrm{~V} \\ & \operatorname{Pin} 5=\mathrm{OV} \\ & \operatorname{Pin} 6=-1.7 \mathrm{~V} \end{aligned}$
Input bias current	4	-	-	80	$\mu \mathrm{A}$	Pins $2,5=\mathrm{OV}$ Pins $3,6=-2.3 \mathrm{~V}$ $\operatorname{Pin} 4=-2.0 \mathrm{~V}$

AC CHARACTERISTICS

Circuit reference: Fig. 3
Input signal: Fig. 2
$T_{\text {amb }}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{EE}}=-4.4 \mathrm{~V}$ to -5.25 V

Characteristic	Pin	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. Input Frequency SP1450 SP1455	13 13		-	$\begin{aligned} & 25.5 \\ & 105 \end{aligned}$	M band/s M band/s	See note 1 below
Stretched output pulse width	15	0.5	0.7	2	$\mu \mathrm{S}$	$\mathrm{c}_{1}=390 \mathrm{pF} \mathrm{R}_{1}=27 \mathrm{k} \Omega$ using circuit of Fig. 7 (see note 2 below)
Error pulse width SP1455	13	4.25	-	5.25	nS	Input freq. 105 M band/s
Error pulse amplitude	13	300	-	-	mV	At max input frequency
Spurious pulse amplitude	13	-	-	50	mV	At max. input frequency

NOTE 1: These figures are the max.input symbol rates. For 4B3T codes, the effective bit rate is $4 / 3 \times$ (input frequency).
NOTE 2: Resistor and capacitor values quoted are absolute values; temperature coefficients and tolerances have not been taken into account.

Fig. 3 Functional test circuit

Fig. 4 Circuit diagram of SP1450/SP1455

APPLICATIONS

The circuit shown in Fig. 3 is designed to accept a three level (ternary) input signal as shown in Fig.2. The input is applied to pin 4 whilst fixed bias levels are maintained on pins 3 and 6 . When a positive input pulse is applied at a level more positive than the bias on pin 6 the positive comparator output 01 goes from '0' (Vee) to ' 1 ' (Vcc). The 1-0 edge of this pulse clocks the five bit shift register one place to the right. Repeated operation will cause a pattern of logic '1's to be propagated along the shift register. When bit 5 is at logic ' 1 ' and the input is also positive an 'error' will occur at pins 13 and 15.

A negative input puise at a level more negative than the voltage on bias pin 3 causes the negative comparator output 02 to clock the shift register one place to the left. Repeated operation causes a pattern of logic '0's to be propagated along the shift register. When bit 1 is at logic ' 0 ' and the input is also negative an 'error' output will again occur at pins 13 and 15.

During normal operation the shift register can assume one of only six possible states as shown in Fig.5.

State	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
A	0	0	0	0	0
B	1	0	0	0	0
C	1	1	0	0	0
D	1	1	1	0	0
E	1	1	1	1	0
F	1	1	1	$\mathbf{1}$	1

Fig. 5 Shift register states
When power is initially connected other states may occur.
Two 'error' outputs are available. The fast output at pin 13 is negative going; the peak current is defined by a resistor

Fig.7(a) interfacing with CMOS at the stretched output (SP1450)

Fig. 8 Interfacing with pulse fail output with CMOS
connected between pin 12 and V_{EE} according to the formula:

$$
I=\frac{3.3}{R}(\text { e.g. } 820 \text { ohms; } 4 \mathrm{~mA})
$$

A pullup resistor must then be connected between pin 13 and $V c c$ to give a suitable voltage swing. A suitable ECL interface is shown in Fig.6.
If, as in a repeater application, a fast output is not required, pin 12 should be left open and pin 13 connected to Vcc (pin 16).

A stretched output is available from pin 15 by connection of a capacitor between pins 14 and 15. A suitable circuit is shown in Fig.7.
Facilities are available at pins 2 and 5 to detect the absence of negative and positive going input signals. If these are not required pins 2 and 5 should be connected to Vcc (pin 1). A CMOS interface circuit is shown in Fig. 8.

Fig. 6 Interfacing with ECL at the output

Fig.7(b) interfacing with CMOS at the stretched output (SP1455)

16 LEAD CERAMIC DIL
DG16

Package Outlines

14 LEAD CERAMIC DIL CERDIP - DG14

16 LEAD CERAMIC DIL CERDIP-DG16

18 LEAD CERAMIC DIL CERDIP - DG18

22 LEAD CERAMIC DIL CERDIP - DG22

24 LEAD CERAMIC DIL CERDIP - DG24

28 LEAD CERAMIC DIL - DG28

8 LEAD PLASTIC DIL - DP8

14 LEAD PLASTIC DIL - DP14

16 LEAD PLASTIC DIL - DP16

18 LEAD PLASTIC DIL - DP18

24 LEAD PLASTIC DIL - DP24

40 LEAD PLASTIC DIL - DP40

Ordering information

Plessey Semiconductor integrated circuits are allocated type numbers which take the following general form

WW XXXX Y/ZZ

where $\mathbf{W W}$ is a two-letter code identifying the product group and/or technology, $\mathbf{X X X X}$ is a three or four numeral code uniquely specifying the particular device, \mathbf{Y} is a single letter which denotes the precise electrical or thermal specification for certain devices and $\mathbf{Z Z}$ is a twoletter code defining the package style. Digits WW, XXXX and \mathbf{Y} must always be used when ordering; digits $\mathbf{Z Z}$ need only be used where a device is offered in more than one package style. For example, the MV8863 is offered in DG (Ceramic dual-in-line) and DP (Plastic dual-in line) packages so the full ordering number for this device in ceramic DIL would be MV8863/DG and MV8863/DP for the plastic DIL version.

The Pro-Electron standard is used for package codes wherever possible. The two letters of this code have the following meanings:
FIRST LETTER (indicates general shape)
A Pin-Grid Array
C Cylindrical
D Dual-in-Line (DIL)
F Flat Pack (leads on two sides)
G Flat Pack (leads on four sides)
Q Quad-in-Line
M Miniature (for Small Outline)
L Leadless Chip Carrier Not yet designated by Pro-Electron
H Leaded Chip Carrier
SECOND LETTER (indicates material)
C Metal-Ceramic (Metal Sealed)
G Glass-Ceramic (Glass Sealed)
M Metal
P Plastic
E Epoxy
Please Note:

Leadless Chip Carriers

LC Metal-Ceramic 3 Layer (Metal Sealed)
LG Glass-Sealed Ceramic
LE Epoxy-Sealed 1 Layer
LP Plastic
Note: The above information refers generally to Plessey Semiconductors integrated circuii products and does not necessarily apply to all the devices contained in this handbook.

Plessey
 Semiconductors World Wide

Sales Offices

BELGIUM, NETHERLANDS, LUXEMBOURG
Plessey Semiconductors, Avenue de Tervuren 149, Box 2, Brussels 1150, Belgium.
Tel: 027339730 Tx: 22100
FRANCE Plessey Semiconductors, Z.A de Courtaboeuf, Rue du Quebec, B.P. No. 142, 91944 - Les Ulis Cedex. Tel: (6) 446-23-45 Tx: 692858F
ITALY Plessey Trading SpA, Corso Garibaldi 70, 20121 Milan. Tel: 6596081 Tx: 331347
NORTH AMERICA Plessey Semiconductors, 3 Whatney, Irvine, California 92718, USA. Tel: 7149515212 Twx: 701464 See separate North American listings
UNITED KINGDOM Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire SN2 2QW. Tel: (0793) 36251
Tx: 449637
WEST GERMANY, AUSTRIA, SWITZERLAND
Plessey GmbH, Altheimer Eck 10, 8000 Munchen 2, West Germany. Tel: 08923 62-0 Tx: 0522197

Agents

ARGENTINA AUSTRALIA	Electroimpex SA, Guatemala 5991, (1425) B
	Plessey Australia Pty Ltd., P.O.Box 2, Villawood, New South Wales 2163. Tel: Sydney 720133 Tx: 120384
EASTERN EUROPE GREECE	Plessey plc., Vicarage Lane, Ilford, Essex, England. Tel: 014783040 Tx: 23166
	Plessey Company Ltd., Hadijgianni Mexi 2, Athens. Tel: 217243000 Tx: 219251
	Mammeas, Representations \& Exportations, P.O.Box 181, Piraeus. Tel: 4172597 Tx: 213835 LHGR
INDIA	Semiconductors Ltd., 809 Raheja Centre, Nariman Point, Bombay 400 021. Tel: 233999 Tx: 011-5414 CITO IN
	Semiconductors Ltd., Unity Buildings, J.C. Road, Bangalore 560-001. Tel: 52072 \& 578739
	Semiconductors Ltd., 513, Ashoka Estate, 24, Barakhamba Road, Nf w Delhi - 110001. Tel: 44879 Tx: 313369
JAPAN	Cornes \& Company Ltd., Maruzen Building, 2 Chome Nihonbachi, Chuo-Ku, C.P.O.Box 158, Tokyo 100-91. Tel: 0108132725771 Tx: 24874
	Cornes \& Company Ltd., 1-Chome Nishihonmachi, Nishi-Ku, Osaka 550. Tel: 5321012 Tx: 525-4496
HONG KONG	YES Products Ltd., Block E, 15/F Golden Bear Industrial Centre, 66-82 Chaiwan Kok Street, Tsuen Wan, N.T., Hong Kong. Tel: 0-444241-6 Tx: 36590
KOREA NEW ZEALAND	Young O Ind Co. Ltd., Yeoevido, P.O. Box 149, Seoul. Tel: 7821707 Tx: K25701
	Plessey (NZ) Ltd., Te Pai Place, Henderson, Auckland 8. Tel: 8364189 Tx: NZ2851
SCANDINAVIA	
Denmark	Scansupply, Nannasgade 18-20, DK-2200 Copenhagen. Tel: 451835090 Tx: 19037
Finland	Oy Ferrado AB, P.O.Box 54, SF-00381 Helsinki 38. Tel: 90550002 Tx: 122214
Norway	Skandinavisk Elektronikk A/S, Ostre Aker Vei 99, Oslo 5. Tel: 02641150 Tx: 71963
Sweden SINGAPORE	Micronet AB, Odengatan 16, 11424 Stockholm. Tel: 08/15 0230-31 Tx: 14725
	Plessey Singapore Private Ltd., 400 Orchard Road, No. 21-07 Orchard Towers, Singapore 0923. Tel: 7325000 Tx: RS22013
SOUTH AFRICA	Plessey South Africa Ltd., Forum Building, Struben Street, P.O.Box 2416, Pretoria 0001, Transvaal. Tel: (012) 3254200 Tx: 320277
SPAINTAIWAN	JR Trading, Apartado de Correos 8432, Madrid 8. Tel: 24812 18/248 3882 Tx: 42
	Artistex
	Taipei 105, (P.O.Box 59253, Taipei 105) Taiwan, Republic of China. Tel: 7526330
	Tx: 27113 ARTISTEX Fax: (8862) 7215446
THAILAND	Plessey Thailand, Rama Mansion 47, Sukhumvit Soi 12, Bangkok 11. Tel: 2526621
	Tx: CHAVALIT TH2747
TURKEY	Turkelek Elektronic Co. Ltd., Hatay Sokak 8, Ankara. Tel: 90-41-25 21 09, 90-41-1894 83 Tx: 4
	Turkelek Elektronic Co. Ltd., Kemeralti Caddesi, Tophane Ishani 406, Istanbul. Tel: 90-1-1431
	90-1-143 4046 Tx: 22036
	Plessey M.M.E.R., Paris Caddesi 76/4, Kavaklidere, Ankara. Tel: 263820 Tx: 42061

Distributors

AUSTRIA	DAHMS Elektronik Ges. mbH, Wiener Str. 287, A-8051 Graz Tel: 0316/64030 Tx: 31099
BELGIUM	Master Chips, 4 St. Lazarus Laan, 1030 Brussels. Tel: 022195862 Tx: 62500
FRANCE	Mateleco, 66,Rue Augustin Dumont, 92240 Malakoff, Paris.
	Tel: (1) 46577055 Tx : 203436F
	Mateleco Rhône-Alpes, 2 Rue Emile Zola, 38130 Echirolles. Tel: (76) 403833 Tx: 980837
	ICC, 78, Chemin Lanusse, Boite postale $n^{\circ} 2147,31200$ Toulouse. Tel: (61) 26-14-10 Tx: 520897 F
	ICC, Z.A. du Haut Vigneau, Rue de la Source, 33170 Gradignan. Tel: (56) 31-17-17 Tx: 541539 F
	ICC, 9 bis, rue du Bas Champflour, 63019 Clermont Ferrand. Tel: (73) 91-70-77 Tx: 990928 F
	ICC, Z.A. Artizanord II, Lot 600 - bâtiment 19, Traverse de l'Oasis, 13015 Marseille. Tel: (91)-03-12-12
	Tx: 441313 F (
INDIA	Semiconductors Ltd., 809 Reheja Centre, Nariman Point, Bombay 400 021. Tel: 233999
	Tx: 0115415 CITO IN
ITALY	Melchioni, Via P. Colletta 39, 20135 Milan. Tel: 5794 Tx: 320321
	Eurelettronica, Via Mascheroni 19, 20145 Milan. Tel: 4981851 Tx: 332102
	Eurelettronica, Via Bertoloni 27, Rome. Tel: 875394 Tx: 610358
NETHERLANDS	Heynen B.V., Postbus 10, 6590 AA Gennep. Tel: 8851-99111 Tx: 37282
NEW ZEALAND	Professional Electronics Ltd., P.O.Box 31-143, Auckland. Tel: 493029 Tx: 21084
SWITZERLAND	Aumann \& Co. AG, Forrlibuckstrasse 150, CH-8037 Zurich. Tel: 01/443300 Tx: 822966
UNITED KINGDOM	Celdis Ltd., 37-39 Loverock Road, Reading, Berks RG3 1ED. Tel: 0734585171 Tx: 848370
	Electronic Resources, A Division of Intel Electronics Group Ltd., Henlow Trading Estate, Henlow, Bedfordshire SG16 6DS Tel: (0462) 815555 Tx: 825637
	Tel: $0734788878 / 787848$
	Gothic Crellon Ltd., P.O.Box 301, Trafalgar House, 28 Paradise Circus,
	Queensway, Birmingham B1 2BL. Tel: 0216436365 Tx: 338731
	Quarndon Electronics Ltd., Slack Lane, Derby DE3 3ED. Tel: 033232651 Tx: 37163
	Semiconductor Specialists (UK) Ltd., Carroll House, 159 High Street, Yiewsley, West Drayton,
	Middlesex UB7 7XB. Tel: 0895445522 Tx: 21958
WEST GERMANY	AS Electronic Vertriebs GmbH, Elisabethenstrasse 35, 6380 Bad Homburg
	Tel: 06172/2 90 28-29 Tx: 410868
	Astronic GmbH, Winzererstrasse 47D, 8000 Munchen 40. Tel: 089/309031 Tx: 5216187
	Micronetics GmbH, Weil der Stadter Str. 45, 7253 Renningen 1. Tel: 07159/6019 Tx: 724708
	Nordelektronik GmbH, Carl-Zeiss-Str. 6, 2085 Quickborn. Tel: 04106/72072 Tx: 214299

AMA:	Huntsville	(205) 837-7363	E.M.A.
JNA:	Phoenix	(602) 252-0897	Chaparral Electronics
=ORNIA:	La Mirada	(714) 739-8891	Select
	Sacramento	(916) 442-2558	Ross Marketing Associates
	San Diego	(619) 450-1754	CERCO
	Santa Clara	(408) 998-8111	Ross Marketing Associates
JRADO:	Denver	(303) 477-8180	West High Tech
IDA:	Altamonte Springs	(305) 339-3855	Lawrence Associates
	Boca Raton	(305) 368-7373	Lawrence Associates
	Clearwater	(813) 584-8110	Lawrence Associates
	Melbourne	(305) 724-8294	Lawrence Associates
YGIA:	Atlanta	(404) 448-1215	E.M.A.
NA:	Fort Wayne	(219) 637-5548	Corrao Marsh
	Carmel	(317) 843-0739	Corrao Marsh
OIS:	Arlington Heights	(312) 956-1000	Micro Sales Inc.
	Cedar Rapids	(319) 377-4666	Lorenz Sales Inc.
;AS:	Overland Park	(913) 541-8431	Kebco, Inc.
	Wichita	(316) 733-1301	Kebco, Inc.
/LAND:	Owings Mills	(301) 356-9500	Walker-Houck
;ACHUSETTS:	Framingham	(617) 875-3266	Stone Components
IGAN:	Southfield	(313) 559-5363	Fred Gehrke \& Associates
ESOTA:	Bloomington	(612) 884-8291	Electronics Sales Agency
OURI:	St. Louis	(314) 576-4111	Kebco, Inc.
\ASKA:	Lincoln	(402) 475-4660	Lorenz Sales inc.
DA:	Reno	(702) 322-8299	Ross Marketing Associates
-H NEW JERSEY:	Hicksville	(516) 681-8746	Lorac Sales
YORK:	Hicksville	(516) 681-8746	Lorac Sales
	Skanaeteles	(315) 685-5731	Robtron Inc.
-H CAROLINA:	Raleigh	(919) 847-8800	E.M.A.
-H CAROLINA:	Greenville	(803) 233-4637	E.M.A.
	Cincinnati	(513) 729-1969	Stegman Blaine
	Vanadalia	(513) 890-7975	Stegman Blaine
	Westlake	(216) 871-0520	Stegman Blaine
̇ON:	Portland	(503) 620-8320	Crown Electronics
S:	Richardson	(214) 234-8438	Bonser-Phihower (B-P Sales)
	Salt Lake City	(801) 466-5739	West High Tech
IINGTON:	Bellevue	(206) 643-8100	Crown Electronic Sales Inc.
	Greenacres	(519) 624-4410	Crown Electronic Sales Inc.
ONSIN:	Brookfield	(414) 781-1171	Micro Sales Inc.
	Menomonee Falls	(414) 251-0151	Micro Sales Inc.
DA EASTERN:	Rexdale	(416) 674-1330	Bestec Electronics Ltd.
	Montreal	(514) 484-2923	Eli Manis Inc.

PLESSEY DISTRIBUTORS

NA:
rORK:
(602) 829-1800
(714) 951-5212
(714) 259-8258
(619) 587-0471
(516) 273-4422

Insight
Plessey Semiconductors
Added Value
Insight
Mast

PLESSEY REGIONAL SALES OFFICES

```
rans Memorial Hwy.
lip, NY }1172
22 PLESNY
8070
'өa
Freeway. #900
: 75243
21375
4930
```

 132 Central Street, \#212 Foxborough, MA 02035 (617) 543-3855

Plains District Sales 1523 Towne Drive Ellisville, MO 63011 (314) 527.4100
 499 Crane Roost Blvd. \#235 Altamonte Springs, FL 32701 TLX 705185 PLESGA UD (305) 339-6191

West Area

 3 Whatney Irvine, CA 92714 TWX 910-595-1930 TLX 701464 PLESSYChesapeake District 1932 Arlington Blvd. \#217 Charlottsville, VA 22903 (804) 296-7229

Northwest District 4633 Old Ironside Dr. \#250 Santa Clara, CA 95054 TLX 705187 (408) 986-8911

Midwest Region 1919 S. Highland Ave. \#120C Lombard, IL 60148 TLX 705186 (312) 953-1484

[^0]: * $T=$ computation period $=32 \times(1 / 2048 \mathrm{k}) \mathrm{s}=15.63 \mu \mathrm{~s}$ i.e. 32 bits at $2048 \mathrm{kbit} / \mathrm{s}$ clock rate.
 ${ }^{* *} T_{s}=$ sampling period $=(1 / 8000) \mathrm{s}=125 \mu \mathrm{~s}$ at a sampling rate of 8 kHz i.e. 256 bits at $2048 \mathrm{kbit} / \mathrm{s}$ clock rate.

[^1]: * At $2.048 \mathrm{MHz}, 700 \mathrm{~ns}$ at 1.544 MHz
 **That is, the strobe can produce the shift clock by 200 ns , or follow it by as much as 100 ns .

[^2]: ■
 Supply Voltages
 $\pm 6 \mathrm{~V}$

 - Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

