

Integrated Circuit Databook

integrated circuits

This publication is issued to provide outline information only and (unless specifically agreed to the contrary by the Company in writing) is not to form part of any order or contract or be regarded as a representation relating to the products or services concerned. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service.

contents

Page
Product Index5-7
Technical Data
ECL 10000 11-27
ECL III 28-74
Sub-nanosecond logic 75
SP8000 series high speed dividers 79-196
ECL II 197-204
Package Outlines $207-212$
Ordering Information 215
Plessey Semiconductors World-Wide Sales Representatives 218
Sales offices 219
Agents 220
Distributors 221

product index

DEVICE TYPE

ECL 10 K LOGIC CIRCUITS	$11-27$
SP 10,000 series	

ECLIII LOGIC CIRCUITS
SP1648 Voltage controlled oscillator 29
SP1650 Dual A/D comparator, Hi-Z 35
SP1651 Dual A/D comparator, Lo-Z 35
SP1658 Voltage controlled multivibrator 37
SP1660 Dual 4-I/P OR/NOR gate $\mathrm{Hi}-\mathrm{Z}$ 41
SP1661 Dual 4-I/P OR/NOR gate Lo-Z 41
SP1662 Quad 2-I/P NOR gate Hi-Z 45
SP1663 Quad 2-I/P NOR gate Lo-Z 45
SP 1664 Quad 2-I/P OR gate $\mathrm{Hi}-\mathrm{Z}$ 47
SP1665 Ouad 2-I/P OR gate Lo-Z 47
SP1666 Dual clocked R-S Flip-Flop Hi-Z 49
SP1667 Dual clocked R-S Flip-Flop Lo-Z 49
SP1668 Dual clock latch $\mathrm{Hi}-\mathrm{Z}$ 53
SP1669 Dual clock latch Lo-Z 53
SP1670 Master-slave D Flip-Flop Hi-Z 57
SP1671 Master-slave D Flip-Flop Lo-Z 57
SP1672 Triple 2-I/P exclusive OR gate $\mathrm{Hi}-\mathrm{Z}$ 63
SP1673 Triple 2-I/P exclusive OR gate Lo-Z 63
SP1674 Triple 2-1/P exclusive NOR gate $\mathrm{Hi}-\mathrm{Z}$ 65
SP1675 Triple 2-I/P exclusive NOR gate Lo-Z 65
SP1690 UHF prescaler type D Flip-Flop 67
SP1692 Quad line receiver 73
SUB-NANOSECOND LOGIC
SP 16 F60 Dual 4-I/P OR/NOR Gate 75
SP8000 SERIES HIGH SPEED DIVIDERS
Prescalers
SP8600A, B\&M 250MHz $\div 4$ 79
SP8601A, B\&M $150 \mathrm{HMz} \div 4$ 83
SP8602A, B\&M $500 \mathrm{MHz} \div 2$ 87
SP8000 SERIES HIGH SPEED DIVIDERS continued ...
Prescalers
SP8603A, B\&M 400MHz $\div 2$ 87
SP8604A, B\&M 300MHz $\div 2$ 87
SP8607A, B\&M 600MHz $\div 2$ 91
SP8613B\&M 700MHz $\div 4$ 93
SP8614B\&M 800MHz $\div 4$ 93
SP8615B\&M $900 \mathrm{MHz} \div 4$ 93
SP8616B $1 \mathrm{GHz} \div 4$ 93
SP8617B $1.3 \mathrm{GHz} \div 4$ 97
SP8619B $1.5 \mathrm{GHz} \div 4$ 97
SP8620A, B\&M $400 \mathrm{MHz} \div 5$ 101
SP8621A, B\&M $300 \mathrm{MHz} \div 5$ 101
SP8622A, B\&M $200 \mathrm{MHz} \div 5$ 101
SP8630A, B\&M $600 \mathrm{MHz} \div 10$ 103
SP8631A, B\&M $500 \mathrm{MHz} \div 10$ 103
SP8632A, B\&M $400 \mathrm{MHz} \div 10$ 103
SP8634B $\quad 700 \mathrm{MHz} \div 10$ (BCD O/P) 107
SP8635B $600 \mathrm{MHz} \div 10$ (BCD O/P) 107
SP8636B $500 \mathrm{MHz} \div 10$ (BCD O/P) 107
SP8637B $400 \mathrm{MHz} \div 10$ (BCD O/P) 107
SP8650A, B\&M $600 \mathrm{MHz} \div 16$ 115
SP8651A, B\&M $500 \mathrm{MHz} \div 16$ 115
SP8652A, B\&M $400 \mathrm{MHz} \div 16$ 115
SP8655A, B\&M 200MHz $\div 32$ Low power (50mW) 119
SP8657A, B\&M $200 \mathrm{MHz} \div 20$ Low power (50 mW) 119
SP8659A, B\&M $200 \mathrm{MHz} \div 16$ Low power (50 mW) 119
SP8660A, B\&M $200 \mathrm{MHz} \div 10$ Low power $(50 \mathrm{~mW})$ 121
SP8665B $\quad 1 \mathrm{GHz} \div 10$ 123
SP8666B $1.1 \mathrm{GHz} \div 10$ 123
SP8667B $1.2 \mathrm{GHz} \div 10$ 123
SP8670A, B\&M $600 \mathrm{MHz} \div 8$ 125
SP8671A, B\&M 500MHz $\div 8$ 125
SP8672A, B\&M $400 \mathrm{MHz} \div 8$ 125
SP8675B\&M $\quad 1 \mathrm{GHz} \div 8$ 129
SP8676B\&M $1.1 \mathrm{GHz} \div 8$ 129
SP8677B\&M $1.2 \mathrm{GHz} \div 8$ 129
SP8735B $600 \mathrm{MHz} \div 8$ with binary O/Ps 149
SP8736B $500 \mathrm{MHz} \div 8$ with binary 0/Ps 149
SP8750B\&M $1 \mathrm{GHz} \div 64$ 177
SP8751B\&M $1.1 \mathrm{GHz} \div 64$ 177
SP8752B $1.2 \mathrm{GHz} \div 64$ 177
SP8770B $1 \mathrm{GHz} \div 256$ 181
SP8771B $1.1 \mathrm{GHz} \div 256$ 181
SP8772B $1.2 \mathrm{GHz} \div 256$ 181
Two-modulus Programmable Dividers
SP8640A, B\&M 200MHz $\div 10 / 11$ (ECL O/P) 111
SP8641A, B\&M 250MHz $\div 10 / 11$ (ECL O/P) 111
SP8642A, B\&M 300MHz $\div 10 / 11(E C L O / P)$ 111
SP8643A, B\&M $350 \mathrm{MHz} \div 10 / 11$ (ECL O/P) 111
SP8646A, B\&M 200MHz $\div 10 / 11$ (TTL O/P) 111
SP8647A, B\&M 250MHz $\div 10 / 11$ (TTL O/P) 111
SP8685A, B\&M 500MHz $\div 10 / 11$ (ECL) 131
SP8690A, B\&M 200MHz $\div 10 / 11$ Low power TTL O/P (70mW) AC coupled I/P 133
SP8695A, B\&M 200MHz $\div 10 / 11$ Low power TTL O/P (70mW) DC coupled I/P 137
SP8720A, B\&M 300MHz $\div 3 / 4$ 141
SP8725A, B\&M $300 \mathrm{MHz} \div 3 / 4$ 145
SP8740A, B\&M 300MHz $\div 5 / 6 \mathrm{AC}$ coupled I/P 153
SP8741A, B\&M $300 \mathrm{MHz} \div 6 / 7 \mathrm{AC}$ coupled I/P 157
SP8743B\&M $\quad 500 \mathrm{MHz} \div 8 / 9 \mathrm{AC}$ coupled I/P 161
SP8745A, B\&M $300 \mathrm{MHz} \div 5 / 6 \mathrm{DC}$ coupled I/P 165
SP8746A, B\&M $300 \mathrm{MHz} \div 6 / 7$ DC coupled I/P 169
SP8748B\&M $300 \mathrm{MHz} \div 8 / 9 \mathrm{DC}$ coupled I/P 173
Modulus Extenders
SP8790A, B\&M LP $\div 4$ control for all programmable devices $(40 \mathrm{~mW})$ 189
SP8794A, B\&M LP $\div 8$ control for all programmable devices (40mW) 193
SP8760B\&M General purpose synthesiser circuit 185
ECL II LOGIC CIRCUITS
SP 1000/1200 series 197-204

technical data

SP10,000 SERIES

ECL 10,000

ECL 10,000 has an excellent speed-power product, has relatively low rise and fall times, and transmissionline capability. The combination of varsatile logic functions and the 2.0 ns propagation delay make ECL 10,000 a versatile family for data handling and processing systems.

Circuit design with ECL 10,000 is unusually
convenient. The differential amplifier input and emitterfollower output permit high fanout, the wired-OR option, and complementary outputs. ECL III is directly compatible with ECL 10,000 and can be used to extend the speed capability of the ECL 10,000 series.

The SP 10,000 series are a direct second source for the Motorola MC 10,000 and MCM 10,000 series.

FUNCTIONS AND CHARACTERISTICS $@ \mathbf{V c c}=0, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Function	Type	Propagation Delay ns typ.	Power Dissipation* mW typ/pkg
Quad 2-I/P NOR gate with strobe	SP10100	2.0	100
Quad OR/NOR gate	SP10101	2.0	100
Quad 2-1/P NOR gate	SP10102	2.0	100
Quad 2-1/P OR gate	SP10103	2.0	100
Quad 2-1/P AND gate	SP10104	2.7	140
Triple 2-3-2-1/P OR/NOR gate	SP10105	2.0	90
Triple 4-3-3-1/P NOR gate	SP10106	2.0	90
Triple 2-1/P exclusive OR/exclusive NOR	SP10107	2.5	110
Dual 4-5-1/P OR/NOR gate	SP10109	2.0	60
Dual 3-1/P 3-O/P OR gate	SP10110	2.4	160
Dual 3-1/P 3-O/P NOR gate	SP10111	2.4	160
Dual 3-1/P 3-O/P OR/NOR gate	SP10112	2.4	160
Quad exclusive OR gate	SP10113	2.5	175
Triple line receiver	SP10114	2.4	145
Quad line receiver	SP10115	2.0	110
Triple line receiver	SP10116	2.0	85
Dual 2 -wide 2-3-1/P OR-AND/OR-AND			
Invert gate	SP10117	2.3	100
Dual 2 -wide 3-1/P OR/AND gate	SP10118	2.3	100
4-wide 4-3-3-3-1/P OR/AND gate	SP10119	2.3	100
4-wide OR-AND/OR-AND Invert gate	SP10121	2.3	100
Quad TTL to ECL translator	SP10124	3.5	380
Quad ECL to TTL translator	SP10125	4.5	380
Bus driver	SP10128	12	700
Quad bus receiver	SP10129	10.0	750
Dual latch	SP10130	2.5	155
Dual type D master slave flip-flop	SP10131	$\mathrm{f}=160 \mathrm{MHz}$	235
Multiplexer with latch	SP10134	3.0	225
Dual J-K master-slave flip-flop	SP10135	$\mathrm{f}=140 \mathrm{MHz}$	280
Universal hexadecimal counter	SP10136	$f=150 \mathrm{MHz}$	625
Universal decade counter	SP10137	$\mathrm{f}=150 \mathrm{MHz}$	625
Bi-quinary counter	SP10138	$\mathrm{f}=150 \mathrm{MHz}$	370
64-bit random access memory	SP10140	$\mathrm{t}_{\text {access }}=15 \mathrm{~ns}$ (max)	420
Four-bit universal shift register	SP10141	$\mathrm{f}^{\text {a }}$ 200 20 MHz	425
64-bit random access memory	SP10142	$\mathrm{t}_{\text {access }}=10 \mathrm{~ns}$ (max)	420
256-bit random access memory	SP10144	$\mathrm{t}_{\text {access }}=30 \mathrm{~ns}(\max)$	420
64-bit register file (RAM)	SP10145	$\mathrm{t}_{\text {access }}=10 \mathrm{~ns}(\mathrm{typ})$	625
1024-bit random access memory	SP10146		
64-bit random access memory	SP10148	$\mathrm{taccess}=15 \mathrm{~ns}$ (max)	420
12-bit parity generator checker	SP10160	5.0	320
Binary to 1 out of 8 decoder (low)	SP10161	4.0	315
Binary to 1 out of 8 decoder (high)	SP10162	4.0	315
8 -line multiplexer	SP10164	3.0	310
8 -input priority encoder	SP10165	7.0	545
Dual binary to 1 out of 4 decoder (low)	SP10171	4.0	325
Dual binary to 1 out of 4 decoder (high)	SP10172	4.0	325
Quad 2-1/P multiplexer/latch	SP10173	2.5	275
Dual 4 to 1 multiplexer	SP10174	3.5	305
Quint latch	SP10175	2.5	400
Hex D master-slave flip-flop	SP10176	$\mathrm{f}=250 \mathrm{MHz}$	460
Binary counter	SP10178	$\mathrm{f}=150 \mathrm{MHz}$	370
Look-ahead carry block	SP10179	3.0 (Cn, P) 4.0 (G)	300
Dual high speed adder/subtractor	SP10180	4.5	360
4-bit arithmetic logic unit/function generator	SP10181	See logic diag.	600

[^0]
TYPICAL TRANSFER CHARACTERISTICS OF ECL 10100 FAMILY

Test conditions: $T_{A}=+25 \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, 50 \Omega$ matched inputs and outputs.

PARAMETER	$-\mathbf{3 0} \mathbf{~}$	$+\mathbf{2 5} \mathrm{C}$	$+\mathbf{8 5} \mathbf{C}$
VIHmax	-0.890 V	-0.810 V	-0.700 V
VILmin	-1.890 V	-1.850 V	-1.825 V
VIHAmin	-1.205 V	-1.105 V	-1.035 V
VILAmax	-1.500 V	-1.475 V	-1.440 V
VOHmax	-0.890 V	-0.810 V	-0.700 V
VOI.min	-1.890 V	-1.850 V	-1.825 V
VOHmin	-1.060 V	-0.960 V	-0.890 V
VOLmax	-1.675 V	-1.650 V	-1.615 V
VOHAmin	-1.080 V	-0.980 V	-0.910 V
VOLAmax	-1.655 V	-1.630 V	-1.595 V

ABSOLUTE MAXIMUM RATINGS

A. Limits beyond which device life may be impaired:

Power supply voltage, $\mathrm{V}_{\mathrm{EE}}\left(\mathrm{V}_{\mathrm{CC}}=0\right)$
Base input voltage, $\mathrm{V}_{\text {in }}\left(\mathrm{V}_{\mathrm{CC}}=0\right)$
Output source current, lo:-

Continuous
 Surge

Storage temperature, $\mathrm{T}_{\text {stg }}$
${ }^{*}$ Junction operating temperature, T_{j} :-
Plastic package
Ceramic package
-8 V to OV
$O V$ to $V_{E E}$
$<50 \mathrm{~mA}$
$<100 \mathrm{~mA}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

$$
\begin{aligned}
& <150^{\circ} \mathrm{C} \\
& <165^{\circ} \mathrm{C}
\end{aligned}
$$

B. Limits beyond which performance may be degraded:

Operating temperature range, T_{A}
DC fan-out
Power supply regulation
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
<70
$\pm 10 \%$

[^1]
LOGIC DIAGRAMS

Positive logic is used throughout.
Power supply connections:
$V_{\mathrm{CC} 1=-\mathrm{p}} \mathrm{p} 1, V_{\mathrm{CC} 2}-\mathrm{pin} 16, V_{\mathrm{EE}--\mathrm{pin}} 8$, except where otherwise stated.

SP10102
QUAD 2-INPUT NOR GATE

$\mathrm{P}_{\mathrm{D}}=25 \mathrm{~mW}$ typ/gate (No load) $\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns} \mathrm{typ}$

SP10103
QUAD 2-INPUT OR GATE

$P_{D}=25 \mathrm{~mW}$ typ/gate (No load) $\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}$ typ

SP10104

QUAD 2-INPUT AND GATE

$P_{D}=35 \mathrm{~mW}$ typ/gate (No load)
$\mathrm{t}_{\mathrm{pd}}=2.7 \mathrm{~ns}$ typ

SP10105

TRIPLE 2-3-2 INPUT OR/NOR GATE

$\mathrm{P}_{\mathrm{D}}=30 \mathrm{~mW}$ typ/gate (No load)
$\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}$ typ
TRIPLE 4-3-3 INPUT NOR GATE

SP10110
DUAL 3-INPUT 3-OUTPUT OR GATE

$V_{C C 1}=$ pins 1 and 15
$V_{c c}=p$ in 16
$\mathrm{V}_{\mathrm{EE}}=\operatorname{pin} 8$
$P_{D}=160 \mathrm{~mW}$ typ $/ \mathrm{pkg}$ (No load) $\mathrm{t}_{\mathrm{pd}}=2.4 \mathrm{~ns}$ typ

SP10112
 DUAL 3-INPUT 3 OUTPUT OR/NOR GATE

$V_{C C 1}=$ pins 1 and 15
$V \mathrm{CC2}=\operatorname{pin} 16$
$\mathrm{V}_{\mathrm{EE}}=\mathrm{pin} 8$
$\mathrm{P}_{\mathrm{D}}=160 \mathrm{~mW}$ typ/pkg (No load) $\mathrm{t}_{\mathrm{pd}}=24 \mathrm{~ns} \mathrm{typ}$
QUAD EXCLUSIVE OR GATE

SP10125

 QUAD ECLTO TTL TRANSLATOR
$V_{C C}(+5 \mathrm{~V})=\operatorname{pin} 9$ $V_{\text {EE }}(-5.2 \mathrm{~V})=\operatorname{pin} 8$ Gnd $=\operatorname{pin} 16$
$\mathrm{P}_{\mathrm{D}}=380 \mathrm{~mW}$ typ $/ \mathrm{pkg}$ (No load) $t_{p d}=3.5 \mathrm{~ns}$ typ (50% to +1.5 Vdc out)

$\mathrm{P}_{\mathrm{D}}=235 \mathrm{~mW}$ typ/pkg (No load)
$\mathrm{f}=160 \mathrm{MHz}$ typ
CLOCKED TRUTH TABLE

C	D	$Q_{n}-1$
L	\varnothing	Q_{n}
H	L	L
H	H	H

$\emptyset=$ Don't Care
$\mathrm{C}=\mathrm{C}_{\mathrm{E}}+\mathrm{C}_{\mathrm{C}}$.
A clock H is a clock transition from a low to a high state.

R-S TRUTH TABLE

R	S	$Q_{n}-1$
L	L	Q_{n}
L	H	H
H	L	$L-$
H	H	N.D.

$P_{D}=225 \mathrm{~mW}$ typ $/ \mathrm{pkg}$ (No load)
$\mathrm{t}_{\mathrm{pd}}=3.0 \mathrm{~ns}$ typ

TRUTH TABLE				
C	A0	D11	D12	$\mathrm{O}_{\mathrm{n}+1}$
L	L	L	\bigcirc	L
L	L	H	\bigcirc	H
L	H	\emptyset	L	L
L	H	\emptyset	H	H
H	\emptyset	\emptyset	\bigcirc	O_{n}

$\rho=$ Don't Care
$\mathrm{C}=\overline{\mathrm{CE}}+\mathrm{C}_{\mathrm{c}}$

SP10135
DUAL J-K MASTER-SLAVE
FLIP-FLOP
to be announced

$\mathrm{P}_{\mathrm{D}}=280 \mathrm{~mW}$ typ/pkg (No load)
$f_{\text {tog }}=140 \mathrm{MHz}$ typ

R-S TRUTH TABLE

R	S	$Q_{n}+1$
L	L	Q_{n}
L	H	H
H	L	L
H	H	N.D.

N.D.=-Not Defined

CLOCK J-K TRUTH TABLE*

\bar{J}	\bar{K}	$Q_{n}: 1$
L	L	Q_{n}
H	L	L
L	H	H
H	H	Q_{n}

*Output states change on positive transition of clock for $\bar{J}-\bar{K}$ input condition present.


```
SP10140 (90 ) )
SP10142 (50 ) )
SP10148(50 )
64-BIT RANDOM MEMORY
```

TO BE ANNOUNCED

$\mathrm{P}_{\mathrm{o}}=420 \mathrm{~mW}$ typ $/ \mathrm{pkg}$
$\mathrm{t}_{\text {access }}=15 \mathrm{~ns}($ max $)$ SP10140, SP10148
$=10$ ns (max) SP10142

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{C E}$	$\overline{W E}$	$D_{\text {in }}$	$D_{\text {out }}$
Write "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	\emptyset	Q
Disabled	H	\emptyset	\emptyset	L

$\rho=$ Don't Care

SP10141

FOUR-BIT UNIVERSAL SHIFT REGISTER
TO BE ANNOUNCED

$\mathrm{P}_{\mathrm{D}}=425 \mathrm{~mW}$ typ/pkg $\mathrm{f}_{\text {shif }}=200 \mathrm{MHz}$ typ

TRUTH TABLE

		OPERATING MODE	OUTPUTS			
S1	S2		$00_{n}+1$	Q1 ${ }_{\mathrm{n}}+1$	Q 2 n +1	Q3n-1
L	L	Parallel Entry	D0	D1	D2	D3
L	H	Shift Right*	Q1n	02n	Q3 ${ }^{\text {n }}$	DR
H	L	Shift Left*	DL	00^{n}	Q1n	O2n
H	H	Stop Shift	00^{n}	Q1n	02 n	$\mathrm{Q3}^{\text {n }}$

*Outputs as exist after pulse appears at "C" input with input conditions as shown. (Pulse $=$ Positive transition of clock input).

$V_{C C}=\operatorname{pin} 16$

$$
V_{\mathrm{EE}}=\operatorname{pin} 8
$$

$P_{D}=625 \mathrm{~mW}$ typ. pkg. (no load)
$\mathrm{t}_{\text {access }}=10 \mathrm{~ns}$ typ

SP10145
64-BIT REGISTER FILE
(RAM)
TO BE ANNOUNCED

TRUTH TABLE

MODE	INPUT			OUTPUT
	CE	WE	D	Q
Write "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	\varnothing	Q
Disabled	H	\varnothing	\varnothing	L

$\phi=$ Don't Care.

SP10146
 1024 BIT RANDOM
 ACCESS MEMORY

TO BE ANNOUNCED
$V_{C C}=\operatorname{pin} 16$
$V_{E E}=\operatorname{pin} 8$

SP10160
 12-BIT PARITY GENERATOR CHECKER

to be announced

$\mathrm{P}_{\mathrm{D}}=320 \mathrm{~mW}$ typ/pkg (No load) $\mathrm{t}_{\mathrm{pd}}=5.0 \mathrm{~ns} \mathrm{typ}$

INPUT	OUTPUT
Sum of High Level Inputs	Pin 2
Even	Low
Odd	High

SP10161
 BINARY TO 1 OUT OF 8 DECODER (LOW)

$\mathrm{P}_{\mathrm{D}}=315 \mathrm{~mW}$ typ/pkg (No load) $\mathrm{t}_{\mathrm{pd}}=4.0 \mathrm{~ns}$ typ

TRUTH TABLE

ENABLE INPUTS		INPUTS			OUTPUTS							
$\overline{\mathrm{E1}}$	$\overline{\text { EO }}$	C	B	A	Q0	Q1	Q2	Q3	Q4	Q5	Q6	07
L	L.	L	L	L	L	H	H	H	H	H	H	H
L	L	L	L	H	H	L	H	H	H	H	H	H
L	L	L	H	L	H	H	L	H	H	H	H	H
L	L	L	H	H	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	L	H	H	H
L	L	H	L	H	H	H	H	H	H	L	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L
H	\emptyset	\bigcirc	-	\emptyset	H	H	H	H	H	H	H	H
\bullet	H	\emptyset	-	๑	H	H	H	H	H	H	H	H

SP10162

BINARY TO 1 OUT OF 8 DECODER (HIGH)

$P_{D}=315 \mathrm{~mW}$ typ/pkg (No load) $\mathrm{t}_{\mathrm{pd}}=4.0 \mathrm{~ns} \mathrm{typ}$

INPUTS					OUTPUTS							
EO	E1	C	B	A	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
L	L	L	L	L	L	H	L	L	L	L	L	L
L.	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L.	L	L	L	L	L	H
H	\emptyset	\emptyset	\emptyset	\emptyset	L	L	L	L	L	L	L	L
0	H	\emptyset	\emptyset	\emptyset	L	L	L	L	L	L	L	L

$\theta=$ Don't Care

SP10164
 8-LINE MULTIPLEXER

$\mathrm{P}_{\mathrm{D}}=310 \mathrm{~mW}$ typ/pkg (No load) $\mathrm{t}_{\mathrm{pd}}=3.0 \mathrm{~ns}$ typ

TRUTH TABLE

ENABLE	ADDRESS			INPUTS
	C	B	A	
L	L	L	L	X0
L	L	L	H	X1
L	L	H	L	X2
L	L	H	H	X3
L	H	L	L	X4
L	H	L	H	X5
L	H	H	L	X6
L	H	H	H	X7
H	\emptyset	\emptyset	\emptyset	L

SP10165
 8-INPUT PRIORITY ENCODER
 TO BE ANNOUNCED

$P_{D}=545 \mathrm{~mW}$ typ/pkg $t_{\text {pd }}=7.0 \mathrm{~ns}$ typ (Data to output)

TRUTH TABLE

DATA INPUTS								OUTPUTS			
D0	D1	D2	D3	D4	D5	D6	D7	Q3	Q2	Q1	Q0
H	\emptyset	\bullet	\triangleright	\emptyset	\bullet	-	-	H	L	L	L
L	H	\emptyset	\bigcirc	\bigcirc	\emptyset	0	\bigcirc	H	L	L	H
L	L	H	\bigcirc	\emptyset	\emptyset	\bigcirc	\bigcirc	H	L	H	L
L	L	L	H	\emptyset	\bigcirc	\varnothing	\bigcirc	H	L	H	H
L.	L	L	L	H	\emptyset	\varnothing	\bigcirc	H	H	L.	1
L	L	L	L	L	H	\emptyset	\emptyset	H	H	L	H
L	L	L	L	L	L	H	\bigcirc	H	H	H	L
L	L	L	L	L	L	L	H	H	H	H	H
L	L	L	L	L	L	L	L	L	L	L	L

SP10171

DUAL BINARY TO 1 OUT OF 4 DECODER

 (LOW)$\mathrm{P}_{\mathrm{D}}=325 \mathrm{~mW}$ typ/pkg (No load)
$\mathrm{t}_{\mathrm{pd}}=4.0 \mathrm{~ns}$ typ

TRUTH TABLE

ENABLE INPUTS			INPUTS		OUTPUTS							
$\overline{\mathrm{E}}$	$\overline{\mathrm{EO}}$	$\overline{\mathrm{ET}}$	A	B	Q10	Q11	Q12	Q13	Q00	Q01	Q02	Q03
L	L	L	L	L	L	H	H	H	L	H	H	H
L	L	L	L	H	H	L	H	H	H	L	H	H
L	L	L	H	L	H	H	L	H	H	H	L	H
L	L	L	H	H	H	H	H	L	H	H	L	H
L	L	H	L	L	H	H	H	H	L	H	H	H
L	H	L	L	L	L	H	H	H	H	H	H	H
H	\emptyset	\bigcirc	\bullet	\bigcirc	H	H	H	H	H	H	H	H

SP10172
 DUAL BINARY TO 1 OUT OF 4 DECODER (HIGH)

$P_{D}=325 \mathrm{~mW}$ typ/pkg (No load)
$\mathrm{t}_{\mathrm{pd}}=4.0 \mathrm{~ns}$ typ

TRUTH TABLE

\bar{E}	$\overline{\text { E1 }}$	$\overline{\text { EO }}$	A	B	010	011	Q12	Q13	000	001	002	Q03
L	H	H	L	L	H	L	L	L	H	L	L	L
L	H	H	L	H	L	H	L	L	L	H	L	L
L	H	H	H	L	L	L	H	L	L	L	H	L
L	H	H	H	H	L	L	L	H	L	L	L	H
L	L	H	L	L	L	L	L	L	H	L	L	L
L	H	L	L	L	H	L	L	L	L	L	L	L
H	\emptyset	\emptyset	\emptyset	\emptyset	L	L	L	L	L	L	L	L

SP10176

HEX D MASTER-SLAVE FLIP-FLOP
TO BE ANNOUNCED

CLOCKED TRUTH TABLE

C	D	$Q_{n}+1$
L	\bullet	Q_{n}
H^{*}	L	L
H^{*}	H	H

- Don't Care
*A clock H is a clock transition from a low to a high state.

$$
\begin{aligned}
& \mathrm{PD}_{\mathrm{D}}=460 \mathrm{~mW} \mathrm{typ} / \mathrm{pkg}(\text { No load }) \\
& \mathrm{f}_{\mathrm{tog}}=150 \mathrm{MHz}
\end{aligned}
$$

INPUTS							OUTPUTS			
R	S0	S1	S2	S3	C1	C2	Q0	Q1	Q2	Q3
H	L	L	L	L	ϕ	\varnothing	L	L	L	L
L	H	H	H	H	\varnothing	\varnothing	H	H	H	H
L	L	L	L	L	H	\varnothing		No co		
L	L	L	L	L	\varnothing	H		Noco		
L	L	L	L	L		*	L	L	L	L
L	L	L	L	L		*	H	L	L	L
L	L	L	L	L		-	L	H	L	L
L	L	L	L	L		*	H	H	L	1
L	L	L	L	L		.	L	L	H	L
L	L	L	L	L		*	H	L	H	L
L	L	L	L	L		*	L	H	H	1
L	L	L	L	L		*	H	H	H	L
L	L	L	L	L		-	L	L	L	H
L	L	L	L	L		-	H	L	L	H
L	L	L	L	L		*	L	H	L	H
L	L	L	1	L		*	H	H	L	$\cdot \mathrm{H}$
L	L	L	L	L		*	L	L	H	H
L	L	L	L	L		*	H	L	H	H
L	L	L	L	L		*	L	H	H	H
L	L	L	L	L		*	H	H	H	H

Don't Care
Clock transition from $V_{I L}$ to $\mathrm{V}_{\text {IH }}$ may be applied to C 1 or C 2 or both for same effect.

SP10178 BINARY COUNTER

TO BE ANNOUNCED

$P_{\mathrm{D}}=370 \mathrm{~mW}$ typ $/ \mathrm{pkg}$ (no load)
$f_{\log }=150 \mathrm{MHz}$ typ

SP10179

LOOK-AHEAD CARRY BLOCK
to BE ANNOUNCED

SP10180
DUALHIGH SPEED ADDER/SUBTRACTOR
TO BE ANNOUNCED

FUNCTION SELECT TABLE

Sel $_{A}$	Sel $_{B}$	Function
H	H	$S=A$ plus B
H	L	$S-A$ minus B
L	H	$S=B$ minus A
L	L	$S=0$ minus A minus B

$P_{D}=360 \mathrm{~mW}$ typ/pkg
$t_{p d}$ (typ):
$\mathrm{C}_{\text {in }}$ to $\mathrm{C}_{\text {out }}=2.2 \mathrm{~ns}$
AO to $\mathrm{SO}=4.5 \mathrm{~ns}$
AO to $C_{\text {out }}=4.5 \mathrm{~ns}$

SP10181

4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

TO BE ANNOUNCED

$P_{D}=600 \mathrm{~mW}$ typ/pkg (No load) tpd (typ): A1 to $F=6.5 \mathrm{~ns}$
C_{n} to $C_{n} \quad 4=3.1 \mathrm{~ns}$
A 1 to $\mathrm{PG}_{\mathrm{G}}=0.5 \mathrm{~ns}$
A 1 to $\mathrm{G}_{\mathrm{G}}=4.5 \mathrm{~ns}$
A1 to $C_{n} 4=5.0 \mathrm{~ns}$
$V_{\mathrm{CC}}=\operatorname{pin} 1$
$V_{c C 2}=\operatorname{pin} 24$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{pin} 12$

IMPORTANT!

ECLIII Temperature Range

Since the SP1600 series datasheets were prepared, the operating temperature range of all these ECLIII products has been uprated to $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and not $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ as stated in the individual datasheets.

SP 1648B
 VOLTAGE-CONTROLED OSCILATOR

The SP1648 is an emitter-coupled oscillator, constructed on a single monolithic silicon chip. Output levels are compatible with PECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The device may also be used in phase locked loops and many other applications requiring a fixed or variable frequency clock source of high spectral purity.

The SP1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements.

SUPPLY VOLTAGE	GND PINS	SUPPLY PINS
+5.0 Vdc	7,8	1,14
-5.2 Vdc	1,14	7,8

Fig. 1 Block diagram of SP 1648

Fig. 2 Circuit diagram of SP1648

SP1648

ELECTRICAL CHARACTERISTICS

Supply Voltage $=+5.0$ volts

Characteristic	Symbot	$\begin{aligned} & \text { Pin } \\ & \text { Under } \\ & \text { Test } \end{aligned}$	SP1648 Test Limits										test voltage/current applied to PINS LISTED BELOW				$\begin{gathered} \mathbf{V E E}_{\text {f }} \\ \text { (Gnd) } \\ \hline \end{gathered}$
			$0^{\circ} \mathrm{C}$			+25 ${ }^{\circ} \mathrm{C}$			+75 ${ }^{\circ} \mathrm{C}$			Unit					
			Min		Max	Min		Max	Min		Max		$\mathrm{V}_{\mathrm{IH} \text { max }}$	$V_{1 L}$ min	$V_{\text {cc }}$	I_{L}	
Power Supply Drain Curtent	'E.	8	-		-	-		35	-		-	mAdc	-	-	1.14		7.8
Logic "1" Output Voltage	V_{OH}	3	4.00		4.16	4.04		4.19	4.10		4.28	Vdc	-	12	1.14	3	7.8
Logic " 0 " Output Voltage	v_{OL}	3	3.18		3.42	3.20		3.43	3.22		3.46	Vdc	12	-	1.14	3	7.8
Bias Voltage	$\mathrm{V}_{\text {Bias }}{ }^{\text {* }}$	10	1.45		1.8	1.4		1.7	13		1.6	Vdc	-	-	1. 14	-	7.8
			Min	Typ	Max	Min	Typ	Max	Min	Tro	Max						
Peak-to.Peak Tank Voltage	Vpop	12	-	-	-	-	500	-	-	-	-	mv	See Figure 4	\cdots	1.14	3	7.8
Output Outy Crcle	V DC	3	-	-	-	-	50	-	-	-	-	$\%$	See Figure 4	$\stackrel{\rightharpoonup}{*}$	1,14	3	7.8
Oscillation Frequency	$I_{\text {max }}$	-	-	-	-	195	225		-	-	-	MH2	See Figure 4	-	1,14	3	7.8

- This measurement guarantees the de potential at the bias for purposes of incorporating a varactor diode at this point

ELECTRICAL CHARACTERISTICS

Supply Voltage $=\mathbf{- 5 . 2}$ volts

Cherectaristic	Symbot	$\begin{aligned} & \text { Pin } \\ & \text { Under } \\ & \text { Test } \end{aligned}$	SP1648 Tent Limits										test Voltage/current applied to PINS LISTED BELOW				$\begin{aligned} & \mathrm{Vcc}_{1} \\ & \mathrm{IGnd} \\ & \hline \end{aligned}$
			$0^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$			Unit					
			Min		Max	Min		Max	Min	Max			$V_{\text {IH }}$ max	$V_{1 L}$ min	VeE	IL	
Power Supply Drain Current	IE	8	-		-	-		36	-		-	mAdc	-	-	7.8	-	1,14
Logic " 1 " Output Voltage	${ }^{\text {OHH}}$	3	-1.000		-0.840	-0.960		-0.810	-0.900		-0.720	Vdc	-	12	7.8	3	1,14
Logic " 0 " Output Voltage	Vol	3	-1.870		-1.635	-1.850		-1.620	-1.830		-1.595	Vdc	12	-	7.8	3	1,14
Bies Voltrage	$\mathrm{V}_{\text {Bias }}{ }^{*}$	10	-3.750		-3.400	-3.800		-3.500	-3.900		-3.600	Vdc	-	-	7.8	-	1,14
			Min	Typ	Max	Min	Typ.	Max	Min	Typ	Max						
Pmak-to-Paak Voltrge	Vp-p	12	-	-	-	-	500	-	-	-	-	mv	See Figure 4	-	7.8	3	1.14
Ou'unt Duty Cycle	$V_{D C}$	3	-	-	-	-	50	-	-	-	-	\%	See Figure 4	-	7.8	3	1,14
Oscillation Frequency	${ }^{4}$ max	-	-	-	-	195	225	-	-	-	-	MHz	See Figurs 4	-	7.8	3	1,14

- This measurement guarantees the de potential at the bias point for purposes of incorporating a varactor tuning diode at this point.

Fig. 3 Spectral purity of signal at output

Fig. 4 Test circuit and waveforms

SP1648

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for the SP 1648. The oscillator incorporates positive feedback by coupling the base of transistor TR7 to the collector of TR8. An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (TR7 and TR8) and allow optimum frequency response of the oscillator.

In order to maintain the high \mathbf{Q} of the oscillator, and provide high spectral purity at the output, a cascode transistor (TR4) is used to translate from the emitter follower (TR5) to the output differential pair TR2 and TR3. TR2 and TR3, in conjunction with output transistor TR1, provide a highly buffered output which produces a square wave. Transistors TR10 thru TR14 provide this bias drive for the oscillator and output buffer. Figure 3 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 5), it should be noted that the cathode of the varactor diode (D) should be biased at least $2 \mathrm{~V}_{\mathrm{BE}}$ above $V_{E E}(\approx 1.4 \mathrm{~V}$ for positive supply operation).

Fig. 5 The SP1648 operating in the voltage-controlled mode

When the SP 1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 6.

Fig. 6 Frequency deviation test circuit

Fig. 7

Fig. 8

Fig. 9

SP1648

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 7, 8, and 9. Figures 7 and 9 show transfer characteristics employing only the capacitance of the varactor diode (plus the input capacitance of of the oscillator, 6 pF typical). Figure 8 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The $1 \mathrm{k} \Omega$ resistor in Figures 7 and 8 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor ($51 \mathrm{k} \Omega$) in Figure 9 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:
$\frac{f_{\max }}{f_{\min }}=\frac{\sqrt{C_{D}(\max)+C_{S}}}{\sqrt{C_{D}(\min)+C_{S}}}$
where $f_{\text {min }}=\frac{1}{2^{\pi} \sqrt{L\left(C_{D}(\text { max })+C_{S}\right)}}$
$C_{S}=$ shunt capacitance (input plus external capacitance).
$C_{D}=$ varactor capacitance as a function of bias voltage.

Good RF and low-frequency by-passing is necessary on the power supply pins (see Figure 3).

Capacitors (C1 and C2 of Figure 5) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a $0.1 \mu \mathrm{~F}$ capacitor is sufficient for C 1 and C 2 . At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the SP1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used).

At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to-peak voltage in order to maintain a square wave at the output of the SP1648. This is accomplished by tying a series resistor ($1 \mathrm{k} \Omega$ minimum) from the AGC to the most positive power potential $1+5.0$ volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used).

SP1600 SERIES

SP 1650B (HIGHz) SP1651B
 (LOW Z)
 DUAL A/D COMPARATOR

The SP1650 and the SP1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The SP1650 provides high impedance Darlington inputs, while the SP1651 is a lower impedance option, with higher input slew rate and higher speed capability.

Complementary outputs permit maximum utility for applications in high speed test equipment, frequency measurement, sample and hold, peak voltage detection and transmitters, receivers, memory translation and more.

The clock inputs ($\overline{\mathrm{CO}}$ and $\overline{\mathrm{C} 1}$) operate from PECL III or PECL 10,000 digital levels. When $\overline{\mathrm{CO}}$ is at a logic high level, Q0 will be at a logic high level provided that $\mathrm{V}_{\text {in01 }}>\mathrm{V}_{\text {in02 }}$ $\left(\mathrm{V}_{\mathrm{in} 01}\right.$ is more positive than $\left.\mathrm{V}_{\mathrm{in} 02}\right) . \overline{\mathrm{OO}}$ is the logic complement of QO. When the clock input goes to a low logic level, the outputs are latched in their present state.

FEATURES

E. $P_{D}=275 \mathrm{~mW}$ typ/pkg (No Load)

图 Very High Speed - 3.5 ns Delay (SP1650)
-2.5 ns Delay (SP1651)

- High Input Slew Rate - $350 \mathrm{~V} / \mathrm{s}$ (SP1651)
- Positive Transition Region - Input Hysterisis.

Fig. 1 Logic diagram of SP1651

SP1600 SERIES
ECL III

SP1658

VOLTAGE-CONTROLED MULTIVIBRATOR

The SP1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with PECL III and PECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The PECL1658 is useful in phase-locked loops, frequency synthesizer and clock signal generation applications for instrumentation, communication, and computer systems.

Fig. 1 Block diagram of SP1658

designed to meet has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and 500 linear fpm is maintained Outputs are ter is maintained Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

Fig. 3 Output frequency v capacitance for three values of input voltage

Fig. 4 RMS noise deviation voperating frequency

Fig. 5 Frequency-capacitance product v control voltage $V_{C X}$

SP1600 SERIES

ECL III

SP1660B (HIGHz)
 SP1661B (Lowz)
 DUAL 4-INPUT OR/NOR GATE

SP1660B provides simultaneous OR-NOR output functions with the capability of driving 50Ω lines. This device contains an internal bias reference voltage, ensuring that the threshold point is always in the centre of the transition region over the temperature range $10^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$). The input pulldown resistors eliminate the need to tie unused inputs to $V_{E E}$.

FEATURES

- Gate Switching Speed Ins Typ.

国 MECL/PECL II and MECL 10000-Compatible

- 50Ω Line Driving Capability
- Operation With Unused I/Ps Open Circuit

Low Supply Noise Generation

Fig. 1 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left\|V_{C C}-V_{E E}\right\|$	$8 V$
Base input voltage	$0 V$ to $V_{E E}$
O / P source current	$<40 \mathrm{~mA}$
Storage temperature	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction operating temp.	$<+125^{\circ} \mathrm{C}$

Fig. 2 Circuit diagram

SP1660/1

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the d.c. specifications shown in the characteristics table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC 14A2CB or equivalent) or a transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$ should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Test procedures are shown for only one gate. The other gates are tested in the same manner. Outputs are tested with a 50Ω resistor to $-2.0 \mathrm{Vd.c}$.

Intividually test each input applying $\mathrm{V}_{1 H}$ or $\mathrm{V}_{1 \mathrm{~L}}$ to the input under test.

Fig. 3 Switching time test circuit and wave forms at $+25^{\circ} \mathrm{C}$ SP1600 SERIES

ECL III

SP1662B (HIGHz)
 SP1663B (Lowz)
 QUAD 2-INPUT NOR GATE

The SP1662B comprises four 2-input NOR gating functions in a single package. An internal bias reference voltage ensures that the threshold point remains in the centre of the transition region over the temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$.

Input pulldown resistors eliminate the need to tie unused inputs to V_{EE}.

FEATURES

: Gate Switching Speed Ins Typ.

- MECL_/PECL II and MECL 10000-Compatible

困 50Ω Line Driving Capability
Operation With Unused I/Ps Open Circuit

* Low Supply Noise Generation

Fig. 1 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right|$
Base input voltage
8 V
0 V to V_{EE}
O / P source current $\quad<40 \mathrm{~mA}$
Storage temperature
Junction operating temp.
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$<+125^{\circ} \mathrm{C}$

SP1662/3

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the d.c. specifications shown in the characteristics table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$ should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Indivitudily test each input applying $\mathrm{V}_{1 H}$ or $\mathrm{V}_{\text {IL }}$ to mput under test.

Fig. 3 Switching time test circuit and wave forms at $+25^{\circ} \mathrm{C}$

SP1664B (HIGHz)
 SP1665B (LOWz)
 QUAD 2-INPUT OR GATE

The SP1664B comprises four 2 -input OR gating functions in a single package. An internal bias reference voltage ensures that the threshold point remains in the centre of the transition region over the temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$.

Input pulldown resistor: eliminate the need to tie unused inputs to $V_{E E}$.

FEATURES

Gate Switching Speed Ins Typ.
MECL/PECL II and MECL 10000-Compatible
(4) 50Ω Line Driving Capability

- Operation With Unused I/Ps Open Circuit
- Low Supply Noise Generation

$$
\begin{aligned}
& \text { PD }=240 \mathrm{~mW} \text { typ/pkg (No load) } \\
& \text { Full Load Current, } \mathrm{IL}=-25 \mathrm{mAd} . \mathrm{c} \text {. max }
\end{aligned}
$$

Fig. 1 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left\|V_{C C}-V_{E E}\right\|$	$8 V$
Base input voltage	$O V$ to $V_{E E}$
O / P source current	$<40 \mathrm{~mA}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction operating temp.	$<+125^{\circ} \mathrm{C}$

APPLICATIONS

SP1664/5

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the d.c. specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC 14A2CB or equivalent) or a transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$ should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Test procedures are shown for only one gate. The other gates are tested in the same manner. Outputs are tested with a 50Ω resistor to $-2.0 \mathrm{Vd.c}$.

Characteristic									$\begin{array}{r} +25{ }^{\circ} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	$\frac{-0.810}{-0.720}$	$\begin{array}{r} -1.850 \\ -1.830 \\ \hline \end{array}$	$\begin{aligned} & -t .095 \\ & \hline-1.035 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.485 \\ -1.460 \\ \hline \end{array}$	-5.2.	OV
	Symbol	Pin Under Test	SP1664B Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		Units						
			Min	Max	Min	Max	Min	Max		$V_{1 H \text { max }}$	$V_{1 L}$ min	$V_{\text {IH4 }}{ }^{\text {min }}$	$V_{\text {ILA max }}$	VeE	
Power Supply Drain Current	I_{E}	8	-	-	-	56	-	-	mA	-	-	-	-	8	1.16
Input Current	1 n H		-	-	-	350	-	-	$\mu \mathrm{A}$	-	-	-	-	8	1,16
	lin L		-	-	0.5	-	-	-	$\mu \mathrm{A}$	-		-	-	8	1,16
Logic " 1 Output Voltage	$\overline{\mathrm{VOH}}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.000 \\ -1.000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.840 \\ -0.840 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.960 \\ -0.960 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.810 \\ -0.810 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.900 \\ -0.900 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.720 \\ -0.720 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
Logic "0" Output Voltage	V_{OL}	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.870 \\ -1.870 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.635 \\ -1.635 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.850 \\ -1.850 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.620 \\ -1.620 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.830 \\ -1.830 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.595 \\ -1.595 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	-	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	8	$\begin{aligned} & 1.16 \\ & 1,16 \\ & \hline \end{aligned}$
Logic " 1 " Threshold Voltage	VOHA	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} -1.020 \\ -1.020 \end{array}\right\|$	-	$\begin{array}{\|l\|} \hline-0.980 \\ -0.980 \\ \hline \end{array}$	- -	$\begin{array}{\|l\|} \hline-0.920 \\ -0.920 \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	-	-	4	-	8	1,16 1,16
$\begin{aligned} & \text { Logic " } 0^{\prime \prime} \\ & \text { Threshold Voltage } \\ & \hline \end{aligned}$	VOLA	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline-1.615 \\ -1.615 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline-1.600 \\ -1.600 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline-1.575 \\ -1.575 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \end{aligned}$	-	-	-	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$		1,16 1,16
Sixitening Times (50!? Load)			Typ	Max	Typ	Max	Typ	Max	ns	Pulse In	Pulse Out	-	-	-3.2V	+2.0V
Propagation Delay	$\mathrm{ta}_{4}{ }^{\text {2 }}$ +	2	1.0	1.5	1.0	1.5	1.1	1.7		4	2			8	1,16
	La-2..	2	1.1	1.7	1.1	17	1.2	1.9	ns	4	2			8	1,16
Rise Time	t_{2}.	2	1.5	2.1	1.5	2.1	1.6	2.3	ns	4	2	-	-	8	1.16
Fall Time	t_{2} -	2	14	2.1	14	2.1	1.5	2.3	ns	4	2	-	-	8	1.16

Fig. 3 Switching time test circuit and wave forms at $+25^{\circ} \mathrm{C}$

SP 1600 SERIES
ECL III

SP1666B ${ }_{\text {(HIGHz) }}$ SP1667B (Lowz) DUAL CLOCKED R-S FLIP-FLOP

Two Set-Reset flip-flops in a single package which require a clock input to enable the set-reset inputs. Internal input pull-down resistors eliminate the need to return unused inputs to a negative voltage.

The device is useful as a high-speed dual storage element.
TRUTH TABLE

S	R	C	$\mathrm{O}_{\mathrm{n}+1}$
ϕ	0	0	O_{n}
0	0	1	O_{n}
1	0	1	0
0	1	1	0
1	1	1	N.D.

$\phi=$ Don't care
N.D. = Not Defined

Fig. 1 Logic diagram of SP1666/1667

Fig. 2 Circuit diagram

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or
equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is in either a test socket or circuit is in either a test socket or
is mounted on a printed circuit is mou

TEST VOLTAGE VALUES				
(Volts)				
$V_{\text {IH max }}$	$V_{\text {IL min }}$	$V_{\text {IHA } \text { min }}$	$V_{\text {ILA max }}$	$V_{\text {EE }}$
-0.840	-1.870	-1.135	-1.500	-5.2
-0.810	-1.850	-1.095	-1.485	-5.2
-0.720	-1.830	-1.035	-1.460	-5.2

(1) I_{E} is measured with no output pull-down resistors.
$\begin{array}{ll}\text { (2) Apply Sequentially: } & V_{i n 1} \text { to } C\left(V_{1 H} \text { to } V_{I L}\right) \\ V_{\text {in2 }} \text { ro } S\left(V_{1 H} \text { to } V_{I L}\right)\end{array}$
(3) Apply Sequentially: $V_{i n 1}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in2 }}$ to $S\left(V_{1 L}\right.$ to $\left.V_{I L}\right)$
(4) Apply Sequentially: $V_{i n 1}$ to $C\left(V_{I H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in2 }}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(5) Apply Sequentially:
$V_{\text {in } 1}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in } 2}$ to $R\left(V_{1 H}\right.$ to $\left.V_{1 L}\right)$
(6) Apply $V_{\text {in3 }}$ to $C\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(7) Apply $V_{\text {in } 3}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$

Fig. 3 Notes referred to in electrical characterstics

Fig. 4 Switching time test circuit

SP1666/7

Fig. $5 \begin{aligned} & \text { Switching time waveforms (set/reset to Q } \bar{\Omega}, \text { switch S1 in } \\ & \text { position shown in Fig. 4) }\end{aligned}$

Fig. 6। Switching time waveforms (clock to $0 / \bar{Q}$, switch $S 1$ in opposite position to that shown in Fig.4)

SP 1600 SERIES

ECL III

SP1668B (HIGHz) SP1669B (LOWz) DUAL CLOCKED LATCH

This device is a Dual Clocked Latch/R-S Flip-Flop. Whenever the Clock is low, the R-S inputs control the output state. Whenever the Clock is high, the output follows the date (D) input.

TRUTH TABLE

S	A	D	C	Q_{n+1}
0	0	\emptyset	0	Q_{n}
1	0	\emptyset	0	1
0	1	\emptyset	0	0
1	1	\emptyset	0	$*$
ϕ	ϕ	0	1	0

** Output stage not defined \emptyset Don't care

Fig. 1 Logic diagram of SP1668/1669

Fig. 2 Circuit diagram
should be housed in a suitable heat sink IIERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package circuit is in either a test socket or is mounted on a printed circuit board.

$$
\begin{array}{r}
\text { @ Test } \\
\text { emperature } \\
0^{\circ} \mathrm{C} \\
+25^{\circ} \mathrm{C} \\
+75^{\circ} \mathrm{C}
\end{array}
$$

Charscteristic	Symbol	Pin Under Test	SP1668 /SP1669 Test Limits							test voltage applied to pins listed below:					Gnd
			$0^{\circ} \mathrm{C}$		$\underline{+25^{\circ} \mathrm{C}}$		$+75^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		$\mathrm{V}_{\text {IH max }}$	$V_{\text {IL }}$ min	$V_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	VEE	
Power Supply Drain Current	$\begin{aligned} & \text { IE (Hi-Z) (1) } \\ & I_{E} \text { (Lo-Z) } \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	-	-	mAdc mAdc	$\begin{aligned} & 7,9 \\ & 7,9 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
Input Current (Hi - Z)	$\mathrm{I}_{\text {in } \mathrm{H}}$	$\begin{gathered} 11,12,13 \\ 9 \end{gathered}$	-	-	-	$\begin{aligned} & 0.370 \\ & 0.225 \\ & \hline \end{aligned}$	-	-	mAdc mAdc	$\begin{gathered} 11,12,13 \\ 9 \\ \hline \end{gathered}$	-	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
	1 inL	$\begin{gathered} \hline 11,12,13 \text { (2) } \\ 9 \end{gathered}$	-	-	$\begin{aligned} & 0.500 \\ & 0.500 \\ & \hline \end{aligned}$	-	-	-	μ Adc μ Ade	-	$\begin{gathered} 11,12,13 \\ \hline 9 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 1,16 \\ & \hline \end{aligned}$
Input Current (Lo-Z)	$\mathrm{I}_{\text {in }} \mathrm{H}$	$\begin{gathered} \hline 11,12,13 \text { (2) } \\ 9 \end{gathered}$	-	-	-	$\begin{aligned} & \hline 3.2 \\ & 3.1 \end{aligned}$	-	-	mAdc mAdc	$\begin{gathered} 11.12,13 \\ 9 \end{gathered}$	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
	$1 \mathrm{I}_{\mathrm{L}} \mathrm{L}$	$\begin{gathered} 11,12,13 \text { (2) } \\ 9 \end{gathered}$	=	-	$\begin{array}{\|r\|} \hline 1.300 \\ 1.300 \\ \hline \end{array}$	I		E	mAde mAda	-	$\begin{gathered} 11,12,13 \\ 9 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { "O" Logic "1" } \\ & \text { Output Voltage } \end{aligned}$	V_{OH}	$\begin{aligned} & 15 \text { (3) } \\ & 15 \text { (4) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.000 \\ -1.000 \\ \hline \end{array}$	$\begin{aligned} & -0.840 \\ & -0.840 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.900 \\ & -0.900 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.720 \\ & -0.720 \\ & \hline \end{aligned}$	Vdc Vde	$\overline{9}$	13 -	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
" 0 " Logic " 0 " Output Voltage	v_{OL}	$\begin{aligned} & 14 \text { (5) } \\ & 148 \\ & \hline \end{aligned}$	$\begin{array}{\|l} -1.870 \\ -1.870 \\ \hline \end{array}$	$\begin{array}{\|l} \hline-1.635 \\ -1.635 \\ \hline \end{array}$	$\begin{array}{r} -1.850 \\ -1.850 \\ \hline \end{array}$	$\begin{aligned} & -1.620 \\ & -1.620 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.830 \\ & -1.830 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.595 \\ & -1.595 \\ & \hline \end{aligned}$	Vdc Vde	$\overline{9}$	$\begin{aligned} & 12 \\ & - \end{aligned}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
$\begin{gathered} \text { "Q" Logic "1" } \\ \text { Output Voltage } \end{gathered}$	V_{OH}	$\begin{aligned} & 14 \text { (5) } \\ & 146 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.000 \\ -1.000 \\ \hline \end{array}$	$\begin{aligned} & -0.840 \\ & -0.840 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{array}{r} -0.900 \\ -0.900 \end{array}$	$\left[\begin{array}{l} -0.720 \\ -0.720 \\ \hline \end{array}\right.$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	$\overline{9}$	12 -	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { "Q' Logic "O" } \\ & \text { Output Voltage } \end{aligned}$	V_{OL}	$\begin{aligned} & 14 \text { (3) } \\ & 14 \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & -1.870 \\ & -1.870 \end{aligned}$	$\begin{array}{\|l\|} \hline-1.635 \\ -1.635 \\ \hline \end{array}$	$\begin{aligned} & -1.850 \\ & -1.850 \end{aligned}$	$\begin{aligned} & -1.620 \\ & -1.620 \end{aligned}$	$\begin{aligned} & -1.830 \\ & -1.830 \end{aligned}$	$\begin{aligned} & -1.595 \\ & -1.595 \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	$\overline{9}$	13 -	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
" \mathbf{Q} " Logic " 1 " Output	VOHA	$\begin{aligned} & 15 \\ & 15^{\circ}(7) \\ & 15 \quad(5) \\ & \hline \end{aligned}$	$\begin{gathered} -1.020 \\ \hline \end{gathered}$	-		-	$\begin{gathered} -0.920 \\ 1 \end{gathered}$	-		11	-	$\begin{gathered} 12 \\ 11 \\ 9 \\ \hline \end{gathered}$	13 - -	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	
" O " Logic " "0" Output Threshoid Voltage	V OLA	15 (6) 15 (3)	-	$\begin{gathered} -1.615 \\ \\ \hline \end{gathered}$	-	$\begin{gathered} -1.600 \\ 1 \\ \hline \end{gathered}$	-	$\begin{gathered} -1.575 \\ 1 \end{gathered}$		-	11	$\begin{aligned} & 13 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \end{aligned}$	$\stackrel{1}{1,16}^{1}$
" Q " Logic " 0 " Output Threshold Voltage	$\mathrm{V}_{\text {OHA }}$			-		-		-		-	-	$\begin{aligned} & 13 \\ & \hline 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & - \end{aligned}$	$\begin{aligned} & 8 \\ & \downarrow \end{aligned}$	
" O " Logic " 0 " Output Threshold Voltage	$v_{\text {OLA }}$	14 14 14 (7)	-	$\begin{gathered} -1.615 \\ \dagger \\ \hline \end{gathered}$	-	$\begin{gathered} -1.600 \\ 1 \end{gathered}$	-	$\begin{gathered} -1.575 \\ \downarrow \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Vdc} \\ \downarrow \end{gathered}$	-	11 -	$\begin{aligned} & \hline 12 \\ & 9 \\ & \hline \end{aligned}$	13	$\begin{aligned} & 8 \\ & 1 \\ & \hline \end{aligned}$	
Switching Times (50, Load)			Min	Max	Min	Max	Min	Max		Pulse In	Pulse Out			-3.2V	+2.0V
Clock Input	$\begin{aligned} & \text { t9+15+ } \\ & \text { t } 9+15- \\ & \text { t } 9+14- \\ & \text { t9 } 9+14 \pm \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	1.0	1	1.0	1	1.1	1	${ }_{1}^{\mathrm{ns}}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	${ }^{1,16}$
Rise Time	${ }^{+}$	14.15	0.8	2.5	0.9	2.5	0.9	2.8	ns	9	14,15	-	-	8	1,16
Fall Time	t-	14.15	0.5	2.2	0.5	2.2	0.5	2.5	ns	9	14.15	-	-	8	1,16
Set Input	$\begin{aligned} & t_{12+15+} \\ & t_{1} 12+14- \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.3 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & \hline \end{aligned}$	-		$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
Reset Input	$\begin{aligned} & t_{13+14+} \\ & t_{13+15-} \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{array}{r\|} 2.6 \\ -2.6 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	8	$\begin{aligned} & 1.16 \\ & 1.16 \end{aligned}$

(1) t_{E} is measured with no output pulldown resistors.
(2) Test voltage applied to pin under test.

(3) Apply $V_{i n 1}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$.
(4) Apply Sequentially:
$V_{\text {in } 1}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
$V_{\text {in2 }}$ to $C\left(V_{I H} V_{I L}\right)$
$V_{\text {in } 3}$ to $D\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(5) Apply $V_{i n 1}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(6) Apply Sequentially:
$V_{i n 1}$ to $S\left(V_{I H}\right.$ to $\left.V_{1 L}\right)$
$V_{\text {in2 }}$ to $C\left(V_{I H} V_{I L}\right)$
(7) Apply Sequentially:
$V_{i n 1}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
$V_{\text {in2 }}$ to $C\left(V_{I H} V_{I L}\right)$

Fig. 3 Notes referred to in electrica/ characteristics

Fig. 4 Switching time test circuit

Fig. 5 Switching time waveforms (set/reset to $Q \bar{Q}$, switch S1 in position shown in Fig. 3)

Fig. $6 \begin{aligned} & \text { Switching time waveforms (clock to Q/ } \bar{O} \text {, switch } S 1 \text { in } \\ & \text { position opposite to that shown in Fig. } 3\end{aligned}$

SP1670B（HIGHz）
 SP1671B（LOWz）
 MASTER／SLAVE TYPE D FLIP－FLOP

The $\operatorname{SP} 16708$ is a Type D Master－Slave Flip－Flop designed for use in high speed digital applications． Master－slave construction renders the SP1670B relatively insensitive to the shape of the clock waveform，since only the voltage levels at the clock inputs control the transfer of information from data input（ D ）to output．

When both clock inputs（C1 and C2）are in the low state， the data input affects only the Master portion of the flip－flop．The data present in the Master is transferred to the Slave when clock inputs（C1 OR C2）are taken from a low to a high level．In other words，the output state of the flip．flop changes on the positive transition of the clock pulse．

While either C1 OR C2 is in the high state，the Master （and data input）is disabled．

Asynchronous Set（S）and Reset（R）override Clock（C） and Data（D）inputs．

Input pulldown resistors eliminate the need to tie unused inputs to $V_{E E}$ ．

FEATURES

－Toggle Frequency $>300 \mathrm{MHz}$
－MECL／PECL II and MECL 10000－Compatible
－ 50Ω Line Drivıng Capability
－Operation With Unused I／Ps Open Circuit
－Low Supply Noise Generation

APPLICATIONS

（⿴囗㐅 Data Communications
－Instrumentation
－PCM Transmission Systems

Fig． 2 Timing diagram

POSITIVE LOGIC

$$
\begin{aligned}
V_{C C I} & =\text { PIN } 1 \\
v_{C C 2} & =\text { PIN } 16 \\
V_{\text {EE }} & =\text { PIN } 8
\end{aligned}
$$

$D C$ Input Loading Factor $=C 1, C 2=0.67 \mathrm{D}=0.75 \mathrm{R}, \mathrm{S}=1.5$
DC Output Loading Factor $=70$
Power Dissipation $=200 \mathrm{~mW}$ typical $($ No Load）
$\mathrm{f}_{\mathrm{tog}}=350 \mathrm{MHz}$ typ

Fig． 1 Logic diagram

TRUTH TABLE				
R	S	D	C	$\mathrm{O}_{\mathrm{n}+1}$
L	H	ϕ	ϕ	H
H	L	ϕ	ϕ	L
H	H	ϕ	ϕ	N．D．
L	L	L	L	O_{n}
L	L	L	Γ	L
L	L	L	H	Q_{n}
L	L	H	L	Q_{n}
L	L	H	－	H
L	L	H	H	O_{n}

$\phi=$ Don＇t Care
ND $=$ Not Defined
$\mathrm{C}=\mathrm{C} 1+\mathrm{C} 2$

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $1 V_{C C}-V_{E E} \quad 8 V$
Base input voltage $\quad O V$ to $V_{E E}$
O / P source current $<40 \mathrm{~mA}$
Storage temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$<+125^{\circ} \mathrm{C}$

SP1670/71

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the d.c. specifications shown in the characteristics table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$ is maintained. Outputs are terminated through a 50Ω resistor to $\mathbf{- 2 . 0}$ volts.

Fig. 3 Static test pulses

Fig. 4 Propagation delay test circuit

Fig. 5 Clock delay waveforms at $+25^{\circ} \mathrm{C}$

Fig. 6 Set/reset delay waveform at $+25^{\circ} \mathrm{C}$

Fig. 7 Set-up and hold time test circuit

Fig. 8 Toggle frequency test circuit

OPERATING NOTES

Set up time is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data (D) input.

Hold time is the minimum time after the positive transition of the clock (C) that information must remain unchanged at the data (D) input.
$V_{\text {Bias }}$ is defined by the test circuit Fig. 8 and by the waveform in Fig.9.

Figures 10 and 11 illustrate minimum clock pulse width recommended for reliable operation of the SP1670B.

Fig. 9 Toggle frequency waveforms

The maximum toggle frequency of the SP1670B has been exceeded when either:

1. The output peak-to-peak voltage swing falls below 600 millivolts.
OR
2. The device ceases to toggle (divide by two).

Temperature	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Bias }}$	+0.675 V	+0.700 V	+0.750 V

Table 1 Variation of $V_{\text {Bias }}$ with temperature

Fig. 10 Minimum 'downtime' to clock output load $=50 \Omega 2$

Fig. 11 Minimum 'up time' to clock output load $=50 \Omega$

Operation of the Master-Slave Type D Flip-Flop

In the circuit of Figure 14 assume that initially $\mathrm{Q}, \mathrm{C}, \mathrm{R}$, S and D are at 0 levels and that \bar{Q} is at the 1 level. Since the clock is low, transistors TR3 and TR22 are conducting. In the slave section only transistors TR25 and TR26 are in series with TR22. The output of the slave section is fed back to these two transistors in order to form a latch. Thus, when the clock is low, the output state of the slave is maintained. In the master section, the current path is through TR3 and TR9.

Now assume that the data input goes high. The high-input signal on the base of TR4 causes it to conduct, and TR9 to turn off. The voltage drop across resistor RC1 causes a low-state voltage on the base and therefore on the emitter of TR11. Since there is essentially no current flow through RC2, the base of transistor TR10 is in a high state. This is reflected in the emitter, and in turn is transferred to the base of TR6. TR6 is biased for conduction but, since there is no current path, does not conduct.

Now allow the clock to go high. As the clock signal rises, transistor TR2 turns on and transistor TR3 turns off. This provides a current path for the common-emitter transistors TR5, TR6, TR7, and TR8. Since the bases of all these devices except TR6 are in the low state, current flow is through TR6. This maintains the base and emitter of TR11 low, and the base and emitter of TR 10 high. The high state on TR10 is transferred to TR23 of the slave section. As the clock continues to rise TR21 begins to turn on and TR22 to turn off. (Reference voltages in the master and slave units are slightly offset to ensure prior clocking of the master section.) With transistor TR21 conducting and the base of TR23 in a high state, the current path now includes TR21, TR23, and resistor RC3. The voltage drop across the resistor places a low state voltage on the base, and therefore
the emitter, of TR30. The lack of current flow through RC4 causes a high state input to the base of TR29. These states are fed back to the latch transistors, TR25 and TR26.

As the clock voltage falls, transistor TR21 turns off and TR22 turns on. This provides a current path through the latch transistors, locking-in the slave output.

In the master section the falling clock voltage turns on transistor TR3 and turns off TR2. This enables the input transistor TR4 so that the master section will again track the D input.

The separation of thresholds between the master and slave flip-flops is caused by R8. The current through this resistor produces an offset between the thresholds of the transistor pairs TR2:TR3 and TR21:TR22. This offset disables the D input of the master flip-flop prior to the enabling of the information transfer from master to slave via transistors TR23 and TR28. This disabling operation prevents false information from being transferred directly from master to slave during the clock transition, particularly if the D input changes at this time (such as in a counting operation where the $\overline{\mathrm{Q}}$ output is tied back to D). The offsetting resistor also allows a relatively slow-rising clock waveform to be used without the danger of losing information during the transition of the clock.

The set and reset inputs are symmetrically connected. Therefore, their action is similar although results are opposite. As a logic 1 level is applied to the S input transistor, TR2 begins to conduct because its base is now being driven through TR 19 which is in turn connected to S. Transistor TR5 is now on and the feedback devices TR6 and TR7 latch this information into the master flip-flop. A similar action takes place in the slave with transistors TR21, TR24, TR25, and TR26.

Fig. 12 SP1670 circuit diagram

SP 1600 SERIES
ECL III

SP1672B (HIGHz)

SP1673B (Lowz)

TRIPLE 2-INPUT EXCLUSIVE-OR GATE

This three gate array is designed to provide the positive logic Exclusive-OR function in high speed applications. These devices contain a temperature compensated internal bias which irsures that the threshold point remains in the centre of the transition region over the temperature range $\left(0^{\circ}\right.$ to $+75^{\circ} \mathrm{C}$). Input pulldown resistors eliminate the need to tie unused inputs to VEE.

Fig. 1 Logic diagram of SP1672/1673

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a tiansverse air flow greater than 500 linear fpm should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Outputs are tested with a 50 -ohm resistor to -2.0 V .

Characteristic	Symbol	Pin Under Test	SP1672 /SP1673 Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					Gnd
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		$\mathrm{V}_{1 H}$ max	$V_{1 L}$ min	$V_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	VEE	
Power Supply Drain Current	$\begin{aligned} & \mathrm{IE}(\mathrm{Hi} \mathrm{Z}) \\ & \mathrm{i}_{\mathrm{E}}(\mathrm{Lo} \mathrm{ZO}) \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	-	-	-	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	-	Z	mAdc mAdc	All Inputs All Inputs	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Input Current ($\mathrm{Hi}-\mathrm{Z}$)	1 in H	3,11,13	-	-	-	350	-	-	$\mu \mathrm{Adc}$	*	-	-	-	8	1,16
	$0,75{ }_{\text {in }} \mathrm{H}$	5,6,7	-	-	-	270	-	-	μ Adc	-	-	-	-	8	1,16
	$\mathrm{I}_{\text {in } \mathrm{L}}$	-	-	-	0.5	-	-	-	μ Adc	-	-	-	-	8	1,16
Input Current(Lo-Z)	1 in H	${ }^{\circ}$	-	-	-	3.1	-	-	mAdc	-	-	-	-	8	1,16
	$\mathrm{I}_{\text {in }} \mathrm{L}$	-	-	-	1.3	-	-	-	mAdc	-	-	-	-	8	1.16
Logic "1" Output Voltage	VOH	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline-1.000 \\ -1.000 \\ \hline \end{array}$	$\begin{aligned} & \hline-0.840 \\ & -0.840 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.900 \\ & -0.900 \end{aligned}$	$\begin{aligned} & -0.720 \\ & -0.720 \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 3 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	1,16 1.16
$\begin{aligned} & \text { Logic "0" } \\ & \text { Output Voltage } \end{aligned}$	VOL	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & -1.870 \\ & -1.870 \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline-1.635 \\ -1.635 \\ \hline \end{array}$	$\begin{aligned} & -1.850 \\ & -1.850 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.620 \\ -1.620 \\ \hline \end{array}$	$\begin{aligned} & -1.830 \\ & -1.830 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.595 \\ -1.595 \\ \hline \end{array}$	Vdc Vdc	$\begin{array}{r}3,5 \\ - \\ \hline\end{array}$	$\overline{3,5}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
Logic "1" Threshold Voltage	VOHA	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.020 \\ -1.020 \\ \hline \end{array}$	-	$\begin{aligned} & \hline-0.980 \\ & -0.980 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -0.920 \\ & -0.920 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	5 3	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	1,16 1,16
Logic " 0 " Threshold Voltage	$V_{\text {OLA }}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	$\begin{array}{\|l\|} \hline-1.615 \\ \hline-1.615 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline-1.600 \\ -1.600 \\ \hline \end{array}$	-	$\begin{aligned} & -1.575 \\ & -1.575 \end{aligned}$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	-	-	3,5	3.5	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1,16 \end{aligned}$
Switching Time (50Ω Load) Propagation Delay			Typ	Max	Typ	Max	Typ	Max				Pulse In	Pulse Out	-3.2V	+2.0V
		2 2 2 2 2 2 2 2 2	$\begin{aligned} & 1.3 \\ & 1.2 \\ & 1.4 \\ & 1.4 \\ & 1.7 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.9 \\ & 1.9 \\ & 2.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.4 \\ & 1.4 \\ & 1.7 \\ & 1 \end{aligned}$	$\begin{gathered} 1.8 \\ 1.8 \\ 1.9 \\ 1.9 \\ 2.3 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 1.5 \\ .1 .6 \\ 1.6 \\ 1.9 \\ 1 \end{array}$	$\begin{gathered} \begin{array}{c} 2.2 \\ 2.2 \\ 2.3 \\ 2.3 \\ 2.7 \\ 1 \end{array} \end{gathered}$	$\square^{\text {ns }}$	- $=$ - - - -	- - - - -	3	2	${ }_{1}^{8}$	
Rise Time	${ }^{+2+}$	2	1.9	2.5	1.9	2.5	2.1	2.8	ns	-	-	3	2	8	1,16
Fall Time	12	2	1.6	2.2	1.6	2.2	1.8	2.5	ns	-	-	3	2	8	1,16

* Individually test each input applying $V_{I H}$ or $V_{I L}$ to input under test.

SP1600 SERIES

ECL III

SP1674B (HIGHz)

SP1675B (Lowz)

TRIPLE 2-INPUT EXCLUSIVE-NOR GATE

This three gate array is designed to provide the positive logic Exclusive-NOR function in high speed applications. These devices contain a temperature compensated internal bias which insures that the threshold point remains in the centre of the transition region over the temperature range $\left(0^{\circ}\right.$ to $+75^{\circ}$). Input pulldown resistors eliminate the need to tie unused inputs to VEE.

Fig. 1 Logic diagram of SP1674/1675

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Outputs are tested with 50 -ohm resistor to -2.0 V

* Individually test each input applying V_{IH} or V_{IL} to input under test.

SP 1600 SERIES

ECL III

SP1690B

UHF PRESCALER TYPE D FLP-FLOP

The SP1690 is a high speed D master-slave flip-flop capable of toggle rates over 500 MHz . Designed primarily for high speed prescaling applications in communications and instrumentation, this device employs two data inputs, two clock inputs and complementary $\overline{\mathbf{Q}}$ and \mathbf{Q} outputs. It is a higher frequency replacement for the SP1670 (350 MHz) D flip-flop. No set or reset inputs are provided and an extra data input is provided on pin 11.

FEATURES

- $\mathrm{P}_{\mathrm{D}}=200 \mathrm{~mW}$ typ/pkg (No Load)
(1) $f_{\text {tog }}=500 \mathrm{MHz}$ min

Fig. 1 Logic diagram of SP1690

∞ ELECTRICAL CHARACTERISTICS

Each PECLIII series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

[^2]

All input and output cables to the scope are equal lengths of 50-ohm coaxial cable

50 -ohm termination to ground located
in each scope channel input

Fig. 3 Propagation delay test circuit

Fig. 5 Set up and hold time test circuit

Fig. 6 Set up and hold time wavaforms

Fig. 7 Toggle frequency test circuit

The maximum toggle frequency of the SP 1690 has been exceeded when either:

1. The output peak-to-peak voltage swing falls below 600 millivolts,
OR
2. The device ceases to toggle (divide by two).

Fig. 8 Toggle frequency wavetorms

ECL III

SP1692B

QUAD UNE RECEIVER

Four differential amplifiers with emitter followers intended for use in sensing differential signals over long lines.

Fig. 1 Logic diagram of SP1692

ELECTRICAL CHARACTERISTICS

This PECLIII circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC 14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board.

SUB-NANOSECOND LOGIC

SP16F60

DUAL 4-INPUT OR/NOR GATE

SP16F60 provides simultaneous OR-NOR output functions with the capability of driving 50Ω lines. This device contains an internal bias reference voltage, ensuring that the threshold point is always in the centre of the transition region over the temperature range $\left(-30^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$). Input pulldown resistors eliminate the need to tie unused inputs to Vee.

FEATURES

Gate Switching Speed 550ps Typ. ECL III and ECL 10K Compatible 50Ω Line Driving Capability Operation With Unused I/Ps Open Circuit Low Supply Noise Generation Pin and Power Compatible with SP1660

APPLICATIONS

- Data Communications
- Instrumentation
- PCM Transmission Systems

Nucleonics

Fig. 1 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage [Vcc - Vee | 8 V
Base input voltage OV to Ve
$0 / P$ source current $\quad<40 \mathrm{~mA}$
Storage temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction operating temperature $<+125 \mathrm{C}$

ELECTRICAL CHARACTERISTICS

This ECL circuit has been designed to meet the DC specifications shown in the characteristics table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC 14A2CB or equivalent) or a transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$ should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Test procedures are shown for only one gate. The other gates are tested in the same manner. Outputs are tested with a 50Ω resistor to -2.0 V DC.

[^3]

Fig. 3 Switching time test circuit and waveforms at $+25^{\circ} \mathrm{C}$

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8600A\&B\&M

$250 \mathrm{MHz} \div 4$ COUNTER

The SP8600 is a fixed ratio emitter coupled logic $\div 4$ counter with a specified input frequency range of $15-250 \mathrm{MHz}$. The operating temperature range is specified by the device code suffix letter: ' A ' denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{B}$ ' denotes $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation, ' M ' denotes $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Intended for use with an external bias arrangement and capacitive coupling to the signal source, the SP8600 can be either single driven, or double driven with two complementary input signals.

The outputs are complementary free collectors that can have their load resistors taken to any bias voltage up to 12 V more positive than V_{EE}.

FEATURES

Low Power

- Free Collector Outputs to Interface to TTL
- $250 \mathrm{MHz} \div 4$ Over Full Military Temp.

APPLICATIONS

- Synthesizers - Mobile and Fixed
- Counters
- Timers

Range

SP8600

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}$: ' A ' grade $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B^{\prime} ' grade $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' grade $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage Vcc 400 to 800 mV p-p
$V_{E E} 250$ to 800 mV p-p
Input voltage (single driven - other input decoupled to ground plane)
Input voltage (double complementary input drive)
Input bias voltage
Bias chain as in
test circuit (see Fig. 3 and operating notes).

Characteristic		Value		Units	Conditions
	Min.	Typ.	Max.		
Max. input frequency	250	$390 *$		MHz	Typical figure quoted at $+25^{\circ} \mathrm{C}$.
Min. input frequency with sinusoidal input Min. slew rate of			25	MHz	
for correct operation Output current	1.6		20	$\mathrm{V} / \mu \mathrm{s}$ mA	Single input drive Input $f=250 \mathrm{MHz}$.
current		16*	25	mA	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}$ as Fig. 3.

*nt $+25^{\circ} \mathrm{C}$

Fig. 3 Test circuit

Fig. 4 Maximum input frequency v. power supply voltage (typical)

Fig. 5 Maximum input frequency v. temperature

OPERATING NOTES

The circuit performance obtained from the SP8600 is optimized if normal high frequency rules for circuit layout are obeyed - leads should be kept short, capacitors and resistors should be of non-inductive types, etc.
The signal source is normally AC coupled to one of the inputs or, if complementary signals are available, to both inputs. The inputs require an external bias chain to set the DC potential on the inputs (see Fig. 3). No appreciable change in performance is observed over a range of $D C$ bias from -2.5 V to -3.5 V .
Any tendency for the circuit to self-oscillate in the absence of input signal (or when the input signal is very small) can be overcome by offsetting the two inputs by approximately 40 mV , using, for example, the bias arrangement shown in Fig. 6. The input wave form may be sinusoidal, but below 25 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate greater than $20 \mathrm{~V} / \mu \mathrm{s}$ ensures correct operation down to $D C$.
The output is in the form of complementary free collectors with at least 2 mA available from them. For satisfactory high frequency interfacing to ECL or Schottky TTL the circuit techniques illustrated in Fig. 7 are recommended.

For maximum frequency operation, it is essential that the output load risistor values be such that the output transistors do not saturate. If the load resistors are connected to the 0 V rail, then saturation can occur with resistance values greater than 600Ω. Of course, if the load resistors are taken to a more positive potential, then higher values can be used. N.B. If only one output is used, the other output should be connected to OV.

Fig. 6 Bias arrangement to prevent self-oscillation under no-signal conditions

Fig. 7 ECL qnd Schottky TTL interfacing

SP8600

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{VCC}_{\mathrm{C}}-\mathrm{V}_{\mathrm{EE}} \quad 10 \mathrm{~V}$
Input voltage $V_{\text {IN }}$
Not greater than
supply voltage
in use
Bias voltage on o/p's Vout$V_{E E}$

14V
Operating junction temperature $+175^{\circ} \mathrm{C}$ max.
Storage temperature
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ SP8000 SERIES HIGH SPEED DIVIDERS

SP8601A, B \& M 150MHz $\div 4$

The SP8601 is a fixed ratio emitter coupled logic $\div 4$ counter with a maximum specified input frequency of 150 MHz but with a typical maximum operating frequency well in excess of this (see Typical Operating Characteristics). The operating temperature range is specified by the final coding letter: ' A ' denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, ' B^{\prime} denotes $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and ' M ' denotes $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The SP8601 can be operated with single input drive or with double, complementary, 1/P drive. It can be driven with direct coupling from ECL II levels (or from an SP8602 device), or it can be capacitively coupled to the signal source if an external bias is provided.

There are complementary free collector outputs that can have their external load resistor connected to any bias up to 12 volts more positive than V_{EE}.

Fig. 1 Pin connections (bottom view)

Fig. 2 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Input voltage (single drive - other input decoupled to ground plane)
Input voltage (double drive)
Bias voltage

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{OV} . \\
& -5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}
\end{aligned}
$$

400 to 800 mV (p-p)
250 to 800 mV (p-p)
Bias chain as in test circuit (see Fig. 2).

OPERATING NOTES

Circuit performance obtained from the SP8601 is optimised if normal high frequency rules for circuit layout are obeyed - leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally directly coupled into the device, which will tolerate a wide range of input bias voltages, but was designed for inputs from ECL II levels and can therefore be satisfactorily driven from SP8602 range of counters. The bias voltage on the input marginally affects the overall power consumption of the device (For typical operating characteristics with varying bias voltages see Fig. 4).

If it is not practicable to directly couple the input signal, then a bias chain similar to the one shown in Fig. 3 can be used.

The input waveform may be sinusoidal, but below about 10 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate of greater than $20 \mathrm{~V} / \mu \mathrm{s}$ ensures correct operation down to DC.

The output is in the form of complementary free collectors with 2 mA min. available from them. The output voltage swing obviously depends on the value of load resistor used and also the frequency of operation. The following table gives some typical examples of output voltage for different load resistors. With careful board layout to minimise capacitance these figures can easily be exceeded.

Min. Output Voltage	Load Resistor	Input Frequency
1.1 V	$1 \mathrm{k} \Omega$	120 MHz
320 mV	200Ω	150 MHz
80 mV	50Ω	180 MHz

Fig. 3 Test circuit
TYPICAL OPERATING CHARACTERISTICS

NOTE: The value of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig. 4 Maximum input frequency v. bias voltage at single input drive levels of 400.600 and 800 mV (typical device)

Fig. 5 Maximum frequency v. power supply voltage at single input drive levels of 400,600 and 800 mV (typical device)

Fig. 6 Maximum input frequency v. temperature at single input drive levels of 400,600 and 800 mV (typical device)

Fig. 7 Minimum single input drive level for correct operation v. input frequency (typical device)

APPLICATTION NOTES

The SP8601 used with two SP8602 series $\div 2$ counters to give a 500 MHz divide-by-sixteen prescaler is shown in Fig. 8. Capacitors marked thus* may need to be increased in value for low frequency operation.

For correct operation when interfacing with TTL and ECL II the circuits shown in Figs. 9, 10 and 11 are recommended.

Fig. 8 Divide-by-sixteen prescaler

Fig. 9 TTL interface (fanout $=1$ TTL gate)

Fig. 10 High fanout TTL interface

Fig. 11 ECL // interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage
$V_{c c}-V_{E E}$
Input voltage $\mathrm{V}_{\text {in }}$
Bias voltage on outputs
$V_{\text {out- }}$ Vee
(see Operating Notes)
Operating junction temperature +175 C
Storage temperature $\quad-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

10 V
Not greater than the supply voltage in use

14 V

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8602 A, B\&M SP8603 A, B\&M SP8604 A, B\&M

The SP8602, SP8603 and SP8604 are fixed ratio ECL 2 counters with maximum specified I/P frequencies of 500, 400 and 300 MHz respectively. The operating temperature range is specified by the final coding letter: ' A ' denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, ' B ' denotes $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and ' M ' denotes $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The devices can be operated with single input drive or with double, complementary, input drive; in both cases the input is normally capacitively coupled to the signal source. Two complementary emitter follower outputs are provided.

Fig. 1 Pin connections

Fig. 2 Circuit diagram (all resistor values are nominal)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating supply voltage: V_{cc}	OV
$V_{\text {ee }}$	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Input voltage (single drive-other input and bias decoupled to ground plane)	400 to 800 mV p.p
Input voltage (double drive- bias decoupled to ground plane)	250 to 800 mV p-p
Output load	500Ω and 3pF

Characteristic	Type	Value				Conditions
		Min.	Typ.	Max.	Units	
Max. input freq.	SP8602A,B.M	500			MHz	$V_{\text {ee }}=-5.2 \mathrm{~V}$
	SP8603A, B, M	400			MHz	$V_{\text {ee }}=-5.2 \mathrm{~V}$
	SP8604A, B, M	300			MHz	$V_{\text {ee }}=-5.2 \mathrm{~V}$
Min. input freq. with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave input for correct operation	All		30	100	$\mathrm{V} / \mu \mathrm{S}$	single input drive
Output voltage swing	All	400			mV	$\begin{aligned} & \mathrm{V}_{\text {ee }}=-5.2 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Output voltage swing	SP602A	350			$m V$	$\begin{aligned} & V_{\mathrm{ee}}=-5.2 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=+125^{\circ} \mathrm{C} \\ & \mathrm{I} / \mathrm{P} \text { freq. }=500 \mathrm{MHz} \end{aligned}$
Power supply drain current	All		12	20	mA	$V_{\text {ee }}=-5.2 \mathrm{~V}$ See note 1

NOTES

1. In practıce, the 3.5 k resistors specified in the test circuit (Fig.3) are not essential: omission of these resistors will reduce the maximum supply current to 18 mA .

Note: The values of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig. 3 Test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{ee}} 8 \mathrm{~V}$

Input voltage $V_{\text {in }}$
Output current Iout
Operating junction
temperature
Storage temperature
range

Not greater than the supply voltage in use 10 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the output emitter.followers are inadvertently shorted to ground. All components used in the circuit layout should be suitable for the frequencies involved, and outside a controlled impedance environment, leads and connections should be kept short to minimise stray inductance.

The signal source is normally capacitively coupled to the input. A 1000 pF capacitor is usually sufficient. If the input signal is likely to be interrupted a $15 \mathrm{~K} \Omega$) resistor should be connected between the input and the negative rail. In the single drive case it is preferable to connect the resistor to the input not in use - in the double drive case either input can be used. The addition of the input pulldown resistor causes a slight loss of input sensitivity.
but it prevents circuit oscillation under no-signal conditions.

The input waveform may be sinusoidal, but below about 40 MHz the operation of the circuit becomes dependent on the slew rate of the input rather than the amplitude. A square wave input with a slew rate of more than $100 \mathrm{~V} / \mu \mathrm{S}$ will permit correct operation down to DC .

The output voltage swing can be increased by the addition of a DC load to the output emitter followers. Pulldown resistors of 1.5 K to the negative rail provide an increase of typically 25% in the output voltage swing.

APPLICATION NOTES

SP8602B and SP8604B interfacing to ECL 10000 and E C L III

By increasing the output voltage swing using external pulldown resistors (see operating notes), the SP8604B canbe coupled directly into an E C L III or ECL 10000 gate, but there is a reduction of the noise immunity. Where noise immunity is important the device can be connected to an ECL 10000 or E C L III line receiver.

Divide-by-16 frequency scaler.
The SP8602B and SP8604B interfacing with the SP8601B and high-speed TTL to give a divide-by-16 frequency scaler is shown in Fig. 4.

Fig. 4 Divide-by-16 frequency scaler

SP8602/3/4

SP8000 SERIES
 HIGH-SPEED DIVIDERS

SP8607 A, B\&M

$600 \mathrm{MHz} \div 2$

The SP8607 is a divide-by- 2 counter with a minimum guaranteed toggle frequency of 600 MHz over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. The device is designed for capacitive coupling to the signal source to either of the two inputs and it has two complementary emitter follower outputs. Power dissipation is typically only 70 mW with a 5.2 V supply.

FEATURES

- 600 MHz Operation
- $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Guaranteed for ' A ' grade
- Only 70 mW Dissipation at 5.2 V

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage $\mathrm{IV}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}{ }^{\prime}$	8 V
Input Voltage DC	\varangle Supply
Input Voltage AC	$2.5 \mathrm{~V} p-\mathrm{p}$
Output Current	15 mA
Operating Junction Temp.	$+150^{\circ} \mathrm{C}$
Storage Temp Range	$-55^{\circ} \mathrm{C}$ to
	$+150^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min	Typ.	Max		
Max. toggle frequency	600	800		MHz	
Min. ir.put frequency (sine wave)		50		MHz	
Min. slew rate of square wave input for correct operations to OHz		40	100	$\mathrm{V} / \mu \mathrm{s}$	
Output voltage swing	400			$\mathrm{mVp} \cdot \mathrm{p}$	$\begin{aligned} & V_{E E}=-5.2 \mathrm{~V} \\ & f_{\mathrm{in}}=600 \mathrm{MHz} \end{aligned}$
Output voltage levels					
V_{OH} V_{OL}		$\begin{gathered} -0.75 \\ -1.5 \end{gathered}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\mathrm{f}_{\text {in }}=0 \mathrm{OHz}$
Input impedance		400		Ω	$\mathrm{f}_{\mathrm{in}}=\mathrm{OHz}$
O/P pulldown resistors		4.0		$k \Omega$	
Bias voltage level		-2.6		\checkmark	$2.7 \mathrm{k} \Omega$ resistor from pin 3 to $V_{C C}$
Power supply drain current		14	18	V	$V_{E E}=-5.2 \mathrm{~V}$

Fig. 2 SP8607 block diagram

Fig. 3 Test circuit for SP8607

OPERATING NOTES

All components used with the SP8607 should be suitable for the frequencies involved, resistors and capacitors should be of low inductance types and unterminated loads should be kept short to minimise uncounted reflections. The test circuit uses positive earth because this minimises noise problems and the danger of accidently shorting the O / P transistors to a negative voltage. However, the device will operate satisfactorily and to the specification, with a negative earth provided that the positive supply is well decoupled to the UHF earth.

There are two complementary inputs connected to an internally-generated temperature-compensated bias point via two 400 ohm resistors. The signal source would normally be capacitively coupled to one of the inputs and the other should be decoupled to earth. If two complementary input signals are available (when cascading SP8607s for example) both inputs should be used

The input signal can be directly connected to the device either by using a voltage dropping network or by using split power supplies (see Fig. 4). In this mode the device is very tolerant of the actual values of $V_{C C}$ and $V_{E E}$ although $1 \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ / should stay within $5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$. A $2.7 \mathrm{k} \Omega$ resistor is connected from V_{CC} to the bias pin in the test circuit because this greatly improves the device's ability to operate with large input signals

It is important that pins 2 and 3 are decoupled by a capacitor in the range $100-1000 \mathrm{pF}$ because device sensitivity can be reduced by decoupling to a poor earth

Fig. 4 Direct coupling using split power supplies

Fig. 5 SP8607: with input pulldown resistor
In the absence of an input signal, or if the input signal is of very low amplitude, the device may give an output signal of about 250 MHz . This is due to the balanced nature of the internal $\div \mathbf{2}$ circuit and can be stopped if required by connecting a 10 kohm resistor between the input and the negative rail. (See Fig. 5). This causes a drop in sensitivity of about 100 mV but typical devices still easily meet the $400-800 \mathrm{mV}$ input amplitude specification. With sine wave inputs below 50 MHz the SP8607 miscounts because the slew rate of the input signal is too slow. Below this frequency a square wave input is needed with a slew rate of $100 \mathrm{~V} / \mu$ or more.

Fig. 6 Typical operating characteristic

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8616 B\& M 1 GHz $\div 4$ SP8614B\&IV 800MHz $\div 4$

SP8615B\&M 9оомHz $\div 4$ SP8613B\&M 700MHz $\div 4$

The SP8616 series of UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with, in the case of the SP8616B, a maximum operating frequency in excess of 1 GHz , over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100Ω lines and interfacing to ECL with the same positive supply. The SP8616 series require supplies of OV and $-7.4 \mathrm{~V}(\pm 0.4 \mathrm{~V})$.

FEATURES

- $D C$ to 1 GHz operation.
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation guaranteed at maximum specified frequency and over a wide dynamic input range.
- Complementary emitter follower O / Ps, ECL compatible.

APPLICATIONS

\square UHF Instrumentation, Including Counters and Timers

- Prescaling for UHF Synthesisers.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage	$V_{\text {CC }}-V_{E E}$	10 volts input voltage$\quad V_{\text {INac }}$
Output current		15 mA volts p-p
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Maximum operating function temperature $+150^{\circ} \mathrm{C}$		

Fig. 3 Specified range of operation

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated).
$\mathrm{T}_{\mathrm{amb}}={ }^{\prime} \mathrm{B}$ ' grade: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; ' M ' grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage
$V_{C C}=0 \mathrm{~V}$
$V_{E E}=-7.4 V \pm 0.4 V$

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max.toggle frequency	SP8616	1000			MHz	$\begin{aligned} & V_{I N}=600 \mathrm{mV} \text { to } 1.2 \mathrm{Vp}-\mathrm{p} \\ & \text { (see Fig. 3) } \end{aligned}$
	SP8615	900			MHz	$\mathrm{V}_{\text {IN }}=400 \mathrm{MHz}$ to $1.2 \mathrm{~V} \mathrm{p}-\mathrm{p}$
	SP8614	800			MHz	$\mathrm{V}_{\text {IN }}=400 \mathrm{MHz}$ to 1.2 V p-p
	SP8613	700			MHz	$\mathrm{V}_{\text {IN }}=400 \mathrm{MHz}$ to 1.2 V p-p
Min.toggle frequency for correct operation with sine wave input Min.toggle frequency for correct operation with sine wave input Min slew rate for square wave input to guarantee operation to OHz Output voltage swing Power supply drain current	ALL			200	MHz	$V_{\text {IN }}=400 \mathrm{mV}$ to $1.2 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$
	ALL			100	MHz	$V_{\text {IN }}=600 \mathrm{mV}$ to 1.2 V p-p
	ALL			200	$\mathrm{V} / \mu \mathrm{s}$	
	ALL	500	700		mV	
	ALL		45	60	mA	$V_{E E}=-7.4 \mathrm{~V}$

Toggle Frequency Test Board Layout

1. All connections to the device are kept short.
2. The capacitors are leadless ceramic types.
3. In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8616 series of dividers are very simple to use but normal high frequency rules should be followed for optimum performance, for example, all connections should be kept short, the capacitors and resistors should be types suitable for the frequencies involved, etc.

The input is normally capacitively coupled to the signal source. There is an internal 500Ω resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane.

The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 5).
$V_{C C}-V_{E E}$ should be kept inside the specified 7.4 volts ± 0.4 volts but the actual value of $V_{C C}$ relative to earth is not very critical and can be varied between 4.0 V and 6.0 V with only a small effect on performance. A $V_{C C}$ of about 5.2 V is the optimum for full temperature range operation.

Fig. 4 Toggle frequency test circuit

Fig. 5 Circuit for using the input signal about earth potential

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self oscillate with an output frequency of approximately 200 MHz . This can be prevented by connecting a $10 \mathrm{k} \Omega$ resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 mV .

The SP8616 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL II directly and to ECL III using two resistors. (See Fig. 6).

Fig. 6 Interfacing SP8616 series to ECL I/ and ECL I/I

The input impedance of the SP8616 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum input signal requirement. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

A commercially available hybrid amplifier can be used to drive the SP8616 (see Fig. 7).

Fig. 7 The SP8616 driven by a commercially available hybrid amplifier. The Amperex ATF417 output is internally capacitively coupled.

Note: The Amperex ATF 417 output is internally capacitively coupled.

Fig. 8 A 1 GHz synthesiser loop

The SP8616 series can be used in instrumentation for direct counting applications up to 1 GHz and in frequency synthesisers.

In a frequency synthesiser, the SP8616 and the SP8641 can be used together (see Fig. 8).

SP8619B $1.5 \mathrm{GHz} \div 4$ SP8617B1．3GHz $\div 4$

The SP8619 series of UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with， in the case of the SP8619B a maximum operating frequency in excess of 1.5 GHz over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．The input is normally capacitively coupled to the signal source but can be DC coupled if it is required．The two complementary emitter follower outputs are capable of driving 100 ohm lines and inter－ facing to ECL with the same positive supply．The SP8619 series require supplies of 0 V and -6.8 V （土 0.35 V ）．

Fig． 1 Pin connections

FEATURES

－DC to 1.5 GHz Operation
［． $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range
（ ${ }^{*}$ Complementary Emitter Follower O／Ps， ECL10K and ECL III Compatible

QUICK REFERENCE DATA

困 $\mathrm{Vcc}_{\mathrm{cc}}=\mathrm{OV} \mathrm{V}_{\mathrm{Ee}}=-6.8 \mathrm{~V} \pm 0.35 \mathrm{~V}$
图 Input Voltage Range 400 mV to 1.2 Vp －p
＊Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
© Output Voltage Swing 800 mV Typ．

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}\right| 10 \mathrm{~V}$
Input voltage $\mathrm{V}_{\mathrm{INac}} 2.5 \mathrm{~V}$ p－p
Output current 15 mA
Storage temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum operating function temperature $+150^{\circ} \mathrm{C}$

APPLICATIONS

－UHF Instrumentation，Including Counters and timers
－Prescaling for UHF Synthesisers

Fig． 2 Functional diagram

SP8617/9

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$\mathrm{T}_{\text {amb }}=0^{\circ} \mathrm{C}$ to $\div 70^{\circ} \mathrm{C}$
Supply voltage $V_{C C}=0 \mathrm{~V} \quad V_{E E}=-6.8 \pm 0.35 \mathrm{~V}$
Input voltage $400-1200 \mathrm{mV}$ p-p

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. toggle frequency	$\begin{aligned} & \text { SP8619B } \\ & \text { SP8617B } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$			$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$	
Min. toggle frequency for correct operation with sine wave input Min. toggle frequency for	All			150	MHz	$V_{\text {IN }}=600 \mathrm{mV}$ to $1.2 \mathrm{Vp}-\mathrm{p}$
wave input Min slew rate for square	All			100	MHz	$\mathrm{V}_{\mathrm{IN}}=800 \mathrm{mV}$ to $1.2 \mathrm{Vp}-\mathrm{p}$
wave input to guarantee operation to OHz Output voltage swing Power supply drain current	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$ All	600	$\begin{array}{r} 800 \\ 80 \end{array}$	200 110	$\mathrm{V} / \mu \mathrm{s}$ mV mA	$\mathrm{V}_{\mathrm{EE}}=-7.15 \mathrm{~V}$

Toggle Frequency Test Board Layout

1. All connections to the device are kept short
2. The capacitors are leadless ceramic types
3. In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

Fig. 3 Togg/e frequency test circuit

Fig. 4 Circuit for using the input signal about earth potential

OPERATING AND APPLICATION NOTE

The SP8619 series of dividers are very simple to use but normal high frequency rules should be followed for optimum performance - for example, all connections should be kept short and the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane.

The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 4).
$\left|V_{c c}-V_{E E}\right|$ should be kept inside the specified 6.8 V $\pm 0.35 \mathrm{~V}$ but the actual value of V_{cc} relative to earth is not very critical and can be varied between 4.2 V and 5.0 V with only a small effect on performance. A Vcc of about 4.6 V is the optimum for full temperature range operation.

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self-oscillate with an output frequency of approximately 300 MHz .

This can be prevented by connecting a 10 k ohm resistor between the input and the negative rail. .This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 mV .

The SP8619 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10 K or ECL III (see Fig. 5).

The input impedance of the SP8619 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum input signal requirement. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8619 series can be used in instrumentation for direct counting applications up to 1.5 GHz and in frequency synthesisers.

In a frequency synthesiser, the SP8619 and the SP8643 can be used together (see Fig. 6).

Fig. 5 Interfacing SP8619 series to ECL 10 K and ECL III

Fig. 6 A $1.5 \mathrm{GH} z$ synthesiser loop

SP8000 SERIES

HIGH SPEED DIVIDERS

$\div 5$ COUNTERS

The SP8620, SP8621 and SP8622 are fixed ratio emitter-coupled logic $\div 5$ counters with specified input frequency ranges of DC to 400 MHz (SP8620), 300 MHz (SP8621) and 200 MHz (SP8622) respectively. The operating temperature is specified by the final coding letter: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A^{\prime} grade), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B ' grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' grade).

The counter is normally capacitively coupled to the signal source and is specified with an input signal range of $400-800 \mathrm{mv}$ p-p $(-4 \mathrm{dBm}$ to $+22 \mathrm{dBm})$. There are two bias points on the circuit that should be capacitively decoupled to the ground plane.

Fig. 1 Pin connections (bottom view)

FEATURES

(1) D.C. to 400 MHz Operation.

- Temperature Ranges of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A ' Grade), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B^{\prime} Grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' Grade) Over Full Specified Input Range and Frequency.

APPLICATIONS

閣 Frequency Counters and Timers
[${ }^{6}$ Frequency Synthesisers

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|V_{C C}-V_{E E}\right| \quad 8 V$
Input voltage $V_{\text {IN }}$
Output current IOUT
Operating junction temperature
Storage temperature

Not greater than supply 15 mA
$+150^{\circ} \mathrm{C}$
-55° to $+150^{\circ} \mathrm{C}$

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. input frequency	SP8620	400			MHz	
	SP8621	300			MHz	
	SP8622	200			MHz	
Min. input frequency with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave input for correct operation	All		30	100	$\mathrm{V} / \mu \mathrm{S}$	
Output voltage swing	All	400	800		mV	$V_{E E}=-5.2 \mathrm{~V}$
Power supply drain current	All		55		mA	$V_{E E}=-5.2 \mathrm{~V}$

SP8620/1/2

OPERATING NOTES

It is recommended that a positive earth plane is used for the circuit layout, thus preventing damage if the output is short-circuited to earth.

The signal source is normally capacitively coupled to the input (see Fig. 3). A 1000pF capacitor is suitable at high frequencies, but if lower frequency operation is also required, say below 10 MHz , then an additional capacitor should be connected in parallel: The device can be DC coupled if it is required - see Fig. 4.

Fig. 3 Test circuit

Fig. 4 Divide by 16 frequency scaler

The circuit may self oscillate when there is no input signal or when the input signal is well below the specified input signal. This can be prevented by connecting a $15 \mathrm{k} \Omega$ resistor between the input and the negative rail. This causes a loss in sensitivity of up to 100 mV p-p.

The input waveform may be sinusoidal, but below about 20 MHz the circuit tends to malfunction on minimum amplitude input signals and the condition becomes worse as the frequency is decreased. This is because correct operation of the circuit depends on the slew rate of the input signal. A square wave input with a slew rate greater than $100 \mathrm{~V} / \mu \mathrm{S}$ ensures correct operation down to DC .

The output swing of the devices can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of $1.5 \mathrm{k} \Omega$ will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8820 devices to interface directly to ECL II devices with no loss in noise immunity. If the devices are required to interface to ECL III or ECL 10,000 then an interface similar to Fig. 5 should be used.

The values of the decoupling capacitors are not critical, but they should be of a type suitable for the frequencies involved.

Fig. 5 Interfacing to ECL I/I or ECL 10,000

SP8000 SERIES
 high speed dividers

SP8630 A, B\&M
 600MHz DECADE COUNTER
 SP8631A, B\&M

500MHz DECADE COUNTER
SP8632 A, B\&M
400MHz DECADE COUNTER

Fig. 1 Pin connections

GENERAL DESCRIPTION

The SP8630/1/2 counters are fixed ratio $\div 10$ circuits using emitter coupled logic, with maximum specified counting frequencies of 600,500 and 400 MHz respectively, over temperature ranges of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A $6: 4 \mathrm{mark} /$ space square wave is
provided at the emitter follower output. The input is normally single driven and capacitively coupled to the signal source. There are two bias points on the circuit which should be capacitively coupled to the ground plane.

ELECTRICAL CHARACTERISTICS

Fig. 2 Block diagram
Test conditions (unless stated otherwise):
$\begin{aligned} \text { Tamb: ' } \mathrm{A} \text { ' grade } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { ' } \mathrm{C} \text { ' grade } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { ' }{ }^{\circ} \text { ' grade } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{aligned}$
Operating supply voltage

VCC	0 V
$\quad V_{E E}$	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Input voltage	400 to $800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$
Output load	$500 \Omega \& 3 \mathrm{pF}$.

NOTE: The maximum input frequency is guaranteed at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$. For typical operating characteristics with power supply variations see Fig.5, which shows that the maximum operating frequency of a typical device increases with increasing power supply voltage

Characteristic	Type	Value			Units	Conditions
		Min	Typ	Max		
Max input freq.	SP8630	600			MHz	
	SP8631	500			M Hz	
	SP8632	400			MHz	
Min input freq: with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave I/P for correct operation	All		30	100	$\mathrm{V} / \mathrm{\mu s}$	
Output voltage swing	All	400	600 70		$m V$	$\begin{aligned} & V_{E E}=-5.2 \mathrm{~V} \\ & \mathrm{VEE}=-5.2 \mathrm{~V} \end{aligned}$
Power supply drain current			70			$\mathrm{VEE}^{=}=-5.2 \mathrm{~V}$

Fig. 3 Circuit diagram of 1st element (-2) showing input biasing arrangement

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the emitter follower outputs are inadvertantly shorted to ground.

The signa! source is normally capacitively coupled to the input: 1000 pF is usually sufficient. If the input signal is likely to be interrupted a 15 k ohm resistor should be connected between the input pin and the negative rail to prevent circuit oscillation under no-signal conditions. The addition of the pulldown resistor causes a slight loss of sensitivity of the device, but this does not normally cause problems in practice.

The input waveform may be sinusoidal, but below 40 MHz the operation of the circuit becomes dependent on the slew rate of the waveform rather than the amplitude. A square wave input with a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ will allow correct operation down to DC. At high frequencies, increasing drive level above minimum typically increases the max. operating frequency by up to 25%

The output swing of the device can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of 1.5 k ohms will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8630 series devices to drive directly into ECL II devices with no loss in noise immunity.

The value of capacitance needed for the decoupling capacitors is not critical. Values down to 15 pF have been found satisfactory in practice.

Fig. 4 Test circuit

Test Circuit Notes

The values of the coupling and decoupling capacitors are uncritical but they should be of a type and value suitable for the frequencies involved.

All connections should be physically short when not in a 50Ω environment to minimise reflections due to mismatching.

The tve pin should be connected to a low impedance earth plane to minimise feed-through of the input signal to the output.

Typical Operating Characteristics

Fig. 5 Minimum drive level v. input frequency at $+25 C$

Fig. 6 Max. operating frequency v. power supply voltage for a typical SP8631B

APPLICATION NOTES

Direct coupling to the SP8630 series.

It can be seen from the circuit diagram that the input arrangement of the SP8630 series is not compatible with the normal ECL logic levels. The input reference level is approximately -3.2 volts but it is not well defined and has a temperature coefficient of approximately $-1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. If DC coupling is required, the input would have to be larger than would be the case with capacitive coupling.

Fig. 7 Max. operating frequency v. ambient temperature for a tvpical SP8631B (Vcc $=-5.2 \mathrm{~V}$)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage

$$
V_{C C}-V_{E E}
$$

Input voltage $V_{\text {IN }}$
Output current IOUT
Operating junction temperature
Storage temperature

8 V .
Not greater than the supply voltage in use 15 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SP8634B $\div 10700 \mathrm{MHz}$ SP8636B $\div 10500 \mathrm{MHz}$

The SP8634B, SP8635B, SP8636B and SP8637B are divide-by-ten circuits with binary coded decimal outputs for operation from DC up to specified input frequencies of 700, 600, 500 and 400 MHz , respectively, over a guaranteed temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

These devices, optimised for counter applications in systems using both ECL and TTL, are intended to be operated between $O \mathrm{~V}$ and -5.2 V power rails and to

FEATURES

- Direct gating capability at up to 700 MHz

TTL - compatible BCD outputs

- TTL- and ECL-compatible carry outputs
- Power consumption less than 500 mW
(1) Wide dynamic input range

APPLICATIONS

- Counters
- Timers

E Synthesisers

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8635B:10600 MHz SP8637B $\div 10400 \mathrm{MHz}$

interface with TTL operating between 0 V and +5 V . The BCD outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL-compatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10 k -compatible input. The TTL-compatible reset forces the 0000 state regardless of the state of the other inputs.

Fig. 1 Pin connections (top)

Fig. 2 Logic diagram

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)
Test Conditions (unless otherwise stated)

$T_{a m b}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Supplies	$V_{C C}$	0 V
	$V_{E E}$	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock Input (pin 14)					
Max. input frequency					
SP8634B	700			MHz	
SP8635B	600			MHz	Input voltage
SP8636B	500			MHz	$400-800 \mathrm{mV}$ p-p
SP8637B	400			MHz	
Min. input frequency with sinusoidal I/P			40	MHz	
Min. slew rate of square wave for correct operation down to DC			100	$\mathrm{V} / \mathrm{\mu s}$	
Clock inhibit input (pin 16)					
Logic levels					
High (inhibit)	-0.960			V	$\mathrm{Tamb}=+25^{\circ} \mathrm{C}$
Low			-1.650	V	(see Note 1)
Edge speed for correct operation at maximum clock I/P frequency			2.5	ns	10\%-90\%
Reset input (pin 3)					
Logic levels					
High (reset)	See Note 2				
Low			+0.4	V	
Reset ON time	100			ns	
TTL outputs ABCD (pins $2,7,8,10$) $\quad \square \quad$ See Note 3 and Fig 4					
High	+2.4			v	$10 \mathrm{k} \Omega$ resistor and
Low			+0.4	V	TTL gate from $0 / P$ to +5 V rail
TTL carry output (pin 11)					
Output Voltage					
High state	+2.4			V	$5 \mathrm{k} \Omega$ resistor and 3
Low			+0.4	V	TTL gates from o / p to 5 V rail
ECL carry output (pin 9)					
Output Voltage					
High	-0.975			V	$T_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$ External current
Low			-1.375	V	$=0 \mathrm{~mA}$ (See Note 4)
Power supply drain current		75	90	mA	$V_{E E}=5.2 \mathrm{~V}$

notes

1. Thr: clock inhibit input levels are compatible with ECL III and ECL 10000 levels throughout the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. For a high state, the reset input requires a more positive input level than the specified worst case TTL V_{OH} of +2.4 V . Resetting should be done by connecting a $1.8 \mathrm{k} \Omega$ resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series device.
3. These outputs are current sources which can be readily made TTL.compatible voltages by connect ing them to +5 V via $10 \mathrm{k} \Omega$ resistors.
4. This: FCL carry output is compratible with $t . C L$ II throughout the temperature range but can be made compatible with ECL III using the simple intertace shown in Fig. 3

Fig. 3 ECL III/ECL 10000 interfacing

Fig. 4 TTL carry and $A B C D$ output structure

OPERATING NOTES

The devices are intended to be used with TTL and ECL in a counting system - the ECL and the decade counter being connected between voltage rails of OV and -5.2 V and the TTL between voltage rails of OV and +5.0 V . Provided that this is done ECL and TTL compatability is achieved (see Figs. 4 and 5).

The clock is normally capacitively coupled to the signal source: a 1000 pF UHF capacitor is normally adequate. If low frequency operation is required the 1000 pF capacitor should be connected in parallel with a higher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor - preferably a chip type - but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than the specified 400 to $800 \mathrm{mV} \mathrm{pk} / \mathrm{pk}$. However, if the decoupling capacitor is not of a UHF type, or it is connected to an earth point that has a significant impedance between the capacitor and the V_{CC}
connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.

Under certain conditions, the absence of an input signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a $68 \mathrm{k} \Omega$ resistor between the clock input and the negative supply. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason, the input slew rates should be greater than $100 \mathrm{~V} / \mu \mathrm{s}$. It should also be noted that a positive-going transition on either the clock input or the clock inhibit input will clock the device, provided that the other input is in the low state.

The BCD outputs give TTL-compatible outputs (fanout $=1)$ when a $10 k \Omega$ resistor is connected from the output to the +5 V rail. In this configuration the outputs will bevery slow compared with the clocking rate of the decade and so the state on the BCD outputs can only be determined when the clock has stopped or is inhibited.

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

Fig. 5 Typical application configuration

Fig. 6 Decade counter timing diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $/ V_{C C}-V_{E E}{ }^{i}$
Clock inhibit voltage
Clock input voltage
Bias voltage ($\mathrm{V}_{\text {OUT }}$) on BCD outputs,
$V_{\text {OUT }}-V_{E E}(10 \mathrm{kS} 2$ resistor in series with output)
Bias voltage ($V_{\text {OUT }}$) on TTL carry
output, $\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{EE}}(1.2 \mathrm{k} \Omega$ resistor in series with output)
Output current from ECL carry
output (lout) (Note: the device
will be destroyed if the ECL.
output is shorted to the negative rail)
Operating junction temperature
Storage temperature range

QUICK REFERENCE DATA

Power Supplies $V_{C C}$

$$
V_{E E}
$$

- Range of clock input amplitude
- Operational temperature range
- Frequency range with sinusoidal I/P
- Frequency range with square wave I/P

8 V

Not greater than the supnlv voltage in use
2 V pk/pk

11V

11 V

10 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

OV
$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
$400-800 \mathrm{mV}$ p.p
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$40-700 \mathrm{MHz}$ (SP8634B)
DC to $700 \mathrm{NiH7}$ (SP8634B)

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP 8640A, B \& M SP 8641A, B \& M SP 8642A, B \& M SP 8643A, B \& M
 200 MHz 250 MHz 300 MHz 350 MHz

 SP 8646A, B \& M

 SP 8646A, B \& M

 200 MHz TTL OUTPUTS

 200 MHz TTL OUTPUTS SP 8647 A, B \& M 250 MHz TLL outputs SP 8647 A, B \& M 250 MHz TLL outputs

 UHF PROGRAMMABLE DIVIDERS $\div 10 / 11$

 UHF PROGRAMMABLE DIVIDERS $\div 10 / 11$}

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8640 series are UHF integrated circuits that can be logically programmed to divide by either 10 or 11 , with input frequencies up to 350 MHz . The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

Inputs and outputs are ECL compatible throughout the
temperature range: the clock inputs and programming inputs are ECL III compatible while the two complementary outputs are ECL II compatible to reduce power consumption in the output stage. ECL 10 K output compatability can be achieved very simply however (see Operating Notes). The SP8646/7 feature an additional TTL compatible output.

The division ratio is controlled by two $\overline{P E}$ inputs. The counter will divide by 10 when either $\bar{P} \bar{E}$ input is in the high state and by 11 when both inputs are in the low state. Both the $\overline{\mathrm{PE}}$ inputs and the clock inputs have nominal 4.3 k Ω pulldown resistors to V_{EE} (negative rail).

FEATURES

Military and Industrial Variants.
350 MHz Toggle Frequency
Low Power Consumption
ECL Compatibility on All I/Ps \& O/Ps
Low Propagation Delay
True and Inverse Outputs
Optional TTL Output

QUICK REFERENCE DATA

- Full Temperature Range Operatior:
' A^{\prime} Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{\prime} B^{\prime}$ Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
'M' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Supply Voltage

$$
\left|V_{C C}-V_{E E}\right| 5.2 V
$$

■ Power Consumption 250 mW Typ.

- Propagation Delay 3ns Typ.

Fig. 1 Pin connections (top)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $\left\|V_{C C}-V_{E E}\right\|$	8 V
Input voltage $V_{\text {in (d.c.) }}$	Not greater than the supply voltage in use.
	20 mA
Output current I out	$+150^{\circ} \mathrm{C}$
Max. junction temperature	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Clock Pulse	\mathbf{Q}_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}	\mathbf{Q}_{4}	TTL \mathbf{O} / \mathbf{P}
1	L	H	H	H	H
2	L	L	H	H	H
3	L	L	L	H	H
4	H	L	L	H	H
5	H	H	L	H	H
6	L	H	H	L	L
7	L	L	H	L	L
8	L	L	L	L	L
9	H	L	L	L	L
10	H	H	L	L	L
11	L				

$\overline{\mathbf{P E}_{1}}$	$\overline{\mathbf{P E}_{2}}$	Div Ratio
L	L	11
H	L	10
L	H	10
H	H	10

Table 2 Truth table for control inputs
The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_{4} or the $\mathrm{H} \rightarrow \mathrm{L}$ transition from $\overline{\mathrm{Q}}_{4}$ is used to clock the stage controlling the $\div 10 / 11$. The loop delay is 10 clock periods minus the internal delays of the $\div 10 / 11$ circuit.

Table 1 Count sequence

Fig. 2 Logic diagram (positive logic)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
Tamb: -55 C to -125 C (A grade)
-40 C to $-85^{\circ} \mathrm{C}$ (M grade)
$0 \cdot \mathrm{C}$ to -70 C (B grade)
Supply yoltage (see note 1): V_{CC} OV

$$
V_{E E}-5.2 \mathrm{~V}
$$

Static Characteristics (all SP8640 series devices)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock and $\overline{\mathrm{PE}}$ input voltage levels					
$\mathrm{V}_{\text {INH }}$	-1.10		-0.81	V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$,
VINL	-1.85		-1.50	v	see Note 2
Input pulldown resistance, between pins 1, 2, 3, and 16 and $V_{E E}(\operatorname{pin} 12)$		4.3		K Ω	
Output voltage levels					
V_{OH}	-0.85			V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$,
V_{OL}			-1.50	V	see Note 3.
					$i_{\text {out }}$ (external) $=0 \mathrm{~mA}$ (There is an internal circuit equivalent to a $2 \mathrm{k} \Omega$ pulldown resistor on each output)
Power supply drain current		50	65	mA	

[^4]Dynamic Characteristics

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Clock input voltage levels						
$V_{\text {INH }}$	All	-1.10		-0.90	v	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$.
$V_{\text {INL }}$	All	-1.70		-1.50	V	see Note 4
Max. toggle frequency	SP8643	350			MHz	
	SP8642	300			MHz	
	SP8641/7	250			MHz	
	SP8640/6	200			MHz	
Min. frequency with sinewave clock input	All			50	MHz	
Min. slew rate of square wave input for correct operation down to DC	All			100	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay (clock input to device output)	All		3		ns	ECL Output
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

NOTES
4. The devices are dynamically tested using the cirouit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $\mathrm{L} \rightarrow \mathrm{H}$ transition of a control input and the next $\mathrm{L} \rightarrow \mathrm{H}$ clock pulse transition to ensure that the $\div 10$ mode is forced by that clock pulse (see Fig. 3).
6. Release time is defined as the minimum time that can elapse between a $H \rightarrow L$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 11$ mode is forced by that clock pulse (see Fig. 4).
7. SP8646, SP8647 TTL output current $=8 \mathrm{~mA}$ at $\mathrm{VOL}=+0.5 \mathrm{~V}$, measured at $+25^{\circ} \mathrm{C}$, temperature coefficient $=+0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
8. SP8646, SP8647 O_{4} to TTL output delay $=3$ ns, typical
9. The TTL O/P is a free collector and requires a $2 k \Omega$ (typ) pull-up resistor. The current taken by this resistor must be included in the 8 mA current in Note 7 above.

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram
Fig. 5 Test circuit for dynamic measurements

OPERATING NOTES

The SP8640 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10 K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

Fig. 6 Recommended input bias configuration for capacitive coupling to a contir uous 50Ω signal source.

The $\div 10 / 11$ can be controlled by a TTL fully programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface has been provided on chip in the SP8646/7. A discrete interface may be constructed as shown in Fig. 7. Both output interfaces will operate satisfactorily over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. The propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns . At an input frequency of 350 MHz this would only leave about 16 ns for the fullyprogrammable counter to control the $\div 10 / 11$. The loop delay can be increased by extending the $\div 10 / 11$ function to, say, $\div 20 / 21$ or $\div 40 / 41$ (see Application Notes).

Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8640 devices
and TTL operating from the same supply rails)

The SP8640 device ECL o/ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10 K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10 K inputs.

Fig. 8 ECL // to ECL /"/ interface

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8650A, B \& M боомнz $^{1} 16$
 SP8651A, B \& M 500MHz $^{2} 16$
 SP8652A, B \& M 400MHz $\div 16$

The SP8650 series of UHF $\div 16$ counters are fixed ratio synchronous emitter coupled logic counters with, in the case of the SP8650, a maximum operating frequency in excess of 600 MHz . All three devices operate up to their maximum specified operating frequencies over temperature ranges of $-55{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A^{\prime} grade), $0^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ ('B' grade) and $-40^{\circ} \mathrm{C}$ to $-85^{\circ} \mathrm{C}$ (' M^{\prime} grade). The input is normally capacitively coupled to the signal source but the circuits can be DC driven if required. The inputs can be either single driven relative to the on-chip reference voltage or differentially driven.

There are two complementary emitter follower outputs.

FEATURES

- Low Power - Typically 250 mW
- ECL II \& ECL III Output Compatability
- Easy Operation From UHF Signal Source

APPLICATIONS

回 Prescaling for UHF Synthesisers
Instrumentation

Fig. 1 Pin connections

QUICK REFERENCE DATA

- Power Supplies Vcc $=$ OV

$$
\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}
$$

Temperature Range ' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M^{\prime} grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Input Amplitude Range 400 mV to $800 \mathrm{mVp}-\mathrm{p}$
- Output Voltage Swing 800 mV typ. p-p

Fig. 2 Functional diagram

SP8650/1/2

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)
Tamb $=-55^{\circ} \mathrm{C}^{\prime}$ to $-125^{\circ} \mathrm{C}$ (' A^{\prime} grade)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' grade)
$-40^{\circ} \mathrm{C}$ to $\div 85^{\circ} \mathrm{C}$ (' M^{\prime} grade)
Supply Voltage
$\mathrm{Vcc}=\mathrm{OV}$
$\mathrm{VEE}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Output load $=500 \Omega$ in parallel with approx. 3 pF

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. Toggle frequency						Test circuit as in fig. 2
	SP8650	600			HMz	$\mathrm{VIN}=400$ to $800 \mathrm{mV} \mathrm{p-p}$
	SP8651	500			MHz	$V_{\text {IN }}=400$ to $800 \mathrm{mV} \mathrm{p-p}$
	SP8652	400			MHz	$\mathrm{VIN}=400$ to 800 mV p-p
Min. toggle frequency for correct						
operation with a sinewave input Min. slew rate for square wave	All			40	MHz	$\mathrm{VIN}=400$ to $800 \mathrm{mV} \mathrm{p}-\mathrm{p}$
input to guarantee correct						
operation to OHz	All			100	$V / \mu s$	
Input reference voltage	All		2.6		V	
Output voltage swing (dynamic)	All	500	800		mV	p-p
Output voltage (static)						
high state	All	-8.95		. 615	V	
Low state	All	-1.83		-1.435	V	
Power supply drain current	All		45	60	mA	

Fig. 3 Toggle frequency test circuit

Toggle Frequency Test Circuit

1. All leads are kept short to minimise stray capacitance and induction.
2. Resistors and capacitors are non-inductive UHF types.
3. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

Fig. 4 SP8650 to ECL 10 K interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $/ \mathrm{VCL}-\mathrm{VEE}^{2}$	8 volts	
Inpui voltage	VINac	2.5 V p-p
Output source curr \quad lout	10 mA	
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Operating junction temperature	$150^{\circ} \mathrm{C}$ max.	

OPERATING NOTE

Normal UHF layout techniques should be used if the SP8650 series of dividers are to operate satisfactorily. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced.
The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10 \mathrm{~K} \Omega$ resistor between one of the inputs and the negative rail.

The device will also miscount if the input transitions are slow - a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).
A typical application of the SP8650 series devices would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz . A binary division rate is optimum where power is at a premium and so the SP8650 series would normally be used in low power applications.

Fig. 5 A low power synthesiser loop

SP8650/1/2

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8655A, B \& M (-32) SP8657A, B \& $M_{(: 20)}$ SP8659A, B \& $\mathrm{M}_{(: 16)}$

The SP8655A, B \& M, SP8657A, B \& M and SP8659A, B \& M are fixed ratio (divide by 32,20 and 16) low power counters for operation at frequencies in excess of 200 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A^{\prime} grade), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B^{\prime} grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M^{\prime} grade).

In all cases the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

Fig. 1 Pin connections (viewed from beneath)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage,

VCC-VEE	
Input voltage Vin	8 V
Not greater than	
Supply voltage in use	
Output sink current, 10	10 mA

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Operating ambient temperature Tamb: $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (A^{\prime} grade)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' grade)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M^{\prime} grade)
$+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$; VEE: OV
Operating supply voltages VCC:
400 mV to 800 mV p-p
250 mV to 800 mV p-p
Output load $3.3 \mathrm{k} \Omega$ to -10 V , in parallel with 7 pF .

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Maximum input frequency	200			MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	$\mathrm{~V} / \mu \mathrm{s}$	
Power supply drain current		10	13	mA	$\mathrm{VCc}=+5.2 \mathrm{~V}$
Output level (high)	9.0			V	
Output level (low)			400	mV	

OPERATING NOTES

Fig. 3 gives capacitor values for AC and DC coupling of the input and bias points on the test circuit;-these values are not critical and will depend on the operating frequency.

The devices will normally self-oscillate in the absence of an input signal. This can be easily tprevented by connecting a $39 \mathrm{k} \Omega$ pulldown resistor from either input (double drive) to VEE; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this
technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40 MHz correct operation depends on the slew rate of the input signal. A slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of $3.3 \mathrm{k} \Omega$ (or less) to a +10 V will allow the output to drive a CMOS binary counter at a frequency of up to 5 MHz .

Fig. 3 Test circuit

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8660 A, B \& M
 $180 \mathrm{MHz} \div 10$ (LOW POWER)

The SP8660 is a fixed ratio (divide by 10) low power counter for operation at frequencies in excess of 100 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A ' grade) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' grade)

The input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used, the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should also be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
\square Output TTL and CMOS Compatible
凹 Military and Commercial Temperature Ranges

APPLICATIONS

[Low Power VHF Communications
 - Portable Counters

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, $\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right\|$	8 V
Not greater than	
Input voltage $\mathrm{V}_{\text {in }}$	supply voltage in use
	10 mA
Output sink current, I	
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Fig. 1 Pin connections (viewed from beneath)

OPERATING NOTES

Fig. 3 gives capacitor values for $A C$ and DC coupling of the input and bias points on the test circuit; these values are not critical and will depend on the operating frequency.

The device will normally self-oscillate in the absence of an input signal. This can be easily prevented by connecting a $39 \mathrm{k} \Omega$ pulldown resistor from either input (double drive) to V_{EE}; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40 MHz correct operation depends on the slew rate of the input signal. A slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of $3.3 \mathrm{k} \Omega$ (or less) to +10 V will allow the output to drive a CMOS binary counter at a frequency of up to 5 MHz .

Fig. 2 Logic diagram

SP8660

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
Operating ambient temperature T_{A}
' A ' grade: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; ' B ' grade: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; ' M^{\prime} grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;
Operating supply voltages
$\mathrm{V}_{\mathrm{CC}}:+5.0 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}: 0 \mathrm{~V}$
Input voltage

Output load $3.3 \mathrm{k} \Omega$ to +10 V , in parallel with 7 pF

Characteristic	Value			Units	Condition
	Min.	Typ.	Max.		
Maximum input frequency	100	200		MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	$\mathrm{~V} / \mu \mathrm{s}$	
Power supply drain current		10	13	mA	$\mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V}$
Output level (high)	9.0		V		
Output level (low)			400	mV	

Fig. 3 Test circuit

SP8000 SERIES

HIGH SPEED DIVIDERS

UHF DECADE COUNTERS

SP8667B $1.2 \mathrm{GHz} \div 10$

The SP8665/6/7 high speed decade counters operating at an input frequency of up to 1 GHz over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The device has a typical power dissipation of 550 mW at the nominal supply voltage of 6.8 V .

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth. If no signal is present at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting a $15 \mathrm{k} \Omega$ resistor from the input to V_{EE} (pin 10 to pin 7). This will reduce the input sensitivity of the device by approximately 100 mV .

The clock inhibit input is compatible with standard ECL III circuits using a common V_{CC} to the SP8665/6/7. A $6 \mathrm{k} \Omega$ pulldown resistor is included on the chip. The input should be left open circuit when not in use. The SP8665/6/7 outputs are compatible with standard ECL II circuits. They may be used to drive ECL 10 K by the inclusion of two resistors as shown in Fig. 4.

Fig. 2 Logic diagram

Fig. 1 Pin connections

FEATURES

- Guaranteed operation over large temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Wide input dynamic range
- Self biasing clock input
- Clock inhibit input for direct gating capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{C C}-V_{E E}$	$O V$ to +10 V
Input voltage inhibit input	$V_{E E}$ to $V_{C C}$
Input voltage $C P$ input	$2.5 \mathrm{~V} p-\mathrm{p}$
Output current	20 mA
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

Supply voltage
Clock input
Clock inhibit input
Output
Tamb
Supply voltage
Clock input voltage
$6.8 \mathrm{~V} \pm 0.3 \mathrm{~V}$
AC coupled, self-biasing
ECL III compatible
ECL II compatible
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=-6.8 \mathrm{~V}$
400 mV to 1.2 V (peak to peak)

Characteristics		Value			Units	Conditions
		Min.	Typ.	Max.		
Max. i/p frequency	SP8665	1.0			GHz	400 mV to 1.2 V p-p
	SP8666	1.1			GHz	600 mV to 1.2 V p.p
	SP8667	1.2			GHz	600 mV to 1.2 V p.p
Min. i/p frequency				200	MHz	Sine wave input 400 mV p-p
Min. i/p frequency				100	MHz	Sine wave input 600 mV p-p
Min. slew rate for square wave input				200	$\mathrm{V} / \mu \mathrm{sec}$	
Clock i/p impedance			400		Ω	At low frequency
Inhibit input reference level			-1.3		V	At $25^{\circ} \mathrm{C}$ compatible with
						ECL III throughout the temperature range.
Inhibit input pulldown resistor (internal)			6		$\mathrm{k} \Omega$	
Output pulldown resistor (internal)			3		$k \Omega$	
Power supply drain current			80	105	mA	At $25^{\circ} \mathrm{C}$

Fig. 4 SP8665 to ECL 10 K

Fig. 3 Test circuit

SP8000 SERIES
HIGH SPEED DIVIDERS

SP8670 A, B\&M боомнz $\div 8$ SP8671 A, B\&M 500MHz $\div 8$ SP8672 A, B\&M 400MHz $\div 8$

The SP8670, SP8671 and SP8672 are fixed ratio -8 asynchronous ECL counters with a maximum operating frequency of 600,500 and 400 MHz respectively. The operating temperature is specified by the final coding letter: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A ' grade), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B^{\prime} grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' grade). The input is normally capacitively coupled to the signal source but the circuit can be DC driven if required. The inputs can be either single driven, relative to the on-chip reference voltage, or driven differentially. There are two complementary emitter-follower outputs.

Fig. 1 Pin connections

APPLICATIONS

■ Prescaling for UHF Synthesisers

- Instrumentation

Fig. 2 Functional diagram

QUICK REFERENCE DATA

困
Power Supplies
$V_{C C}=0 V$
$V_{E E}=-5.2 V \pm 0.25 \mathrm{~V}$
400 mV to 800 mV p-p
800 mV typ. p-p
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A^{\prime} Grade)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' Grade)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ('M' Grade)

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

```
\(T_{\mathrm{amb}}=\)
' A ' grade: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\);
Supply Voltage
' B ' grade: \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\);
    \(V_{C C}=0 V\)
    'M' grade: \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\);
    \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}\)
```

Output load $=500 \Omega$ line in parallel with approx. 3 pF

Toggle Frequency Test Circuit

1. All leads are kept short to minimise stray capacitance and inductance
2. Resistors and capacitors are non-inductive UHF types.
3. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

Fig. 3 Toggle frequency test circuit

OPERATING NOTE

Normal UHF layout techniques should be used to ensure satisfactory operation. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced.

The circuit is normally capacitively coupled to the signal source. In the absence of an inpui+ signal the circuit will self-oscillate. This can be prevented by connecting a $10 \mathrm{~K} \Omega$ resistor between one of the inputs and the negative rail.
$V_{\text {ref }}$ must be decoupled to RF earth by a capacitor in the range 30 pF to $\mathbf{1 0 0 0} \mathrm{pF}$. It is important that this decoupling is adequate, otherwise input sensitivity will be reduced.

The device will also miscount if the input transitions are slow - a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).

A typical application of the SL8670 would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz . A binary division ratio is optimum where power is at a premium and so the SP8670 series would normally be used in low power applications.

Fig. 4 SP8670 to ECL 10 K interface

Fig. 5 A low power synthesiser loop

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right| \quad 8$ volts
Input voltage $\quad V_{\text {INac }} \quad 2.5 \mathrm{~V}$ p-p
Output source current $\mathrm{I}_{\text {out }} \quad 10 \mathrm{~mA}$
Storage temperature range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating junction temperature $\quad 150^{\circ} \mathrm{C}$ max.

SP 8000 SERIES
 HIGH SPEED DIVIDERS

SP8675B\＆M ${ }_{\text {1．0GHz }}^{\mathbf{\circ} 8}$ SP8676B\＆M ${ }_{1.1 \mathrm{GHz} \div 8}$ SP8677B\＆M $1.2 \mathrm{GHz} \div 8$

The SP8675／6／7 are high speed counters for operation at input frequencies up to 1.2 GHz ．

The devices have a typical power dissipation of 470 mW at the nominal supply voltage of 6.8 V ．

The clock input is biased internally and is coupled to the signal source by a capacitor．The input signal path is completed by an input reference decoupling capacitor which is connected to earth．If no signal is present at the clock input the device will self－oscillate． If this is undesirable it may be prevented by connecting a $15 \mathrm{k} \Omega$ resistor from the input V_{EE}（pin 10 to pin 7）． This will reduce the input sensitivity of the device by approximately 100 mV ．

The clock inhibit input is compatible with standard ECL III circuits using a common Vcc to the SP8675／6／7． A $6 \mathrm{k} \Omega$ pulldown resistor is included on the chip．The input should be left open circuit when not in use．The SP8675／6／7 outputs are compatible with standard ECL II circuits．They may be used to drive ECL 10K by the inclusion of two resistors as shown in Fig． 4.

FEATURES

（⿴囗⿱一一⿴囗十
Temperature Range：＇ B ＇Grade $0^{\circ} \mathrm{C}$ to

$$
\begin{aligned}
& +70^{\circ} \mathrm{C} \\
& \mathrm{M}^{\prime} \mathrm{Grade}-40^{\circ} \mathrm{C} \text { to } \\
& +85^{\circ} \mathrm{C}
\end{aligned}
$$

m Wide Input Dynamic Range
鹵 Self Biasing Clock Input
固 Clock Inhibit Input for Direct Gating
－Capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} 0$ to 10 V Input voltage inhibit input V_{EE} to V_{CC} Input voltage CP input 2.5 V p－p Output current 20 mA Operating junction temperature $+150^{\circ} \mathrm{C}$
Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Fig． 1 Pin connections

Fig． 2 Logic diagram and timing

Fig． 3 Test circuit

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Supply voltage	$6.8 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Clock input	AC coupled, self-biasing
Clock inhibit input	ECL III compatible
Output	ECL II compatible
$\mathrm{T}_{\text {amb }}$ ' B^{\prime} grade	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (see note 1)
Supply voltage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (see note 1)
Clock input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OV} \mathrm{V}_{\text {EE }}=-6.8 \mathrm{~V}$
Cloak)	

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. i/p frequericy SP8675	1.0			GHz	400 mV to $1.2 \mathrm{~V} \mathrm{p-p}$
SP8676	1.1			GHz	600 mV to $1.2 \mathrm{~V} \mathrm{p}-\mathrm{p}$
SP8677				GHz	600 mV to $1.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$
Min i/p frequency			200	MHz	Sine wave input 400 mV p-p
			150	MHz	Sine wave input 600 mV p-p
Min slew rate for square					Sine wave input 600mV p-p
wave input			200	V / μ sec	
Clock i/p impedance		400		Ω	At low frequency
Inhibit input reference					
level		-1.3		V	At $25^{\circ} \mathrm{C}$ compatible with ECL III throughout the temperature range
Inhibit input pulldown resistor (internal)		6		$k \Omega$	
Output pulldown resistor (internal)		3		$k \Omega$	
Power supply drain current		70	95	mA	at $25^{\circ} \mathrm{C}$

NOTES

1. The SP8677M is tested at $\mathrm{T}_{\text {case }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The SP8677M requires a suitable heatsink to be connected during operation.

Fig. 4 SP8675 to ECL1OK interface

Fig. 5 Heat sink for ' M ' grade devices

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8685 A, B\&M
 UHF PROGRAMMABLE DIVIDER $500 \mathrm{MHz} \div 10 / 11$

The SP8685 A, B \& M are high speed programmable $-10 / 11$ counters operating at an input frequency of up to 500 MHz over the temperature ranges $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A^{\prime} ' grade), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B ' grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{P E}$ inputs. The counter will divide by 10 when either input is in the high state, and by 11 when both inputs are in the low state. These inputs are compatible with standard ECL 10 K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10 K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-ten prescaler the inverse output (o / p) should be connected to a PE input.

Clock Pulse	O_{1}	O_{2}	O_{3}	\mathbf{O}_{4}
1	L	H	H	H
2	L	L	H	H
3	L	L	L	H
4	H	L	L	H
5	H	H	L	H
6	L	H	H	L
7	L	L	H	L
8	L	L	L	L
9	H	L	L	L
10	H	H	L	L
11	L H	H	H	H-7

$\overline{\mathbf{P E}}_{1}$	$\mathbf{P E}_{2}$	Div Ratio
L	L	11
H	L	10
L	H	10
H	H	10

Table 2 Truth table for control inputs

Fig. 1 Pin connections

Fig. 2 Logic diagram SP8685

FEATURES

- Full temperature range operation:
'A' grade $-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$
' B ' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' grade $-40{ }^{\circ} \mathrm{C}$ to +850 C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10 K - Compatible

Low Propagation Delay
True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	0 V to +8 V
Input voltage, PE inputs	$O V$ to V_{CC}
Input voltage, CP input	2 V peak-to-peak
Output current	20 mA
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SP8685

ELECTRICAL CHARACTERISTICS

$\overline{P E}$ inputs - ECL 10 K compatible
Outputs - ECL II compatible
Test conditions \{unless otherwise stated)
Tamb
' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B^{\prime} g grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M^{\prime} grade $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltages: $V_{C C}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

$$
V_{E E}=0 V
$$

Clock input voltage: 400 mV to 800 mV (p-p)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max i/p frequency	500			MHz	$V_{\text {cc }}=+5.2 \mathrm{~V}$
Min i/p frequency			40		Sinewave Input
Min. slow rate for square wave input			100	$\mathrm{V} / \mu \mathrm{s}$	
Propogation delay					
		4		ns	
$\overline{\mathrm{PE}}$ input reference level		+3.9		V	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Power supply drain current $\overline{\mathrm{PE}}$ input pulldown		45	60	mA	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Resistors		4.3		K Ω	
Clock i/p impedance (i/p to i/p ref low frequency)		400		Ω	

Fig. 3 Test circuit

APPLICATION NOTES

Fig. 4 SP8685 output - ECL 10 K i/p and ECLII for ECL 10K o/ps unloaded) - ECL 10 K i/p

Fig. 5 TTL o/p - SP8685 $\overline{P E}$ i/p; SL8685 o/p - TTL i/p.
132

ITotal delay from SP8685 clock i/p to Schottky gate o/p = 15ns, typ.)

At an input frequency of 500 MHz the control loop delay time (SP8685 o/p to PE i/p) is approximately 16 ns . This will be a severe problem if TTL is used in the control loop.

Fig. 6 Divide-by-20/22. Control loop delay time approximately

Fig. 7 Divide-by-20/21. Control loop delay time approximately 30ns using SP1034.

SP8000 SERIES

SP8690 A, B \& M $200 \mathrm{MH} \div 10 / \mathrm{n}$

AC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8690 A, B \& M are divider circuits that can be logically programmed to divide by either 10 or 11.
The device is available over three temperature ranges : ' A ' grade is -55 C to +125 C and the ' B ' grade is 0 C to +70 C and the ' M ' grade is -40 C to +85 C .

The clock inputs can be either single or differentially driven and must be AC-coupled to the signal source. If single driven then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present; to prevent this, a $68 \mathrm{k} \Omega$ resistor should be connected from pin 1 or 16 to 0 V . This will reduce the sensitivity of the device by approximately 100 mV p-p.

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs which are ECL III and ECL 10K compatible throughout the temperature range. The device will divide by ten when either input is high and by eleven when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS, together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10K as shown in Fig. 4.

The device may be used as a fixed $\div 10$ by connecting $\overline{\mathrm{Q} 4}$ to one $\overline{\mathrm{PE}}$ input.
If the $0 \rightarrow 1$ transition of Q4 (or the $1 \rightarrow 0$ tramsition of $\overline{\mathrm{Q4}}$) is used to clock the next stage then this will give the maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

Fig. 1 Pin connections

FEATURES

- Full Temperature Range Operation

$$
{ }^{\prime} \mathrm{A}^{\prime} \text { Grade }-55^{\circ} \mathrm{C} \text { to }-125^{\circ} \mathrm{C}
$$

$$
B^{\prime} \text { Grade } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
\text { ' } \mathrm{M}^{\prime} \text { Grade }-40^{\circ} \mathrm{C} \text { to } \div 85^{\circ} \mathrm{C}
$$

- Toggle Frequency in Excess of 200 MHz
- Power Dissipation 70mW Typical
- ECL Compatibility on All Inputs
- Capacitively Coupled Clock Input for Synthesiser and Counter Applications
- True and Inverse Outputs Available with ECL Compatibility
- Output Available for Driving TTL or CMOS

Division ratio					
I/P	11	10	10	10	
$\overline{\text { PE1 }}$	L	H	L	H	
$\overline{\text { PE } 2}$	L	L	H	H	

Count sequence			
a_{1}	O_{2}	O_{3}	a_{4}
L	H	H	H
L	L	H	H
L	L	L	H
H	L	L	H
H	H	L	H
L	H	H	L
L	L	H	L
L	L	L	L
H	L	L	L
H	H	L	L
H	H	H	H

Extra state

SP8690/5

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

```
Tamb
    ' A ' grade \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
    ' B ' grade \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
    ' M ' grade \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
    \(\mathrm{VCC}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}\)
    \(V E E=0 V\)
    Clock I/P voltage 400 mV to 800 mV peak to peak
    Pin 16 (decoupled to OV)
```

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. toggle frequency	200			MHz	
Min. freq. with sine wave clock input		15		MHz	
Min. slew rate of square wave					
I/P for correct operation PE input levels		40		$\mathrm{V} / \mu \mathrm{s}$	
Vinh	+4.1		$+4.5$	V	$V \mathrm{Cc}=+5 \mathrm{~V}$
VINL	0.0		+3.5	V	Tamb $=+25^{\circ} \mathrm{C}$ (note 1)
Q4 \& $\mathbf{~ Q 4}$ output voltage levels					Tamb $=+25^{\circ} \mathrm{C}$ (note 2)
VOH	4.15			V	lout (external) $=0 \mathrm{~mA}$
Vol			$+3.5$	V	(There is internal circuitry equivalent to a $3.8 \mathrm{k} \Omega$ pulldown resistor on each output)
TTL/CMOS output voltage levels					
Vol			$+0.4$	V	Sink current 3.2mA on
VOH	see note 3				TTL output
Input pulldown resistors between input pins $2 \& 3$ and-ve rail		10		k Ω	
Power supply drain current		14		mA	$V c c=+5 V$; Tamb $=25^{\circ} \mathrm{C}$
Impedance of clock I/P		1.6		$\mathrm{k} \Omega$	in $=0 \mathrm{~Hz}$
Clock to TTL output delay (O/P - ve going)		22		ns	8 mA sink current
Clock to TTL output delay		22		ns	8mA sink current
($0 / \mathrm{P}$-ve going)		8		ns	TTL output
Clock to ECL output delay		6		ns	TIL output
Set up time		2		ns	See note 4
Release time		4		ns	See note 5

NOTES

1. The $\overline{P E}$ reference voltage level is compatible with ECL II and ECL 10 k over the specified temperature range.
2. The O_{4} and $\overline{\mathrm{O}_{4}}$ output levels are compatible with ECL II and ECL 10 k over the specified temperature range.
3. The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed +12 V .
4. Set up time is defined as the minimum time that can elapse between a $\mathrm{L}-\mathrm{H}$ transition of a control input and the next $\mathrm{L}-\mathrm{H}$ clock pulse transition to ensure that the $\div 10$ mode is forced by that clock pulse.
5. Release time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the $\div 11$ mode is forced by that clock pulse.

Fig. 3 TTL/CMOS interface
Fig. 4 ECL 10 K output interface

Fig. 5 Test circuit for dynamic measurements

ABSOLUTE MAXIMUM RATINGS

Supply voltagelVcc-VEE| V8 Input voltage Vin d.c.

Output current lout ($\mathrm{O}_{4} \& \overline{\mathrm{Q}_{4}}$)
路 supply voltage in use

Maximumjunction ($150^{\circ} \mathrm{C}$
Maximum junction temperature $150^{\circ} \mathrm{C}$
Storage temperature range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8695 A B \& M $200 \mathrm{MHz} \div 10 / \mathrm{m}$

DC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8695 A, B \& M are divider circuits that can be logically programmed to divide by either 10 or 11.

The device is available over two temperature ranges, ' A ' grade is -55 C to 125 C , the ' B ' grade is 0 C to
70 C and ' M ' grade is -40 C to ; 85 C .
The clock inputs are ECL II, III \& 10K compatible throughout the temperature range (see note 1).

The division ratio is controlled by two $\overline{P E}$ inputs which are ECL III and ECL 10 K compatible throughout the temperature range. The device will divide by ten when either input is high and by eleven when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS, together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10 K as shown in Fig. 4.
The device may be used as a fixed : 10 by connecting $\overline{\mathrm{Q} 4}$ to one $\overline{\mathrm{PE}}$ input.

If the $0 \rightarrow 1$ transition of Q4 (or the $1 \rightarrow 0$ transition of Q4) is used to clock the next stage then this will give the maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

Fig. 1 Pin connections

FEATURES

- Full Temperature Range Operation
' A ' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Toggle Frequency in Excess of 200 MHz
- Power Dissipation 80 mW Typ.
- ECL Compatibility on All Inputs
- Excellent Low Frequency Operation
- True and Inverse Outputs Available with ECL Compatibility.
- Output Available for Driving TTL or CMOS

Division ratio				
I/P	11	10	10	10
$\overline{\text { PE } 1}$	L	H	L	H
$\overline{\text { PE2 }}$	L	L	H	H

Count sequence			
$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{O}_{\mathbf{4}}$
L	H	H	H
L	L	H	H
L	L	L	H
H	L	L	H
H	H	L	H
L	H	H	L
L	L	H	L
L	L	L	L
H	L	L	L
H	H	L	L
H	H	H	H

Extra state

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):
Tamb
' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B^{\prime} grade 0 C to $+70^{\circ} \mathrm{C}$
' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage
$\mathrm{VCC}=+5 \mathrm{~V}=0.25 \mathrm{~V}$
$V E E=O V$

NOTES

1. This reference level of 3.8 V will enable the clock inputs to be driven from $\mathrm{ECL} I \mathrm{II}$, III \& 10 K when their outputs are sinking 3 mA . The input reference voltage is compatible with ECL II, III and 10 K over the specified temperature range.
2. The $P E$ reference voltage level is compatible with ECL II and 10 k over the specified temperature range.
3. The O : and $\overline{\mathrm{O} 4}$ output levels are compatible with ECL II and ECL 10 k over the specified temperature range.
4. The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed 12 V .
5. Set up time is defined as the minimum time that can elapse between a $\mathrm{L}-\mathrm{H}$ transition of a control input and the next $\mathrm{L}-\mathrm{H}$ clock pulse transition to ensure that the $\div 10$ mode is forced by that clock pulse.
6. Release time is defined as the minimum time that can elapse between a $\mathrm{L}-\mathrm{H}$ transition of a control input and the next $\mathrm{L}-\mathrm{H}$ clock pulse transition to ensure that the $\div 11$ mode is forced by that clock pulse.
*High frequency limits only.

Fig. 3 TTL/CMOS interface

Fig. 4 ECL 10K output interface

ABSOLUTE MAXIMUM RATINGS
 Supply voltage Vcc-Vee Input voltage Vin d.c.
 Output current lout ($\mathrm{O}_{4} \& \mathrm{O}_{4}$)
 Maximum junction temperature Storage temperature range
 V8
 Not greater than the supply voltage in use
 10 mA 150 C
 -55 C to 150 C

Fig. 5 Test circuit for dynamic measurements

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP 8720 A, B \& M

UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 3 / 4$

The SP8720 A, B \& M are high speed programmable $\div 3 / 4$ counters operating at an input frequency of up to 300 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 3 when either input is in the high state, and by 4 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10 K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-three prescaler the inverse output ($\overline{\mathrm{Q} 2}$) should be connected to a $\overline{\mathrm{PE}}$ input.

FEATURES

w Full temperature range operation:
' A ' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
${ }^{\prime} \mathrm{M}$ ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Self Biasing CP Input

E Wide Input Dynamic Range

- Control Inputs ECL 10K - Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage | VCC $-V_{E E} \mid O V$ to $+8 V$

Input voltage, $\overline{\mathrm{PE}}$ inputs
Input voltage, CP input
Output current
Operating junction temperature
Storage temperature

0 V to Vcc
2 V peak-to-peak 20 mA
$+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Fig. 1 Pin connections (top view)

Fig. 2 Logic diagram SP8720

Table 1 Count sequence

$\overline{\mathbf{P E}}_{1}$	$\overline{\mathbf{P E}} \mathbf{2}$	Div Ratio.
L	L	4
H	L	3
L	H	3
H	H	3

Table 2 Truth table for control inputs

ELECTRICAL CHARACTERISTICS

$\overline{\mathrm{PE}}$ inputs - ECL 10 K compatible
Outputs - ECL II compatible
Test conditions (unless otherwise stated)
Tamb ' A ' Grade: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' Grade: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' Grade : $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltages: $\mathrm{Vcc}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

$$
V_{E E}=0 V
$$

Clock input voltage: 400 mV to 800 mV ($p-\mathrm{p}$)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. i/p frequency	300			MHz	$\mathrm{Vcc}=+5.2 \mathrm{~V}$
Min.i/p frequency			40		Sinewave input
Min. slew rate for square wave input			100	$\mathrm{V} / \mathrm{\mu s}$	
Propagation delay (clock i / p to device o / p)		4		ns	
PE input reference level		+ 3.9		V	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Power supply drain current		40	55	mA	$V_{c c}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
PE input pull down resistors		4.3		k Ω	
Clock i/p impedance				k	
(i/p to i/p ref. low frequency)		400		Ω	

Fig. 3 Test circuit

APPLICATION NOTES

When operating the SP8720 in a synthesiser loop at 300 MHz , the delay time through the programmable divider controlling the SP8720 is approximately 5.5 ns , and will require ECL.

The simple passive interface from the output of the SP8720 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the $\overline{P E}$ pins, and the outpyt of the SP8720 into TTL, is shown in Fig. 5.

Fig. 4

Fig. 5

Fig. 6 Divide by $6 / 8$ Control loop delay time approximately 20 ns at $300 \mathrm{MHz} / / P$ frequency

PACKAGE DETAILS

Dimensions are shown thus: mm(in)

SP8000 SERIES
 HIGH-SPEED DIVIDERS

SP 8725 A, B \& M

UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 3 / 4$

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the averall synthesiser performance.

The SP8725 series are UHF integrated circuits that can be logically programmed to divide by either 3 or 4 with input frequencies up to 300 MHz . The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range: the clock inputs and programming inputs areECL10K-compatible while the two complementary outputs are ECLII-compatible to reduce power consumption in the output stage. ECL 10 K output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 3 when either PE input is in the high state and by 4 when both inputs are in the low state. Both the PE inputs and the clock inputs have nominal $4.3 \mathrm{k} \Omega$ pulldown resistors to $V_{E E}$ (negative rail).

FEATURES

(in Military and Industrial Variants

- Low Power Consumption
图 ECL Compatibility on All I/Ps and O/Ps
- Low Propagation Delay
- True and Inverse Outputs

QUICK REFERENCE DATA

- Temperature Ranges:
' A ' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
国 Supply Voltag $3 \mathrm{VCC}-\mathrm{VEE} \mid 5.2 \mathrm{~V}$
- Power Consumption 250 mW Typ.
- Propagation Delay 3ns Typ.

DC16 DG16
NOTE: UNUSED PINS (EXCEPT 8 AND 9) MAY BE CONNECTED TO VEE: THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS. PINS 8 AND 9 SHOULD BE LEFT OPEN-CIRCUIT WHEN NOT IN USE. PIN 11 IS INTERNALLY CONNECTED AND MUST ALWAYS BE LEFT OPEN-CIRCUIT.

Fig. 1 Pin connections (top)

Fig. 2 Logic diagram (positive logic)

[^5]
ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :
Tamb: ' A ' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B^{\prime} Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
'M' Grade $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply coltage (see note 1): $\mathrm{Vcc}=0 \mathrm{~V}$

$$
V_{E E}=-5.2 V
$$

Static Characteristics

Charactistic	Value			Units	Conditions
	Min	Typ.	Max.		
Clock and $\overline{\mathrm{PE}}$ input voltage levels		4.3			
Vinh	-1.10		-0.81	v	Tamb $=+25^{\circ} \mathrm{C}$,
VINL	-1.85		-1.50		see note
Input pulldown resistance, between pins 1, 2, 3 and 16 and VeE^{2} (pin 12)	-0.85		-1.50	k Ω	
Output voltage levels					
Vor				v	Tamb $=+25^{\circ} \mathrm{C}$,
					see note 3. ${ }_{\text {lout }}($ external $)=0 \mathrm{~mA}$
					(There is an internal
					circuit equivalent to
					each output)
Power supply drain current		45	60	mA	

NOTES

1. The devices are specified for operation with the power supplies of $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$. which are the normal ECL
supply rails. They will also operate satisfactorily with $T \mathrm{~L}$ rails of $\mathrm{VCC}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$.
2. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
3. The output voltage levels have the same temperature coefficients as ECL II output levels.

Dynamic Characteristics

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock input voltage levels					
Vinh	-1.10		-0.90	V	Tamb $=+25^{\circ} \mathrm{C}$,
Vine	-1.70		-1.50	V	see note 4
Max. toggle frequency	300			MHz	
Min. frequency with					
sinewave clock input			10	MHz	
Min. slew rate of square wave					
input for correct operation down to OMHz			20	$\mathrm{V} / \mathrm{\mu s}$	
Propagation delay					
(clock input to device output)		3		ns	
Set-up time		1.5		ns	See note 5
Release time		1.5		ns	See note 6

NOTES

4. The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10 K . and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $\mathrm{L} \rightarrow \mathrm{H}$ transition of a control input and the next $\mathrm{L} \rightarrow \mathrm{H}$ clock pulse transition to ensure that the $\div 3$ mode is forced by that clock pulse (see Fig.3).
6. Release time is defined as the minimum time that can elapse between a $H \rightarrow L$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div \mathbf{4}$ mode is forced by that clock pulse (see Fig. 4.)

OPERATING NOTES

The SP8725 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10 K throughout the temperature range. However, it is often desirable to capacitivelycouple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

The $\div 3 / 4$ requires ECL control logic at the maximum input frequency, but can be controlled by a TTL fully programmable counter at a reduced input clock frequency. When used the outputs and inputs must be interfaced to TTL. The input TTL to ECL interface is
accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_{2} and Q_{2} outputs. The output interface will operate satisfactorily over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ at frequencies in excess of 35 MHz . It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns . At an input frequency of 200 MHz this would only leave about 5 ns for the fully programmable counter to control the $\div 3 / 4$. The loop delay can be increased by extending the $\div 3 / 4$ function to, say, $\div 12 / 13$ or $\div 24 / 25$.

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram

Clock Pulse	\mathbf{Q}_{1}	\mathbf{Q}_{2}
1	L	H
2	L	L
3	$\frac{\mathrm{H}}{\mathrm{H}}$	
4		

Fig. 5 Test circuit for dynamic measurements

$\overline{\mathbf{P E}_{1}}$	$\overline{\mathbf{P E}_{2}}$	Div Ratio.
L	L	4
H	L	3
L	H	3
H	H	3

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the $\mathrm{L} \rightarrow \mathrm{H}$ transition from O_{2} or the $\mathrm{H} \rightarrow \mathrm{L}$ transition from O_{2} is used to clock the stage controlling the $\div 3 / 4$ circuit. The loop delay is 3 clock periods minus the internal delays of the $\div 3 / 4$ circuit.

The SP8725 device O/Ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can also be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10K inputs.

Fig 6. Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source

Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8725 device and TTL operating from the same supply rails)

Fig. 8 ECL // to ECL //I interface.

PACKAGE DETAILS

Dimensions are shown thus: mm(in)

SP 8000 SERIES

SP8735B $\div 8$ AT 600MHz WITH BINARY OUTPUTS SP8736B $\div 8$ AT 500MHz WITH BINARY OUTPUTS

The SP8735B and SP8736B are divide-by-eight circuits with binary outputs for operation from DC up to specified input frequencies of 600 MHz and 500 MHz respectively over a guaranteed temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
These devices, optimised for counter applications in systems using both ECL and TTL, are intended to be operated between OV and -5.2 V power rails and to interface with TTL operating between 0 V and +5 V . The binary outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECLcompatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10 K compatible input. The TTL-compatible reset forces the 0000 state regardless of the state of the other inputs.

FEATURES

Direct Gating Capability at up to 600 MHz

- TTL Compatible Binary Outputs
- TTL and ECL Compatible Carry Outputs
- Power Consumption Less Than 450 mW
- Wide Dynamic Input Range

APPLICATIONS

- Counters
- Timers
- Synthesisers

QUICK REFERENCE DATA

- Power Supplies: $\mathrm{V}_{\mathrm{cc}} \mathrm{OV}$

$$
V_{\text {ee }}-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}
$$

- Range of Clock Input Amplitude : 400-800 $m \vee p-p$
- Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Frequency Range with Sinusoidal I/P:40600 MHz (SP8735)
- Frequency Range with Square Wave I/P: DC to 600 MHz (SP8735)

Fig. 1 Pin connections (viewed from top)

Fig. 2 SP8735/6 logic diagram

Fig. 3 ECL /I to ECL 1OK interface

Fig. 4 TTL output circuit diagram

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

```
Test Conditions (unless otherwise stated):
    Tamb }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
    Power Supplies Vcc OV
                        VEE -5.2V }\pm0.25
```

Characteristic	Value			Units	Conditions		
	Min.	Typ.	Max.				
Clock input (pin 14) Max. input frequency							
SP8735B	600			MHz	Input voltage 400-800mV p-p		
SP8736B	500			MHz			
Min. input frequency with sinusoidal 1/P							
sinusoidal I/P			40	MHz			
correct operation down to DC			100	$\mathrm{V} / \mathrm{\mu s}$			
Clock inhibit input (pin 16)							
High level (inhibit)	-0.960			V	Tamb $=+25^{\circ} \mathrm{C}$ (see note 1)		
Low level			-1.650	V			
Edge speed for correct operation at max. clock $1 / P$ frequency			2.5	ns	10\% to 90\%		
Reset input (pin 3)							
High level (reset)	See note				ee note 2		
Low level			+0.4	V			
Reset ON time	100			ns			
TTL outputs A \& B (pins 2 \& 7)							
Output high level Output low level	$+2.4$		+0.4	V	$10 \mathrm{k} \Omega$ resistor and 3 TTL gate from O / P to 5 V rail (see note 3)		
TTL carry output (pin 11)							
Output high level	+2.4			V	$5 k \Omega$ resistor and 3 TTL gates from O / P to +5 V rail		
Output low level			+0.4	V			
ECL carry output (pin 9)							
Output high level	-0.975			V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		
Output low level			-1.375	V	$\begin{aligned} & \text { External current }=0 \mathrm{~mA} \text { (See } \\ & \text { note 4) } \end{aligned}$		
Power supply drain current		70	90	mA	Vee --5.2V		

NOTES

1. The clock inhibit input levels are compatible with the ECL III and ECL 10 K levels throughout the temperature ranges specified.
2. For a high state, the reset input requires a more positive input level than the specified worst case TTL VOH of +2.4 V . Resetting should be done by connecting a $1.8 \mathrm{k} \Omega$ resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series devices.
3. Ihese outputs are current sources which can be readily made TTL compatible voitages by connecting them to +5 V via $10 \mathrm{k} \Omega$ iesistors (see Fig. 4).
4. The ECL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

Fig. 5 Typical operating diagram

Fig. 6 Output waveforms

OPERATING NOTES

The devices are intended to be used with TTL and ECL in a counting system - the ECL and the decade counter being connected between voltage rails of 0 V and -5.2 V and the TTL between voltage rails of $O \mathrm{~V}$ and +5 V . Provided that this is done ECL and TTL compatibility is achieved. (See Figs. 4 and 5)

The clock is normally capacitively coupled to the signal source: a 1000 pF UHF capacitor should be adequate. For low frequency operation, the 1000 pF capacitor should be connected in parallel with a higher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor - preferably a chip type, but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than the specified 400 to 800 mV p - p. However, if the decoupling capacitor is not of a UHF type, or it is connected to an earth point that has a significant impedance between the capacitor and the V_{cc} connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.
Under certain conditions, the absence of an input
signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a 30Ω resistor between the clock input and the positive supply and a 620Ω resistor between clock and pin 1. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason the input slew rates should be greater than 100V/ $\mu \mathrm{s}$. It should also be noted that a positive-going transition on either the clock input or the clock inhibit will clock the device, provided that the other input is in the low state.
The binary outputs give TTL-compatible outputs (fan out $=1$) when a $10 \mathrm{k} \Omega$ resistor is connected from the output to the -5 V rail. In this configuration the outputs will be very slow compared with the clocking rate of the counter and so the state on the TTL outputs can only be determined when the clock has stopped or is inhibited.
The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.
A typical application is shown in Fig. 7.

Fig. $7600 \mathrm{MHz} \div 32$ with reset and inhibit

SP8735/6

SP 8740 A, B \& M

AC COUPLED UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 5 / 6$

The SP8740 A, B \& M are high speed programmable $\div 5 / 6$ counters operating at an input frequency of up to 300 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 5 when either input is in the high state, and by 6 when both inputs are in the low state. These inputs are compatible with standard ECL 10 K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatibie with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-five prescaler the inverse output (o / p) should be connected to a PE input.

Clock Pulse	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
1	L	H	H
2	L	L	H
3	L	L	L
4	H	L	L
5	H	H	L
6	H	H	-H

Table 1 Count sequence

$\overline{\mathbf{P E}}_{1}$	$\overline{\mathbf{P E}}_{2}$	Div Ratio
L	L	6
H	L	5
L	H	5
H	H	5

Table 2 Truth table for control inputs

DC16 DG16
NOTE: UNUSED PINS (EXCEPT 8, 9 and 11) MAY BE CONNECTED TO VEE: THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS.

Fig. 1 Pin connections

Fig. 2 Logic diagram SP8740

FEATURES

Full Temperature Range Operation
${ }^{\prime} A$ ' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ' M ' Grade $-40^{\circ} \mathrm{C}$ to $\div 85^{\circ} \mathrm{C}$

- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10 K - Compatible

Low Propagation Delay
True and Inverse Outputs Available

SP8740

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$
Input voltage, PE inputs
Input voltage, CP input
Output current
Operating junction temperature
Storage temperature

0 V to +8 V
$O V$ to $V_{C C}$
2V peak-to-peak
20 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\overline{P E}$ inputs - ECL 10 K compatible
Outputs - ECL II compatible
Test conditions (unless otherwise stated)

' B ' grade $\quad 0 \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltages: $V_{C C}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
$V_{E E}=O V$
Clock input voltage: 400 mV to 800 mV (p-p)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} \& \multicolumn{3}{|c|}{Value} \& \multirow[b]{2}{*}{Units} \& \multirow[b]{2}{*}{Conditions} \\
\hline \& Min. \& Typ. \& Max. \& \& \\
\hline \begin{tabular}{l}
Max i/p frequency \\
Min i/p frequency \\
Min. slew rate for square wave input \\
Propagation delay \\
(clock i/p to device o/p) \\
\(\overline{P E}\) input reference level \\
Power supply drain current \\
\(\overline{P E}\) input pulldown \\
Resistors \\
Clock i/pimpedance \\
(i/p to i/p ref low frequency)
\end{tabular} \& 300 \& \begin{tabular}{l}
4 \(+3.9\) \\
45 \\
4.3 \\
400
\end{tabular} \& 40
100

60 \& \begin{tabular}{l}
MHz

$\mathrm{V} / \mu \mathrm{s}$

ns

V

mA

$K \Omega$

Ω

 \&

$$
V_{c c}=+5.2 \mathrm{~V}
$$

Sinewave Input

$$
\begin{aligned}
& V_{c c}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

Fig. 3 Test circuit

APPLICATION NOTES

When operating the SP8740 in a synthesiser loop at 300 MHz , the delay time through the programmable divider controlling the SP8740 is approximately 13 ns . As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

Fig. 4

The simple passive interface from the output of the SP8740 into ECL 10 K logic is defined in Fig. 4.

If TTL is required, the input interface to the $\overline{P E}$ pins, and the output of the SP8740 into TTL, is shown in Fig. 5.

Fig. 5

Fig. 6 Divide by 10/12. Control loop delay time approximately 33 ns

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP 8741 A, B \& M

AC COUPLED UHF PROGRAMMABLE DIVIDERS $300 \mathrm{MHz} \div 6 / 7$

The SP8741 A; B \& M are high speed programmable $\div 6 / 7$ counters operating at an input frequency of up to 300 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 6 when either input is in the high state, and by 7 'when both inputs are in the low state. These inputs are compatible with standard ECL 10 K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-six prescaler the inverse output (o / p) should be connected to a PE input.

Clock Pulse	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
1	L	H	H
2	L	L	H
3	H	L	H
4	L	H	L
5	L	L	L
6	H	L	L
7	H	H	H

Table 1 Count sequence

$\overline{\mathrm{PE}}_{1}$	$\stackrel{\mathrm{PE}}{2}^{2}$	Div Ratio
L	L	7
H	L	6
L	H	6
H	H	6

NOTE : UNUSED PINS (EXCEPT 8, 9 and 11) MAY BE CONNECTED TO VEE: THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS. DC16 DG16

Fig. 1 Pin connections

Fig. 2 Logic diagram
FEATURES
: Full Temperature Range Operation
'A' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K - Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left\|V_{C C}-V_{E E}\right\|$	$O V$ to +8 V
Input voltage, PE inputs	0 V to V_{CC}
Input voltage, CP input	2 V peak-to-peak
Output current	20 mA
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\overline{P E}$ inputs - ECL 10 K compatible
Outputs - ECL II compatible
Test conditions (unless otherwise stated)

Tamb:	\quad ' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	B° grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	M^{\prime} grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply voltages: $\mathrm{V}_{\mathrm{CC}}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

$$
V_{E E}=O V
$$

Clock input voltage: 400 mV to 800 mV (p-p)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max i/p frequency	300			MHz	$V_{c c}=+5.2 \mathrm{~V}$
Min i/p frequency			40		Sinewave Input
Min. slew rate for square wave input			100	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay (clock i / p to device o / p)		4		ns	
$\overline{\mathrm{PE}}$ input reference level		+3.9		\checkmark	$\mathrm{V}_{\text {cc }}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Power supply drain current $\overline{P E}$ input pulldown		45	60	mA	$\mathrm{V}_{\text {cc }}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Resistors		4.3		K Ω	
Clock i/pimpedance (i/p to i/p ref low frequency)		400		Ω	

Fig. 3 Test circuit

APPLICATION NOTES

Fig. 4
Fig. 5

Fig. 6 Divide-by-12/14. Control loop delay time approximately
$40 n$. 40ns.

Fig. 7 Divide-by-12/13. Control loop delay time approximately 30ns using SP1034.

When operating the SP8741 in a synthesiser loop at 300 MHz the delay time through the programmable divider controlling the SP8741 is approximately 16 ns . As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8741 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the $\overline{P E}$ pins, and the output of the SP8741 into TTL, is shown in Fig. 5.

SP 8000 SERIES
 HIGH SPEED DIVIDERS

SP 8743 B \& M

AC COUPLED UHF PROGRAMMABLE DIVIDER $500 \mathrm{MHz} \div 8 / 9$

The SP8743M and B are high speed, programmable $\div 8 / 9$ counters operating at an input frequency of up to 500 MHz over the temperature ranges $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to ground.

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 8 when either input is in the high state and by 9 when both inputs are in the low state. These inputs are compatible with standard ECL 10 K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard EGL II outputs. They may be used to drive ECL 10 K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-eight prescaler the inverse output (o / p) should be connected to a $\overline{\mathrm{PE}}$ input.

ABSOLUTE MAXIMUM RATINGS

> Power supply voltage, $I V_{C C}-V_{E E} I$ Input voltage $P E$ inputs Input voltage $C P$ input Output current Operating junction temperature Storage temperature

0 V to +8 V
$O V$ to $V_{C C}$
2 V p-p
20 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Fig. 1 Pin connections

FEATURES

[Operating Temperature Range:
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(\right.$ ' $^{\prime} \mathrm{B}^{\prime}$ grade
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M^{\prime} grade

- Self Biasing Clock Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay

田 True and Inverse Outputs Available

Fig. 2 SP8743 logic diagram

Count Sequence				
Q_{1}	O_{2}	O_{3}	O_{4}	
L	H	H	H	
L	L	H	H	
H	L	L	L	
H	H	L	L	
L	H	H	L	
L	L	H	L	
L-	L-	L	H	- Extra state
H	L	L	H	
H	H	L	H	

Division Ratio					
	9	8	8	8	
$\overline{\mathrm{PE}}$	L	L	H	H	
$\overline{\text { PE2 }}$	L	H	L	H	

ELECTRICAL CHARACTERISTICS

PE inputs - ECL 10 K compatible

Outputs - ECL II compatible
Test Conditions (unless otherwise stated):
TAMB $0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$ ('B' grade) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M^{\prime} grade)
Supply Voltage $\mathrm{V}_{\mathrm{CC}}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$
Clock Input Voltage 400 mV to 800 mV p-p

Characteristics	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. i/p frequency	500			MHz	$\mathrm{V}_{\mathrm{CC}}=+5.2 \mathrm{~V}$
Min. i/p frequency			40		Sinewave Input
Min. Slew rate for square wave input			100	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay (clock i/p to device o/p)		4		ns	
$\overline{\mathrm{PE}}$ input reference level		+3.9		V	$\mathrm{V}_{\text {CC }}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Power Supply drain current		45	60	mA	$\mathrm{V}_{\mathrm{CC}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
$\overline{P E}$ input pulldown resistors		4.3		$\mathrm{k} \Omega$	
Clock i/p impedance (i/p to i/p ref. low freq.)		400		Ω	

Fig. 3 Test circuit

APPLICATIONS INFORMATION

Interfaces

Fig. 4
When operating the SP8743 in a synthesiser loop at 500 MHz , the delay time through the programmable divider controlling the SP8743 is approximately 12 ns As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8743 into ECL 10 K logic is defined in Fig. 4.

If TTL is required, the input interface to the $\overline{P E}$ pins, and the output of the SP8743 into TTL, is shown in Fig. 5.

Sub-Systems

Fig. 5

Fig. 6 SP8743 O/P to TTL I/P. Total delay from SP8743 clock I/P to Schottky gate $O / P=15 n \mathrm{~s}$ typical.

* ECL IDk

Fig. 7 A $\div 32 / 33$ application. Control loop delay time approx. 56ns.

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP 8745 A, B \& M

DCCOUPLED UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 5 / 6$

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8745 series are UHF integrated circuits that can be logically programmed to divide by either 5 or 6 with input frequencies up to $300 \mathrm{MHz} . \mathrm{MHz}$. The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout

FEATURES

Military and Industrial Variants.
300 MHz Toggle Frequency
Low Power Consumption
ECL Compatibility on All I/Ps \& O/Ps
Low Propagation Delay
True and Inverse Outputs

QUICK REFERENCE DATA

- Temperature Ranges:
' A' Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' ${ }^{\prime}$ ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
' M ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage

$$
\left|V_{C C}-V_{E E}\right| 5.2 V
$$

- Power Consumption 250 mW Typ.

Propagation Delay 3ns Typ.

ABSOLUTE MAXIMUM RATINGS

Supply voltage $\left\|V_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right\|$	8 V
Input voltage $\mathrm{V}_{\text {in }}$ (d.c.)	Not greater than the
	supply voltage in use.
Output current I out	20 mA
Max. junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

the temperature range: the clock inputs and programming inputs are ECL III-compatible while the two complementary outputs are ECL II-compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 5 when either $\overline{P E}$ input is in the high state and by 6 when both inputs are in the low state. Both the $\overline{P E}$ inputs and the clock inputs have nominal $4.3 \mathrm{k} \Omega$ pulldown resistors to V_{EE} (negative rail)

NOTE: UNUSED PINS (EXCEPT 8.9 and 11) MAY BE CONNECTED TO VEE: THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS.

Fig. 1 Pin connections (top)

Fig. 2 Logic diagram (positive logic)

Clock Pulse	O_{1}	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{3}
1	L	H	H
2	L	L	H
3	L	L	L
4	H	L	L
5	H	H	L
6	H	H	H

Table 1 Count sequence

$\overline{\mathbf{P E}_{1}}$	$\overline{\mathbf{P E}_{2}}$	Div Ratio
L	L	6
H	L	5
L	H	5
H	H	5

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_{3} or the $H \rightarrow L$ transition from $\overline{\mathrm{O}}_{3}$ is used to clock the stage controlling the $\div 5 / 6$. The loop delay is 5 clock periods minus the internal delays of the $\div 5 / 6$ circuit.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}$: (A grade) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(B grade) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(M grade) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply voltage (see note 1): $\mathrm{V}_{\mathrm{CC}} \quad \mathrm{OV}$

$$
V_{E E} \quad-5.2 \mathrm{~V}
$$

Static Characteristics

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock and $\overline{\mathrm{PE}}$ input voltage levels					
$V_{\text {INH }}$	-1.10		-0.81	V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$,
VINL	-1.85		-1.50	V	see Note 2
Input pulldown resistance, between pins $1,2,3$, and 16 and $V_{E E}$ (pin 12)		4.3		$\mathrm{K} \Omega$	
Output voltage levels					
V_{OH}	-0.85		-1.50	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C},$ see Note 3.
					$\mathrm{I}_{\text {out }}$ (external) $=0 \mathrm{~mA}$ (There is an internal circuit equivalent to a $2 \mathrm{k} \Omega$ pulldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

1. The devices are specified for operation with the power supplies of $V_{C C}=O V$ and $V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$, which are the normal $E C L$ supply rails. They will also operate satisfactorily with $T T L$ rails of $V_{C C}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $V_{E E}=0 \mathrm{~V}$.
2. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
3. The output voltage levels have the same temperature coefficients as ECL H output levels.

Dynamic Characteristics

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
. Clock input voltage levels						
$\mathrm{V}_{\text {INH }}$	All	-1.10		-0.90	V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$,
$\mathrm{V}_{\text {INL }}$	All	-1.70		-1.50	V	see Note 4
Max. toggle frequency	All	300			MHz	
Min. frequency with sinewave clock input	All			10	MHz	
Min. slew rate of square wave input for correct operation down to OMHz	All			20	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay (clock input to device output)	All		3		ns	
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

NOTES

4. The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL IIt and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and $800 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ about that reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $L \rightarrow H$ transition of a control input and the next $\mathrm{L} \rightarrow \mathrm{H}$ clock pulse transition to ensure that the $\div 5$) mode is forced by that clock pulse (see Fig. 3).
6. Release time is defined as the minimum time that can elapse between a $H \rightarrow L$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 6$ mode is forced by that clock pulse (see Fig. 4).

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram

Fig. 5 Test circuit for dynamic measurements

SP8745

OPERATING NOTES

The SP8745 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10 K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig.6, or alternatively an internally biased SP8742.

Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The $\div 5 / 6$ can be controlled by a TTL fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_{3} and $\overline{\mathrm{Q}_{3}}$ outputs. The output interface will operate satisfactorily over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ at frequencies in excess of 35 MHz . It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns . At an input frequency of 300 MHz this would only leave about 6.5 ns for the fully-programmable counter to control the $\div 5 / 6$. The loop delay can be increased by extending the $\div 5 / 6$ function to, say, $\div 20 / 21$ or $\div 40 / 41$ (see Application Notes).

The SP8745 device O/Ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL. 10K. The interface circuit of Fig. 8 can also be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10K inputs.

Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8745 device and TTL operating from the same supply rails)

Fig. 8 ECL I/ to ECL I/I interface

SP 8746 A, B \& M

DC COUPLED UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 6 / 7$

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8746 series are UHF integrated circuits that can be logically programmed to divide by either 6 or 7, . with input frequencies up to 300 MHz . The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range: the clock inputs and programming inputs are ECL III compatible while the two complementary outputs are ECL II-compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 6 when either $\overline{\mathrm{PE}}$ input is in the high state and by 7 when both inputs are in the low state. Both the $\overline{\mathrm{PE}}$ inputs and the clock inputs have nominal 4.3 k Ω pulldown resistors to V_{EE} (negative rail).

Fig. 2 Logic diagram (positive logic)

ABSOLUTE MAXIMUM RATINGS

[^6]

Fig. 1 Pin connections (top)

FEATURES

- Military and Industrial Variants.
- 300 MHz Toggle Frequency.
- Low Power Consumption
- ECL Compatibility on All I/Ps \& O/Ps
- Low Propagation Delay
- True and Inverse Outputs

QUICK REFERENCE DATA

- Temperature Ranges:
' A ' Grade $-55^{\circ} \mathrm{C}$ to $-125^{\circ} \mathrm{C}$
'B' Grade $0^{\circ} \mathrm{C}$ to $\because-70^{\circ} \mathrm{C}$ ' M ' Grade $-40^{\circ} \mathrm{C}$ to $-85^{\circ} \mathrm{C}$
Supply Voltage
$\left|V_{C C}-V_{E E}\right| 5.2 V$
- Power Consumption 250 mW Typ.
- Propagation Delay 3ns Typ.

Clock Pulse	O_{2}	O_{3}	O_{4}
1	L	H	H
2	L	L	H
3	H	L	H
4	L	H	L
5	L	L	L
6	H	L	\llcorner
7	H^{-}	H^{-}	H]

Table 1 Count sequence

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Tamb: ' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' grade $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage (see note 1): $\mathrm{V}_{\mathrm{CC}} \quad \mathrm{OV}$

$$
V_{E E}-5.2 \mathrm{~V}
$$

$\overline{\mathbf{P E}_{1}}$	$\overline{\mathbf{P E}_{2}}$	Div Ratio
L	L	7
H	L	6
L	H	6
H	H	6

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_{3} or the $H \rightarrow L$ transition from $\overline{\mathrm{Q}}_{3}$ is used to clock the stage controlling the $\div 6 / 7$. The loop delay is 6 clock periods minus the internal delays of the $\div 6 / 7$ circuit.

Static Characteristics

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock and $\overline{\mathrm{PE}}$ input voltage levels					
$V_{\text {INH }}$	-1.10		-0.81	V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$,
VINL	-1.85		-1.50	V	see Note 2
Input pulldown resistance, between pins $1,2,3$, and 16 and $V_{E E}$ (pin 12)		4.3		$K \Omega$	
Output voltage levels					
V_{OH}	-0.85			V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C},$
V_{OL}			-1.50	V	see Note 3. $\mathrm{I}_{\text {out }}$ (external) $=0 \mathrm{~mA}$ (There is an internal circuit equivalent to a $2 \mathrm{k} \Omega$ puldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

1. The devices are specified for operation with the power supplies of $V_{C C}=O V$ and $V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$, which are the normal $E C L$ supply rails. They will also operate satisfactorily with $T T L$ rails of $V_{C C}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $V_{E E}=0 \mathrm{~V}$.
2. The input reference voltage has the same temperature coefficient as ECL III and ECL 1OK.
3. The output voltage levels have the same temperature coefficients as ECL II output levels.

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram

Dynamic Characteristics

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Clock input voltage levels						
$\mathrm{V}_{\text {INH }}$	All	-1.10		-0.90..	V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$,
$V_{\text {INL }}$	All	-1.70		-1.50'	V	see Note 4
Max. toggle frequency	All	300			MHz	
					MHz	
					MHz	
					MHz	
Min. frequency with sinewave clock input				10	MHz	
Min. slew rate of square wave input for correct operation down to 0 MHz				20	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay (clock input to device output)			3		ns	
Set-up time			1.5		ns	See note 5
Release time			1.5		ns	See note 6

NOTES
4. The devices are dynamically tested using the circuit shown in Fig.5. The bias chain has the same temperature coefficient as ECL III and ECL 10 K , and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and $800 \mathrm{mV} p-\mathrm{p}$ about that reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $L \rightarrow H$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 6$ mode is forced by that clock pulse (see Fig. 3).
6. Release time is defined as the minimum time that can elapse between a $H \rightarrow L$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 7$ mode is forced by that clock pulse (see Fig. 4).

Fig. 5 Test circuit for dynamic measurements

SP8746

OPERATING NOTES

The SP8746 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control imputs are compatible with ECL III and ECL 10 K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6. Alternatively an SP8741 can be substituted.

Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The $\div 6 / 7$ can be controlled by a TTL fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_{3} and $\overline{\mathrm{Q}_{3}}$ outputs. The output interface will operate satisfactorily over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ at frequencies in excess of 35 MHz . It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns . At an input frequency of 300 MHz this would only leave about 10 ns for the fully programmable counter to control the $\div 6 / 7$. The loop delay can be increased by extending the $\div 6 / 7$ function to, say, $\div 24 / 25$ or $48 / 49$ (see Application Notes)

The SP8746 device O/Ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10 K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can also be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL. 10K inputs.

Fig. 8 ECL // to ECL /// interface

Fig. 7 TTL to ECL. and ECL/TTL interfaces (for SP8746 devices and TTL operating from the same supply rails)

SP8000 SERIES
HIGH SPEED DIVIDERS

SP8748A, B \& M

UHF PROGRAMMABLE DIVIDER $300 \mathrm{MHz} \div 8 / 9$

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8748 series are UHF integrated circuits that can be logically programmed to divide by either 8 or 9 with input frequencies up to 300 MHz . The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range: the clock inputs and programming inputs are ECL III-compatible while the two complementary outputs are ECL-II compatible to reduce power consumption in the output stage. ECL III output compatability can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two $\overline{P E}$ inputs. The counter will divide by 8 when either PE input is in the high state and by 9 when both inputs are in the low state. Both the PE inputs and the clock inputs have nominal $4.3 \mathrm{k} \Omega$ pulldown resistors to V_{EE} (negative rail).

FEATURES

Military and Industrial Variants

- 300 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps \& O/Ps
- Low Propagation Delay
[True and Inverse Outputs

Fig. 1 Pin connections (top)

QUICK REFERENCE DATA

暑 Temperature Ranges:
${ }^{\prime} A^{\prime}$ Grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage
$V_{C C}-V_{E E} 5.2 V$

- Power Consumption 250 mW Typ..
[Propagation Delay 3ns Typ.

Fig. 2 Logic diagram (positive logic)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) :

$\mathrm{T}_{\mathrm{amb}}$: ' A ' Variant $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B ' Variant $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
${ }^{\prime} \mathrm{M}$ ' Variant $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage (see note 1): VCC 0 V
$V_{\text {EE }}-5.2 \mathrm{~V}$

Static Characteristics

NOTES

1. The devices are specified for operation with the power supplies of $\mathrm{VCC}=O \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EL}}=-5.2 \mathrm{~V}!0.25 \mathrm{~V}$, which are the normal ECL supply rails. They will also operate satisfactorily with TTL rails of $\mathrm{VCC}=+5 \mathrm{~V}$. 0.25 V and $\mathrm{VEE}=0 \mathrm{~V}$.
2. The input reference voltage has the same temperature coefficient as ECL III and ECL 10 K .
3. The output voltage levels have the same temperature coefficients as ECL II output levels.

Dynamic Characteristics

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock input voltage levels					
Vinh	-1.10		-1.10	V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$,
VINL	-1.70		-1.50	V	see Note 4
Max. toggle frequency	300			MHz	
Min. frequency with					
sinewave clock input			10	MHz	
Min. slew rate of square wave					
input for correct operation					
down to 0 MHz			20	$\mathrm{V} / \mu \mathrm{s}$	
Propagation delay					
(clock input to device output)		3		ns	
Set-up time		1.5		ns	See note 5
Release time		1.5		ns	See note 6

NOTES
4. The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $L \rightarrow H$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 8$ mode is forced by that clock pulse (see Fig. 3).
6. Release time is defined as the minimum time that can elapse between a $H \rightarrow$ L transition of a control input and the next $t \rightarrow H$ clock pulse transition to ensure that the $\div 9$ mode is forced by that clock pulse (see Fig. 4).

Count Sequence			
Q_{1}	Q_{2}	Q_{3}	O_{4}
L	H	H	H
L	L	H	H
H	L	L	L
H	H	L	L
L	H	H	L
L	L	H	\llcorner
L	L	L	H
H	L		H
H	H	L	H

Table 1 Count sequence

OPERATING NOTES

The SP8748 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non'inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10 K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

The $\div 8 / 9$ can be controlled by a TTL fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7 gives the true output ; the inverse can be obtained by interchanging the O_{3} and O_{3} outputs.

PE $_{\mathbf{1}}$	PE $_{2}$	Div Ratio
L	L	9
H	L	8
L	H	8
H	H	8

Table 2 Truth table for control inputs
The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_{3} or the $H \rightarrow L$ transition from $\overline{\mathrm{Q}_{3}}$ is used to clock the stage controlling the $\div 8 / 9$. The loop delay is 8 clock periods minus the internal delays of the $\div 8 / 9$ circuit.

The output interface will operate satisfactorily over the full military temperature range ($-55^{\circ} \mathrm{C}$ to $--125^{\circ} \mathrm{C}$) at frequencies in excess of 35 MHz . It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns. At an input frequency of 300 MHz this would only leave about 16 ns for the fully programmable counter to control the $\div 8 / 9$. The loop delay can be increased by extending the $\div 8 / 9$ function to, say, \div $16 / 17$ or $32 / 33$.

The SP8748 device O/Ps are compatible with ECL Il levels when there is no external load. They can be made compatible with ECL III and ECL 10 K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can also be used to increase the noise immunity when interfacing from ECL III and ECL 10 K outputs at low current levels to ECL III and ECL 10 K inputs.

Fig. 4 Re/ease timing diagram

Fig. 3 Set-up timing diagram

Fig. 5 Test circuit for dynamic measurements

SP8748

Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source

Fig. 7 TTL to ECL and ECL/TTL interfaces (SP874 devices and TTL operating from the same supply rails)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $I \mathrm{~V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}} \mathrm{I}$ Input voltage $\mathrm{V}_{\text {in }}$ (DC)

Output current $I_{\text {out }}$
Max. junction temperature
Storage temperature range

8 V
Not greater than the supply voltage in use. 20 mA $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

SP 8750 B,M 1.0 GHz

SP 8751B,M 1.1 GHz SP 8752 B 1.2 GHz

UHF $\div 64$ PRESCALERS

The SP8750 range of devices are ECL divide-by-sixtyfours which will operate at frequencies up to 1.2 GHz .

The device has a typical power dissipation of 470 mW at the nominal supply voltage of +6.8 V .

FEATURES

\author{

- Input Ports for VHF and UHF
 - Self-Biasing Clock Inputs
 . Variable Input Hysteries Capability for Wide Band Operation
 T TTL/MOS Compatible Band Change Input
 - Push Pull TTL. O/P
}

ABSOLUTE MAXIMUM RATINGS

| Power supply voltage $V_{C C}-V_{E E}$ | $O \mathrm{~V}$ to +10 V |
| :--- | ---: | ---: |
| Input voltage, clock inputs | $2.5 \mathrm{~V} p \cdot \mathrm{p}$ |
| Band change input | $+7.2 \mathrm{tc}-0.5 \mathrm{~V}$ or -10 mA |
| Output current | +30 mA to -30 mA |
| Operating junction temperature | $+150^{\circ} \mathrm{C}$ |
| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Fig. 1 Pin connections

Fig. 2 Typical application

If the UHF input only is used and the device is required to operate with a sinewave input below 100 MHv , then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5 V . At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than $200 \mathrm{~V} / \mu \mathrm{s}$.

The divider is clocked on low to high transitions of either clock input.

ELECTRICAL CHARACTERISTICS

Supply voltage: $6.8 \mathrm{~V} \pm 0.35 \mathrm{~V}$
Supply current: 68 mA typ., 90 mA max.
Temperature range: ' B ' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, ' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Clock inputs: AC coupled, self-biasing via 400Ω
Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current
Test conditions (unless otherwise stated):
Supply voltage: $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.45 \mathrm{~V}$ to +7.15 V
Clock input voltage: 400 mV to 1.0 Vp -p
$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' grade), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' grade)

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
UHF clock input						
Max. input frequency	SP8752	1.2			GHz	600 mV p-p input
	SP8751	1.1			GHz	600 mV p-p input
	SP8750	1.0			GHz	400 mV p-p input
Min. input frequency	All			100	MHz	600 mV p-p sinewave input
Min. slew rate for square wave input	All			200	$v / \mu \mathrm{s}$	
VHF clock input						
Max. input frequency	All		1.0		GHz	
Min. input frequency			30	50	MHz	600 mV p-p sinewave input
Band change input						
High level	All	2.5			v	
Low level				0.4	V	
Low level input current	All			0.8	mA	at 0.4 V
Max. clamp current	All	-3			mA	at approx. -0.7 V
Output						
High level	All	2.5	3.5	4.5	V	
Low level				0.4	V	5 mA current sink
Supply current	All		68	90	mA	$\mathrm{V}_{\mathrm{CC}}=6.8 \mathrm{~V}$

Fig. 3 AC test circuit

Fig. 4 Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.
For 50 mV hysteresis $\mathrm{R} 1=36 \mathrm{k} \Omega \mathrm{R} 2=\infty$
For 100 mV hysteresis R1 $=18 \mathrm{k} \Omega$ R2 $=18 \mathrm{k} \Omega$

Fig. 5 Wideband operation

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8770B SP8771B SP8772B 1.0 GHz 1.1 GHz 1.2 GHz
 UHF $\div 256$ PRESCALERS

The SP8770/1/2 are ECL divide by 256 prescalers which will operate at frequencies up to 1.2 GHz .

The device has a typical power dissipation of 500 mW at the nominal supply voltage of +6.8 V .

FEATURES

Self-Biasing Clock Input
國 Variable Input Hysteries Capability for Wide Band Operation
國 Push Pull TTL O/P

OPERATING NOTES

The input is terminated by a nominal 400Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz .

If the device is required to operate with a sinewave input below 100 MHz , then the required hysteresis may be applied externally as shown in Fig. 4.

Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 256 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/ Schottky inputs at a logic zero level of 0.5 V . At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than $200 \mathrm{~V} / \mu \mathrm{s}$.

Fig. 1 Pin Connections

Fig. 2 AC test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|\mathrm{Vcc}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{EE}}\right|$
Input voltage, clock input
Output current
Operating junction temperature
Storage temperature
$O V$ to +10 V
$2.5 \mathrm{~V} p-\mathrm{p}$
+30 mA to -30 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Supply voltage : $6.8 \mathrm{~V} \pm 0.35 \mathrm{~V}$
Supply current : 72mA typ., 95 mA max.
Temperature range : $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Clock input: AC coupled, self biasing via 400Ω
Test conditions (unless otherwise stated):
Supply voltage: $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$,
$V_{c c}=+6.45 \mathrm{~V}$ to +7.15 V
Clock input voltage : 400 mV to 1.2 V p-p
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. input frequency SP8770	1.0			GHz	400mV p-. input
SP8771	1.1			GHz	600 mV p-. input
SP8772	1.2			GHz	600 mV p-. input
Min input frequency			200	MHz	400 mV p-. sinewave input
			100	MHz	600 mV p-. sinewave input
			75	MHz	800 mV p-. sinewave input
Min. slew rate for square wave input			200	$\mathrm{V} / \mathrm{\mu s}$	
Output					
High level	2.5	3.5	4.5	V	
Low level			0.4	V	5mA current sink
Supply current		68	90	mA	$\mathrm{Vcc}=6.8 \mathrm{~V}$

Fig. 3 Application circuit
Fig. 4 Widehand operation

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP8760 B \& M

GENERAL PURPOSE SYNTHESISER CIRCUIT

The SP8760 is a multi-function device for use in phase-lock-loop systems. It contains a crystal oscillator maintaining circuit, followed by a divide-by-four stage ; a digital phase/frequency comparator: and a twomodulus divider programmable to divide by 15 or 16 .

It may be used with a prescaler to phase-lock single frequency transmitters or receivers in the HF, VHF or UHF bands.

The addition of an MOS/CMOS programmable plus fixed divider will generate a complete frequency synthesiser. The maximum frequency requirement of the control device is only 1 MHz , enabling complex functions to be performed using LSI technologies. With suitable prescalers, the controlled frequency source may extend into the IGHz region.

The SP8760 is available in two temperature grades: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (' B^{\prime} grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (M^{\prime} grade).

DC14 DG14

Fig. 1 Pin connections

Fig. 2 SP8760 block diagram

Fig. 3 Phase/frequency comparator waveforms

ELECTRICAL CHARACTERISTICS

Supply voltage
Supply current
$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
45 mA typ

Test conditions (unless otherwise stated):
$\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V
$V_{\mathrm{Ee}}=0 \mathrm{~V}$
TAMB $0 C$ to $-70 C$ ('B'grade)
-40 C to -85 C ('M'grade)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Power Supply Current Crystal Osc. $: 4$		45	65	mA	
Crystal series capacitor		28		pF	- at 4 MHz
Crystal series capacitor		20		pF	at 10 MHz
Temperature Stability			0.2	ppm/ ${ }^{\text {C }}$	at 4 MHz , excluding crystal temperature coefficient
Supply voltage stability		-1		$\mathrm{ppm} / \mathrm{V}$	at 4 MHz
External oscillator drive required		± 1		mA	See Fig. 8.
Divide-by-four output, external current sink capability	5			mA	at 0.5 V
Phase/Frequency Comparator Input current		250	350	uA	at $\operatorname{Vin}=2.4 \mathrm{~V}$
Output ' C ' current sink capability	6			mA	at 0.5 V
Output 'D' current source capability	6				at ($\mathrm{V}_{\text {cc }}-1.15 \mathrm{~V}$)
Zero phase pulse width			30	ns	
Input to Output delay		40		ns	
Divide by 16/15					
Control input current		250	350	$\mu \mathrm{A}$	at $\mathrm{Vin}=2.4 \mathrm{~V}$
Clock input current		-1.0	-1.6	mA	at $\mathrm{Vin}==0.4 \mathrm{~V}$
Output external current sink capability	5			mA	at 0.5 V
Maximum clock frequency	16	28		MHz	Divide by 16
	12	18		MHz	Divide by 15
Clock to output delay		35		ns	Output 1 - 0

ABSOLUTE MAXIMUM RATINGS

Power súpply Vcc - Vee OV to +10 V
Output current 20 mA
Operating junction temperature $+150^{\circ} \mathrm{C}$
Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Fig. 4 Phase comp./divider control inputs

OPERATING NOTES

The crystal oscillator is an emitter coupled circuit with an internal roll off capacitor to prevent oscillation at overtone frequencies. The crystal is connected in series with a capacitor between pins 4 and 5 . It may be used with series resonant crystals at frequencies up to 10 MHz . The stability of the crystal oscillator is better than ± 5 p.p.m. at 4 MHz over the temp range 0 C to $70^{\circ} \mathrm{C}$ (excluding the temperature coefficient of the crystal). If a higher stability is required the SL680 crystal oscillator maintaining circuit should be used. This may be interfaced to the SP8760 as shown in Fig. 8. The divide by four has a free collector output with an internal $2.5 \mathrm{~K} \Omega$ resistor to Vcc.

The phase frequency comparator is an infinite pullin range circuit which gives zero phase shift lock. The circuit triggers on the $1-0$ edge of each input and gives an output which is proportional to the phase difference between the two edges (see Fig. 3). When the input ' A ' edge precedes the input ' B ' edge output ' C ' will pulse to a low level while output ' D ' will remain at a permanent low level. When the input ' B ' edge precedes the input ' A ' edge, output ' D ' will pulse to a high level while output ' C ' will remain at a permanent high level. The two outputs may be used to drive a charge pump and filler as shown in Figs. 5 and 6. The output of the filter may be used to drive directly the varactor line
of a voltage controlled oscillator. For optimum 'noise' performance the output pulses from the phase detector must tend to zero when 'in lock'. The leakage on the filter output must therefore be kept to a minimum. If the varactor line draws a significant current it should be buffered using an emitter follower arrangement as shown in Fig. 7.

The phase/frequency comparator inputs are of the current source type as shown in Fig. 4. These may be driven by standard TTL or CMOS. Output ' C ' is a free collector with an internal $10 \mathrm{~K} \Omega$ resistor to Vcc. Output ' D ' is an emitter follower with an internal $10 \mathrm{~K} \Omega$ resistor to Vee.

The two-modulus prescaler may be controlled to divide by 16 or 15 using the control input. With the control input high the circuit will divide by 16 . When a counter is used to control the two-modulus it should be clocked on the $1-0$ edge of the $16 / 15$ output. If the twomodulus is used only as a fixed divide-by-16 the control input - should be tied to Vcc. The prescaler clock input is a current sink input with a standard TTL fan in of one. It may be driven by standard or low power Schottky TTL. The control input is identical to the phase/frequency comparator inputs as shown in Fig. 4. The two modulus output is a free collector with an internal $1.5 \mathrm{~K} \Omega$ resistor to Vcc.

Fig. 5 Low voltage charge pump and filter
Divider clock input

Fig. 7 Emitter follower buffer

Fig. 6 High voltage charge pump and filter

Fig. 8 SL680 to SP8760 interface

SP8790 A, B \& M

\div EXTENDER FOR 2-MODULUS COUNTERS

The SP8790 is a divide-by-four counter designed for use with 2 -modulus counters. It increases the minimum division ratio of the 2 -modulus counter while retaining the same difference in division ratios. Thus a divide-by10 or 11 with the SP8790 becomes a divide-by- 40 or 41 , a divide by 5 or 6 becomes a divide by 20 or 21 .
The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2 -modulus counter and SP8790 into the region where CMOS or low power TTL can control the divider. The power-saving advantages are obvious.
The device interfaces easily to the SP8690 range of divide by 10 or 11 s . The control inputs are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.
The SP8790 is available in three temperature grades: $0{ }^{\circ} \mathrm{C}$ to $+70 \mathrm{C}(\mathrm{SP} 8790 \mathrm{~B}),-40 \mathrm{C}$ to : 85 C (SP8790M) and -55 C to $+125^{\prime} \mathrm{C}$ (SP8790A).

The SP8790 requires supplies of OV and +5 V 10.25 V .

Fig. 1 Pin connections

FEATURES

Ultra-Low Power: 40 mW
图 Full Military Temperature Range
困 $1 / \mathrm{P}$ and O/P Interface Direct to CMOS/TTL

Fig. 2 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage I Vcc-VEEI
DC input voltage
AC input voltage
Output bias voltage
Control input bias voltage
Operating junction temperature
Storage temp. range

8 V
Not greater than supply
$2.5 \mathrm{Vp}-\mathrm{p}$
12 V
12 V
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

SP8790

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Tamb: -55 C to -125 C (A grade)
-40 C to $-85^{\circ} \mathrm{C}$ (M grade)
0 C to -70 C (B grade)
VCC $=-5 \mathrm{~V}:: 5 \%$
$\mathrm{V} \mathrm{EE}=0 \mathrm{~V}$
Clock input voltage with double complementary drive to CLOCK and $\overline{C L O C K}=300 \mathrm{mV}$ to 1 Vp -p.

NOTES

1. The maximum frequency of operation is in excess of 60 MHz when the SP8790 is used as a prescaler. The limitation on this maximum frequency is the saturating O/P stage. When the SP8790 is used as a controller its internal delays do not permit operation at frequencies in excess of 40 MHz .
2. The device will normally be driven from a 2 -modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
3. TTL devices require a pull-up resistor to ensure the required minimum of 3.5 V . Note that the device can interface from 10 V CMOS with no additional components.
4. VOH will be the supply voltage that the output pull-up resistor is connected to. This voltage should not exceed 12 V
5. The $10 \mathrm{k} \Omega$ pulldown is the value of the input pulldown of the SP8695 with which the SP8790 can be used.
6. The $4.3 \mathrm{k} \Omega$ pulldown is the value of the input pulldown of the SP8640 series SP8745 and SP8746 with which the SP8790 can be used.

Fig. 3 CMOS and TTL compatible control input

Fig. 4 SP8790 waveforms

OPERATING NOTES

The SP8790 extends the division ratio of 2 -modulus counters while retaining the same 2 -modulus resolution. A typical application to give a $\div 40 / 41$ function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present. This may be prevented by using one of the arrangements shown in Fig. 6.

Fig. 5 SP8790 with SP8695 connected to give a $\div 40 / 4$

Fig. 6 Methods of preventing self-oscillation

TRUTH TABLE	
Control Input	Div. Ratio With $\div \mathbf{1 0} / \mathbf{1 1}$
0	41
1	40

Max input frequency to combination $=200 \mathrm{MHz}$ (min.).
Power consumption of combination $=120 \mathrm{~mW}$ typ.
Time available to control the $\div 40 / 41=(40$ clock periods minus delays through the dividers) -340 ns ($\mathrm{f}_{\mathrm{in}}=100 \mathrm{MHz}$).

SP8790

SP 8794 A,B \& M $\div 8$ CONTROL CIRCUIT FOR 2 - MODULUS DIVIDERS

The SP8794 is a divide by eight counter designed for use with 2 -modulus counters. It incres.ses the minimum division ratio of the 2 -modulus counter while retaining the same difference in division ratios. Thus a divide by 10 or 11 with the SP8794 becomes a divide by 80 or 81 , a divide by 5 or 6 becomes a divide by 40 or 41 .

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2 -modulus counter and SP8794 into the region where CMOS or low power TTL can control the divider.

The device interfaces easily to the SP8000 range of 2 -modulus dividers. The control I/Ps are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8794 is available over three temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (SP8794B), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (SP8794M) and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (SP8794A).

The SP8794 requires supplies of 0 V and $+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Fig. 1 Pin connections.

FEATURES

(3 Ultra-Low Power: 40 mW

* Full Military Temperature Range
- Direct I/P \& O/P Interfacing to CMOS \& TTL
- Operates with $500 \mathrm{MHz} \div 10 / 11$

Fig. 2 Logic diagram.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right\|$	8 V	
NC input voltage	Not greater than supply	Frequency Synthesisers
AC input voltage	$2.5 \mathrm{Vp-p}$	
Output bias voltage	12 V	
Control input bias voltage	12 V	
Operating juntion temperature	$+150^{\circ} \mathrm{C}$	
Storage temp. range	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	

SP8794

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}$: ' A^{\prime} grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
'B' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{C C}=+5 V \pm 5 \%$
$\mathrm{V}_{\mathrm{EE}}=\mathrm{OV}$
Clock input voltage with double complementary drive
to CLOCK and $\overline{\text { CLOCK }}=300 \mathrm{mV}$ to 1 V p.p.

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Dynamic					
Toggle frequency	120			MHz	SP8794 as a prescaler (see note 1)
	40			MHz	SP8794 controlling a 2 -modulus divider (see note 1)
Min. toggle frequency with sinewave input			20	MHz	See note 2
Min. toggle frequency with square wave input	0			Hz	Slew rate $>50 \mathrm{~V} / \mu \mathrm{s}$
Clock to O/P delay ($0 / \mathrm{P}$-ve going)		18		ns	
Clock to O/P delay (O / P +ve going)		32		ns	
Control I/P to control O/P delay (O/P -ve going)		20		ns	$10 \mathrm{k} \Omega$ puldown on $0 / P$, see note 5
Control I/P to control O/P delay (O/P +ve going)		10		ns	$10 \mathrm{k} \Omega$ pulldown on $0 / P$, see note 5
Control I/P to control O/P delay (O/P -ve going)		12		ns	$4.3 \mathrm{k} \Omega$ pulldown on O / P, see note 6
Control I/P to control O/P delay ($\mathrm{O} / \mathrm{P}+\mathrm{ve}$ going)		9		ns	$4.3 \mathrm{k} \Omega$ pulldown on O / P, see note 6
Clock to control O/P delay (O / P-ve going)		30		ns	$10 \mathrm{k} \Omega$ pulldown on O / P, see note 5
Clock to control O/P delay (O / P +ve going)		16		ns	$10 \mathrm{k} \Omega$ pulldown on O/P, see note 5
Clock to control O/P delay (O / P-ve going)		21		ns	$4.3 \mathrm{k} \Omega$ pulddown on O / P, see note 6
Clock to control O/P delay ($\mathrm{O} / \mathrm{P}+\mathrm{ve}$ going)		16		ns	$4.3 \mathrm{k} \Omega$ pulldown on O / P, see note 6
Static					
Control I/P voltage level					
High state	3.5		10	V	See note 3
Low state	0		1.5	V	
Output voltage level					
$\mathrm{V}_{\text {OL }}$			0.4	V	Sink current $=6.0 \mathrm{~mA}$
V_{OH} (see note 4)			12	v	See note 4
Input impedance		1.6		$k \Omega$	$\mathrm{f}_{\mathrm{in}}=0 \mathrm{~Hz}$
I/P bias voltage (CLOCK \& CLOCK)					
Power supply drain current					

NOTES

1. The maximum frequency of operation is in excess of 120 MHz when the SP8794 is used as a prescaler. The limitation on its maximum operating frequency is the saturating output stage. When the SP8794 is used as a controller for a 2-modulus device its internal delays do not permit operation at frequencies above 40 MHz .
2. The device will normally be driven from a 2 -modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
3. TTL devices require a pull-up resistor to ensure the required minimum of 3.5 V . Note that the device can interface from 10 V CMOS with no additional components.
4. V_{OH} will be the supply voltage that the output pull-out resistor is connected to. This voltage should not exceed 12 V .
5. The $10 \mathrm{k} \Omega$ pulldown is the value of the input pulldown of the SP8695, with which the SP8794 can be used.
6. The $4.3 \mathrm{k} \Omega$ pulldown is the value of the input pulldown of all the SP 8640 series $\div 10 / 11$ devices, the SP 8740 \& $\mathrm{SP} 8745 \div 5 / 6$. the SP 8741 \& SP8746 $\div 6 / 7$ and the SP8743 $\div 8 / 9$, with which the SP8794 can be used.

Fig. 3 CMOS and TTL compatible control I/P.

Fig. 4 SP8794 waveforms

APPLICATION NOTES

The SP8794 extends the division ratio of 2 -modulus counters while retaining the same 2 -modulus resolution. A typical application to give a $\div 80 / 81$ function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present, This may be prevented by using one of the arrangements shown in Fig. 6.

Fig. 5 SP8794 with SP8695 connected to give a low power $\div 80 / 81$

TRUTH TABLE	
Control I/P	Div. Ratio with $\div 10 / 11$
0	81
1	80

Max input frequency to combination $=200 \mathrm{MHz}(\mathrm{min}$.$) .$
Power consumption of combination $=120 \mathrm{mWtyp}$.
「ime avaitable to control the $\div 80 / 81$
$=80$ clock periods minus delays through dividers
$\cong 740 \mathrm{~ns}\left(\mathrm{f}_{\mathrm{in}}=100 \mathrm{MHz}\right.$)

Fig. 6 Methods of preventing self-oscillation.

SP1000／1200 SERIES

ECL II

The PECL II series of monolithic integrated logic circuits are a direct second source of the Motorola MECL II series． The family has been designed as a non－saturating form of logic so as to eliminate transistor storage time as a speed limiting characteristic and permit high speed operation．

PECL II circuits feature fast propagation delay times with commensurate rise and fall times，simultaneous complementary outputs，and excellent noise immunity as a result of near constant power supply drain．

FEATURES

－Propagation typically 4 ns per logic decision．
－Excellent noise immunity characteristics
－Simultaneous OR／NOR outputs
－High fan－in and fan－out capabilities
（⿴囗十⿱夂口犬 Internally temperature compensated

FUNCTIONS AND CHARACTERISTICS＠$V_{C C}=0 V, V_{E E}=-5.2 V, T_{A}=+25^{\circ} \mathrm{C}$

Type		Function	DC output loading factor， each output	$\begin{gathered} \text { Propagation } \\ \text { delay } \\ \text { ns typ. } \\ \hline \end{gathered}$	Total power dissipation mW typ．
$\begin{aligned} & \mathbf{0}^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|c\|} \hline-55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$				
SP1001	SP1201	Single 6 I／P gate， 3 OR O／P with pulldowns 3 NOR O／P with pulldowns	25	4.0	115
SP1004	SP1204	Dual 4－I／P gate， 2 OR with pulldowns 2 NOR with pulldowns			95
SP 1007	SP1207	Triple 3－1／P gate， 3 NOR with puldowns		\dagger	110
SP1010	SP1210	Quad 2－1／P gate， 4 NOR with pulldowns		4.5	115
SP1013	SP1213	85 MHz a．c．coupled J－K flip－flop		6.0	125
SP1014	SP1214	Dual R－S flip－flop（＋ve clock）			140
SP1015	SP1215	Dual R－S flip－flop（－ve clock）			
SP1016	SP1216	Dual R－S flip．flop（single rail，＋ve clock）		\dagger	
SP1020	SP1220	Quad line receiver		4.0	115
SP1023	SP1223	Dual 4－1／P OR／NOR clock driver		2.0	250
SP1026	SP1226	Dual 3－41／P Transmission line and clock driver		2.0	140
SP1027	SP1227	120 MHz a．c．coupled J．K flip．flop		4.0	250
SP1030	SP1230	Quad exclusive OR gate		5.0	130
SP1031	SP1231	Quad exclusive NOR gate		5.0	130
SP1032＊	SP1232＊	100 MHz a．c．coupled Dual J－K flip－flop		4.5	180
SP1033	SP1233	Dual R－S flip－flop（single rail，－ve clock）		6.0	140
SP1034	SP1234	Type D flip－flop		4.0	185
SP1035	SP1235	Triple line receiver	\dagger	5.0	140
SP1039＊	SP1239＊	Quad level translator（PECL to saturated logic）	7 （DTL）	12	200
SP1048	SP1248	Quad 2－I／P NAND gate	25	5.0	130

[^7]ECL II

GENERAL PARAMETERS

Common Characteristics

Characteristic	SP1200						SP1000					
	-55°		$+25^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$	
	Min.	Max.										
Input current $l_{\text {in }}$				$100 \mu \mathrm{~A}$						$100 \mu \mathrm{~A}$		
Input leakage I_{R}				$0.2 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$				$0.2 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$
Output voltage ${ }^{2}$												
Logic '1' V_{OH})	-0.990	-0.825	-0.85	-0.70	-0.70	-0.53	-0.895	-0.74	-0.85	-0.70	-0.775	-0.615
Logic '0' $\left(\mathrm{V}_{\mathrm{OL}}\right)$	-1.89	-1.58	-1.8	-1.5	-1.72	-1.38	-1.83	-1.525	-1.8	-1.5	-1.76	-1.435

NOTES

1. The above char acteristics apply untess otherwise stated under individual product information
2. Outputs without pulldown resistors are tested with $1.5 k \Omega$ resistor to $V_{\text {et }}$ and $V_{\text {OH }}$ limits apply from no load to mal 10 lulf load $(-2.5 \mathrm{~mA})$.
3. General parameters only apply to basic gates and flip.ftops.

Test Conditions

Test Temp. C	Test Voltage/Current Values						
	$V_{1 L}(\mathrm{~V})$		$\mathrm{V}_{1 \mathrm{H}}(\mathrm{V})$		$\begin{aligned} & V_{(H)}(\max .) \\ & \end{aligned}$	Vee (V)	$\underset{(\mathrm{m} . \text { Ad.c. })}{\mathrm{I}_{\mathrm{L}}}$
	Min.	Max.	Min.	Max.			
-55	-5.2 to -1.405		-1.165 to -0.825			-5.2	-2.5
+25	\| to -1.325		-1.025 to --0.700				
+125		-1.205	-0.875 to -0.530				
0		-1.350	-1.070 to -0.740				
+25		-1.325	-1.025 to -0.700		$\begin{gathered} - \\ -0.700 \end{gathered}$		
+75		-1.260	-0.950 to -0.615		-		\dagger

SP1048/SP1248 OUAD 2-INPUT NAND GATE

SP1023/SP1223

DUAL 4-INPUT CLOCK DRIVER
(3)
(3)
(3)
 6 (25)
(3) 5

(3) 9
(3) 10
(3) 11

8 (25) 13 (25)
(3) 12

$$
\begin{aligned}
& 6=\overline{2+3+4+5} \\
& 1=2+3+4+5
\end{aligned}
$$

$\mathrm{tpd}_{\mathrm{pd}}=2.0 \mathrm{~ns}$
$P_{D}=250 \mathrm{~mW}$
N.M. $=\mathbf{1 5 0} \mathbf{m V}$

ECL II

SP1026/SP1226 DUAL 3-4-INPUT transmission line AND CLOCK DRIVER
(3)
(3) 5

(3) 6
(3) 8
(3) 9
(3) 10
 12 (25)
(3) 11

$$
\begin{aligned}
& 3=\overline{4+5+6} \\
& 2=4+5+6
\end{aligned}
$$

$t_{p d}=2.0 \mathrm{~ns}$
$P_{D}=140 \mathrm{~mW}$ N.M. $=150 \mathrm{mV}$

SP1039/SP1239 QUAD LEVEL TRANSLATOR

$\begin{array}{ll}(E C L & 1.5) \\ (E C L & 1.5)\end{array}$
(ECL 1.5) 5
(ECL 1.5)

7 (7TL)
(ECL 15) 1
(ECL 1.5)
(ECL 155) 13
(ECL 1.5) 14

$$
\begin{array}{ll}
2=3+4 & \begin{array}{l}
\text { Power supply } \\
\text { connections: }
\end{array} \\
\mathrm{t}_{\mathrm{pd}}=12 \mathrm{~ns} & \begin{array}{l}
\text { Pin } 1=+5.0 \mathrm{~V} \\
\mathrm{P}_{\mathrm{D}}=200 \mathrm{~mW}
\end{array} \\
\text { Pin } 8=-5.2 \mathrm{~V} \\
\text { Pin } 16=0 \mathrm{~V}
\end{array}
$$

The \bar{J} and \bar{K} inputs refer to logic levels whereas the $\overline{\mathrm{C}}_{\mathrm{D}}$ input refers to dynamic logic swings. The \bar{J} and \bar{K} inputs should be changed to logic ' 1 ' only while $\overline{\mathrm{C}}_{\mathrm{D}}$ is in the logic ' 1 ' state. ($\overline{\mathrm{C}}_{\mathrm{D}}$ maximum ' 1 ' level $=\mathrm{V}_{\mathrm{CC}}$ $-\mathbf{- 0 . 6 V}$). Clock $\overline{\mathrm{C}}_{\mathrm{D}}$ is obtained by tying one $\overline{\mathrm{J}}$ and one $\overline{\mathrm{K}}$ input together.

SP1013/SP 1213 AC-COUPLED J-K FLIP/FLOP (85 MHz TYP.)
$\phi=$ Don't care
R-S OPERATION

R	S	Q^{n+1}
0	1	1
1	0	0
0	0	Q^{n}
1	1	$N D$

ND = Not defined
$P_{D}=125 \mathrm{~mW}$

SP1014/SP1214
DUAL CLOCKED R-S FLIP/FLOP
(POSITIVE CLOCK)

SP1015/SP1215
DUAL CLOCKED R-S FLIP/FLOP (NEGATIVECLOCK)

SP1014/1214

C	R	S	Q^{n+1}
1	0	0	Q^{n}
1	0	1	1
1	1	0	0
1	1	1	$N O$
0	0	0	Q^{n}

$\phi=$ Don't care
SP1015/215

C	R	s	Q^{n+1}
0	0	0	Q^{n}
0	0	1	1
0	1	0	0
0	1	1	$N D$
1	0	0	Q^{n}

ND = Not defined

SP1027/SP1227

AC-COUPLED J-K FLIP/FLOP
(127 MHz TYP.)

$\overline{y y y y}$	CLOCKED J-K OPERATION		
\bar{J}	\bar{K}	\bar{C}_{D}	a^{n+1}
0	0		a^{n}
0	0		$\overline{\mathrm{Q}}^{n}$
0	1		1
1	0		0
1	1		a^{n}

$\theta=$ Don't care

R-S OPERATION		
R	S	Q^{n+1}
0	1	1
1	0	0
0	0	Q^{n}
1	1	$N D$

$N D=$ Not defined

The \bar{J} and \bar{K} inputs refer to logic levels whereas the $\overline{\mathrm{C}}_{\underline{D}}$ input refers to dynamic logic swings. The \bar{J} and $\overline{\mathrm{K}}$ inputs should be changed to logic ' 1 ' only while $\overline{\mathbf{C}}_{D}$ is in the logic ${ }^{* 1}$ ' state. $\mid \bar{C}_{D}$ maximum ' 1 ' level $=V_{C C}$ $-\mathbf{- 0 . 6 V}$). Clock $\overline{\mathrm{C}}_{\mathrm{D}}$ is obtained by tying one $\overline{\mathrm{J}}$ and one $\overline{\mathrm{K}}$ input together.
$t_{p d}=4.0 \mathrm{~ns}$
$P_{D}=250 \mathrm{~mW}$

SP1034/SP1234
 TYPE D FLIP/FLOP

(6)

$P_{D}=185 \mathrm{~mW}$ using external 600Ω pulldown resistors
$=240 \mathrm{~mW}$ using internal pulldown resistors.

Pin No.
R-S TRUTH TABLE

R	S	Q^{n+1}	$\overline{\mathrm{a}}^{n+1}$
4	5	2	3
0	0	Q^{n}	\bar{Q}^{n}
0	1	1	0
1	0	0	1
1	1	$N D$	ND

$N D=$ Not defined

CLOCKED TRUTH TABLE

Pin No.

D	C	Q^{n+1}	\bar{Q}^{n+1}
10	6 or 8	2^{n}	3
0	0	Q^{n}	\bar{Q}^{n}
1	0	Q^{n}	\bar{Q}^{n}
0	1^{*}	0	1
1	1^{*}	1	0

- A ' 1 ' or clock input is defined for this flip.flop as a change in level from low to high.
(1) 5

LOGIC DIAGRAMS

The logic diagrams describe the circuits of the PECL 11 series and permit quick selection of those circuits required to implement a particular logic system. The Logic equations and truth tables shown with the logic diagrams, together with typical propagation delay times $\left(\mathrm{t}_{\mathrm{pd}}\right)$. and typical power dissipation per package given in the characteristics table demonstrate series compatibility.

Package pin numbers are identified by numbers directly adjacent to the device terminals, whereas the numbers in parentheses indicate d.c. loading factors at each terminal. PECL II circuits contain internal bias networks, ensuring that the transition point is always in the centre of the transfer characteristic cur:cs over the temperature range.
$V_{C C}=\operatorname{pin} 14$ and $V_{E E}=\operatorname{pin} 7$ for all devices (14. lead D.I.L.) except SP1032/1232, and SP1039/1239 where $V_{C C}=$ pin 16 and $V_{E E}=$ pin 8 (16-lead D.I.L.)

Logic ' 1 ' $=-0.75 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{H}}\right)$
Logic ' 0 ' $=-1.60 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{L}}\right)$

CIRCUIT DESCRIPTION

The PECL II line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical PECL II circuit comprises a differential-amplifier input with internal bias reference and
with emitter-follower output to restore de levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

As shown in the schematic diagram above, it is recommended that -5.2 V be applied at V_{EE} with $\mathrm{V}_{\mathrm{CC}}=$ Gnd.

SYSTEM LOGIC SPECIFICATIONS

The nominal output logic swing of 0.85 V then varies from a low state of $V_{L}=-1.60 \mathrm{~V}$ to a high state of $\mathrm{V}_{\mathrm{H}}=$ -0.75 V with respect to ground.

If Positive logic is used when reference is made to.logical zeros or ones then

$$
\begin{aligned}
\mathrm{O}^{\prime} & =-1.60 \mathrm{~V}_{\text {typical }} \\
1 ' & =-0.75 \mathrm{~V}^{\text {ty }}
\end{aligned}
$$

Dynamic logic refers to a change of logic states. Dynamic ' 0 ' is a negative going voltage excursion and a dynamic ' 1 ' is a positive going voltage excursion.

CIRCUIT OPERATION

An internal bias of -1.175 V is applied to the 'bias
input' of the differential amplifier and the logic signals are applied to the 'signal input'. If a logical ' 0 ' is applied, the current through R_{E} is supplied by the internally biased transistor. A drop of 0.85 V occurs across $\mathrm{R}_{\mathrm{C} 2}$. The OR output then is -1.60 V , or one V_{BE} drop below 0.85 V . Since no current flows in the 'signal input' transistor, the NOR output is a $V_{B E}$ drop below ground, or -0.75 V . When a logical ' 1 ' level is applied to the 'signal input' the current through $R_{C_{2}}$ is switched to the 'signal input' transistor and a drop of 0.85 V occurs across R_{C}. The OR output then goes to -0.75 V and the NOR output goes to -1.60 V .
Note: Any unused input should be connected to V_{EE}.

BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from an internal regulated, temperature compensated bias network. The temperature characteristics of the bias network compensate for any variations in circuit operating point over the temperature range or supply voltage changes, and ensure that the threshold point is always in the centre of the transfer characteristic curves.

ABSOLUTE MAXIMUM RATINGS

Ratings above which device life may be impaired Power supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)\left(\mathrm{V}_{\mathrm{ee}}\right) \quad-10 \mathrm{~V}$ d.c. Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right) \quad\left(\mathrm{V}_{\text {in }}\right) \quad 0$ to $\mathrm{V}_{\text {ee }}$ Output source current $\quad\left(I_{0}\right) \quad 20 \mathrm{~mA}$ d.c. Storage temperature range ($\mathrm{T}_{\text {stg }}$.) $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Recommended Maximum ratings above which performance may be degraded Operating temperature range

SP $1000 \quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
SP $1200 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
A.C. fanout* (gates and flip-flops)

15
Minimum d.c. fanout is guaranteed at 25; an a.c. fanout of 15 is recommended for high-speed operation.

packages

package outlines

Dimensioned outline diagrams of the packages currently available for standard products are given on this and the following pages. Whilst every effort is made to ensure that the packages offered conform to these diagrams, certain changes may occur from time to time dependent on the supplies of piece parts. However, Plessey Semiconductors will attempt to ensure that such changes, should they occur, shall be minimal.

The code used to identify package outlines is that shown on the appropriate datasheet and on the following diagrams. The Pro-Electron code (see Ordering Information) is used - with the addition of numerals indicating the number of leads.
Note: Dimensions are shown thus: mm (inches)

8 LEAD TO-5
CM8

10 LEAD TO-5

CM10

14 LEAD DILMON

む̃Cī

16 LEAD DILMON

14 LEAD CERAMIC DIL

16 LEAD CERAMIC DIL

24 LEAD CERAMIC DIL

14 LEAD PLASTIC DIL

DP14

16 LEAD PLASTIC DIL

24 LEAD PLASTIC DIL

DP24

24 LEAD PLASTIC DIL WITH HEAT SINK STUD

DP24

ordering information

ordering information

U.K. ORDERS

Orders for quantities up to 99 received by Plessey Semiconductors at Swindon will be referred automatically to our U.K. distributors; quantities of 1000 and over must be ordered from Plessey Semiconductors direct, at the following address :

Plessey Semiconductors

Cheney Manor Swindon
Wilts. SN2 2QW
Tel : (0793) 36251
Telex: 449637

OVERSEAS ORDERS

Products contained in this Databook can be ordered from your listed Plessey Office. Agent or Distributor.

PLESSEY SEMICONDUCTORS IC TYPE NUMBERING

Plessey Semiconductors integrated circuits are allocated type numbers which must be used when ordering. The Pro-Electron code is used to identify package outlines.

CM - Multilead TO-5
DC - Dilmon
DG - Ceramic Dual In-Line
DP - Plastic Dual In-Line
EP - Power Stud
This package code is for reference purposes only and need only be used when ordering where a device is offered in more than one package style. The package code does not appear on the device itself.

Plessey
 Semiconductors world-wide

ALABAMA:	Huntsville	(205) 883-9260	REMCO
ARIZONA:	Phoenix	(602) 997.1042	ELTRON
	Phoenix	(602) 956.5300	The Thorson Company
CALIFORNIA:	Santa Barbara	(805) 964.8751	The Thorson Company
	Los Angeles	(213) 822-1187	RELCOM
	Mountain View	(415) 965-9180	Thresum Associates, Inc.
	San Diego	(714) 455-0055	Littlefield \& Smith Associates
COLORADO	Denver	(303) 759-0809	Thorson/Denver
CONNECTICUT:	Milford	(203) 878.3755	Wayland Engineering Sales
FLORIDA:	St. Petersburg	(813) 894.8240	Kirkwood Associates
ILLINOIS:	Elk Grove Village	(312) 439-9090	R-TECH
KANSAS:	Kansas City	(913) 649-4000	Engineering Services Company
MARYLAND:	Ellicott City	$\begin{aligned} & \text { (301) } 465-1272 \\ & \text { (301) } 953-2808 \end{aligned}$	Applied Engineering Consultants Applied Engineering Consultants
MASSACHUSETTS:	Wayland	(617) 655.6080	Wayland Engineering Sales
MICHIGAN:	Detroit	(313) 357-0355	Luebbe Sales Company
MINNESOTA:	Minneapolis	(612) 944-3034	Technical Associates, Inc.
MISSOURI:	St. Louis	(314) 997-1515	Engineering Services Company
NEW YORK:	Plainview	(516) 681-3155	Robert Smith Associates
	Springvalley	(914) 354-6067	Robert Smith Associates
	Skaneateles	(315) 685-5731	Robtron Inc.
NORTH CAROLINA:	Raleigh	(919) 872.3843	REMCO
OHIO:	Cincinnati	(513) 871-4211	Luebbe Sales Company
	Cleveland	(216) 333-0425	Luebbe Sales Company
	Dayton	(513) 294-0426	Luebbe Sales Company
ONTAR!	Isling	(412) 626-3805	MacKay Associates
PENNSYLVANIA:	Pittsburgh	(412) $468-4019$	Luebbe Sales Company
	Huntingdon Valley	(215) 947-5641	Dick Knowles Associates
TEXAS:	Fort Worth Houston	(817) 640.9101 (713) 772-1572	W. Pat Fralia Company, Inc. W. Pat Fralia Company, Inc.
VIRGINIA:	Arlington Woodbridge	$\begin{aligned} & \text { (703) } 524.6630 \\ & \text { (703) } 550-9429 \end{aligned}$	Applied Engineering Consultants Applied Engineering Consultants
WASHINGTON:	Olympia	(206) 866-2001	Bergford \& Associates

PLESSEY DISTRIBUTORS:

CALIFORNIA:	Los Angeles	(213) $559-5780$	JSH Eelctronics, Inc.
	Newport Beach	(714) $833-3070$	SEMICOMP Corporation
	San Diego	(714) $453-9005$	INTERMARK
	Sunnyvale	$(408) 736-2330$	SEMICOMP Corporation
ILLINOIS:	Chicago	$(312) 279-1000$	Semiconductor Specialists
INDIANA:	Indianapolis	$(317) 243-8271$	Semiconductor Specialists
MARYLAND:	Ellicott City	$(301) 465-1272$	Applied Engineering Consultants
MICHIGAN:	Detroit	$(313) 255-0300$	Semiconductor Specialists
MINNESOTA:	Minneapolis	$(612) 854-8841$	Semiconductor Specialists
MISSOURI:	Hazelwood	$(314) 731-2400$	Semiconductor Specialists
	Kansas City	$(816) 452-3900$	Semiconductor Specialists
NEW YORK:	Plainview	$(516) 822-5357$	Plainview Electronics Supply Corp.
OHIO:	Dayton	$(513) 278-9455$	Semiconductor Specialists
PENNSYLVANIA:	Pittsburgh	$(412) 781-8120$	Semiconductor Specialists
TEXAS:	Dallas	(817) $649-8981$	PATCO Supply
WISCONSIN:	Milwaukee	$(414) 257-1330$	Semiconductor Specialists

PLESSEY REGIONAL OFFICES:

Bill Bradford, Western Regional Sales Manager, PLESSEY SEMICONDUCTORS, 1641 Kaiser, Irvine, CA 92714 (714) 540-9979 / TWX: 910-595-1930 (312) 678-3280/3281 / TWX: 910-227-3746

Louis A. Scalzo, Midwestern Regional Sales Manager, PLESSEY SEMICONDUCTORS, 9950 W. Lawrence, Suite 119, Schiller Park, IL 60176

Bernie Erde, Eastern Regional Sales Manager, PLESSEY SEMICONDUCTORS, 170 Finn Court, Farmingdale, NY 11735
(516) 249-6446 / TWX: 510-224-6124

sales offices

FRANCE Plessey France S.A., 16/20 Rue Petrarque, 75016 Paris. Tel: 7274349 Tx: 62789
ITALY Plessey S.p.A., Corso Sempione 73, 20149 Milan. Tel: 3491741 Tx: 37347
SCANDINAVIA Svenska Plessey A.B., Alstromergatan 39, 4tr, S-112 47 Stockholm 49. (P.0. Box 49023 S-100 28 Stockholm 49) Sweden. Tel: 08235540 Tx: 10558

SWITZERLAND Plessey Verkaufs A.G., Glattalstrasse 18, CH-8052 Zurich. Tel: 5036 55/50 3682 Tx: 54824
UNITED KINGDOM Plessey Semiconductors, Cheney Manor, Swindon, Wilts. SN2 2OW Tel: 079336251 Tx: 449637
USA Plessey Semiconductor Products, 1641 Kaiser Avenue, Irvine, Calif. 92714, Tel: (714)540-9979 Twx: 9105951930
Plessey Microsystems, Semiconductor Products Divn., 4825 N. Scott Street, Suite 308 74A, Schiller Park, III. 60176
Tel: (312) 6714554 Twx: 910-227-0794
WEST GERMANY Plessey GmbH., 8 Munchen 40, Motorstrasse 56, Tel: (89) 351 6021/6024 Tx: 5215322
Plessey GmbH, Moselstrasse 18, Postfach 522, 4040 Neuss. Tel: (02101) 44091 Tx: 517844

agents

[^8]
distributors

FRANCE Scientech, 11 Avenue Ferdinand Buisson, 75016 Paris. Tel: 6099136 Tx: 26042
ITALY Melchioni, Via P. Colletta 39, 20135 Milan. Tel: 5794
SCANDINAVIA Scansupply A/S., Nannasgade 20, Dk-2200 Copenhagen, Denmark. Tel: 935090 Tx: 19037
Oy Ferrado A.B. Nylandsgatan 2C. 00120 Helsinki 12, Finland. Tel: 656005 Tx: 121394
Skandinavisk Elektronikk A/S., Ostre Aker Vei 99, Veitvedt, Oslo 5, Norway. Tel: (02) 150090 Tx: 11963
SWITZERLAND Lacoray S.A., 8049 Zurich, Ackersteinstrasse 161, Tel: 565670 Tx: 57653
UNITED KINGDOM (For all circuits except T.V.)
Farnell Electric Components Ltd., Canal Road, Leeds LS12 2TU TeI: 0532636311 Tx: 55147
Gothic Electronic Components, Beacon House, Hampton Street, Birmingham B19 3LP. Tel: 0212368541 Tx: 338731
Semiconductor Specialists (UK) Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. Tel: 0895446415 Tx: 21958

SDS Components Ltd., Hilsea Industrial Estate, Portsmouth, Hampshire P03 5JW. Tel: 070565311 Tx:86114
For T.V. circuits only:-
Best Electronics (Slough) Ltd., Unit 4, Farnburn Avenue, Slough, Bucks SL1 4XU Tel: (0753) $31700 \mathrm{Tx}: 847571$
C.P.C. Ltd., 194-200 North Road, Preston PR1 1YP. Tel: (0772) 55034 Tx: 677122

USA Semiconductor Specialists, P.O. Box 66125, O’Hare Internatl. Airport, Chicago, IlI. Tel: 3122791000 Twx: 910-254-0169 WEST GERMANY
PLZ1 Dr. Guenther Dohrenberg, 1000 Berlin 30, Bayreuther Strasse 3. Tel: (030) 2138 043-45
PLZ2 Nordelektronik GmbH-KG, 2085 Quickborn, Harksheiderweg 238-240. Tel: (04 106) 4031 Tx: 0214299
PLZ6 Mansfield GmbH \& Co. KG, 6000 Frankfurt, Zobelstrasse 11. Tel: (0611) 447020
PLZ7 Astronic GmbH \& Co. KG, 7000 Stuttgart-Vaihingen, Gruendgenstrasse 7. Tel: (0711) 734918
PLZ8 Nuemuller \& Co. GmbH, 8 Munchen 2, Karlstrasse 55. Tel: 0895991231 Tx: 0522106

[^0]: * Load power not included

[^1]: ${ }^{*} T_{\text {case }}$ must be<150 C

[^2]: $P 1]\left[\begin{array}{l}V_{1 H_{\text {max }}} \\ \mathrm{V}_{\text {IL min }}\end{array}\right.$
 $P 1]\left[\begin{array}{l}V_{1 H} \text { max } \\ V_{1 L} \text { min }\end{array}\right.$
 P2 $V_{\text {iHA min }}$

    ```
    \(V_{\text {ILA }}\) max
    ```

[^3]: individually test each inuut apolying $\mathrm{V}_{1 H}$ or $\mathrm{V}_{1 \mathrm{~L}}$ to the input under test.

[^4]: NOTES
 1 The ufrices ar: sifecified for operation with the power supplies of $V_{C C}=0 V$ and $V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$, which are the normal $E C L$
 supply rails. They will also operate satisfactorily with $T T L$ rails of $V_{C C}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\mathrm{V}_{E E}=0 \mathrm{~V}$.
 2. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
 3. The cuiput voltage levels have the same temperature coefficients as ECL II output levels.

[^5]: ABSOLUTE MAXIMUM RATINGS

 Supply voltage IVCc - VEEI
 Input voltage Vin (d.c.)
 Output current lout
 Max. junction temperature
 Storage temperature range

 8 V
 Not greater than the supply voltage in use. 20 mA
 $+150^{\circ} \mathrm{C}$
 $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

[^6]: Supply voltage $\left|V_{C C}-V_{E E}\right|$ 8 V
 Input voltage $V_{\text {in }}$ (d.c.)
 Output current I out
 Max. junction temperature
 Storage temperature range

[^7]: ＊In 16－lead D．I．L．All other types are in 14－lead D．I．L．

[^8]: AUSTRALIA Plessey Ducon Pty. Ltd., P.0. Box 2, Christina Road, Villawood, N.S.W. 2163. Tel:72 0133 Tx: 20384 AUSTRIA Plessey GmbH., Rotenturmstrasse 25, Postfach 967, A-1011 Vienna. Tel: 634575 Tx: 75963
 BELGIUM \& LUXEMBOURG Plessey S.A., Chausee de St. Job 638, Brussels 1180, Belgium. Tel: 74 5971. Tx: 22100 BRAZIL Plessey Brazil, Caixa Postal 7821, Sao Paulo. Tel: (011) 269 0211. Tx: 112338
 CANADA Plessey Canada Ltd., 300 Supertest Road, Downsview, Toronto, Ontario. Tel: 661 3711. Tx: 065-24488
 EASTERN EUROPE Commercial Manager, Mid and Eastern Europe, Plessey Co. Ltd., Ilford, Essex, IG1 4AO England
 Tel: 01-478-3040. Tx: 23166

 HONG KONG Plessey Co. Ltd., Room 1002, Connaught Building, 54-46 Connaught Road C, (P.0. Box 617) Tel: 5-452145.
 Tx: 74754
 JAPAN Cornes \& Co Ltd., Maruzen Building, 2 Chome Nihonbashi-Dori, C.P.O. Box 158, Chuo-ku, Tokyo 103. Tel: 272-5771. Tx: 24874

 Cornes \& Co Ltd., Marden House, C.P.0. Box 239, Osaka. Tel: 532-1012/1019. Tx: 525-4496
 NETHERLANDS Plessey Fabrieken N.V., Van de Mortelstraat 6, P.O. Box 46, Noordwijk. Tel: 01719 19207. Tx: 32008 NEW ZEALAND Plessey (N.Z.) Ltd., Ratanui Street, Private Bag, Henderson, Auckland 8. Tel: Henderson 64 189. Tx: 2851 PORTUGAL Plessey Automatica Electrica, Portugesa S.A.R.L., Av. Infant D. Henrique 333, Apartado 1060, Lisbon 6. Tel: 313173/9 Tx: 12190

 SOUTH AFRICA Plessey South Africa Ltd., Forum Building, Struben Street, (P.0. Box 2416) Pretoria 0001, Transvaal. Tel: 34511 Tx: 30277

 SPAIN The Plessey Company Ltd, Calle Martires de Alcala, 4-3 Dcha., Madrid 8. Tel: 2481218 and 2483882 Tx: 42701

