

LINEAR INTEGRATED CIRCUIT HANDBOOK

年
,

Thrwh / whwnil:

8

unch

(mun) $\frac{\text { Semiconductors }}{\text { Ser }}$

LINEAR
 INTEGRATED
 CIRCUIT HANDBOOK

 Oplesser©The Plessey Company plc 1985
Publication No. P.S. 1973 October 1985
This publication is issued to provide outline information only and (unless specifically agreed to the contrary by the Company in writing) is not to be reproduced or to form part of any order or contract or to be regarded as a representation relating to the products or services concerned. Any applications of products shown in this publication are for illustration purposes only and do not give or imply any licences or rights to use the information for any purposes whatsoever. It is the responsibility of any person who wishes to use the application information to obtain any necessary licence for such use. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service. PLESSEY and the Plessey symbol are registered trademarks of

The Plessey Company plc.

Contents

Page
Product index 5
Product list 7
The quality concept 8
Screening to BS9400 9
Plessey Hi-Rel screening 10
Semi-custom design 11
Thermal design 13
Technical data 15
Package outlines 161
Ordering information 171
Plessey Semiconductors World-Wide 173

Product index

TYPE No. DESCRIPTION PAGE
Matched transistors and arrays
SL301L Dual NPN transistor 17
SL303L 400 MHz triple NPN transistors 21
SL360G High performance NPN transistor arrays 25
SL362C High performance NPN dual transistor arrays 25
SL2363C Very high performance transistor array 93
SL2364C Very high performance transistor array 93
SL3046C General purpose NPN transistor array 99
SL3127C High frequency NPN transistor array 101
SL3145C,E 1.6 GHz high frequency NPN transistor arrays 105
Radio-communications
SL610C RF amplifier 71
SL611C RF amplifier 71
SL612C IF amplifier 71
SL621C AGC generator 75
SL623C AM detector/AGC amplifier/SSB demodulator 79
SL640C Double balanced modulator 81
SL641C Double balanced modulator 81
SL1613C Wideband log IF strip amplifier 89
SL6270C Gain controlled preamplifier 109
SL6310C Switchable audio amplifier 113
SL6440C High level mixer 117
SL6601C Low power IF/AF PLL circuit for narrow band FM 121
SL6652 Low power IF/AF circuit for FM cellular radio 127
SL6653 Low power IF/AF circuit for FM receivers 135
SL6691C Monolithic circuit for paging receivers 141
SL6700A IF amplifier and AM detector 145
SL6700C IF amplifier and AM detector 149
Operational amplifiers
SL541B High slew rate operational amplifier 43
SL562 Low noise programmable op-amp 61
TAB1042 Quad programmable operational amplifier 153
TAB1043 Quad programmable low noise operational amplifier 157
Linear RF amplifiers
SL541B High slew rate operational amplifier 43
SL550D \& G Low noise wideband amplifier with external gain control 47
SL560C 300 MHz low noise amplifier 53
SL561B,C Ultra low noise preamplifiers 57
Limiting wideband amplifiers
SL521A,B \& C 140 MHz wideband log amplifier 27
SL523B,C \& HB 120 MHz dual wideband log amplifier 31
SL531C 250 MHz true log IF amplifier 35
SL532C Low phase shift limiter 39
SL565C 1 GHz wideband amplifier 65
SL952 1 GHz limiting wideband amplifier 69
SL1521A \& C 300 MHz wideband amplifier 83
SL1523C 300 MHz dual wideband amplifier 87
SL2521EXP 1.3 GHz dual wideband \log amplifier 95

EXP products are new designs designated 'Experimental' but which are, nevertheless, serious development projects. Details given may, therefore, change without notice and no undertaking is given or implied as to future availability. Please consult your local Plessey sales office for details of the current status.

Product list

TYPE No.

DESCRIPTION
PAGE

SL301L	Dual NPN transistors	17
SL303L	400 MHz triple NPN transistors	21
SL360G	High performance NPN dual transistor arrays	25
SL362C	High performance NPN dual transistor arrays	25
SL521A,B \& C	140 MHz wideband log amplifier	27
SL523B, ${ }^{\text {\& }}$ HB	120 MHz dual wideband log amplifier	31
SL531C	250 MHz true \log IF amplifier	35
SL532C	Low phase shift limiter	39
SL541B	High slew rate operational amplifier	43
SL550D \& D	Low noise wideband amplifier with external gain control	47
SL560C	300 MHz low noise amplifier	53
SL561B,C	Ultra low noise preamplifiers	57
SL562	Low noise programmable op-amp	61
SL565C	1 GHz wideband amplifier	65
SL952	1 GHz limiting wideband amplifier	69
SL610C	RF amplifier	71
SL611C	RF amplifier	71
SL612C	IF amplifier	71
SL621C	AGC generator	75
SL623C	AM detector/AGC amplifier/SSB demodulator	79
SL640C	Double balanced modulator	81
SL641C	Double balanced modulator	81
SL1521A,C	300 MHz wideband amplifier	83
SL1523C	300 MHz dual wideband amplifier	87
SL1613C	Wideband log IF strip amplifier	89
SL2363C	Very high performance transistor array	93
SL2364C	Very high performance transistor array	93
SL2521EXP	1.3 GHz dual wideband log amplifier	95
SL3046C	General purpose NPN transistor array	99
SL3127C	High frequency NPN transistor array	101
SL3145C,E	1.2 GHz high frequency NPN transistor arrays	105
SL6270C	Gain controlled preamplifier	109
SL6310C	Switchable audio amplifier	113
SL6440C	High level mixer	117
SL6601C	Low power IF/AF PLL circuit for narrow band FM	121
SL6652	Low power IF/AF circuit for FM cellular radio	127
SL6653	Low power IF/AF circuit for FM receivers	135
SL6691C	Monolithic circuit for paging receivers	141
SL6700A	IF amplifier and AM detector	145
SL6700C	IF amplifier and AM detector	149
TAB1042	Quad programmable operational amplifier	153
TAB1043	Quad programmable operational amplifier	157

The quality concept

In common with most semiconductor manufacturers, Plessey Semiconductors perform incoming piece parts check, in-line inspections and final electrical tests. However, quality cannot be inspected into a product; it is only by careful design and evaluation of materials, parts and processes - followed by strict control and ongoing assessment to ensure that design requirements are still being met - that quality products will be produced.

In line with this philosophy, all designs conform to standard layout rules (evolved with performance and reliability in mind), all processes are thoroughly evaluated before introduction and all new piece part designs and suppliers are investigated before authorisation for production use.

The same basic system of evaluation, appraisals and checks is used on all products up to and including device packing for shipment. It is only at this stage that extra operations are performed for certain customers in terms of lot qualification or release procedure.

By working to common procedures for materials and processes for all types of customers advantages accrue to all users - the high reliability user gains the advantage of scale hence improving the confidence factor in the quality achieved whilst the large scale user gains the benefits associated with basic high reliability design concepts.

Plessey Semiconductors have the following factory approvals. BS9300 and BS9400 (BSI Approval No. 1053/M).
DEF-STAN 05-21 (Reg. No. 23H POD).
In addition a number of U.S., European and British customers manufacturing electronics for space have approved our facilities.

Screening to BS9400

Plessey Hi-Rel screening

The following Screening Procedures are available from Plessey Semiconductors.

* Plessey Semiconductors reserve the right to change the Screening Procedure for Standard Products.

Semi-custom design

Plessey Semiconductors' advanced work in the Semi-Custom field enables us to offer our customers the opportunity to develop their own high performance circuits using our CLASSIC software. Among the many advantages are:

- CLASSIC is cost effective and user friendly • Prototypes in as little as 3 weeks • Close coordination with customer throughout design and production process • State-of-the-art high performance produces • Up to 10044 gates available

Microgate-C (Si-Gate CMOS)

CLA 2000 SERIES

- Double layer metallisation
- 5 micron channel length
- Product family: CLA 21XX 840 Gates CLA 23XX 1400 Gates CLA 25XX 2400 Gates
- 7ns max. prop delay (2 input NAND fanout of 2 with 2 mm track $0-70^{\circ} \mathrm{C} 4.5-$ 5.5 V)
- 14 MHz system clock rate
- 30 MHz toggle rate
- Fully auto-routed

CLA 3000 SERIES

- Double layer metallisation
- 4 micron channel length
- Product family:

CLA 31XX 840 Gates
CLA 33XX 1440 Gates
CLA35XX 2400 Gates
CLA 37XX 4200 Gates
CLA 39XX 6000 Gates

- 5ns max. prop delay
- 20 MHz system clock rate
- 50 MHz toggle rate
- Fully auto-routed

Plessey Megacell ${ }^{\text {"' }}$

Now there's a VLSI design system available that's perfect for solving your Application Specific Integrated Circuit (ASIC) problems. It's PLESSEY MEGACELL - a complete set of advanced computer-aided engineering and design tools coupled with an advanced CMOS process for implementing VLSI integrated circuits in the system design environment.

PLESSEY MEGACELL redefines semicustom integrated circuit design. It allows system engineers to design complex circuits with a high level of confidence of first time success in silicon - thanks to one of the best simulation facilities available in the world. This greatly reduces time to market, eliminating the many prototyping iterations that are all too common now in VLSI design.

PLESSEY MEGACELL is just about as close as you can get to achieving hand-crafted results short of full custom itself. System engineers can directly create their designs using the advanced layout and routing tools provided - without the aid of integrated circuit designers. So none of the system designers' application expertise is ever lost in transition, while chips of the smallest size and lowest production cost are regularly achieved.

Supporting the PLESSEY MEGACELL design capability is one of the most advanced CMOS processes available. It uses a 2-micron geometry capable of providing performance comparable with advanced Schottky TTL, with clock speeds to 40 MHz and toggle rates of 100 MHz achievable. And Plessey has established a 200,000 square foot dedicated processing facility to guarantee the manufacturing capacity required by even the most aggressive volume considerations.

PLESSEY MEGACELL is truly the gateway to the future - custom VLSI performance, with confidence of first time success and fast time to market. And it's going to stay that way - with Plessey's commitment to add future capabilities for high-speed ECL processes, 1 micron and submicron CMOS processes, and advanced analog capabilities.

Thermal design

The temperature of any semiconductor device has an important effect upon its long term reliability. For this reason, it is important to minimise the chip temperature; and in any case, the maximum junction temperature should not be exceeded.

Electrical power dissipated in any device is a source of heat. How quickly this heat can be dissipated is directly related to the rise in chip temperature: if the heat can only escape slowly, then the chip temperature will rise further than if the heat can escape quickly. To use an electrical analogy: energy from a constant voltage source can be drawn much faster by using a low resistance load than by using a high resistance load.

The thermal resistance to the flow of heat from the semiconductor junction to the ambient temperature air surrounding the package is made up of several elements. These are the thermal resistance of the junction-to-case, case-to-heatsink and heatsink-to-ambient interfaces. Of course, where no heatsink is used, the case-to-ambient thermal resistance is used.

These thermal resistances may be represented as

$$
\theta_{\mathrm{ja}}=\theta_{\mathrm{jc}}+\theta_{\mathrm{ch}}+\theta_{\mathrm{ha}}
$$

where θ_{ja} is thermal resistance junction-to-ambient ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$ is thermal resistance junction-to-case ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ch }}$ is thermal resistance case-to-heatsink ${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ hais thermal resistance heatsink-to-ambient ${ }^{\circ} \mathrm{C} / \mathrm{W}$
The temperature of the junction is also dependent upon the amount of power dissipated in the device - so the greater the power, the greater the temperature.

Just as Ohm's Law is applied in an electrical circuit, a similar relationship is applicable to heatsinks.

```
Tj = Tamb + Pod ( }\mp@subsup{\textrm{O}}{\textrm{ja}}{
Tj = junction temperature
Tamb = ambient temperature
PD = dissipated power
```

From this equation, junction temperature may be calculated, as in the following examples.

Example 1

A device is to be used at an ambient temperature of $+50^{\circ} \mathrm{C} . \theta_{\mathrm{ja}}$ for the DG 14 package with a chip of approximately 1 mm sq is $107^{\circ} \mathrm{C} / \mathrm{W}$. Assuming the datasheet for the device gives $\mathrm{P}_{\mathrm{D}}=$ 330 mW and $\mathrm{T}_{j} \max =175^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{j}} & =\mathrm{T}_{\mathrm{amb}}+\mathrm{PD} \theta_{\mathrm{ja}} \\
& =50+(0.33 \times 107) \\
& \left.=85.31^{\circ} \mathrm{C} \text { (typ. }\right)
\end{aligned}
$$

Where operation in a higher ambient temperature is necessary, the maximum junction temperature can easily be exceeded unless suitable measures are taken:

Thermal design (cont'd)

Example 2

A device with $\mathrm{T}_{\text {amb }}$ max. $=+175^{\circ} \mathrm{C}$ is to be used at an ambient temperature of $+150^{\circ} \mathrm{C}$. Again, $\theta_{j a}=107^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PD}_{\mathrm{D}}=330 \mathrm{~mW}$ and $\mathrm{T}_{\mathrm{j}} \mathrm{max} .=+175^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{j}} & =150+(0.33 \times 107) \\
& \left.=+185.3^{\circ} \mathrm{C} \text { (typ. }\right)
\end{aligned}
$$

This clearly exceeds the maximum permissible junction temperature and therefore some means of decreasing the junction-to-ambient thermal resistance is required.
As stated earlier, θ_{j} is the sum of the individual thermal resistances; of these, $\theta_{\mathrm{j} \mathrm{c}}$ is fixed by the design of device and package and so only the case-to-ambient thermal resistance, θ ca, can be reduced.

If θ_{ca}, and therefore $\theta_{\mathrm{j},}$, is reduced by the use of a suitable heatsink, then the maximum $\mathrm{T}_{\mathrm{amb}}$ can be increased:

Example 3

Assume that an IERC LIC14A2U dissipator and DC000080B retainer are used. This device is rated as providing a θ_{ja} of $55^{\circ} \mathrm{C} / \mathrm{W}$ for the DG14 package. Using this heatsink with the device operated as in Example 2 would result in a junction temperature given by:

$$
\begin{aligned}
\mathrm{T}_{j} & =150+(0.33 \times 55) \\
& =168^{\circ} \mathrm{C}
\end{aligned}
$$

Nevertheless, it should be noted that these calculations are not necessarily exact. This is because factors such as $\theta_{j c}$ may vary from device type to device type, and the efficacy of the heatsink may vary according to the air movement in the equipment.

In addition, the assumption has been made that chip temperature and junction temperature are the same thing. This is not strictly so, as not only can hot spots occur on the chip, but the thermal conductivity of silicon is a variable with temperature, and thus the θ_{jc} is in fact a function of chip temperature. Nevertheless, the method outlined above is a practical method which will give adequate answers for the design of equipment.

It is possible to improve the dissipating capability of the package by the use of heat dissipating bars under the package, and various proprietary items exist for this purpose.

Under certain circumstances, forced air cooling can become necessary, and although the simple approach outlined above is useful, more factors must be taken into account.

Technical data

SL301L

400MHz DUAL NPN TRANSISTOR

The SL301L contains dual monolithic NPN transistors with close parameter matching and high fr.

FEATURES

Close VBE Matching<3mV
Close $h_{f e}$ Matching>0.9

- Good Frequency Response $>400 \mathrm{MHz}$
- Good Thermal Tracking

Wide Operating Current Range

Fig. 1 Pin connections

APPLICATIONS

- Differential Amplifier to Very High Frequencies
- Comparators
- Current Sources
- Instrumentation

ABSOLUTE MAXIMUM RATINGS

All electrical ratings apply to individual transistors. Thermal ratings apply to the total package.
The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.
The isolation pin (substrate) must be connected to the most negative point of the circuit to maintain electrical isolation between transistors.
Storage temperature $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Maximum junction temperature $+175^{\circ} \mathrm{C}$
Thermal resistance
Chip-to-case $265^{\circ} \mathrm{C} / \mathrm{W}$ (see Note)
Chip-to-ambient $425^{\circ} \mathrm{C} / \mathrm{W}$
$V_{C b}=20 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{Eb}}=4.0 \mathrm{~V} \quad \mathrm{~V}_{\text {CER }}=20 \mathrm{~V}$ (see Fig.7)
$V_{\text {CE }}=12 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{Cl}}=25 \mathrm{~V} \quad \mathrm{IC}=20 \mathrm{~mA}$
NOTE:
These figures are worst case, assuming all the power is dissipated in one transistor. If the power is equally shared between the two transistors, both thermal resistance figures can be reduced by $50^{\circ} \mathrm{C} /$ watt.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$\mathrm{T}_{\mathrm{amb}}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Collector base breakdown	BVcbo	20			V	IC $=10 \mu \mathrm{~A}$
Collector emitter breakdown	BVceo	12			V	Ic $=10 \mu \mathrm{~A}$
Collector emitter breakdown	LVceo	12			V	$\mathrm{Ic}=5 \mathrm{~mA}$
Emitter base leakage current	Iebo			1	$\mu \mathrm{A}$	$V_{\text {Eb }}=4 \mathrm{~V}$
Emitter base leakage current	Iebo			10	nA	$V_{E b}=2 \mathrm{~V}$
Collector isolation breakdown	BVcıo	25			V	$\mathrm{IC}=10 \mu \mathrm{~A}$
Forward current transfer ratio	Hfe	40	70			$V_{\text {ce }}=5 \mathrm{~V}$, Ic $=100 \mu \mathrm{~A}$
		60	100			$\mathrm{V}_{\text {ce }}=5 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Saturation voltage		50	80			$\mathrm{VCE}=5 \mathrm{~V}, \mathrm{Ic}=10 \mathrm{~mA}$
	V ce(SAT)		0.36	0.6	V	$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$
	$V_{\text {be(}}(\mathrm{SAT})$	0.7	0.8	0.9	V	$\mathrm{lc}^{\text {c }}=10 \mathrm{~mA}$, $\mathrm{Is}^{2}=1 \mathrm{~mA}$
Collector base leakage current	1 Icbo			10	nA	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$
Collector isolation leakage current	Icıo			10	nA	$\mathrm{V}_{\mathrm{Cl}}=10 \mathrm{~V}$
Collector capacitance	Сов			2	pF	$V_{\text {Cb }}=5 \mathrm{~V}$
Base capacitance	Сıв			4	pF	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$
Collector isolation capacitance	Cc			6	pF	$\mathrm{VCl}=+5 \mathrm{~V}$
Transition frequency	f	400	680		MHz	$V_{\text {ce }}=5 \mathrm{~V}, \mathrm{Ic}=5 \mathrm{~mA}$, Freq $=100 \mathrm{MHz}$
Matching						
$\mathrm{HFE} / \mathrm{/HFE}$		0.9		1.1		$V_{\text {ce }}=5 \mathrm{~V}$, Ic $=100 \mu \mathrm{~A}$
		0.9		1.1		$\mathrm{V}_{\text {ce }}=5 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
$\mid V_{b e 1}$ - Vbe2 \mid	$\Delta \mathrm{Vbe}$		0.45	3	mV	$V_{\text {ce }}=5 \mathrm{~V}$, Ic $=100 \mu \mathrm{~A}$
			0.45	3	mV	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Temperature coefficient of $\Delta V^{\text {BE }}$			2	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V C E=5 \mathrm{~V}$, IC $=100 \mu \mathrm{~A}$

Fig. 2 Output capacitance ($C_{o b}$) v. voltage

Fig. 3 Typical variation of hFE with collector current

Fig. 4 fTv . collector current ($f=100 \mathrm{MHz}$)

Fig. 6 Typical ICIO v. temperature

Fig. 5 VBE v. temperature

Fig. 7 Relationship between VCER and RBE

SL301L

SL303L

400MHz TRIPLE NPN TRANSISTORS

The SL303 is a silicon monolithic integrated circuit comprising three separate transistors, two of which have closely matched parameters; the third transistor may be used as, for example, a tail transistor.

FEATURES

Fig. 1 Circuit diagram

APPLICATIONS

E Differential Amplifier
Comparator

QUICK REFERENCE DATA

- Max voltage 12 V to 20 V
Operating temperature range $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

All electrical ratings apply to individual transistors: thermal ratings apply to total package dissipation.

The isolation pin must always be negative with respect to the collectors.

No one transistor may dissipate more than 75% of the total power.
$\begin{array}{ll}\text { Storage temperature } & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ \text { Chip operating temperature } & +175^{\circ} \mathrm{C}\end{array}$
Chip-to-ambient thermal resistance:
TO-5 (CM) $425^{\circ} \mathrm{C} / \mathrm{W}$

Chip-to-case thermal resistance:
TO-5 (CM) $\quad 265^{\circ} \mathrm{C} / \mathrm{W}$)
$V_{\text {сbo }} 20 \mathrm{~V}$

Vceo 12V
$\mathrm{V}_{\text {CER }} \quad 12 \mathrm{~V}$ to 20 V (see Figure 8)
$\mathrm{V}_{\text {EbO }} 4 \mathrm{~V}$
VCIO 25 V
icm
20 mA

NOTE:

These figures are worst case, assuming all the power is dissipated in one transistor. If the power is equally shared between the three transistors, both thermal resistance figures can be reduced by $75^{\circ} \mathrm{C} /$ watt.

SL303L

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb $=25^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Collector base breakdown	BV сво	20			V	IC $=10 \mu \mathrm{~A}$
Collector emitter breakdown	BVceo	12			V	$\mathrm{lc}=5 \mathrm{~mA}$
Emitter base leakage current	Iebo			1	$\mu \mathrm{A}$	$V_{E b}=4 \mathrm{~V}$
Emitter base leakage current	Iebo			10	nA	$V_{\text {Eb }}=2 \mathrm{~V}$
Collector isolation breakdown	BVcıo	25			V	$\mathrm{Ic}=10 \mu \mathrm{~A}$
Forward current transfer ratio	Hfe	30	50			$\mathrm{V}_{\text {ce }}=5 \mathrm{~V}, \mathrm{lc}=10 \mu \mathrm{~A}$
		40	70			$V_{\text {ce }}=5 \mathrm{~V}$, Ic $=100 \mu \mathrm{~A}$
		60	100			$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$, $\mathrm{Ic}=1 \mathrm{~mA}$
		50	80			$\mathrm{Vce}=5 \mathrm{~V}$, Ic c $=10 \mathrm{~mA}$
Saturation voltage	$\mathrm{VCE}_{\text {(}}(\mathrm{SAT})$		0.36	0.6	v	$\mathrm{Ic}^{\prime}=10 \mathrm{~mA}$, $\mathrm{ls}=1 \mathrm{~mA}$
	Vbe(SAT)	0.7	0.8	0.9	V	
Base emitter saturation voltage						$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{ls}=1 \mathrm{~mA}$
Collector base leakage current	Íso			10	nA	V cB $=10 \mathrm{~V}$
Collector isolation leakage current	Icıo			10	nA	$\mathrm{V}_{\mathrm{cl}}=10 \mathrm{~V}$
Collector capacitance	Сов			2	pF	$V_{\text {cb }}=5 \mathrm{~V}$
Base capacitance	Cl_{18}			4	pF	$V_{B E}=0 V$
Collector isolation capacitance	Ccio			6	pF	$\mathrm{V}_{\mathrm{Cl}}=+5 \mathrm{~V}$
Transition frequency	$\mathrm{f}^{\text {T }}$	400	680		MHz	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{Ic}=5 \mathrm{~mA}$
Matching						
TR1 \& TR2 only						
Hfe1/Hfe2		0.9		1.1		$V_{\text {CE }}=5 \mathrm{~V}$, IC $=100 \mu \mathrm{~A}$
		0.9		1.1		$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Input offset voltage	$\Delta V_{\text {be }}$			3	mV	$V C E=5 \mathrm{~V}$, Ic $=100 \mu \mathrm{~A}$
				3	mV	$\mathrm{V}_{\text {ce }}=5 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Temperature coefficient of input offset voltage				10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{\text {CE }}=5 \mathrm{~V}$, IC $=100 \mu \mathrm{~A}$

Fig. 2 Output capacitance ($C_{o b}$) v. voltage

Fig. 3 Power dissipation derating curves (TO-5 package)

Fig. 4 Typical variation of $h_{F E}$ with collector current

Fig. $6 V_{B E}$ v. temperature

Fig. $5 f_{T}$ v. collector current ($f_{T}=f\left|h_{f e}\right|, f=100 \mathrm{MHz}$)

Fig. 7 Typical /cIo v. temperature

Fig. 8 Relationship between Vcer and Rbe

SL303L

SL360G \& SL362C

HIGH PERFORMANCE NPN DUAL TRANSISTOR ARRAYS

The SL360G and SL362C are high performance NPN dual transistor arrays fabricated as monolithic silicon devices. They feature accurate parameter matching and close thermal tracking. They have high transition frequencies (typ. 2.2 GHz) and low device capacitance. In addition the SL362C offers good noise performance (1.6 dB noise figure at 60 MHz).

APPLICATIONS

- Instrumentation
- PCM Repeaters
- Analogue Signal Processing
- High Speed Switches - Digital and Analogue

Fig. 1 Pin connections

FEATURES

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristic	Symbol	Type	Value			Units	Conditions
			Min.	Typ.	Max.		
Collector base breakdown	BVcbo	Both	10	32		V	$I C=10 \mu \mathrm{~A}$
Collector isolation breakdown	BVcio	Both	16	60		V	$I C=10 \mu \mathrm{~A}$
Emitter base leakage	Iebo	SL360/362			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Eb}}=4 \mathrm{~V}$
Emitter base leakage	Ifebo	SL360			1	nA	$\mathrm{V}_{\mathrm{Eb}}=2 \mathrm{~V}$
Collector emitter breakdown	LVceo	All	7	14		V	$\mathrm{lc}=5 \mathrm{~mA}$
DC current gain	Hfe	SL360	30	65			$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{IE}=5 \mathrm{~mA}$
		SL362	30	70			$\mathrm{V}_{\text {CE }}=2 \mathrm{~V}, \mathrm{IE}=1 \mathrm{~mA}$
Transition frequency	$\mathrm{ft}^{\text {t }}$	SL360	1.6	2.2		GHz	$\begin{aligned} & V_{C E}=2.5 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=25 \mathrm{~mA}, \\ & \mathrm{f}=200 \mathrm{MHz} \end{aligned}$
		SL362	1.4	2.0		GHz	$\begin{aligned} & \mathrm{VCE}=5 \mathrm{~V}, \mathrm{IF}=5 \mathrm{~mA}, \\ & \mathrm{f}=200 \mathrm{MHz} \end{aligned}$
Input offset voltage	$V_{\text {be1 }}$ - Vbe2	SL360		3	10	$m \vee$	$\mathrm{V}_{\text {CE }}=2 \mathrm{~V}, \mathrm{IE}=1 \mathrm{~mA}$
		SL362		5		mV	$V_{\text {CE }}=2 V_{, ~} \mathrm{IE}=1 \mathrm{~mA}$
Input offset current	Hfe1/Hfe2	Both	0.9	1.0	1.1		$V_{C E}=2 \mathrm{~V}, \mathrm{IE}=5 \mathrm{~mA}$
Saturation voltage	Vce(SAT)	SL360		0.25	0.6	V	$\mathrm{IE}=10 \mathrm{~mA}, \mathrm{ls}=1 \mathrm{~mA}$
Noise figure	NF	SL362		1.6	2.0	dB	$\begin{aligned} & \mathrm{IE}=1 \mathrm{~mA}, \mathrm{Rs}=200 \Omega, \\ & \mathrm{f}=60 \mathrm{MHz} \end{aligned}$
Collector base capacitance	Cob	SL360		0.5		pF	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$
		SL362		1.3		pF	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$
Collector isolation	Cca	SL360		2.3		pF	$\mathrm{VCl}=0 \mathrm{~V}$
capacitance		SL362		3.8		pF	$\mathrm{VCl}=0 \mathrm{~V}$
Emitter base capacitance	Cte	SL360		0.5		pF	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$
		SL362		2.1		pF	$V_{B E}=0 \mathrm{~V}$
Forward base emitter voltage	Vbe(ON)	SL360		0.72		V	$\mathrm{IE}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$
Collector base leakage	Icbo	SL360			1	nA	$\mathrm{Vcb}=10 \mathrm{~V}$
Collector isolation leakage	1 cıo	SL360			1	nA	$\mathrm{VCl}=10 \mathrm{~V}$

Fig. 2 Equivalent circuit for SL360, SL362

Fig. 4 Typical noise figure v source impedance for SL362

ABSOLUTE MAXIMUM RATINGS

All electrical ratings apply to individual transistors. Thermal ratings apply to the total package.
The absolute maximum ratings are limiting values above which life may be shortened or specified parameters may be degraded.

The isolation pin (substrate) must be connected to the

Fig. 3 Typical noise figure emitter current for SL362

Fig. 5 Max. continuous collector current vs junction temperature
most negative point of the circuit to maintain electrical isolation between transistors.

Electrical ratings

$V_{C B}=10 \mathrm{~V} \quad V_{E B}=4 V \quad V C E=8 V$
$V_{C I}=16 \mathrm{~V} \quad \mathrm{I} C=20 \mathrm{~mA}(\mathrm{SL} 360) ; 50 \mathrm{~mA}(\mathrm{SL} 362)$

Thermal ratings

	CM8
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating junction temperature	$150^{\circ} \mathrm{C}$
Thermal resistance (see Note 2)	
Chip-to-case	$265^{\circ} \mathrm{C} / \mathrm{W}$
Chip-to-ambient	$425^{\circ} \mathrm{C} / \mathrm{W}$

These figures are worst case, assuming all power is dissipated in one transistor. If the power is equally shared between the two transistors, both thermal resistance figures can be reduced by $50^{\circ} \mathrm{C} /$ watt.

PLESSEY

SL521A, B \& C

140MHz WIDEBAND LOG AMPLIFIER

The SL521A, B and C are bipolar monolithic integrated circuit wideband amplifiers, intended primarily for use in successive detection logarithmic IF strıps, operating at centre frequencies between 10 MHz and 100 MHz . The devices provide amplification, limiting and rectification, are suitable for direct coupling and incorporate supply line decoupling. The mid-band voltage gain of the SL521 is typically 12 dB (4 times). The SL521A, B and C differ mainly in the tolerance of voltage gain and upper cut-off frequency.

FEATURES

Well-defined Gain
4dB Noise Figure
High I/P Impedance
Low O/P Impedance
165 MHz Bandwidth
On-Chip Supply Decoupling
Low External Component Count

APPLICATIONS

Logarithmic IF strips with Gains up to 108 dB and Linearity Better Than 1 dB .

Fig. 2 SL521 Circuit diagram

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS (Non-simultaneous)

Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Chip operating temperature	$+175^{\circ} \mathrm{C}$
Chip-to-ambient thermal resistance	$250^{\circ} \mathrm{C} / \mathrm{W}$
Chip-to-case thermal resistance	$80^{\circ} \mathrm{C} / \mathrm{W}$
Maximum instantaneous voltage at video output	+12V
Supply voltage	$+9 \mathrm{~V}$

Fig. 3 Voltage gain v. frequency

SL521A/B/C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Temperature $\quad=+22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Supply voltage $=+6 \mathrm{~V}$
DC connection between input and bias pins.

Characteristic	Circuit	Value			Units	Conditions
		Min.	Typ.	Max.		
Voltage gain, $f=30 \mathrm{MHz}$	A	11.5		12.5	dB	10 ohms source, 8pF load
	B	11.3		12.7	dB	
	C	11.0		13.0	dB	
Voltage gain, $f=60 \mathrm{MHz}$	A	11.3		12.7	dB	
	B	11.0		13.0	dB	
	C	10.7		13.3	dB	
Upper cut-off frequency (Fig. 3)	A	150	170		MHz^{\prime}	10 ohms source, 8pF load
	B	140	170		MHz	
	C	130	170		MHz)	
Lower cut-off frequency (Fig. 3)	ABC		5	7	MHz ns	10 ohms source, 8 pF load
Propagation delay	$A B C$		2			
Maximum rectified video output current (Fig'. 4 and 5)	A	1.00		1.10	mA	
	B	0.95		1.15	mA	$\mathrm{f}=60 \mathrm{MHz}, 0.5 \mathrm{~V}$ rms input
	C	0.90		1.20	mA	
Variation of gain with supply voltage	$A B C$		0.7		db/V	
Variation of maximum rectified output current with supply voltage	$A B C$		25		\%/V	
Maximum input signal before overload	$A B C$	1.8	1.9		V rms	
Noise figure (Fig. 6)			4	5.25	dB	$\mathrm{f}=60 \mathrm{MHz}, \mathrm{Rs}=450$ ohms
Supply current	A	12.5	15.0	18.0	mA	
	B	12.5 11.5	15.0 15.0	18.0 19.0	mA	
Maxiumum RF output voltage			1.2		Vp-p	

Note: Overload occurs when the input signal reaches a level sufficient to forward bias the base-collector junction to TR1 on peaks.

Fig. 4 Rectified output current v. input signal

Fig. 5 Maximum rectified output current v. temperature

OPERATING NOTES

The amplifiers are intended for use directly coupled, as shown in Fig. 8.

The seventh stage in an untuned cascade will be giving virtually full output on noise.

Noise may be reduced by inserting a single tuned circuit in the chain. As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The choice of network is also controlled by the need to avoid distorting the logarithmic law; the network must give unity voltage transfer at resonance. A suitable network is shown in Fig. 9. The value of C 1 must be chosen so that at resonance its admittance equals the total loss conductance across the tuned circuit. Resistor R1 may be introduced to improve the symmetry of filter response, providing other values are adjusted for unity gain at resoriance.

A simple capacitor may not be suitable for decoupling the output line if many stages and fast rises times are required. Alternative arrangements may be derived, based on the parasitic parameters given.

Values of positive supply line decoupling capacitor required for untuned cascades are given below. Smaller values can be used in high frequency tuned cascades.

	Number of stages			
	6 or more	5	4	3
Minimum capacitance	30 nF	10 nF	3 nF	1 nF

The amplifiers have been provided with two earth leads to avoid the introduction of common earth lead inductance between input and output circuits. The equipment designer should take care to avoid the subsequent introduction of such inductance.

The 500 pF supply decoupling capacitor has a resistance of, typically, 10 ohms. It is a junction type having a low breakdown voltage and consequently the positive supply current will increase rapidly if the supply voltage exceeds 7.5V (see ABSOLUTE MAXIMUM RATINGS).

Fig. 6 Typical noise figure v. temperature

Fig. 7 Input admittance with open-circuit output

Fig. 8 Direct coupled amplifiers

Fig. 9 Suitable interstage tuned circuit

SL521A/B/C

Parasitic Feedback Parameters (Approximate)

The quotation of these parameters does not indicate that elaborate decoupling arrangements are required; the amplifier has been designed specifically to avoid this requirement. The parameters have been given so that the necessity or otherwise of further decoupling, may become a matter of calculation rather than guess-work.
$\frac{\tilde{I}_{4}}{\bar{V}_{6}}=\frac{\text { RF current component from pin } 4}{\text { Voltage at pin } 6}=\mathbf{2 0}$ mmhos
(This figure allows for detector being forward biased by noise signals)
$\frac{V_{6}}{V_{4}}=\frac{\text { Effective voltage induced at pin 6 }}{\text { Voltage at pin } 4}=0.003$
$\frac{\mathrm{I}_{2}}{\mathrm{~V}_{6}}=\frac{\text { Current from pin 2 }}{\text { Voltage at pin } 6}=6$ mmhos $(f=10 \mathrm{MHz})$
$\left[\frac{V_{6}}{V_{2}}\right]_{\mathrm{a}}=\frac{\text { Voltage induced at pin } 6}{\text { Voltage at } \operatorname{pin} 2}=0.03(f=10 \mathrm{MHz})$
Voltage at pin 2
(pin 6 joined to pin 7 and fed from 300 ohms source)
$\left[\frac{\mathrm{V}_{6}}{\mathrm{~V}_{2}}\right]=\frac{\text { Voltage induced at pin } 6}{\text { Voltage at pin 2 }}=0.01(\mathrm{f}=10 \mathrm{MHz})$
Voltage at pin 2
(pin 7 decoupled)
$\frac{\mathrm{I}_{2}}{\mathrm{~V}_{6}}\left[\frac{\mathrm{~V}_{6}}{\mathrm{~V}_{2}}\right] \cdot\left[\begin{array}{l}\mathrm{V}_{6} \\ \mathrm{~V}_{2}\end{array}\right]$
decrease with frequency above 10 MHz at 6 dB /octave.

SL523B,C\&HB

120MHz DUAL WIDEBAND LOG AMPLIFIER

The SL523B and C are wideband amplifiers for use in successive detection logarithmic IF strips operating at centre frequencies between 10 and 100 MHz . They are pincompatible with the SL521 series of logarithmic amplifiers and comprise two amplifiers, internally connected in cascade. Small signal voltage gain is 24 dB and an internal detector with an accurate logarithmic characteristic over a 20 dB range produces a maximum output of 2.1 mA . A strip of SL523s can be directly coupled and decoupling is provided on each amplifier. RF limiting occurs at an input voltage of 25 mV RMS but the device will withstand input voltages up to 1.8V RMS without damage.

The SL523HB is supplied in matched sets of eight devices. The gain at 60 MHz of the devices in the set is matched to 0.75 dB . In all other respects the device is identical to an SL523B. This selection enables very precise log strips to be produced. Supplied only to Plessey Level B screening including burn-in.

FEATURES

Small Size/Weight

- Lower Power Consumption
- Readily Cascadable
- Accurate Logarithmic Detector Characteristic

QUICK REFERENCE DATA

- Small Signal Voltage Gain	24 dB
Detector Output Current	2.1 mA
Noise Figure	4 dB
Frequency Range	$10-100 \mathrm{MHz}$
Supply Voltage	+6 V
Supply Current	30 mA

Fig. 1 Pin connections (view from beneath)

ABSOLUTE MAXIMUM RATINGS

(Non simultaneous)

Storage temperature range $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum instantaneous voltage at video output $+12 \mathrm{~V}$
Supply voltage +9 V

Fig. 2 Circuit diagram (one amplifier)

ELECTRICAL CHARACTERISTICS Test conditions (unless otherwise stated):

Ambient temperature $22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Supply voltage +6 V
DC connection between pins 6 and 7

Source impedance 10Ω
Load impedance 8pF
Frequency 60 MHz

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Small signal voltage gain	BH	22.6	24	25.4		
	C	22	24	26	dB	Freq. $\quad 30 \mathrm{MHz}$
Small signal voltage gain	BH C	22.4	24	${ }_{26}^{26.6}$	dB $d B$	Freq. 60 MHz
Gain variation (set of 8)	H		0.5	0.75	dB	Frea. $=60 \mathrm{MHz}$
Upper cut off frequency	BC\& H	120	150		MHz	
Lower cut-off frequency	B C \& H		10	15	MHz	
Propagation delay	$B C \& H$		4		ns	
Maximum rectified video output current	B H	1.9	2.1	2.3	mA	
	C	1.8	2.1	2.4	mA	$V_{\text {in }} 0.5 \mathrm{VRMS}$
Maximum input signal before overload Noise figure	B C \& H	1.8	$\begin{aligned} & 1.9 \\ & 4 \end{aligned}$	5.25	VRMS dB	
						450Ω
Supply current	BH	25	30	36	mA	
	C	23	30	38	mA	
Maximum RF output voltage	B C \& H		1.2		Vp-p	

Fig. 3 Rectified output current v. input signal

OPERATING NOTES

The amplifier is designed to be directly coupled (see Fig. 5)

The fourth stage in an untuned cascade will give full output on the broad band noise generated by the first stage.

Noise may be reduced by inserting a single tuned circuit in the chain. As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The network chosen must give unity voltage gain at resonance to avoid distorting the log law. The typical value for input impedance is 500 ohms in parallel with 5 pF and the output impedance is typically 30 ohms.
Although a 1 nF supply line decoupling capacitor is included in the can an extra capacitor is required when the amplifiers are cascaded. Minimum values for this capacitor are : 2 stages $-3 \mathrm{nF}, 3$ or more stages -30 nF .

In cascades of 3 or more stages care must be taken to avoid oscillations caused either by inductance common to the input and output earths of the strip or by feedback

Fig. 4 Voltage gain v. frequency

Fig. 5 Simple log.IF strip
along the common video line. The use of a continuous earth plane will avoid earth inductance problems and a common base amplifier in the video line isolating the first two stages as shown in Fig. 6 will eliminate feedback on the video line.

Fig. 6 Wide dynamic range log.IF strip

TYPICAL PERFORMANCE

Unselected SL523B devices were tested in a wideband logarithmic amplifier, described in RSRE Memo. No. 3027 and shown in Fig. 7.
The amplifier consists of six logarithmic stages and two 'lift' stages, giving an overall dynamic range of greater thari 80 dB . The response and error curves were plotted on an RHG Log Test Set and bandwidth measurements were made with a Telonic Sweeper and Tektronix oscilloscope.
Fig. 8 shows the dynamic range error curve and frequency response obtained. The stage gains of the SL523 devices used were as shown in Table 1.

Stages	$f_{o}\left(\mathrm{MHz}^{\prime}\right.$	Gain (dB)	Max. Deviation (dB)
1	60	24.123	
2	60	24.089	0.235
3	60	23.888	
Lift	60	24.086	

Table 1 Stage gains of SL523 used in performance tests
The input v . output characteristic (Fig. 8a) is calibrated at $10 \mathrm{~dB} / \mathrm{cm}$ in the X axis and $1 \mathrm{~V} / \mathrm{cm}$ in the Y
axis. 80 dB of dynamic range was attained
The error characteristic (Fig. 8b) is calibrated at $10 \mathrm{~dB} / \mathrm{cm}$ in the X axis and $1 \mathrm{~dB} / \mathrm{cm}$ in the Y axis; this shows the error between the log. input v. output characteristic and a mean straight line and shows that a dynamic range of 80 dB was obtained with an accuracy of $\pm 0.5 \mathrm{~dB}$.

As a comparison, the log amplifier of Fig. 7 was constructed with randomly selected SL521Bs (two SL521 Bs replacing each SL523B). Again, a dynamic response of 80 dB was obtained (Fig. 9a) with an accuracy of $\pm 0.75 \mathrm{~dB}$ (Fig. 9b).

Bandwidth curves are shown in Figs. 8c and 9c, where the amplitude scale is $2 \mathrm{~dB} / \mathrm{cm}$, with frequency markers at 10 MHz intervals from 20 to 100 MHz . Using SL523Bs (Fig. 8c), the frequency response at 90 MHz is 4 dB down on maximum and there is a fall-off in response after 50 MHz . Fig. 9c shows that the frequency response of the amplifier falls off more gradually after 40 MHz but again the response at 90 MHz is 4 dB down on maximum.

These tests show that the SL523 is a very successful dual-stage log.amplifier element and, since it is pincompatible with the SL521, enables retrofit to be carried out in existing log.amplifiers. It will be of greatest benefit however, in the design of new log amplifiers, enabling very compact units to be realised with a much shorter summation line.

Fig. 7 Wideband logarithmic amplifier

Fig. 8a Input/output

Fig. 86 Error curve

Fig. 8c Frequency response, detected output

Fig. 8 Characteristics of circuit shown in Fig. 7 using SL523Bs

Fig. 9 Characteristics of circuit shown in Fig. 7 using SL521Bs

SL531C

250MHz TRUE LOG IF AMPLIFIER

The SL531C is a wide band amplifier designed for use in logarithmic IF amplifiers of the true log type. The input and log output of a true log amplifier are at the same frequency i.e. detection does not occur. In successive detection log amplifiers (using SL521, SL1521 types) the log output is detected.

The small signal gain is 10 dB and bandwidth is over 500 MHz . At high signal levels the gain of a single stage drops to unity. Acascade of suchstagesgive a close approximation to a log characteristic at centre frequencies between 10 and 200 MHz .

An important feature of the device is that the phase shift is nearly constant with signal level. Thus any phase information on the input signal is preserved through the strip.

FEATURES

Low Phase Shift vs Amplitude

- On-Chip Supply Decoupling
- Low External Components Count

APPLICATIONS

True Log Strips with:-

- Log Range

70 dB

- Centre frequencies
$10-200 \mathrm{MHz}$
- Phase Shift ± 0.5 degrees $/ 10 \mathrm{~dB}$

ABSOLUTE MAXIMUM RATINGS

Supply voltage
Storage temperature range
Operating temperature range
Operating temperature range
+15 volts
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
See operating notes
Max junction temperature
$150^{\circ} \mathrm{C}$
Junction - ambient thermal resistance $220^{\circ} \mathrm{C} /$ Watt
Junction - case thermal resistance
$80^{\circ} \mathrm{C} /$ Watt

CIRCUIT DESCRIPTION

The SL531 transfer characteristic has two regions. For small input signals it has a nominal gain of 10 dB , at large signals the gain falls to unity (see Fig 7). This is achieved by operating a limiting amplifier and a unity gain amplifier in parallel (see Fig 3). Tr1 and Tr4 comprise the long tailed pair limiting amplifier, the tail current being supplied by $\operatorname{Tr} 5$, see Fig 2. Tr2 and Tr3 form the unity gain amplifier the gain of which is defined by the emitter resistors. The outputs of both stages are summed in the 300 ohm resistor and Tr7 acts as an emitter follower output buffer. Important features are the amplitude and phase linearity of the unity gain stage which is achieved by the use of 5 GHz transistors with carefully optimised geometries.

Fig. 1 Pin connections

Fig. 2 Circuit diagram

Fig. 3 Block diagram

SL531C

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):
Test circuit Fig (4)
Frequency 60 MHz
Supply voltage 9 volts
Ambient temperature $22 \pm 2^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min	Typ	Max		
Small signal voltage gain	8	10	12	dB	$\mathrm{Vin}=-30 \mathrm{dBm}$
High level slope gain	-1	0	+1	dB	
Upper cut off frequency	250	500		MHz	
Lower cut off frequency		3	10	MHz	-3 dB w.r.t. $\pm 60 \mathrm{MHz}$
Supply current		17	25	mA	
Phase change with input amplitude		1.1	3	degrees	-Vin $=30 \mathrm{dBm}$ to +10 dBm
Input impedance	2.5 pf parallel with 1 k				$\mathrm{f}=10-200 \mathrm{MHz}$
Output impedance	15Ω series with 25 nh				$f=10-200 \mathrm{MHz}$

OPERATING NOTES

1. Supply Voltage Options

An on chip resistor is provided which can be used to drop the supply voltage instead of the external 180 ohms shown in the test circuit. The extra dissipation in this resistor reduces the maximum ambient operating temperature to $100^{\circ} \mathrm{C}$. It is also possible to use a 6 volt supply connected directly to pins 1 and 2 . Problems with feedback on the supply line etc may occur in this connection and RF chokes may be required in the supply line between stages.

2. Layout Precautions

The internal decoupling capacitors help prevent high frequency instability, however normal high frequency layout precautions are still necessary. Coupling capacitors should be physically small and be connected with short leads. It is most important that the ground connections are made with short leads to a continuous ground plane.

3. Low Frequency Response

The LF response is determined by the on chip capacitors. It can be extended by extra external decoupling on pins 5 and 1.

Fig. 4 Test circuit

Fig. 5 Small signal frequency response

Fig. 6 Phase v. input

TYPICAL APPLICATION - 6 STAGE LOG STIP

Input log range 0 dBm to -70 dBm
Low level gain 60dB (-70 dBm in)
Output dynamic range 20 dB
Phase shift (over log range) $\pm 3^{\circ}$
Frequency range $10-200 \mathrm{MHz}$

The circuit shown in Fig 9 is designed to illustrate the use of the SL531 in a complete strip. The supply voltage is fed to each stage via an external 180Ω resistor to allow operation to $125^{\circ} \mathrm{C}$ ambient. If the ambient can be limited to $+100^{\circ} \mathrm{C}$ then the internal resistor can be used to reduce the external component count. Interstage coupling is very simple with just a capacitor to isolate bias levels being necessary. No connection is necessary to pin 5 unless operation below 10 MHz is required. It is important to provide extra decoupling on pin 1 of the first stage to prevent positive feedback occuring down the supply line. An SL560 is used as a unity gain buffer, the output of the log strip being attenuated before the SL560 to give a nominal OdBm output into 50Ω.

Fig. 7 Transfer characteristics linear plot

Fig. 8 Transfer characteristics logarithmic input scale

Fig. 9 Circuit diagram 6 stage strip

SL531C

Fig. 10 Transfer function of \log strip

SL532C

LOW PHASE SHIFT LIMITER

The SL532C is a monolithic integrated circuit designed for use in wide band limiting IF strips. It offers a bandwidth of over 400 MHz and very low phase shift with amplitude. The small signal gain is 12 dB and the limited output is 1 volt peak to peak. The use of a 5 GHz IC process has produced a circuit which gives less than 1° phase shift when overdriven by 12 dB . The amplifier has internal decoupling capacitors to ease the construction of cascaded strips and the number of external components required has been minimised.

FEATURES

Low Phase Shift v. Amplitude
Low External Component Count

APPLICATIONS

- Phase Recovery Strips in Radar and ECM Systems (e.g. Doppler)
- Limiting Amps for SAW Pulse Compression Systems
- Phase Monopulse Radars
- Phased Array Radars
- Low Noise Oscillators

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Temperature (Ambient) $25^{\circ} \mathrm{C}$
Frequency 60 MHz
$V_{C C}=+9 \mathrm{~V}$
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega / / 2.5 \mathrm{pF}$

Fig. 1 Pin connections

Fig. 2 Circuit diagram

SL532C

ELLECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Temperature (ambient) $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Frequency $60 \mathrm{MHz}: \mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega / 5 \mathrm{pF}: \mathrm{V}_{\mathrm{IN}}=-30 \mathrm{dBm}$
$\mathrm{Vcc}=+9.0 \mathrm{~V} ; \mathrm{Rs}_{\mathrm{s}}=50 \Omega$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Small signal voltage gain	11	12.8	14	dB	
Small signal voltage gain		12.5		dB	$f=150 \mathrm{MHz}$
-1dB compression point		-10		dBm	
Limited output voltage	1.0	1.15	1.4	$\checkmark \mathrm{p}-\mathrm{p}$	$V_{\text {in }}=+10 \mathrm{dBm}$
Limited output voltage		1.10		$\checkmark \mathrm{p}$-p	$f=150 \mathrm{MHz}$
Upper cut off frequency	250			MHz	-3dB wrt 60MHz
Lower cut off frequency			10	MHz	May be extended by decoupling pin 5
Supply current	6	8.5	11	mA	No signal
Phase variation with signal level		± 1	± 3	Degrees	-30 dBm to +10 dBm
		± 1.5		Degrees	-30dBm to $0 \mathrm{dBm} . \mathrm{f}=150 \mathrm{MHz}$
Absolute phase shift		-34		Degrees	$f=100 \mathrm{MHz}$
input to output		-43		Degrees	$\mathrm{f}=150 \mathrm{MHz}$
		-69		Degrees	$\mathrm{f}=200 \mathrm{MHz}$
Input impedance		$1 \mathrm{k} \Omega / 2.5 \mathrm{pF}$			
Output impedance		30Ω			
Noise figure		7		dB	400Ω source impedance. $f=60 \mathrm{MHz}$
Gain variation with temperature		± 1		dB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Phase variation with temperature		± 0.5		Degrees	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at any level between -30 dBm to +10 dBm
Limited output voltage variation with temperature		± 0.05		$\vee \mathrm{p}-\mathrm{p}$	$\begin{aligned} & V_{\text {in }}=+10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$

Fig. 3 Transfer characteristic of a single stage

Fig. 4 Gain/frequency curve of a typical device

Fig. 5 Phase change with input level

TYPICAL APPLICATION

Five stage strip

Input signal for full limiting
Limited output
Phase shift ($\mathrm{V}_{\mathbb{N}}-57 \rightarrow+10 \mathrm{dBm}$)
$300 \mu \mathrm{~V}$ rms
$-57 \mathrm{dBm}$
$1 \mathrm{Vp}-\mathrm{p}$
$\pm 3^{\circ}$ typ.

The recommended output buffer amplifier to drive 50Ω loads is the SL560C

Fig. 6 Five stage IF strip

CIRCUIT DESCRIPTION

The SL532 uses a long-tailed pair limiting amplifier which combines low phase shift with a symmetrical limiting characteristic. This is followed by a simple emitter follower output stage. Each stage of a strip is capable of driving to full output a succeeding SL532 but a buffer amplifier is needed to drive lower impedance loads. No external decoupling capacitors are normally required but for use below 10 MHz extra decoupling can be added on pins 1 and 5 . Bias for the long-tailed pair is provided by connecting the bias (pin 2) to the decoupled supply (pin 1).

ABSOLUTE MAXIMUM RATINGS

Supply voltage

15 V
Storage temperature range
Operating temperature range

SL532C

SL541B

HIGH SLEW RATE OPERATIONAL AMPLIFIER

The SL541 is a monolithic amplifier designed for optimum pulse response and applications requiring high slew rate with fast settling time to high accuracy. The high open loop gain is stable with temperature, allowing the desired closed loop gain to be achieved using standard operational amplifier techniques. The device has been designed for optimum response at a gain of 20 dB when no compensation is required. The SL541B has a guaranteed input offset voltage of $\pm 5 \mathrm{mV}$ maximum and replaces the SL541C.
The SL541B is tested in two circuit applications (A and B).

FEATURES

High Slew Rate: 175V/ us

- Fast Settling Time: 1% in 50 ns
- Open Loop Gain: 70dB (SL541B)
- Wide Bandwidth: DC to 100 MHz at 10 dB Gain
- Very Low Thermal Drift: $0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ Temperature Coefficient of Gain
- Guaranteed 5 mV input offset maximum
- Full Military Temperature Range (DIL Only) Package: 10 Lead TO-5 14 Lead DIL Ceramic

APPLICATIONS

Wideband IF Amplification
Wideband Video Amplification
Fast Settling Pulse Amplifiers
High Speed Integrators
D/A and A/D Conversion
Fast Multiplier Preamps

ABSOLUTE MAXIMUM RATINGS

Supply voltage ($\mathrm{V}+$ to $\mathrm{V}-$) 24 V	
Input voltage (Inv. I/P to non inv. I/P) $\pm 9 \mathrm{~V}$	
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+175{ }^{\circ} \mathrm{C}$
Chip operating temperature $+175^{\circ} \mathrm{C}$	
Operating temperature:	TO-5: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	DIL: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Thermal resistances	
Chip-to-ambient: TO-5	$220^{\circ} \mathrm{C} / \mathrm{W}$
DIL	$125^{\circ} \mathrm{C} / \mathrm{W}$
Chip-to-case: TO-5	$60^{\circ} \mathrm{C} / \mathrm{W}$
DIL	$40^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 1 Pin connections

Fig. 2 SL541 circuit diagram (TO-5 pin nos.)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
$R c=0 \Omega$
Test circuits: see Fig. 8

Characteristic	Circuit	Value			Units	Conditions
		Min.	Typ.	Max.		
Static nominal supply current Input bias current Input offset voltage Dynamic open loop gain	A, B		16	21	mA	
	A,B		7	25	$\mu \mathrm{A}$	
	A,B			5	mV	
	A	45	54		dB	600Ω load
	B	60	71		dB	
Open loop temperature coefficient	A, B		-0.02		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	
Closed loop bandwidth (-3dB)	A,B		100		MHz	X10 gain
Slew rate (4V peak)	A, B	100	175		$\mathrm{V} / \mu \mathrm{s}$	X10 gain
Settling time to 1%	A,B		50	100	ns	
Maximum output voltage						
(+ve)	A	5.5	5.7		V	
(-ve)	A		-1.9	-1.5	v	
(+ve)	B	2.5	3.0		V	
(-ve)	B		-3.0	-2.5	V	
Maximum output current	A,B	4	6.5		mA	
Maximum input voltage						
(+ve)	A			5	V	
(-ve)	A	-1			V	Non-inverting
(+ve)	B			3	V	modes
(-ve)	B	-3			V	
Supply line rejection						
(+ve)	A, B	54	66		dB	
(-ve)	A,B	46	54		dB	
Input offset current	A,B			9.85	$\mu \mathrm{A}$	
Common mode rejection	A,B	60.7			dB	
Input offset voltage drift	A		25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS (Typical)
Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (TO5)
$T_{\text {amb }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (DIL only)
Rc $=0 \Omega$, Test circuit B

Characteristic		Value			Units	Conditions
		Min.	Typ.	Max.		
Static nominal supply current Input bias current Input offset voltage			16	25	mA	
				35	$\mu \mathrm{A}$	
	(+ve)			8	mV	
	(-ve)	-8			mV	
Maximum output current		3.5	6.5		mA	
Maximum input voltage	(+ve)			3	V	Non-inverting modes
	(-ve)	-3			V	
Supply line rejection	(+ve)	50			dB	
	(-ve)	42			dB	
Maximum output voltage	(+ve)	2.3			V	
	(-ve)			-2.5	V	
Common mode rejection		55			dB	
Input offset current				16	$\mu \mathrm{A}$	
Output voltage drift			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input bias current drift			60		$n \mathrm{~A}^{\circ} \mathrm{C}$	
Output current drift			40		$n \mathrm{~A}^{\circ} \mathrm{C}$	

Fig. 3 Performance graphs - gain v. frequency (load = $2 k \Omega / 10 p F) *$ See operating note 2

t (20ns/DIV)
Fig. 4 Slew rate - X10 non-inverting mode Input square wave 0.4 V p/p

$t(20 \mathrm{~ns} / \mathrm{DIV})$
Fig. 5 Settling time - X10 non-inverting mode

OPERATING NOTES

The SL541 may be used as a normal, but non saturating operational amplifier, in any of the usual configurations (amplifiers, integrators etc.), provided that the following points are observed:

1. Positive supply line decoupling back to the output load earth should always be provided close to the device terminals.
2. Compensation capacitors should be connected between pins 4 and 5 . These may have any value greater than that necessary for stability without causing side offsets.
3. The circuit is generally intended to be fed from a fairly low impedance ($<1 \mathrm{k} \Omega$), as seen from pins 6 and $9-100 \Omega$ or less results in optimum speed.
4. The circuit is designed to withstand a certain degree of capacitive loading (up to 20pF) with virtually no effect. However, very high capacitive loads will cause loss of speed due to the extra compensation required and asymmetric output slew rates. 5. Pin 10 does not need to be connected to zero volts except where the clipping levels need to be defined accurately w.r.t. zero. If disconnected, an extra ± 0.5 volt uncertainty in the clipping levels results, but the separation remains. However, the supply line rejection is improved if pin 10 can be left open-circuit (circuitBonly).

($20 \mathrm{~ns} / \mathrm{DIV}$)
Fig. 6 Output clipping levels - X10 non-inverting mode Input moderately overdriven, so that output goes into clipping both sides

t (20ns/DIV)
Fig. 7 Output clippings levels - X10 non-inverting mode. Output goes from clipping to zero volts. Vin $=3 \mathrm{~V}$ peak step, offset + ve or -ve.

Fig. 8 Test circuits

TEST CONDITIONS AND DEFINITIONS

Both slew rate and settling time are measures of an amplifier's speed of response to an input. Slew rate is an inherent characteristic of the amplifier and is generally less subject to misinterpretation than is settling time, which is often more dependent upon the test circuit than the amplifier's ability to perform.
Slew rate defines the maximum rate of change of output voltage for a large step input change and is related to the full power frequency response (fp) by the relationship.

$$
S=2 \pi f_{p} E_{0}
$$

where E_{0} is the peak output voltage
Settling time is defined as the time elapsed from the application of a fast input step to the time when the amplifier output has entered and remained within a specified error band that is symmetrical about the final value. Settling time, therefore, is comprised of an initial propagation delay, an additional time for the amplifier

Fig. 9 Non-saturating sense amplifier (30V/ μ s for 5 mV) Note: the output may be caught at a pre-determined level. (TO-5 pin nos.)
to slew to the vincinity of some value of output voltage, plus a period to recover from overload and settle within the given error band.
The SL541 is tested for slew rate in a X 10 gain configuration.

Fig. 10 SL541B open loop gain and phase shift v. frequency

SL550 D \& G

LOW NOISE WIDEBAND AMPLIFIER WITH EXTERNAL GAIN CONTROL

The SL550 is a silicon integrated circuit designed for use as a general-purpose wideband linear amplifier with remote gain control. At a frequency of 60 MHz , the SL550G noise figure is 1.8 dB (typ.) from a 200 ohm source, giving good noise performance directly from a microwave mixer. The SL550 has an external gain control facility which can be used to obtain a swept gain function and makes the amplifier ideal for use either in a linear IF strip or as a low noise preamplifier in a logarithmic strip.
External gain control is performed in the feedback loop of the main amplifier which is buffered on the input and output, hence the noise figure and output voltage swing are only slightly degraded as the gain is reduced. The external gain control characteristic is specified with an accuracy of $\pm 1 \mathrm{~dB}$, enabling a well-defined gain versus time law to be obtained.

The input transistor can be connected in common emitter or common base and the quiescent current of the output emitter follower can be increased to enable low impedance load to be driven.

FEATURES

200 MHz Bandwidth

- Low Noise Figure
- Well-Defined Gain Control Characteristic
- 25dB Gain Control Range
- 40dB Gain
- Output Voltage 0.8 Vp -p (Typ.)

APPLICATIONS

- Low Noise Preamplifiers
- Swept Gain Radar IFs

Fig. 2 Functional diagram
Fig. 3 Test circuit

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

$$
f=30 \mathrm{MHz}, \mathrm{~V}_{\mathrm{s}}=+6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{Ic}=\mathrm{O}, \mathrm{R}_{1}=750 \Omega, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}
$$

Characteristic	Circuit	Value			Units	Conditions
		Min.	Typ.	Max.		
Voltage gain	SL550G	39	42	44	dB	
	SL550D	35	40	45	dB	
Gain control characteristic	Both	See note 1				
Gain reduction at mid-point	SL550G	20	10	2.7	dB	$\begin{aligned} & \mathrm{Ic}=0.24 \mathrm{~mA} \\ & \mathrm{Ic}=0.2 \mathrm{~mA} \end{aligned}$
	SL550D		9		dB	
Max. gain reduction	SL550G		25		dB	$\mathrm{lc}=2.0 \mathrm{~mA}$
Noise figure	SL550D		25		dB	$\mathrm{Ic}=2.0 \mathrm{~mA}$
	SL550G		2.0		dB	$\mathrm{Rs}=200 \Omega$
	SL550G		3.5		dB	$\mathrm{Rs}=50 \Omega$
	SL550D		3.0		dB	$\mathrm{Rs}=200 \Omega$
Output voltage	Both		0.15		Vrms	$\mathrm{R}_{1}=\infty$
	Both		0.3		Vrms	$\mathrm{R}_{1}=750 \Omega$
Supply current	SL550G		11	13	mA	$\mathrm{R}_{1}=\infty$
	SL550G		15		mA	$\mathrm{R}_{1}=750 \Omega$
	SL550D		11	20	mA	$\mathrm{R}_{1}=\infty$
Gain variation with supply voltage	Both		0.2		dB / V	V s $=6$ to 9 V
Upper cut-off frequency (-3 dB wrt 30 MHz)	Both		125		MHz	
Gain variation with temperature (see note 2)	Both		± 3		dB	$\mathrm{T}_{\text {amb }}=-55$ to $+125^{\circ} \mathrm{C}$

NOTES

1. The external gain control characteristic is specified in terms of the gain reduction obtained when the control current (lc) is increased from zero to the specified current
2. This can be reduced by using an alternative input configuration (see operating note: 'Wide Temperature Range').

OPERATING NOTES

Input Impedance

The input capacitance, which is typically 12 pF at 60 MHz , is independent of frequency. The input resistance, which is approximately 1.5 k at 10 MHz , decreases with frequency and is typically 500 ohms at 60 MHz .

Control Input

Gain control is normally achieved by a current into pin 2. Between pin 2 and ground is a forward biased diode and so the voltage on pin 2 will vary between 600 mV at $\mathrm{Ic}=1 \mu \mathrm{~A}$ to 800 mV at $\mathrm{Ic}=2 \mathrm{~mA}$. The amplifier gain is varied by applying a voltage in this range to pin 3. To avoid problems associated with the sensitivity of the control voltage and with operation over a wide temperature range the diode should be used to convert a control current to a voltage which is applied to pin 3 by linking pins 2 and 3.

Minimum Supply Current

If the full output swing is not required, or if high impedance loads are being driven, the current consumption can be reduced by omitting R1 (Fig. 3). The function of R_{1} is to increase the quiescent current of the output emitter follower.

High Output Impedance

A high impedance current output can be obtained by taking the output from pin 6 (leaving pin 7 opencircuit). Maximum output current is 2 mA peak and the output impedance is 350Ω.

Wide Temperature Range

The gain variation with temperature can be reduced at the expense of noise figure by including an internal
30Ω resistor in the emitter of the input transistor. This is achieved by decoupling pin 13 and leaving pin 12 open-circuit. Gain variation is reduced from $=3 \mathrm{~dB}$ to $\pm 1 \mathrm{~dB}$ over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Figs. 6 and 7).

Low Input Impedance

A low input impedance ($\simeq 25 \Omega$) can be obtained by connecting the input transistor in common base. This is achieved by decoupling pin 11 and applying the input to $\operatorname{pin} 12$ (pin 13 open-circuit).

High Frequency Stability

Care must be taken to keep all capacitor leads short and a ground plane should be used to prevent any earth inductance common between the input and output circuits. The 30Ω resistor (pin 14) shown in the test circuit eliminates high frequency instabilities due to the stray capacitances and inductances which are unavoidable in a plug-in test system. If the amplifier is soldered directly into a printed circuit board then the 30Ω resistor can be reduced or omitted completely.

Fig. 4 Frequency response

Fig. 5 Gain control characteristic

Fig. 6 Voltage gain v. temperature (pin 12 decoupled, standard circuit configuration)

Fig. 7 Voltage gain v. temperature (pin 13 decoupled for improved gain variation with temperature - see operating notes)

Fig. 8 Typical noise figure (SL550G)

Fig. 9 Input and output impedances $\left(V_{S}=6 \mathrm{~V}\right)$

Fig. 10 Circuit diagram

APPLICATION NOTES

A wideband high gain configuration using two SL550s connected in series is shown in Fig. 11. The first stage is connected in common emitter configuration, whilst the second stage is a common base circuit. Stable gains of up to 65 dB can be achieved by the proper choice of R1 and R2. The bandwidth is 5 to 130 MHz , with a noise figure only marginally greater than the 2.0 dB specified for a single stage circuit.

ALL CAPACITORS 1000 pF

Fig. 11 A two-stage wide-band amplifier
A voltage gain control which is linear with control voltage can be obtained using the circuit shown in Fig. 12. The input is a voltage ramp which is negative going with respect to ground. The output drives the control current pins 2 and 3 directly (see Fig. 13). If two SL550s in the strip are controlled as shown in Fig. 14, with a linear ramp input to the linearising circuit, a fourth power law (power gain v. time) will be obtained over a 50 dB dynamic range.

Fig. 12 Gain control linearising circuit

Fig. 13 Linear swept gain circuit

Fig. 14 Square law swept gain circuit

Fig. 15 Applications example of wide dynamic range: 50Ω load' amplifier with AGC using SL500 series integrated circuit.

ABSOLUTE MAXIMUM RATINGS

Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient operating temp.	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Max. continuous supply	
Voltage wrt pin 1 Max. continuous AGC current pin 2 10 mA pin 3 1 mA	

SL560C

300 MHz LOW NOISE AMPLFIER

This monolithic integrated circuit contains three very high performance transistors and associated biasing components in an eight-lead T0-5 package forming a 300 MHz low noise amplifier. The configuration employed permits maximum flexibility with minimum use of external components. The SL560C is a general-purpose low noise, high frequency gain block.

FEATURES
 (Non-simultaneous)

- Gain up to 40 dB
- Noise Figure Less Than 2 dB (RS 200 ohm)
- Bandwidth 300 MHz
- Supply Voltage $2-15 \mathrm{~V}$ (Depending on Configuration)
- Low Power Consumption

Fig. 1 Pin connections (viewed from beneath)
*ALSO AVAILABLE IN CHIP CARRIER

Fig. 2 SL560C circuit diagram

Fig. 3PC layout for $50-\Omega$ line driver (see Fig. 6)

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated): Frequency 30 MHz
Vcc 6V
$R_{S}=R_{L}=50 \Omega$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Test Circuit : Fig. 6

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Small signal voltage gain	11	14	17	dB	
Gain flatness		± 1.5		dB	$10 \mathrm{MHz}-220 \mathrm{MHz}$
Upper cut-off frequency		250		MHz	
Output swing	$+5$	+7		dBm	$V c c=6 \mathrm{~V}$, $\}$ See Fig. 5
		+11		dBm	$V c c=9 \mathrm{~V}$ \} See Fig. 5
Noise figure (common emitter)		1.8		dB	Rs $=200 \Omega$
		3.5		dB	Rs $=50 \Omega$
Supply current		20	30	mA	

CIRCUIT DESCRIPTION

Three high performance transistors of identical geometry are employed. Advanced design and processing techniques enable these devices to combine a low base resistance (Rbb') of 17 ohms (for low noise operation) with a small physical size - giving a transition frequency , ft , in excess of 1 GHz .
The input transistor (TR1) is normally operated in common base, giving a well defined low input impedance. The full voltage gain is produced by this transistor and the output voltage produced at its collector is buffered by the two emitter followers (TR2 and TR3). To obtain maximum bandwidth the capacitance at the collector of TR1 must be minimised. Hence, to avoid bonding pad and can capacitances, this point is not brought out of the package. The collector load resistance of TR1 is split, the tapping being accessible via pin 5 . If required, an external roll-off capacitor can be fixed to this point.

The large number of circuit nodes accessible from the outside of the package affords great flexibility, enabling the operating currents and circuit configuration to be optimised for any application. In particular, the input transistor (TR1) can be operated in common emitter mode by decoupling pin 7 and using 6 as the input. In this configuration, a 2 dB noise figure ($\mathrm{Rs}=200 \Omega$) can be achieved. This configuration can give a gain of 35 dB with a bandwidth of 75 MHz (see Figs. 8 and 9) or, using feedback, 14 dB with a bandwidth of 300 MHz (see Figs. 10 and 11).

Because the transistors used in the SL560C exhibit a high value of ft , care must be taken to avoid high frequency instability. Capacitors of small physical size should be used, the leads of which must be as short as possible to avoid oscillation brought about by stray inductance. The use of a ground plane is recommended.

Further applications information is avaiable in the 'Broadband Amplifier Applications' booklet.

Fig. 4 Frequency response, small signal gain

Fig. 5 Frequency response, output capability (loci of maximum output power with frequency, for 1dB gain compression)

TYPICAL APPLICATIONS

Fig. 650Ω line driver. The response of this configuration is shown in Fig. 4.

Fig. 8 Low noise preamplifier

Gain 13dB at Vcc=9V
-1 dB at 6 MHz and 300 MHz

Fig. 10 Wide bandwidth amplifier

Fig. 7 Input standing wave ratio plot of circuit shown in Fig. 6

Fig. 9 Frequency response of circuit shown in Fig. 8

Fig. 11 Frequency response of circuit shown in Fig. 10

Fig. 12 Three-stage directly-coupled high gain low noise amplifier

Fig. 13 Frequency response of circuit shown in Fig. 12

Fig. 14 Low power consumption amplifier

Fig. 15 Ambient operating temperature v. degrees centigrade

ABSOLUTE MAXIMUM RATINGS

Supply voltage (Pin 4)
Storage temperature
Junction temperature
Thermal resistance
Junction-case Junction ambient
Maximum power dissipation Operating temperature range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (CM) at 100 mW $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ (DP) at 100 mW

SL561B, SL561C

ULTRA LOW NOISE PREAMPLIFIERS

This integrated circuit is a high gain, low noise preamplifier designed for use in audio and video systems at frequencies up to 6 MHz . Operation at low frequencies is eased by the small size of the external components and the low $1 / f$ noise. Noise performance is optimised for source impedances between 20Ω and $1 \mathrm{k} \Omega$ making the device suitable for use with a number of transducers including photo-conductive IR detectors, magnetic tape heads and dynamic microphones.
The SL561B is only available in the TO-5 package.
The SL561C is only available in the Plastic package.

FEATURES

High Gain

Low noise

- Bandwidth

Low Power Consumption

60 dB

$0.8 \mathrm{nV} / \mathrm{VHz}(\mathrm{Rs}=50 \Omega)$
6 MHz
$10 \mathrm{~mW}\left(\mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}\right)$

APPLICATIONS

Audio Preamplifiers (Iow noise from low impedance source)

- Video Preamplifier
- Preamplifier for use in Low Cost Infra-Red Systems

Fig. 1 Pin connections (viewed from above) SL561B

Fig. 2 Pin connections (viewed from above) SL561C

Fig. 4 Typical application

SL561B/C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
Vcc 5 V

Source impedance 50Ω
Loadimpedance $10 \mathrm{k} \Omega$
Tamb $\quad 25^{\circ} \mathrm{C}$
SL561B

Characteristic	Value			Units	Conditions	
	Min.	Typ.	Max.			
Voltage gain	57	60	63	dB	Pin $1 \mathrm{O} / \mathrm{C}$	
Equivalent input noise voltage		0.8	1.2	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	100 Hz to 6 MHz	
Output voltage	2	3		$\mathrm{Vp-p}$	See note	
Supply current		2.0	3.0	mA		
Output resistance		50		Ω		
Input resistance		3		$\mathrm{k} \Omega$		
Input capacitance		15		pF		
Upper cut-off frequency	5	6.5		MHz	Vout $=10 \mathrm{mV} \mathrm{p}-\mathrm{p}$	
		6.2		MHz	Vout $=1.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$	

SL561C

Characteristic	Value			Units	Conditions	
	Min.	Typ.	Max.			
Voltage gain	57	60	63	dB	$\operatorname{Pin} 6 \mathrm{O} / \mathrm{C}$	
Equivalent input noise voltage		0.8		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	100 Hz to 6 MHz	
Input resistance		3		$\mathrm{k} \Omega$		
Input capacitance		15		pF		
Output impedance		50		Ω		
Output voltage	2	3		$\mathrm{Vp-p}$	See note	
Supply current		2	3	mA		
Bandwidth		6		MHz		

OPERATING NOTES (Pin numbers refer to DIL package)

Upper cut-off Frequency

The bandwidth of the amplifier can be reduced from 6 MHz to any desired value by a capacitor from pin 6 to ground. This is shown in Fig.5. No degradation in noise or output swing occurs when this capacitor is used. The high frequency roll off is approximately $6 \mathrm{~dB} /$ octave.

Low frequency response

The capacitors C_{2} and C_{3} (Fig.4) determine the lower cutoff frequency. C_{2} decouples an internal feedback loop and if its value is close to that of C_{3} an increase in gain at low frequencies can occur. For a flat response either make C_{2} less than $0.05 \mathrm{C}_{3}$ or make C_{2} greater than $5 \mathrm{C}_{3}$

Gain set facility

Provision is made to adjust the gain by means of a resistor between pin 6 and the output. Gains as low as 10 dB can be selected. This resistor increases the feedback around the output stage and stability problems can result if the bandwidth of the amplifier is not reduced as indicated in Note 1. Fig. 6 shows recommended values of C_{1} for each gain range. Since the input stage is a common emitter stage without emitter degeneration (for best noise) at values of gain less than 40 dB this input stage, rather than the output
stage, determines the maximum output voltage swing. For a distortion of less than 10% the input voltage should be restricted to less than 5 mV (see Fig.9).

Driving low impedance loads

The quiescent current of the output emitter follower is 0.5 mA . If larger voltage swings are required into low impedance loads this current can be increased by a resistor from pin 8 to ground. To avoid exceeding the ratings of the output transistor the resistor should not be less than 200Ω.

Noise performance

The equivalent input voltage for the amplifier is shown in
Fig. 7 From this the input noise voltage and current generators can be derived. They are:

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{n}}=0.8 \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\
& \mathrm{i}_{\mathrm{n}}=2.0 \mathrm{pA} / \sqrt{ } \mathrm{Hz}
\end{aligned}
$$

Flicker or $1 / \mathrm{f}$ noise is not normally a problem, the knee frequency being typically below 100 Hz .

ABSOLUTE MAXIMUM RATINGS

Supply voltage

Storage temperature range $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating temperature range DIL $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 5 Gain v. frequency

Fig. 7 Noise v. source impedance

Fig. 8 Circuit diagram

Fig. 9 Harmonic distortion SL561 at 20 kHz

SL562C

LOW NOISE PROGRAMMABLE OPERATIONAL AMPLIFIER

The SL562 is an advanced bipolar integrated circuit containing a single programmable operational amplifier. The amplifier can be programmed by current into a bias pin which determines the main characteristics of the amplifier's supply current, frequency response and slew rate. With a suitable choice of bias current the SL562 can be used where low power and low noise characteristics are a necessity.

FEATURES

APPLICATIONS

Active Filters
Oscillators
Low Voltage Amplifiers
Frequency Synthesisers
Hand Held Applications

Fig. 1 Pin connections - top view

QUICK REFERENCE DATA

- Supply Voltages $\pm 1.5 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$
- Supply Current $\pm 40 \mu \mathrm{~A}$ to $\pm 2 \mathrm{~mA}$
- Operating Frequency Range 1 MHz
- Gain 95dB
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

$T_{\text {amb }}=25^{\circ} \mathrm{C}$
Operating mode A: Supply volts $\pm 10 \mathrm{~V}$ Bias set current $75 \mu \mathrm{~A}$
Operating mode B : Supply volts $\pm 3.5 \mathrm{~V}$ Bias set current $15 \mu \mathrm{~A}$
Operating mode $\mathrm{C}:$ Supply volts $\pm 1.5 \mathrm{~V}$ Bias set current $1 \mu \mathrm{~A}$

Characteristic	Operating mode									Units	Conditions
	A			B			C				
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
Input offset voltage		1	5		1	5		1	5	mV	$\mathrm{Rs}=10 \mathrm{k} \Omega$
Input offset current		20	190			150			49	nA	
Input bias current		250	800			350			95	nA	
Input resistance	0.1	0.6		0.2	0.5		0.3	2		MS	
Supply current	1000	1600	2200	50	200	1000	20	40	60	$\mu \mathrm{A}$	
Large signal	74	95		74	90		74	90		dB	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega(\mathrm{A})$
voltage gain											$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega(\mathrm{B})$
											$R \mathrm{~L}=100 \mathrm{k} \Omega(\mathrm{C})$
Common mode rejection ratio	70	110		70	85		70	82		dB	
Output voltage swing	8			1.5			0.7	0.8		$\pm \mathrm{V}$	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega(\mathrm{A})$
											$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (B$)$
											$R \mathrm{~L}=4 \mathrm{k} \Omega(\mathrm{C})$
Supply voltage rejection ratio	74			85			85			dB	$\mathrm{Rs}=10 \mathrm{k} \Omega$
Short circuit current	12		40				1	2.2		mA	$\begin{aligned} & T_{\text {amb }}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Gain bandwidth								50		kHz	Gain $=20 \mathrm{~dB}$
product		3.5			1					MHz	
Slew rate		1.5			0.5			0.02		$\mathrm{V} / \mu \mathrm{s}$	Gain $=20 \mathrm{~dB}$
Input noise voltage		10	25		25	40		50	85	$\mathrm{nV} \sqrt{ } \mathrm{Hz}$	$\mathrm{fo}=1 \mathrm{kHz}$
Input noise current		1.6			1.6			1.0		$\mathrm{pA} \sqrt{ } \mathrm{Hz}$	$\mathrm{f}=1 \mathrm{kHz}$

OPERATING NOTES

Bias set current

The amplifier is programmed by the ISET current into the BIAS pin to determine the frequency response, slew rate and the value of supply current. The relationship is summarised as follows:
Gain bandwidth product
Power supply current (each supply)
Slew rate

Iset x 50 kHz
ISET $\times 25 \mu \mathrm{~A}$ Iset $\times 0.02 \mathrm{~V} / \mu \mathrm{S}$ (Iset in $\mu \mathrm{A}$)

The open loop voltage gain is largely unaffected by change in bias set current but tends to peak slightly at $10 \mu \mathrm{~A}$.
Since the voltage on the BIAS pin is approximately 0.65 V more positive than the negative supply, a resistor may be connected between the bias pin and either OV or the positive supply to set the current. Thus, if the resistor is connected to OV, the Iset current is determined by:

$$
I_{S E T}=\frac{V_{S}-0.65}{R}
$$

where R is value of the 'set' resistor.
The output goes high if the non-inverting input is taken lower than 1V above the negative power supply.

Fig. 3 Supply current v. bias set current.

Fig. 4 Gain bandwidth product v. ISET

APPLICATION EXAMPLE

The SL562 is especially suitable for use in loop filters for frequency synthesisers, the low noise and low power characteristics of the SL562 making it ideally suited for use with the Plessey low power frequency synthesiser circuits (NJ8820, SP87XX). All three integrated circuits are available in surface mounting packages, thus making a compact hybrid.

Fig. 5 Typical frequency response

ABSOLUTE MAXIMUM RATINGS

Supply voltages
Common mode input voltage
Differential input voltage
Bias set current
Storage
Power dissipation
$\pm 15 \mathrm{~V}$ Not greater than supplies $\pm 25 \mathrm{~V}$
10 mA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
800 mW at $25^{\circ} \mathrm{C}$
Derate at $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
Operating temperature range

Fig. 6 Application example.

SL565C

1GHz WIDEBAND AMPLIFIER

The SL565 is a low cost wide bandwidth amplifier featuring differential inputs and outputs and useful performance to 1 GHz . Typical applications are in wideband amplifiers. instrumentation, ECM and communications.

FEATURES

Low Cost
Wide Bandwidth: 1 GHz
High Gain: 22 dB
Differential Input and Output
+5V Supply
High Reverse Isolation

ABSOLUTE MAXIMUM RATINGS

Supply voltage, $\mathrm{Vcc}+8 \mathrm{~V}$
Storage temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating temperature $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Chip temperature $+150^{\circ} \mathrm{C}$

Fig. 1 Pin connections - top view

Fig. 2 Test circuit

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$\mathrm{Vcc}=5.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$. Test circuit Fig. 2 except for differential gain measurements.

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply voltage	4.75	5.0	5.5	V	
Supply current		50	70	mA	
Differential gain S_{21}		16 21		dB	$\begin{aligned} & 10-900 \mathrm{MHz} \\ & 1 \mathrm{GHz} \end{aligned}$
		16		dB	1.3GHz
Single ended gain	$\begin{gathered} 8 \\ 13 \\ 8 \end{gathered}$	10	12		100 MHz
		15	17		500 MHz
		10	12		1 GHz
1 dB gain compression		-19		dBm	Input power at 500 MHz
Noise figure		13		dB	50Ω source
3 rd order input intercept point		$\begin{aligned} & -3.5 \\ & -7 \end{aligned}$		dBm $\begin{aligned} & \text { dBm } \\ & \text { dBm } \end{aligned}$	50 MHz 200 MHz
		-9.5		dBm	500 MHz
2nd order input intercept point		+3.0		dBm	500 and 400 MHz inputs
Reverse isolation pins 7 to 4		70		dB	$\mathrm{f}=50 \mathrm{MHz}$
		60		dB	$\mathrm{f}=50-100 \mathrm{MHz}$
		20		dB	$\mathrm{f}=500 \mathrm{MHz}$
		20		dB	$\mathrm{f}=1 \mathrm{GHz}$
Reverse isolation pins 5 to 4		75		dB	$\mathrm{f}=100 \mathrm{MHz}$
		30		dB	$\mathrm{f}=1 \mathrm{GHz}$
Maximum output		$\begin{aligned} & 600 \\ & 300 \end{aligned}$		$\begin{aligned} & m \vee p-p \\ & m \vee p-0 \end{aligned}$	$\begin{aligned} & f<500 \mathrm{MHz} \\ & \mathrm{f}=500 \mathrm{MHz} \text { to } 1 \mathrm{GHz} \end{aligned}$
Maximum output power		-3		dBm	1 GHz
ifor 1dB compression		-2		dBm	500 MHz

OPERATING NOTES

The SL565 is a general purpose wideband gain block, suitable for many applications. The frequency response and input impedance plots are shown in Figs. 3 and 4 respectively.

Like all wideband high frequency circuits, the SL565 should be used with short leads to its associated components, and a ground plane printed circuit board layout is recommended. There are advantages in using the top surface of the PCB as the ground plane with cage jackse.g. Cambion 450-3750-01-06-00 or similar sockets for each device pin, as then chip capacitors can be installed with minimum lead lengths on top of the board. Resistors should be miniature carbon composition types (metal oxide and
carbon film types often have an appreciable parasitic inductance).

The high reverse isolation makes the SL565 ideal for driving High Speed Divider integrated circuits in both frequency counters and synthesisers, and Fig. 5 shows a typical application in a 100 MHz to $1000 \mathrm{MHz} \div 10$ prescaler for a frequency counter. This prescaler operates with inputs as low as 70 mV rms over the whole frequency range of the device.

Other applications for the SL565 include oscillators using SAW devices as frequency determining elements, where the wide bandwidth of the SL565 enables high frequency oscillators to be produced at minimum cost.

Fig. 3 Typical frequency response, SL565C

Fig. 4 Single-ended input impedance of SL565C, normalised to $50 \Omega . \mathrm{Vcc}=5 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$, load $=50 \Omega$, frequencies in MHz .

All capaciors $001 \mu \mathrm{~F}$ ceramic chip

Fig. 5 1GHz prescaler

Fig. 6 SL565C circuit diagram

SL952

1GHz LIMITING WIDEBAND AMPLIFIER

The SL952 amplifier has been designed to drive prescalers.
It features a differential output to reduce local oscillator radiation, and a differential input.
The device operates from a single 5 V supply with a minimal number of external components and is encapsulated in a 14 lead DIL package. Typical applications are in instrumentation and communications.

FEATURES

Low Cost

- High Gain
- Minimal External Component Count
- Good Limiting Characteristics
- 1 GHz Response
- 5V Supply

ABSOLUTE MAXIMUM RATINGS

$\mathrm{Vcc}+10 \mathrm{~V}$
Ambient temperature $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Storage temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 1 Pin connections

Fig. 2 Test circuit

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
$\mathrm{Vcc}=5.0 \mathrm{~V}$
TAMB $=+25^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply voltage	4.75	5.00	5.50	V	
Supply current		70	90	mA	
DC output level		3.2		V	
Output offset	100	600	mV		
Maximum differential output swing	600			$\mathrm{mVp}-\mathrm{p}$	950 MHz
Differential voltage gain	30	35		dB	100 MHz
Differential voltage gain	30	35		dB	500 MHz
Differential voltage gain	15	26		dB	950 MHz

Fig. 3 Typical application for TV frequency synthesis

SL610C, SL611C \& SL612C

RF/IF AMPLIFIERS

The SL610C, SL611C and SL612C are RF voltage amplifiers with AGC facilities. The voltage gains are 10, 20 and 50 times respectively and the upper frequency response varies from 15 MHz to 120 MHz according to type.

FEATURES

- Wide AGC Range: 50dB
- Easy Interfacing
- Integral Power Supply RF Decoupling

Fig. 1 Pin connections (bottom view)

ABSOLUTE MAXIMUM RATINGS

Supply voltage: 12 V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 3 Input admittance with o/c output (G_{11})

SL610/SL611/SL612C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage VCC: 6 V
Ambient temperature: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Test frequency: SL610C 30MHz
SL611C 30MHz
SL612C 1.75 MHz

Characteristlc	Clrcuit	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply current	SL610C		15	20	mA	
	SL611C		15	20	mA	No signal, pin 3 open circuit
	SL612C		3.3	5	mA	
Voltage gain	SL610C	18	20	22	dB	Rs $=50 \Omega$
	SL611C	24	26	28	dB	$\mathrm{RL}=22^{\circ} \mathrm{C}$
	SL612C	32	34	36	dB	$\mathrm{Tamb}=22^{\circ} \mathrm{C}$
Cut-off frequency (-3 dB)	SL610C	85	120		MHz	
	SL611C	50	80		MHz	
	SL612C	10	15		MHz	
Max.output signal (max.AGC)			1.0		$V \mathrm{rms}$	$\begin{aligned} & \mathrm{RL}=150 \Omega(\mathrm{SL} 610 \mathrm{C} / 611 \mathrm{C}) \\ & \mathrm{RL}=1.2 \mathrm{k} \Omega(\mathrm{SL} 612 \mathrm{C}) \end{aligned}$
Max.input signal (max.AGC)			250		mV rms	
AGC range	SL610C	40	50		dB	
	SL611C	40	50		dB	Pin 70 V to 5.1V
	SL612C	60	70		dB	
AGC current			0.15	0.6	mA	Current into pin 7 at 5.1V

APPLICATION NOTES

Input circuit

The SL610C, SL611C and SL612C are normally used with pins 5 and 6 connected together and with the input connected via a capacitor as shown in Fig. 2.

The input impedance is negative between 30 MHz and 100 MHz (SL610C, SL611C only) and is shown in Fig. 3. If the source is inductive it should be shunted by a $1 \mathrm{k} \Omega \mathrm{re}$ sistor to prevent oscillation.
An alternative input circuit with improved noise figure is shown in Fig. 4.

Fig. 4 Alternative input circuit

Output circuit

The output stage is an emitter follower and has a negative output impedance at certain frequencies as shown in Fig. 5.

To prevent oscillation when the load is capacitive a 47Ω resistor should be connected in series with the output.

AGC

When pin 7 is open circuit or connected to a voltage less than 2 V the voltage gain is normal. As the AGC voltage is
increased there is a reduction in gain as shown in Fig.6. This reduction varies with temperature.

Typical applications

The circuit of Fig. 7 is a general purpose RF preamplifier. The voltage gain (from pin 5 to pin 3) is shown in Fig. 8. Fig. 9 is the IF section of a simple SSB transceiver. At 9 MHz it has a gain of 100 dB .

Fig. 5 Typical output impedance with s/c input (G22)

Fig. 6 AGC characteristics (typical)

Fig. 8 Typical voltage gain ($R_{S}=50 \Omega$)

Fig. 7 RF preamplifier

Fig. 9 IF amplifier using SL612

SL621C

AGC GENERATOR

The SL621C is an AGC generator designed specifically for use in SSB receivers in conjunction with the SL610C, SL611C and SL612C RF and IF amplifiers. In common with other advanced systems it generates a suitable AGC voltage directly from the detected audio waveform, provides a 'hold' period to maintain the AGC level during pauses in speech, and is immune to noise interference. In addition it will smoothly follow the fading signals characteristic of HF communication.
When used in a receiver comprising one SL610C and one SL612C amplifier and a suitable detector, the SL621C will maintain the output within a 4 dB range for a 110 dB range of receiver input signal.

FEATURES

- All Time Constants Set Externally
- Easy Interfacing
- Compatible with SL610/611/612

APPLICATIONS

- SSB Receivers
- Test Equipment

QUICK REFERENCE DATA

- Supply voltage: 6 V
- Supply current: 3 mA

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $V_{C C}=6 \mathrm{~V}$
Ambient temperature: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Test frequency: 1 kHz
Test circuit as Fig. 2

Fig. 1 Pin connections (bottom view)

Fig. 2 Block diagram

ABSOLUTE MAXIMUM RATINGS

Supply voitage: 12 V
Storage temperature: $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply current		3.1	4.3	mA	No signal
Cut-off frequency (-3 dB)		6		kHz	
Input for 2.2V DC output	3	7	11	mVrms	
Input for 4.6V DC output	9	11	16	mVrms	
Maximum output voltage	5.1				
AC ripple on output		12	20	mV pk-pk	1 kHz , output open circuit
Input resistance	350	500	700		
Output resistance		70	230	Ω	
'Fast' rise time ${ }_{1}$		20	55	ms	0 to 50\% full output
'Fast' decay time t2	150	200	330	ms	100\% to 36\% full output
'Slow' rise time t_{3}	150	200	300	ms	Time to output transistion point
Hold collapse time t_{4} Hold time t_{5}	65 0.75	100 1.0	150 1.25	ms	90\% to 10% full output

SL621C

APPLICATION NOTES

The SL621C consists of an input AF amplifier coupled to a DC output amplifier by means of two detectors having short and long rise and fall times respectively. The time constants of these detectors are set externally by capacitors on pins $5\left(C_{1}\right)$ and $3\left(C_{2}\right)$.
The detected audio signal at the input will rapidly establish an AGC level via the 'fast' detector time in t_{1} (see Fig. 3). Meanwhile the long time constant detector output will rise and after t_{3} will control the output because this detector is more sensitive.

Input signals greater than approximately 4 mV rms will actuate a trigger circuit whose output pulses provide a discharge current for C_{2}.
By this means the voltage on C_{2} can decay at a maximum rate, which corresponds to a rise in receiver gain of $20 \mathrm{~dB} / \mathrm{s}$. Therefore the AGC system will smoothly follow signals which are fading at this rate or slower. However should the receiver input signals fade faster than this, or disappear completely as during pauses in speech, then the input to the AGC generator will drop below the 4 mV rms threshold and the trigger will cease to operate. As C_{2} then has no discharge path, it will hold its charge (and hence the output AGC level) at the last attained value. The output of the short time constant detector will drop to zero in time t_{2} after the disappearance of the signal.

The trigger pulses also charge C_{3}. When the trigger puises cease, C_{3} discharges and after $\mathrm{t}_{5} \mathrm{C}_{2}$ is discharged rapidly (in time t_{4}) and so full receiver gain is restored. The hold time, t_{5} is approximately one second with $\mathrm{C}_{3}=100 \mu \mathrm{~F}$. If signals reappear during t_{5}, then C_{3} will recharge and normal operation will continue. The C_{3} recharge time is made long enough to prevent prolongation of the hold time by noise pulses.

Fig. 3 shows how a noise burst superimposed on speech will initiate rapid AGC action via the short time constant detector while the long time constant detector effectively remembers the pre-noise AGC level.

The various time constants quoted are for $\mathrm{C}_{1}=50 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=100 \mu \mathrm{~F}$. These time constants may be altered by varying the appropriate capacitors. C_{1} controls $\mathrm{t}_{1}, \mathrm{t}_{2} ; \mathrm{C}_{2}$ controls $\mathrm{t}_{3}, \mathrm{t}_{4} ; \mathrm{C}_{3}$ controls t_{5}.

The supply must either have a source resistance of less than 2Ω at LF or be decoupled by at least $500 \mu \mathrm{~F}$ so that it is not affected by the current surge resulting from a sudden input on pin 1.

In a receiver for both AM and SSB using an SL623C detector/carrier AGC generator, the AGC outputs of the SL621C and SL623C may be connected together provided that no audio reaches the SL621C input while the SL623C is controlling the system.

AGC lines may require some RF decoupling but the total capacitance on the output should not exceed 15000 pF or the impulse suppression will suffer.

Fig. 3 Dynamic response of a system controlled by SL621C AGC generator

Fig. 4 SL621C used to control SSB receiver

Fig. 5 Transfer characteristic of SL621C (typical)

Under some conditions,overload of the AGC output may occur in a receiver. Possible solutions are shown in Figs. 6 and 7.

Fig. 6

Fig. 7

SL621C

SL623C

AM DETECTOR, AGC AMPLIFIER \& SSB DEMODULATOR

The SL623C is a silicon integrated circuit combining the functions of low level, low distortion AM detector and AGC generator with SSB demodulator. It is designed specially for use in SSB/AM receivers in conjunction with SL610C, SL611C and SL612C RF and IF amplifiers. It is complementary to the SL621C SSB AGC generator.
The AGC voltage is generated directly from the detected carrier signal and is independent of the depth of modulation used. Its response is fast enough to follow the most rapidly fading signals. When used in a receiver comprising one SL610C and one SL612C amplifier, the SL623C will maintain the output within a 5 dB range for a 90 dB range of receiver input signal.

The AM detector, which will work with a carrier level down to 100 mV , contributes negligible distortion up to 90% modulation. The SSB demodulator is of single balanced form. The SL623C is designed to operate at intermediate frequencies up to 30 MHz . In addition it functions at frequencies up to 120 MHz with some degradation in detection efficiencies.

FEATURES

- Negligible Distortion
- Easy Interfacing
- Fast Response Time

APPLICATIONS

AM SSB Receivers

- Test Equipment

Fig. 1 Pin connections (bottom view)

QUICK REFERENCE DATA

- Supply Voltage: 6 V

Maximum Frequency: 30 MHz

ABSOLUTE MAXIMUM RATINGS

Supply voltage: 12 V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 2 block diagram

SL623C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $V_{c c}=6 \mathrm{~V}$
Ambient temperature $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Test circuit as Fig. 2

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply current		9	11	mA	No signal, Pin 4 open
Input impedance		800		Ω	Pins 6, 9
SSB audio output	22	30	47	mVrms	Signal input 20 mV rms @ 1.748 MHz . Ref. signal input 100 mV @ 1.750 MHz
AM audio output	43	55	67	mV rms	Signal input 125 mV rms@ 1.75 MHz modulated to 80% at 1 kHz
AGC range (Note 1)			6	$d B$	Initial signal input 125 mV rms at 1.75 MHz modulated to 80% at 1 kHz . Output set to 2.0 V with $10 \mathrm{k} \Omega$ potentiometer between Pins $2 \& 5$.

NOTES

1. The AGC range is the change in input level to increase AGC output voltage from 2.0 V to 4.6 V

APPLICATION NOTES

AGC Generator

Pin 3, the AGC amplifier phase correction point should be decoupled to ground by a 1 microfarad capacitor (C4), keeping leads as short as possible. The value of C4 is quite critical, and should not be altered: if it is increased the increased phase shift in the AGC loop may cause the receiver to become unstable at LF and if it is reduced the modulation level of the incoming signal will be reduced by fast-acting AGC.

The AGC output (Pin 4) will drive at least two SL610/11/ 12 amplifiers. The SL623AGC output is an emitter follower similar to that of the SL621C. Hence the outputs of the two devices may be connected in parallel when constructing AM/SSB systems.
Less signal is needed to drive the SSB demodulator than the AM detector. In a combined AM/SSB system, therefore, the signal will automatically produce an SSB AGC voltage via the SL621C as long as a carrier (BFO) is present at the input to the SSB demodulator of the SL623C. The AGC generator of the SL623 will not contribute in such a configuration.

For AM operation the BFO must be disconnected from the carrier input of the SSB demodulator. In the absence of an input signal, the SL621C will then return to its quiescent state. To switch over a receiver using the SL623C from SSB to AM operation it is therefore necessary to turn off the BFO and transter the audio pick-off from the SSB to the AM detector.

Neglecting to disconnect the SSB carrier input during AM operation can result in heterodyning due to pick-up of carrier on the input signal. In some sets different filters are used for AM and SSB; these will also need to be switched.

The 10 kilohm gain-setting preset potentiometer is
adjusted so that a DC output of 2 volts is achieved for an input of 125 mV rms. There will then be full AGC output from the SL623C for a 4dB increase in input. A fixed resistor of 1.5 kilohms can often be used instead of the potentiometer.

SSB Demodulator

The carrier input is applied to Pin 6, via a low-leakage capacitor. It should have an amplitude of about 100 mV rms and low second harmonic content to avoid disturbing the DC level at the detector output.
Pin 8 is the SSB output and should be decoupled at RF by a 0.01 microfarad capacitor. The output impedance of the detector is 3 kilohm and the terminal is at a potential of about +2 V which may be used to bias an emitter follower if a lower output impedance is required. The input to the audio stage of a receiver using an SL623C should be switched between the AM and the SSB outputs - no attempt should be made to mix them. Since the SL621C is normally used in circumstances where low-level audio is obtained from the detector, the relatively high SSB audio output of the SL623C must be attenuated before being applied to the SL621C. This is most easily done by connecting the SL623C to the SL621C via a 2 kilohm resistor in series with a 0.5 microfarad capacitor.

Input Conditions

The input impedance is about 800 ohms in parallel with 5 pF . Connection must be made to the input via a capacitor to preserve the DC bias. An input of about 125 mV rms is required for satisfactory carrier AGC performance and 20 mV rms for SSB detection. Normally, the AGC will cope with this variation but in an extreme case a receiver using an SL623C and having the same gain to the detector in both AM and SSB modes will be some 10 dB less sensitive to AM.

SL640C \& SL641C
 DOUBLE BALANCED MODULATORS

The SL640C and SL641C are double balanced modulators intended for use in radio systems at frequencies up to 75 MHz . The SL640 has an integral output load resistor (Pin 5) together with an emitter follower output (Pin 6) whereas the SL641 has a single output designed as a current drive to a tuned circuit.

FEATURES

No External Bias Networks Needed

- Easy Interfacing
- Choice of Voltage or Current Outputs

APPLICATIONS

- Mixers In Radio Transceivers
- Phase Comparators
- Modulators

QUICK REFERENCE DATA

Supply Voltage: 6V

- Conversion Gain: OdB
- Maximum Inputs: 200 mV rms

ABSOLUTE MAXIMUM RATINGS

Supply voltage 9V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

CM8
Fig. 1 Pin connections (bottom view)

Fig. 2 Block diagram(SL640C)

Fig. 3 Block diagram (SL641C)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage $\mathrm{V}_{\mathrm{cc}}: 6 \mathrm{~V}$
Ambient temperature: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Characteristic	Circuit	Value			Units	Conditions
		Min.	Typ.	Max.		
Supply current	$\begin{aligned} & \text { SL640C } \\ & \text { SL641C } \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Conversion gain	SL640C	-3	0	+3	dB	
Conversion transconductance	SL641C	1.75	2.5	3.5	mmho	
Noise figure			10		dB	
Carrier input impedance			1		k Ω	
Signal input impedance	$\begin{aligned} & \text { SL640C } \\ & \text { SL641C } \end{aligned}$		500		$\begin{gathered} \Omega \\ \mathrm{k} \Omega \end{gathered}$	
Maximum input voltage	$\begin{aligned} & \text { SL640C } \\ & \text { SL641C } \end{aligned}$		$\begin{aligned} & 210 \\ & 250 \end{aligned}$		mV rms mV rms	
Signal leak	SL640C		-30	-18	dB	\{ Signal: 70 mV rms, 1.75 MHz
Carrier leak	SL640C		-30	-20	dB $\}$	$\left\{\begin{array}{l}\text { Carrier: } 100 \mathrm{mV} \mathrm{rms}, 28.25 \mathrm{MHz} \\ \text { Output: } 30 \mathrm{MHz}\end{array}\right.$
Signal leak	SL641C		-18	-12	dB \}	\{ Signal: $70 \mathrm{mV} \mathrm{rms}, 30 \mathrm{MHz}$
Carrier leak	SL641C		-25	-12	dB $\}$	$\left\{\begin{array}{l}\text { Carrier: } 100 \mathrm{mV} \mathrm{rms}, 28.25 \mathrm{MHz} \\ \text { Output: } 1.75 \mathrm{MHz}\end{array}\right.$
Intermodulation products	SL640C		-45	-35	dB	$\left\{\begin{array}{l} \text { Signal1: } 42.5 \mathrm{mV} \mathrm{rms}, 1.75 \mathrm{MHz} \\ \text { Signal2: } 42.5 \mathrm{mV} \text { rms, } 2 \mathrm{MHz} \\ \text { Carrier: } 100 \mathrm{mV} \mathrm{rms}, 28.25 \mathrm{MHz} \\ \text { Output: } 29.75 \mathrm{MHz} \end{array}\right.$
	SL641C		-45	-30	dB	$\left\{\begin{array}{l} \text { Signal 1: } 42.5 \mathrm{mV} \text { rms, } 30 \mathrm{MHz} \\ \text { Signal 2: } 42.5 \mathrm{mV} \text { rms, } 31 \mathrm{MHz} \\ \text { Carrier: } 100 \mathrm{mV} \mathrm{rms}, 28.25 \mathrm{MHz} \\ \text { Output: } 3.75 \mathrm{MHz} \end{array}\right.$

APPLICATION NOTES

The SL640C and SL641C require input and output coupling capacitors which normally should be chosen to present a low reactance compared with the input and output impedances (see Electrical Characteristics). However, for minimum carrier leak at high frequencies the signal input should be driven from a low impedance source, in which case the signal input capacitor reactance should be comparable with the source impedance. Pin 2 must be decoupled to earth via a capacitor which presents the lowest possible impedance at both carrier and signal frequencies. The presence of these frequencies at Pin 2 would give rise to poor rejection figures and to distortion.
The output of the SL641C is an open collector. If both sidebands are developed across the load its dynamic impedance must be less than 800 ohms. If only one sideband is significant this may be raised to 1600 ohms and it may be further raised if the maximum input swing of 200 mV rms is not used. The DC resistance of the load should not exceed 800 ohms. If the circuit is connected to a +6 V supply and the load impedance to +9 V , the load may be increased to 1.8 kilohms at AC or DC. This, of course increases the gain of the circuit.
There are two outputs from the SL640C; one is a voltage source of output impedance 350 ohms and 8 pF and the other is the emitter of an emitter follower connected to the first output. The output on pin 6 requires a discrete load resistor of not less than 1500 ohms to ground. The emitter follower
output should not be used to drive capacitive loads as emitter followers act as detectors under such circumstances with resultant distortion and harmonic generation. Frequencyshaping components may be connected to the voltage output and the shaped signal taken from the emitter follower.

Fig. 4 Signal and carrier leak adjustment
Signal and carrier leak may be reduced by altering the bias on the carrier and signal input pins, as shown in Fig.4. With carrier but no signal R1 is adjusted for minimum carrier leak. A similar network is connected to the carrier input and with signal and carrier present, signal leak is minimised by means of R2.

PLESSEY

SL1521A \& C

300MHz WIDEBAND AMPLIFIERS

The SL1521A and C are wideband amplifiers intended for use in successive detection logarithmic IF strips operating at centre frequencies of up to 200 MHz . It is a plug in replacement for the SL521 series of RF amplifiers. The midband voltage gain of the SL1521 is typically 12 dB . The SL1521A and C differ mainly in the tolerance of voltage gain.

APPLICATIONS

- Radar IF Strips
- Wideband Amplification

ABSOLUTE MAXIMUM RATINGS

Storage temperature

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
150^{\circ} \mathrm{C} \\
250^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

Operating temperature
Maximum chip operating temperature
Chip to ambient thermal resistance
Test circuits: see Fig. 8

Fig. 3 Voltage gain v. frequency

Fig. 1 Pin connections

Fig. 2 Circuit diagram

Fig. 4 Maximum rectified output current v. temperature

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Temperature $=+22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Supply voltage $=+5.2 \mathrm{~V}$
DC connection between input and bias pins.

Characteristic	Circult	Value			Units	Condilions
		Min.	Typ.	Max.		
Voltage gain, $f=120 \mathrm{MHz}$	SL1521A	11.5		12.5	dB	(3 mV rms input
	SL1521C	10.8		13.1	dB	\{ 50 ohms source
Voltage gain, $\mathrm{f}=160 \mathrm{MHz}$	SL1521A	11.2		12.8	dB	(8pF load $+500 \Omega$
	SL1521C	10.6		13.4	dB	
Upper cut-off frequency	SL1521A	315	350		MHz	50 ohms source
	SL1521C	300	350		MHz	50 ohms source
Lower cut-off frequency	All types		6	10	MHz	50 ohms source
Propagation delay	All types		0.6		ns	
						$\left(\begin{array}{l}\mathrm{f}=120 \mathrm{MHz} \\ 0.5 \mathrm{~V} \text { rms input }\end{array}\right.$
Maximum rectified video output	SL1521A	0.95		1.05	mA	$\left\{\begin{array}{l}0.5 \mathrm{~V} \text { rms input }\end{array}\right.$
current	SL1521C	0.90		1.20	mA	8pF load, 500 ohms in paralle!
Variation of gain with supply voltage	All types		1.0		dBN	
Variation of maximum rectified output current with supply voltage	All types		30		\% N	
Maximum input signal before overload Noise figure	All types		1.5 3		V rms	See note below $f=120 \mathrm{MHz}$, source
Noise figure Supply current	All types	10.0	3 15.0	4.5 20.0	dB	$f=120 \mathrm{MHz}$, source resistance optimised
Maximum RF output voltage	All types	1.0			V p-p	$\mathrm{f}=120 \mathrm{MHz}$

Fig. 5 Typical noise figure v. temperature

Fig. 6 Input admittance with open-circuit output

Operating Notes

The amplifiers are intended for use directly coupled, as shown in Fig. 7.

The seventh stage in an untuned cascade will be giving virtually full output on noise.
Noise may be reduced by inserting a single tuned circuit in the chain. As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The choice of network is also controlled by the need to avoid distorting the logarithmic law; the network must give unity voltage transfer at resonance. A suitable network is shown in Fig. 9. The value of C1 must be chosen so that at resonance its admittance equals the total loss conductance across the tuned circuit.
A simple capacitor may not be suitable for decoupling the output line if many stages and fast rise times are required.
Values of positive supply line decoupling capacitor required for untuned cascades are given below. Smaller values can be used in high frequency tuned cascades.

The amplifiers have been provided with two earth leads to avoid the introduction of common earth lead inductance between input and output circuits. The equipment designer should take care to avoid the subsequent introduction of such inductance.

	Number of stages			
	6 or more	5	4	3
Minimum capacitance	$30 n F$	10 nF	3 nF	1 nF

Fig. 7 Direct coupled amplifier

Fig. 8 Suitable interstage tuned circuit

SL1523C

300MHz DUAL WIDEBAND LOGARITHMIC AMPLIFIER

The SL1523C consists of two SL1521's in series, and is intended to reduce the package count and improve the packing density in logarithmic strips at frequencies up to 200 MHz .

Absolute Maximum Ratings

(Non-Simultaneous)

The absolute maximum ratings are limiting values above which operating life may be shortened or satisfactory performance may be impaired.

Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Chip operating temperature:	$150^{\circ} \mathrm{C}$

Chip operating temperature :

Fig. 1 Pin connections (bottom view)

$$
\begin{array}{ll}
& 300^{\circ} \mathrm{C} / \mathrm{W} \\
\text { resistance }
\end{array}
$$

Chip-to-case thermal

$$
\text { resistance } \quad 95^{\circ} \mathrm{C} / \mathrm{W}
$$

Maximum instantaneous voltage at video output

$$
+12 V
$$

Supply voltage

$$
+9 V
$$

Fig. 2 SL1523 circuit diagram (each amp)

Fig. 4 Voltage gain v. frequency

Fig. 3 SL1523 block diagram

Fig. 5 Rectified output current v. input signal

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated) :
Temperature $=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Supply voltage $=+5.2 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	MIn.	Typ.	Max.		
Voltage gain	21		27	dB	$\begin{aligned} & f=120 \mathrm{MHz}, 3 \mathrm{mV} \text { rms input, } 50 \Omega \text { source } \\ & 4 \mathrm{pF} \text { load }+50 \Omega \end{aligned}$
Voltage gain	20		27	dB	$\begin{aligned} & f=160 \mathrm{MHz}, 3 \mathrm{mV} \text { rms input, } 50 \Omega \text { source } \\ & 4 \mathrm{pF} \text { load }+500 \Omega \end{aligned}$
Upper cut-off frequency	300	325		MHz	50Ω source
Lower cut-off frequency		8	10	MHz	50Ω source
Propagation delay		1.2		ns	
Maximum rectified video output current	1.6		2.0	mA	$f=120 \mathrm{MHz}, 0.5 \mathrm{~V}$ rms input, 4 pF load
Variation of gain with supply voltage		2.0		$d B / V$	
Variation of maximum rectified output current with supply voltage		30		\%V	
Maximum input signal before overload		1.5		$V \mathrm{rms}$	See note below
Noise figure		3		dB	$\dagger=120 \mathrm{MHz}$, source resistance optimised
Supply current	20	30	40	mA	
Maximum RF output voltage	1.0			$\checkmark \mathrm{p}-\mathrm{p}$	$f=120 \mathrm{MHz}$

Note: Overload occurs when the input signal reaches a level sufficient to forward bias the base-collector junction of TR1 on peaks.

Fig. 6 Maximum rectified output current v. temperature

Fig. 8 Input admittance with open circuit output

Fig. 7 Typical noise figure v. temperature

Fig. 9 Suitable interstage tuned circult

SL1613C

WIDEBAND LOG IF STRIP AMPLIFIER

The SL1613C is a bipolar monolithic integrated circuit wideband amplifier intended primarily for use in successive detection logarithmic IF strips, operating at centre frequencies between 10 MHz and 60 MHz . The devices provide amplification, limiting and rectification, are suitable for direct coupling and incorporate supply line decoupling. The mid-band voltage gain of the SL1613C is typically 12 dB .

FEATURES

Well Defined Gain
4.5dB Noise Figure

- High I/P Impedance
- Low O/P Impedance
- 150 MHz Bandwidth
- On-Chip Supply Decoupling

Low External Component Count

APPLICATIONS

- Logarithmic IF Strips with Gains up to 108dB and Linearity Better than 2dB
- Low Cost Radar
- Radio Telephone Field Strength Meters

Fig. 2 Circuit diagram

Fig. 1 Pin connections (top)

ABSOLUTE MAXIMUM RATINGS

Fig. 3 Voltage gain v. frequency

SL1613C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{A}}=+22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Supply voltage $=+6 \mathrm{~V}$
DC connection between input and bias pins

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Voltage gain	10	12	14	dB	$f=30 \mathrm{MHz}, \mathrm{R}_{\mathrm{s}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$
Upper cut-off frequency (Fig. 3)		150		MHz	$\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$
Lower cut-off frequency (Fig. 3)		5		MHz	$\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$
Propagation delay		2			
Max. rectified video output current (Figs. 4 and 5)	0.8	1.	1.3	mA	$\mathrm{f}=60 \mathrm{MHz}, \mathrm{V}_{\text {in }}=500 \mathrm{mV} \mathrm{rms}$
Variation of gain with supply voltage		0.7		dBN	
Variation of maximum rectified output current with supply voltage		25		$\% / V$	
Maximum input signal before overload		1.9		$V \mathrm{rms}$	See Note 1
Noise figure (Fig. 6)		4.5		dB	$f=60 \mathrm{MHz}, R_{s}=450 \Omega$
Maximum RF output voltage		1.2		Vp-p	
Supply current		15	20	mA	

Note 1. Overload occurs when the input signal reaches a level sufficient to forward bias the base collector junction of TR1 on peak.

Fig. 4 Rectified output current v. input signal

Fig. 6 Typical noise figure v. temperature

Fig. 5 Maximum rectified output current v. temperature

Fig. 7 Input admittance with open circuit output

Fig. 8 Direct coupled amplifiers

OPERATING NOTES

The amplifiers are intended for use directly coupled, as shown in Fig. 8.

The seventh stage in an untuned cascade will be giving virtually full output on noise.

Noisc may be reduced by inserting a single tuned circuit in the chain. As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The choice of network is also controlled by the need to avoid distorting the logarithmic law; the network must give unity voltage transfer at resonance. A suitable network is shown in Fig. 9. The value of C1 must be chosen so that at resonance its admittance equals the total loss conductance across the tuned circuit. Resistor R1 may be introduced to improve the symmetry of filter response, providing other values are adjusted for unity gain at resonance.

A simple capacitor may not be suitable for decoupling the output line if many stages and fast rise times are required.

Values of positive supply line decoupling capacitor required for untuned cascades are given below. Smaller values can be used in high frequency tuned cascades.

Fig. 9 Suitable interstage tuned circuit

The amplifiers have been provided with two earth leads to avoid the introduction of common earth lead inductance between input and output circuits. The equipment designer should take care to avoid the subsequent introduction of such inductance.

The 500pF supply decoupling capacitor has a resistance of, typically, 10Ω. It is a junction type having a low breakdown voltage and consequently the positive supply current will increase rapidly if the supply voltage exceeds 7.5 V (See Absolute Maximum Ratings).

Fig. 10 Circuit diagram of low cost strip

SL1613C

SL2363C \& SL2364C

VERY HIGH PERFORMANCE TRANSISTOR ARRAYS

The SL2363C and SL2364C are arrays of transistors internally connected to form a dual long-tailed pair with tail transistors. They are monolithic integrated circuits manufactured on a very high speed bipolar process which has a minimum useable fT of 2.5 GHz , (typically 5 GHz).

The SL2363 is in a 10 lead TO5 encapsulation.
The SL2364 is in a 14 lead DIL plastic encapsulation and a high performance Dilmon encapsulation.

FEATURES

Complete Dual Long-Tailed Pair in One Package.

- Very High $\mathrm{f} T$ - Typically 5 GHz
- Very Good Matching Including Thermal Matching

APPLICATIONS

Wide Band Amplification Stages

- 140 and 560 MBit PCM Systems
- Fibre Optic Systems
- High Performance Instrumentation
- Radio and Satellite Communications

Fig. 1 Pin connections (top view)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{a m b}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristics	Value			Units	Conditions
	Min.	Typ.	Max.		
BVCBO	10	20		V	$I^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$
LVCEO	6	9		V	$\mathrm{l}^{\mathrm{C}}=5 \mathrm{~mA}$
BVEBO	2.5	5.0		V	$\mathrm{IE}=10 \mu \mathrm{~A}$
BVCIO	16	40		\checkmark	$\mathrm{IC}=10 \mu \mathrm{~A}$
$\mathrm{h}_{\text {FE }}$	20	80			$\mathrm{IC}=8 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=2 \mathrm{~V}$
${ }_{T}$	2.5	5		GHz	$\mathrm{IC}($ Tail $)=8 \mathrm{~mA}, \mathrm{VCE}=2 \mathrm{~V}$
$\Delta V_{B E}$ (See note 1)		2	5	mV	1 C (Tail) $=8 \mathrm{~mA}, \mathrm{VCE}=2 \mathrm{~V}$
$\Delta V_{B E / T A M B}$		-1.7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{I}($ Tail $)=8 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=2 \mathrm{~V}$
$\mathrm{C}_{\text {CB }}$		0.5	0.8	pF	$\mathrm{V}_{\text {CB }}=0$
${ }^{\mathrm{Cl}}$		1.0	1.5	pF	$\mathrm{V}_{\mathrm{Cl}}=0$

NOTE 1. $\Delta V_{B E}$ applies to $\left|V_{B E Q 3}-V_{B E Q 4}\right|$ and $\left|V_{B E Q 5}-V_{B E Q 6}\right|$

SL2363/SL2364

TYPICAL CHARACTERISTICS

Fig. 2 Collector current

ABSOLUTE MAXIMUM RATINGS

Maximum individual transistor dissipation 200 mW

Fig. 3 Chip temperature

The substrate should be connected to the most negative point of the circuit to maintain electrical isolation between the transistors.

Prelimináry Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.
Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

SL2521 EXP

1.3GHz DUAL WIDEBAND LOGARITHMIC AMPLIFIER

The SL2521 is a revolutionary monolithic integrated circuit designed on an advanced 3 micron oxide isolated bipolar process. The amplifier is a successive detection type which provides linear gain and accurate logarithmic signal compression over a wide bandwidth.
When six stages (three SL2521s) are cascaded the strip can be used for IFs between $30-650 \mathrm{MHz}$ whilst achieving greater than 65 dB dynamic range with a \log accuracy of $< \pm 1.0 \mathrm{~dB}$. The balanced limited output also offers accurate phase information with input amplitude. One log strip therefore offers limited IF output, phase and video information.

FEATURES

- 1.3 GHz Bandwidth (-3dB)
- Balanced IF Limiting
- 3ns Rise Times/5ns Fall Times (Six Stages)
- 20ns Pulse Handling (Six Stages)
- Temperature Stabilised
- Full Military Temperature Range/Surface Mountable

APPLICATIONS

- Ultra Wideband Log Receivers
- Channelised Receivers
- Monopulse Applications

Fig. 1 Pin connections - top view

FUTURE DEVELOPMENTS

It is the intention of Plessey Semiconductors Ltd. to offer the SL2521 EXP fully guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with a second variant guaranteed over $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Fig. 2 Circuit diagram (single stage B only)

SL2521

DESCRIPTION

Logarithmic and limiting amplifiers are used extensively in radar and EW equipment, where phase performance and narrow pulse handling capability are essential, coupled with log accuracy (linearity) and wide dynamic range.

The video output is useable up to 600 MHz and offers excellent temperature tracking. Due to the compact design, fast rise and fall times can be achieved and the IC does not suffer from 'pulse stretching' as with many discrete hybrid log modules.

ELECTRICAL CHARACTERISTICS

Test condilions (unless otherwise stated):
$\mathrm{Vcc}=6 \mathrm{~V} \quad \mathrm{Rs}=50 \Omega \quad \mathrm{RL}=1 \mathrm{k} \Omega$; For single stage

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Small signal gain	9.5	10	10.5	dB	$f=300 \mathrm{MHz}: \mathrm{Tamb}=25^{\circ} \mathrm{C}$
IF upper cut-off frequency		1.3		GHz	-3dB wrt 200 MHz
Detected output (bandwidth)		600			50% output current wrt 200 MHz
Lower cut-off frequency		30		MHz	
Temperature variation detected output		± 5		\%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature variation of If gain		± 0.2		dB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ripple in band		± 0.25		dB	100 to 400 MHz
Supply current		40		mA	

Fig. 3 Schematic diagram showing configuration of SD amplifier

LOGARITHMIC LINEARITY/ACCURACY

Fig. 4 Detected output and logarithmic linearity at 450 MHz . Detected output at 100 MHz also imposed (6-stage strip)

Fig. 5 Logarithmic linearity at 100 MHz showing greater than $62 d B$ of dynamic range with accuracy of $\pm 0.5 d B$ (6-stage strip)

TYPICAL CHARACTERISTICS FOR 6-STAGE STRIP (as shown in Fig.3)

Fig. 6 IF bandwidth measured from output 1. Output 2 terminated into 50Ω

Fig. 7 Video bandwidth

Fig. 8 IF limiting v. temperature with CW input at 450 MHz

Fig. 9 Video output v. CW input at $60,120,450$ and 600 MHz at $25^{\circ} \mathrm{C}$

Fig. 10 Video output v. temperature at 450 MHz

Fig. 11 Departure trom linear phase of a 6-stage SD log strip

Fig. 12 Circuit diagram for 6-stage log strip (results shown in Figs. 4 to 11 were achieved with this circuit)

SL3046C

GENERAL PURPOSE NPN TRANSISTOR ARRAY

The SL3046C is a monolithic array of five general purpose transistors arranged as a differential pair and three isolated transistors.

FEATURES

5 General Purpose Monolithic Transistors-

Good Thermal Tracking

- Wide Operating Current Range
- Suitable for Operation from DC to VHF
- Low Noise Performance 3.5 dB at 1 kHz

Fig. 2 Typical small signal current gain (common emitter vs. collector current)

Fig. 3 Base current matching vs. collector current

Fig. 1 Pin connections

Fig. 4 Typical base emitter voltage and base emitter volt matching vs. collector current

Fig. 5 Typical base emitter volt matching vs. chip temperature

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Static characteristics						
Emitter base leakage	Iebo		0.1	1	$\mu \mathrm{A}$	$V_{E b}=6 \mathrm{~V}$
Collector emitter breakdown	LVCeo	15	20		V	$\mathrm{Ic}^{\text {c }}=1 \mathrm{~mA}$
Collector-base breakdown	BVcbo	20	50		V	$\mathrm{Ic}=10 \mu \mathrm{~A}$
Collector-subtrate breakdown	BVcıo	20	70		V	$\mathrm{Ic}=10 \mu \mathrm{~A}$
Collector cut off current	Iceo			0.5	$\mu \mathrm{A}$	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$
	Icbo			40	nA	$V_{\text {CB }}=10 \mathrm{~V}$, $\mathrm{IB}^{\text {c }}=0$
Base emitter voltage	$\mathrm{Vbe}_{\text {(ON) }}$		0.71		V	V ce $=3 \mathrm{~V}$, $\mathrm{Ic}=1 \mathrm{~mA}$
Collector-emitter saturation	Vce(SAT)		0.23		V	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{Ic}=10 \mathrm{~mA}$
Static forward current-transistor ratio	Hfe		120			$\mathrm{V}_{\text {ce }}=3 \mathrm{~V}, \mathrm{Ic}=10 \mathrm{~mA}$
		40	100			$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
			50			$V_{\text {CE }}=3 \mathrm{~V}, \mathrm{lc}=10 \mu \mathrm{~A}$
Input offset current differential pair	110		0.2	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}$, $\mathrm{IC}=1 \mathrm{~mA}$
Input offset voltage differential pair	$\Delta V_{\text {be1 }}$		0.35	5	mV	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Input offset voltage isolated transistors	$\triangle V_{\text {be2 }}$		0.45	5	mV	$\mathrm{V}_{\text {ce }}=3 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Temperature coefficient of input offset voltage	$\frac{\partial \Delta V_{B E}}{\partial T}$		2		$\mu \mathrm{V}^{\circ} \mathrm{C}$	$V_{C E}=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$
Temperature coefficient of base emitter voltage	$\frac{\partial V_{\text {be(}}(\mathrm{ON})}{\partial \mathrm{T}}$		-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {ce }}=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$
Dynamic characteristics						
Wideband noise figure	NF		3.25		dB	$\begin{aligned} & f=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \mathrm{VCE}=3 \mathrm{~V}, \mathrm{Ic}=100 \mu \mathrm{~A} \\ & \text { Source resistance }=1 \mathrm{k} \Omega \end{aligned}$
Forward transfer admittance	$\mathrm{Yfe}_{\text {f }}$		31-j1.5		mmho	
Input admittance	Yie		0.3-j0.04		mmho	$f=1 \mathrm{MHz}$
Output admittance	Yoe		$0.001+\mathrm{j} 0.03$		mmho	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$
Reverse transfer admittance	Yre		0.000-j0.003		mmho	
Forward current transfer ratio	hte		110			
Short circuit input impedance	hie		3.5		k Ω	
Open circuit output admittance	hoe		15.6		$\mu \mathrm{mho}$	$\mathrm{f}=1 \mathrm{kHz}$
Open circuit reverse voltage transfer ratio	hre		$1.8 \times 10-4$			$\mathrm{V} C E=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$
Gain bandwidth product	$f \uparrow$	300	500		MHz	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}$
Emitter base capacitance	Ceb		1.2		pF	$V_{E b}=3 \mathrm{~V}, \mathrm{IE}=0$
Collector base capacitance	Cob		0.65		pF	$\mathrm{V}_{\text {Cb }}=3 \mathrm{~V}, \mathrm{lc}=0$
Collector substrate capacitance	Ca		2.55		pF	$\mathrm{Vcs}=3 \mathrm{~V}, \mathrm{Ic}=0$

NOTE 1. Typical values are for design guidance only

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified performance may be impaired.

All electrical ratings apply to individual transistors; thermal ratings apply to total package dissipation.

The isolation pin must always be negative with respect to the collectors.
$\begin{array}{ll}\text { Chip-to-ambient thermal resistance } & 175^{\circ} \mathrm{C} / \mathrm{W} \text { (DP14) } \\ \text { Storage temperature } & -55^{\circ} \mathrm{C} \text { to }+1125^{\circ} \mathrm{C} \mid(\mathrm{DP} 14) \\ \text { Junction operating temperature } & +125^{\circ} \mathrm{C} \text { (DP14) }\end{array}$
$\begin{array}{ll}V_{C B O}=20 \mathrm{~V} & V_{E B O}=6 \mathrm{~V} \\ V_{C E O}=15 \mathrm{~V} & \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}\end{array}$

SL3127C

HIGH FREQUENCY NPN TRANSISTOR ARRAY

The SL3127C is a monolithic array of five high frequency low current NPN transistors in a 16 lead DIL package. The transistors exhibit typical fis of 1.6 GHz and wideband noise figures of 3.6 dB . The SL3127C is pin compatible with the CA3127.

FEATURES

- f T Typically 1.6 GHz
- Wideband Noise Figure 3.6 dB
- $V_{B E}$ Matching Better Than 5 mV

Fig. 1 Pin connections SL3127

APPLICATIONS

- Wide Band Amplifiers
- PCM Regenerators
- High Speed Interface Circuits
- High Performance Instrumentation Amplifiers
- High Speed Modems

Fig. 2 Transition frequency $\left(f_{T}\right) v$. collector current $\left(V_{C B}=2 \mathrm{~V}, f=200 \mathrm{MHz}\right)$

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Static characteristics						
Collector base breakdown	BVcbo	20	30		v	$I_{\text {c }}=10 \mu \mathrm{~A}, l_{\mathrm{l}}=0$
Collector emitter breakdown	LVceo	15	18		V	$\mathrm{Ic}_{\mathrm{c}}=1 \mathrm{~mA}, \mathrm{ls}_{\mathrm{s}}=0$
Collector substrate breakdown (isolation)	BVCıo	20	55		V	$I^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=\mathrm{IE}_{\mathrm{E}}=0$
Base to isolation breakdown	BVвı	10	20		V	
Base emitter voltage	Vbe	0.64	0.74	0.84	V	$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}$, IC $=1 \mathrm{~mA}$
Collector emitter saturation voltage	$\mathrm{Vce}(\mathrm{SAT})$		0.26	0.5	V	$\mathrm{Ic}=10 \mathrm{~mA}$, $\mathrm{ls}=1 \mathrm{~mA}$
Emitter base leakage current	lebo		0.1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Eb}}=4 \mathrm{~V}$
Base emitter saturation voltage	$V_{\text {be(}}(\mathrm{SAT})$		0.95		V	$\mathrm{lc}=10 \mathrm{~mA}$, $\mathrm{ls}_{\mathrm{s}}=1 \mathrm{~mA}$
Base emitter voltage difference, all transistors	$\Delta V_{\text {be }}$		0.45	5	mV	$\mathrm{V}_{\text {ce }}=6 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Input offset current	$\Delta \mathrm{ls}$		0.2	3	$\mu \mathrm{A}$	$V_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Temperature coefficient of $\Delta \mathrm{V}_{\mathrm{BE}}$	$\frac{\partial \Delta \mathrm{V}_{\mathrm{BE}}}{\partial T}$		2.0		$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}$, $\mathrm{Ic}=1 \mathrm{~mA}$
Temperature coefficient of VBE	$\frac{\partial V_{B E}}{\partial T}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{C E}=6 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}$
Static forward current ratio	Hfe	35	95			$\mathrm{V}_{\text {ce }}=6 \mathrm{~V}, \mathrm{lc}=5 \mathrm{~mA}$
		35	100			$\mathrm{VCE}=6 \mathrm{~V}, \mathrm{lc}=0.1 \mathrm{~mA}$
		40	100			$\mathrm{V}_{\text {ce }}=6 \mathrm{~V}$, $\mathrm{Ic}=1 \mathrm{~mA}$
Collector base leakage	Icbo		0.3		nA	$V_{\text {cb }}=16 \mathrm{~V}$
Collector isolation leakage	1 co		0.6		nA	$\mathrm{VCl}=20 \mathrm{~V}$
Base isolation leakage	Iвıо		100		nA	$\mathrm{V}_{\mathrm{BI}}=5 \mathrm{~V}$
Emitter base capacitance	Ceb		0.4		pF	$V_{\text {Eb }}=0 V$
Collector base capacitance	Ccb		0.4		pF	$\mathrm{Vcb}=0 \mathrm{~V}$
Collector isolation capacitance	Ca		0.8		pF	$\mathrm{Val}=0 \mathrm{~V}$
Dynamic characteristics						
Transition frequency	$\mathrm{ft}^{\text {t }}$		1.6		GHz	V ce $=6 \mathrm{~V}$, $\mathrm{Ic}=5 \mathrm{~mA}$
Wideband noise figure	NF		3.6		dB	$f=60 \mathrm{MHz} \mathrm{V}^{\mathrm{Vcc}=6 \mathrm{~V}}$
Knee of $1 / f$ noise curve			1		kHz	$\left\{\begin{array}{l}\mathrm{lc}=2 \mathrm{~mA} \\ \mathrm{Rs}=200 \Omega\end{array}\right.$

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life maybe shortened or specified parameters may be degraded.
All electrical ratings apply to individual transistors. Thermal ratings apply to the total package.
The isolation pin (substrate) must be connected to the most negative voltage applied to the package to maintain electrical isolation.
$V_{C B}=20$ volt
$V_{E B}=4.0$ volt
$V_{C E}=15$ volt
$\mathrm{V}_{\mathrm{Cl}}=20 \mathrm{volt}$
ic $=20 \mathrm{~mA}$
Maximum individual transistor dissipation 200 mWatt
Storage temperature $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Max junction temperature $150^{\circ} \mathrm{C}$
Package thermal resistance (${ }^{\circ} \mathrm{C} /$ watt): -

Package Type	DC16	DP16
Chip to case	40	
Chip to ambient	120	180

NOTE:

If all the power is being dissipated in one transistor, these thermal resistance figures should be increased by

Fig. 3 Transition frequency (f_{T}) v. collector base voltage

$$
\left(I_{C}=5 \mathrm{~mA}, \text { Frequency }=200 \mathrm{MHz}\right)
$$

Fig. 4 Variation of transition frequency (f_{T}) with temperature

Fig. 5 DC current gain v. collector current

Fig. $6 Z_{11}$ (derived from scattering parameters) v. frequency $\left(Z_{11} \bumpeq r_{b \infty}\right)$

PLESSEY

SL3145C,E

1.2GHz HIGH FREQUENCY NPN TRANSISTOR ARRAYS

The SL3145C is a monolithic array of five high frequency low current NPN transistors. The SL3145C consists of 3 isolated transistors and a differential pair in a 14 lead DIL package. The transistors exhibit typical fts of 1.6 GHz and wideband noise figures of 3.0 dB . The device is pin compatible with the SL3045C. The SL3145E has guaranteed CCB and ft figures.

FEATURES

- TT Typically 1.6 GHz
- Wideband Noise Figure 3.0 dB
- $V_{\text {BE }}$ Matching Better Than 5 mV

APPLICATIONS

- Wide Band Amplifiers
- PCM Regenerators
- High Speed Interface Circuits
- High Performance Instrumentation Amplifiers
- High Speed Modems

Fig. 1 Pin connections SL3145

Ordering information	
SL3145C-DC	Ceramic/Metal
SL3145C-DP	Plastic
SL3145E-DP	Plastic

Fig. 2 Transition frequency (ft) v. collector current ($V_{C B}=2 V, f=200 \mathrm{MHz}$)

SL3145

ELECTRICAL CHARACTERISTICS
Test conditions (unless otherwise stated):
$T_{\text {amb }}=22^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Static characteristics						
Collector base breakdown	BVcbo	20	30		V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{le}=0$
Collector emitter breakdown	LVceo	15	18		V	$\mathrm{lc}=1 \mathrm{~mA}, \mathrm{l}_{\mathrm{s}}=0$
Collector substrate breakdown (isolation)	BVcio	20	55		V	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{E}}=0$
Base to isolation breakdown	BVвіо	10	20		V	$\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}, \mathrm{IC}^{\text {c }}=\mathrm{I}_{\mathrm{E}}=0$
Base emitter voltage	Vbe	0.64	0.74	0.84	V	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Collector emitter saturation voltage	$\mathrm{Vce}(\mathrm{SAT}$)		0.26	0.5	V	$\mathrm{lc}^{\text {c }}=10 \mathrm{~mA}, \mathrm{ls}=1 \mathrm{~mA}$
Emitter base leakage current	Iebo		0.1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Eb}}=4 \mathrm{~V}$
Base emitter saturation voltage	Vbe(SAT)		0.95		V	$\mathrm{lc}^{\text {c }}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{s}}=1 \mathrm{~mA}$
Base emitter voltage difference, all transistors except TR1,TR2	$\Delta V_{\text {be }}$		0.45	5	mV	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Base emitter voltage difference TR1, TR2	$\Delta \mathrm{Vbe}$		0.35	5	mV	$\mathrm{VCE}=6 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$
Input offset current (except for TR1, TR2)	Δl_{B}		0.2	3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Input offset current TR1, TR2	$\Delta \mathrm{l}$		0.2	2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Temperature coefficient of $\quad \Delta \mathrm{VBE}^{\text {be }}$	$\frac{\partial \Delta V_{B E}}{\partial T}$		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Temperature coefficient of Vbe	$\frac{\partial V_{B E}}{\partial T}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Static forward current ratio	Hfe	40	100			$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=1 \mathrm{~mA}$
Collector base leakage	Icbo		0.3		nA	$\mathrm{V}_{\text {cb }}=16 \mathrm{~V}$
Collector isolation leakage	Icıo		0.6		nA	$\mathrm{V}_{\mathrm{cl}}=20 \mathrm{~V}$
Base isolation leakage	Iвıo		100		nA	$\mathrm{V}_{\mathrm{Bl}}=5 \mathrm{~V}$
Emitter base capacitance	Ceb		0.4		pF	$\mathrm{V}_{\mathrm{Eb}}=0 \mathrm{~V}$
Collector base capacitance						
SL3145C	Ccb		0.4		pF	$V_{C B}=0 \mathrm{~V}$
SL3145E			0.4	1.1	pF	$\mathrm{V}_{\text {cb }}=0 \mathrm{~V}$
Collector isolation capacitance	Cc		0.8		pF	$\mathrm{VCl}=0 \mathrm{~V}$
Dynamic characteristics						
Transition frequency						
SL3145C	$f{ }^{\text {f }}$		1.6		GHz	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{lc}=5 \mathrm{~mA}$
SL3145E		1.2			GHz	$\mathrm{VCE}=6 \mathrm{~V}, \mathrm{lc}=10 \mathrm{~mA}$
Wideband noise frequency	NF		3.0		dB	$\begin{aligned} & V_{C E}=2 \mathrm{~V}, \mathrm{Rs}=1 \mathrm{k} \Omega \\ & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{f}=60 \mathrm{MHz} \end{aligned}$
Knee of 1/f noise curve			1		kHz	$\begin{aligned} & \mathrm{VCE}=6 \mathrm{~V}, \mathrm{Rs}=200 \Omega \\ & \mathrm{tc}=2 \mathrm{~mA} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life maybe shortened or specified parameters may be degraded.
All electrical ratings apply to individual transistors. Thermal ratings apply to the total package.
The isolation pin (substrate) must be connected to the most negative voltage applied to the package to maintain electrical isolation.
$V_{C B}=20$ volt
$V_{E B}=4.0 \mathrm{volt}$
$V_{C E}=15$ volt
$\mathrm{V}_{\mathrm{C}}=20 \mathrm{volt}$
$\mathrm{lc}=20 \mathrm{~mA}$
Maximum individual transistor dissipation 200 mWatt
Storage temperature $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Max junction temperature $150^{\circ} \mathrm{C}$

Package thermal resistance (${ }^{\circ} \mathrm{C} /$ watt): -

Package Type	DC14	DP14
Chip to case	40	
Chip to ambient	120	180

NOTE:
If all the power is being dissipated in one transistor, these thermal resistance figures should be increased by $100^{\circ} \mathrm{C} /$ watt.

Fig. 3 Transition frequency $\left(f_{T}\right) v$. collector base voltage ($/ c=5 m A$, frequency $=200 \mathrm{MHz}$)

Fig. 4 Variation of transition frequency ($f \tau$) with temperature

Fig. 5 DC current gain v. collector curent

Fig. $6 Z_{11}$ (derived from scattering parameters) v. frequency $\left(Z_{11} \simeq r 66^{\prime}\right)$

SL6270C

GAIN CONTROLLED PREAMPLIFIER

The SL6270C is a silicon integrated circuit combining the functions of audio amplifier and voice operated gain adjusting device (VOGAD).
It is designed to accept signals from a low sensitivity microphone and to provide an essentially constant output signal for a 50 dB range of input. The dynamic range, attack and decay times are controlled by external components.

FEATURES

Constant Output Signal
Fast Attack

- Low Power Consumption
- Simple Circuitry

APPLICATIONS

Fig. 1 Pin connections, SL6270C - CM (bottom view)

Fig. 2 Pin connections, SL6270C - DP (top view)

Fig. 3 SL6270C block diagram

SL6270C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
Supply voltage Vcc: 6V
Input signal frequency: 1 kHz
Ambient temperature: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Test circuit shown in Fig. 4

Characteristic	Value			Units	Conditions	
	Min.	Typ.	Max.			
Supply current		5	10	mA		
Input impedance		150		Ω	Pin 4 or 5	
Differential input impedance		300		Ω		
Voltage gain	40	52		dB	$72 \mu \mathrm{~V}$ rms input pin 4	
Output level	55	90	140	mV rms	4 mV rms input pin 4	
THD		2	5	$\%$	90 mV rms input pin 4	
Equivalent noise input voltage		1		$\mu \mathrm{~V}$	300Ω source, 400 Hz to 25 kHz bandwidth	

N.B. If input not $A C$ coupled the resistance between pins 4 and 5 must be less than 10 ohms.

Fig. 4 SL6270C test and application circuit

APPLICATION NOTES

Voltage gain

The input to the SL6270C may be single ended or differential but must be capacitor coupled. In the single-ended mode the signal can be applied to either input, the remaining input being decoupled to ground. Input signals of less than a few hundred microvolts rms are amplified normally but as the input level is increased the AGC begins to take effect and the output is held almost constant at 90 mV rms over an input range of 50 dB .
The dynamic range and sensitivity can be reduced by reducing the main amplifier voltage gain. The connection of a 1 k resistor between pins 7 and 8 will reduce both by approximately 20 dB . Values less than 680Ω are not advised.

Frequency response

The low frequency response of the SL6270C is determined by the input, output and coupling capacitors. Normally the coupling capacitor between pins 2 and 7 is chosen to give a -3 dB point at 300 Hz ,

Fig. 5 SL6270C frequency response
corresponding to $2.2 \mu \mathrm{~F}$, and the other capacitors are chosen to give a response to 100 Hz or less.

The SL6270C has an open loop upper frequency response of a few MHz and a capacitor should be connected between pins 7 and 8 to give the required bandwidth.

Attack and decay times

Normally the SL6270C is required to respond quickly by holding the output level almost constant as the input is increased. This 'attack time', the time taken for the output to return to within 10% of the original level following a 20 dB increase in input level, will be approximately 20 ms with the circuit of Fig. 4 . It is determined by the value of the capacitor connected between pin 1 and ground and can be calculated approximately from the formula:

$$
\text { Attack time }=0.4 \mathrm{~ms} / \mu \mathrm{F}
$$

The decay time is determined by the discharge rate of the capacitor and the recommended circuit gives a decay rate of $20 \mathrm{~dB} /$ second. Other values of resistance between pin 1 and ground can be used to obtain different results.

Fig. 6 Voltage gain (single ended input) (typical)

Fig. 7 Overload characteristics (typical)

Fig. 8 Typical Intermodulation distortion (1.55 and 1.85 kHz tones)

Fig. 9 Open loop frequency response (typical)

SL6270C

PLESSEY

SL6310C

SWITCHABLE AUDIO AMPLIFIER

The SL6310C is a low power audio amplifier which can be switched off by applying a mute signal to the appropriate pin. Despite the low quiescent current consumption of 5 mA (only 0.6 mA when muted) a minimum output power of 400 mW is available into an 8Ω load from a 9 V supply.

FEATURES

- Can be Muted with High or Low State Inputs
- Operational Amplifier Configuration
- Works Over Wide Voltage Range

APPLICATIONS

Audio Amplifier for Portable Receivers

- Power Op. Amp
- High Level Active Filter

QUICK REFERENCE DATA

- Supply Voltage: 4.5 V to 13.6 V
- Voltage Gain: 70dB
- Output into 8Ω on 9 V Supply: 400 mW

Fig. 1 Pin connections SL6310C - (top view)

Fig. 2 SL6310C test circuit

ABSOLUTE MAXIMUM RATINGS

Supply voltage: 15 V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SL6310C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage Vcc: 9V
Ambient temperature : $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Mute facility: Pins 7 and 8 open circuit frequency $=1 \mathrm{kHz}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply current		5.0	7.5	mA	
Supply current muted (A)		0.55	1	mA	Pin 7 via 100k to earth
Supply current muted (B)		0.6	0.9	mA	$\operatorname{Pin} 8=\mathrm{Vcc}$
Input offset voltage		2	20	mV	$\mathrm{Rs} \leqslant 10 \mathrm{k}$
Input offset current		50	500	nA	
Input bias current (Note 1)		0.2	1	$\mu \mathrm{A}$	
Voltage gain	40	70		dB	
Input voltage range		2.1		\checkmark	$\mathrm{Vcc}=4.5 \mathrm{~V}$
		10.6		V	$V \mathrm{Vcc}=13 \mathrm{~V}$
CMRR	40	60		dB	$\mathrm{Rs} \leqslant 10 \mathrm{k}$
Output power	400	500		mW	$\mathrm{RL}=8 \Omega$
THD		0.4	3	\%	$\begin{aligned} & \text { Pout }=400 \mathrm{~mW}, \\ & \text { Gain }=28 \mathrm{~dB} \end{aligned}$

NOTE

1. The input bias current flows out of pins 1 and 2 due to $P N P$ input stage

Fig. 3 SL6310 lamp driver

OPERATING NOTES

Mute facility

The SL6310C has two mute control pins to allow easy interfacing to inputs of high or low levels. Mute control ' A ', pin 7 , is left open circuit or connected to a voltage within 0.65 volt of Vcc (via a $100 \mathrm{k} \Omega$ resistor) for normal operation. When the voltage on pin 7 is reduced to within 1 volt of earth (via a $100 \mathrm{k} \Omega$ resistor) the SL6310C is muted.

Mute control ' B ', pin 8, is left open circuit or connected to a voltage less than 1 volt for normal operation: a voltage greater than 2.5 V on pin 8 mutes the device. The input resistance at pin 8 is around $100 \mathrm{k} \Omega$ and is suitable for interfacing with CMOS.

Only one mute control pin may be used at any time; the unused pin must be left open circuit.

Audio amplifier

As the SL6310C is an operational amplifier it is easy to obtain the voltage gain and frequency response required. To keep the input impedance high it is wise to feed the signal to the non-inverting input as shown

Fig. 4 SL6310C servo amplifier
in Fig. 2. In this example the input impedance is approximately $100 \mathrm{k} \Omega$. The voltage gain is determined by the ratio ($\mathrm{R} 3+\mathrm{R} 4$)/R3 and should be between 3 and 30 for best results. The capacitor in series with R3, together with the input and output coupling capacitors, determines the low frequency rolloff point. The upper frequency limit is set by the device but can be restricted by connecting a capacitor across R4.
The output and power supply decoupling capacitors have to carry currents of several hundred milliamps and should be rated accordingly.
Applications include hand-held radio equipment, hi-fi headphone amplifiers and line drivers.

Operational amplifier

It is impossible to list all the application possibilities in a single data sheet but the SL6310C offers considerable advantages over conventional devices in high output current applications such as lamp drivers (Fig.3) and servo amplifiers (Fig.4).
Buffer and output stages for signal generators are another possibility together with active filter sections requiring a high output current.

Fig. 5 Gain v. frequency

Fig. 7 Supply current v. supply voltage

Fig. 6 Gain v. supply voltage

Fig. 8 Output power v. supply voltage at 5% (max) distortion

SL6310C

SL6440C

HIGH LEVEL MIXER

The SL6440 is a double balanced mixer intended for use in radio systems up to 150 MHz . A special feature of the circuit allows external selection of the DC operating conditions by means of a resistor connected between pin 11 (bias) and V cc. When biased for a supply current of 50 mA the SL6440 offers a 3rd order intermodulation intercept point of typically +30 dBm , a value previously unobtainable with integrated circuits. This makes the device suitable for many applications where diode ring mixers had previously been used and offers the advantages of a voltage gain, low local oscillator drive requirement and superior isolation.

The SL6440C (in a 16 -lead DIL plastic package) is specified for operation from $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage and output pins: 15 V
(Derate above $25^{\circ} \mathrm{C}: 8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Storage temperature range: $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Programming current into pin 11: 50 mA

PACKAGE THERMAL DATA

Thermal resistance: Junction-Ambient: $125^{\circ} \mathrm{C} / \mathrm{W}$ Junction-Case: $40^{\circ} \mathrm{C} / \mathrm{W}$
Time constant: Junction-Ambient: 1.9 mins.
Max. chip temperature: $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$V_{c c} 1=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{cc}} 2=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{p}}=25 \mathrm{~mA} ;-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(\mathrm{SL} 6440 \mathrm{C})$
Local oscillator input level $==0 \mathrm{dBm}$; Test circuit Fig. 2.

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Signal frequency 3dB point	100	150		MHz	
Oscillator frequency 3dB point	100	150		MHz	
3 rd order input intercept point		+30		dBm	
Third order intermodulation distortion		-60		dB	\} Two 0dBm input
Second order intermodulation distortion		-75		dB	Signals
1 dB compression point		15		dBm	$V \mathrm{cc1}=15 \mathrm{~V} \quad \mathrm{Vcc}^{2}=12 \mathrm{~V}$
		12		dBm	$\mathrm{Vcc1}=12 \mathrm{~V} \quad \mathrm{Vcc2}=10 \mathrm{~V}$
Noise figure		11		dB	Fig. 8 test circuit
Conversion gain		-1		dB	50Ω load Fig. 2
Carrier leak to signal input	-40			dB	Test circuit Fig. 8
Level of carrier at IF output		-25		dBm	See applications information
Supply current		7		mA	$\mathrm{l}_{\mathrm{p}}=0$
Supply current (total from Vec1 \& Vcc2)		60		mA	
Local oscillator input	100	250	500	mVrms	$\mathrm{Ip}=35 \mathrm{~mA}$
Local oscillator input impedance		1.5		$\mathrm{k} \Omega$	
Signal input impedance		$\begin{gathered} 500 \\ 1000 \end{gathered}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	Single ended Differential

SL6440C

CIRCUIT DESCRIPTION

The SL6440 is a high level mixer designed to have a linear RF performance. The linearity can be programmed using the Io pin (11).

The output pins are open collector outputs so that the conversion gain and output loads can be chosen for the specific application.

Since the outputs are open collectors they should be returned to a supply Vcc1 through a load.

The choice of Vcc1 is important since it must be ensured that the voltage on pins 3 and 14 is not low enough to saturate the output transistors and so limit the signal swing unnecessarily. If the voltage on pins 3 and 14 is always greater than Vcc 2 the outputs will not saturate. The output frequency response will reduce as the output transistors near saturation.

$$
\begin{aligned}
\text { Minimum } V c c 1 & =\left(I_{p} \times R L\right)+V_{s}+V c c 2 \\
\text { where } I_{p} & =\text { programmed current } \\
R L & \because D C \text { load resistance } \\
\text { Vs } & =\text { max signal swing at output }
\end{aligned}
$$

if the signal swing is not known:
minimum $V c c 1=2\left(I_{\mathrm{p}} \times R L\right)+V c c 2$
In this case the signal will be limiting at the input before the output saturates.

The device has a separate supply (Vcc2) for the oscillator buffer (pin 4).

Fig. 2 lypucal application and lest cincmt

Fig. 4 Intermodulation v. programming current

The current (lp) programmed into pin 11 can be supplied via a resistor from Vcc1 or from a current source.
The conversion gain is equal to
$\mathrm{GaB}=20 \log \frac{\mathrm{RL} \mathrm{I}_{p}}{56.6 \mathrm{I}_{\mathrm{p}}+0.0785}$ for single-ended output
$\mathrm{GdB}=20 \log \frac{2 \mathrm{RL} \mathrm{I}_{\mathrm{p}}}{56.6 \mathrm{I}_{\mathrm{p}}+0.0785}$ for differential output
Device dissipation is calculated using the formula

mW diss	$2 I_{p} V_{o}+V_{p} I_{p}+V_{c c} 2$ Diss
where Vo	$=$ voltage on pin 3 or pin 14
V_{p}	$=$ voltage on pin 11
$1 p$	= programming current (mA)

As an example Fig. 7 shows typical dissipations assuming $V_{c c 1}$ and V_{0} are equal. This may not be the case in practice and the device dissipation will have to be calculated for any particular application.
Fig. 4 shows the intermodulation performance against lo. The curves are independent of $\mathrm{Vcc1}$ and Vcc 2 but if Vcc 1 becomes too low the output signal swing cannot be accommodated, and if Vcc 2 becomes too low the circuit will not provide enough drive to sink the programmed current. Examples are shown of performance at various supply voltages.

Fig. 3 Compression pomit v. total output current

Fig. 5 Supply current v. Voc2 (lp . 0)

The current in pin 14 is equal to the current in pin 3 which is equal to the current in pin 11.

Fig. 6 Frequency response at constant output If

APPLICATIONS

The SL6440 can be used with differential or singleended inputs and outputs. A balanced input will give better carrier leak. The high input impedance allows stepup transformers to be used if desired, whilst high output impedance allows a choice of output impedance and conversioh gain

Fig. 2 shows the simplest application circuit. The input and output are single-ended and I_{p} is supplied from Vcc1 via a resistor. Increasing RL will increase the conversion gain, care being taken to choose a suitable value for Vcc1.

Fig. 8 shows an application with balanced input, for improved carrier leak, and balanced output for increased conversion gain. A lower Vcc1 giving lower device dissipation can be used with this arrangement.

Fig. 7 Device dissipation v. Ip

DESIGN PROCEDURE

1. Decide on input configuration using local oscillator data. If using transformer on input, decide on ratio from noise considerations.
2. Decide on output configuration and value of conversion gain required.
3. Decide on value of I_{ρ} and $V c c 2$ using intermodulation and compression point graphs.
4. Using values of conversion gain, Vcc 2 , load and I_{p} already chosen, decide on value of V cct.
5. Calculate device dissipation and decide whether heatsink is required from maximum operating temperature considerations.

Fig. 8 Typical application circuit for highest performance

SL6440C

SL6601C

LOW POWER IF/AF PLL CIRCUIT FOR NARROW BAND FM

The SL6601 is a straight through or single conversion IF amplifier and detector for FM radio applications. Its minimal power consumption makes it ideal for hand held and remote applications where battery conservation is important. Unlike many FM integrated circuits, the SL6601 uses an advanced phase locked loop detector capable of giving superior signal-to-noise ratio with excellent co-channel interference rejection, and operates with an IF of less than 1 MHz . Normally the SL6601 will be fed with an input signal of up to 17 MHz : there is a crystal oscillator and mixer for conversion to the IF amplifier, a PLL detector and squelch system.

FEATURES

Fig. 1 Pin connections - top view

- Low Power: $2 \cdot 3 \mathrm{~mA}$ Typical at 7 V
- Advanced PLL Detector
- Available in Miniature 'Chip Carrier' Package
- 100% Tested for SINAD

APPLICATIONS

- Low Power NBFM Receivers

QUICK REFERENCE DATA
 Supply Voltage 7 V
 50 dB S/N Ratio

SL6601

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage Vcc : 7V
Input signal frequency: 10.7 MHz , frequency modulated with a 1 kHz tone with a $\pm 2.5 \mathrm{kHz}$ frequency deviation
Ambient temperature: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; IF $=100 \mathrm{kHz}$; AF bandwidth $=15 \mathrm{kHz}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply current		2.3	2.7	mA	
Input impedance	100		300	Ω	Source impedance $=200 \Omega$
Input capacity	0.5	2.0	3.5	pF	
Maximum input voltage level	0.5			$\checkmark \mathrm{rms}$	At pin 18
Sensitivity	5	2		$\mu \mathrm{V}$ rms	At pin 18 for $\mathrm{S}+\mathrm{N} / \mathrm{N}=20 \mathrm{~dB}$
Audio output	35	90	140	mV rms	
Audio THD		1.3	3.0	\%	1 mV rms input at pin 18
$\mathrm{S}+\mathrm{N} / \mathrm{N}$	30	50		dB	1 mV rms input at pin 18
AM rejection	30	Note 1		dB	$100 \mu \mathrm{~V}$ rms input at pin 18,30\% AM
Squelch low level		0.2	0.5	$V \mathrm{dc}$	$20 \mu \mathrm{~V}$ rms input at pin 18
Squelch high level	6.5	6.9		V dc	No input
Squelch hysteresis		1	6	dB	$3 \mu \mathrm{~V}$ input at pin 18
Noise figure		6		dB	50Ω source
Conversion gain		30		dB	Pin 18 to pin 4
Input gain compression		100		$\mu \mathrm{V}$ rms	Pin 18 to pin 4,1dB compression
Squelch output load	250			$\mathrm{k} \Omega$	
Input voltage range	80	100		dB	At pin 8; above $20 \mathrm{dBS}+\mathrm{N} / \mathrm{N}$
3 rd order intercept point (input)		-38		dBm	Input pin 18, output pin 4
VCO frequency					
Grade 1	85		100	kHz	390pF timing capacitor
Grade 2	95		110	kHz	390pF timing capacitor $\}$ No input
Grade 3	105		120	kHz	390 pF timing capacitor)
Source impedance (pin 4)		25	40	$\mathrm{k} \Omega$	
AF output impedance		4	10	$\mathrm{k} \Omega$	
Lock-in dynamic range	± 8			kHz	$20 \mu \mathrm{~V}$ to 1 mV rms at pin 18
External LO drive level	50		250	mV rms	At pin 2
Crystal ESR			25	Ω	10.8 MHz

APPLICATION NOTES

IF Amplifiers and Mixer

The SL6601 can be operated either in a 'straight through' mode with a maximum recommended input frequency of 800 kHz or in a single conversion mode with an input frequency of 50 MHz maximum and an IF of 100 kHz or ten times the peak deviation, whichever is the larger. The crystal oscillator frequency can be equal to either the sum or difference of the two IF's; the exact frequency is not critical.
The circuit is designed to use series resonant fundamental crystals between 1 and 17 MHz .
When a suitable crystal frequency is not available a fundamental crystal of one third of that frequency may be used, with some degradation in performance.
E.G. If an external oscillator is used the recommended level is 70 mV rms and the unused pin should be left O / C. The input is AC coupled via a $0.01 \mu \mathrm{~F}$ capacitor.

A capacitor connected between pin 4 and ground will shunt the mixer output and limit the frequency response of the mixer output and limit the frequency response of the input signal to the second IF amplifier. A value of 33 pF is advised when the second IF frequency is 100 kHz ; 6.8 pF is advised for 455 kHz .

Phase Locked Loop

The Phase Locked Loop detector features a voltage controlled oscillator with nominal frequency set by an
external capacitor according to the formula $\left(\frac{f}{35}\right) \mathrm{pF}$, where f is the VCO frequency in MHz. The nominal frequency may differ from the theoretical but there is provision for a fine frequency adjustment by means of a variable resistor between the VCO output pins; a value of 470 k has negligible effect while 6.8 k (recommended minimum value) increases the frequency by approximately 20%.
Care should be taken to ensure that the free running VCO frequency is correct; because the VCO and limiting IF amplifier output produce square waves, it is possible to obtain lock with the VCO frequency fractionally related to the IF, e.g. IF $=100 \mathrm{kHz}, \mathrm{VCO}=150 \mathrm{kHz}$. This condition can produce good SINAD ratios but poor squelch performance.
The loop filter is connected between pins 11 and 12; a 33k resistor is also required between pin 11 and Vcc .
The values of the filter resistor R2 and capacitor C1 must be chosen so that the natural loop frequency and damping factor are suitable for the FM deviation and modulation bandwidth required. The recommended values for various conditions are tabulated beiow:

Centre frequency $\mathbf{k H z}$	Deviation $\mathbf{k H z}$	Resistor $\mathbf{k} \boldsymbol{\Omega}$	Capacitor $\mathbf{p F}$
100	5	6.2	2200
100	10	5.6	1800
455	5	4.7	1500
455	10	3.9	1200

Note that the values of loop filter are not critical and in many cases may be omitted.

The AF output voltage depends upon the \% deviation and so, for a given deviation, output is inversely proportional to centre frequency. As the noise is constant, the signal to noise ratio is also inversely proportional to centre frequency.

VCO Frequency Grading

The SL6601 is supplied in 3 selections of VCO centre frequency. This frequency is measured with a 390 pF timing capacitor and no input signal.
Devices are coded 'SL6601C' and a ' $/ 1$ ', ' $/ 2$ ', ' $/ 3$ ' to indicate the selection.
Frequency tolerances are:

/1	$85-100 \mathrm{kHz}$ (or uncoded)
/2	$95-110 \mathrm{kHz}$
/3	$105-120 \mathrm{kHz}$

Note that orders cannot be accepted for any particular selection, but all devices in a tube will be the same selection.

Squelch Facility

When inputs to the product detector differ in phase a series of current pulses will flow out of pin 7 . The feature can be used to adjust the VCO; when a 1 mV unmodulated input signal is applied to pin 18 the VCO frequency should be trimmed to maximise the voltage on pin 7.

The squelch level is adjusted by means of a preset variable resistor between pin 7 and Vcc to set the output signal to noise ratio at which it is required to mute the output. The capacitor between pin 7 and ground determines the squelch attack time. A value between 10 nF and $10 \mu \mathrm{~F}$ can be chosen to give the required characteristics.

Operation at signal to noise ratios outside the range 518 dB is not recommended. Where the 'front end' noise is high (because of very high front end gain) the squelch may well never operate. This effect can be obviated by sensible receiver gain distribution.

The load on the squelch output (pin 6) should not be less than $250 \mathrm{k} \Omega$. Reduction of the load below this level leads to hysteresis problems in the squelch circuit.

The use of an external PNP transistor allows hysteresis to be increased. See Fig.4. The use of capacitors greater than 1000 pF from pin 6 to ground is not recommended.

Outputs

High speed data outputs can be taken direct from pins 11 and 12 but normally for audio applications pin 8 is used. A filter network will be needed to restrict the audio bandwidth and an RC network consisting of $4.7 \mathrm{k} \Omega$ and 4.7 nF may be used.

Layout Techniques and Alignment

The SL6601 is not critical in PCB layout requirements except in the 'straight through' mode. In this mode, the input components and circuits should be isolated from the VCO components, as otherwise the VCO will attempt to 'lock' to itself, and the ultimate signal to noise ratio will suffer.
The recommended method of VCO adjustment is with a frequency measurement system on pin 9 . The impedance must be high, and the VCO frequency is adjusted with no input signal.

LOOP FILTER DESIGN

The design of loop filters in PLL detectors is a straight forward process. In the case of the SL6601 this part of the circuit is non-critical, and in any case will be affected by variations in internal device parameters. The major area of importance is in ensuring that the loop bandwidth is not so low as to allow unlocking of the loop with modulation.

Damping Factor can be chosen for maximum flatness of frequency response or for minimum noise bandwidth, and values between 0.5 and 0.8 are satisfactory, 0.5 giving minimum noise bandwidth.

Design starts with an arbitrary choise of f, the natural loop frequency. By setting this at slightly higher than the maximum modulation frequency, the noise rejection can be slightly improved. The ratio $\mathrm{fm} / \mathrm{fn}$ highest modulating frequency to loop frequency can then be evaluated.

From the graph, Fig. 3 the value of the function

$\frac{\Phi \text { efn }}{\Delta f}$

can be established for the desired damping factor.
Φ_{e} - peak phase error
f_{n} - loop natural frequency
Δf - maximum deviation of the input signal
and as f_{n} and Δf are known, Φ_{e} is easily calculated. Values for Φ_{e} should be chosen such that the error in phase is between 0.5 and 1 radian. This is because the phase detector limits at $\pm \pi / 2$ radians and is non linear approaching these points. Using a very small peak phase error means that the output from the phase detector is low, and thus impairs the signal to noise ratio. Thus the choice of a compromise value, and 0.5 to 1 radian is used. If the value of ϕ_{e} achieved is far removed from this value, a new value of f_{n} should be chosen and the process repeated.
With f_{n} and D established, the time constants are derived from
$t_{1}+t_{2}=\frac{K_{0} K_{D}}{\left(2 \pi f_{n}\right)^{2}}$
and $\mathrm{t}_{2}=\frac{D}{\pi f_{n}}-\frac{1}{\mathrm{~K}_{\mathrm{K}} K_{D}}$
KoKo is $0.3 \mathrm{f}_{\mathrm{o}}$, where f_{o} is the operating frequency of the VCO. t_{1} is fixed by the capacitor and an internal $20 \mathrm{k} \Omega$ resistor: t_{2} is fixed by the capacitor and external resistor.
so $C=\frac{t_{1}}{2 C \times 10^{3}}$
and $R_{\text {ext }}=\frac{\mathrm{t}_{2} \times 20 \times 10^{3}}{\mathrm{t}_{1}}$
In order that standard values may be used, it is better to establish a value of C and use the next lowest standard value e.g. C Calc $=238 \mathrm{pF}$, use 220_{pF}, as it is better to widen the loop bandwidth rather than narrow it.

The value of Rext is then 'rounded up' by a similar process. It is, however, better to increase Rext to the nearest preferred value as loop bandwidth is proportional (Rext) $-1 / 2$ while damping factor is proportional to R : thus damping factor is increasing more quickly which gives a more level response.

Example

A frequency modulated signal has a deviation of 10 kHz and a maximum modulating frequency of 5 kHz . The VCO frequency is 200 kHz .

Let $f_{n}=6 \mathrm{kHz}$ and $\mathrm{D}=0.5$
Then from the graph
$\frac{\phi_{\text {efn }}}{\Delta f}=0.85$
$\Phi_{\mathrm{e}}=\frac{0.85 \Delta f}{f_{n}}=\frac{0.85 \times 10}{6}=1.4$ rads.
This is too large, so increase f_{n} e.g. to 10 kHz .
$\frac{f_{m}}{f_{n}}=0.5 \frac{\Phi_{e f n}}{\Delta f}=0.45$
$\Phi_{\mathrm{e}}=\frac{0.45 \times 10}{10}=0.45$

- which is somewhat low

Therefore set $\mathrm{f}_{\mathrm{n}}=7.5 \mathrm{kHz}$
$\frac{f_{m}}{f_{n}}=0.666$
$\frac{\Phi_{\text {ef }}}{\Delta f}=0.66$
$\phi_{\mathrm{e}}=\frac{0.66 \times 10}{7.5}=0.88$ rads.
$\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{\mathrm{K}_{0} \mathrm{KD}_{\mathrm{D}}}{\left(2 \pi \mathrm{f}_{\mathrm{n}}\right)^{2}}$
$K_{0} K_{D}=0.3 f_{0}$ where f_{o} is the VCO frequency

$$
\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{0.3 \times 200 \times 10^{3}}{\left(2 \pi \times 7.5 \times 10^{3}\right)^{2}}=27 \mu \mathrm{~s}
$$

$t_{2}=\frac{D}{\pi f_{n}}-\frac{1}{K_{0} K D}$

$$
\begin{aligned}
& =\frac{0.5}{\pi \times 7.5 \times 10^{3}}-\frac{1}{0.3 \times 200 \times 10^{3}} \\
& =4.5 \mu \mathrm{~s} \\
& \mathrm{t}_{1}=22.5 \mu \mathrm{~s}
\end{aligned}
$$

$$
\mathrm{C}=\frac{\mathrm{t}_{1}}{20 \times 10^{3}}=\frac{22.5 \times 10^{-6}}{20 \times 10^{3}}=1.125 \mathrm{nF}(\text { use } 1 \mathrm{nF})
$$

$$
R=\frac{t_{2}}{t_{1}} \times 20 \times 10^{3}
$$

$$
=\frac{4.5}{22.5} \times 20 \times 10^{3}
$$

$$
=4 \mathrm{k} \Omega \text { (use } 3.9 \mathrm{k} \text {) }
$$

Actual loop parameters can now be recalculated
$\mathrm{t}_{1}=20 \mu \mathrm{~s} \quad \mathrm{t}_{2}=3.9 \mu \mathrm{~s}$
$2 \pi \mathrm{f}_{\mathrm{n}}=\frac{\left(\mathrm{KoK}_{\mathrm{D}}\right)}{\left(\mathrm{t}_{1} \times \mathrm{t}_{2}\right.}=\frac{\left(2 \times 10^{5} \times 0.3\right)}{\left(23.9 \times 10^{-6}\right)}=50.1 \mathrm{krad} / \mathrm{sec}=7.97 \mathrm{kHz}$
$D \quad=f_{n}\left(t_{2}+\frac{1}{K_{0} K_{D}}\right)=\underline{0.515}$

Fig. 3 Damping factor

Fig. 4 Using an external PNP in the squelch circuit

Fig. 5 SL6601 application diagram (1 st $I F=10.7 \mathrm{MHz}, 2 n d^{\prime} I F=100 \mathrm{kHz}$)

TYPICAL CHARACTERISTICS

Fig. 6 Typical SINAD
(signal + noise + distortion/noise + distortion)

Fig. 7 Typical recovered audio v. input level (3 kHz deviation)

Fig. 9 Typical VCO characteristics

Fig. 11 Typical AM rejection
(the ratio between the audio output produced by:
(a) a 3 kHz deviation 1 kHz modulation FM signal and
(b) a 30% modulated 1 kHz modulation AM signal at the same input voltage level.)

Fig. 8 Supply voltage v. temperature

Fig. 10 Typical squelch current v. input level

Fig. 12 Typical conversion gain (to pin 4)

ABSOLUTE MAXIMUM RATINGS

Supply voltage

> Operating temperature
> (see Electrical Characteristics) input voltage
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (DG) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1V RMS at pin 18

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

SL6652

LOW POWER IF/AF CIRCUIT FOR FM CELLULAR RADIO

The SL6652 is a complete single chip mixer/oscillator, If amplifier and detector for FM cellular radio, cordless telephones and low power radio applications. It features an exceptionally stable RSSI (Received Signal Strength Indicator) output using a unique system of detection. Supply current is less than 2 mA from a supply voltage in the range 2.5 V to 7.5 V .

FEATURES

- Low Power Consumption (1.5mA)
- Single Chip Solution
- Guaranteed 100 MHz Operation

Exceptionally Stable RSS!

APPLICATIONS

- Cellular Radio Telephones
- Cordless Telephones

QUICK REFERENCE DATA

- Supply Voltage 2.5 V to 7.5 V
- Sensitivity $3 \mu \mathrm{~V}$
- Co-Channel Rejection 7dB

SL6652

ABSOLUTE MAXIMUM RATINGS

Supply voltage
Storage temperature
Operating temperature Mixer input

10 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
1V rms

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{Vcc}=2.5 \mathrm{~V}$ to $7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{IF}=455 \mathrm{kHz}, \mathrm{RF}=50 \mathrm{MHz}$, Quad Coil Working $\mathrm{Q}=30$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Overall					
Supply current		1.5	2.0	mA	
Sensitivity		5	10	$\mu \mathrm{V}$	20dB SINAD
		3		$\mu \mathrm{V}$	12dB SINAD
AM rejection		40		dB	RF input $<500 \mu \mathrm{~V}$
Vblas	1.0	1.2	1.4	V	$\mathrm{Tamb}=25^{\circ} \mathrm{C}$
Co-channel rejection		7		dB	See Note 2
Mixer					
RF input impedance		1		kohm	
OSC input impedance		2		kohm	
OSC input bias		5		$\mu \mathrm{A}$	At $\mathrm{V}_{\text {bias }}$
Mixer gain		15		dB	Rioad $=1.5 \mathrm{k}$
3rd order input intercept		-10		dBm	
OSC input level	180		300	mV	
OSC frequency	100			MHz	
Oscillator					
Current sink	40		70	$\mu \mathrm{A}$	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
Hfe	30				$40 . . .70 \mu \mathrm{~A}$
${ }_{\text {ft }}$		500		MHz	$40 \ldots 70 \mu \mathrm{~A}$
IF Amplifier					
Gain		90		dB	
Frequency	455	1500		kHz	
Diff. input impedance		20		kohm	
Detector					
Audio output level	75		125	mV	
Ultimate S / N ratio		60		dB	\} 5 mV into pin 14
THD		0.5	5	\%	
Output impedance		40		kohm	
Inter-output isolation		65		dB	1 kHz
RSSI Output(Tamb $^{\text {a }}+25^{\circ} \mathrm{C}$)					
Output current			20	$\mu \mathrm{A}$	No input pin 14
Output current	50		80	$\mu \mathrm{A}$	$\operatorname{Pin} 14=2.5 \mathrm{mV}$
Current change	0.9	1.22	1.5	$\mu \mathrm{A} / \mathrm{dB}$	See Note 1
Linear dynamic range	70			dB	See Note 1

NOTES

1. The RSSI output is 100% dynamically tested at 5 V and $+20^{\circ} \mathrm{C}$ over a 70 dB range. First the input to pin 14 is set to 2.5 mV and the RSSI current recorded Then for each step of 10 dB from -40 to +30 dB the current is measured again. The current change in each step must meet the specified figure for current change. The RSSI output is guaranteed monotonic and free from discontinuities over this range.
2. Co-channel rejection is measured by applying a 3 kHz deviation, 1 kHz modulated signal at an input level to give a 20 dB SINAD ratio. Then a 3 kHz deviation, 400 Hz modulated signal on the same frequency is also applied and its level increased to degrade the SINAD to 14 dB .

Fig. 3 Internal schematic

GENERAL DESCRIPTION

The SL6652 is a very low power, high performance integrated circuit intended for IF amplification and demodulation in FM radio receivers. It comprises:

- A mixer stage for use up to 100 MHz
- An uncommitted transistor for use as an oscillator
- A current sink for biasing this transistor
- A limiting amplifier operating up to 1.5 MHz
- A quadrature detector with differential AF output
- An RSSI (Received Signal Strength Indicator) output

Mixer

The mixer is single balanced with an active load. Gain is set externally by the load resistor although the value is normally determined by that required for matching into the ceramic filter. It is possible to use a tuned circuit but an increase in mixer gain will result in a corresponding reduction of the mixer input intercept point.
The RF input is a diode-biased transistor with a bias current of typically $300 \mu \mathrm{~A}$. The oscillator input is differential but would normally be driven single-ended. Special care should be taken to avoid accidental overload of the oscillator input.

Oscillator

The oscillator consists of an uncommitted transistor and a separate current sink. The user should ensure that the design of oscillator is suitable for the type of crystal and frequency required; it may not always be adequate to duplicate the design shown in this data sheet.

IF amplifier

The limiting amplifier is capable of operation to at least 1 MHz and the input impedance is set by an external resistor to match the ceramic filter. Because of the high gain, pins 12 and 13 must be adequately bypassed.

Detector

A conventional quadrature detector is fed internally from the IF amplifier; the quadrature input is fed externally using an appropriate capacitor and phase shift network. A differential output is provided to feed a comparator for digital use, although it can also be used to provide AFC.

RSSI output

The RSSI output is a current source with value proportional to the logarithm of the IF input signal amplitude. There is a small residual current due to noise within the amplifier (and mixer) but beyond this point there is a measured and guaranteed 70 dB dynamic range. The typical range extends to 92 dB , independent of frequency, and with exceptionally good temperature and supply voltage stability.

Supply voltage

The SL6652 will operate reliably from 2.5 V to 7.5 V . The supply line must be decoupled with 470 nF using short leads.

Internal bias voltage

The internal band gap reference must be externally decoupled. It can be used as an external reference but must not be loaded heavily; the output impedance is typically 14 ohms.

SL6652

Fig. 4 Audio output vs input and temperature at 2.5 V

Fig. 6 Audio output vs input and temperature at +7.5 V

Fig. 8 SINAD and input level

Fig. 5 Audio output vs input and temperature at 5.0 V

Fig. 7 Audio output vs input and supply voltage at $+25^{\circ} \mathrm{C}$

Fig. 9 AM rejection and input level

Fig. 10 RSSI output vs input and supply voltage ($T_{\text {amb }}=20^{\circ} \mathrm{C}$)

Fig. 12 RSSI output vs input level and temperature $(V C c=5 V)$

Fig. 11 RSSI output vs input level and temperature $(V c c=2.5 V)$

Fig. 13 RSSI output vs input level and temperature $(V c c=7.5 \mathrm{~V})$

Fig. 14 Signal + noise to noise ratio vs input level

Fig. 15 Supply current vs supply voltage

Fig. 16 Supply current vs temperature ($V_{c c}=5 V$)

Fig. 17 Circuit diagram of SL6652 demonstration board

Fig.18 PCB mask of demonstration board (1:1)

Fig. 19 Component overlay of demonstration board (1:1)

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

SL6653

LOW POWER IF/AF CIRCUIT FOR FM RECEIVERS

The SL.6653 is a complete single chip mixer/oscillator, IF amplifier and detector for FM cellular radio, cordiess telephones and low power radio applications. Supply current is less than 2 mA from a supply voltage in the range 2.5 V to 7.5 V

The SL6653 affords maximum flexibility in design and use. It is supplied in a dual-in-line hermetic package.

FEATURES

- Low Power Consumption (1.5 mA)
- Single Chip Solution
- Guaranteed 100 MHz Operation

QUICK REFERENCE DATA

Supply voltage 2.5 V to 7.5 V
E Sensitivity $3 \mu \mathrm{~V}$

APPLICATIONS

- Mobile Radio Telephones

Cordless Telephones

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage	10 V
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Mixer input	1 V rms

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise siated):
$\mathrm{Vcc}=2.5 \mathrm{~V}$ to 7.5 V , $\mathrm{T}_{\mathrm{amb}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Mod.Freq. $=1 \mathrm{kHz}$, Deviation $=2.5 \mathrm{kHz}$, Quadrature Circuit Working $\mathrm{Q}=30$

Characteristic		Value		Units	Conditions
	Min.	Typ.	Max.		
Overall					
Supply current		1.5	2.0	mA	
Sensitivity		5	10	$\mu \mathrm{V}$	20dB SINAD
		3		$\mu \mathrm{V}$	12dB SINAD
AM rejection		30		dB	RF input $<500 \mu \mathrm{~V}$
Vblas	1.0	1.2	1.4	V	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
Mixer					
RF input impedance		1		kohm	
OSC input impedance		2		kohm	
OSC input bias		5		$\mu \mathrm{A}$	At $V_{\text {bias }}$
Mixer gain		15		dB	Rload $=1.5 \mathrm{k}$
3rd order input intercept		-10		dBm	
OSC input level	180		300	mV	
OSC frequency	100			MHz	
Oscillator					
Current sink	40		70	$\mu \mathrm{A}$	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
$\mathrm{H}_{\text {te }}$	30				$40 . . .70 \mu \mathrm{~A}$
f_{T}		500		MHz	$40 . . .70 \mu \mathrm{~A}$
IF Amplifier					
Gain		90		dB	
Frequency	455	1500		kHz	
Diff. input impedance		20		kohm	
Detector					
Audio output level	75		125	mV	
Ulitimate S / N ratio		60		dB	10 mV into pin 12
THD		0.5	5	\%	
Output impedance		40		kohm	

Fig. 3 Simplified internal schematic

GENERAL DESCRIPTION

The SL6653 is a very low power, high performance integrated circuit intended for IF amplification and demodulation in FM radio receivers. It comprises:

- A mixer stage for use up to 100 MHz
- A transistor for use as an oscillator
- A limiting amplifier operating up to 1.5 MHz
- IA quadrature detector with AF output

Mixer

The mixer is single balanced with an active load. Gain is set externally by the load resistor although the value is normally determined by that required for matching into the ceramic filter. It is possible to use a tuned circuit but an increase in mixer gain will result in a corresponding reduction of the mixer input intercept point.
The RF input is a diode-biased transistor with a bias current of typically $300 \mu \mathrm{~A}$. The oscillator input is differential but would normally be driven single-ended. Special care should be taken to avoid accidental overload of the oscillator input.

Oscillator

The oscillator consists of a transistor and a current sink. The user should ensure that the design of oscillator is suitable for the type of crystal and frequency required; it may not always be adequate to duplicate the design shown in this data sheet.

IF amplifier

The limiting amplifier is capable of operation to at least 1 MHz and the input impedance is set by an external resistor to match the ceramic filter.

Detector

A conventional quadrature detector is fed internally from the IF amplifier; the quadrature input is fed externally using an appropriate capacitor and phase shift network.

Supply voltage

The SL6653 will operate reliably from 2.5 V to 7.5 V . The supply line must be decoupled with 470 nF using short leads.

Internal bias voltage

The internal band gap reference must be externally decoupled. It can be used as an external reference but must not be loaded heavily; the output impedance is typically 14 ohms.

Fig. 4 Audio and noise outputs vs input level

Fig. 5 Audio output vs temperature

Fig. 6 Supply current vs supply voltage

Fig. 7 Supply current vs temperature

Fig. 8 Circuit diagram of SL6653 demonstration board

Fig. 9 PCB mask of demonstration board (1:1)

Fig. 10 Component overlay of demonstration board (1:1)

SL6691C
 MONOLITHIC CIRCUIT FOR PAGING RECEIVERS

The SL6691C is an IF system for paging receivers, consisting of a limiting IF amplifier, quadrature demodulator, voltage regulator and audio tone amplifier with Schmitt trigger.
The voltage regulator requires an external PNP transistor as the series pass transistor. The frequency response of the tone audio amplifier is externally defined.

The SL6691C operates over the temperature range $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FEATURES

V Very Low Standby Current

- Fast Turn-on
- Wide Dynamic Range
- Minimum External Components

APPLICATIONS

PagersPortable FM Broadcast Receivers

ABSOLUTE MAXIMUM RATINGS

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply voltage 6 V

Fig. 1 Pin connections (top view)

Fig. 2 SL6691C test circuit

Fig. 3 SL6691C block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Temperature

 $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Supply voltage (V_{c})
IF frequency
Modulation frequency
Deviation
2.5 V

455 kHz (nominal)
500 Hz
$\pm 4.5 \mathrm{kHz}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Quiescent current		1.0	1.4	mA	$V_{B}=3 V$ Pins 2 and $3 \mathrm{~S} / \mathrm{C}$ Pins 1 and $40 / C$
Switch on time		12	18	ms	Note 1
Voltage regulator Regulated voltage Supply line rejection	1.9	40	2.1	$\begin{aligned} & \mathrm{dB} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{B}>2.2 \mathrm{~V} \\ & V_{B}>2.2 \mathrm{~V} \end{aligned}$ 200 mV p-p square wave @ 500 Hz injected
Current sink capability pin 15	100			$\mu \mathrm{A}$	
IF amplifier Inputimpedance		20/12		k $\Omega / / \mathrm{pF}$	
Output impedance				$\mathrm{k} \Omega$	
Dynamic range		100			
Output voltage swing Amplifier gain		600 90		$\mathrm{mb}_{\mathrm{dB}} \mathrm{p}$-p	
Sensitivity	20	16		$\mu \mathrm{V}$ rms	Audio 20dB S+N/N ratio
AM rejection		40		$\mathrm{dB}^{\text {d }}$	$100 \mu \mathrm{~V} \mathrm{rms} \mathrm{I} / \mathrm{P}$ @ 30\% AM modulation
Amplifier 3dB bandwidth		1.5		MHz	
Demodulator Audio output	8	15		mV rms	Quadrature element L-C tuned circuit : $\mathrm{Q}=30$
Distortion, THD		1.5	3	\%	
Output impedance		${ }_{1}^{10}$	3	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{~dB} \end{aligned}$	$100 \mu \mathrm{~V}$ rms I/P 3kHz audio bandwidth
Tone amplifier Open loop gain Peak output current		$\begin{aligned} & 54 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mu \mathrm{~A} \end{aligned}$	
Schmitt trigger Mark space ratio		45/55	38/62		$20 \mu \mathrm{~V}$ rms I/P

NOTES

1. The 'Switch On' time is the time to the zero crossing point of the centre of the first occurrence of a $30 / 70$ or $70 / 30$ mark space wave on the output of the Schmitt trigger after the supply voltage has been switched on. Conditions: $\mathrm{V}_{\mathrm{B}}=2 \mathrm{~V}$, Tone filter connected (See Fig.2), IF input $=$ $100 \mu \mathrm{~V}$ rms, Modulation $500 \mathrm{~Hz} @ 2 \mathrm{kHz}$ deviation.

CIRCUIT DESCRIPTION

IF Amplifier and Detector

The IF amplifier consists of five identical differential amplifier/emitter follower stages with outputs at the fourth (pins 9 and 10) and fifth (pins 7 and 8) stages. The outputs from the fourth stage are used when the lowest turn-on time is required. Coupling to the quadrature network of the detector is via external capacitors; otherwise the design is conventional. The audio output is taken from pin 4 and filtered externally.

Tone (Audio) Amplifier

The tone amplifier is a simple inverting audio amplifier with voltage gain determined by the ratio of feedback resistor to input resistor. The frequency response can readily be controlled by suitable selection of feedback components.

Schmitt Trigger

The Schmitt trigger has an open collector output stage which saturates when the input at pin 2 is high. A $20 \mu \mathrm{~V}$ rms input is sufficient.

NOMINAL DC PIN VOLTAGES(DP16)

Function	Pin	Voltage
Supply	16	Battery voltage
Series pass transistor driver	15	Battery voltage -0.7V
Regulated supply line	14	2 V
Earth	11	0 V
IF amp I/P	13	1 V
IF amp I/P	12	1 V
IF amp O/P	10	1 V
IF amp O/P	9	1 V
Demodulator O/P	4	1 V
Quadrature coil	6	1 V
Quadrature coil	5	1 V
Tone amplifier I/P	3	1.4 V
Schmitt trigger O/P	1	0 V or pin 16 or pin 14
Tone amplifier O/P	2	1.4 V
Demodulator driver	7	1 V
Demodulator driver	8	1 V

SL6691C

Advance information is issued to advise Customers of new additions to the Plessey Semiconductors range which, nevertheless, still have 'pre-production' status. Details given may, therefore, change without notice although we would expect this performance data to be representative of 'full production' status product in most cases. Please contact your local Plessey Semiconductors Sales Office for details of current status.

SL6700A

IF AMPLIFIER AND AM DETECTOR

The SL6700A is a single or double conversion IF amplifier and detector for AM radio applications. Its low power consumption makes it ideal for hand held applications. Normally the SL6700A will be fed with a first IF signal of 10.7 MHz or 21.4 MHz ; there is a mixer for conversion to the first or second IF, a detector, an AGC generator with optional delayed output and a noise blanker monostable. This device is characterised for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

FEATURES

High Sensitivity: $10 \mu \mathrm{~V}$ Minimum
Low Power: 8 mA Typical at 6 V
Linear Detector
Full MIL Temperature Range

Fig. 1 Pin connections (top view)

APPLICATIONS

- Low Power AM/SSB Receivers

QUICK REFERENCE DATA

Supply Voltage: 4.5 V

- Input Dynamic Range: 100 dB Typical

ABSOLUTE MAXIMUM RATINGS

Supply voltage	7.5 V
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

7.5 V

Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature

Fig. 2 SL6700A block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Test circuit Fig.6. Modulation frequency 1 kHz

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply voltage	4		7	V	Optimum performance at 4.5 V
Supply current		3.5	7	mA	
S/N ratio		40		dB	1 mV input 80% modulation
TH distortion		3	5	\%	1 mV input 30% modulation
Sensitivity	10	5		$\mu \mathrm{V}$	10 dB S + N/N ratio, 30%
Audio output level change		6	10	dB	$10 \mu \mathrm{~V}$ to 50 mV input 80%
AGC threshold		5		$\mu \mathrm{V}$	
AGC range		80		dB	
AF output level	20	40		mV rms	30% modulation 1 mV input
Delayed AGC threshold		10		mV rms	80% modulation
Dynamic range		100		dB	Noise floor to overload
IF frequency response	15	25		MHz	3 dB gain reduction
IF amplifier gain	40	50	60	dB	10.7 MHz (both amplifiers cascaded)
Detector gain	40	46	55	dB	$455 \mathrm{kHz} 80 \%$ AM
Detector Z in pin 13	2	4	6.8	k Ω	
IF amplifier $\mathrm{Z}_{\text {in }}$ pin 18	1.8	3	4.5	k Ω	
Noise blank level	4.0			V	Logic 1
			0.3	V	Logic 0
Noise blank duration	300	400	500	$\mu \mathrm{s}$	C pin $12=30 \mathrm{nF}, \mathrm{R}$ pin 12-11 $=18 \mathrm{k}$
Mixer conversion gain	1.0R	1.2R	1.5R	$\mathrm{k} \Omega$	R is load resistor in $k \Omega$
Mixer $\mathrm{Z}_{\text {in }}$ (Signal)	2	3	5	k Ω	
Mixer $\mathrm{Z}_{\text {in }}$ (L.O.)	3	5	8	$\mathrm{k} \Omega$	
Mixer L.O. injection	50	100	150	mV rms	$\mathrm{fc}^{\text {c }}=10.245 \mathrm{MHz}$
Detector output voltage change	6	8	8.2	dB	1 mV rms input, modulation increased from 30% to 80%

OPERATING NOTES

The noise blank duration can be varied from the suggested value of $30 \mu \mathrm{~s}$ using the formula: Duration time $=0.7 \mathrm{CR}$, where R is value of resistor between pins 11 and 12 and C is value of capacitor from pin 12 to ground.
There is no squelch in the SL6700A and the delay in the delayed AGC is too large to make this output suitable. Squelch is best obtained from a comparator on the AGC decoupling point, pin 16.

The IF amplifiers may be operated at 455 kHz giving a single conversion system.
The mixer may also be used as a product detector. Further application information is available on request.
The mixer may also be used as a product detector. Further application information is available on request in Application Note AN1001.

TYPICAL DC PIN VOLTAGES

(Supply 4.5 V , Input 1 mV)

Pin	Voltage	Pin	Voltage
1	2.25 V	10	4.5 V
2	2.09 V	11	3.7 V
3	3.68 V	12	0 V
4	0.7 V	13	0.77 V
5	0.6 V	14	1.5 V
6	3.7 V	15	1.0 V
7	1.5 V	16	0.7 V
8	4.3 V	17	0 V
9	1.5 V	18	0.7 V

Fig. 3 SL6700A AM double conversion receiver with noise blanker

SL6700A

Fig. 4 Typical delayed AGC output variation with input signal ($f=10.7 \mathrm{MHz}, 30 \%$ modulation)

Fig. 5 Typical signal to noise ratio $(S+N / N)$ with input signal ($f=10.7 \mathrm{MHz}, 30 \%$ modulation)

Fig. 6 Test circuit

SL6700C

IF AMPLIFIER AND AM DETECTOR

The SL6700C is a single or double conversion IF amplifier and detector for AM radio applications. Its low power consumption makes it ideal for hand held applications. Normally the SL6700C will be fed with a first IF signal of 10.7 MHz or 21.4 MHz ; there is a mixer for conversion to the first or second IF, a detector, an AGC generator with optional delayed output and a noise blanker monostable.

FEATURES

- High Sensitivity: $10 \mu \vee$ minimum

L Low Power: 8 mA Typical at 6 V

- Linear Detector

APPLICATIONS

Low Power AM/SSB Receivers

QUICK REFERENCE DATA

Supply Voltage: 4.5 V

- Input Dynamic Range: 100dB Typical

Fig. 1 Pin connections (top view)

ABSOLUTE MAXIMUM RATINGS

Supply voltage: 7.5 V
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 2 SL6700C block diagram

SL6700C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Supply voltage 4.5 V
$\mathrm{T}_{\text {Amb }}-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Supply voltage	4		7	V	Optimum performance at 4.5 V
Supply current		4.5	6	mA	
S/N ratio		40		dB	1 mV input $80 \% \bmod @ 1 \mathrm{kHz}$
TH distortion		1	5	\%	1 mV input $80 \% \mathrm{mod}$ @ 1 kHz
Sensitivity	10	5		$\mu \mathrm{V}$	$10 \mathrm{~dB} \mathrm{~S}+\mathrm{n} / \mathrm{N}$ ratio, $30 \% \bmod 1 \mathrm{kHz}$
Audio output level change		6	10	dB	$10 \mu \mathrm{~V}$ to 50 mV input 80% mod 1 kHz
AGC threshold		5		$\mu \mathrm{V}$	
AGC range		80		dB	
AF output level		25		mV rms	30% modulation 1 kHz
Delayed AGC threshold		10		mV rms	80 \% modulation
Dynamic range		100		dB	Noise floor to overload
IF frequency response	40	50		MHz	3 dB gain reduction
IF amplifier gain	40	50	60	dB	10.7 MHz (both amplifiers cascaded)
Detector gain	40	46	55	dB	$455 \mathrm{kHz} 80 \%$ AM 1kHz
Detector Zin pin 13	2	4	6.8	k Ω	
IF amplifier Zin pin 18	1.8	3	4.5	k Ω	
Noise blank level	2.7			V	Logic 1
			0.6	V	Logic 0
Noise blank duration		300		$\mu \mathrm{s}$	C pin $12=30 \mathrm{nF}$
Mixer conversion gain	1.0R	1.2R	1.5R	$\mathrm{k} \Omega$	R is load resistor in $\mathrm{k} \Omega$
Mixer $\mathrm{Z}_{\text {in }}$ (signal)	2	3	5	$\mathrm{k} \Omega$	
Mixer $\mathrm{Z}_{\text {in }}$ (LO)	3	5	8	$\mathrm{k} \Omega$	
Mixer LO injection	20	50	150	mV rms	$\mathrm{fc}=10.245 \mathrm{MHz}$
Detector output voltage change	6	8	8.2	dB	1 mV rms input, 1 kHz modulation increased from 30% to 80%

OPERATING NOTES

The noise blank duration can be varied from the suggested value of $300 \mu \mathrm{~s}$ using the formula: Duration time $=0.7 \mathrm{CR}$, where R is value of resistor between pins 11 and 12 and C is value of capacitor from pin 12 to ground.
There is no squelch in the SL6700C and the delay in the delayed AGC is too large to make this output suitable. Squelch is best obtained from a comparator on the AGC decoupling point, pin 16.
The IF amplifiers may be operated at 455 kHz giving a single conversion system.
The mixer may also be used as a product detector. Further application information is available in Application Note AN1001.

TYPICAL DC PIN VOLTAGES
(Supply 4.5V, Input 1mV)

Pin	Voltage	Pin	Voltage
1	2.25 V	10	4.5 V
2	2.09 V	11	3.7 V
3	3.68 V	12	0 V
4	0.7 V	13	0.77 V
5	0.6 V	14	1.5 V
6	3.7 V	15	1.0 V
7	1.5 V	16	0.7 V
8	4.3 V	17	0 V
9	1.5 V	18	0.7 V

Fig. 3 SL6700C AM double conversion receiver with noise blanker

SL6700C

Fig. 4 Typical delayed AGC output variation with input signal ($f=10.7 \mathrm{MHz}, 30 \%$ modulation)

Fig. 5 Typical signal to noise ratio (S+N/N) with input signal ($f=10.7 \mathrm{MHz}, 30 \%$ modulation)

TAB1042

QUAD PROGRAMMABLE OPERATIONAL AMPLIFIER

The TAB1042 is an advanced bipolar integrated circuit containing four separate programmable operational amplifiers. The four amplifiers are programmed by current into a common bias pin which determines the main characteristics of each amplifier, supply current, frequency response and slew rate.

For example, with a suitable choice of bias current, the TAB1042 will perform in a manner similar to four amplifiers of the 741 type, but with improved frequency response and input characteristics.

The TAB1042 is especially suitable for use in active filter applications.

Fig. 1 Pin connections

APPLICATIONS

- Active Filters
- Oscillators
- Low Voltage Amplifiers

QUICK REFERENCE DATA

- Supply Voltages $\pm 1.5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$

Supply Current $\pm 40 \mathrm{uA}$ to $\pm 2 \mathrm{~mA}$
Operating Frequency Range 1 MHz
Gain 95 dB
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TAB1042

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }} 25^{\circ} \mathrm{C}$
Operating mode A:Supply volts $\pm 12 \mathrm{~V}$ Bias set current $75 \mu \mathrm{~A}$
Operating mode B Supply volts $\pm 12 \mathrm{~V}$ Bias set current $1 \mu \mathrm{~A}$
Operating mode C:Supply volts $\pm 1.5 \mathrm{~V}$ Bias set current $1 \mu \mathrm{~A}$

Characteristics	Operating Mode									Units	Conditions
	A			B			C				
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
Input offset voltage		1	5		1	5		1	5	mV	Rs $10 \mathrm{k} \Omega$
Input offset current		20	200		5	50		5	50	nA	
Input bias current		250	500		30	100		30	100	nA	
Input resistance	0.1	0.6		0.5	2		0.5	2		$\mathrm{M} \Omega$	
Supply current (each amplifier)	1000	1600	2200		42		20	40	60	$\mu \mathrm{A}$	
Large signal volt gain	74	95		66	90		66	90		dB	$\begin{aligned} & \mathrm{RL}=4 \mathrm{k} \Omega(\mathrm{~A}) \\ & \mathrm{RL}=100 \mathrm{k} \Omega(\mathrm{~B}) \end{aligned}$
											$\mathrm{RL}=100 \mathrm{k} \Omega(\mathrm{C})$
Input voltage range	10	10.5		10	10.5		0.2	0.4		$\pm \mathrm{V}$	Rs $10 \mathrm{k} \Omega$
Common mode rejection ratio	70	110			82			82		dB	
Output voltage swing	9	10.8		9	10.8		0.2	0.3		$\pm \mathrm{V}$	$\mathrm{RLL}=4 \mathrm{k} \Omega(\mathrm{A})$
											$\mathrm{RL}=100 \mathrm{k} \Omega$ (B$)$
											$\mathrm{RL}=4 \mathrm{k} \Omega(\mathrm{C})$
Supply voltage rejection ratio	75	96		75	86		75	86		dB	Rs 10k Ω
Gain bandwidth product					50			50		kHz	Gain $=20 \mathrm{~dB}$
		3.5								MHz	
Slew rate		1.5			0.02			0.02		$\mathrm{V} / \mu \mathrm{s}$	Gain $=20 \mathrm{~dB}$
Input noise voltage		15			45			45		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$\mathrm{f}_{0}=1 \mathrm{kHz}$
Input noise current		1.6			1.6			1.0		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	$\mathrm{fo}_{0}=1 \mathrm{kHz}$

OPERATING NOTES

Bias set current

The amplifiers are programmed by the Iset current into the BIAS pin to determine the frequency response, slew rate and the value of supply current. The relationship is summarised as follows:
Gain bandwidth product ISET $\times 50 \mathrm{kHz}$
Power supply current (each amplifier)
Slew rate

> ISET $\times 25 \mu \mathrm{~A}$
> ISET $\times 0.02 \mathrm{~V} / \mu \mathrm{s}$
> $($ ISET in $\mu \mathrm{A})$

The open loop voltage gain is largely unaffected by change in bias set current but tends to peak slightly at $10 \mu \mathrm{~A}$.

Since the voltage on the BIAS pin is approximately 0.65 V more positive than the negative supply, a resistor may be connected between the bias pin and either OV or the positive supply to set the current. Thus, if the resistor is connected to 0 V , the Iset current is determined by:

$$
I_{\mathrm{SET}}=\frac{\mathrm{Vs}-0.65}{\mathrm{R}}
$$

where \mathbf{R} is value of the 'set' resistor.
The output goes high if the non-inverting input is taken lower than 1 V above the negative power supply.

Fig. 4 Gain bandwidth product v. ISET

ABSOLUTE MAXIMUM RATINGS

Supply voltages
Common mode input voltage
Differential input voltage
Bias set current
Storage
Power dissipation
$\pm 15 \mathrm{~V}$
Not greater than supplies $\pm 25 \mathrm{~V}$ 10 mA each pin $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 800 mW at $25^{\circ} \mathrm{C}$
Derate at $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
Operating temperature range

Fig. 5 Typical frequency response

TAB 1043
 QUAD PROGRAMMABLE OPERATIONAL AMPLIFIER

The TAB1043 is an advanced bipolar integrated circuit containing four separate operational amplifiers. The amplifiers are programmed by current into the appropriate bias pin. Pin 8 (Bias 2) programmes amplifiers B, C and D and pin 16 (Bias 1) programmes amplifier A.

For example, with a suitable choice of bias current, the TAB1043 will perform in a manner similar to four amplifiers of the 741 type, but with improved frequency response and input characteristics.

The TAB1043 is especially suitable for use in active filter applications.

Fig. 1 Pin connections

APPLICATIONS

- Active Filters
- Oscillators
- Low Voltage Amplifiers

QUICK REFERENCE DATA

Supply Voltages $\pm 1.5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
Suply Curen $\pm \pm 0 \mathrm{uA}$ to $\pm 2 \mathrm{~mA}$
Operating Frequency Range 1 MHz
Gain 9 dB
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

FEATURES

- Four Independent Op. Amps. in One Package
- Internally Compensated
- Wide Range of Supply Voltages from $\pm 1.5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
- No Latch-Up
- Programmable Over 100:1 Current Range
- Gain Bandwidth Product Up to 4 MHz
- Built-In Short Circuit Protection
- Very Low Noise

TAB1043

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
Tamb $25^{\circ} \mathrm{C}$
Operating mode A :Supply volts $\pm 12 \mathrm{~V}$ Bias set current $75 \mu \mathrm{~A}$
Operating mode B :Supply volts $\pm 12 \mathrm{~V}$ Bias set current $1 \mu \mathrm{~A}$
Operating mode $\mathrm{C}:$ Supply volts $\pm 1.5 \mathrm{~V}$ Bias set current $1 \mu \mathrm{~A}$

Characteristics	Operating Mode									Units	Conditions
	A			B			C				
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
Input offset voltage		1	5		1	5		1	5	mV	Rs 10k Ω
Input offset current		20	200		5	50		5	50	nA	
Input bias current		250	500		30	100		30	100	nA	
Input resistance	0.1	0.6		0.5	2		0.5	2		$\mathrm{M} \Omega$	
Supply current (each amplifier)	1000	1600	2200		42		20	40	60	$\mu \mathrm{A}$	
Large signal volt gain	74	95		66	90		66	90		dB	$\mathrm{RL}=4 \mathrm{k} \Omega(\mathrm{A})$
											$\mathrm{RL}=100 \mathrm{k} \Omega(\mathrm{B})$
											$\mathrm{RL}=100 \mathrm{k} \Omega(\mathrm{C})$
Input voltage range	10	10.5		10	10.5		0.2	0.4		$\pm \mathrm{V}$	Rs $10 \mathrm{k} \Omega$
Common mode rejection ratio	70	110			82			82		dB	
Output voltage swing	9	10.8		9	10.8		0.2	0.3		$\pm \mathrm{V}$	$R L=4 \mathrm{k} \Omega(\mathrm{A})$
											$\mathrm{RL}=100 \mathrm{k} \Omega(\mathrm{B})$
											$\mathrm{RL}=4 \mathrm{k} \Omega(\mathrm{C})$
Supply voltage rejection ratio	75	96		75	86		75	86		dB	Rs $10 \mathrm{k} \Omega$
Gain bandwidth product					50			50		kHz	Gain $=20 \mathrm{~dB}$
		3.5								MHz	
Slew rate		1.5			0.02			0.02		$\mathrm{V} / \mu \mathrm{s}$	Gain $=20 \mathrm{~dB}$
Input noise voltage		15			45			45		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$\mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz}$
Input noise current		1.6			1.6			1.0		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	$\mathrm{f}_{0}=1 \mathrm{kHz}$

OPERATING NOTES

Bias set current

The amplifiers are programmed by the Iset current into the BIAS pin to determine the frequency response, slew rate and the value of supply current. The relationship is summarised as follows:
Gain bandwidth product Iset $\times 50 \mathrm{kHz}$
Power supply current (each amplifier)
Slew rate

> Iset $\times 25 \mu \mathrm{~A}$
> Iset $\times 0.02 \mathrm{~V} / \mu \mathrm{s}$
> $($ Iset in $\mu \mathrm{A})$

The open loop voltage gain is largely unaffected by change in bias set current but tends to peak slightly at $10 \mu \mathrm{~A}$.

Since the voltage on the BIAS pin is approximately 0.65 V more positive than the negative supply, a resistor may be connected between the bias pin and either 0 V or the positive supply to set the current. Thus, if the resistor is connected to OV, the ISEI current is determined by :

$$
I_{S E T}=\frac{V s-0.65}{R}
$$

where R is value of the 'set' resistor.
The output goes high if the non-inverting input is taken lower than 1 V above the negative power supply.

Fig. 4 Gain bandwidth product v. ISEI

ABSOLUTE MAXIMUM RATINGS

Supply voltages	$\pm 15 \mathrm{~V}$
Common mode input voltage	Not greater than
	supplies
	$\pm 25 \mathrm{~V}$
Differential input voltage	10 mA
Bias set current	
Storage	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power dissipation	800 mW at $25^{\circ} \mathrm{C}$
	Derate at $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Fig. 5 Typical frequency response

Package Outlines

8 LEAD TO-5 (5.08 mm PCD) WITH STANDOFF - CM8/S

 N.B. FOR SL1521 ONLY, PCD IS 5.84 BASIC (0.23)

10 LEAD TO-5 - CM10

14 LEAD DILMON - DC14

16 LEAD DILMON - DC16

18 LEAD CERAMIC DIL CERDIP - DG18

20 LEAD CERAMIC DIL CERDIP - DG20

24 LEAD FLATPACK - GG24

 PIN NO. 3 AND PIN NO. 4

SO-8 LEAD PLASTIC DIL PACKAGE - MP8

Ordering information

Ordering information

Plessey Semiconductors integrated circuits are allocated type numbers which take the following general form

WW XXXX Y/ZZ

where WW is a two-letter code identifying the product group and/or technology, $\mathbf{X X X X}$ is a three or four numeral code uniquely specifying the particular device, \mathbf{Y} is a single letter which denotes the precise electrical or thermal specification for certain devices and $\mathbf{Z Z}$ is a twoletter code defining the package style. Digits WW, XXXX and Y must always be used when ordering; digits $\mathbf{Z Z}$ need only be used where a device is offered in more than one package style. For example, the SL532C is offered in CM (TO-5) and LC (hermetic chip carrier) packages so the full ordering number for this device in TO-5 package would be SL523C/CM.

The Pro-Electron standard is used for package codes wherever possible. The two letters of this code have the following meanings:
FIRST LETTER (indicates general shape)
A Pin-Grid Array
C Cylindrical
D Dual-in-Line (DIL)
F Flat Pack (leads on two sides)
G Flat Pack (leads on four sides)
Q Quad-in-Line
$\left.\begin{array}{ll}\text { M } & \text { Miniature (for Small Outline) } \\ \text { L } & \text { Leadless Chip Carrier } \\ \text { H } & \text { Leaded Chip Carrier }\end{array}\right\}$ Not yet designated by Pro-Electron
SECOND LETTER (indicates material)
C Metal-Ceramic (Metal Sealed)
G Glass-Ceramic (Glass Sealed)
M Metal
P Plastic
E Epoxy
Note: Gull-winged Quad Cerpac is a Flat Pack with leads on 4 sides hence it will be represented by GG.
Please Note:

Leadless Chip Carriers

LC Metal-Ceramic 3 Layer (Metal Sealed)
LG Glass-Sealed Ceramic
LE Epoxy-Sealed 1 Layer
LP Plastic

Leaded Chip Carriers

Where supplied without lead forming, flat pack rules apply. Where leads are bent under to form footprints equivalent to leadless chip carriers then use H .
e.g. HG Glass-Sealed Ceramic Leaded Chip Carrier (J Leaded Quad Cerpac)

HP Plastic Leaded Chip Carrier
Note: The above information refers generally to all Plessey Semiconductors integrated circuit products and does not necessarily apply to devices contained in this handbook.

PIessey
 Semiconductors World Wide

Sales offices

BELGIUM, NETHERLANDS, LUXEMBOURG
Plessey Semiconductors, Avenue de Tervuren 149, Box 2, Brussels 1150, Belgium.
Tel: 027339730 Tx: 22100
FRANCE Plessey Semiconductors, Z.A de Courtaboeuf, Rue du Quebec, B.P. No. 142, 91944 - Les Ulis Cedex. Tel: (6) 446-23-45 Tx: 692858F
ITALY Plessey Trading SpA, Corso Garibaldi 70, 20121 Milan. Tel: 6596081 Tx: 331347
NORTH AMERICA Plessey Semiconductors, 3 Whatney, Irvine, California 92718, USA. Tel: 7149515212 Twx: 701464
See separate North American listings
UNITED KINGDOM Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire SN2 2QW. Tel: (0793) 36251 Tx: 449637
WEST GERMANY, AUSTRIA, SWITZERLAND
Plessey GmbH, Altheimer Eck 10, 8000 Munchen 2, West Germany. Tel: 08923 62-0 Tx: 0522197

Agents

ARGENTINA AUSTRALIA	Electroimpex SA, Guatemala 5991, (1425) Buenos Aires. Tel: 771-3773/722-9573
	Plessey Australia Pty Ltd., P.O.Box 2, Villawood, New South Wales 2163. Tel: Sydney 720133 Tx: 120384
EASTERN EUROPE GREECE	Plessey plc., Vicarage Lane, Ilford, Essex, England. Tel: 014783040 Tx: 23166
	Plessey Company Ltd., Hadjigianni Mexi 2, Athens. Tel: 217243000 Tx: 219251
	Mammeas, Representations \& Exportations, P.O.Box 181, Piraeus. Tel: 4172597 Tx: 213835 LHGR
INDIA	Semiconductors Ltd., 809 Raheja Centre, Nariman Point, Bombay 400 021. Tel: 233999 Tx: 011-5414 CITO IN
	Semiconductors Ltd., Unity Buildings, J.C. Road, Bangalore 560-001. Tel: 52072 \& 578739
	Semiconductors Ltd., 513, Ashoka Estate, 24, Barakhamba Road, Nf w Delhi - 110001. Tel: 44879 Tx: 313369
JAPAN	Cornes \& Company Ltd., Maruzen Building, 2 Chome Nihonbachi, Chuo-Ku, C.P.O.Box 158, Tokyo 100-91. Tel: 0108132725771 Tx: 24874
	Cornes \& Company Ltd., 1-Chome Nishihonmachi, Nishi-Ku, Osaka 550. Tel: 5321012 Tx: 525-4496
HONG KONG	YES Products Ltd., Block E, 15/F Golden Bear Industrial Centre, 66-82 Chaiwan Kok Street, Tsuen Wan, N.T., Hong Kong. Tel: 0-444241-6 Tx: 36590
KOREA NEW ZEALAND SCANDINAVIA	Young O Ind Co. Ltd., Yeoevido, P.O. Box 149, Seoul. Tel: 7821707 Tx: K25701
	Plessey (NZ) Ltd., Te Pai Place, Henderson, Auckland 8. Tel: 8364189 Tx: NZ2851
Denmark	Scansupply, Nannasgade 18-20, DK-2200 Copenhagen. Tel: 451835090 Tx: 19037
Finland	Oy Ferrado AB, P.O.Box 54, Valimontie 1, SF-00380 Helsinki 38. Tel: 90550002 Tx: 122214
Norway	Skandinavisk Elektronikk A/S, Ostre Aker Vei 99, Oslo 5. Tel: 02641150 Tx: 71963
Sweden	Micronet AB, Odengatan 16, 11424 Stockholm. Tel: 08/15 0230-31 Tx: 14725
SINGAPORE	Plessey Singapore Private Ltd., 400 Orchard Road, No. 21-07 Orchard Towers, Singapore 0923. Tel: 7325000 Tx: RS22013
SOUTH AFRICA	Plessey South Africa Ltd., Forum Building, Struben Street, P.O.Box 2416, Pretoria 0001, Transvaal. Tel: (012) 3234511 Tx: 320277
SPAIN TAIWAN	JR Trading, Apartado de Correos 8432, Madrid 8. Tel: 24812 18/248 3882 Tx: 42701
	Artistex International Inc., Express Trade Building 3rd Floor, 56 Nanking Road East, Section 4 Taipei 105, (P.O.Box 59253, Taipei 105) Taiwan, Republic of China. Tel: 7526330 Tx: 27113 ARTISTEX Fax: (8862) 7215446
THAILAND	Plessey Thailand, Rama Mansion 47, Sukhumvit Soi 12, Bangkok 11. Tel: 2526621
	Tx: CHAVALIT TH2747
TURKEY	Turkelek Elektronic Co. Ltd., Hatay Sokak 8, Ankara. Tel: 90-41-25 21 09, 90-41-18 9483 Tx: 42120
	Turkelek Elektronic Co. Ltd., Kemeralti Caddesi, Tophane Ishani 406, Istanbul. Tel: 90-1-143 12 68,
	90-1-143 4046 Tx: 22036
	Plessey M.M.E.R., Paris Caddesi 76/4, Kavaklidere, Ankara. Tel: 263820 Tx: 42061

Distributors

AUSTRIA	DAHMS Elektronik Ges. mbH, Wiener Str. 287, A-8051 Graz Tel: 0316/64030 Tx: 31099
BELGIUM FRANCE	Master Chips, 4 St. Lazarus Laan, 1030 Brussels. Tel: 022195862 Tx: 62500
	Mateleco, 66,Bd Augustin Dumont, 92240 Malakoff, Paris. Tel: 6577055
	Mateleco Rhône-Alpes, 2 Rue Emile Zola, 38130 Echirolles. Tel: (76) 403833 Tx: 980837
	ICC, 78, Chemin Lanusse, Bôite postale n ${ }^{\circ}$ 2147, 31200 Toulouse. Tel: (61) 26-14-10 Tx: 520897
	ICC, Z.A. du Haut Vigneau, Rue de la Source, 33170 Gradignan. Tel: (56) 31-17-17 Tx: 541539 F
	ICC, 9 bis, rue du Bas Champlour, 63019 Clermont Ferrand. Tel: (73) 91-70-77 Tx: 990928 F
	ICC, Z.A. Artizanord II, Lot 600 - bâtiment 19, Traverse de I'Oasis, 13015 Marseille. Tel: (91)-03-12-12
	Tx: 441313 F
INDIA	Semiconductors Ltd., 809 Reheja Centre, Nariman Point, Bombay 400 021. Tel: 233999
	Tx: 0115415 CITO IN
ITALY	Melchioni, Via P. Colletta 39, 20135 Milan. Tel: 5794 Tx: 320321
	Eurelettronica, Via Mascheroni 19, 20145 Milan. Tel: 4981851 Tx: 332102
	Eurelettronica, Via Bertoloni 27, Rome. Tel: 875394 Tx: 610358
NETHERLANDS NEW ZEALAND SWITZERLAND UNITED KINGDOM	Heynen B.V., Postbus 10, 6590 AA Gennep. Tel: $8851-99111$ Tx: 37282
	Professional Electronics Ltd., P.O.Box 31-143, Auckland. Tel: 493029 Tx: 21084
	Aumann \& Co. AG, Forrlibuckstrasse 150, CH-8037 Zurich. Tel: 01/443300 Tx: 822966
	Celdis Ltd., 37-39 Loverock Road, Reading, Berks RG3 1ED. Tel: 0734585171 Tx: 848370
	Gothic Crellon Ltd., 380 Bath Road, Slough, Berkshire SLi 6JE. Tel: 062864300 Tx: 847571
	Quarndon Electronics Ltd., Slack Lane, Derby DE3 3ED. Tel: 033232651 Tx: 37163
	Semiconductor Specialists (UK) Ltd., Carroll House, 159 High Street, Yiewsley, West Drayton,
	Middlesex UB7 7XB. Tel: 0895445522 Tx: 21958
	United Components Ltd., Victory Electronics Division, Unit 7, Crown Way, West Drayton,
	Middlesex UB7 8PS Tel: 01-573 6622 Tx: 8952920
WEST GERMANY	AS Electronic Vertriebs GmbH, Elisabethenstrasse 35, 6380 Bad Homburg
	Tel: 06172/2 90 28-29 Tx: 410868
	Astronic GmbH, Winzererstrasse 47D, 8000 Munchen 40. Tel: 089/309031 Tx: 5216187
	Micronetics GmbH, Weil der Stadter Str. 45, 7253 Renningen 1. Tel: 07159/6019 Tx: 724708
	Nordelektronik GmbH, Carl-Zeiss-Str. 6, 2085 Quickborn. Tel: 04106/72072 Tx: 214299

PLESSEY SALES REPRESENTATIVES:

ABAMA: IIZONA: LIFORNIA:

ORIDA:
:ORGIA: JIANA:

INOIS:
NA:
NSAS:
IRYLAND:
ISSACHUSETTS
CHIGAN
NNESOTA:
SSOURI:
BRASKA:
VADA:
IUTH NEW JERSEY:
IRTH NEW JERSEY W YORK:

IRTH CAROLINA: IUTH CAROLINA: IIO

EGON:
XAS:
ISHINGTON:
SCONSIN
NADA EASTERN:
NADA WESTERN:

Huntsville	(205) 837-7363
Phoenix	(602) 252-0897
San Diego	(619) 450-1754
Sacramento	(916) 442-2558
Santa Clara	(408) 998-8111
Tustin	(714) 731-9206
Thousand Oaks	(805) 496-7307
Almonte Springs	(305) 339-3855
Boca Raton	(305) 368-7373
Clearwater	(813) 584-8110
Melbourne	(305) 724-8294
Atlanta	(404) 448-1215
Fort Wayne	(219) 637-5548
Carmel	(317) 843-0739
Arlington Heights	(312) 956-1000
Cedar Rapids	(319) 377-4666
Overland Park	(913) 541-8431
Wichita	(316) 733-1301
Owings Mills	(301) 356-9500
Framingham	(617) 875-3266
Southfield	(313) 559-5363
Bloomington	(612) 884-8291
St. Louis	(314) 576-4111
Lincoln	(402) 475-4660
Reno	(702) 322-8299
Marlton	(609) 428-2440
Hicksville	(516) 681-8746
Hicksville	(516) 681-8746
Skanaeteles	(315) 685-5731
Raleigh	(919) 847-8800
Greenville	(803) 233-4637
Cincinnati	(513) 729-1969
Vanadalia	(513) 890-7975
Westlake	(216) 871-0520
Portland	(503) 620-8320
Richardson	(214) 234-8438
Bellevue	(206) 643-8100
Greenacres	(519) 624-4410
Brookfield	(414) 781-1171
Menomonee Falls	(414) 251-0151
Rexdale	(416) 674-1330
Montreal	(514) 484-2923
Burnaby	(604) 291-8866

PLESSEY DISTRIBUTORS

Irvine
Mississauga
(714) 951-5212
(416) $624-8300$

Plessy Solid State
G.E.C. Canada Ltd.

PLESSEY REGIONAL SALES OFFICES

Region
Veterans Memorial Hwy.
ral Islip, NY 11722
705922 PLESNY
$582 \cdot 8070$
REDKO

ral District
LBJ Freeway, \#900
S, TX 75243
ink 821379
690-4930
BURDIN

New England District	Southeast Region
132 Central Street, \#212	499 Crane Roost Blvd. \#235
Foxborough, MA 02035	Altamonte Springs, FL 32701
(617) 543-3855	TLX 705185 PLESGA UD
JOHN BEARCE	(305) 339-6191
	FRANK ABREU
Plains District Sales	West Region
1523 Towne Drive	3 Whatney
Ellisville, MO 63011	Irvine, CA 92714
(314) 527-4100	TWX 910-595-1930
DOUG SCHMIESKORS	TLX 701464 PLESSY
	(714)951-5212
	LARRY FRANKFURT
	Distribution Manager

Dixie District	Chesapeake District
1229 Johnson Terry Rd. \#203	1932 Arlington Blvd. \#217
Marietta, GA 33067	Charlottsville, VA 22903
(404) $973-8793$	(804) 296-7229
DON PAPESH	AL REICHL
Ohio Valley District	Northwest District
1717 E. 116th Street, \#210	4633 Old lronside Dr. \#250
Carmel, Indiana 46032	Santa Clara, CA 95054
(317) 843-0561	TLX 705187
HARLAN WOODMANSEE	(408) 986-8911
	STEVE BOLARIS

Ohio Valley District
6th Street, \#2 (317) 843-0561

HARLAN WOODMANSEE
E.M.A.

Chaparral Electronics

CERCO

Ross Marketing Associates
Ross Marketing Associates
S.C. Cubed
S.C. Cubed

Lawrence Associates
Lawrence Associates
Lawrence Associates
Lawrence Associates E.M.A.

Corrao Marsh
Corrao Marsh
Micro Sales Inc.
Lorenz Sales Inc.
Kebco, Inc.
Kebco, Inc.
Walker-Houck
Stone Components
Fred Gehrke \& Associates
Electronics Sales Agency
Kebco, Inc.
Lorenz Sales Inc.
Ross Marketing Associates
B.G.R. Associates

Lorac Sales
Lorac Sales
Robtron Inc.
E.M.A
E.M.A.

Stegman Blaine
Stegman Blaine
Stegman Blaine Crown Electronics
Bonser-Phihower (B-F Sales)
Crown Electronic Sales Inc.
Crown Electronic Sales Inc.
Micro Sales Inc.
Micro Sales Inc.
Bestec Electronics Ltd.
Eli Manis Inc.
R.A.E. Industrial Electronics

IFORNIA:

NADA

1932 Arlington Blvd. \#217
ottsville, VA 2

Northwest District onside Dr. \#250

TLX 705187
(408) 986-8911 STEVE BOLARIS

Southwest District
3 Whatney
Irvine, CA 92714
TWX 910-595-1930 TLX 701464 PLESS
(714) 951.521?

