PHILIPS
 Data handbook

Phlups Electronic components and materials

Integrated circuits

Book ICO3
1987

Integrated circuits for telephony
Bipolar, MOS

ع0כI
2861

INTEGRATED CIRCUITS FOR TELEPHONY BIPOLAR, MOS

page
Preface 3
Selection guide
Functional index 7
Numerical index 11
Pulse dialler circuits with redial, PCD332X family 15
Speech transmission circuits, TEA1060 family 16
Microcontrollers for telephone sets 16
Architecture of electronic subscriber sets 19
General
Product status definitions for type numbers with prefixes MC, NE, SA or SE 31
Ordering information for type numbers with prefixes MC, NE, SA or SE 32
Type designation for type numbers with prefixes MEA, PCB, PCD, PCF, TDA or TEA 33
Rating systems for type numbers with prefixes MEA, PCB, PCD, PCF, TDA or TEA 35
Handling MOS devices 37
Device data 41
Package information
Package outlines 703
Soldering 727

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks.

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS

COMPONENTS AND MATERIALS

The contents of each series are listed on pages iv to vii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1 Tubes for r.f. heating

T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating
T5 Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes for special applications
T6 Geiger-Müller tubes
T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9 Photo and electron multipliers

T10 Plumbicon camera tubes and accessories

T11 Microwave semiconductors and components

T12 Vidicon and Newvicon camera tubes

T13 Image intensifiers and infrared detectors
T15 Dry reed switches
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes

Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes
S2b Thyristors and triacs

S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules
S4b High-voltage and switching power transistors
S5 Field-effect transistors

S6 R.F. power transistors and modules
S7 Surface mounted semiconductors

S8a Light-emitting diodes
S8b Devices for optoelectronics
Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components

S9 Power MOS transistors
S10 Wideband transistors and wideband hybrid IC modules
S11 Microwave transistors
S12 Surface acoustic wave devices
S13 Semiconductor sensors
*S14 Liquid Crystal Displays
*To be issued shortly.

INTEGRATED CIRCUITS (PURPLE SERIES)

The NEW SERIES of handbooks is now completed. With effect from the publication date of this handbook the " N " in the handbook code number will be deleted. Handbooks to be replaced during 1986 are shown below.
The purple series of handbooks comprises:

IC01	Radio, audio and associated systems Bipolar, MOS	new issue 1986 IC01N 1985
IC02a/b	Video and associated systems Bipolar, MOS	new issue 1986 ICO2Na/b 1985
IC03	Integrated circuits for telephony Bipolar, MOS	new issue 1987 ICO3N 1985
IC04	HE4000B logic family CMOS	new issue 1986 IC4 1983
IC05N	HE4000B logic family - uncased ICs CMOS	published 1984
IC06N	High-speed CMOS; PC74HC/HCT/HCU Logic family	published 1986
IC08	ECL 10 K and 100 K logic families	New issue 1986 IC08N 1984
IC09N	TTL logic series	published 1986
IC10	Memories MOS, TTL, ECL	$\begin{aligned} & \text { new issue } 1986 \\ & \text { IC7 } 1982 \end{aligned}$
IC11N	Linear LSI	published 1985
Supplement to IC11N	Linear LSI	published 1986
IC12	$1^{2} \mathrm{C}$-bus compatible ICs	not yet issued
IC13	Semi-custom Programmable Logic Devices (PLD)	new issue 1986 IC13N 1985
IC14N	Microprocessors, microcontrollers and peripherals Bipolar, MOS	published 1985
IC15	FAST TTL logic series	new issue 1986 IC15N 1985
IC16	CMOS integrated circuits for clocks and watches	first issue 1986
IC17	Integrated Services Digital Networks (ISDN)	not yet issued
IC18	Microprocessors and peripherals	new issue 1986*

[^0]
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C22 Film capacitors

PREFACE

More than ten years on from our first dedicated ICs for telephony, the pace of progress in telecommunication continues to accelerate. An already-wide range of design possibilities offered by well established circuits and enhanced by new ICs has been dramatically extended in concepts that include microcontrollers linked to peripheral circuits via the two-wire $I^{2} \mathrm{C}$ (Inter-IC) data bus.
Telephony concepts range from simple pulse dialling to the most advanced feature-phones and from cordless telephones to cellular radio. The concepts include both bipolar and HCMOS ICs (with $2,5 \mathrm{~V}$ to 6 V operating voltage range) with most telephony ICs supplied in space-saving small-outline (SO) packages as well as standard DIL.
An Integrated Services Digital Network (ISDN) which allows transmission and reception of digitized voice, data and video signals is now in the final stages of development and we are well advanced in the development of a range of ICs with ISDN-Oriented Modular (IOM) architecture to form the vital interfaces between ISDN networks and the wide variety of subscriber terminals. We are also introducing the Integrated Services Terminal (IST) bus and associated ICs which are ISDN-compatible and allow up to 31 subscriber terminals to be interconnected via a simple, easy to install, twisted-pair cable. Specifications for IST bus and IOM ICs will be published separately.

Functional index
Numerical index
Pulse dialler circuits with redial, PCD332X family
Speech/transmission circuits, TEA1060 family
Microcontrollers for telephone sets

FUNCTIONAL INDEX

type number description page
PULSE DIALLER CIRCUITS WITH REDIAL (PCD332X family, page 15)
PCD3320 dialler with several mute signals 197
PCD3321 dialler with two automatic access pauses 211
PCD3322 variant of PCD3320 227
PCD3323 dialler for sophisticated PABX systems 241
PCD3324 dialler with one automatic access pause 261
PCD3325A dialler with manual access pause control 277
PCD3326 variant of PCD3321 293
PCD3327 variant of PCD3325A for ceramic resonator 309
SPEECH/TRANSMISSION CIRCUITS (TEA 1060 family, page 16)
TEA1060 speech/transmission circuit with dialler interface;
low impedance input for dynamic and magnetic microphones 609
TEA1061 speech/transmission circuit with dialler interface;
high impedance input for eletret and piezo-electric microphones 609
TEA 1066T speech/transmission circuit with dialler interface; SO-encapsulation 625
TEA1067 low-voltage speech/transmission circuit with dialler interface; input suitable for all microphone types 641
TEA1068 speech/transmission circuit with dialler interface; input suitable for all microphone types 657
HANDSFREE LOUDSPEAKING TELEPHONES
TEA 1042 telephone transmission circuit for handsfree loudspeaking 581
DTMF GENERATOR/DIALLER CIRCUITS
PCD3311 DTMF generator with parallel data inputs plus $I^{2} \mathrm{C}$ bus 149
PCD3312 DTMF generator; ${ }^{2}{ }^{2} \mathrm{C}$ bus 149
TEA1075 DTMF dialler with line interface and mute switch 673
SINGLE-CHIP TELEPHONE CIRCUIT
TEA 1046 DTMF dialler and transmission circuit 595
PULSE AND DTMF DIALLER COMBINATION
PCD3310 pulse and DTMF dialler with redial 129
REPERTORY DIALLERS (see Microcontrollers for telephone sets, page 16)
PCD3315/502 10-number repertory dialler with redial 167
PCD3315/503 $\quad 10$-number one-touch repertory dialler with redial 179
PCD3341 advanced 10-110 number repertory dialler; LCD control; ${ }^{2} \mathrm{C}$ bus 321
type number description page
MICROCONTROLLERS (see Microcontrollers for telephone sets, page 16)
PCD3315C microcontroller for telephone sets 193
PCD3343 microcontroller for telephone sets; $1^{2} \mathrm{C}$ bus 339
TONE RINGER
PCD3360 programmable multi-tone ringer 379
1^{2} C BUS COMPATIBLE ICs
PCB8582 256×8-bit EEPROM 121
PCD3311 DTMF generator with parallel data inputs 149
PCD3312 DTMF generator 149
PCD3341 advanced 10-110 number repertory dialler; LCD control 321
PCD3343 microcontroller for telephone sets 339
PCF8200 voice synthesizer (CMOS) 407
PCF8566
universal LCD driver for low multiplex rates (1:1 to $1: 4$);
universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 96 segments 421
PCF8570 256×8-bit static RAM 451
PCF8571 128×8-bit static RAM 463
PCF8573 clock/calendar 475
PCF8574 remote 8-bit I/O expander 493
PCF8576
universal LCD driver for low multiplex rates (1:1 to $1: 4$);
universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 160 segments 507
PCF8577 LCD direct driver (32 segments) or duplex driver (64 segments) 543
PCF8577A LCD direct driver (32 segments) or duplex driver (64 segments); different slave address 543
PCF8591 8 -bit A / D and D / A converter 559
CIRCUITS FOR MOBILE TELEPHONES
MC3361 low power FM IF signal processing system 41
NE567 tone decoder/phase locked loop 59
NE570 compandor 69
NE571 compandor 69
NE572 programmable analog compandor 75
NE602 double balanced mixer and oscillator 81
NE604 low power FM/IF system 87
NE612 double balanced mixer and oscillator 89
NE614 low power FM/IF system 95
PCB80C31 single-chip 8-bit microcontroller; ROM-less version of PCB80C51 119
PCB80C51 single-chip 8-bit microcontroller; 128 bytes RAM; 4 K mask-programmable ROM 119
PCD3312 DTMF generator; $I^{2} \mathrm{C}$ bus 149
PCD3315/502 10-number repertory dialler with redial 167
PCF8591 8 -bit A / D and D / A converter; $I^{2} C$ bus 559
SA571 compandor 69
SA572 programmable analog compandor 75
SA602 double balanced mixer and oscillator 81
SA604 low power FM/IF system 87

type number	description	page
SE567	tone decoder/phase locked loop	59
TDA7050T	dual audio amplifier for loudspeaking facilities	577

SPEECH SYNTHESIZERS
MEA8000 voice synthesizer 45
PCF8200 voice synthesizer (CMOS) 407
OM8200 speech demonstration board (for PCF8200) 111
OM8210 speech analysis/editing system (for PCF8200) 115
DISPLAY DRIVERS
PCF2111 LCD duplex driver (64 segments) with serial I/O 397
PCF8566 universal LCD driver for low multiplex rates (1:1 to 1:4);max. 96 segments; $I^{2} \mathrm{C}$ bus 421421
PCF8576 universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 160 segments; $I^{2} \mathrm{C}$ bus 507
PCF8577 LCD direct driver (32 segments) or duplex driver (64 segments); $I^{2} \mathrm{C}$ bus 543
PCF8577A LCD direct driver (32 segments) or duplex driver (64 segments); $I^{2} \mathrm{C}$ bus; different slave address 543
MISCELLANESOUS
NE5900 call progress decoder 105
PCB8582 256×8-bit EEPROM; $1^{2} \mathrm{C}$ bus 121
PCF 1251 micropower voltage detector 393
PCF8570 256×8-bit static RAM; $1^{2} \mathrm{C}$ bus 451
PCF8571 128×8-bit static RAM; $I^{2} \mathrm{C}$ bus 463
PCF8573 clock/calendar; $I^{2} \mathrm{C}$ bus 475
PCF8574 remote 8 -bit I/O expander; $I^{2} \mathrm{C}$ bus 493
PCF8591 8 -bit A / D and D / A converter; $I^{2} C$ bus TDA7050T dual audio amplifier for loudspeaking facilities 577
TEA1042 telephone transmission circuit for handsfree loudspeaking 581
TEA1080 supply circuit for telephone set peripherals 689

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips $1^{2} \mathrm{C}$ patent to use the components in the $1^{2} \mathrm{C}$-system provided the system conforms to the $1^{2} \mathrm{C}$ specifications defined by Philips.
"

NUMERICAL INDEX

type number	description	package	page
MC3361D	low power FM IF signal processing system	D-PLASTIC (SO-16)	41
MC3361N	low power FM IF signal processing system	N-PLASTIC (16-pin)	41
MEA8000	voice synthesizer	DIL-24; SOT-101A	45
NE567D	tone decoder/phase locked loop	D-PLASTIC (SO-8)	59
NE567F	tone decoder/phase locked loop	F-HERMETIC (14-pin)	59
NE567E	tone decoder/phase locked loop	FE-HERMETIC (8-pin)	59
NE567N	tone decoder/phase locked loop	N-PLASTIC (8-pin)	59
NE570F	compandor	F-HERMETIC (16-pin)	69
NE570N	compandor	N-PLASTIC (16-pin)	69
NE571D	compandor	D-PLASTIC (SO-16L)	69
NE571F	compandor	F-HERMETIC (16-pin)	69
NE571N	compandor	N-PLASTIC (16-pin)	69
NE572D	programmable analog compandor	D-PLASTIC (SO-16L)	75
NE572N	programmable analog compandor	N-PLASTIC (16-pin)	75
NE602D	double balanced mixer and oscillator	D-PLASTIC (SO-8)	81
NE602FE	double balanced mixer and oscillator	FE-HERMETIC (8-pin)	81
NE602N	double balanced mixer and oscillator	N-PLASTIC (8-pin)	81
NE604D	low-power FM/IF system	D-PLASTIC (SO-16)	87
NE604N	low-power FM/IF system	N-PLASTIC (16-pin)	87
NE612D	double balanced mixer and oscillator	D-PLASTIC (SO-8)	89
NE612N	double balanced mixer and oscillator	N-PLASTIC (8-pin)	89
NE614D	low power FM/IF system	D-PLASTIC (SO-16)	95
NE614N	low power FM/IF system	N-PLASTIC (16-pin)	95
NE5900D	call progress decoder	D-PLASTIC (SO-16L)	105
NE5900N	call progress decoder	N-PLASTIC (16-pin)	105
OM8200	speech demonstration board (for PCF8200)	standard Eurocard	111
OM8210	speech analysis/editing system (for PCF8200)	special pack	115
PCB80C31P	single-chip 8-bit microcontroller; ROM-less version of PCB80C51P	DIL-40; SOT-129	119
PCB80C31WP	single-chip 8 -bit microcontroller; ROM-less version of PCB80C51WP	44-PLCC; SOT-187A	119
PCB80C51P	single-chip 8-bit microcontroller; 128 bytes RAM; 4 K mask-programmable ROM	DIL-40; SOT-129	119
PCB80C51WP	single-chip 8-bit microcontroller; 128 bytes RAM; 4 K mask-programmable ROM	44-PLCC; SOT-187A	119
PCB8582	256×8-bit EEPROM; ${ }^{2} \mathrm{C}$ bus	DIL-8; SOT-97A	121
PCD3310P	pulse and DTMF dialler with redial plus $1^{2} \mathrm{C}$ bus	DIL-20; SOT-146	129
PCD3310T	pulse and DTMF dialler with redial plus $\mathrm{I}^{2} \mathrm{C}$ bus	SO-28; SOT-136A	129
PCD3311P	DTMF generator with parallel data inputs plus $I^{2} \mathrm{C}$ bus	DIL-14; SOT-27KE	149
PCD3311T	DTMF generator with parallel data inputs plus $I^{2} \mathrm{C}$ bus	SO-16L; SOT-162A	149

type number	description	package	page
PCD3312P	DTMF generator; ${ }^{2} \mathrm{C}$ bus	DIL-8; SOT-97AE	149
PCD3312T	DTMF generator; ${ }^{2} \mathrm{C}$ bus	SO-8L; SOT-176	149
PCD3315/502P	10-number repertory dialler with redial	DIL-28; SOT-117	167
PCD3315/502T	10-number repertory dialler with redial	SO-28; SOT-136A	167
PCD3315/503P	10-number one-touch repertory dialler with redial	DIL-28; SOT-117	179
PCD3315/503T	10-number one-touch repertory dialler with redial	SO-28; SOT-136A	179
PCD3315CP	microcontroller for telephone sets	DIL-28; SOT-117	193
PCD3315CT	microcontroller for telephone sets	DIL-28; SOT-136A	193
PCD3320D	dialler with several mute signals	DIL-18; SOT-133B	197
PCD3320P	dialler with several mute signals	DIL-18; SOT-102GE	197
PCD3321D	dialler with two automatic access pauses	DIL-18; SOT-133B	211
PCD3321P	dialler with two automatic access pauses	DIL-18; SOT-102GE	211
PCD3322D	variant of PCD3320	DIL-18; SOT-133B	227
PCD3322P	variant of PCD3320	DIL-18; SOT-102GE	227
PCD3323D	dialler for sophisticated PABX systems	DIL-28; SOT-135A	241
PCD3323P	dialler for sophisticated PABX systems	DIL-28; SOT-117	241
PCD3323T	dialler for sophisticated PABX systems	SO-28; SOT-136A	241
PCD3324D	dialler with one automatic access pause	DIL-18; SOT-133B	261
PCD3324P	dialler with one automatic access pause	DIL-18; SOT-102GE	261
PCD3325AP	dialler with manual access pause control	DIL-18; SOT-102GE	277
PCD3326P	variant of PCD3321	DIL-18; SOT-102GE	293
PCD3327P	variant of PCD3325A for ceramic resonator	DIL-18; SOT-102GE	309
PCD3327U	variant of PCD3325A for ceramic resonator	uncased chip	309
PCD3341P	advanced 10-110 number repertory dialler; LCD control; $I^{2} \mathrm{C}$ bus	DIL-28; SOT-117	321
PCD3341T	advanced 10-110 number repertory dialler; LCD control; $1^{2} \mathrm{C}$ bus	SO-28; SOT-136A	321
PCD3343D	microcontroller for telephone sets; $I^{2} \mathrm{C}$ bus	DIL-28; SOT-135A	339
PCD3343P	microcontroller for telephone sets; $I^{2} \mathrm{C}$ bus	DIL-28; SOT-117	339
PCD3343T	microcontroller for telephone sets; $I^{2} \mathrm{C}$ bus	SO-28; SOT-136A	339
PCD3360P	programmable multi-tone ringer	DIL-16; SOT-38	379
PCD3360T	programmable multi-tone ringer	SO-16L; SOT-162A	379
PCF 1251P	micropower voltage detector	DIL-8; SOT-97AE	393
PCF 1251T	micropower voltage detector	SO-8; SOT-96A	393
PCF2111P	LCD duplex driver (64 segments) with serial I/O	DIL-40; SOT-129	397
PCF2111T	LCD duplex driver (64 segments) with serial I/O	VSO-40; SOT-158A	397
PCF8200	voice synthesizer (CMOS)	DIL-24; SOT-101A	407
PCF8566P	universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 96 segments; $I^{2} \mathrm{C}$ bus	DIL-40; SOT-129	421
PCF8566T	universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 96 segments; $I^{2} \mathrm{C}$ bus	VSO-40; SOT-158A	421
PCF8570P	256×8-bit static RAM; $1^{2} \mathrm{C}$ bus	DIL-8; SOT-97AE	451
PCF8570T	256×8-bit static RAM; $1^{2} \mathrm{C}$ bus	SO-8L; SOT-176	451
PCF8571D	128×8-bit static RAM; $1^{2} \mathrm{C}$ bus	DIL-8; SOT-151A	463
PCF8571P	128×8-bit static RAM; $1^{2} \mathrm{C}$ bus	DIL-8; SOT-97AE	463
PCF8571T	128×8-bit static RAM; $1^{2} \mathrm{C}$ bus	SO-8L; SOT-176	463

type number	description	package	page
PCF8573P	clock/calendar; $1^{2} \mathrm{C}$ bus	DIL-16; SOT-38	475
PCF8573T	clock/calendar; $1^{2} \mathrm{C}$ bus	SO-16L; SOT-162A	475
PCF8574P	remote 8 -bit I/O expander; $\mathrm{I}^{2} \mathrm{C}$ bus	DIL-16; SOT-38	493
PCF8574T	remote 8 -bit I/O expander; $\mathrm{I}^{2} \mathrm{C}$ bus	SO-16L; SOT-162A	493
PCF8576T	universal LCD driver for low multiplex rates (1: 1 to $1: 4$); max. 160 segments; $I^{2} \mathrm{C}$ bus	VSO-56; SOT-190	507
PCF8576U	universal LCD driver for low multiplex rates (1:1 to $1: 4$); max. 160 segments; $I^{2} C$ bus	uncased chip	507
PCF8577P	LCD direct driver (32 segments) or duplex driver (64 segments); ${ }^{2} \mathrm{C}$ bus	DIL-40; SOT-129	543
PCF8577T	LCD direct driver (32 segments) or duplex driver (64 segments); ${ }^{2} \mathrm{C}$ bus	VSO-40; SOT-158A	543
PCF8577AP	LCD direct driver (32 segments) or duplex driver (64 segments); $I^{2} \mathrm{C}$ bus	DIL-40; SOT-129	543
PCF8577AT	LCD direct driver (32 segments) or duplex driver (64 segments); ${ }^{2} \mathrm{C}$ bus	VSO-40; SOT-158A	543
PCF8591P	8 -bit A / D and D/A converter; $1^{2} \mathrm{C}$ bus	DIL-16; SOT-38	559
PCF8591T	8 -bit A / D and D/A converter; $I^{2} \mathrm{C}$ bus	SO-16L; SOT-162A	559
SA571F	compandor	F-HERMETIC (16-pin)	69
SA571N	compandor	N-PLASTIC (16-pin)	69
SA572N	programmable analog compandor	N-PLASTIC (16-pin)	75
SA572F	programmable analog compandor	F-HERMETIC (16-pin)	75
SA572D	programmable analog compandor	D-PLASTIC (SO-16L)	75
SA602D	double balanced mixer and oscillator	D-PLASTIC (SO-8)	81
SA602FE	double balanced mixer and oscillator	FE-HERMETIC (8-pin)	81
SA602N	double balanced mixer and oscillator	N-PLASTIC (8-pin)	81
SA604D	low-power FM/IF system	D-PLASTIC (SO-16)	87
SA604N	low-power FM/IF system	N-PLASTIC (16-pin)	87
SE567F	tone decoder/phase locked loop	F-HERMETIC (14-pin)	59
SE567FE	tone decoder/phase locked loop	FE-HERMETIC (8-pin)	59
SE567D	tone decoder/phase locked loop	D-PLASTIC (SO-8)	59
SE567N	tone decoder/phase locked loop	N-PLASTIC (8-pin)	59
TDA7050T	dual audio amplifier for loudspeaking facilities	SO-8; SOT-96A	577
TEA1042	telephone transmission circuit for handsfree loudspeaking	DIL-24; SOT-101A	581
TEA1046P TEA1060	DTMF dialler and transmission circuit speech/transmission circuit with dialler interface; low impedance input for dynamic and magnetic microphones	DIL-24; SOT-101A DIL-18; SOT-102HE	595 609
TEA1061	speech/transmission circuit with dialler interface; high impedance input for eletret and piezo-electric microphones	DIL-18; SOT-102HE	609
TEA1066T	speech/transmission circuit with dialler interface; SO-encapsulation	SO-20; SOT-163A	625
TEA1067	low-voltage speech/transmission circuit with dialler interface; input suitable for all microphone types	DIL-18; SOT-102HE	641

type number	description	package	page
TEA1068	speech/transmission circuit with dialler interface; input suitable for all microphone types		
	DTMF dialler with line interface and mute switch	DIL-18; SOT-102HE	657
TEA1075P	DTMF dialler with line interface and mute switch	SO-20; SOT-163A	673
TEA1075T	supply circuit for telephone set peripherals	DIL-8;SOT-97AE	673
TEA1080P	supply circuit for telephone set peripherals	SO-8;SOT-96A	689
TEA1080T			689

PULSE DIALLER CIRCUITS WITH REDIAL, PCD332X FAMILY

$T_{D P}=$ dialling pulse period.

* PCD3327 for ceramic resonator.

Features common to all PCD332X family

$\left.\begin{array}{l|l}\text { OSC IN } \\ \text { OSC OUT }\end{array}\right\}$ on-chip oscillator input and output
C1 to C3, column keyboard inputs with on-chip pull down
R1 to R4, row keyboard inputs with on-chip pull-up
$C E$, chip enable input
DP, dialling pulse drive output to external line-switching transistor or relay
M1, mute output

SPEECH/TRANSMISSION CIRCUITS, TEA1060 FAMILY

functional survey	TEA....				
	1060	1061	1066T	1067	1068
Microphone inputs: low sensitivity; dynamic or magnetic medium sensitivity; dynamic or magnetic eletret with preamplifier piezo-electric	\bullet	-	\bullet	$\stackrel{+}{\bullet}$	$\stackrel{\bullet}{\bullet}$
Receiver outputs: dynamic or magnetic piezo-electric	\bullet	\bullet	\bullet	\bullet	\bullet
Electronic mute input	-	-	-	-	\bullet
DTMF input	-	-	-	\bullet	\bullet
Voltage regulator: adjustable d.c. voltage adjustable d.c. resistance	\bullet	\bullet		\bullet	\bullet
Power-down input	-	\bullet	-	-	\bullet
Gain control: control can be switched-off adaptable to exchange voltage and impedance	\bullet			\bullet	\bullet
SO encapsulation			\bullet	\bullet	\bullet
Parallel operation possible				-	

MICROCONTROLLERS FOR TELEPHONE SETS

type number of family	short description	type number of standard version	type number or customized version
PCD3343	dedicated single-chip, 8-bit microcontroller for telephone sets; available in standard or customized versions; 3K $\times 8$ ROM; 224×8 RAM	PCD3341	PCD3343/0XX
PCD3315C	dedicated single-chip, 8-bit microcontroller for telephone sets; available in standard or customized versions; $1,5 \mathrm{~K} \times 8$ ROM; 160 8 8 RAM	PCD3315/502 PCD3315/503	PCD3315/5XX

ARCHITECTURE OF ELECTRONIC SUBSCRIBER SETS

Telephones for pulse dialling Telephones for DTMF dialling

ARCHITECTURE OF ELECTRONIC SUBSCRIBER SETS

The path to electronic operation

The first step in converting subscriber sets to electronic operation is usually in the replacement of the rotary dial by a push-button keyboard which operates either with a pulse generator for interrupted current-loop dialling, or with a tone generator for DTMF dialling (this division of techniques has resulted in two main streams of telephone production; pulse dialling and tone dialling). Subsequent steps for improvement are in the replacement of the carbon microphone by an active transducer such as an electret or electro-dynamic microphone, and replacement of the transformer hybrid by an integrated speech/transmission circuit. The sequence continues with the inclusion of features such as repertory dialling, last-number redial, extended redial, dialled number display, and tarif-unit metering. Some sets may also have the capability of either pulse or DTMF dialling.

The ringer is a completely separate function and can therefore be replaced by electronics at any stage.

Basic telephones for pulse dialling

Figs 1, 2 and 3 show the architecture of basic push-button subscriber sets for interrupted current-loop dialling using ICs from the PCD332X family.
In Fig. 1 an insert unit to perform the dial function is shown in a conventional set with a transformer hybrid. A muting relay inhibits the speech function during dialling.
Fig. 2 shows a parallel circuit in which the line current flows through either the speech part or a dummy load and is interrupted by the M3 output of the dialling IC. Note that the conventional speech circuit operating with two wires may be replaced by a speech/transmission circuit (from the TEA1060 family). This allows the possibility of operating the speech IC in the handset with only a two-wire cable.
In Fig. 3 the dialling IC operates in conjunction with a transmission IC with common-line interface. The latter works with any kind of microphone and earpiece and has a special input for muting. For this function we have a family of speech/transmission ICs (the TEA1060 family).

Fig. 1 Pulse dial insert unit replacing the rotary dial in a conventional telephone set.

Fig. 2 Pulse dial basic set with either conventional or electronic speech.

Fig. 3 Pulse dial basic set with two ICs and common line interface.

Basic telephones for DTMF dialling

Figs 4,5,6 and 7 show the architecture of four basic push-button sets for DTMF dialling.
In Fig. 4 a conventional speech circuit with a transformer hybrid is used together with a DTMF generator; this requires a DTMF generator which has an output stage, line interface and mute switch.
Fig. 5 shows the same DTMF generator applied with an electronic speech circuit. Both DTMF generator and speech circuit have interfaces to the line.
In Fig. 6 only the speech circuit interfaces to the line. The DTMF generator is connected to the speech circuit which has a DTMF and a mute input for this purpose. The speech circuit incorporates a voltage stabilizer and audio output stage for both speech and DTMF signals. Note that the speech ICs in this application are the same as used for the pulse dial application shown in Fig. 3.
The application of a combined DTMF/transmission circuit (TEA1046) is shown in Fig. 7.

Fig. 4 DTMF set using a conventional speech circuit.

Fig. 5 Full electronic DTMF set.

Fig. 6 DTMF basic set with two ICs and common line interface.

Fig. 7 Electronic speech and DTMF on a single chip.

Basic telephones for both pulse and DTMF dialling

The architecture of a push-button subscriber set for both pulse and DTMF dialling is shown in Fig. 8. This concept includes last-number redial and flash. The speech circuit is the only part interfacing with the line, the dialler circuit being connected via the DTMF, mute and power-down pins.

Fig. 8 Subscriber set architecture for pulse and DTMF dialling.

Feature telephones

The subscriber set shown in Fig. 9 has added features including last-number redial, extended redial, repertory dialling and register recall. It is constructed around the PCD3315C telephone microcontroller and a PCD3312 DTMF generator. Pre-programmed versions of the PCD3315C are available (PCD3315/502 and PCD3315/503).

Fig. 9 Feature telephone using a dedicated microcontroller (PCD3315C).
Even more features can be obtained by using the telephone microcontroller PCD3343. This interfaces with the $I^{2} \mathrm{C}$ bus - a two-wire serial input/output data bus - which allows peripheral devices to be added. An example of this is shown in Fig. 10 with the additions of a larger repertory dial memory and dialled number display. In this way, up to eight CMOS RAMs (PCF8571) can be used to augment the on-chip storage capacity of the PCF3343 (ten 16-digit numbers). Other additions can be an LCD driver (PCF8576 or PCF8577), a clock/timer circuit (PCF8573) and DTMF generator (PCD3312). There is also a DTMF generator (PCD3311) which operates with a 4 or 8 -bit microcontroller, and a pre-programmed version of the PCD3343 which is available under the type number PCD3341.

Fig. 10 Feature-phone using dedicated microcontroller PCD3343.

Fig. 11 shows an application in which a general-purpose microcomputer or a personal computer with parallel input/output can be used in conjunction with the TEA 1046 DTMF/speech/transmission IC (this has microcomputer-compatible keyboard inputs).

Fig. 11 Application utilizing a general-purpose microcomputer with parallel input/output.

Loudspeaking facilities

A simple but effective audio amplifier is shown in Fig. 12. The peripheral supply circuit (TEA1080) uses the line input to power the loudspeaker amplifier (TDA7050) and other peripheral devices if required. The TDA7050 is a dual-channel amplifier making either single-ended or bridge-tied load (BTL) configurations possible.

Fig. 12 Audio power amplifier for loudspeaking.

Cordless telephones

Our dedicated ICs for telephony will enhance any attractive mobile telephone design. The cordless telephone concept shown in Fig. 13 operates with carrier frequencies of $46 / 49 \mathrm{MHz}$ (FCC standards) and incorporates a security code system to protect transmissions between base and remote units.
The base and the remote units both utilize the single-chip FM radio receiver (MC3361) which requires few external components and is simple to align. A pilot tone is used to separate voice and data, detection of the pilot tone is implemented with our tone decoder SE/NE567. Also both units use the dedicated microcontroller (PCD3315) which, as well as the standard dialling functions, provides the two-way, 16-bit, random-generated, security code system. In DTMF systems, the PCD3315 will control a PCD3312 dialler. The voice output of the remote unit is driven by earpiece/loudspeaker amplifier TDA7050. In the base unit the TEA1060 provides the line interface for the speech/transmission part and the PCD3360 detects the ringer voltage.

(a) Remote unit.

(b) Base unit.

Fig. 13 Advanced cordless telephone.

Cellular radio

Cellular mobile communications systems employ hybrid technologies that bring together analogue voice processing and digital data communications. As can be seen in Fig. 14, our integrated circuits fulfill many of the vital functions required for mobile equipment of the new era.

Fig. 14 Mobile transceiver for cellular radio.

GENERAL

Product status definitions

for type numbers with prefixes MC, NE, SA, SE

Ordering information
for type numbers with prefixes MC, NE, SA, SE

Type designation
for type numbers with prefixes MEA, PCB, PCD, PCF, TDA, TEA

Rating systems
for type numbers with prefixes MEA, PCB, PCD, PCF, TDA, TEA

Handling MOS devices

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifica- tions may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

For type numbers with prefixes MC, NE, SA, SE

ORDERING INFORMATION

Signetics' Linear LSI integrated circuit products may be ordered by contacting either the local Signetics sales office, Signetics representatives and/or Signetics authorized distributors. A complete listing is located in the back of this manual.

Minimum Factory Order:

Commercial Product:
$\$ 1000$ per order
$\$ 250$ per line item per order
Military Product:
$\$ 250$ per line item per order

Table 1 provides part number information concerning Signetics originated products.
Table 2 is a cross reference of both the old and new package suffixes for all presently existing types, while Tables 3 and 4 provide appropriate explanations on the various prefixes employed in the part number descriptions.
As noted in Table 3, Signetics defines device operating temperature range by the appropriate prefix. It should be noted, however, that devices with a SE prefix ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) indicates only its operating temperature range and not its military qualification status. The military qualification status of any Linear LSI product can be determined by either looking in the Military Section in this manual and/or contacting your local sales office.

Table 1 PART NUMBER DESCRIPTION

PART NUMBER	CROSS REF PART NO.	PRODUCT FAMILY	$\begin{aligned} & \text { PRODUCT } \\ & \text { DESCRIPTION } \end{aligned}$
NE5537N	LF398 kage Descrip vice Number vice Family and	LIN Product Family s-See Table 2 mperature Range	Sample \& Hold Amp Description of Product Function LIN Analog Products MIL. Military Products

Table 2 PACKAGE DESCRIPTIONS

		PACKAGE DESCRIPTION
Old	Now	
A,AA	N	14-lead plastic DIL
A	N -14	14-lead plastic DIL (Selected Anälog products only)
B,BA	N	16-lead plastic DIL
-	D	Microminiature package (SO)
F	F	14, 16, 18, 22 and 24-lead ceramic (Cerdip) DIL
1,1K	1	14, 16, 18, 22, 28 and 4 -lead ceramic DIL
K	H	10-lead TO-100
L	H	10-lead high-profile TO-100 can
NA,NX	N	24-lead plastic DIL
Q,R	0	10, 14, 16 and 24 -lead ceramic flat
T.TA	H	8-lead TO-99
U	U	SIL Plastic power
v	N	8-lead plastic DIL
XA	N	18-lead plastic DIL
XC	N	20-lead plastic DIL
XC	N	22-lead plastic DIL
XL, XF	N	28-lead plastic DIL

Table 3 SIQNETICS PREFIX AND DEVICE TEMPERATURE

PREFIX	DEVICE TEMPERATURE			
RANGE		$	$	N
:---:				
S				
NE $+70^{\circ} \mathrm{C}$				
SE				
SA				

Table 4 INDUSTRY STANDARD PREFIX

PREFIX	DEVICE FAMILY
AM	Linear Industry Standard
CA	Linear Industry Standard
DAC	Linear Industry Standard
JB	Mil Rel-Jan Qualified-
	Old Designator
JM	Mil Rel-Jan Qualified-
	New Designator
LF	Linear Industry Standard
LM	Linear Industry Standard
M	Mil Rel-Jan Processed
MC	Linear Industry Standard
NE	Linear Industry Standard
SA	Linear Industry Standard
SE	Linear Industry Standard
SG	Linear Industry Standard
MA	Linear Industry Standard
ULN	Linear Industry Standard

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.
A basic number consists of:
THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:
S: Solitary digital circuits
T: Analogue circuits
U: Mixed analogue/digital circuits
The SECOND LETTER is a serial letter without any further significance except ' H ' which stands for hybrid circuits.
3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:
MA : $\left\{\begin{array}{l}\text { Microcomputer } \\ \text { Central processing unit }\end{array}\right.$
MB : Slice processor (see note 2)
MD : Correlated memories
ME : Other correlated circuits (interface, clock, peripheral controller, etc.)
4. CHARGE-TRANSFER DEVICES AND SWITCHED CAPACITORS

The FIRST TWO LETTERS identify the following:
NH: Hybrid circuits
NL : Logic circuits
NM : Memories
NS : Analogue signal processing, using switched capacitors
NT : Analogue signal processing, using CTDs
NX: Imaging devices
NY: Other correlated circuits

Notes

1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
2. By 'slice processor' is meant: a functional slice of microprocessor.

THIRD LETTER

It indicates the operating ambient temperature range.
The letters A to G give information about the temperature:
A : temperature range not specified
B : 0 to $+70^{\circ} \mathrm{C}$
C : -55 to $+125^{\circ} \mathrm{C}$
D : -25 to $+70^{\circ} \mathrm{C}$
E: -25 to $+85^{\circ} \mathrm{C}$
F: -40 to $+85^{\circ} \mathrm{C}$
G: -55 to $+85^{\circ} \mathrm{C}$
If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter ' A '.
Example: the range 0 to $+75^{\circ} \mathrm{C}$ can be indicated by ' B^{\prime} or ' A^{\prime}.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER

Indicates a minor variant of the basic type or the package. Except for ' Z ', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:
C : for cylindrical
D: for ceramic DIL
F: for flat pack
L : for chip on tape
P : for plastic DIL
Q : for OIL
T : for miniature plastic (mini-pack)
U : for uncased chip
Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.
FIRST LETTER: General shape
C: Cylindrical
D : Dual-in-line (DIL)
E: Power DIL (with external heatsink)
F: Flat (leads on 2 sides)
G : Flat (leads on 4 sides)
K : Diamond (TO-3 family)
M : Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)
Q : Quadruple-in-line (OIL)
R: Power QIL (with external heatsink)
S: Single-in-line
T : Triple-in-line
A hyphen precedes the suffix to avoid confusion with a version letter.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.
Note
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are choseri by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

Caution

Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all leads or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g. metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and handling equipment to the same surface.
Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected to either the supply voltage or ground.

Mounting

Mount MOS integrated circuits on printed circuit boards after all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printedcircuit board the person mounting the circuits should touch the board before bringing MOS circuits into contact with it.

Soldering

Soldering iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges

Dress personnel in clothing of non-electrostatic material (no wool, silk or synthetic fibres). After the MOS circuits have been mounted on the board proper handling precautions should still be observed. Until the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tape be put on the circuit board terminals.

Transient voltages

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Beware of voltage surges due to switching electrical equipment on or off, relays and d.c. lines.

Low Power FM IF

Linear Products

DESCRIPTION

The MC3361 is a monolithic low-power FM IF signal processing system consisting of an oscillator, mixer, limiting amplifier, quadrature detector, filter amplifier, squelch, scan control and mute switch. It is intended for use in narrow band FM dual conversion communications equipment. The MC3361 is available in a 16lead, dual-in-line plastic package and 16-lead SO (surface-mounted miniature package).

FEATURES

- 2.0 V to 8.0 V operation
- Low current: 4.2 mA typ at $V_{C C}=4.0 V_{D C}$
- Excellent sensitivity: $2.0 \mu \mathrm{~V}$ for -3dB limiting typ
- Low external parts count
- Operation to 60 MHz

APPLICATIONS

- Cordless telephone
- Narrow band receivers
- Remote control

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING CODE

DESCRIPTION	ORDER CODE
Plastic; 0 to $+70^{\circ} \mathrm{C}$	MC3361N
Plastic; SO (surface-mounted miniature package); 0 to $+70^{\circ} \mathrm{C}$	MC3361D

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

SYMBOL	PARAMETER	PIN	RATING	UNIT
$V_{C C}(M a x)$	Power supply voltage	4	10	$V_{D C}$
$V_{C C}$	Generating supply voltage range	4	2.0 to 8.0	1.0
	Detector input voltage	8	$V_{D C}$	
V_{16}	Input voltage $\left(V_{C C} \geq 4.0 \mathrm{~V}\right)$	16	V_{P-P}	
V_{14}	Mute function	14	-0.5 to 5.0	$V_{R M S}$
T_{J}	Junction temperature		$V_{P K}$	
T_{A}	Operating ambient temperature range		-30 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

AC \& DC ELECTRICAL CHARACTERISTICS $\left(V_{C C}=4.0 V_{D C}, f_{0}=10.7 \mathrm{MHz}, \Delta f= \pm 3.0 \mathrm{kHz}, f_{M O D}=1.0 \mathrm{kHz}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

PARAMETER	PIN	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Drain current (no signal) Squelch off Squelch on	4			$\begin{aligned} & 4.2 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	mA
Input limiting voltage	16	-3.0 dB limiting		2.0	6.0	$\mu \mathrm{V}$
Detector output voltage	9			2.0		$V_{D C}$
Detector output impedance				450		Ω
Recovered audio output voltage	9	$\mathrm{V}_{\text {IN }}=10 \mathrm{mV} \mathrm{V}_{\text {RMS }}$	100	150	270	mV RMS
Filter gain (10kHz)		$\mathrm{V}_{\text {IN }}=1.0 \mathrm{mV} \mathrm{V}_{\text {RMS }}$	40	46		dB
Filter output voltage	11			1.7		$V_{D C}$
Trigger hysteresis				50		mV
Mute function low	14			10		Ω
Mute function high	14			10		$\mathrm{M} \Omega$
Scan function low (mute off)	13	$\mathrm{V}_{12}=1.0 \mathrm{~V}_{\text {DC }}$			0.5	$V_{D C}$
Scan function high (mute on)	13	$\mathrm{V}_{12}=\mathrm{GND}$	3.5			$V_{D C}$
Mixer conversion gain	3			27		dB
Mixer input resistance	16			3.6		$\mathrm{k} \Omega$
Mixer input capacitance	16			2.2		pF

TEST CIRCUIT

VOICE SYNTHESIZER

GENERAL DESCRIPTION

The MEA8000 is a 24 -pin N-MOS integrated circuit for generating good quality speech from digital code with a programmable bit rate. The circuit is primarily intended for applications in microprocessor controlled systems, where the speech code is stored separately.

Features

- Interfaces easily with most popular microprocessors and microcomputer
- 8-bit wide data bus
- 32-bit wide data buffer holding speech frame codes
- Digital filter of 8 th order with 3 programmable formant frequencies, one fixed formant frequency, and 4 programmable formant bandwidths
- Programmable amplitudes
- Programmable duration of each frame; $8,16,32$ or 64 ms
- Synthesis occupies less than 1% of control processor time
- Capable of sophisticated unvoiced sound generation
- Crystal controlled oscillator or external (TTL) clock
- Minimal external audio filter requirement
- Single + 5 V power supply

QUICK REFERENCE DATA

parameter	condition	symbol	min.	typ.	max.	unit
Supply voltage	pin 13	$\mathrm{~V}_{\mathrm{DD}}$	4,5	5,0	5,5	V
Supply current	no audio load	IDD	-	30	50	mA
Inputs						
Input voltage	HIGH	$\mathrm{V}_{\text {IH }}$	2,0	-	V_{DD}	V
Input voltage	LOW	V_{IL}	$-0,5$	-	0,8	V
Input capacitance		C_{I}	-	-	7	pF
Outputs						
Output voltage Output voltage	$-\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	2,4	-	-	V
Capacitance Operating ambient temperature range	$\mathrm{I}_{\mathrm{OL}}=1,6 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0,4	V

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

Fig. 1 Block diagram.

PINNING

1	$V_{\text {SS }}$	ground
2	REO	data request
3	D7	
4	D6	
5	D5	
6	D4	data bus
7	D3	data bus
8	D2	
9	D1	
10	DO	
11	AO	data/control input
12	$\overline{C E}$	chip enable
13	$V_{\text {DD }}$	supply voltage
14	REQEN	request enable input
15	N.C.	not connected
16	OSC IN	internal oscillator
17	OSC OUT	internal osciliator
18	CLK IN	clock input
19	REF	reference current
20	OUT	speech output
21	CLK OUT	internal clock output
22	$\overline{\mathrm{R}} / \mathrm{W}$	read/write
23	$\overline{\text { w }}$	write
24	TEST	test use only

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION (pin number)

Control

D0 to D7	(10 to 3)	Data bus to which command or speech can be written.
D7	(3)	Data port via which the status can be read.
$\overline{\mathrm{CE}}$	(12)	Chip enable (chip select).
\bar{W}	(23)	Write.
$\overline{\mathrm{R}} / \mathrm{W}$	(22)	Read/Write The control signals \bar{W} and \bar{R} / W allow connections to most microcomputers or microprocessors (see timing diagrams).
A0	(11)	Data/control input: discriminates between speech code input buffer ($\mathrm{A} 0={ }^{\prime} 0^{\prime}$) and command register ($\mathrm{AO}==^{\prime} 1$ ') during a 'write' operation.
$\overline{\mathrm{REO}}$	(2)	Data request (open drain output); output signal which follows inverse of the status REQ bit, but only if enabled by either the ROE bit in the command register or the external $\overline{\text { REOEN }}$ pin.
$\overline{\text { REQEN }}$	(14)	Request enable input; $\overline{\operatorname{REOEN}}=\mathbf{~} 0$ ' enables the status REQ output, independent of the status of the command register.

Timing

OSC IN
OSC OUT
CLK IN
CLK OUT

Output
REF

OUT (20)

Supply
VDD
$V_{S S}$
TEST

NC

Input pin for biasing the audio output level. This reference current can be derived from a resistor to the positive supply.
Speech output; this output is a 64 kHz pulse, modulated in both width and amplitude. It is configured as a current sink with a saturating voltage of about 3 V .
Connections for internal clock oscillator; nominal crystal frequency 4 MHz .
Clock input for external clock, TTL compatible, 4 MHz .
A buffered output for the internal clock cycle (which is equal to CLK divided by 3). May be used as a clock, for a microprocessor, for example.

Single supply voltage, nominally 5 V , but battery operation is possible.
Ground.
Used for testing purposes. Changes other pin functions. Must be tied to ground for user operation.
It is recommended to ground this pin.

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	\min.	max.	unit
Supply voltage range		V_{DD}	$-0,5$	+7	V
Voltage with respect to V_{SS}	on any pin	V_{I}	$-0,5$	+7	V
Output voltage	pins 2 and 20	$\mathrm{~V}_{\text {REQ }}, \mathrm{V}_{\mathrm{OUT}}$		15	V
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-20	+125	o^{C}
Operating ambient temperature range		$\mathrm{T}_{\mathrm{amb}}$	0	+70	o^{C}

CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, unless otherwise specified; all voltages referenced to V_{SS}

parameter	conditions	symbol	min .	typ.	max.	unit
Symbol						
Supply voltage	note 1	$V_{\text {DD }}$	4,5	5,0	5,5	\checkmark
Supply current	no audio load	${ }^{1} \mathrm{DD}$	-	30	50	mA
Inputs D0 to D7, A0, $\overline{\mathrm{CE}}, \overline{\mathrm{W}}$, $\bar{R} / W, \overline{R E O E N}, C L K$ IN						
Input voltage HIGH		$V_{\text {IH }}$	2,0	-	$V_{\text {DD }}$	V
Input voltage LOW		$V_{\text {IL }}$	-0,5	-	0,8	\checkmark
Input leakage current	note 2	IIR	-	-	10	$\mu \mathrm{A}$
Input capacitance		C_{1}	-	-	7	pF
Outputs						
D7 (1/O), CLK OUT						
Output voltage HIGH	$-\mathrm{I}^{\mathrm{OH}}=100 \mu \mathrm{~A}$	V_{OH}	2,4	-	-	V
Output voltage LOW	$\mathrm{I}^{\mathrm{OL}}=1,6 \mathrm{~mA}$	V_{OL}	-	-	0,4	V
Output load capacitance		C_{L}	-	-	50	pF
$\overline{\text { REO }}$						
Output voltage HIGH	open drain	V_{OH}	-	-	13,2	V
Output voltage LOW	$\mathrm{I}_{\mathrm{OL}}=1,6 \mathrm{~mA}$	V_{OL}	-	-	0,4	V
Output load capacitance		C_{L}	-	-	50	pF
Audio output						
Reference current	pin 19; note 8	I REF	-	-	0,3	mA
Output current	pin 20; peak value					
	${ }^{1}$ REF $=0 \mathrm{~mA}$	I OUT	-	100	-	$\mu \mathrm{A}$
	$I_{\text {REF }}=0,1 \mathrm{~mA}$	lout	-	1,7	-	mA
	${ }^{1}$ REF $=0,3 \mathrm{~mA}$	IOUT	-	5	-	mA
Output voltage	pin 20; for linear operation; note 3;					
	${ }^{\prime}$ REF $=0,1 \mathrm{~mA}$	V OUT	2,5	-	13,2	V
Oscillator						
Crystal frequency	internal	${ }^{\text {f }}$ TTAL	-		4,00	MHz
Clock frequency	external	${ }^{\text {f CLK }}$	-		4,00	MHz

TIMING CHARACTERISTICS (note 4) (Figs 6 and 7)

parameter	condition	symbol	min.	typ.	max.	unit
Write enable		twr	200	-	-	ns
Address set-up		${ }^{t}$ AS	30	-	-	ns
Address hold		${ }^{\text {t }}$ A ${ }^{\text {H }}$	30	-	-	ns
Data set-up for write		${ }^{\text {t }}$ DS	150	-	-	ns
Data hold for write		${ }^{t}{ }_{\text {D }}$ H	30	-	-	ns
Request hold	note 5	${ }^{\text {t }} \mathrm{RH}$	-	-	350	ns
Request next	note 6 clock frequency $=3,84 \mathrm{MHz}$	${ }^{\text {tr }}$ N	-	-	3	$\mu \mathrm{s}$
Read enable		${ }^{\text {t } R D}$	200	-	-	ns
Data delay for read	note 7	${ }^{\text {t }}$ D	-	-	150	ns
Data floating for read	note 7	${ }^{t} \mathrm{DF}$	-	-	150	ns
Request valid before write		$t_{\text {R }} \mathrm{V}$	0	-	-	ns
Request output enable response		troe	-	-	750	ns
Control set-up		${ }^{\text {t CS }}$	20	-	-	ns
Control hold		${ }^{\text {t }} \mathrm{CH}$	20	-	-	ns

Notes

1. The circuit will continue to operate from a supply of up to $6,5 \mathrm{~V}$, but without necessarily meeting the specification.
2. This is also valid for $V_{D D}=0 \mathrm{~V}$.
3. This permits the connection of the output load to a supply higher than that supplying the synthesizer.
4. Timing reference level is $1,5 \mathrm{~V}$.
5. An external pull-up resistor is required, as this is an open drain output.

The time (t_{RH}) to reach $2,0 \mathrm{~V}$ is specified at a load to 5 V of $3,3 \mathrm{k} \Omega$ and 50 pF .
6. Between two data write operations of one speech frame.
7. Levels greater than $2,0 \mathrm{~V}$ for a ' 1 ' or less than $0,8 \mathrm{~V}$ for a ' 0 ' are reached with a load of one TTL input and 50 pF .
8. Typical voltage level at the REF pin is $2,5 \mathrm{~V}$.

OPERATION PRINCIPLE

The MEA8000 has been designed for a vocal tract modelling technique of voice synthesis. This method gives the lowest possible bit rate for speech quality which is acceptable for most industrial applications.
Figure 3 shows a simplified electronic model of the human vocal tract as a formant synthesizer. A combination of a periodic signal, representing the pitch of the original speech, and an aperiodic signal, representing the unvoiced sound in the speech. Both these signals are fed to a variable filter comprising four resonantors (via an amplifier which controls the amplitude of the synthesized sound). The resonators model the sound in accordance with the formats in the original speech. Each resonator is controlled by two parameters, one for the resonant frequency and one for the bandwidth. The information required to control the synthesizer is:

- pitch
- amplitude
- voice/unvoiced source selector
- filter control

> excitation source (vocal cords)

A good replica of the original speech is obtained by periodic updating of this control information.

Fig. 3 Electronic model of human vocal tract.

OPERATION

Speech is generated by suitable filtering of a relatively low frequency sawtooth waveform for voiced sounds, or of random noise for unvoiced sounds. New parameters for both the digital waveform generator and the digital filter are supplied to the synthesizer in coded groups of 4 bytes via the data bus. The code group also contains the duration of the next speech frame to be produced ($8,16,32$ or 64 ms).
The output sample rate is 64 kHz or 8 times the internal sample rate with linear interpolation in between. This greatly reduces the need for an external analogue output filter.

Modes of operation

1. STOP mode: characterised by a silent output and the status $\overline{\mathrm{REQ}}$ bit set to ' 1 '. This mode is entered from power up or by STOP command. The mode is entered automatically if at the end of an active speech frame the next four parameter bytes are not yet received while the CONT bit in the command register is a ' 0 '. In the latter case the final speech frame will be repeated once but with a decaying amplitude and the same pitch.
2. ACTIVE mode: a speech sample is being produced.
3. CONTINUOUS mode: entered if an active speech frame is finished and new data is not supplied in time while the CONT bit in the command register is a' 1 '. The synthesizer will repeat the last speech frame indefinitely until all four new data bytes are received, or a STOP command, or a reset of the CONT bit.

Speech code input buffer

Speech code is written to the synthesizer when $\overline{C E}$ and \bar{W} are both ' 0 ', while $\bar{R} / W=' 1$ ' and $A 0={ }^{\prime} 0$ '. Also the status $\overline{\operatorname{REO}}$ bit must read a ' 1 ', otherwise the synthesizer is still busy and will not react to a data write operation.
Starting from the STOP mode, the first data will be interpreted as a starting value for the PITCH. Thereafter every four successive data bytes are treated as a group of speech code. The coded speech frame format is shown in Fig. 4.

Fig. 4 Format of coded speech frame.

code	bits	parameter
PITCH	8	initial value for pitch
FD	2	speech frame duration
PI	5	pitch increment (rate of change) or noise selection
AMPL	4	amplitude
FM1	5	frequency of 1st formant
FM2	5	frequency of 2nd formant
FM3	3	frequency of 3rd formant
FM4	0	frequency of 4th formant (fixed)
BW1	2	bandwidth of 1st formant
BW2	2	bandwidth of 2nd formant
BW3	2	bandwidth of 3rd formant
BW4	2	bandwidth of 4th formant

During each data write operation, the status REQ bit will be cleared to ' 0 '.
It appears within a few microseconds, requesting the next byte of the group.
The request for the first byte of the next group always appears shortly after the beginning of the current speech frame, and all four bytes must be provided before it finishes. This leaves the control circuit (i.e. microprocessor) enough time to use polling, instead of interrupts, as the minimum time of a speech is 8 ms .
When in the STOP mode the synthesizer will commence producing sound after receipt of $1+4$ bytes.

Status bit

The status bit is accessed at $\overline{C E}=\bar{R} / W={ }^{\prime} 0^{\prime}$.
The status of \bar{W} and $A O$ are arbitrary.
Pin D7 reveals the request for a (next) speech code byte: ' 0 ' = busy, ${ }^{\prime} 1$ ' = request for data.

Command register

A command is written to the synthesizer at $\overline{\mathrm{CE}}=\overline{\mathrm{W}}={ }^{\prime} 0^{\prime}$ while $\mathrm{A} O=\overline{\mathrm{R}} / \mathrm{W}={ }^{\prime} 1^{\prime}$.

| D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| D0 |
| :--- |

STOP Stop mode. This results in an immediate reset of the synthesizer to the STOP mode. The ROE and CONT are not affected by this command.
CONT Continuous mode. This bit can be set or cleared only if the corresponding CONT enable bit is programmed as a ' 1 '. In the continuous mode the synthesizer will not revert to the STOP mode if all four parameters are not received before the end of the current speech frame, but repeat it indefinitely.
If CONT $=' 1$ ' the last frame will be repeated once with decaying amplitude and the same pitch before the stop mode is entered.
ROE Request Output Enable. This can be set or cleared only if the corresponding ROE enable bit is a ' 1 '. ROE determines whether the request in the status bit appears on the $\overline{\mathrm{REO}}$ pin.
Note: the same can be achieved by connecting the $\overline{\text { REOEN }}$ pin (request enable) to a ' 0 '.
After power on, the command register bits CONT and ROE will both be zero. Thus power on equals the command $00011010=1 \mathrm{~A}$ (hexadecimal).

Control signals

With the three control signals $\overline{C E}, \bar{W}$ and \bar{R} / W the synthesizer is made compatible with most microprocessors and microcomputers.

$\overline{C R}$	\bar{W}	\bar{R} / W	$A 0$		Operation
0	0	1	0		WRITE DATA
0	0	1	1		WRITE COMMAND
0	X	0	x		READ STATUS
0	1	1	x		3 3-STATE DATA BUS
1	X	X	X		

Power supply

During (slow) power up or power down the circuit will not produce any spurious sound. As soon as the supply is high enough for reliable operation, the circuit will be in the STOP mode with $R O E=C O N T=`{ }^{\prime}$ '.

Timing diagrams

The control signals $\overline{C E}, \bar{R} / W$ and \bar{W} have been specified to enable easy interface to most microprocessors and microcomputers. For instance, with connection to an MAB8048 microcomputer the $\overline{\mathrm{R}} / \mathrm{W}$ and $\overline{\mathrm{W}}$ inputs can be used as the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe inputs.

Fig. 5 Typical waveforms of the control signals.

Fig. 6 Read timing.

Fig. 7 Write timing.

(a)
(a) Minimum system of single chip microcomputer with voice ROM on board.

(b) MEA8000 as a microprocessor peripheral.

(c) Applications using separate voice ROMs.

Fig. 8 Typical applications.

Fig. 9 Typical output applications.

Fig. 10 Oscillator/clock configurations.

TONE DECODER/PHASE LOCKED LOOP

DESCRIPTION

The SE/NE567 tone and frequency decoder is a highly stable phase-locked loop with synchronous AM lock detection and power output circuitry. Its primary function is to drive a load whenever a sustained frequency within its detection band is present at the self-biased input. The bandwidth center frequency, and output delay are independently determined by means of four external components.

FEATURES

- Wide frequency range $(.01 \mathrm{~Hz}$ to 500 kHz)
- High stability of center frequency
- Independently controliable bandwidth (up to 14 percent)
- High out-band signal and nolse rejection
- Logic-compatible output with 100 mA current sinking capability
- Inherent Immunity to false signals
- Frequency adjustment over a 20 to 1 range with an external resistor
- Military processing avallable

APPLICATIONS

- Touch Tone* decoding
- Carrier current remote controls
- Ulirasonic controls (remote TV, etc.)
- Communications paging
- Frequency monitoring and control
- Wireless intercom
- Precision oscillator
absolute maximum ratings

PARAMETER	RATING	UNIT
Operating temperature		
NE567	0 to +70	${ }^{\circ} \mathrm{C}$
SE567	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating voltage	10	V
Positive voltage at input	$0.5+\mathrm{VS}$	V
Negative voltage at input	-10	Vdc
Output voltage (collector	15	Vdc
of output transistor)	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	300	mW

BLOCK DIAGRAM

PIN CONFIGURATIONS

EQUIVALENT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}+=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

PARAMETER	TEST CONDITIONS	SE567			NE567			UNIT
		Min	Typ	Max	Min	Typ	Max	
CENTER FREQUENCY 1 Highest center frequency (f_{0}) Center frequency stability ${ }^{2}$ Center frequency distribution Center frequency shift with supply voltage	$\begin{gathered} -55 \text { to }+125^{\circ} \mathrm{C} \\ 0 \text { to }+70^{\circ} \mathrm{C} \\ f_{0}=100 \mathrm{kHz}=1.1 / R_{1} C_{1} \\ f_{0}=100 \mathrm{kHz}=1.1 / R_{1} C_{1} \end{gathered}$	- 10	$\begin{gathered} 500 \\ 35 \pm 140 \\ 35 \pm 60 \\ 0 \\ \\ 0.5 \\ \hline \end{gathered}$	$+10$ 1	-10	$\begin{gathered} 500 \\ 35 \pm 140 \\ 35 \pm 60 \\ 0 \\ \\ 0.7 \end{gathered}$	$\begin{array}{r} +10 \\ 2 \\ \hline \end{array}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \\ \\ \% / \mathrm{V} \\ \hline \end{gathered}$
DETECTION BANDWIDTH Largest detection bandwidth Largest detection bandwidth skew Largest detection bandwidthvariation with temperature Largest detection bandwidthvariation with supply voltage	$\begin{gathered} f_{0}=100 \mathrm{kHz}=1.1 / R_{1} C_{1} \\ V_{i}=300 \mathrm{mVrms} \\ V_{i}=300 \mathrm{mVrms} \end{gathered}$	12	$\begin{gathered} 14 \\ 2 \\ \pm 0.1 \\ \pm 2 \end{gathered}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	10	$\begin{gathered} 14 \\ 3 \\ \pm 0.1 \\ \pm 2 \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\%$ of f_{0} $\%$ of f_{o} $\% /{ }^{\circ} \mathrm{C}$ \%/V
INPUT Input resistance Smallest detectable input voltage $\left(\mathrm{V}_{\mathrm{i}}\right)$ Largest no-output input voltage Greatest simultaneous outband signal to inband signal ratio Minimum input signal to widebahd noise ratio	$\begin{aligned} & I_{L}=100 \mathrm{~mA}, f_{i}=f_{0} \\ & I_{L}=100 \mathrm{~mA}, f_{i}=f_{0} \end{aligned}$ $B_{n}=140 \mathrm{kHz}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	20 20 15 $+6$ -6	25 25	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 15 \\ +6 \\ -6 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\mathrm{k} \Omega$ mVrms mVrms dB $d B$
OUTPUT Fastest on-off cycling rate "1" output leakage current " 0 " output voltage Output fall time ${ }^{3}$ Output rise time ${ }^{3}$	$\begin{gathered} V_{8}=15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{L}}=30 \mathrm{~mA} \\ \mathrm{~L}_{\mathrm{L}}=100 \mathrm{~mA} \\ R_{\mathrm{L}}=50 \Omega \\ R_{\mathrm{L}}=50 \Omega \end{gathered}$		$\begin{gathered} f_{0} / 20 \\ 0.01 \\ 0.2 \\ 0.6 \\ 30 \\ 150 \end{gathered}$	$\begin{aligned} & 25 \\ & 0.4 \\ & 1.0 \end{aligned}$		$\begin{gathered} f_{0} / 20 \\ 0.01 \\ 0.2 \\ 0.6 \\ 30 \\ 150 \end{gathered}$	$\begin{aligned} & 25 \\ & 0.4 \\ & 1.0 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{gathered}$
GENERAL Operating voltage range Supply current quiescent Supply current-activated Quiescent power dissipation	$R_{L}=20 \mathrm{k} \Omega$	4.75	$\begin{gathered} 6 \\ 11 \\ 30 \end{gathered}$	9.0 8 13	4.75	$\begin{gathered} 7 \\ 12 \\ 35 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 10 \\ & 15 \end{aligned}$	V mA mA mW

NOTES
. Frequency determining resistor R_{1} should be between 2 and 20k Ω.
2. Applicable over 4.75 to 5.75 volts. See graphs for more detailed information.
3. Pin 8 to Pin 1 feedback R_{L} network selected to eliminate pulsing during turn-on and turn-off.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS
(Cont'd)

DESIGN FORMULAS

$$
\begin{aligned}
f_{0} & =\frac{1.1}{R_{1} C_{1}} \\
B W & =1070 \sqrt{\frac{V_{1}}{f_{0} C_{2}}} \text { in \% of } f_{0}, V_{i} \leq 200 m V r m s
\end{aligned}
$$

Where

$V_{i}=$ Input Voltage (Vrms) $\mathrm{C}_{2}=$ Low-Pass Filter Capacitor ($\mu \mathrm{F}$)

PHASE LOCKED LOOP TERMINOLOGY CENTER FREQUENCY (fo)

The free-running frequency of the current controlled oscillator (CCO) in the absence of an input signal.

Detection Bandwidth (BW)

The frequency range, centered about f_{0}, within which an input signal above the threshold voltage (typically 20 mVrms) will cause a logical zero state on the output. The detection bandwidth corresponds to the loop capture range.

Lock Range

The largest frequency range within which an input signal above the threshold voltage will hold a logical zero state on the output.

Detection Band Skew

A measure of how well the detection band is centered about the center frequency, fo. The skew is defined as $\left(f_{\max }+f_{\text {min }}-2 f_{0}\right) / 2 f_{0}$ where fmax and fmin are the frequencies corresponding to the edges of the detection band. The skew can be reduced to zero if necessary by means of an optional centering adjustment.

OPERATING INSTRUCTIONS

Figure 1 shows a typical connection diagram for the 567 . For most applications, the following three-step procedure will be sufficient for choosing the external components R_{1}, C_{1}, C_{2} and C_{3}.

1. Select R_{1} and C_{1} for the desired center frequency. For best temperature stability, R_{1} should be between 2 K and 20 K ohm, and the combined temperature coefficient of the $\mathrm{R}_{1} \mathrm{C}_{1}$ product should have sufficient stability over the projected temperature range to meet the necessary requirements.
2. Select the low pass capacitor, C_{2}, by referring to the Bandwidth versus Input Signal Amplitude graph. If the input amplitude variation is known, the appropriate value of $\mathrm{f}_{0} \mathrm{C}_{2}$ necessary to give the desired bandwidth may be found. Conversely, an area of operation may be selected on this graph and the input level and C_{2} may be adjusted accordingly. For example, con-

TYPICAL RESPONSE

Response to same input tone burst with wideband noise.

$$
\begin{array}{cc}
\frac{S}{N}=-6 \mathrm{db} & R_{L}=100 \text { ohms } \\
& \text { Noise Bandwidth }=140 \mathrm{~Hz}
\end{array}
$$

stant bandwidth operation requires that input amplitude be above 200 mVrms . The bandwidth, as noted on the graph, is then controlled solely by the $f_{0} C_{2}$ product (f_{0} (Hz), $\mathrm{C}_{2}(\mu \mathrm{fd})$).
3. The value of C_{3} is generally non-critical. C_{3} sets the band edge of a low pass filter which attenuates frequencies outside the detection band to elminate spurious outputs. If C_{3} is too small, frequencies just outside the detection band will switch the output stage on and off at the beat frequency, or the output may pulse on and off during the turn-on transient. If C_{3} is too large, turn-on and turn-off of the output stage will be delayed until the voltage on C_{3} passes the threshold voltage. (Such delay may be desirable to avoid spurious outputs due to translent frequencies.) A typical minimum value for C_{3} is $2 \mathrm{C}_{2}$.

AVAILABLE OUTPUTS (Figure 2) The primary output is the uncommitted output transistor collector, pin 8 . When an in-band input signal is present, this transistor saturates; its collector voltage being less than 1.0 volt (typically 0.6 V) at full output current $(100 \mathrm{~mA})$. The voltage at pin 2 is the phase detector output which is a linear function of frequency over the range of 0.95 to 1.05 fo with a slope of about 20 mV per percent of frequency deviation. The average voltage at pin 1 is, during lock, a function of the inband input amplitude in accordance with the transfer characteristic given. Pin 5 is the controlled oscillator square wave

output of magnitude $\left(+\mathrm{V}-2 \mathrm{~V}_{\mathrm{be}}\right) \approx(+\mathrm{V}-1.4 \mathrm{~V})$ having a dc average of $+V / 2$. $A 1 \mathrm{k} \Omega$ load may be driven from pin 5. Pin 6 is an exponential triangle of 1 volt peak-to-peak with an average dc level of $+V / 2$. Only high impedance loads may be connected to pin 6 without affecting the CCO duty cycle or temperature stability.

OPERATING PRECAUTIONS

A brief review of the following precautions will help the user achieve the high level of performance of which the 567 is capable.

1. Operation in the high input level mode (above 200 mV) will free the user from bandwidth variations due to changes in the in-band signal amplitude. The input stage is now limiting, however, so that out-band signals or high noise levels can cause an apparent bandwidth reduction as the inband signal is suppressed. Also, the limiting action will create in-band components from sub-harmonic signals, so the 567 becomes sensitive to signals at $f_{0} / 3, f_{0} / 5$, etc.
2. The 567 will lock onto signals near $(2 n+$ 1) f_{o}, and will give an output for signals near $(4 n+1)$ fo where $n=0,1,2$, etc. Thus, signals at $5 f_{0}$ and $9 f_{0}$ can cause an unwanted output. If such signals are anticipated, they should be attenuated before reaching the 567 input.
3. Maximum immunity from noise and outband signals is afforded in the low input level (below 200 mVrms) and reduced bandwidth operating mode. However, decreased loop damping causes the worse-case lockup time to increase, as shown by the Greatest Number of Cycles Before Output vs Bandwidth graph.
4. Due to the high switching speeds (20ns) associated with 567 operation, care should be taken in lead routing. Lead lengths should be kept to a minimum. The power supply should be adequately bypassed close to the 567 with a $0.01 \mu \mathrm{~F}$ or greater capacitor; grounding paths should be carefully chosen to avoid ground loops and
unwanted voltage variations. Another factor which must be considered is the effect of load energization on the power supply. For example, an incandescent lamp typically draws 10 times rated current at turn-on. This can cause supply voltage fluctuations which could, for example, shift the detection band of narrow-band systems sufficiently to cause momentary loss of lock. The result is a low-frequency oscillation into and out of lock. Such effects can be prevented by supplying heavy load currents from a separate supply or increasing the supply filter capacitor.

SPEED OF OPERATION

Minimum lock-up time is related to the natural frequency of the loop. The lower it is, the longer becomes the turn-on transient. Thus, maximum operating speed is obtained when C_{2} is at a minimum. When the signal is first applied, the phase may be such as to initially drive the controlled oscillator away form the incoming frequency rather than toward it. Under this condition, which is of course unpredictable, the lock-up transient is at its worst and the theoretical minimum lock-up time is not achievable. We must simply wait for the transient to die out.
The following expressions give the values of C_{2} and C_{3} which allow highest operating speeds for various band center frequencies. The minimum rate at which digital information may be detected without information loss due to the turn-on transient or output chatter is about 10 cycles per bit, corresponding to an information transfer rate of fo/10 baud.

$$
\begin{aligned}
& \mathrm{C}_{2}=\frac{130}{t_{0}} \mu \mathrm{~F} \\
& \mathrm{C}_{3}=\frac{260}{t_{0}} \mu \mathrm{~F}
\end{aligned}
$$

In cases where turn-off time can be sacrificed to achieve fast turn-on, the optional sensitivity adjustment circuit can be used to move the quiescent C_{3} voltage lower (closer to the threshold voltage). However, sensitivity to beat frequencies, noise and extraneous signals will be increased.

OPTIONAL CONTROLS (Figure 3)

The 567 has been designed so that, for most applications, no external adjustments are required. Certain applications, however, will be greatly facilitated if full advantage is

taken of the added control possibilities available through the use of additional external components. In the diagrams given, typical values are suggested where applicable. For best results the resistors used, except where noted, should have the same
temperature coefficient. Ideally, silicon diodes would be low-resistivity types, such as forward-biased transistor base-emmiter junctions. However, ordinary low-voltage diodes should be adequate for most applications.

SENSITIVITY ADJUSTMENT

(Figure 3)
When operated as a very narrow band detector (less than 8 percent), both C_{2} and C_{3} are made quite large in order to improve noise and outband signal rejection. This will inevitably slow the response time. If, however, the output stage is biased closer to the threshold level, the turn-on time can be improved. This is accomplished by drawing additional current to terminal 1 . Under this condition, the 567 will also give an outpu for lower-level signals (10 mV or lower)

By adding current to terminal 1, the output stage is biased further away from the threshold voltage. This is most useful when to obtain maximum operating speed, C_{2} and C_{3} are made very small. Normally, frequencies just outside the detection band could cause false outputs under this condition. By desensitizing the output stage, the outband beat notes do not feed through to the output stage. Since the input level must be somewhat greater when the output stage is made less sensitive, rejection of third harmonics or in-band harmonics (of lower frequency signals) is also improved.

CHATTER PREVENTION (Figure 4)

Chatter occurs in the output stage when C_{3} is relatively small, so that the lock transient and the AC components at the quadrature phase detector (lock detector) output cause the output stage to move through its threshold more than once. Many loads, for example lamps and relays, will not respond to the chatter. However, logic may recognize the chatter as a series of outputs. By feeding the output stage output back to its input (pin 1) the chatter can be eliminated. Three schemes for doing this are given in Figure 4. All operate by feeding the first output step (either on or off) back to the input, pushing the input past the threshold until the transient conditions are over. It is only necessary to assure that the feedback time constant is not so large as to prevent operation at the highest anticipated speed. Although chatter can always be eliminated by making C_{3} large, the feedback circuit will enable faster operation of the 567 by allowing C_{3} to be kept small. Note that if the feedback time constant is made quite large, a short burst at the input frequency can be stretched into a long output pulse. This may be useful to drive, for example, stepping relays

DETECTION BAND CENTERING (OR SKEW) ADJUSTMENT

(Figure 5)
When it is desired to alter the location of the detection band (corresponding to the loop capture range) within the lock range, the

Figure 5
circuits shown above can be used. By moving the detection band to one edge of the range, for example, input signal variations will expand the detection band in only one direction. This may prove useful when a strong but undesirable signal is expected on one side or the other of the center frequency. Since R_{B} also alters the duty cycle slight$l y$, this method may be used to obtain a precise duty cycle when the 567 is used as an oscillator.

ALTERNATE METHOD OF BANDWIDTHREDUCTION

(Figure 6)
Although a large value of C_{2} will reduce the bandwidth, it also reduces the loop damping so as to slow the circuit response time. This may be undesirable. Bandwidth can be reduced by reducing the loop gain. This scheme will improve damping and permit faster operation under narrow-band conditions. Note that the reduced impedance level at terminal 2 will require that a larger
value of C_{2} be used for a given filter cutoff frequency. If more than three 567s are to be used, the network of R_{B} and R_{C} can be eliminated and the R_{A} resistors connected together. A capacitor between this junction and ground may be required to shunt high frequency components.

OUTPUT LATCHING (Figure 7)

To latch the output on after a signal is received, it is necessary to provide a feedback resistor around the output stage (between pins 8 and 1). Pin 1 is pulled up to unlatch the output stage.

REDUCTION OF C1 VALUE

(Figure 8)
For precision very low-frequency applications, where the value of C_{1} becomes large, an overall cost savings may be achieved by inserting a voltage follower between the R_{1} C_{1} junction and pin 6, so as to allow a higher value of R_{1} and a lower value of C_{1} for a given frequency.

PROGRAMMING
To change the center frequency, the value of R_{1} can be changed with a mechanical or solid state switch, or additional C_{1} capacitors may be added by grounding them through saturating npn transistors.

TYPICAL APPLICATIONS

PRECISION VLF

TYPICAL APPLICATIONS (Cont'd)

TYPICAL APPLICATIONS (Cont'd)

*For additional information, consult the Applications Section.

COMPANDOR

DESCRIPTION

The NE570/571 is a versatile low cost dual gain control circuit in which either channel may be used as a dynamic range compressor or expandor. Each channel has a full wave rectifier to detect the average value of the signal; a linerarized, temperature compensated variable gain cell; and an operational amplifier.

The NE570/571 is well suited for use in cellular radio and radio communications systems, modems, telephone, and satellite broadcast/ receive audio sytems.

FEATURES

- Complete compressor and expandor in 1 IC
- Temperature compensated
- Greater than 110 dB dynamic range
- Operates down to 6Vdc
- System levels adjustable with external components
- Distortion may be trimmed out

CIRCUIT DESCRIPTION
The NE570/571 compandor building blocks, as shown in the block diagram, are a full wave rectifier, a variable gain cell, an operational amplifier and a bias system. The arrangement of these blocks in the IC result in a circuit which can perform well with few external components, yet can be adapted to many diverse applications.
The full wave rectifier rectifies the input curre' i w. ich flows from the rectifier input. to an 1 . ernal summing node which is biased at $V_{\text {REF }}$. The rectified current is averaged on an external filter capacitor tied to the CRECT terminal, and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively coupled voltage inputs as shown in the following equation. Note that for capacitively coupled inputs there is no offset voltage capable of producing a gain error. The only error will come from the bias current of the rectifier (supplied internally) which is less than $.1 \mu \mathrm{~A}$.

$$
\begin{aligned}
& G \propto \frac{\left|V_{I N}-V_{R E F}\right| \text { avg. }}{R_{1}} \\
& G \propto \frac{\left|V_{I N}\right| \text { avg. }}{R_{1}}
\end{aligned}
$$

or

The speed with which gain changes to follow changes in input signal levels is determined by the rectifier filter capacitor. A small capacitor will yield rapid response but will not fully filter low frequency signals. Any ripple on the gain control signal wil! modulate the signal passing through the variable gain cell. In an expandor or comNote:

1. Supplied only in large SO (Small Outline) package.

APPLICATIONS

- Cellular radio
- Telephone trunk compandor-570
- Telephone subscriber compandor-571
- High level limiter
- Low level expandor-noise gate
- Dynamic noise reduction systems
- Voltage controlled amplifier
- Dynamic filters

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Positive supply		Vdc
	570	24
	571	18
TA	Operating temperature range	0 to 70
	NE	-40 to +85
PD	SA	${ }^{\circ} \mathrm{C}$
	400	mW

BLOCK DIAGRAM

pressor application, this would lead to third harmonic distortion, so there is a tradeoff to be made between fast attack and decay times, and distortion. For step changes in amplitude, the change in gain with time is shown by this equation.

$$
\begin{aligned}
& G(t)=\left(G_{\text {initial }}-G_{\text {final }}\right) e^{-t / \tau} \\
& +G_{\text {final; }} \tau=10 K \times C_{\text {RECT }}
\end{aligned}
$$

The variable gain cell is a current in, current out device with the ratio IOUT/IIN controlied by the rectifier. IIN is the current which flows from the ΔG input to an internal summing node biased at $V_{\text {REF }}$. The following equation applies for capacitively coupled inputs. The output current, IOUT, is fed to the summing node of the op amp.

PIN CONFIGURATION

NOTES:

1. SOL - Released in Large SO package only
2. SOL and non-standard pinout
3. SO and non-standard pinouts.

$$
I_{\mathbb{N}}=\frac{V_{1 N}-V_{\text {REF }}}{R_{2}}=\frac{V_{1 N}}{R_{2}}
$$

A compensation scheme built into the ΔG cell compensates for temperature, and cancels out odd harmonic distortion. The only distortion which remains is even harmonics, and they exist only because of internal offset voltages. The THD trim terminal provides a means for nulling the internal offsets for low distortion operation.

The operational amplifier (which is internally compensated) has the non-inverting input tied to $V_{\text {REF }}$, and the inverting input connected to the ΔG cell output as well as brought out externally. A resistor, R_{3}, is brought out from the summing node and allows compressor or expandor gain to be determined only by internal components.

The output stage is capable of $\pm 20 \mathrm{~mA}$ output current. This allows a +13 dBm (3.5 V rms) output into a 300Ω load which, with a series resistor and proper transformer, can result in +13 dBm with a 600Ω output impedance.

A band gap reference provides the reference voltage for all summing nodes, a regulated supply voltage for the rectifier and ΔG cell. and a bias current for the ΔG cell. The low tempco of this type of reference provides very stable biasing over a wide temperature range.

The typical performance characteristics illustration shows the basic input-output transfer curve for basic compressor or expandor circuits.

TYPICAL PERFORMANCE CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=15$ Except where indicated, the 571 specifications are identical to 570

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{NE570} \& \multicolumn{3}{|c|}{NE/SA571 \({ }^{\text {b }}\)} \& \multirow[b]{2}{*}{UNIT} \\
\hline \& \& Min \& Typ \& Max \& Min \& Typ \& Max \& \\
\hline \begin{tabular}{l}
\(V_{\text {CC }}\) Supply voltage \\
\({ }^{1}\) CC Supply current \\
Output current capability \\
Output slew rate \\
Gain cell distortion² \\
Resistor tolerance \\
Internal reference voltage \\
Output dc shift \({ }^{3}\) \\
Expandor output noise \\
Unity gain level \\
Gain change \({ }^{2,4}\) \\
Reference drift \({ }^{4}\) \\
Resistor drift \({ }^{4}\)
\end{tabular} \& \begin{tabular}{l}
No signal \\
Untrimmed \\
Trimined \\
Untrimmed \\
No signal, \(15 \mathrm{~Hz}-20 \mathrm{kHz}^{1}\)
\[
\begin{aligned}
\& -40^{\circ} \mathrm{C}<T<70^{\circ} \mathrm{C} \\
\& 0^{\circ} \mathrm{C}<T<70^{\circ} \mathrm{C} \\
\& -40^{\circ} \mathrm{C}<T<70^{\circ} \mathrm{C} \\
\& 0^{\circ} \mathrm{C}<\mathrm{T}<70^{\circ} \mathrm{C} \\
\& -40^{\circ} \mathrm{C}<T<70^{\circ} \mathrm{C} \\
\& 0^{\circ} \mathrm{C}<T<70^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} \& 6
\(\pm 20\)
1.7
-1 \& \[
\begin{gathered}
3.2 \\
\pm .5 \\
3 \\
05 \\
\pm 5 \\
1.8 \\
\pm 20 \\
20 \\
-15 \\
0 \\
\pm .1 \\
\pm .1 \\
+2 .-25 \\
\pm 5 \\
+8 .-0 \\
+1 .-0
\end{gathered}
\] \& \begin{tabular}{l}
24
4.8 \\
1.0 \\
\(\pm 15\) \\
1.9 \\
\(\pm 50\) \\
45 \\
+1 \\
\(\pm 2\) \\
-10, -40 \\
\(\pm 10\)
\end{tabular} \& 6
\(\pm 20\)

1.65

-1.5 \& | 3.2 $\begin{gathered} \pm .5 \\ .5 \\ .1 \\ \pm 5 \\ 1.8 \\ \pm 30 \\ 20 \end{gathered}$ |
| :--- |
| 0 $\pm .1$ $\pm .1$ $-2 .-25$ ± 5 | \& \[

$$
\begin{array}{|c}
18 \\
4.8 \\
\\
2.0 \\
\\
\pm 15 \\
1.95 \\
\pm 100 \\
60 \\
+1.5 \\
\pm 4 \\
+20 .-50 \\
\pm 20
\end{array}
$$

\] \& \[

$$
\begin{gathered}
V \\
m A \\
m A \\
V / u s \\
\% \\
\% \\
\% \\
\mathrm{mV} \\
\mu V \\
d B R N C \\
d B m \\
d B \\
m V \\
\%
\end{gathered}
$$
\]

\hline | Tracking error (measured relative to value at unity gain) equals [$V_{0}-V_{0}$ (unity gain)] $\mathrm{dB}-\mathrm{V}_{2} \mathrm{dBm}$ |
| :--- |
| Channel Separation | \& \[

$$
\begin{aligned}
& \text { Rectifier input, } V_{2}= \\
& V_{2}=+6 \mathrm{dBm}, V_{1}=O d B \\
& V_{2}=-30 \mathrm{dBm}, V_{1}=O d B
\end{aligned}
$$
\] \& 60 \& $\pm .2$

+2 \& $-5 .+1$ \& \& $$
\begin{array}{r}
+2 \\
60
\end{array}
$$ \& $-1 .+1.5$ \& dB

$d B$

\hline
\end{tabular}

NOTES

1. Input to V_{1} and V_{2} grounded.
2. Measured at $\mathrm{OdBm}, 4 \mathrm{kHz}$.
3. Expandor ac input change from no signal to OdBm
4. Relative to value at $T_{A}=25^{\circ} \mathrm{C}$.
5. Electrical characteristics for the SA571 only are specified over -40 to $+85^{\circ} \mathrm{C}$
temperature range.

INTRODUCTION

Much interest has been expressed in high performance electronic gain control circults. For non-critical applications, an integrated circult operational transconductance amplifier can be used, but when high performance is required, one has to resort to complex discrete circuitry with many expensive, well matched components. This paper describes an Inexpensive integrated circult, the NE570 Compandor, which offers a pair of high performance gain control circults featuring low distortion (<.1\%), high signal to noise ratio $(90 \mathrm{~dB})$, and wide dynamic range (110 dB).

CIRCUIT BACKGROUND

The NE570 Compandor was originally designed to satisty the requirements of the telephone system. When several telephone channels are multiplexed onto a common line, the resulting signal to noise ratio is poor and companding is used to allow a wider dynamic range to be passed through the channel. Figure 1 graphically shows what a compandor can do for the signal to noise ratio of a restricted dynamic range channel. The input level range of +20 to -80 dB is shown undergoing a 2 to 1 compression where a 2 dB input level change is compressed into a 1 dB output level change by the compressor. The original 100 dB of dynamic range is thus compressed to a 50 dB range for transmission through a resticted dynamic range channel. A complementary expansion on the receiving end restores the original signal levels and reduces the channel noise by as much as 45 dB .

The significant circuits in a compressor or expandor are the rectifier and the gain control element. The phone system requires a simple full wave averaging rectifier with good accuracy, since the rectifier accuracy determines the (input) output level tracking accuracy. The gain cell determines the distortion and noise characterics, and the phone system specifications here are very loose. These specs could have been met with a simple operational transcondụctance multiplier, or OTA, but the gain of an OTA is proportional to temperature and this is very undesirable. Therefore, a linearized transconductance multiplier was designed which is insensitive to temperature and offers low noise and low distortion performance. These features make the circuit useful in audio and data systems as well as in telecommunications systems.

BASIC CIRCUIT HOOKUP AND OPERATION

Figure 2 shows the block diagram of one half of the chip, (there are two identical
channels on the I.C.). The full wave averaging rectifier provides a gain control current, lo, for the variable gain ($\Delta \mathbf{G}$) cell. The output of the ΔG cell is a current which is fed to the summing node of the operational amplifier. Resistors are provided to establish circuit gain and set the output dc blas.

The circult is intended for use in single power supply systems, so the internal summing nodes must be biased at some voltage above ground. An internal band gap voltage reference provides a very stable, low nolse 1.8 volt reference denoted $V_{\text {rof }}$. The nonInverting input of the op amp is tied to Vret. and the summing nodes of the rectifier and ΔG cell (located, at the right, of R_{1} and R_{2}) have the same potential. The THD trim pin is also at the Vret potential.

Figure 3 shows how the circuit is hooked up to realize an expandor. The input signal. Vin, is applied to the inputs of both the rectifier and the ΔG cell. When the input signal drops by 6 dB , the gain control current will drop by a factor of 2, and so the gain will drop 6dB. The output level at Vout will thus drop 12dB, giving us the desired 2 to 1 expansion.

Figure 4 shows the hookup for a compressor. This is essentially an expandor placed In the feedback loop of the op amp. The ΔG cell is set up to provide ac feedback only, so a separate dc feedback loop is provided by the two R_{dc} and C_{dc}. The values of R_{dc} will determine the dc bias at the output of the op amp. The output will bias to:
$V_{\text {out }} d c=1+\frac{R_{d c 1}+R_{d c 2}}{R_{4}} V_{\text {ret }}=\left(1+\frac{R_{d c} \text { tot }}{30 \mathrm{~K}}\right) 1.8 \mathrm{~V}$ The output of the expandor will bias up to: $V_{\text {out }} \mathrm{dc}=1+\frac{R_{3}}{R_{4}} V_{\text {ref }}=\left(1+\frac{20 \mathrm{~K}}{30 \mathrm{~K}}\right) 1.8 \mathrm{~V}=3.0 \mathrm{~V}$

The output will bias to 3.0 V when the internal resistors are used. External resistors may be placed in series with R_{3}, (which will affect the gain), or in parallel with R_{4} to raise the dc bias to any desired value.

CIRCUIT DETAILS-RECTIFIER

Figure 5 shows the concept behind the full wave averaging rectifier. The input current to the summing node of the op amp, $\mathrm{V}_{\text {in }} / \mathrm{R}_{1}$, is supplied by the output of the op amp. If we can mirror the op amp output current into a unipolar current, we will have an ideal rectifier. The output current is averaged by R_{5}, Cr , which set the averaging time constant, and then mirrored with a gain of 2 to become IG, the gain control current.

Figure 5

Figure 6 shows the rectifier circuit in more detail. The op amp is a one stage op amp. biased so that only one output device is on at a time. The non-inverting input, (the base of Q_{1}), which is shown grounded, is actually tied to the internal $1.8 \mathrm{~V} \mathrm{~V}_{\text {ref. }}$. The inverting input is tied to the op amp output, (the emitters of Q_{5} and Q_{6}, and the input summing resistor R_{1}. The single diode between

the bases of Q5 and Q6 assures that only one device is on at a time. To detect the output current of the op amp, we simply use the collector currents of the output devices Q_{5} and Q_{6}. Q_{6} will conduct when the input swings positive and Q_{5} conducts when the input swings negative. The collector currents will be in error by the α of Q_{5} or Q_{6} on negative or positive signal swings, respectively. IC's such as this have typical npn β 's of 200 and pnp β 's of 40 . The α 's of .995 and .975 will produce errors of $.5 \%$ on negative swings and 2.5% on positive swings. The 1.5% average of these errors yields a mere 13 dB gain error.

At very low input signal levels the bias current of Q_{2}, (typically 50 nA), will become significant as it must be supplied by Q_{5}. Another low level error can be caused by dc coupling into the rectifier. If an offset voltage exists between the $V_{\text {in }}$ input pin and the base of Q_{2}, an error current of $V_{o s} / R_{1}$ will be generated. A mere 1 mv of offset will cause an input current of 100 na which will produce twice the error of the input bias current. For highest accuracy, the rectifier should be coupled into capacitively. At high input levels the β of the pnp Q_{6} will begin to suffer, and there will be an increasing error until the circuit saturates. Saturation can be avoided by limiting the current into the rectifier input to 250μ a. If necessary, an external resistor may be placed in series with R_{1} to limit the current to this value. Figure 7 shows the rectifier accuracy vs input level at a frequency of 1 kHz .

At very high frequencies, the response of the rectifier will fall off. The rolloff will be more pronounced at lower input levels due to the increasing amount of gain required to switch between Q_{5} or Q_{6} conducting. The
rectifier frequency response for input levels of $0 \mathrm{dBm},-20 \mathrm{dBm}$, and -40 dBm is shown in Figure 8. The response at all three levels is flat to well above the audio range.

VARIABLE GAIN CELL

Figure 9 is a diagram of the variable gain cell. This is a linerarized two quadrant transconductance multiplier1.2. Q_{1}, Q_{2} and the op amp provide a predistorted drive signal for the gain control pair, Q_{3}, Q_{4}. The gain is controlled by IG_{G} and a current mirror provides the output current.

The op amp maintains the base and collector of Q_{1} at ground potential $\left(V_{\text {ref }}\right)$ by controlling the base of $\mathbf{Q}_{\mathbf{2}}$. The input current in ($=V_{\text {in }} / R_{2}$) is thus forced to flow through Q_{1} along with the current $I_{1}, s 0 I_{C 1}=I_{1}+l_{\text {in }}$. Since I_{2} has been set at twice the value of I_{1}. the current through Q_{2} is $l_{2}-\left(l_{1}+l_{\text {in }}\right)=l_{1}-l_{\text {in }}=$ Ic2. The op amp has thus forced a linear current swing between Q_{1} and Q_{2}, by providing the proper drive to the base of Q_{2}. This drive signal will be linear for small signals, but very non-linear for large signals, since it is compensating for the nonlinearity of the differential pair $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ under large signal conditions.
The key to the circuit is that this same predistorted drive signal is applied to the gain control pair Q_{3} and Q_{4}. When two differential pairs of transistors have the same signal applied, their collector current ratios will be identical, regardless of the magnitude of the currents. This gives us:

$$
\frac{I_{C 1}}{I_{C 2}}=\frac{I_{C 4}}{I_{C 3}}=\frac{I_{1}+I_{\text {in }}}{I_{1}-I_{\text {in }}}
$$

plus the relationships $\mathrm{IG}_{\mathrm{G}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{C}}$ and $\mathrm{I}_{\text {out }}=$ IC4-Ic3 will yield the multiplier transfer function,

$$
I_{\text {out }}=\frac{I_{G}}{I_{1}} I_{\text {in }}=\frac{V_{\text {in }}}{R_{2}} \frac{I_{G}}{I_{1}}
$$

this equation is linear and temperature insensitive, but it assumes ideal transistors.

If the transistors are not perfectly matched, a parabolic, non-linearity is generated, which results in 2nd harmonic distortion. Figure 10 gives an indication of the maginitude of the distortion caused by a given input level and offset voltage. The distortion is linearly proportional to the magnitude of the offset and the input level. Saturation of the gain cell occurs at a +8 dBm level. At a nominal operating level of 0 dBm , a 1 mv offset will yield $.34 \%$ of second harmonic distortion. Most circuits are somewhat better than this, which means our overall offsets are typically about $1 / 2 \mathrm{mv}$. The distortion is not affected by the magnitude of the gain control current, and it does not increase as the gain is changed. This second harmonic distortion could be eliminated by making perfect transistors, but since that would be difficult, we have had to resort to other methods. A trim pin has been provided

to allow trimming of the internal offsets to zero, which effectively eliminated second harmonic distortion. Figure 11 shows the simple trim network required.

Figure 12 shows the noise performance of the $\Delta \mathbf{G}$ cell. The maximum output level before clipping occurs in the gain cell is plotted along with the output noise in a 20 kHz bandwidth. Note that the noise drops as the gain is reduced for the first 20 dB of gain reduction. At high gains, the signal to noise ratio is 90 dB , and the total dynamic range from maximum signal to minimum noise is 110 dB .
Control signal feed-through is generated in the gain cell by imperfect device matching and mismatches in the current sources I_{1} and I_{2}. When no input signal is present, changing IG will cause a small output signal. The distortion trim is effective in nulling out any control signal feed-through, but in general, the null for minimum feed-through will be different than the null in distortion. The control signal feed-through can be trimmed independently of distortion by tying a current source to the ΔG input pin. This effectively trims I_{1}. Figure 13 shows such a trim network.

OPERATIONAL AMPLIFIER

The main op amp shown in the chip block diagram is equivalent to a 741 with a 1 MHz bandwidth. Figure 14 shows the basic circuit. Split collectors are used in the input pair to reduce gm_{m}, so that a small compensation capacitor of just 10pf may be used. The output stage, although capable of output currents in excess of 20ma., is biased for a low quiescent current to conserve power. When driving heavy loads, this leads to a small amount of crossover distortion.

RESISTORS

Inspection of the gain equations in Figure 3 and 4 will show that the basic compressor and expandor circuit gains may be set entirely by resistor ratios and the internal voltage reference. Thus, any form of resistors that match well would suffice for these
simple hookups, and absolute accuracy and temperature coefficient would be of no importance. However, as one starts to modify the gain equation with external resistors, the internal resistor accuracy and tempco become very significant. Figure 15 shows the effects of temperature on the diffused resistors which are normally used in integrated circuits, and the ion implanted resistors which are used in this circuit. Over the critical $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, there is a 10 to 1 improvement in drift from a 5% change for the diffused resistors, to a . 5% change for the implemented resistors. The implanted resistors have another advantage in that they can be made $1 / 7$ the size of the diffused resistors due to the higher resistivity. This saves a significant amount of chip area.

*For additional information, consult the Applications Section.

PROGRAMMABLE ANALOG COMPANDOR

DESCRIPTION

The NE572 is a dual channel, high periormance gain control circuit in which either channel may be used for dynamic range compression or expansion Each channe! has a full wave rectifier to detect the average value of input signal; a linearized, temperature compensated variable gain cell ($\Delta \mathrm{G}$) and a dynamic time constant buffer. The buffer permits independent control of dynamic attack and recovery time with minimum external components and improved low frequency gain control ripple distortion over previous compandors.
The NE572 is intended for noise reduction in high performance audio systems. It can also be used in a wide range of communication systems and video recording applications.

FEATURES

- Independent control of attack and recovery time.
- Improved low frequency gain control :ipple
- Complementary gain compression and expansion with external Op Amp
- Wide dynamic range - greater than 110 dB
- Temperature compensated gain control
- Low distortion gain cell
- Low noise- $6 \mu \mathrm{~V}$ typical
- Wide supply voltage range-6V-22V
- System level adjustable with external components.

APPLICATIONS

- Dynamic noise reduction sysiem
- Voltage control amplifier
- Stereo expandor
- Automatic level control
- High level limiter
- Low level noise gate
- State variable filter

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT	
$V_{C C}$	Supply voltage	22	VDC
T_{A}	Operating temperature range	01070	${ }^{\circ} \mathrm{C}$
P_{D}	Power dissipation	500	mW

BL.OCK DIAGRAM

Note:

1. Supplied only in large SO (Small Outline) package.

ELECTRICAL CHARACTERISTICS
Standard Test Conditions (unless otherwise noted) $V_{C C}=15 \mathrm{~V} T A=25^{\circ} \mathrm{C}$ Expandor mode (see test circuit) Input signals at unity gain level $(\mathrm{OdB})=100 \mathrm{mV}$ RMS at $1 \mathrm{KHz}, \mathrm{V}_{1}=\mathrm{V}_{2}, \mathrm{R}_{2}=3.3 \mathrm{~K}, \mathrm{R}_{3}=17.3 \mathrm{~K}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
$V_{C C}$	Supply voltage			6		22	VDC
ICC	Supply current	No Signal			6	mA	
	Internal voltage reference		2.3	2.5	2.7	VDC	
$\begin{aligned} & \text { THD } \\ & \text { THD } \\ & \text { THD } \end{aligned}$	(untrimmed) (trimmed) (trimmed)	$\begin{aligned} & 1 \mathrm{kHz} \quad C_{A}=1.0 \mu \mathrm{~F} \\ & 1 \mathrm{kHz} \quad C_{R}=10 \mu \mathrm{~F} \\ & 100 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} .2 \\ .05 \\ .25 \end{gathered}$	1.0	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$	
No signal output noise		Input to V_{1} and V_{2} grounded ($20-20 \mathrm{kHz}$)		6	25	uV	
	DC level shift (untrimmed)	Input change from no signal to 100 mV RMS		± 20	± 50	MV	
	Unity gain level		-1	0	+1	dB	
	Large signal distortion	$V_{1}=V_{2}=400 \mathrm{mV}$		0.7	3.0	\%	
Tracking error (measured relative to value at unity gain output) $=$ $\left[V_{O}-V_{O}\right.$ (unity gain)] $d B-V_{2}(d B m)$		Rectifier input $\begin{aligned} & V_{2}=+6 d B, V_{1}=O d B \\ & V_{2}=-30 d B, V_{1}=O d B \end{aligned}$		$\begin{aligned} & \pm .2 \\ & \pm .5 \end{aligned}$	$\begin{gathered} -1.5 \\ +.8 \end{gathered}$	dB	
	Channel crosstalk	200 mV RMS into channel A, measured output on channel B	60			dB	
	Power supply rejection ratio	120 Hz		70		dB	

TEST CIRCUIT

AUDIO SIGNAL PROCESSING IC COMBINES VCA AND FAST AT-TACK-SLOW RECOVERY LEVEL SENSOR

In high performance audio gain control applications it is desirable to independently control the attack and recovery time of the gain control signal. This is true, for example, in compandor applications for noise reduction. In high end systems the input signal is usually split into two or more frequency bands to optimize the dynamic behavior for each band. This reduces low frequency distortion due to control signal ripple, phase distortion, high frequency channel overload and noise modulation. Because of the expense in hardware, multiple band signal processing up to now was limited to protessional audio applications

With the introduction of the Signetics NE572 this high performance noise reduction concept becomes feasible for consumer hi fi applications. The NE572 is a dual channel gain control IC. Each channel has a linearized, temperature compensated gain cell and an improved level sensor. In conjunction with an external low noise op amp for current to voltage conversion, the VCA features low distortion, low noise and wide dynamic range. The novel level sensor which provides gain control current for the VCA gives lower gain control ripple and independent control of fast attack, slow recovery dynamic response. An attack capacitor CA with an internal 10K resistor RA defines the attack time TA. The recovery time TR of a tone burst is defined by a recovery capacitor CR and an internal 10 K resistor R_{R}. Typical attack time of 4MS for the high frequency spectrum and 40MS for the low frequency band can be obtained with $.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ attack capacitors respectively. Recovery time of 200 MS can be obtained with a $4.7 \mu \mathrm{~F}$ external capacitor. With the recovery capacitor added in the level sensor, the gain control ripple for low frequency signals is much lower than that of a simple RC ripple filter. As a result the residual third harmonic distortion of low frequency signal in a two quad transconductance amplifier is greatly improved. With the $1.0 \mu \mathrm{~F}$ attack capacitor and $4.7 \mu \mathrm{~F}$ recovery capacitor for a 100 HZ signal the third harmonic distortion is improved by more than 10 db over the simple RC ripple filter with a single $1.0 \mu \mathrm{~F}$ attack and recovery capacitor, while the attack time remains the same.

The NE572 is assembled in a standard 16 pin dual in line plastic package and in oversized SO (Small Outline) package. It operates over wide supply range from 6 V to 22 V . Supply current is less than 6mA. The NE572 is designed for consumer application over a temperature
range $0-70^{\circ} \mathrm{C}$. The SA572 is intended for applications from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

NE572 BASIC APPLICATIONS

Description

The NE572 consists of two linearized, temperature compensated gain cells (JG) each with a full-wave rectifier and a buffer amplifier as shown in the block diagram. The two channels share a 2.5 V common bias reference derived from the power supply but otherwise operate independently. Because of inherent low distortion, low noise and the capability to linearize large signals, a wide dynamic range can be obtained. The buffer amplifiers are provided to permit control of attack time and recovery time independent of each other. Partitioned as shown in the block diagram, the IC allows flexibility in the design of system levels that optimize DC shift, ripple distortion, tracking accuracy and noise floor for a wide range of application requirements.

Gain Cell

Figure 1 shows the circuit configuration of the gain cell. Bases of the differential pairs $Q_{1}-Q_{2}$ and $Q_{3}-Q_{4}$ are both tied to the output and inputs of OPA A_{1}. The negative feedback through Q_{1} holds the $V_{B E}$ of Q_{1} Q_{2} and the $V_{B E}$ of $Q_{3}-Q_{4}$ equal. The following relationship can be derived from
the transistor model equation in the forward active region.

$$
\Delta V_{\mathrm{BE}_{\mathrm{Q}_{3}-Q_{4}}}=\Delta_{\mathrm{BE}_{\mathrm{Q}_{1}-Q_{2}}}
$$

$$
\begin{aligned}
& \left(V_{B E}=V_{T} I_{n} I C / I S\right) \\
& V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}+\frac{1}{2} I_{O}}{I_{S}}\right)-V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}-\frac{1}{2} I_{O}}{I_{S}}\right) \\
& =V_{T} I_{n}\left(\frac{I_{1}+\operatorname{lin}}{I_{S}}\right)-V_{T} I_{n}\left(\frac{I_{2}-I_{1}-\ln }{I_{S}}\right) \\
& \text { where } I_{n}=\frac{V_{\text {in }}}{R_{1}} \\
& R_{1}=68 \mathrm{~K} \\
& I_{1}=140 \mu \mathrm{~A} \\
& I_{2}=280 \mu \mathrm{~A}
\end{aligned}
$$

${ }^{1} \mathrm{O}$ is the differential output current of the gain cell and I_{G} is the gain control current of the gain cell.

If all transistors Q_{1} through Q_{4} are of the same size, equation (2) can be simplfied to:

$$
\begin{equation*}
I_{O}=\frac{2}{I_{2}} \cdot \operatorname{lin} \cdot I_{G}-\frac{1}{I_{2}}\left(I_{2}-21_{1}\right) \cdot I_{G} \tag{3}
\end{equation*}
$$

The first term of eqn. (3) shows the multiplier relationship of a linearized two quadrant transconductance amplifier. The second term is the gain control feed through due to the mismatch of devices. In the design this

has been minimized by large matched devices and careful layout. Offset voltage is caused by the device mismatch and it leads to even harmonic distortion. The offset voltage can be trimmed out by feeding a current source within $\pm 25 \mu \mathrm{~A}$ into the THD trim pin. The residual distortion is third harmonic distortion and is caused by gain control ripple. In a compandor system, available control of fast attack and slow recovery improves rip. ple distortion significantly. At the unity gain level of 100 mV , the gain cell gives THD (total harmonic distortion) of . 17% TYP. Output noise with no input signals is only $6 \mu \mathrm{~V}$ in the audio spectrum ($10 \mathrm{HZ}-20 \mathrm{KHZ}$). The output current lo must feed the virtual ground input of an operational amplifier with a resistor from output to inverting input. The non-inverting input of the operational amplifier has to be biased at VREF if the output current I O is de coupled.

Rectifier

The rectifier is a full-wave design as shown in Figure 2. The input voltage is converted to current through the input resistor R2 and turns on either Q5 or Q6 depending on the signal polarity. Deadband of the voltage to current converter is reduced by the loop gain of the gain block A2. If AC coupling is used, the rectifier error comes only from input bias current of gain block A2. The input bias current is typically about 70 nA . Frequency response of the gain block A2 also causes second order error at high frequency. The collector current of Q6 is mirrored and summed at the collector of Q5 to form the full wave rectified output current I_{R}. The rectifier transfer function is
$\frac{V_{\text {IN }}-V_{\text {REF }}}{R_{2}}$
If Vin is A.C. coupled, then the equation will be reduced to:

$$
I_{R A C}=\frac{\operatorname{Vin}(A V G)}{R_{2}}
$$

The internal bias scheme limits the maximum output current I_{R} to be around $300 \mu \mathrm{~A}$. Within a $\pm 1 \mathrm{~dB}$ error band the input range of the rectifier is about 52 dB .

Buffer Amplifier

In audio systems, it is desirable to have fast attack time and slow recovery time for a tone burst input. The fast attack time reduces transient channel overload but also causes low frequency ripple distortion. The low frequency ripple distortion can be improved with the slow recovery time. If different attack times are implemented in corresponding frequency spectrums in a split band audio system, high quality performance can be achieved. The buffer amplifier is designed to make this feature available with minimum external components. Refer-

ring to Figure 3, the rectifier output current is mirrored into the input and output of the unipolar buffer amplifier A_{3} through Q_{8}, Q_{9} and Q_{10}. Diodes D_{11} and D_{12} improve tracking accuracy and provide common mode bias for A_{3}. For a positive going input signal, the buffer amplifier acts like a volt. age follower. Therefore, the output impedance of A_{3} makes the contribution of ca . pacitor CR to attack time inalgnificant. Neglecting diode impedance the gain $\mathrm{Ga}(\mathrm{t})$ for ΔG can be expressed at follows.

$$
\begin{aligned}
& \tau A=R_{A} \cdot C A=10 K \cdot C A \quad G_{a_{N L}}=\text { Final Gain }
\end{aligned}
$$

where $T A$ is the attack time constant and RA is a 10 K internal resistor. Diode D_{15} opens the feedback loop of A_{3} for a negative going signal if the value of capacitor CR is larger than capacitor CA. The recovery time depends only on CR $\cdot R_{R}$. If the diode impedance is assumed negligible, the dynamic gain $G_{R}(t)$ for ΔG is expressed as follows.

$$
\begin{aligned}
& G_{R}(t)=\left(G_{R} I N T-G_{R} F N L\right) e^{\frac{-t}{\gamma_{R}}}+G_{R F N L} \\
& \tau R=R_{R} \cdot C R=10 K \cdot C R
\end{aligned}
$$

where τR is the recovery time constant and R_{R} is a 10 K internal resistor. The gain control current is mirrored to the gain cell through Q_{14}. The low level gain errors due to input bias current of A_{2} and A_{3} can be trimmed through the tracking trim PIN into A_{3} with a current source of $\pm 3 \mu \mathrm{~A}$.

Basic Expandor

Figure 4 shows an application of the circuit as a simple expandor. The gain expression of the aystem is given by

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{2}{I_{1}} \cdot \frac{R_{3} \cdot V_{I N}(A V G)}{R_{2} \cdot R_{1}\left(I_{1}=140 \mu A\right)} \tag{5}
\end{equation*}
$$

Both the resistors R_{1} and R_{2} are tied to internal summing nodes. R_{1} is a 6.8 K internal resistor. The maximum input current into the gain cell can be as large as $140 \mu \mathrm{~A}$. This corresponds to a voltage level of $140 \mu \mathrm{~A}$. $6.8 \mathrm{~K}=952 \mathrm{mV}$ peak. The input peak current into the rectifier is limited to $300 \mu \mathrm{~A}$ by the internal bias system. Note that the value of R_{1} can be increased to accommodate higher input level. R_{2} and R_{3} are external resistors. It is easy to adjust the ratio of R3/R2 for desirable system voltage and current levels. A small R2 results in higher gain control current and smaller static and dynamic
tracking error. However, an impedance buffor A_{1} may be necessary if the indut is voltage drive with large source impedance.

The gain cell output current feeds the summing node of the external OPA $A_{2} . R_{3}$ and A_{2} convert the gain cell output current to the output voltage. In high performance applications, A_{2} has to be low noise, high speed and wide band so that the high performance output of the gain cell will not be degraded. The non-inverting input of A_{2} can be biased at the low noise internal reference PIN 6 or 10. Resistor R_{4} is used to biased up the output DC level of A_{2} for maximum swing. The output DC level of A_{2} is given by
$V_{O D C}=V_{R E F}\left(1+\frac{R_{3}}{R_{4}}\right)-V_{B} \frac{R_{3}}{R_{4}}$
V_{B} can be tied to a regulated power supply for a dual supply system and be grounded for a single supply system. CA sets the attack time constant and CR sets the recovery time constant.

BASIC EXPANDOR SCHEMATIC

Figure 4

Basic Compressor

Figure 5 shows the hook-up of the circuit as a compressor. The IC is put in the feedback loop of the OPA A_{1}. The system gain expression is as follows:

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\left(\frac{l_{1}}{2} \cdot \frac{R_{2} \cdot R_{1}}{R_{3} \cdot V_{\text {IN }}(A V G)}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

RDC 1, RDC2, and CDC form a dc feedback for A_{1}. The output $D C$ level of A_{1} is given by

$$
\begin{align*}
v_{O D C}= & v_{R E F}\left(1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right) \\
& -v_{B} \cdot\left(\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right) \tag{8}
\end{align*}
$$

The zener diodes D_{1} and D_{2} are used for channel overload protection.

Basic Compandor System

The above basic compressor and expandor can be applied to systems such as tape/disc noise reduction, digital audio, bucket brigade delay lines. Additional system design techniques such as bandlimiting, band splitting, pre-emphasis, de-emphasis and equalization are easy to incorporate. The IC is a versatile functional block to achieve a high performance audio system. Figure 6 shows the system level diagram for reterence.
For additional information, refer to the Applications Section.

*For additional information, consult the Applications Section.

Double Balanced Mixer And Oscillator

Linear Products

DESCRIPTION

The SA/NE602 is a low-power VHF monolithic double balanced mixer with input amplifier, on-board oscillator, and voltage regulator. It is intended for high performance, low power communication systems. The guaranteed parameters of the SA602 make this device particularly well suited for cellular radio applications. The mixer is a "Gilbert cell" multiplier configuration which typically provides 18 dB of gain at 45 MHz . The oscillator will operate to 200 MHz . It can be configured as a crystal oscillator, a tuned tank oscillator, or a buffer for an external L.O. The noise figure at 45 MHz is typically less than 5 dB . The gain, intercept performance, low-power and noise characteristics make the SA/NE602 a superior choice for high-performance battery operated equipment. It is available in an 8lead dual-in-line plastic package and an 8 -lead SO (surface-mount miniature package).

FEATURES

- Low current consumption: 2.4 mA typical
- Excellent noise figure: < 5.0 dB typical at 45 MHz
- High operating frequency
- Excellent gain, intercept and sensitivity
- Low external parts count; suitable for crystal/ceramic filters
- SA602 meets cellular radio specifications

APPLICATIONS

- Cellular radio mixer/oscillator
- Portable radio
- VHF transceivers
- RF data links
- HF/VHF frequency conversion
- Instrumentation frequency conversion
- Broadband LAN's

BLOCK DIAGRAM

ORDERING CODE

DESCRIPTION	ORDER CODE
Dual-in-Line, Plastic; 0 to $+70^{\circ} \mathrm{C}$	NE602N
Dual-in-Line, Small Outline; 0 to $+70^{\circ} \mathrm{C}$	NE602D
Cerdip; 0 to $70^{\circ} \mathrm{C}$	NE602FE
Dual-in-Line, Plastic; -40 to $+85^{\circ} \mathrm{C}$	SA602N
Dual-in-Line, Small Outline; -40 to $+85^{\circ} \mathrm{C}$	SA602D
Cerdip; -40 to $+85^{\circ} \mathrm{C}$	SA602FE

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Maximum operating voltage	9	V
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature	0 to +70	
NE602	-40 to +85	${ }^{\circ} \mathrm{C}$
SA602	${ }^{\circ} \mathrm{C}$	

AC/DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Figure 1

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Power supply voltage range		4.5		8.0	V
DC current drain			2.4	2.8	mA
Input signal frequency			500		MHz
Oscillator frequency			200		MHz
Noise figured at 45 MHz			5.0	6.0	dB
Third order intercept point	$\begin{aligned} & R F_{I N}=-45 d B m: f_{1}=45.0 \\ & f_{2}=45.06 \end{aligned}$		-15	-17	dBm
Conversion gain at 45 MHz		14			dB
RF input resistance		1.5			$k \Omega$
RF input capacitance			3	3.5	pF
Mixer output resistance	$($ Pin 4 or 5$)$		1.5		$\mathrm{k} \Omega$

TEST CONFIGURATION

DESCRIPTION OF OPERATION
The SA/NE602 is a Gilbert cell, an oscillator/ buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.

The SA/NE602 is designed for optimum low power performance. When used with the SA604 as a 45 MHz cellular radio 2 nd IF and demodulator, the SA602 is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third order intercept is typically -15 dBm (that's approximately +5 dBm output intercept because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LAN's or other closed systems where transmission levels are high, and small signal or signal-to-noise issues not critical, the input to the NE602 should be appropriately scaled.

Besides excellent low power performance well into VHF, the SA/NE602 is designed to be flexible. The input, output, and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.

The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent $A C$ input impedence is approximately $1.5 \mathrm{~K} \| 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single ended output configurations and a balanced output.
The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank " Q " and required drive levels. The higher the " Q '" of the tank or the smaller the required drive, the higher the

Figure 2. Equivalent Circuit

Figure 3. Input Configuration

a. Single-Ended Ceramic Filter

c. Single-Ended IFT

b. Single-Ended Crystal Filter
d. Balanced Output

Figure 4. Output Configuration

a. Colpitts Crystal Oscillator (Overtone Mode)

b. Colpitts L/C Tank Oscillator

c. Hartley L/C Tank Oscillator

Figure 5. Oscillator Circuits

Figure 6. Colpitts Oscillator Suitable For Synthesizer Applications And Typical Buffers

TEST CONFIGURATION

Figure 7. Typical Application For Cellular Radio

Figure 8. SA/NE602 $3^{\text {RD }}$ Order Intermod And 1dB Compression Point Performance

Figure 9. Input Third Order Intercept Point Vs VCC

Figure 10. Third Order Intercept Point vs Temperature

Low Power FM I.F. System

DESCRIPTION

The SAINE604 is a monolithic low power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting. logarithmic signal strength indicator, and voltage regulator. The SA/NE604 is available in a 16 lead dual-in-line plastic package and 16 lead SO (surface mounted miniature package).

FEATURES

- Low power consumption: 2.3mA typical
- Logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Separate data output
- Audio output with muting
- Low external count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.27 \mu \mathrm{~V}$ into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at $\mathbf{4 5 5 k H z}$

APPLICATIONS

- Cellular Radio FM IF
- Communications receivers
- Intermediate frequency amplification and detection up to 10.7 MHz
- RF level meter
- Spectrum analyzer

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

SYMBOL AND PARAMETER	RATING	UNIT
Maximum operating voltage	9	V
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature		
NE604	0 to +70	${ }^{\circ} \mathrm{C}$
SA604	-40 to +85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+6$ volts, unless otherwise stated.

SYMBOL AND PARAMETER	SA/NE604		UNITS	
	Min	Typ		
Power supply voltage range	4.5	-	8.0	V
D.C. current drain	-	2.3	2.7	mA
I.F. frequency	-	-	10.7	MHz
RSSI range	TBD	90	-	dB
RSSI accuracy	-	± 1.5	-	dB
I.F. input impedance	1.5	-	-	$\mathrm{k} \Omega$
I.F. output impedance	1.0	-	-	$\mathrm{k} \Omega$
Limiter input impedance	1.5	-	-	$\mathrm{k} \Omega$
Quadrature detector data output impedance	50	-	-	$\mathrm{k} \Omega$
Muted audio out impedance	-	50	-	$\mathrm{k} \Omega$
Mute - switch input threshold (on)				
(off)	1.7	-	-	V

CIRCUIT DESCRIPTION

The SA/NE604's IF amplifier has a gain of 30 dB , bandwidth of 15 MHz , with an input impedance of $1.5 \mathrm{~K} \Omega$ and an output impedance of $1.0 \mathrm{~K} \Omega$. The limiter has a gain of 60 dB , bandwidth of 15 MHz , and an input impedance of $1.5 \mathrm{~K} \Omega$. An interstage filter between the IF Amplifier and Limiter is recommended to reduce wideband noise. The quadrature detector input (pin 8) impedance is $40 \mathrm{~K} \Omega$.

The data (unmuted output) and audio (muted output) both have $50 \mathrm{~K} \Omega$ output impedance and their detected signals are 180 degrees out of phase with each other. The mute input (pin 3) has a very high impedance and is compatible with three and five volt CMOS and TTL levels. Little or no DC level shift occurs after muting when the quadrature detector is adjusted to the IF center frequency. Muting will attenuate the audio signal by more than 60 dB and no voltage spikes will be generated by muting.

The logarithmic signal strength indicator is a current source output with maximum source current of 50 microamps. The signal strength indicator's transfer function is approximately 10 microamp per 20 dB and is independent of IF frequency. The interstage filter must have a 6 dB insertion loss to optimize slope linearity.
Pins $1,16,15,14,12,11,10,9$, and 8 do not need external bias and should not have a DC path.

TYPICAL APPLICATION

Double Balanced Mixer And Oscillator

Linear Products

DESCRIPTION

The NE612 is a low-power VHF monolithic double balanced mixer with onboard oscillator and voltage regulator. It is intended for low cost, low power communication systems with signal frequencies to 500 MHz and local oscillator frequencies as high as 200 MHz . The mixer is a ''Gilbert cell' multiplier configuration which provides gain of 14 dB or more at 49 MHz .
The oscillator can be configured for a crystal, a tuned tank operation, or as a buffer for an external L.O. Noise figure at 49 MHz is typically below 6 dB and makes the device well suited for high performance cordless telephone. The low power consumption makes the NE612 excellent for battery operated equipment. Networking and other communications products can benefit from very low radiated energy levels within systems. The NE612 is available in an 8- lead dual-in-line plastic package and an 8lead SO (surface mounted miniature package).

FEATURES

- Low current consumption
- Low cost
- Operation to 500 MHz
- Low radiated energy
- Low external parts count; suitable for crystal/ceramic filter
- Excellent sensitivity, gain, and noise figure

APPLICATIONS

- Cordless telephone
- Portable radio
- VHF transceivers
- RF data links
- Sonabuoys
- Communications receivers
- Broadband LAN's
- HF and VHF frequency conversion

PIN CONFIGURATION

BLOCK DIAGRAM

BD01801s

ORDERING CODE

DESCRIPTION	ORDER CODE
Dual-in-line, plastic; 0 to $+70^{\circ} \mathrm{C}$	NE612N
Dual-in-line, small outline; 0 to $+70^{\circ} \mathrm{C}$	NE612D

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Maximum operating voltage	9	V
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature	0 to +70	${ }^{\circ} \mathrm{C}$

AC/DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Figure 1

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Power supply voltage range		4.5		8.0	V
DC current drain			2.4	2.8	mA
Input signal frequency			500		MHz
Oscillator frequency			200		MHz
Noise figured at 49 MHz			5.0		dB
Third order intercept point at 49 MHz	$R F_{\text {IN }}=-45 \mathrm{dBm}$		-15		dBm
Conversion gain at 49 MHz		14			dB
RF input resistance		1.5			$k \Omega$
RF input capacitance			3		pF
Mixer output resistance	(Pin 4 or 5)		1.5		$\mathrm{k} \Omega$

TEST CONFIGURATION

Figure 1

DESCRIPTION OF OPERATION

The NE612 is a Gilbert cell, an oscillator/ buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.
The NE612 is designed for optimum low power performance. When used with the NE614 as a 49 MHz cordless telephone system, the NE612 is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third order intercept is typically -15 dBm (that's approximately +5 dBm output intercept because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LAN's or other closed systems where transmission levels are high, and small signal or signal-to-noise issues not critical, the input to the NE612 should be appropriately scaled.

Besides excellent low power performance well into VHF, the SA612 is designed to be flexible. The input, output, and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.

The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent AC input impedance is approximately $1.5 \mathrm{~K} \| 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single-ended output configurations and a balanced output.

The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank "Q" and required drive levels. The higher the Q of the tank or the smaller the required drive, the higher the

Figure 2. Equivalent Circuit

Figure 3. Input Configuration

TEST CONFIGURATION

Fig:are 7. Typical Application For $46 / 49 \mathrm{MHz}$ Cordless Telephone

Figure 8. SA/NE612 Third Order Intermod And 1dB Compression Point Performance

Figure 11

Figure 9. Input Third Order Intercept Point vs Vcc

Figure 10. Third Order Intercept Point vs Temperature

Low Power FM IF System

Linear Products

DESCRIPTION

The NE614 is a monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic signal strength indicator, and voltage regulator. The NE614 is available in a 16 lead dual-in-line plastic package and 16lead SO (surface-mounted miniature package).

FEATURES

- Low-power consumption
- Logarithmic signal strength indicator
- Separate data output
- Audio output with muting
- Low external count; suitable for crystal/ceramic filters
- Excellent sensitivity

APPLICATIONS

- Cellular Radio FM IF
- Communications receivers
- Intermediate frequency amplification and detection up to 15MHz
- RF level meter
- Spectrum analyzer
- Instrumentation
- Cordless telephone
- Remote control

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING CODE

DESCRIPTION	ORDER CODE
Plastic; 0 to $+70^{\circ} \mathrm{C}$	NE614N
Plastic; SO (surface-mounted miniature package); 0 to $+70^{\circ} \mathrm{C}$	NE614D

ABSOLUTE MAXIMUM RATINGS

SYMBOL AND PARAMETER	RATING	UNIT
Maximum operating voltage	9	V
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature NE614	0 to +70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+6 \mathrm{~V}$ unless otherwise stated.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power supply voltage range		4.5		8.0	V
DC current drain				3.0	mA
Mute switch input threshold (on)		1.7			V
(off)			1.0	V	

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$ unless otherwise stated. RF frequency $=455 \mathrm{kHz}$; RF level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with +8 kHz peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input limiting - 3dB	Test at pin 16		-90	-80	dBm
AM rejection	80% AM 1 kHz	30			dB
Recovered audio level	After C filter and de-emphasis capacitor	80	100		$\mathrm{mV}_{\text {rms }}$
Recovered data level		250	350		$\mathrm{mV} \mathrm{r}_{\text {rms }}$
SINAD sensitivity	RF level - 97 dBm	8	12		dB
THD	No modulation	-35			dB
Signal-to-noise ratio		1.5			dB
IF input impedance		1.0			$\mathrm{k} \Omega$
IF output impedance	1.5			$\mathrm{k} \Omega$	
Limiter input impedance		50			$\mathrm{k} \Omega$
Quadrature detector data output impedance			50		$\mathrm{k} \Omega$
Muted audio output impedance					

TYPICAL APPLICATION

TEST SET-UP

TC02470S
C1 $10 \mathrm{nF}+80-20 \% 63 \mathrm{~V}$ K10000-Z5V Ceramic
C2 $100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C3 $100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C4 $100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C5 $100 \mathrm{nF} \pm 10 \%$ 50V Polyester
C6 $10 \mathrm{pF} \pm 2 \% 100 \mathrm{~V}$ NPO Ceramic
C7 $100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C8 $100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C9 $15 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$ Polyester
C10 150pF $\pm 2 \%$ 100V N1500 Ceramic
C11 $1 \mathrm{nF} \pm 10 \% 100 \mathrm{~V}$ K2000-Y5P Ceramic
$\mathrm{C} 126.8 \mu \mathrm{~F} \pm 20 \% 25 \mathrm{~V}$ Tantalum
F1 455 kHz Ceramic Filter Murata SFG455A3
F2 455 kHz IF Filter A2549
R1 $51 \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film
R2 $1500 \Omega \pm 1 \% \quad 1 / 4 \mathrm{~W}$ Metal Film
R3 $1500 \Omega \pm 5 \% ~ 1 / 8 \mathrm{~W}$ Carbon Composition
R4 $100 \mathrm{k} \Omega \pm 1 \% \quad 1 / 4 \mathrm{~W}$ Metal Film
Figure 1. NE614 Test Circuit And Parts List

Description of Operation

The NE614 is comprised of five subsystems for IF signal processing. These subsystems, two IF limiting amplifiers, quadrature detector, audio mute, and logarithmic signal strength, can be configured to satisfy many highperformance or low-power systems objectives. Internal temperature compensated bias regulation completes the circuitry.
Figure 2 shows the equivalent circuits of the NE614.

Limiting Amplifiers

The NE614 has two independent limiting IF amplifiers. The first has a typical gain of 30 dB . The second typically has 60 dB gain. Both have 1.5 K nominal input impedance and 15 MHz bandwidth. The output impedance of the first limiter is approximately $1 \mathrm{k} \Omega$. These impedances permit direct interface with popular ceramic filters such as the SFU455. On the surface, the 1 K output of the first limiter would not seem correct. However, approximately 6 dB insertion loss is required between
limiter stages to optimize the linearity of the signal strength indicator. The impedance mismatch has little effect on passband. Use of an interstage filter reduces wideband noise. A DC blocking capacitor or L/C filter can also be used.
As the signal frequency increases, the 90 dB total gain can become a source of instability. Figure 3 shows the limiters as a closed loop system with stray capacitance and the equivalent $A C$ input impedance setting the loop gain.

Figure 3. Considerations For Stability

The equivalent $A C$ attenuation factor from the output to the input must be greater than 90 dB or oscillation can occur. The input impedance of the device is nominally 1.5 K . The stray layout capacitance is a frequency-dependent impedance so that as the frequency of operation or the value of stray capacitance increases, the output-to-input attenuation factor decreases. Keep stray capacitance low by using good RF layout technique. Sockets should be avoided above 455 kHz .

Good RF layout is the proper way to avoid instability. However, if system constraints require, stability can be achieved by only using one of the limiting amplifiers, or by adding a resistance, $R_{I N}$, which will increase the attenuation factor.

Adding an input resistor is an easy way to reduce the attenuation factor, but may make correct termination of interstage filters difficult or impossible. At 455 kHz instability should not be a problem if reasonable RF layout is used. Figure 4 a indicates a 455 kHz circuit configuration which should serve as a reasonable starting point for many applications. This circuit is configured for $46 / 49 \mathrm{MHz}$ cordless telephone.

Quadrature Detector

The detector of the NE614 is a four quadrant multiplier of the Gilbert cell type. It can be used for frequency or amplitude demodulation. Figure 4b indicates a typical quadrature FM configuration. Fully limited in-phase signal is applied to the multiplier internally. 90° phase shift is accomplished with the L/C tuned circuit connected directly to Pin 8 and
capacitively to Pin 9. Because of the DC bias of the NE614, the phase shift network must be returned to ground through a low impedance capacitor. Recovered signal is continuously available at Pin 7 or on a switched basis at Pin 6.
Table 1. System Parameters as Applied to Figure 4A

$\Delta \omega$	$=2 \pi * 8 \mathrm{kHz}$
ω_{0}	$=2 \pi * 455 \mathrm{kHz}$
CP	$=180 \mathrm{pF}$
RPU	$=233 \mathrm{~K}$
RPL	$=40 \mathrm{~K}$
LP	$=644 \mu \mathrm{H}$
Q	≈ 20

Figure 5. General Equations For Quadrature Coil

The quadrature coil or crystal/ceramic discriminator affects three system parameters: Bandwidth, linearity, and detected signal amplitude. Figure 6 shows three quadrature curves.
Curve A has the most narrow bandwidth and high peak-to-peak output versus frequency deviation corresponding to a high Q netvork. Curve C is very low Q with good linearity and shows how very large deviations can be processed. Curve B shows how the quadrature network can cause non-linearity in the detected output. A typical loaded Q for the 455 kHz quadrature coil of Figure 4 is 20. Using the test circuit of Figure 4 with an input of -47 dBm , the recovered audio is typically $90 \mathrm{mV} \mathrm{V}_{\mathrm{rms}}$ with -35 dB distortion.

While the NE614 was designed principally for FM applications, the detector can be used for synchronous amplitude demodulation if the carrier is limited through the internal circuitry and AGC'd external to the device. The AGC'd signal is applied to Pin 8 instead of a quadrature signal. The signal strength indicator can control AGC. A low pass filter on the output completes the demodulator. Figure 7 shows the equivalent circuit.

Figure 7. Synchronous AM Detection

Figure 8. NE614 Indicated Gain vs Temperature and Voltage

OP01490S
Figure 10. NE614 AM Rejection vs Temperature

Figure 12. NE614 Data Output vs Temperature

OP01480S
Figure 9. NE614 Signal-To-Noise Ratio vs Temperature

PP01500S
Figure 11. NE614 Audio Output vs Temperature

OP01520S
Figure 13. RSSI vs Temperature

Figure 14. NE614 SINAD vs Temperature and $V_{C C}$

OP01550S
Figure 16. NE614 Muting vs Temperature

OPO1540S
Figure 15. NE614 Supply Current vs Temperature

OP01560S
Figure 17. NE614 Limiting RF Level vs Temperature

Op01580S
Figure 19. NE614 Total Harmonic Distortion vs Temperature

Figure 20. NE614 Supply Curren vs Temperature and Voltage

OP01600S

Figure 21. Small Signal RSSI vs Temperature and Voltage

Call Progress Decoder

DESCRIPTION

The NE5900 call progress decoder is a low cost, low power CMOS integrated circuit designed to interface with a microprocessor controlled smart telephone capable of making preprogrammed telephone calls. The call progress decoder provides information to permit microprocessor decisions whether to initiate, continue, or terminate calls. A tri-state, 3-bit output code indicates the presence of dial tone, audible ringback, busy signal, or recorder tones.
A front-end bandpass filter is accomplished with switched capacitors. The bandshaped signal is detected and the cadence is measured prior to output decoding. In addition to the three data bits, a buffered bandpass output and envelope output are available. All logic inputs and outputs can interface with LSTTL, CMOS, and NMOS.
Circuit features include low power consumption and easy application. Few and inexpensive external components
are required. A typical application requires a 3.58 MHz crystal or clock, $470 \mathrm{k} \Omega$ resistor, and two bypass capacitors. The NE5900 is effective where traditional call progress tones, PBX tones, and precision call progress tones must be correctly interpreted with a single circuit.

FEATURES

- Fully decoded tri-state call progress status output
- Works with traditional, precision, or PBX call progress tones
- Low power consumption
- Low cost 3.58 MHz crystal or clock
- No calibration or adjustment
- Interfaces with LSTLL, CMOS, NMOS
- Easy application

APPLICATIONS

- Modems
- PBXs
- Security equipment
- Auto dialers
- Answering machines
- Remote diagnostics

PIN CONFIGURATION

NOTES:

1. SOL - Released in large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinout.

BLOCK DIAGRAM CPD

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Power Supply Voltage	9	V
Logic Control Input Voltages	-0.3 to +16	V
All Other Input Voltages ${ }^{\prime}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output Voltages	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature $(10 \mathrm{sec})$	+300	${ }^{\circ} \mathrm{C}$
Junction Temperature	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Includes Pin 3-Ext Clock In

ELECTRICAL CHARACTERISTICS Unless otherwise stated $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz} 0^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
	Power supply voltage	Functional	4.5		5.5	V
	Quiescent current	No input, no load			10	mA
	Quiescent current	No input, no load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	TBD	mA
	Input range ${ }^{1}$	$\mathrm{f}_{\mathrm{IN}}=300$ to 640 Hz , ENV output $=1$	-40		0	dB
	Signal rejection	All frequencies, ENV output $=0$			-50	dB
	Low frequency rejection	Input $=0 \mathrm{~dB}$ max, ENV output $=0$			180	Hz
	High frequency rejection	Input $=0 \mathrm{~dB}$ max, ENV output $=0$	800			Hz
V_{IH}	Logic 1 input voltage	Pins 6, 14	2.0		15	V
$\mathrm{V}_{\text {IL }}$	Logic 0 input voltage	Pins 6, 14	0		0.8	V
I_{H}	Logic 1 input current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$ Pins 3, 6, 14			1	$\mu \mathrm{ADC}$
I_{1}	Logic 0 input current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ Pins 3, 6, 14	-1			$\mu \mathrm{ADC}$
$\mathrm{V}_{1 \mathrm{H}}$	Osc (Pin 3)	EXT clock	$\mathrm{V}_{\mathrm{DD}}-1$		V_{DD}	V
V_{IH}	Osc (Pin 3)	EXT clock	0		1	V
V_{OL}		$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$ Pins $7,9,10,11,12,13$			0.4	V
V_{OH}		$I_{\text {SOURCE }}=0.5 \mathrm{~mA}$ Pins $7,9,10,11,12,13$	4.6			V
l_{Oz}	Tri-State leakage	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ or OV Pins 10, 11, 12, 13			3.0	$\mu \mathrm{A}$
	Filter output voltage	$\mathrm{R}_{1}=1 \mathrm{M} \Omega, \mathrm{f}_{\mathrm{IN}}=480 \mathrm{~Hz}$, 0 dB	TBD			V_{pp}
	Pin 1 input impedance ${ }^{2}$	$f=500 \mathrm{~Hz}$	1			M Ω
$\mathrm{V}_{\text {REF }}$			2.4	2.5	2.6	V
$\mathrm{R}_{\text {REF }}$				5		$\mathrm{k} \Omega$
$\mathrm{t}_{\text {PDLH }}$				TBD		
$\mathrm{t}_{\text {PDHL }}$				TBD		

NOTES:

1. $0 \mathrm{~dB}=0.775 \mathrm{~V}$ RMS
2. By design - not tested

TRUTH TABLE - DECODED OUTPUT Test and clear inputs low

	BIT 1	BIT 2	BIT 3	DATA VALID	TRI-STATE
Dial Tone	0	0	0	1	1
Ring	1	0	0	1	1
Busy	0	1	0	1	1
Reorder	0	0	1	1	1
Overflow	1	1	1	1	1
Count in Progress	X	X	$H i g h ~$	X	X
Outputs Disabled	High Z	H			

DESCRIPTION OF OPERATION

The NE5900 call progress decoder was designed to accommodate the various call progress tone systems which are presently in use in the U.S. and many other parts of the world. To identify dial tone, ringback, busy signals, or reorder tones. the NE5900 uses a
cadence counting technique. This eliminates the problem of identifying the specific tones by their individual frequencies, which are not standard from system to system.

Figure 1 shows some of the call progress tones which can be encountered when calling from phone system to system within the U.S.

Note that although the frequencies are not standardized, the cadence or interruption rate does not vary. Even the three types of reorder tones share the same period of 0.5 sec .

Figure 2 shows a profile of the tone energy described in Figure 1. Note the double ring (audible ringback) which can be encountered with PBXs.

The NE5900 uses the signal in the call progress tone passband and the cadence or interrupt rate of the signal to determine which call progress tone is present.
Figure 3 shows a detailed block diagram of the NE5900.

The signal input from the phone line is coupled through a $470 \mathrm{k} \Omega$ resistor which, together with two internal capacitors and an internal resistor, form an anti-aliasing filter. The $470 \mathrm{k} \Omega$ resistor also provides protection from line transients.

Following this is a switched capacitor bandpass filter which accepts call progress tones and inhibits tones not in the call progress band of 300 Hz to 640 Hz . The bandpass limits are determined by the input clock frequency of 3.58 MHz . An on-board inverter between pins 3 and 4 can be used either as a parallel mode crystal oscillator or as a buffer for an external 3.58 MHz clock signal. The switched capacitor filters provide typical rejection of greater than 40 dB for frequencies below 120 Hz and above 1.6 kHz .

The decoder responds to signals between 300 Hz and 640 Hz over an amplitude range of 0 dB to -40 dB ($0 \mathrm{~dB}=0.775 \mathrm{VRMS}$). The decoder will not respond to any signals below -- 50 dB or to tones up to 0 dB which are below 180 Hz or above 800 Hz . Dropouts of 20 msec or bursts of only 20 msec duration are ignored. A gap of 40 msec or a valid tone of 40 msec is detected.

The buffered output of the switched capacitor filter is available at the analog output, pin 15. A logic output representing the detected envelope of this signal is available at the envelope output, pin 13.
At the start of an in-band tone (envelope output goes high), a 2.3-second interval is timed out. Transitions of the envelope during this interval are counted to determine the signal present. At 2.3 seconds, the three bits of data representing this decision are stored in the la.ch and appear at the outputs. A data valid
signal goes high at this time, signaling that the data bits, pins 10-12, can be read.
The output code is as follows:

	PIN 12	PIN 11	PIN 10
DIAL TONE	0	0	0
RINGING SIGNAL	1	0	0
BUSY SIGNAL	0	1	0
REORDER TONE	0	0	1
OVERFLOW	1	1	1

The overflow condition occurs in the event that too many transitions occur during the 2.3 -second interval. This can result from noise, voice, or other line disturbances not normally present during the post-dialing interval.

The clear input resets all internal registers and the output latch, and is to be set low after the completion of dialing. The test pin is for production test only and must be kept low in all user applications.

Figure 3. Detailed Block Diagram CPD

Figure 4 shows a typical application of the call progress decoder.

In this application only one external component is needed and no microprocessor activty other than clear is required.
Figure 5 shows the recommended direct interface to the telephone line. Bus connection is possible by utilizing tri-state. and internal timing is accomplished with a 3.58 MHz crystal

The designer can utilize the input signal. clock. bus. or microprocessor interface which best serves the application. Figure 6 gives a typical timing diagram for the application of Figures 4 and 5.

Figure 5. Typical Two-Wire Application

Figure 6

LOW COST SPEECH DEMONSTRATION BOARD

GENERAL DESCRIPTION

The low cost speech demonstration board is designed to add voice output to existing card based electronic equipment with the minimum of additional effort and components. The majority of components used are of the CMOS type with low power consumption making the board suitable for battery operation.
Applications include speech evaluation and speech demonstration.

FEATURES

- PCF8200 speech synthesizer
- Male and female speech of very high quality
- CMOS technology
- Extended operating temperature range
- Programmable speaking speed
- Low current consumption
- All major components use CMOS technology (PCF8200, 80C39 and 27C64)
- Very large vocabulary up to 12 minutes
- 4 EPROM sockets
- EPROM selection for 27C16 to 27C256
- Low data rates for synthesizer (average 1500 bits per second)
- Easy interfacing
- 8-bit parallel data bus/key switch input
- Volume control, speaker connection
- Control signals (e.g. RESET, BUSY etc etc)
- Simple operating modes
- ROM selection
- Word sequence within a ROM
- Repeat last utterence
- Control software is readily customizeable
- To implement parameter download from external source
- Single Eurocard size PC board
- Single + 5 V supply
- Low cost

APPLICATIONS

- OEM design-in
- May be simply used with many card systems for speech evaluation
- Speech demonstration
- Particularly simple when used with the OM8201 (Speech Demonstration Box)

OPERATION

HARDWARE DESCRIPTION

The main controlling microprocessor is an $80 C 39$ running at 6 MHz . This device supplies all of the main controlling signals for the board operation and the interfacing to any external system. Four sockets are provided for EPROMS which contain speech coding. These may be 27C16 types, through to 27C256 types; the sockets will be a low insertion force type to allow for easy customizing. The board will be supplied with one socket occupied by a 27C64 which will contain the control program and some speech examples. All four EPROM sockets must contain the same EPROM type.

The speech synthesizer PCF8200 converts the coding into a speech output. This synthesizer has been designed to simulate the human vocal tract using five formants for male and four formants for female speech. Periodic updating of the parameters for these formants can produce very high quality speech.
The output of the synthesizer can be fed into an audio amplifier, TDA7050, via a resistor-capacitor filter network which provides a frequency cut-off above 5 kHz of about 25 dB . The configuration of the audio amplifier used on this board gives an output of 140 mW peak power into a 25Ω speaker from a 5 V supply.
Connections are made to the board via a standard DIN/IEC connector. This allows access to the 8 -bit parallel data bus so that speech coding from an external source may be used, if implemented, and allows the selection of speech phrases by an external system, such as a microcomputer or even a bank of switches. The same connector also permits the addition of a volume control, loudspeaker, a high impedance audio output, and power supply. The control signals RESET, BUSY, WAIT and DS are also taken to the outside of the board. There is also a loudspeaker plug on the board.
All components are contained on a standard single Eurocard, and therefore suitable for rack mounted equipment.

SOFTWARE DESCRIPTION

All the software required to operate the board is contained in the only EPROM supplied. The software is written in modular from so that it is possible for a customer to alter or add to any particular function which suits his applications. An industrial standard microprocessor was chosen so that readily available development systems could be used to facilitate this modification.

There are four main modes of operation:

- ROM Selection
- Word Sequence
- Repeat Word
- Speaking Speed Selection

These modes are all controlled by software.
ROM Selection mode permits access to an individual EPROM and pronounces the first utterence from that EPROM.
Word Sequence gives the next word (activated by repeated access to the same EPROM) and if continually exercised will keep looping on the words in that EPROM.

The Repeat Word command allows indefinate repetition of the last utterance pronounced.
The Speaking Speed Selection allows the utterence to be pronounced at a different speed.
The software also controls the address sequencing within the utterance and ensures that the required data is supplied to the synthesizer.

There are also some examples of words/utterences encoded in the remainder of the supplied EPROM. These words are intended for demonstration purposes and will show the features of the synthesizer when selected. The main features being illustrated are:

- Male speech in several languages
- Female speech in several languages
- Programmable speaking speed

ORDERING INFORMATION

Product name: Low Cost Speech Demonstration Board
Type number: OM8200
Ordering code: 933754130000
Orders should be placed with your local Philips/Signetics agency.

SPEECH ANALYSIS/EDITING SYSTEM

GENERAL DESCRIPTION

The OM8210 is a speech analysing/editing system, and comprises of a speech adapter box and associated software. The system uses either the HP9816S or IBM-PC personal computer.
The OM8210 and the computer function together to produce speech coding for the PCF8200.
The system has many commands available, mostly single key operations, which gives it flexability.

FEATURES

- Input sampling of analogue speech signals
- Speech analysis
- Graphic parameter representation
- Parameter editing screen
- Conversion of parameters to PCF8200 synthesizer
- EPROM programming
- Parameter storage on floppy disc
- Speech output via PCF8200 voice synthesizer

Fig. 1 Block diagram.

HARDWARE DESCRIPTION

The hardware for the OM8210 is contained in an attractive box with access to all the interconnections (IEC 625, interface loudspeaker, headphones, tape input, and EPROM socket), from the front panel. There are four single Eurocards and a power supply forming the speech adapter box.
These cards are:

- Analogue Card
- Synthesizer Card
- EPROM Card
- Control Card

Analogue Card

On this card, the level of the recorded audio input signal is adjusted by an electronic potentiometer. Before the audio is sampled, frequencies higher than half the sampling frequency are removed by a switched capacitor filter of the type normally used for codecs. A 12-bit analogue-to-digital converter (ADC) produces the digital samples that are sent to the control card. An 8-bit digital-to-analogue converter (DAC) on the analogue card allows the sampled speech to be output. The audio input signal, the sampled speech and the synthesized speech are selected by an analogue multiplexer, filtered, and adjusted for volume before reproduction by a loudspeaker.
The use of integrated electronic potentiometers and codec filters substantially reduces the number of components required while maintaining high performance.

Synthesizer Card

This card accommodates the PCF8200 voice synthesizer and a small amount of peripheral components and a socket for the MEA8000 voice synthesizer.

EPROM Programmer Card

This card allows four different types of EPROM (2716, 2732, 2732A and 2764) to be programmed under software control. All the hardware to generate the programming voltages and the programming waveforms are on this card.

Control Card

This card performs three functions:

- IEC 625/IEEE 488 interface
- Control sequencer
- Clock generator

The IEC/IEEE interface is a simple talker/listener implementation with a HEF4738 circuit.
An FPLA control sequencer provides the handshake signals for IEC/IEEE interface and the chip enable signals for the rest of the system (the ADC, the DAC, the synthesizer and control circuits).
The filter sampling frequency is generated with a software programmable PLL frequency synthesizer. The speech sampling frequency is derived from the filter sampling frequency by frequency division. Hence, the filter frequency cut-off and the sample rate of the ADC and the DAC are automatically linked.

The hardware includes all the necessary cables, adapter plug, loudspeaker, headphone and power supply.

SOFTWARE DESCRIPTION

The software for this speech coding system has been developed and arranged for optimum user convenience. There are eight modes available.
Each mode and each command in the mode is selected by single key entries. Commands that can destroy data have to be confirmed before they are executed. More than 100 commands are available. The modes are:

Sample Mode	Samples and digitizes the recorded speech, the amplitude can be checked and speech segments selected. The sampled speech is stored in a memory and can be displayed or made audible. Generates speech parameters from samples. The analysis selects the voiced/ unvoiced sections, extracts the formants (5 for male and 4 for female), amplitude, and the pitch, and quantisizes the speech parameters. Speech parameters are displayed graphically on the VDU and can be edited to correct errors in the analysis, improve speech quality by altering contours, or amplitudes, concatenate sounds and optimize data rate by editing the frame duration.
Analysis Mode	
Parameter	Generates PCF8200 code and permits the arrangement of utterences in the optimum order of application. This mode also generates the address map at the head of the EPROM.
Code Mode	Used to program/read EPROMS with data for the code memory also possible is a new check, bit check and verification commands.
EPROM Mode	Stores speech parameters or codes on disc, can also assemble code speech segment from an already existing library.
File Mode	For diskette initialization and making back-up copies.
Media Mode	Allows the system configuration to be read or changed.

The software is supplied on two diskettes, one labelled 'BOOT' which wakes up the system and also contains the system library routines. The other diskette labelled 'SPEECH' contains the speech program, the disc initialization and the file handler programs. The 'BOOT' disc is not required during operation, giving a free disc drive with the system for a diskette to store speech parameter files.

Computer System

The following equipment is required to make a complete Hewlett Packard based editing system:

- HP9816S-630 (optimum computer type) or HP9817
- HP9121D (dual floppy disc)
- Additional memory card for the HP9816S (512 K bytes total required)

The following equipment is required to make a complete IBM based editing system:

- IBM-PC or PC-XT or Philips P3100
- Additional memory (512 K recommended)
- Display graphics card (Hercules monochrome)
- IEEE488 card (Tecmar Rev. D.)

ORDERING INFORMATION
Product name: Speech Analysis/Editing System
Type number: OM8210
Ordering code: 933756150112

The computer system should be purchased from your local agents.
The OM8210 should be ordered through your local Philips/Signetics agent.

SINGLE-CHIP 8-BIT MICROCONTROLLER

DESCRIPTION

The PCB80C51 family of single-chip 8-bit microcontrollers is manufactured in an advanced CMOS process. The family consists of the following members:

- PCB80C31BH: ROM-less version of the PCB80C51BH
- PCB80C51BH: 4 K bytes mask-programmable ROM, 128 bytes RAM

In the following, the generic term "PCB80C51BH" is used to refer to both family members. The device provides hardware features, architectural enhancements and new instructions to function as a controller for applications requiring up to 64 K bytes of program memory and/or up to 64 K bytes of data storage.
The PCB80C51BH contains a non-volatile $4 \mathrm{~K} \times 8$ read-only program memory (not ROM-less version); a volatile 128×8 read/write data memory; 32 I/O lines; two 16 -bit timer/event counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multi-processor communications, I/O expansion, or full duplex UART; and on-chip oscillator and timing circuits. For systems that require extra capability, the PCB80C51BH can be expanded using standard TTL compatible memories and logic.
The PCB80C31BH/80C51BH has two software selectable modes of reduced activity for further power reduction - Idle and Power Down.
The Idle modes freezes the CPU while allowing the RAM, timers, serial port and interrupt system to continue functioning.
The Power Down mode saves the RAM contents but freezes the oscillator causing all other chip functions to be inoperative.

The device also functions as an arithmetic processor having facilities for both binary and BCD arithmetic plus bit-handling capabilities. The instruction set consists of 255 instructions; 44% one-byte, 41% two-byte and 15% three-byte. With a 12 MHz crystal for example, 58% of the instructions are executed in $1 \mu \mathrm{~s}$ and 40% in $2 \mu \mathrm{~s}$. Multiply and divide instructions require $4 \mu \mathrm{~s}$. Multiply, divide, subtract and compare are among the many instructions added to the standard PCB80C48 instruction set. Software development to be announced: PCB85C51 in piggy-back.

Features

- 4 K x 8 ROM (80C51BH only), 128×8 RAM
- Four 8-bit ports, 32 I/O lines
- Two 16-bit timer/event counters
- Full-duplex serial port
- External memory expandable to 128 K , external ROM up to 64 K and/or external RAM up to 64 K
- Boolean processing
- 218 bit-addressable locations
- On-chip oscillator
- Five-source interrupt structure with two priority levels
- 58% of instructions executed in 1μ; multiply and divide in $4 \mu \mathrm{~s}$; all others executed in $2 \mu \mathrm{~s}$ (at 12 MHz clock)
- Enhanced architecture with: non-page-oriented-instructions direct addressing four 8 -byte +1 -byte register banks stack depth up to 128 -bytes multiply, divide, subtract and compare instructions.
- Available as

PCB80C51/C31BH with 1,2 to 16 MHz
PCF80C51/C31BH with 1,2 to 12 MHz

PACKAGE OUTLINES

POWER
SUPPLY $\left\{\begin{array}{l}\xrightarrow{\mathrm{V}_{\mathrm{CC}}}+5 \text { V MAIN SUPPLY } \\ \mathrm{V}_{\mathrm{SS}} \text { GROUND }\end{array}\right.$
7Z87544.1F
(1) PCB80C51BH only.

Fig. 1 Block diagram.

type	temp. range	frequency range	$I^{\prime} \mathrm{CC}$ max at $5,5 \mathrm{~V}$
PCB80C51BH PCB80C31BH	$0-70^{\circ} \mathrm{C}$	$1,2-16 \mathrm{MHz}$	$23 \mathrm{~mA}^{*}$
PCF80C51BH PCF80C31BH	$-40-+85^{\circ} \mathrm{C}$	$1,2-12 \mathrm{MHz}$	$18 \mathrm{~mA}^{*}$

[^1]PCB8582
This data sheet contains advance information and specifications are subject to change without notice.

STATIC CMOS EEPROM (256 x 8 BIT)

GENERAL DESCRIPTION

The PCB8582 is a 2 K -bit 5 V electrically erasable programmable read only memory (EEPROM) organized as 256 by 8 bits. It is designed in a floating gate CMOS technology.
As data bytes are received and transmitted via the serial $I^{2} \mathrm{C}$ bus, an eight pin DIL package is sufficient. Up to eight PCB8582 devices may be connected to the $1^{2} \mathrm{C}$ bus.
Chip select is accomplished by three address inputs.

Features

- Non-volatile storage of 2K-bit organized as 256×8
- Only one power supply required (5 V)
- On chip voltage multiplier for erase/write
- Serial input/output bus ($1^{2} \mathrm{C}$)
- Automatic word address incrementing
- Low power consumption
- One point erase/write timer
- Power on reset
- 10000 erase/write cycles per byte
- 10 years non-volatile data retention
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571 and PCD8572
- A version for extended temperature range; -40 to $+85^{\circ} \mathrm{C}$ in preparation: PCF8582.

PACKAGE OUTLINE

PCB8582P: 8-lead DIL; plastic (SOT-97AE).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

1 AO
2 A1 address inputs/test
3 A2 mode select
$4 \mathrm{~V}_{\text {SS }}$ ground
5 SDA
6 SCL)
7 RC input for timer constant
$8 \mathrm{~V}_{\mathrm{DD}}$ positive supply

FUNCTIONAL DESCRIPTION

Characteristics of the $I^{2} \mathbf{C}$ bus

The $I^{2} \mathrm{C}$ bus is intended for communication between different ICs. The serial bus consists of two bi-directional lines, one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:
Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.
Accordingly, the following bus conditions have been defined:
Bus not busy: both data and clock lines remain HIGH.
Start data transfer: a change in the state of the data line, from HIGH to LOW, while the clock is HIGH defines the start condition.
Stop data transfer: a change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the stop condition.
Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line may be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transfered between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.
Within the $\mathrm{I}^{2} \mathrm{C}$ bus specifications a low-speed mode (2 kHz clock rate) and a high-speed mode (100 kHz clock rate) are defined. The PCB8582 works in both modes.
By definition a device that gives out a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".
Each word of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.
Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the high period of the acknowledge related clock pulse.
Set-up-and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.

$\mathbf{I}^{2} \mathrm{C}$ bus protocol

The $1^{2} \mathrm{C}$ bus configuration for different READ and WRITE cycles of the PCB8582 are shown in Fig. 3, (a) and (b).

Fig. 3(a) Slave receiver ERASE/WRITE mode.

1. After this stop condition the erase/write cycle starts and the bus is free for another transmission; the duration of the erase/write cycle is approximatly 20 ms if only one byte is written, and 40 ms , if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via $\mathrm{I}^{2} \mathrm{C}$ bus.
2. The second data byte is voluntary. Trying to erase/write more than two bytes is not allowed.

Fig. 3(b) Master reads PCB8582 slave after setting word address.
(WRITE word address; READ data).

Note: The slave address is defined in accordance with the $1^{2} \mathrm{C}$ bus specification as:

1	0	1	0	$A 2$	$A 1$	$A 0$	R / \bar{W}

Fig. 3(c) Master reads PCB8582 slave immediately after first byte (READ mode).

$1^{2} \mathbf{C}$ bus timing

Fig. 4 shows the I^{2} bus timing.

Fig. 4 Timing requirements for the $I^{2} \mathrm{C}$ bus.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

Voltage, on any input pin (input impedance 500Ω)
Operating temperature range
Storage temperature range
Current into any input pin
Output current
$V_{D D}$
$-0,3$ to 7 V
V_{1}
Tamb
$\mathrm{T}_{\text {stg }}$
11
10

$$
\begin{array}{r}
\text { VSS }-0,8 \text { to } V_{\mathrm{DD}}+0,8 \mathrm{~V} \\
0 \text { to }+70 \mathrm{oC} \\
-65 \text { to }+150 \mathrm{oC} \\
1 \mathrm{~mA} \\
10 \mathrm{~mA}
\end{array}
$$

CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	VDD	4,5	5	5,5	V
Operating supply current, READ ($\mathrm{fSLC}=100 \mathrm{kHz}$)	IDDR	-	0,1	0,2	mA
Operating supply current, WRITE/ERASE	IDDW	-	1	2	$m A$
Standby supply current ($\left.\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$	IDDO	-	5	10	$\mu \mathrm{A}$
Input SCL and input/output SDA					
Input/output SDA: Input voltage LOW	VIL	-0,3	-	1,5	V
Input voltage HIGH	$V_{\text {IH }}$	3	-	$V_{D D^{+0,8}}$	V
Output voltage LOW	V				
$\left(1 \mathrm{OL}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4,5 \mathrm{~V}\right)$	VOL	-	-	0,4	V
Output leakage current $\mathrm{HIGH}\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V} \mathrm{DD}\right)$	IOH	-	-	1	$\mu \mathrm{A}$
Input leakage current (A0,A1,A2, SCL), (note 1)	$\pm 1 \mathrm{~N}$	-	-	1	$\mu \mathrm{A}$
Clock frequency	${ }^{\text {f }}$ SL	0	-	100	kHz
Input capacity (SCL,SDA)	C_{1}	-	-	7	pF
Noise suppression time constant at SCL and SDA input	t	0,25	0,5	1	$\mu \mathrm{S}$
Time the bus must be free before a new transmission can start	tBUF	4,7	-	-	$\mu \mathrm{S}$
Hold time start condition. After this period the first clock pulse is generated	tHD STA	4	-	-	$\mu \mathrm{S}$
The LOW period of the clock	t LOW	4,7	-	-	$\mu \mathrm{s}$
The HIGH period of the clock	thigh	4	-	-	$\mu \mathrm{s}$
Set-up time for start condition (only relevent for a repeated start condition)	tSU; STA	4,7	-	-	$\mu \mathrm{s}$
Hold time DATA for:					
CBUS compatible masters	thD; DAT	5	-	-	$\mu \mathrm{s}$
$1^{2} \mathrm{C}$ devices (note 2)	thD; DAT	0	-	-	$\mu \mathrm{s}$
Set-up time DATA	tSU; DAT	250	-	-	ns
Rise time for both SDA and SCL lines		-	-	1	$\mu \mathrm{S}$
Fall time for both SDA and SCL lines		-	-	300	ns
Set-up time for stop condition	tSU; STO	4,7	-	-	$\mu \mathrm{S}$
Erase/write timer constant (note 3)					
Erase/write cycle time	tE/W	20	-	100	ms
Erase/write timing capacitor for erase/write cycle of 30 ms	$C_{E / W}$	-	3,3	-	$n \mathrm{~F}$
Erase/write timing resistor for erase/write cycle of 30 ms	RE/W	-	56	-	k Ω
Data retention time		10	-	-	years

Notes to the characteristics

1. Selection of the chip address is done by connecting the $A 0, A 1$, and $A 2$ inputs either to $V_{S S}$ or $V_{D D}$.
2. A transmitter must internally provide a hold time to bridge the undefined region (maximum 300 ns) of the falling edge of SCL.
3. Endurance (number of erase/write cycles), NE/W, is $10^{4} \mathrm{E} / \mathrm{W}$ cycles.

Purchase of Philips' $1^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{1} 1^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

PULSE AND DTMF DIALLER WITH REDIAL

GENERAL DESCRIPTION

The PCD3310 is a single-chip silicon gate CMOS integrated circuit with an on-chip oscillator for a $3,58 \mathrm{MHz}$ crystal. It is a dual-standard dialling circuit for either pulse dialling (PD) or dual tone multifrequency (DTMF) dialling.
Input data is derived from any standard matrix keyboard for dialling in either DP or DTMF mode. Numbers of up to 23 digits can be retained in RAM for redial and notepad facilities.

In DTMF mode bursts as well as pauses are timed to a minimum, in manual dialling the maximum depends on the key depression time.

Features

- Pulse and DTMF dialling
- 23-digit capacity for redial operation (cursor method)
- Memory clear and electronic notepad
- Mixed mode dialling; start with PD and end with DTMF dialling
- Dual redial buffers for PABX and public calls
- Four extra function keys; program, flash, redial, PD to DTMF (mixed dialling)
- DTMF timing:
manual dialling - minimum duration for bursts and pauses
redialling - calibrated timing
- On-chip voltage reference for supply and temperature independent tone output
- On-chip filtering for low output distortion (CEPT CS 203 compatible)
- On-chip oscillator uses low-cost $3,58 \mathrm{MHz}$ (tv colour burst) crystal
- Uses standard single-contact or double-contact (common left open) keyboard
- Keyboard entries fully debounced
- Flash (register recall) output

QUICK REFERENCE DATA

PACKAGE OUTLINES

PCD3310P: 20-lead DIL; plastic (SOT-146).
PCD3310T: 28 -lead mini-pack; plastic (SO-28; SOT-136A).

Fig. 1 Block diagram; PCD3310P.

DEVELOPMENT DATA

PINNING

1	OSCI	oscillator input
2	$\overline{\text { PD/DTMF }}$	select pin; pulse or DTMF dialling
3	TONE	single or dual tone frequency output
4	$\mathrm{V}_{\text {SS }}$	negative supply
5	FLD	flash duration control input/output
6	ROW 5	
7	ROW 4	
8	ROW 3	scanning row keyboard input/outputs
9	ROW 2	
10	ROW 1	
11	COL 1	
12	COL 2	sense column keyboard inputs
13	COL 3	with internal pull-ups
14	COL 4	
15	CF	330 Hz confidence tone output to provide audible feedback of key entries
16	DP/FLO	dialling pulse and flash output
17	M1	muting output
18	CE	chip enable input
19	$V_{\text {DD }}$	positive supply
20	OSCO	oscillator output

Note: Pins 4, 6, 7, 11, 18 and 25 are not connected.
Fig. 3 Block diagram; PCD3310T.

Fig. 4 Pinning diagram for PCD3310T.

PINNING

1	OSCI	oscillator input
2	$\overline{\mathrm{PD}} / \mathrm{DTMF}$	select pin; pulse or DTMF dialling
3	TONE	single or dual tone frequency output
4	n.c.	not connected
5	$\mathrm{V}_{\text {SS }}$	negative supply
6	n.c.	not connected
7	n.c.	not connected
8	FLD	flash duration control input/output
9	ROW 5	
10	ROW 4	scanning row keyboard input/outputs
11	n.c.	not connected
12	ROW 3	
13	ROW 2	scanning row keyboard input/outputs
14	ROW 1	
15	COL 1	
16	COL 2	sense column keyboard inputs with internal pull-ups
17	COL 3	
18	n.c.	not connected
19	COL 4	sense column keyboard input with internal pull-up
20	CF	330 Hz confidence tone output to provide audible feedback of key entries
21	DP/FLO	dialling pulse and flash output
22	M2	strobe; active HIGH during transmission
23	$\overline{\mathrm{M1}}$	inverted mute output
24	M1	muting output
25	n.c.	not connected
26	CE	chip enable input
27	$V_{\text {DD }}$	positive supply
28	OSCO	oscillator output

FUNCTIONAL DESCRIPTION

Power supply ($V_{D D} ; V_{S S}$)
The positive supply of the circuit (V_{DD}) must meet the voltage requirements as indicated in the characteristics.
To avoid undefined states of the device when powered-on, an internal reset circuit clears the control logic and counters.
If $V_{D D}$ drops below the minimum standby supply voltage of $1,8 \mathrm{~V}$ the power-on-reset circuit inhibits redialling after hook-off.
The power-on-reset signal has the highest priority it blocks and resets the complete circuit without delay regardless of the state of chip enable input (CE).

Clock oscillator (OSCI, OSCO)

The time base for the PCD3310 for both PD and DTMF modes is a crystal controlled on-chip oscillator which is completed by connecting a $3,58 \mathrm{MHz}$ crystal between the OSCI and OSCO pins.

Chip Enable (CE)

The CE input enables the circuit and is used to initialize the IC.
CE = LOW provides the static standby condition. In this state the clock oscillator is disabled, all registers and logic are reset with the exception of the Write Address Counter (WAC) and Temporary Write Address Counter (TWAC) which point to the last entered digit (see Fig. 7). The keyboard input is inhibited, but data previously entered is saved in the redial register as long as $V_{D D}$ is higher than $V_{D D O}(\min)$.
The current drawn is IDDO (standby current) and serves to retain data in the redial register during hook-on
CE $=$ HIGH activates the clock oscillator and the circuit changes from static standby condition to the conversation mode. The current consumption is IDDC until the first digit is entered from the keyboard. Then a dialling or redialling operation starts. The operating current is IDDP if in the pulse dialling mode, or IDDF if the DTMF dialling mode is selected.
If the CE input is taken to a LOW level for more than time t_{rd} (see Fig. 11a, Fig. 11b and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system changes to the static standby state. Short CE pulses of $<\mathrm{t}_{\text {rd }}$ will not affect the operation of the circuit and reset pulses are not produced.

Mode selection ($\overline{\mathrm{PD}} / \mathrm{DTMF}$)

PD mode

If $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{V}_{\text {SS }}$ the pulse mode is selected. Entries of non-numeric keys are neglected, they are neither stored in the redial register nor transmitted.

DTMF mode

If $\overline{P D} / D T M F=V_{D D}$ the dual tone multi-frequency dialling mode is selected. Each non-function pushbutton activated corresponds to a combination of two tones, each one out of four possible LOW and HIGH group frequencies. The frequencies are transmitted with a constant amplitude, regardless of power supply variations, and filtered off harmonic content to fulfil the CEPT CS 203 recommendations. The transmission time is calibrated for redial. In manual operation the duration of bursts and pauses is the actual pushbutton depress time, but not less than the minimum transmission time (t_{t}) or minimum pause time (t_{p}).

Mixed mode

When the $\overline{\mathrm{PD}} / \mathrm{DTMF}$ pin is open-circuit the mixed mode is selected. After activation of CE or FL (flash) the circuit starts as a pulse dialler and remains in this state until a non-numeric (A, B, C, D, *, \#) or the " $>$ " key is activated. Then the circuit changes over to DTMF dialling and remains there until FL is activated or, after a static standby condition, CE is re-activated.
A connection between $\overline{P D} / D T M F$ pin and $V_{D D}$ also initiates DTMF dialling. Chip enable, FL or a connection of $\overline{P D} / D T M F$ pin to $V_{S S}$ sets the circuit back to pulse dialling.

Keyboard inputs/outputs

The sense column inputs COL 1 to COL 4 and the scanning row outputs ROW 1 to ROW 5 of the PCD3310 are directly connected to the keyboard as shown in Fig. 5.
All keyboard entries are debounced on both the leading and trailing edges for approximately time t_{e} as shown in Fig. 11. Each entry is tested for validity.
When a pushbutton is pressed, keyboard scanning starts and only returns to the sense mode after release of the pushbutton.

Fig. 5 Keyboard organization.
Row 5 of the keyboard contains the following special function keys:

- P memory clear and programming (notepad)
- FL flash or register recall
- R redial
- $>$ change of dial mode from PD to DTMF in mixed dialling mode

In pulse dialling mode the valid keys are the 10 numeric pushbuttons (0 to 9). The non-numeric keys (A, B, C, D, *, \#) have no effect on the dialling or the redial storage. Valid function keys are P, FL and R.

In DTMF mode all non-function keys are valid. They are transmitted as a dual tone combination and at the same time stored in the redial register. Valid function keys are P, FL and R.
In mixed mode all key entries are valid and executed accordingly.

FUNCTIONAL DESCRIPTION (continued)

Flash duration control (FLD)

Flash (or register recall) is activated by the FL key and can be used in DTMF and pulse dialling mode.
Pressing the FL pushbutton will produce a timed line-break of 100 ms (min .) at the DP/FLO output. During the conversation mode this flash pulse entry will act as a chip enable. This flash pulse duration (t_{FL}) is calibrated and can be prolonged with an external resistor and capacitor connected to the FLD input/output (see Fig. 6).
The flash pulse resets the read address counter (RAC). Later redial is possible (see redial procedure with the "Flash" inserted telephone number). The counter of the reset delay time is held during the period of $t_{F L}$.

(a)

Where: $t_{\text {FLRC }} \approx R$. C

7280886
(b)

Fig. 6 Flash pulse duration setting.

TONE output (DTMF mode)

The single and dual tones which are provided at the TONE output are filtered by an on-chip switchedcapacitor filter, followed by an on-chip active RC low-pass filter.
Therefore, the total harmonic distortion of the DTMF tones fulfils the CEPT CS 203 recommendations. An on-chip reference voltage provides output-tone levels independent of the supply voltage. Table 1 shows the frequency tolerance of the output tones for DTMF signalling.

Table 1 Frequency tolerance of the output tones for DTMF signalling

row/ column	standard frequency Hz	tone output frequency $\mathrm{Hz}(1)$	frequency deviation 	
	697	697,90	$+0,13$	$+0,90$
row 2	770	770,46	$+0,06$	$+0,46$
row 3	852	850,45	$-0,18$	$-1,55$
row 4	941	943,23	$+0,24$	$+2,23$
col 1	1209	1206,45	$-0,21$	$-2,55$
col 2	1336	1341,66	$+0,42$	$+5,66$
col 3	1477	1482,21	$+0,35$	$+5,21$
col 4	1633	1638,24	$+0,32$	$+5,25$

(1) Tone output frequency when using a $3,579545 \mathrm{MHz}$ crystal.

When the DTMF mode is selected output tones are timed in manual dialling with a minimum duration of bursts and pauses, and in redial with a calibrated timing. Single tones may be generated for test purposes ($\mathrm{CE}=\mathrm{HIGH}$). Each row and column has one corresponding frequency. High group frequencies are generated by connecting the column to $\mathrm{V}_{\text {SS }}$. Low group frequencies are generated by forcing the row to $V_{D D}$. The single tone frequency will be transmitted during activation time, but it is neither calibrated nor stored.

Dial pulse and flash output (DP/FLO)

This is a combined output which provides control signals for proper timing in pulse dialling or for a calibrated break in both dialling modes (flash or register recall).

Mute output (M1)

During pulse dialling the mute output becomes active HIGH for the period of the inter-digit pause, break time and make time. It remains at this level until the last digit is pulsed out.
During DTMF dialling the mute output becomes active HIGH for the period of tone transmission and remains at this level until the end of hold-over time. It is also active HIGH during flash and flash hold-over time.

Mute output ($\overline{\mathrm{M} 1}$)

Inverted output of M1. In the PCD3310P it is only available as a bonding option of M1.

Strobe output (M2)

Active HIGH output during actual dialling; i.e. during break or make time in pulse dialling, or during tone ON/OFF in DTMF dialling.

Confidence tone output (CF)

When any of the keys are activated a square-wave is generated and appears at this output to serve as an acoustic feedback for the user.

DIALLING PROCEDURES (see also Figs 8, 9 and 10)

Dialling

After CE has risen to $V_{D D}$ the oscillator starts running and the Read Address Counter (RAC) is set to the first address (see Fig. 7). By entering the first valid digit, the Temporary Write Address Counter (TWAC) will be set to the first address, the decoded digit will be stored in the register and the TWAC incremented to the next address. Any subsequent keyboard entry will be decoded and stored in the redial register after validation. The first 5 valid entries have no effect on the main register and its associated write address counter. After the sixth valid digit is entered TWAC indicates an overflow condition. The data from the temporary register will be copied into the 5 least significant places of the main register and TWAC into the WAC. All following digits (including the sixth digit) will be stored in the main register (a total of not more than 23). If more than 23 digits are entered redial will be inhibited. If not more than 5 digits are entered only the temporary register and the associated TWAC are affected. All entries are debounced on both the leading and trailing edges for at least time t_{e} as shown in Fig. 11. Each entry is tested for validity before being deposited in the redial register.

- In DTMF mode all non-function keys are valid
- In PD mode only numeric keys are valid

Simultaneous to their acceptance and corresponding to the selected mode (PD, DTMF or mixed), the entries are transmitted as PD pulse-trains or as DTMF frequencies in accordance with postal requirements. Non-numeric entries are neglected during pulse dialling, they are neither stored nor transmitted.

Redialling

After CE has risen to $V_{D D}$ the oscillator starts running and the Read Address Counter (RAC) is set to the first address to be sent. The PCD3310 is in the conversation mode.
If " R " is the first keyboard entry the circuit starts redialling the contents of the temporary register. If the overflow flag of the TWAC was set in the previous dialling, the redialling continues in the main register. If the flag was not set, the number residing in the temporary register will only be redialled until the temporary read and write registers are equal.
Before pressing " R " a dialling sequence with up to 4 digits is possible. If the digits are equal to the corresponding ones in the main register, then redial starts in the main register until the last digit stored is transmitted.
Timing in the DTMF mode is calibrated for both tone bursts and pauses.
In mixed mode only the first part entered (the pulse dialled part of the stored number) can be redialled.
During redial keyboard entries (function or non-function) are not accepted until the circuit returns to the conversation mode after completion of redialling.
No redial activity takes place if one of the following events occur:

- Power-on reset
- Memory clear (" ${ }^{\prime}$ " without successive data entry)
- Memory overflow (more than 23 valid data entries)

Notepad

The redial register can also be used as a notepad. In conversation mode a number with up to 23 digits can be entered and stored for redialling. By activating the program key (P) the WAC and TWAC pointers are reset. This acts like a memory clear (redial is inhibited). Afterwards, by entering and storing any digits, redialling will be possible after flash or hook on and off.
During notepad programming the numbers entered will neither be transmitted nor is the mute active, only the confidence tone is generated.

Fig. 7 Program memory map.

DIALLING PROCEDURES
(continued)
PUBLIC EXCHANGE

(1) If [access digit(s) + external number] $\leqslant 23$ digits.

Fig. 9 PD/DTMF mixed mode dialling.

DIALLING PROCEDURES (continued)

Fig. 10 Notepad, memory clear, flash; independent of dialling mode.

TIMING

Fig. 11a Timing diagram for dialling mode defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}$ selection pin; pulse dialling ($\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{V}_{\mathrm{SS}}$).

TIMING (continued)

Fig. 11b Timing diagram for dialling mode defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}$ selection pin; DTMF dialling ($\overline{P D} / D T M F=V_{D D}$).

Fig. 11c Timing diagram for dialling mode defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}$ selection pin; mixed mode ($\overline{\mathrm{PD}} / \mathrm{DTMF}$ open-circuit).

Fig. 12 Timing diagram showing REDIAL where PABX access digits are the first keyboard entries; DTMF dialling with $\overline{P D} / D T M F=V_{D D}$.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range
Supply current
D.C. current into any input or output

All input voltages
Total power dissipation
Power dissipation per output
Storage temperature range
Operating ambient temperature range

$V_{D D}$		$-0,8$ to 8 V
$I_{D D}$	max.	50 mA
$\pm \mathrm{I}_{1} \pm \mathrm{I}_{\mathrm{O}}$	max.	10 mA
$\mathrm{~V}_{\mathrm{I}}$	$-0,8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0,8 \mathrm{~V}$	
$\mathrm{P}_{\text {tot }}$	max.	300 mW
P_{O}	max.	50 mW
$\mathrm{~T}_{\text {stg }}$		-65 to $+1500^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$		-25 to $+70{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{osc}}=3,579545 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=100 \Omega$ max.;
$\mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Operating supply voltage	$V_{\text {DD }}$	2,5	-	6,0	V
Standby supply voltage	$V_{\text {DDO }}$	1,8	-	6,0	V
Operating supply current conversation mode (oscillator ON)	IDDC	-	-	150	$\mu \mathrm{A}$
pulse dialling or flash	IDDP	-	-	200	$\mu \mathrm{A}$
DTMF dialling (tone ON)	IDDF	-	0,6	1,2	mA
DTMF dialling (tone OFF)	IDDF	-	-	200	$\mu \mathrm{A}$
Standby supply current (oscillator OFF; note 1) at $\mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {I DDO }}$	-	-	5	$\mu \mathrm{A}$
INPUTS					
Input voltage LOW (any pin)	$\mathrm{V}_{\text {IL }}$	0	-	$0,3 V_{\text {DD }}$	V
Input voltage HIGH (any pin)	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	$V_{\text {DD }}$	V
Input leakage current; CE	IILI	-	-	1	$\mu \mathrm{A}$
Keyboard inputs					
Keyboard ON current	ION	-	-	45	$\mu \mathrm{A}$
Keyboard OFF current	IOFF	7,5	-	-	$\mu \mathrm{A}$
OUTPUTS					
Output sink current at $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+0,5 \mathrm{~V}$ M1, $\overline{\mathrm{M} 1}, \mathrm{M} 2, \mathrm{DP} / \mathrm{FLO}, \mathrm{CF}, ~ F L D$ $\overline{\mathrm{PD}} / \mathrm{DTMF}$ (note 2)	1 OL	0,7	-	-	mA
	${ }^{\text {IOL }}$	-	1	-	mA
Output source current at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0,5 \mathrm{~V}$					
M1, $\overline{\mathrm{M} 1}, \mathrm{M} 2, \mathrm{DP} / \mathrm{FLO}, \mathrm{CF}$	${ }^{-1} \mathrm{OH}$	0,6	-	-	mA
$\overline{\mathrm{PD}} / \mathrm{DTMF}$ (note 2)	$-\mathrm{IOH}$	-	1	-	mA
FLD (note 3)	$-\mathrm{IOH}$	-	100	-	nA
TIMING AND FREQUENCY					
Clock start-up time	t_{on}	-	4	-	ms
Debounce time	t_{e}	-	12	-	ms
Reset delay time	t_{rd}	-	160	-	ms
Confidence tone frequency	f_{ct}	-	330	-	Hz

parameter	symbol	\min.	typ.	max.	unit
TONE output (see Fig. 13) at $V_{D D}=2,5$ to 6 V					
DTMF output voltage levels (r.m.s. value) HIGH group	$\mathrm{V}_{\mathrm{HG}}(\mathrm{rms})$	158	192	205	mV
LOW group	$\mathrm{V}_{\mathrm{LG}}(\mathrm{rms})$	125	150	160	mV
Frequency deviation	$\Delta f / f$	-0,6	-	+ 0,6	\%
D.C. voltage level	$V_{\text {DC }}$	-	$1 / 2 V_{\text {DD }}$	-	V
Output impedance	$\left\|\mathrm{Z}_{\mathrm{O}}\right\|$	-	0,1	0,5	$k \Omega$
Pre-emphasis of group	$\Delta \mathrm{V}_{\mathrm{G}}$	1,85	2,1	2,35	dB
Total harmonic distortion at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (note 4)	THD	-	-25	-	dB
Transmission and pause time					
Manual dialling	t_{t}, t_{p}	68	-	-	ms
Redialling	t_{t}, t_{p}	68	70	72	ms
Flash pulse duration	${ }^{\text {t }}$ L	98	100	102	ms
Flash hold-over time	$\mathrm{t}_{\mathrm{fl}} \mathrm{h}$	31	33	34	ms
Hold-over time (muting on M1)	t_{h}	78	80	81	ms
Pulse dialling (PD)					
Dialling pulse frequency	f_{dp}	9,8	10	10,4	Hz
Inter-digit pause	t_{id}	828	840	844	ms
Break time (note 5)	t_{b}	65	67	68	ms
Make time (note 5)	t_{m}	31	33	34	ms

Notes to the characteristics

1. Crystal connected between OSCI and OSCO; CE at V_{SS} and all other pins open-circuit.
2. $<|10 \mathrm{~mA}|$ dynamic current to set/reset $\overline{\mathrm{PD}} / \mathrm{DTMF}$ pin (mixed mode).
3. Flash inactive; $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$.
4. Related to the level of the LOW group frequency component (CEPT CS 203).
5. Mark-to-space ratio 2 : 1 .

Fig. 13 Tone output test circuit.

(1) Automatic line compensation obtained by connecting $R 6$ to $V_{S S}$.
(2) The value of resistor R14 is determined by the required level at LN and the DTMF gain of the TEA1060.

Fig. 14 Application diagram of the full electronic basic telephone set.

DTMF/MODEM/MUSICAL-TONE GENERATORS

GENERAL DESCRIPTION

The PCD3311 and PCD3312 are single-chip silicon gate CMOS integrated circuits. They are intended to provide dual-tone multi-frequency (DTMF) combinations required for tone dialling systems in telephone sets which contain a microcontroller for the control functions.

The various audio output frequencies are generated from an on-chip $3,58 \mathrm{MHz}$ quartz crystal-controlled oscillator.
The devices can interface directly to all standard microcontrollers by accepting a binary-coded parallel input or serial data input ($1^{2} \mathrm{C}$ bus).

With their on-chip voltage reference the PCD3311 and PCD3312 provide constant output amplitudes which are independent of the operating supply voltage and ambient temperature.
An on-chip filtering system assures a very low total harmonic distortion in accordance with the CEPT CS 203 recommendations.

In addition to the standard DTMF frequencies the devices provide 12 MODEM frequencies (300 to 1200 bits per second) used in simplex MODEM applications and two octaves of musical scale in steps of semitones.

Features

- Stabilized output voltage level
- Low output distortion with on-chip filtering (CEPT CS 203 compatible)
- Latched inputs for data bus applications
- $I^{2} \mathrm{C}$ bus compatible
- Mode select input (selection of parallel or serial data input)
- MODEM and melody tone generators

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	$V_{\text {DD }}$	2,5	-	6,0	V
Operating supply current	${ }^{1}$ DD	-	-	1,2	mA
Static standby current	${ }^{1}$ DDO	-	-	3	$\mu \mathrm{A}$
DTMF output voltage level (r.m.s. values)					
HIGH group	$V_{\text {HG }}(\mathrm{rms})$	158	192	205	mV
LOW group	$\mathrm{V}_{\mathrm{LG}}(\mathrm{rms})$	125	150	160	mV
Pre-emphasis of group	$\Delta \mathrm{V}_{\mathrm{G}}$	1,85	2,10	2,35	dB
Total harmonic distortion	THD	-	-25	-	dB
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-25	-	+ 70	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINES

PCD3311P: 14-lead DIL; plastic (SOT-27KE).
PCD3311T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).
PCD3312P: 8-lead DIL; plastic (SOT-97AE).
PCD3312T: 8-lead mini-pack; plastic (SO-8L; SOT-176).

Fig. 1 Block diagram; the pin numbers in parenthesis refer to the PCD3312.

Fig. 2 Pinning diagram for the PCD3311.

PINNING

1	OSCI	oscillator input
2	OSCO	oscillator output
3	MODE	mode select input; used for the selection between serial mode (MODE = LOW) and parallel mode (MODE = HIGH)
4	D_{5}	parallel data input*
5	STROBE	strobe input; used for the loading of data in the parallel mode
6	TONE	frequency output for single or dual tones
7	A_{0}	slave address input in the serial mode; must be connected to
8	$\mathrm{D}_{0} / \mathrm{SCL}$	$V_{\text {DD }}$ or $V_{S S}$ parallel data input* or serial clock line ($I^{2} \mathrm{C}$ bus)
9	D0/SDA	parallel data input* or serial data line ($\mathrm{I}^{2} \mathrm{C}$) bus)
10	D_{2}	
11	D_{3}	parallel data inputs*
12	D_{4}	
13	$\mathrm{V}_{\text {SS }}$	negative supply
14	$\mathrm{V}_{\text {DD }}$	positive supply

1 OSCl
2 OSCO
MODE
$4 \quad D_{5}$

6 TONE
A_{0}
$8 \mathrm{D}_{0} / \mathrm{SCL}$
$9 \mathrm{D}_{0} /$ SDA
oscillator input
oscillator output
mode select input; used for
the selection between serial
mode (MODE = LOW) and parallel
mode (MODE = HIGH)
parallel data input*
strobe input; used for the frequency output for single or dual tones
slave address input in the serial
mode; must be connected to
$V_{D D}$ or $V_{S S}$
parallel data input*
or serial clock line ($1^{2} \mathrm{C}$ bus)
parallel data input*
or serial data line $\left(1^{2} \mathrm{C}\right)$ bus
parallel data inputs*
negative supply
positive supply

* MODE $=\mathrm{HIGH}$.

Fig. 3 Pinning diagram for the PCD3312.

PINNING

FUNCTIONAL DESCRIPTION

Clock/oscillator (OSCI and OSCO)
The timebase for the PCD3311 and PCD3312 is a crystal-controlled oscillator with a $3,58 \mathrm{MHz}$ quartz crystal connected between OSCI and OSCO. Alternatively, the OSCI input can be driven from an external clock.

Mode select (MODE)
This input selects the data input mode. When connected to $V_{D D}$, data can be received in the parallel mode (only for the PCD3311), or, when connected to $\mathrm{V}_{\text {SS }}$ or left open, data can be received via the serial I ${ }^{2} \mathrm{C}$ bus (for both PCD3311 and PCD3312).
Parallel mode can only be obtained for the PCD3311 by setting MODE input HIGH.
Data inputs ($\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}$ and D_{5})
Inputs D_{0} and D_{1} have no internal pull-down or pull-up resistors and must not be left open in any application. Inputs D_{2} to D_{5} have internal pull-down. D_{5} and D_{4} are used to select between DTMF dual, DTMF single, MODEM and melody tones (see Table 1). D_{3} to D_{0} select the combination of the tones for DTMF or single-tone itself.

Table $1 D_{5}$ and D_{4} in accordance with the selected application

D_{5}	D_{4}	application
0	0	DTMF single tones; standby; melody tones
0	1	DTMF dual tones (all 16 combinations)
1	0	MODEM tones; standby; melody tones
1	1	melody tones

$1=\mathrm{H}=$ HIGH voltage level
$0=\mathrm{L}=$ LOW voltage level
Note: Tables 2, 3, 4 and 5 show all input codes and their corresponding output frequencies.

FUNCTIONAL DESCRIPTION (continued)

Strobe input (STROBE, only for the PCD3311)
This input (with internal pull-down) allows the loading of parallel data into D_{0} to D_{5} when MODE is HIGH.
The data inputs must be stable preceeding the positive-going edge of the strobe pulse (active HIGH). Input data are loaded at the negative-going edge of the strobe pulse and then the corresponding tone (or standby mode) is provided at the TONE output. The output remains unchanged until the negativegoing edge of the next STROBE pulse (for new data) is received.
Serial mode can only be obtained for the PCD3311 by setting MODE input LOW.

Fig. 4 Timing diagram showing control possibilities of the oscillator and the TONE output (e.g. $770 \mathrm{~Hz}+1477 \mathrm{~Hz}$) in the parallel mode (MODE $=$ HIGH).

Serial clock and data inputs (SCL and SDA)
SCL and SDA are combined with D_{0} and D_{1} respectively. For the PCD3311 the selection of SCL and SDA is controlled by the MODE input. SCL and SDA are serial clock and data lines according to the $I^{2} \mathrm{C}$ bus specification (see "CHARACTERISTICS OF THE I ${ }^{2}$ C BUS"). Both inputs must be pulled-up externally to $V_{D D}$.

Address input (A_{0})
A_{0} is the slave address input and it identifies the device when up to two PCD3311 or PCD3312 devices are connected to the same $I^{2} \mathrm{C}$ bus. In any case A_{0} must be connected to V_{DD} or V_{SS}.

$I^{2} \mathrm{C}$ bus data configuration (see Fig. 5)

The PCD3311 and PCD3312 are always slave receivers in the $I^{2} \mathrm{C}$ bus configuration ($\mathrm{R} / \overline{\mathrm{W}}$ bit $=0$).
The slave address consists of 7 bits in the serial mode for the PCD3311 as well as for the PCD3312, where the least significant bit is selectable by hardware on input A_{0} and the other more significant bits are internally fixed. In the serial mode the same input codes are used as in the parallel mode (see Tables 2, 3, 4, and 5). D_{6} and D_{7} are don't care (X) bits.

Fig. $5 I^{2} \mathrm{C}$ bus data format.

Tone output (TONE)

The single and the dual tones which are provided at the TONE output are filtered by an on-chip switched-capacitor filter, followed by an active RC low-pass filter. Therefore, the total harmonic distortion of the DTMF tones fulfils the CEPT CS 203 recommendations. An on-chip reference voltage provides output-tone levels independent of the supply voltage. Table 3 shows the frequency tolerance of the output tones for DTMF signalling; Tables 4 and 5 for the modem and melody tones.

Power-on reset

In order to avoid undefined states of the devices when the power is switched ON, an internal reset circuit sets them to the standby mode (oscillator OFF).

Table 2 Input data for control (no output tone; TONE at $V_{D D}$)

D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HEX	oscillator
X	0	0	0	0	0	$00 / 20$	ON
X	0	0	0	0	1	$01 / 21$	OFF
X	0	0	0	1	0	$02 / 22$	OFF
X	0	0	0	1	1	$03 / 23$	OFF

$1=\mathrm{H}=\mathrm{HIGH}$ voltage level
$0=\mathrm{L}=$ LOW voltage level
X $=$ don't care

FUNCTIONAL DESCRIPTION (continued)
Table 3 Input data for DTMF

D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HEX	symbol	standard frequencyHz	tone output freq. Hz**	frequency deviation	
										\%	Hz
0	0	1	0	0	0	08		697	697,90	+0,13	+ 0,90
0	0	1	0	0	1	09		770	770,46	+0,06	+0,46
0	0	1	0	1	0	OA		852	850,45	-0,18	-1,55
0	0	1	0	1	1	OB		941	943,23	+0,24	+ 2,23
0	0	1	1	0	0	OC		1209	1206,45	-0,21	-2,55
0	0	1	1	0	1	OD		1336	1341,66	+0,42	+5,66
0	0	1	1	1	0	OE		1477	1482,21	+0,35	+5,21
0	0	1	1	1	1	OF		1633	1638,24	+0,32	+5,24
0	1	0	0	0	0	10	0	941+1336			
0	1	0	0	0	1	11	1	697+1209			
0	1	0	0	1	0	12	2	697+1336			
0	1	0	0	1	1	13	3	697+1477			
0	1	0	1	0	0	14	4	770+1209			
0	1	0	1	0	1	15	5	770+1336			
0	1	0	1	1	0	16	6	770+1477			
0	1	0	1	1	1	17	7	852+1209			
0	1	1	0	0	0	18	8	852+1336			
0	1	1	0	0	1	19	9	852+1477			
0	1	1	0	1	0	1A	A	697+1633			
0	1	1	0	1	1	1B	B	770+1633			
0	1	1	1	0	0	1 C	C	852+1633			
0	1	1	1	0	1	1D	D	941+1633			
0	1	1	1	1	0	1E	*	941+1209			
0	1	1	1	1	1	1F	\#	941+1477			

Table 4 Input data for MODEM frequencies

D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HEX	standard frequency Hz	tone output freq. $\mathrm{Hz}^{*}{ }^{*}$	frequency deviation		remarks
									\%	Hz	
1	0	0	1	0	0	24	1300	1296,94	-0,24	-3,06	V 23
1	0	0	1	0	1	25	2100	2103,14	+0,15	+3,14	
1	0	0	1	1	0	26	1200	1197,17	-0,24	-2,83	Bell 202
1	0	0	1	1	1	27	2200	2192,01	-0,36	-7,99	Bell 202
1	0	1	0	0	0	28	980	978,82	-0,12	-1,18	V 21
1	0	1	0	0	1	29	1180	1179,03	-0,08	-0,97	V. 21
1	0	1	0	1	0	2A	1070	1073,33	+0,31	+3,33	Bell 103
1	0	1	0	1	1	2B	1270	1265,30	-0,37	-4,70	Bell 103
1	0	1	1	0	0	2 C	1650	1655,66	+0,34	+5,66	
1	0	1	1	0	1	2D	1850	1852,77	+0,15	+ 2,77	. 21
1	0	1	1	1	0	2E	2025	2021,20	-0,19	-3,80	
1	0	1	1	1	1	2F	2225	2223,32	-0,08	-1,68	Bell 103

** Tone output frequency when using a $3,579545 \mathrm{MHz}$ crystal.
$1=\mathrm{H}=$ HIGH voltage level
$0=L=$ LOW voltage level

Table 5 Input data for melody tones

D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HEX	note	standard frequency $H z^{*}$	tone output frequency Hz **
1	1	0	0	0	0	30	D\#5	622,3	622,5
1	1	0	0	0	1	31	E5	659,3	659,5
1	1	0	0	1	0	32	F5	698,5	697,9
1	1	0	0	1	1	33	F\#5	740,0	741,1
1	1	0	1	0	0	34	G5	784,0	782,1
1	1	0	1	0	1	35	G\#5	830,6	832,3
1	1	0	1	1	0	36	A5	880,0	879,3
1	1	0	1	1	1	37	A\#5	932,3	931,9
1	1	1	0	0	0	38	B5	987,8	985,0
1	1	1	0	0	1	39	C6	1046,5	1044,5
1	1	1	0	1	0	3A	C\#6	1108,7	1111,7
1	0	1	0	0	1	29	D6	1174,7	1179,0
1	1	1	0	1	1	3B	D\#6	1244,5	1245,1
1	1	1	1	0	0	3C	E6	1318,5	1318,9
1	1	1	1	0	1	3D	F6	1396,9	1402,1
0	0	1	1	1	0	OE	F\#6	1480,0	1482,2
1	1	1	1	1	0	3E	G6	1568,0	1572,0
1	0	1	1	0	0	2C	G\#6	1661,2	1655,7
1	1	1	1	1	1	3F	A6	1760,0	1768,5
0	0	0	1	0	0	04	A\#6	1864,7	1875, 1
0	0	0	1	0	1	05	B6	1975,5	1970,0
1	0	0	1	0	1	25	C7	2093,0	2103,1
1	0	1	1	1	1	2F	C\#7	2217,5	2223,3
0	0	0	1	1	0	06	D7	2349,3	2358,1
0	0	0	1	1	1	07	D\#7	2489,0	2470,4
* Standard scale based on A4 $=440 \mathrm{~Hz}$. ** Tone output frequency when using a $3,579545 \mathrm{MH}$ $1=\mathrm{H}=\mathrm{HIGH}$ voltage level $0=L=$ LOW voltage level									

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 6 Bit in nsfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 7 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 8 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 9 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$ bus.

CHARACTERISTICS OF THE I²C BUS (continued)

Timing specifications

Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The ICs operate in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 10.

Fig. 10 Timing of the high-speed mode.
Where:

tBUF	$t \geqslant t_{\text {LOWmin }}$	The minimum time the bus must be free before a new transmission can start
$t_{\text {HD }}$ STA	$t \geqslant t_{\text {HIGHmin }}$	Start condition hold time
$t_{\text {LOWmin }}$	$4,7 \mu \mathrm{~s}$	Clock LOW period
$t_{\text {HIGHmin }}$	$4 \mu \mathrm{~s}$	Clock HIGH period
$t_{\text {SU }}$ STA	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
$t_{\text {HD; }}$ DAT	$t \geqslant 0 \mu \mathrm{~s}$	Data hold time
$t_{S U} ;$ DAT	$t \geqslant 250 \mathrm{~ns}$	Data set-up time
t_{R}	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
t_{F}	$t \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
$t_{\text {SU }}$; STO	$t \geqslant t_{\text {LOWmin }}$	Stop condition set-up time

Note

All the timing values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{S S}$ to $V_{D D}$.

Fig. 11 Complete data transfer in the high-speed mode.
Where:
Clock t LOWmin $4,7 \mu \mathrm{~s}$
thIGHmin
$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1:1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition
must be provided by the master

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of 365μ s. The mark-to-space ratio is $1: 3$ LOW-to-HIGH. Detailed timing is shown in Fig. 12.

Fig. 12 Timing of the low-speed mode.

Timing specifications (continued)
Where:

${ }^{\text {t BuF }}$	$t \geqslant 105 \mu \mathrm{~s}(\mathrm{t}$ LOWmin)
tHD; STA	$t \geqslant 365 \mu \mathrm{~s}(\mathrm{t}$ HIGHmin)
t LOW	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
thigh	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
tSU; STA	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$ *
thD; DAT	$t \geqslant 0 \mu \mathrm{~s}$
${ }^{\text {t }}$ SU; DAT	$t \geqslant 250 \mathrm{~ns}$
${ }^{\text {t }}$ R	$\mathrm{t} \leqslant 1 \mu \mathrm{~s}$
${ }^{\text {tF }}$	$t \leqslant 300 \mathrm{~ns}$
${ }^{\text {t }}$ SU; STO	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$

Note

All the timing values refer to $V_{I H}$ and $V_{\text {IL }}$ levels with a voltage swing of $V_{S S}$ to $V_{\text {DD }}$. For definitions see high-speed mode.

Fig. 13 Complete data transfer in the low-speed mode.
Where:

Clock ${ }^{\text {LLOWmin }}$	
$\mathrm{t}_{\text {HIGHmin }}$	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
Mark-to-space ratio	$1: 3$ (LOW-to-HIGH)
Start byte	00000001
Max. number of bytes	6
Premature termination of transfer	not allowed
Acknowledge clock bit	must be provided by master

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook "ICs for digital systems in radio, audio and video equipment".

[^2]
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range	V_{DD}	$-0,8$	$+8,0$	V
Input voltage range (any input)	V_{I}	$-0,8$	$\mathrm{~V}_{\mathrm{DD}^{+0,8}}$	V
D.C. input current (any input)	$\pm \mathrm{I}_{\mathrm{I}}$	-	10	mA
D.C. output current (any output)	$\pm \mathrm{I}_{\mathrm{O}}$	-	10	mA
Supply current	$\pm \mathrm{I}_{\mathrm{DD}} \pm \mathrm{I}_{\mathrm{SS}}$	-	50	mA
Power dissipation per output	P_{O}	-	50	mW
Total power dissipation per package	$\mathrm{P}_{\text {tot }}$	-	300	mW
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-25	+70	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\text {OsC }}=3,579545 \mathrm{MHz}, \mathrm{R}_{\text {Smax }}=50 \Omega$;
$T_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	$V_{\text {DD }}$	2,5	-	6,0	V
Operating supply current (note 1) oscillator $\mathrm{ON} ; \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$					
no output tone	IDD	-	50	100	$\mu \mathrm{A}$
single output tone	IDD	-	0,5	1,0	mA
dual output tone	${ }^{1} \mathrm{DD}$	-	0,6	1,2	mA
Static standby current oscillator OFF; note 1	${ }^{\text {I DDO }}$	-	-	3	$\mu \mathrm{A}$
Inputs/outputs (SDA)					
D_{0} to D_{5}; MODE; STROBE					
Input voltage LOW	$V_{\text {IL }}$	0	-	$0,3 \times V_{\text {DD }}$	V
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	$0,7 \times V_{\text {DD }}$	-	$V_{\text {DD }}$	V
D_{2} to D_{5}; MODE; STROBE; A_{0}					
Pull-down input current $v_{1}=v_{D D}$	-IIL	30	150	300	nA
SCL (D_{0}); SDA (D_{1})					
Output current LOW (SDA) $V_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {IOL}}$	3	-	-	mA
Clock frequency (see Fig. 10)	${ }^{\text {f SCL }}$	-	-	100	kHz
Input capacitance; $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	C_{1}	-	-	7	pF
Allowable input spike pulse width	t_{1}	-	-	100	ns

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
TONE output (see Fig. 14)					
DTMF output voltage levels (r.m.s. values)					
HIGH group	$\mathrm{V}_{\mathrm{HG}(\mathrm{rms})}$	158	192	205	mV
LOW group	$\mathrm{V}_{\text {LG }}(\mathrm{rms})$	125	150	160	mV
D.C. voltage level	$V_{\text {DC }}$	-	$1 / 2 V_{\text {DD }}$	-	V
Pre-emphasis of group	ΔV_{G}	1,85	2,10	2,35	dB
Total harmonic distortion$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$					
dual tone; note 2	THD	-	-25	-	dB
modem tone, note 3	THD	-	-29	-	dB
Output impedance	$\mathrm{Z}_{\mathrm{O}}{ }^{\text {l }}$	-	0,1	0,5	$k \Omega$
OSCI input					
Maximum allowable amplitude at OSCl	V OSC(p-p)	-	-	$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$	V
Timing ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$)					
Oscillator start-up time	${ }^{\text {t }}$ OSC(ON)	-	3	-	ms
TONE start-up time; note 4	${ }^{\text {t TONE }}$ (ON)	-	0,5	-	ms
STROBE pulse width; note 5	${ }^{\text {t }}$ STR	400	-	-	ns
Data set-up time; note 5	${ }^{t} \mathrm{DS}$	150	-	-	ns
Data hold time; note 5	${ }^{\text {t }}$ D	100	-	-	ns

Notes to the characteristics

1. Crystal is connected between OSCI and OSCO; $D_{0} / S C L$ and $D_{1} / S D A$ via a resistance of $5,6 \mathrm{k} \Omega$ to $V_{D D}$; all other pins left open.
2. Related to the level of the LOW group frequency component (CEPT CS 203).
3. Related to the level of the fundamental frequency.
4. Oscillator must be running.
5. Values are referenced to the 10% and 90% levels of the relevant pulse amplitudes, with a total voltage swing from V_{SS} to V_{DD}.

Fig. 14 TONE output test circuit.

Fig. 15 Standby supply current as a function of supply voltage; oscillator OFF.

Fig. 17 Operating supply current as a function of supply voltage; oscillator ON; dual tone at TONE.

Fig. 16 Operating supply current as a function of supply voltage; oscillator ON; no output at TONE.

Fig. 18 Pull-down input current as a function of input voltage; $V_{D D}=3 \mathrm{~V}$.

Fig. 19 DTMF output voltage levels as a function of operating supply voltage; $R_{L}=1 \mathrm{M} \Omega$.

Fig. 20 Dual tone output voltage level as a function of output load resistance.

Fig. 21 Typical frequency spectrum of a dual tone signal after flat-band amplification of 6 dB .

APPLICATION INFORMATION

Fig. 22 PCD3311 driven by a microcontroller with parallel data-bus.

Fig. 23 PCD3312 driven by telephony microcontroller PCD3343 with serial I/O ($I^{2} \mathrm{C}$ bus).
The PCD3343 is a single-chip 8-bit microcontroller with 3 K ROM/224 RAM bytes. The same application is possible with the PCD3311 with MODE $=\mathrm{V}_{\mathrm{SS}}$.

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips $\left.\right|^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

CMOS REDIAL AND REPERTORY DIALLER

GENERAL DESCRIPTION

The PCD3315 is a single chip CMOS dialler IC for telephone sets. It has two dialling modes; pulse dialling (PD), and dual tone multi-frequency (DTMF) when used in conjunction with tone generator PCD3312. In addition to manual dialling it also features several automatic functions, e.g. redial, extended redial, notepad and repertory dial.

Features

- Pulse dialling
- DTMF dial control of tone generator PCD3312
- Redial
- Extended redial
- Electronic notepad
- Ten repertory dial numbers
- 18-digit capacity for each autodial memory
- Maximum of 36 digits per call
- Flash or register recall
- Uses standard 4×4 keyboard (single or double contact)
- Four extra function keys: program/autodial, flash, redial, access pause
- Access pause generation and termination
- Automatic recognition of PABX-digits; resulting in an access pause insertion
- Hold input and access pause output (APO) to adjust the duration of the access pause and facilitate use of tone recognizers
- Four diode or strap functions: general/German, access pause time, reset delay time, general: mark-space ratio/German: prepulse
- Manual reset of autodial RAM
- On-chip power-on reset
- Programmed for improved noise immunity

QUICK REFERENCE DATA

Operating supply voltage	$V_{\text {DD }}$	2,5 to 6,0 V		
Standby supply voltage	$V_{\text {DDO }}$	min.		\checkmark
Operating currents at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ conversation mode dialling mode	$\begin{aligned} & \text { IDD } \\ & \text { IDD } \end{aligned}$			
Standby supply current at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\prime}$ DD	typ.	1,2	$\mu \mathrm{A}$
Crystal frequency	f		3,58	MHz
Operating ambient temperature range	Tamb	-25	+ 70	

PACKAGE OUTLINES

PCD3315P: 28-lead DIL; plastic (SOT-117).
PCD3315T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

Fig. 1 Pinning diagram.

PINNING

1	i.c.	internally connected
2	i.c.	internally connected
3	i.c.	internally connected
4	ROW 1	
5	ROW 2	
6	ROW 3	scanning row keyboard outputs
7	ROW 4	
8	ROW 5	
9	DIODE	diode option output
10	$\overline{\text { APO }}$	access pause output
11	$\overline{\text { HOLD }}$	hold input
12	CE	chip enable input
13	$\overline{\text { PD/DTMF }}$	input to select pulse or DTMF dialling
14	$\mathrm{V}_{\text {SS }}$	negative supply
15	XTAL 1	crystal pins
16	XTAL 2	crystal pins
17	RESET	reset input/output
18	COL 1	
19	COL 2	
20	COL 3	sense column keyboard inputs
21	COL 4	
22	DP/FL	dialling pulse and flash output
23	M1	muting output
24	SDA	serial data
25	SCL	serial clock
26	i.c	internally connected
27	i.c	internally connected
28	$V_{\text {DD }}$	positive supply

FUNCTIONAL DESCRIPTION

Power supply ($V_{D D} ; V_{S S}$)
The minimum supply voltage and supply current depend on the operating modes:

- Standby
- Conversation
- Dialling
(see operational description)
Oscillator (XTAL 1; XTAL 2)
The timebase for the PCD3315 is a crystal-controlled oscillator with a $3,58 \mathrm{MHz}$ quartz crystal connected between XTAL 1 and XTAL 2. The oscillator will run when the CE $=$ HIGH. The output XTAL 2 can drive the oscillaior input of the PCD3312 via a capacitor.

Keyboard inputs/outputs (COL 1 to 4; ROW 1 to 5)

The sense column COL 1 to COL 4 and the scanning row outputs ROW 1 to ROW 4 are directly connected to a 4×4 single contact keyboard matrix. An extra row (ROW 5) is added to address four additional function keys that are required for autodial functions. The keyboard organization is shown in Fig. 2. Keyboard entries are valid 20 ms (debounce time) after the leading edge and until 20 ms after the trailing edge of the keyboard entry.
In pulse dialling mode the valid keys are the 10 numeric keys (0 to 9). The 6 non-numeric keys (A, B, C, D, *, \#) have no effect on the dialling and are ignored.
In DTMF dialling mode the 10 numeric keys and the 6 non-numeric keys are valid.

Fig. 2 Keyboard organization.

Diode option output (DIODE)

An extra row is added to the keyboard matrix to provide several selections:

- Access pause duration
- Reset delay time
- Mark/space ratio or prepulse yes/no
- General or German version

Dialling pulse and flash output (DP/FL)

This output drives the line interrupter circuit. In pulse dialling mode it controls the timing for the line interrupter. This output also provides a "Flash" pulse which generates a 95 ms line break. In the German version this "Flash" occurs only in the DTMF dialling mode.

FUNCTION DESCRIPTION (continued)

Chip enable input (CE)

The CE input is used for hook-detection.
Hook-off will result in CE $=$ HIGH. This will change the circuit state from standby to operational mode and also initialize the circuit.
When the circuit detects a line break longer than the reset delay time, it will switch the IC to the standby mode. This essentially achieves a low standby current during hook-on.
During access pauses the reset delay time is longer because the telephone line supply is switched over, which may result in longer line drops.

Mute output (M1)

This output is active during:

- In pulse dialling mode; Mute = HIGH during interdigit pause plus dialling pulses
- In DTMF dialling mode; Mute = HIGH during DTMF bursts plus hold-over time
- During access pauses; Mute $=$ HIGH during the mute hold-over time
- During flash; Mute $=$ HIGH
- During programming

Hold input ($\overline{\mathrm{HOLD}}$); access pause output ($\overline{\mathrm{APO}}$)

The hold input suspends dialling after completion of the current digit, or in pulse dialling during the inter-digit pause.
The hold function facilitates an extra time delay during dialling under the control of external circuitry, i.e. a dialling tone recognizer.

In the hold state (HOLD = LOW) the muting output is also LOW, thus the IC is in the conversation mode. The HOLD input can be controlled by the access pause output ($\overline{\mathrm{APO}}$) directly, or indirectly via a dialling tone recognizer (see Fig. 3). The APO output will go LOW when an access pause is recognized.

Fig. 3 Automatic variation of length of an access pause under the control of a dialling tone recognizer.
Serial data (SDA); serial clock (SCL)
The serial I/O lines SDA and SCL are used to control the PCD3312 in the DTMF dialling mode (see
Fig. 5). Both outputs require external pull-up resistors.
Dialling mode selection input ($\overline{\mathrm{PD}} / \mathrm{DTMF}$)
This input selects the dialling mode:

- $\overline{P D} / D T M F=$ LOW selects pulse dialling
- PD/DTMF $=$ HIGH selects DTMF dialling

Reset input/output (RESET)

When the reset input is active HIGH it can be used to initialize the IC.
In normal application this is achieved by the CE input.
Reset is also an output of the internal power-on-reset circuit, which generates a reset pulse if V_{DD} drops below 1,3 V (typ.).

OPERATION

The PCD3315 has 3 operating modes:

- Standby
- Conversation
- Dialling

Standby mode

When the chip enable input (CE) is LOW the IC is in the standby mode.
The oscillator is switched off and the IC requires only a low standby current ($1,2 \mu \mathrm{~A}$ typ.) for memory retention.
$0,5 \mathrm{~ms}$ after CE becomes HIGH the circuit will leave the standby mode and enter the conversation mode.

Conversation mode

In this mode the IC is active in order to scan the keyboard entries. Mute and dialling pins are inactive. The current consumption is $270 \mu \mathrm{~A}$ (typ.) at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

Dialling mode

The IC will be switched to the fully operational mode in the following circumstances:

- A valid keyboard entry
- Dialling mode
- Programming mode

The current consumption is $500 \mu \mathrm{~A}$ (typ.) at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.
The PCD3315 has two dialling modes:

- Pulse dialling direct via DP/FL output
- DTMF dialling via PCD3312 using the serial I/O lines SDA and SCL

Pulse dialling

The timing sequence for pulse dialling is shown in Fig. 4a.
Output DP/FL starts with an inter-digit pause, followed by a sequence of pulses corresponding with the digit for transmission. The dialling frequency is fixed at 10 Hz , the break and make times are 60 ms and 40 ms respectively.
In the general version with diode option the user can also select break and make times of 67 ms and 33 ms respectively.
The muting pulse will overlap the total dialling sequence. After dialling the muting output (M1) goes LOW and the circuit is switched to the conversation mode.

DTMF dialling

The timing sequence for DTMF dialling is shown in Fig. 4b.
The PCD3312 generates the selected DTMF tones via the serial I/O lines SDA and SCL. These tones are transmitted with minimum tone burst durations of $70,70 \mathrm{~ms}$ (for the German version $80,80 \mathrm{~ms}$). The maximum tone burst duration is equal to the key depression time.
After dialling the muting output goes LOW after a hold-over time of 80 ms and the circuit is switched to the conversation mode.

OPERATION (continued)

Normal dialling

The IC has a working register with a maximum capacity of 18 positions. Entries in these positions maybe:

- 10 numeric digits 0 to 9
- Manually programmed access pauses
- 6 non-numeric special keys (*, \#, A, B, C, D) in DTMF mode

If none of the special keys have been pressed the contents of the working register will be stored automatically in the Redial Buffer.
The number of digits can be extended to a maximum of 36 , but this will result in a redial memory clear after hook-on. This is also valid for manual dialling after automatic dialling.

Automatic dialling

In addition to manual dialling the IC provides the following automatic functions:

- Redial of the last manually dialled number (German version)
or
Redial of the last dialled number (general version)
- Extended redial
- Electronic notepad
- Maximum of 10 repertory dialling numbers

The maximum capacity of the registers for these numbers is also 18 positions. The 6 non-numeric digits ($\left.{ }^{*}, \#, A, B, C, D\right)$ will not be stored.
To achieve these automatic dialling functions an extra row of the keyboard is required which contains the following special function keys:

- P programming/automatic dialling
- FL flash or register recall
- R redial
- AP manual access pause entry

Besides the operational procedure for automatic dialling, there are also procedures for programming these numbers into the memory (see Table 1).

Table 1 Keying procedures for dial and program operation

mode	operation	program
redial	R	automatic
extended redial	$P \cdot R$	$T N \cdot P$
notepad	$P \cdot R$	dial $\cdot \mathrm{P} \cdot \mathrm{P} \cdot \mathrm{TN} \cdot \mathrm{P}$
repertory dial	$\mathrm{P} \cdot \mathrm{d}$	$\overline{\mathrm{P}} \cdot \mathrm{d} \cdot \mathrm{TN}$
PABX digits	automatic	$\overline{\mathrm{P}} \cdot \mathrm{R} \cdot \mathrm{d}_{1}\left(\mathrm{~d}_{2}\right) \mathrm{R} \mathrm{d}_{3}\left(\mathrm{~d}_{4}\right)$
reset autodial	hook-on	
$R A M$	$2,5,8,0$	
	hook-off	
	$2,5,8,0$	

Where:

$\underline{\mathbf{P}} \quad=$ press and release P-key
$\overline{\mathrm{P}} \quad=$ press and keep P-key pressed
$\mathrm{R}=$ press and release R-key
$\mathrm{TN}=$ telephone number
d $\quad=$ digit 0 to 9
$\overline{2,5,8,0}=$ press and keep pressed keys 2,5,8 and 0
$2,5,8,0=$ release keys $2,5,8$ and 0

Access pause

During a dialling sequence it may be necessary to insert a wait time to ensure correct dialling.
A dialling sequence can always be interrupted by the $\overline{\mathrm{HOLD}}$ input through an access pause recognition, which results in a fixed time delay.
There are 3 possibilities to enter an access pause:

- At manual dialling by pressing the AP key
- At auto dialling by recognition of the AP-code in the memory
- Recognition of PABX digits, after which an automatic access pause will be inserted

There are 4 possibilities to terminate an access pause:

- $\overline{\mathrm{HOLD}}, \overline{\mathrm{APO}}$ pins directly interconnected; after a fixed time delay of 3 or 5 seconds in pulse dialling; 1,5 or 2,5 seconds in DTMF dialling. The fixed time delay is determined by a diode strap
- $\overline{\text { HOLD }}, \overline{A P O}$ pins interconnected via an RC network; after a fixed time delay of 3 or 5 seconds in pulse dialling; 1,5 or 2,5 seconds in DTMF dialling - plus an additional time delay determined by the RC values
- $\overline{\mathrm{APO}}$ pin enables a dialling tone recognizer, which controls the $\overline{\mathrm{HOLD}}$ input (see Fig. 3)
- HOLD input connected to V_{DD}; no access pause

During the access pause the muting output remains active during hold-over time. In order to handle longer line drops during access pauses, the PCD3315 automatically switches to the maximum reset delay time of 320 ms .

PABX digits

The PCD3315 will detect pre-programmed PABX digits and insert an access pause in the dialling sequence. The reserved capacity is for two different $P A B X$ numbers with a maximum of 2 digits each. Program procedure: $\bar{P} \cdot R \cdot d_{1}, d_{2} R d_{3} d_{4}$.

Notepad

In the conversation mode the notepad procedure will overwrite the extended redial buffer, without dialling-out digits. After hook-off this number can be recalled through the extended redial buffer.
Store procedure : P • P •TN P
Dial :P.R

Flash (see Fig. 4b)

Flash or register recall is activated by the flash key which results in a timed line break at output pin DP/FL. This line break is of a fixed 95 ms duration in both pulse and DTMF dialling modes. In the German version it is only applicable to the DTMF mode.
In the dialling procedure a flash entry will initialize the IC and thus the working register which acts like a chip enable procedure.

Memory clear

A built-in manually total memory clear to facilitate resetting of the autodial RAM after servicing, maintenance or telephone set delivery.
Procedure: hook-on, press and keep depressed keys $2,5,8,0$;
hook-off, release keys $2,5,8,0$.

OPERATION (continued)

Program security

Security measures are incorporated in the IC to avoid incorrect dialling operations and hang-ups.
The program has a built-in RAM check procedure to protect the autodial numbers stored in the RAM. If one or more bits of this RAM are changed during standby or the battery falls below $1,3 \mathrm{~V}$ (typ.), this will result in a memory clear to avoid subsequent incorrect dialling.

Diode options

There are 4 different diode or strap options which are an extension of the keyboard matrix. Addressing is via the 4 colums and diode pins.
There are two possibilities:

- Without diode
- With diode (cathode on row-side)

The built-in selections are shown in Table 2.
Table 2 Diode option selections

column	description	without diode	with diode	remarks
4	version	German	general	-
1	break, make-time	$60,40 \mathrm{~ms}$	$67,33 \mathrm{~ms}$	general version
1	prepulse	no	yes	German version
2	access pause	3 s	5 s	pulse dialling
2	access pause	$1,5 \mathrm{~s}$	$2,5 \mathrm{~s}$	DTMF dialling
3	reset delay time	160 ms	320 ms	-

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 28)
All input voltages
D.C. current into any input of output

Total power dissipation (see note)
Power dissipation per output
Storage temperature range
Operating ambient temperature range
Operating junction temperature

Note

Thermal resistance (junction to ambient)
for SOT-117
for SOT-136A

$V_{\text {DD }}$	$-0,8$ to +8	
V_{1}	0,8 t	+0,8
$\pm 11 . \pm 10$	max.	10
$\mathrm{P}_{\text {tot }}$	max.	500
P_{0}	max.	50
$\mathrm{T}_{\text {stg }}$		150
T $\mathrm{T}_{\text {ab }}$		+ 70
Tj	max.	125

$R_{\text {th } j-a}$	max.	$120 \mathrm{~K} / \mathrm{W}$
$R_{\text {th j-a }}$	\max.	$150 \mathrm{~K} / \mathrm{W}$

D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; all voltages with respect to V_{SS}; $f=3,58 \mathrm{MHz}$ with $R_{S}=50 \Omega$; unless otherwise specified

* Crystal connected between XTAL 1 and XTAL 2; SCL and SDA pulled to VDD via $5,6 \mathrm{k} \Omega$ resistor; CE and $\overline{\mathrm{PD}} / \mathrm{DTMF}$ at V_{SS}.
** Because RAM is cleared if POR is activated by software, this value must be max. VRESET.

Table 3 Timing date, general version

parameter	symbol	min.	typ.		unit
			*	**	
Reset delay time	$\mathrm{t}_{\mathrm{rds}}$	-	160	320	ms
Reset delay time during access pause	$\mathrm{t}_{\text {rds }}$	-	320	320	ms
Keyboard debounce time	${ }^{\text {d }}$ db	-	20	20	ms
Flash time	${ }_{\text {t }}{ }_{\text {l }}$	-	95	95	ms
Pulse dialling					
Dial frequency	f_{d}	-	10	10	Hz
Break/make time	$\mathrm{t}_{\mathrm{b} / \mathrm{m}}$	-	60,40	67,33	ms
Interdigit pause	$\mathrm{tidp}^{\text {d }}$	-	840	840	ms
Access pause	$t_{\text {ap }}$	-	3	5	s
Mute hold-over time \triangle	${ }^{\text {th }}$	-	1	1	s
DTMF dialling					
Tone transmission time	t_{t}	70 or	-down		ms
Tone pause time	t_{p}	70	-	-	ms
Mute hold-over time during dialling	$t_{\text {h }}$	-	150	150	ms
Mute hold-over time during access pause	$t^{\text {h }}$	-	1		s
Access pause	t_{ap}	-	1,5	2,5	s

Table 4 Timing data, German version

parameter	symbol	min.	typ.		unit
			*	**	
Reset delay time	${ }^{\text {trds }}$	-	160	320	ms
Reset delay time during access pause	${ }^{\text {r }}$ ds	-	320	320	ms
Keyboard debounce time	t_{db}	-	20	20	ms
Pulse dialling					
Dial frequency	f_{d}	-	10	10	Hz
Break/make time	$\mathrm{t}_{\mathrm{b} / \mathrm{m}}$	-	60,40	60,40	ms
Interdigit pause	$\mathrm{tidp}^{\text {id }}$	-	840	840	ms
Access pause	$\mathrm{tap}^{\text {a }}$	-	3	5	s
Mute hold-over time \triangle	th	-	1	3	s
Prepulse time	${ }^{\text {tpp }}$	-	-	20	ms
DTMF dialling					
Tone transmission time	t_{t}	80 or	-down		ms
Tone pause time	t_{p}	80	-	-	ms
Mute hold-over time during dialling	th	-	160	160	ms
Mute hold-over time during access pause	${ }_{\text {th }}$	-	1	2	s
Access pause	${ }_{\text {tap }}$	-	1,5	2,5	s
Flash time	t_{fl}	-	95	95	ms

[^3]

Fig. 4a Timing diagram for pulse dialling mode, defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{LOW}\left(\mathrm{V}_{\mathrm{SS}}\right)$.

Fig. 4b Timing diagram for DTMF dialling mode, defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{HIGH}\left(V_{D D}\right)$.

Fig. 5 Block diagram of feature phone.

CMOS REDIAL AND REPERTORY DIALLER

GENERAL DESCRIPTION

The PCD3315/503 is a single chip CMOS dialler IC for telephone sets. It has two dialling modes; pulse dialling (PD), and dual tone multi-frequency (DTMF) when used in conjunction with tone generator PCD3312. In addition to manual dialling it also features several automatic functions, e.g. redial, extended redial, notepad and repertory dial.

Features

- Pulse dialling
- DTMF dial control of tone generator FCD3312
- Redial
- Extended redial
- Electronic notepad
- Ten repertory dial numbers
- Successsive dial and autodial procedures during a single call
- 18-digit capacity for each autodial memory
- Number of digits per call is infinite (FIFO register)
- Flash or register recall
- Uses standard 4×4 keyboard (single or double contact)
- Four extra function keys: program/autodial, flash, redial, access pause
- Keyboard expansion is possible to accomodate the 10 repertory dialling numbers
- Access pause generation and termination.
- Automatic recognition of PABX-digits; resulting in an access pause insertion
- Hold input and access pause output (APO) to adjust the duration of the access pause and facilitate use of tone recognizers
- Four diode or strap functions: mark-space ratio, FLASH time, access pause time and tone bursts time
- Manual reset of autodial RAM
- On-chip power-on reset
- Programmed for improved noise immunity

QUICK REFERENCE DATA

Operating supply voltage	$V_{\text {DD }}$	2,5 to 6,0 V		
Standby supply voltage	$\mathrm{V}_{\text {DDO }}$	min.		V
Operating currents at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ conversation mode dialling mode	$\begin{aligned} & \text { IDD } \\ & \text { IDD } \end{aligned}$	typ. typ.		
Standby supply current $\text { at } V_{D D}=1,8 \mathrm{~V} ; T_{a m b}=25 \circ \mathrm{C}$	IDD	typ.	1,2	
Crystal frequency	f		3,58	MHz
Operating ambient temperature range	Tamb		+70	

PACKAGE OUTLINES

PCD3315P: 28-lead DIL; plastic (SOT-117).
PCD3315T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

Fig. 1 Pinning diagram.

PINNING

1	i.c.	internally connected
2	i.c.	internally connected
3	i.c.	internally connected
4	ROW 1	
5	ROW 2	
6	ROW 3	scanning row keyboard outputs
7	ROW 4	
8	ROW 5	
9	DIODE	diode option output
10	$\overline{\text { APO }}$	access pause output
11	HOLD	hold input
12	CE	chip enable input
13	$\overline{\text { PD/DTMF }}$	input to select pulse or DTMF dialling
14	$\mathrm{V}_{\text {SS }}$	negative supply
15	XTAL 1	crystal pins
16	XTAL 2	
17	RESET	reset input/output
18	COL 1	
19	COL 2	sense column keyboard inputs
20	COL 3	
21	COL 4	
22	DP/FL	dialling pulse and flash output
23	M1	muting output
24	SDA	serial data
25	SCL	serial clock
26	COL 5	sense column keyboard inputs
27	COL 6	
28	VDD	positive supply

FUNCTIONAL DESCRIPTION

Power supply (VDD; VSS)

The minimum supply voltage and supply current depend on the operating modes:

- Standby
- Conversation
- Dialling
(see operational description)

Oscillator (XTAL 1; XTAL 2)

The timebase for the PCD3315/503 is a crystal-controlled oscillator with a $3,58 \mathrm{MHz}$ quartz crystal connected between XTAL 1 and XTAL 2. The oscillator will run when the CE $=\mathrm{HIGH}$. The output XTAL 2 can drive the oscillator input of the PCD3312 via a capacitor.

Keyboard inputs/outputs (COL 1 to 6; ROW 1 to 5)

The sense column COL 1 to COL 4 and the scanning row outputs ROW 1 to ROW 4 are directly connected to a 4×4 single contact keyboard matrix. An extra row (ROW 5) is added to address four additional function keys that are required for autodial functions.
Repertory dialler extension (ROW 1 to ROW 5/COL 5 and COL 6): 10 extra keys to access by single button repertory numbers (on-chip RAM). The keyboard organization is shown in Fig. 2. Keyboard entries are valid 20 ms (debounce time) after the leading edge and until 20 ms after the trailing edge of the keyboard entry.
In pulse dialling mode the valid keys are the 10 numeric keys (0 to 9). The 6 non-numeric keys ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D},{ }^{*}, \#$) have no effect on the dialling and are ignored.
In DTMF dialling mode the 10 numeric keys and the 6 non-numeric keys are valid.

Fig. 2 Keyboard organization.

Diode option output (DIODE)

An extra row is added to the keyboard matrix to provide several selections:

- Access pause duration
- "Flash" time selection
- Mark/space ratio
- Tone burst time selection

Dialling pulse and flash output (DP/FL)

This output drives the line interrupter circuit. In pulse dialling mode it controls the timing for the line interrupter. This output also provides a "Flash" pulse which generates a 95/650 ms line break, selected via a diode option.

FUNCTION DESCRIPTION (continued)

Chip enable input (CE)

The CE input is used for hook-detection.
Hook-off will result in CE $=$ HIGH. This will change the circuit state from standby to operational mode and also initialize the circuit.
When the circuit detects a line break longer than the reset delay time, it will switch the IC to the standby mode. This essentially achieves a low standby current during hook-on.
During access pauses the reset delay time is longer because the telephone line supply is switched over, which may result in longer line drops.

Mute output (M1)

This output is active:

- In pulse dialling mode; Mute $=$ HIGH during inter-digit pause plus dialling pulses
- In DTMF dialling mode; Mute $=$ HIGH during DTMF bursts plus hold-over time
- During access pauses; Mute $=$ HIGH during the mute hold-over time
- During flash; Mute $=$ HIGH
- During programming.

Hold input ($\overline{H O L D}$) ; access pause output ($\overline{\mathrm{APO} \text {) }}$
The hold input suspends dialling after completion of the current digit, or in pulse dialling during the inter-digit pause.
The hold function facilitates an extra time delay during dialling under the control of external circuitry, i.e. a dialling tone recognizer.

In the hold state ($\overline{H O L D}=L O W$) the muting output is also LOW, thus the IC is in the conversation mode. The $\overline{H O L D}$ input can be controlled by the access pause output ($\overline{\mathrm{APO}}$) directly, or indirectly via a dialling tone recognizer (see Fig. 3). The $\overline{\mathrm{APO}}$ output will go LOW when an access pause is recognized.

Fig. 3 Automatic variation of length of an access pause under the control of a dialling tone recognizer.

Serial data (SDA); serial clock (SCL)

The serial I/O lines SDA and SCL are used to control the PCD3312 in the DTMF dialling mode (see Fig. 5). Both outputs require external pull-up resistors.

Dialling mode selection input ($\overline{P D} / D T M F$)
This input selects the dialling mode:

- $\overline{\mathrm{PD}} / D T M F=$ LOW selects pulse dialling
- $\overline{\mathrm{PD}} / \mathrm{DTMF}=$ HIGH selects DTMF dialling

Reset input/output (RESET)

When the reset input is active HIGH it can be used to initialize the IC.
In normal application this is achieved by the CE input.
Reset is also an output of the internal power-on-reset circuit, which generates a reset pulse if VDD drops below 1,3 V (typ.).

OPERATION

The PCD3315/503 has 3 operating modes:

- Standby
- Conversation
- Dialling

Standby mode

When the chip enable input (CE) is LOW the IC is in the standby mode.
The oscillator is switched off and the IC requires only a low standby current ($1,2 \mu \mathrm{~A}$ typ.) for memory retention.
$0,5 \mathrm{~ms}$ after CE becomes HIGH the circuit will leave the standby mode and enter the conversation mode.

Conversation mode

In this mode the IC is active in order to scan the keyboard entries. Mute and dialling pins are inactive. The current consumption is $270 \mu \mathrm{~A}$ (typ.) at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

Dialling mode

The IC will be switched to the fully operational mode in the following circumstances:

- A valid keyboard entry
- Dialling mode
- Programming mode

The current consumtion is $500 \mu \mathrm{~A}$ (typ.) at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.
The PCD3315/503 has two dialling modes:

- Pulse dialling direct via DP/FL output
- DTMF dialling via PCD3312 using the serial I/O lines SDA and SCL

Pulse dialling

The timing sequence for pulse dialling is shown in Fig. 4a.
Output DP/FL starts with an inter-digit pause, followed by a sequence of pulses corresponding with the digit for transmission. The dialling frequency is fixed at 10 Hz , the break and make times are 60 ms and 40 ms respectively.
With diode option the user can also select break and make times of 67 ms and 33 ms respectively. The muting pulse will overlap the total dialling sequence. After dialling the muting output (M1) goes LOW and the circuit is switched to the conversation mode.

DTMF dialling

The timing sequence for DTMF dialling is shown in Fig. 4b.
The PCD3312 generates the selected DTMF tones via the serial I/O lines SDA and SCL. These tones are transmitted with minimum tone burst durations of $70,70 \mathrm{~ms}$ or $100,100 \mathrm{~ms}$ with diode option. The maximum tone burst duration is equal to the key depression time. After dialling the muting output goes LOW after a hold-over time of 80 ms and the circuit is switched to the conversation mode.

OPERATION

Normal dialling

The IC has a working register with a maximum capacity of 18 positions. Entries in these positions maybe:

- 10 numeric digits 0 to 9
- Manually programmed access pauses
- 6 non-numeric special keys (${ }^{*}$, \#, A, B, C, D) in DTMF mode

If none of the special keys have been pressed the contents of the working register will be stored automatically in the Redial Buffer.
The number of digits can be extended but this will result in a redial memory clear after hook-on. Up to 18 digits can be stored in the redial register. After the main store overflows, a 10 -digit First-in First-out (FIFO) register takes over as buffer. After transmitting the first digit of the FIFO register this place is automatically cleared and new data can be stored there. In this way an unlimited number can be transmitted if the key-in rate is not too fast. However if this FIFO register also overflows (more than 10 digits in store) further input will be ignored.
This is also valid for manual dialling after automatic dialling.

Automatic dialling

In addition to manual dialling the IC provides the following automatic functions:

- Redial of the last dialled number
- Extended redial
- Electronic notepad
- Maximum of 10 repertory dialling numbers

The maximum capacity of the registers for these numbers is also 18 positions. The 6 non-numeric digits (*, \#, A, B, C, D) will not be stored.
To achieve these automatic dialling functions an extra row of the keyboard is required which contains the following special function keys:

- P programming/automatic dialling
- FL flash or register recall
- R redial
- AL manual access pause entry

Besides the operational procedure for automatic dialling, there are also procedures for programming these numbers into the memory (see Table 1).

Table 1 Keying procedures for dial and program operation

mode	operation	program
redial	R	automatic
extended redial	$\mathrm{P} \cdot \mathrm{R}$	$\mathrm{TN} \cdot \mathrm{P}$
notepad	$\mathrm{P} \cdot \mathrm{R}$	dial $\cdot \mathrm{P} \cdot \mathrm{P} \cdot \mathrm{TN} \cdot \mathrm{P}$
repertory dial	$\mathrm{P} \cdot \mathrm{d}$	$\frac{\mathrm{P}}{\mathrm{P}} \cdot \mathrm{d} \cdot \mathrm{TN}$
or	M	$\frac{\mathrm{P}}{\mathrm{P}} \cdot \mathrm{M} \cdot \mathrm{TN}$
PABX digits	automatic	$\mathrm{P} \cdot \mathrm{R} \cdot \mathrm{d}_{1}\left(\mathrm{~d}_{2}\right) \mathrm{R} \mathrm{d} \mathrm{d}_{3}\left(\mathrm{~d}_{4}\right)$
reset autodial	$\underline{\text { hook-on }}$	
RAM	$2,5,8,0$	
	hook-off	
	$2,5,8,0$	

Where:

P	$=$ press and release P-key	$\frac{d}{2,5,8,0}$	$=$ digit 0 to 9
$\overline{\mathrm{P}}$	$=$ press and keep pressed keys $2,5,8$ and 0		
R	$=$ press and release R-key	$2,5,8,0$	$=$ release keys $2,5,8$ and 0
TN	$=$ telephone number	M	
		$=$ press and release M-key	

Successive repertory dialling during a call

It is possible to dial more than one repertory number during one single telephone call using the following procedures:

- Redial, extended redial or a repertory number followed by new digits
- Repertory number followed by one or more repertory numbers
- Normal dial, redial or extended redial followed by one or more repertory numbers

Repertory button dialling via extended keyboard

The PCD3315/503 has the facility to store 10 repertory numbers, activated by the P-button with a number key or by using direct button action. Then the stored numbers can be re-called by pressing one of the 10 name buttons. The keyboard extension is connected via pins 26 and 27.

OPERATION (continued)

Access pause

During a dialling sequence it may be necessary to insert a wait time to ensure correct dialling.
A dialling sequence can always be interrupted by the $\overline{\mathrm{HOLD}}$ input through an access pause recognition, which results in a fixed time delay.
There are 3 possibilities to enter an access pause:

- At manual dialling by pressing the AP key
- At auto dialling by recognition of the AP-code in the memory
- Recognition of PABX digits, after which an automatic access pause will be inserted

There are 4 possibilities to terminate an access pause:

- $\overline{\text { HOLD }}, \overline{\text { APO }}$ pins directly interconnected; after a fixed time delay of 3 or 5 seconds in pulse dialling;

1,5 or 2,5 seconds in DTMF dialling. The fixed time delay is determined by a diode strap

- $\overline{H O L D}, \overline{A P O}$ pins interconnected via an RC network; after a fixed time delay of 3 or 5 seconds in pulse dialling; 1,5 or 2,5 seconds in DTMF dialling - plus an additional time delay determined by the RC values
- $\overline{\mathrm{APO}}$ pin enables a dialling tone recognizer, which controls the $\overline{\mathrm{HOLD}}$ input (see Fig. 3)
- $\overline{\mathrm{HOLD}}$ input connected to VDD; no access pause

During the access pause the muting output remains active during hold-over time. In order to handle longer line drops during access pauses, the PCD3315 automatically switches to the maximum reset delay time of 320 ms .

PABX digits

The PCD3315/503 will detect pre-programmed PABX digits and insert an access pause in the dialling sequence. The reserved capacity is for two different $P A B X$ numbers with a maximum of 2 digits each.
Program procedure: $\bar{P} \cdot R \cdot d_{1}, d_{2} R d_{3} d_{4}$.

Notepad

In the conversation mode the notepad procedure will overwrite the extended redial buffer, without dialling-out digits. After hook-off this number can be recalled through the extended redial buffer.
Store procedure : P • P • TN P
Dial : P.R

Flash (see Fig. 4b)
Flash or register recall is activated by the flash key which results in a timed line break at output pin DP/FL. This line break is of a fixed 95 or 650 ms duration in both pulse and DTMF dialling modes. In the dialling procedure a flash entry will initialize the IC and thus the working register which acts like a chip enable procedure.

Memory clear

A built-in manually total memory clear to facilitate resetting of the autodial RAM after servicing, maintenance or telephone set delivery.

Procedure: hook-on, press and keep depressed keys 2, 5, 8, 0; hook-off, release keys $2,5,8,0$.

Program security

Security measures are incorporated in the IC to avoid incorrect dialling operations and hang-ups. The program has a built-in RAM check procedure to protect the autodial numbers stored in the RAM. If one or more bits of this RAM are changed during standby or the battery falls below $1,3 \mathrm{~V}$ (typ.), this will result in a memory clear to avoid subsequent incorrect dialling.

Diode options

There are 4 different diode or strap options which are an extension of the keyboard matrix. Addressing is via the 4 columns and diode pins.
There are two possibilities:

- Without diode
- With diode (cathode on row-side)

The built-in selections are shown in Table 2.
Table 2 Diode option selections

column	description	without diode	with diode	remarks
4	tone burst	$100,100 \mathrm{~ms}$	$70,70 \mathrm{~ms}$	-
1	break, make-time	$60,40 \mathrm{~ms}$	$67,33 \mathrm{~ms}$	-
2	access pause	3 s	5 s	pulse dialling
2	access pause	$1,5 \mathrm{~s}$	$2,5 \mathrm{~s}$	DTMF dialling
3	flash time	95 ms	650 ms	-

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 28)
All input voltages
D.C. current into any input of output

Total power dissipation (see note)
Power dissipation per output
Storage temperature range
Operating ambient temperature range
Operating junction temperature

Note

Thermal resistance (junction to ambient)
for SOT-117
for SOT-136A
$V_{D D}$
$V_{I} \quad 0,8$ to $V_{D D}+0,8 \mathrm{~V}$
$\pm 1, \pm l_{0}$ max. $\quad 10 \mathrm{~mA}$
$P_{\text {tot }} \quad$ max. $\quad 500 \mathrm{~mW}$
Po max. 50 mW
$\mathrm{T}_{\text {stg }}$
Tamb
T_{j} max. -25 to $+70{ }^{\circ} \mathrm{C}$
max. $125{ }^{\circ} \mathrm{C}$

$R_{\text {th } j-a}$	\max	$120 \mathrm{~K} / \mathrm{W}$
$R_{\text {th } j-a}$	\max.	$150 \mathrm{~K} / \mathrm{W}$

D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; all voltages with respect to V_{SS};
$f=3,58 \mathrm{MHz}$ with $R_{S}=50 \Omega$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit		
Supply voltage operating STOP mode for RAM retention	VDD VDD	2,5 1,0**	-	6	V V		
Supply current dialling mode at $V_{D D}=3 V$ conversation mode at $V_{D D}=3 \mathrm{~V}$ STOP mode* at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$ at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ RESET I/O Switching level Sink current at $V_{\text {DD }}>V_{\text {RESET }}$ Inputs Input voltage LOW Input voltage HIGH Input leakage current $\text { at } \mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{I}}<\mathrm{V}_{\mathrm{DD}}$ Outputs Output voltage LOW $\text { at } V_{1}=V_{S S} \text { or } V_{D D} ;\\|O\\|<1 \mu \mathrm{~A}$ Output sink current LOW $\text { at } V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V}$ Pull-up output source current HIGH (except SDA, SCL) $\begin{aligned} & \text { at } V_{D D}=3 V_{;} V_{O}=0,9 V_{D D} \\ & \text { at } V_{D D}=3 V_{i} V_{O}=V_{S S} \end{aligned}$	IDD	-	500	-	$\mu \mathrm{A}$		
	IDD	-	270	-	$\mu \mathrm{A}$		
	IDD	-	1,2	2,5	$\mu \mathrm{A}$		
	IDD	-	-	5	$\mu \mathrm{A}$		
	IDD	-	-	10	$\mu \mathrm{A}$		
	$\mathrm{V}_{\text {RESET }}$	-	1,2	1,5	v		
	IOL	-	7	-	$\mu \mathrm{A}$		
	$V_{\text {IL }}$	0	-	0,3V VDD	V		
	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	VDD	V		
	$\pm 1 \mathrm{~L}$	-	-	1	$\mu \mathrm{A}$		
	VOL	-	-	0,05	V		
	IOL	0,6	1,5	-	mA		
	- ${ }^{-1 \mathrm{OH}}$	10	-	200	$\mu \mathrm{A}$		
	$-\mathrm{OH}$			200	$\mu \mathrm{A}$		

* Crystal connected between XTAL 1 and XTAL 2; SCL and SDA pulled to VDD via $5,6 \mathrm{k} \Omega$ resistor; $C E$ and $\overline{P D} / D T M F$ at $V_{S S}$.
** Because RAM is cleared if POR is activated by software, this value must be max. VRESET.

Table 3 Timing data

parameter	symbol	typ.		unit
		without diode	with diode	
Reset delay time	$\mathrm{t}_{\text {rds }}$	160	160	ms
Reset delay time during access pause	$t_{\text {rds }}$	320	320	ms
Keyboard debounce time	$t_{d b}$	20	20	ms
Flash time	t_{fl}	95	650	ms
Pulse dialling				
Dial frequency	f_{d}	10	10	Hz
Break/make time	$\mathrm{t}_{\mathrm{b} / \mathrm{m}}$	60,40	67,33	ms
Interdigit pause	$\mathrm{t}_{\text {idp }}$	840	840	ms
Access pause	t_{ap}	3	5	s
Mute hold-over time ${ }^{\text {® }}$	t_{h}	1	1	s
DTMF dialling				
Tone transmission time	t_{t}	$\min .100$ or key-down time	$\min .70$ or key-down time	ms
Tone pause time	t_{p}	min. 100	min. 70	ms
Mute hold-over time during dialling	t_{h}	$80+t^{\text {p }}$	$80+\mathrm{t}_{\mathrm{p}}$	ms
Mute hold-over time during access pause	t_{h}	1		s
Access pause	t_{ap}	1,5	2,5	s

- Only during access pause.

Fig. 4a Timing diagram for pulse dialling mode, defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{LOW}\left(\mathrm{V}_{\mathrm{SS}}\right)$.

Fig. 4b Timing diagram for DTMF dialling mode, defined by $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{HIGH}\left(\mathrm{V}_{\mathrm{DD}}\right)$.

APPLICATION INFORMATION

Fig. 5 Block diagram of feature phone.

CMOS MICROCONTROLLER FOR TELEPHONE SETS

GENERAL DESCRIPTION

The PCD3315C is a single-chip 8-bit microcontroller fabricated in CMOS and is a member of the PCD3343 family. It has special on-chip features for application in telephone sets.

Features

- 8-bit CPU, ROM, RAM, I/O in a single 28 -lead DIL or SO package
- 1536 ROM bytes
- 160 RAM bytes
- 20 quasi-bidirectional I/O port lines
- Two test inputs: one of which is also the external interrupt input (CE/TO)
- Single-level vectored interrupts: external, timer/event counter
- 8 -bit programmable timer/event counter
- Over 80 instructions (based on MAB8048, MAB8400, PCD3343 and PCF8500)
- All instructions 1 or 2 cycles
- Clock frequency 100 kHz to 10 MHz
- Single supply voltage from $1,8 \mathrm{~V}$ to 6 V
- Low standby voltage and current
- STOP and IDLE mode
- On-chip oscillator with output drive capability for peripherals
- Configuration of all I/O port lines individually selected by mask: pull-up, open drain or push-pull
- Power-on-reset circuit and low supply voltage detection
- Reset state of all ports individually selected by mask
- Operating temperature range: -25 to $+70^{\circ} \mathrm{C}$

PACKAGE OUTLINES

Fig. 1 Block diagram; PCD3315C.

(a)

Fig. 1a Replacement of dotted part in Fig. 1, for the PCD8500F bond-out version.

(b)

Fig. 1b Replacement of dotted part in Fig. 1, for the PCF8500B 'Piggy-back' version.

PINNING

Fig. 2 Pinning diagram: PCD3315C.

PIN DESIGNATION

3	n.c.	not connected
4-11	P00-P07	Port 0: 8-bit quasi-bidirectional 1/O port.
12	CE/TO	Interrupt/Test 0: external interrupt input (sensitive to positive-going edge edge)/test input pin; when used as a test input directly tested by conditional branch instructions JTO and JNTO.
13	T1	Test 1: test input pin, directly tested by conditional branch instructions JT1 and JNT1. T1 also functions as an input to the 8-bit timer/event counter, using the STRT CNT instruction.
14	$V_{\text {SS }}$	Ground: circuit earth potential.
15	XTAL 1	Crystal input: connection to timing component (crystal) which determines the frequency of the internal oscillator; also the input for an external clock source.
16	XTAL 2	connection to the other side of the timing component.
17	RESET	Reset input: used to initialize the processor (active HIGH), or output of power-on-reset circuit.
18-25	P10-P17	Port 1: 8-bit quasi-bidirectional I/O port.
26, 27, 1, 2	P20-P23	Port 2: 4-bit quasi-bidirectional I/O port.
28	$V_{\text {DD }}$	Power supply: $1,8 \mathrm{~V}$ to 6 V .

D.C. CHARACTERISTICS

$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; all voltages with respect to $\mathrm{V}_{\mathrm{SS}} ; f=3,58 \mathrm{MHz}$ with $R_{S}=50 \Omega$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit	
Supply voltage operating	VDD	1,8	-	6	V	
STOP mode for RAM retention	VDD	1,0	-	6	V	
Supply current operating at $V_{D D}=3 V$	${ }^{\prime}$ DD	-	350	-	$\mu \mathrm{A}$	
IDLE mode at $V_{D D}=3 \mathrm{~V}$	IDD	-	150	-	$\mu \mathrm{A}$	
STOP mode (note 1) at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{DD}$	-	1,2	2,5	$\mu \mathrm{A}$	
at $\mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	${ }^{\text {I DD }}$	-	-	5	$\mu \mathrm{A}$	
at $V_{D D}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	${ }^{1}$ DD	-	-	10	$\mu \mathrm{A}$	
RESET I/O						
Switching level	VRESET	-	1,2	-	V	
Sink current at $\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\mathrm{RESET}}$	${ }^{\text {IOL }}$	-	7	-	$\mu \mathrm{A}$	
Inputs						
Input voltage LOW	$V_{\text {IL }}$	0	-	$0,3 V_{\text {DD }}$	V	
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	VDD	V	
Input leakage current at $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{DD}}$	$\pm I \mathrm{IL}$	-	-	1	$\mu \mathrm{A}$	
Outputs						
Output voltage LOW at $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}} ; \\| \mathrm{I} \mid<1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OL }}$	-	-	0,05	v	
Output sink current LOW at $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V}$	${ }^{1} \mathrm{OL}$	0,6	1,5	-	mA	
Pull-up output source current HIGH at $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0,9 \mathrm{~V}_{\mathrm{DD}}$	${ }^{-1} \mathrm{OH}$	10	-	-	$\mu \mathrm{A}$	
at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{S S}$	${ }^{-1} \mathrm{OH}$	-	-	200	$\mu \mathrm{A}$	
Push-pull output source current HIGH $\text { at } V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-0,4 \mathrm{~V}$	$-\mathrm{IOH}$	0,6	1,5	-	mA	

Note 1

Crystal connected between XTAL 1 and XTAL 2; pin 2 pulled to $V_{D D}$ via $5,6 \mathrm{k} \Omega$ resistor;
CE and T 1 at V_{SS}.

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3320 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- All inputs with pull-up/pull-down (except CE).
- 23-digit capacity for redial operation.
- Circuit reset for line power breaks; > 160 ms.
- Dialling pulse frequency: 10 Hz .
- Test pulse frequency: 932 Hz .
- Hold facility for lengthening the inter-digit period.
- Memory overflow possibility (with internally disabled redial).
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3320P : 18-lead DIL; plastic (SOT-102GE).
PCD3320D: 18-lead DIL; ceramic (SOT-133B).

Fig. 1 Pinning diagram.
PINNING
$\begin{array}{ll}10 & V_{D D} \\ 10 & V_{S S}\end{array}$
Inputs
$5 \quad$ FO

7 CE
11 X1
12×2
13 X3
14 Y1
15 Y2
16 Y3
17 Y4
18 HOLD
positive supply
negative supply
the dialling pulse frequency is defined by the logic state of this input Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks.
column keyboard inputs with pull-down on chip
row keyboard inputs with pull-up on chip
interrupts dialling after completion of the current digit or immediately following an inter-digit pause (t_{id}); further keyboard data will be accepted

Outputs

2	DP	Dialling Pulse; drive of the external line switching transistor or relay
3	$M 1$	Muting; normally used for muting during the dialling sequence
4	$\overline{M 1}$	inverted output of $M 1$
6	$M 3$	AND function, with $\overline{\mathrm{DP}}$ and M 1 as input, for direct drive of a switching
		transistor for dialling pulses and muting.

Oscillator

8	OSC IN
9	OSC OUT

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)

Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3320 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set by input F01 to provide one of two chip system clocks; the 'normal' clock frequency ($\mathrm{FO1}=\mathrm{LOW}$) and the test frequency ($\mathrm{FO1}=\mathrm{HIGH}$).
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
$C E=$ LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When CE = HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time t_{rd} (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<\mathrm{t}_{\text {rd }}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit $\left(X_{n}\right)$ and the row keyboard inputs $\left(Y_{n}\right)$ are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4 -bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the debouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.
If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored in the RAM and converted into correctly timed dialling pulses.

\# Redial.

Fig. 3 Single contact keyboard.

Fig. 4 Double contact keyboard.

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.

Then, approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods (t_{d}) later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at outputs M1 and M3. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).
When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period t_{e}, M1 goes HIGH and the pushbutton can be released. The supply to VDD and CE is then maintained via the muting circuit controlled by M1.

The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH (M2 is an internally generated signal, used for explanation only), the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at outputs DP and M3. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to V_{DD}). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $V_{D D}$ above $V_{D D O}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{D D}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts). M 2 is an internal signal.

Fig. 7 Timing diagram for initiating the dialling mode with $V_{D D}$ and CE initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A. M2 is an internal signal.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD input is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on M3 and DP until the HOLD input is set LOW again and an inter-digit pause has elapsed.

Fig. 8 Timing diagram showing the effect of activating the HOLD input during the transmission of dialling pulses. M2 is an internal signal.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range

$V_{D D}$	$-0,3$ to 8 V
$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{amb}}$	-25 to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\mathrm{Smax}}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

	symbol	min.		max.		conditions
Operating supply voltage	$V_{D D}$	2,5	3	6	V	$\} T_{\text {amb }}=-25$ to $+70^{\circ} \mathrm{C}$
Standby supply voltage (note 1)	VDO	1,8	-	6	V	
Operating supply current	IDD	-	40	-	$\mu \mathrm{A}$	CE = HIGH; notes 2, 3
	IDD	-	50	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} C E=H I G H ; V_{D D}=6 \mathrm{~V} ; \\ \text { notes 2, } 3 \end{array}\right.$
Standby supply current	IDDO	-	1	5	$\mu \mathrm{A}$	$\left\{\begin{array}{l} C E=\text { LOW; note } 2 \\ V_{D D}=1,8 \mathrm{~V} \\ T_{a m b}=-25 \text { to }+70^{\circ} \mathrm{C} \end{array}\right.$
	IDDO	-	-	2	$\mu \mathrm{A}$	
Input voltage LOW	$\mathrm{V}_{\text {IL }}$	-	-	$0,3 V_{D D}$		$1,8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 6 \mathrm{~V}$
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	0,7 $V_{\text {DD }}$	-	-		
Input leakage current; CE LOW	$-_{\text {IIL }}$	-	-	50	nA	CE = LOW
HIGH	I_{IH}	-	-	50	nA	$\mathrm{CE}=\mathrm{HIGH}$
Pull-down input current F01, HOLD	${ }_{1} \mathrm{H}$	30	100	300	nA	$V_{1}=V_{D D}$
Matrix keyboard operation			10	-	$\mu \mathrm{A}$	
Keyboard current	${ }^{\prime} \mathrm{K}$	-				$\left\{\begin{array}{l} X \text { connected to } Y, \\ C E=\text { HIGH } \end{array}\right.$
Keyboard 'ON' resistance	$\mathrm{R}_{\text {KON }}$	-	-	500	Ω	contact ON; note 4
Keyboard 'OFF' resistance	RKOFF	1	-	-	M Ω	contact OFF; note 4
Other keyboard operation						
Input current for $\mathrm{X}_{\mathrm{n}}{ }^{\prime} \mathrm{ON}{ }^{\prime}$	${ }_{1} \mathrm{H}$	-	-	30	$\mu \mathrm{A}$	$\mathrm{V}_{1}=1,5$ to 3 V
Input current for $\mathrm{Y}_{\mathrm{n}}{ }^{\prime} \mathrm{ON}{ }^{\prime}$	$-I_{\text {IL }}$	10	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0$ to $2,5 \mathrm{~V}$
Input current Y_{n}	-11	-	-	0,7	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$
Output sink current	${ }^{\prime} \mathrm{OL}$	0,7	1,5	3,2	mA	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
Output source current	${ }^{-1} \mathrm{OH}$	0,65	1,3	2,7	mA	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

TIMING DATA I

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{osc}}=3,58 \mathrm{MHz} ; \mathrm{R}_{\text {Smax }}=100 \Omega$

	symbol	min.	typ.	ma		conditions	
Clock start-up time	$t_{\text {on }}$	-	4	-	ms	Figs 6, 7; note 1	
Initial data entry time $\left(t_{i}=t_{o n}+t_{e}\right)$	$\mathrm{t}_{\mathrm{imin}}$ $\mathrm{t}_{\mathrm{i} \text { max }}$		$\begin{aligned} & 18 \\ & 4 \end{aligned}$	-	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \text { F01 }=\text { LOW } \\ & \text { F01 }=\text { HIGH } \end{aligned}$	Fig. 7

TIMING DATA II (exact values)
$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}$

	symbol	F01 = LOW (dialling)	$\mathrm{FO1}=\mathrm{HIGH}$(testing)		conditions
Dialling pulse frequency	f_{DP}	10,13	932,2	Hz	note 2
Dialling pulse period; $1 / \mathrm{f} \mathrm{DP}$	TDP	98,7	1,073	ms	Figs 6, 7
Prepulse duration; $1 / 3 \times{ }^{\text {d }}$ DP	t_{d}	33	0,358	ms	Figs 6, 7
Inter-digit pause; $8 \times T_{\text {DP }}$	$\mathrm{tid}_{\text {d }}$	790	8,58	ms	Figs 6, 7
Break time; $3 / 5 \times \mathrm{T}_{\text {DP }}$	tb	59,2	0,644	ms	Fig. 6
Make time; $2 / 5 \times \mathrm{T}_{\text {DP }}$	t_{m}	39,5	0,429	ms	Fig. 6
Debounce time $\min .4 / 30 \times T_{D P}$ max.; $1 / 6 \times$ TDP $_{D}$	t_{e} min $t_{\text {max }}$	13,2 16,5	0,143 0,179	ms ms	$\begin{aligned} & \text { Fig. } 5 \\ & \text { Fig. } 5 \end{aligned}$
Reset delay time; $1,6 \times \mathrm{T}_{\text {DP }}$	t_{rd}	158	1,7	ms	Figs 5, 6, 7

Notes

1. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
2. Exactly 10 Hz and 920 Hz respectively when a $3,5328 \mathrm{MHz}$ crystal is used.

TYPICAL CURVES

Fig. 9 Standby supply current as a function of standby supply voltage.

Fig. 11 Pull-down input current as a function of input voltage at $V_{D D}=3 \mathrm{~V}$.

Fig. 10 Operating supply current as a function of operating supply voltage.

Fig. 12 Pull-down input current as a function of supply voltage at $V_{I}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 13 Keyboard current as a function of supply voltage; X-pins connected to Y -pins.

Fig. 15 Output (N-channel) sink characteristics for M1, $\overline{\mathrm{M} 1}, \mathrm{M} 3$ and DP.

Fig. 14 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 16 Output (P-channel) source characteristics for M1, $\overline{\mathrm{M} 1}, \mathrm{M} 3$ and DP.

Curves for Figs 15 and 16

$T_{a m b}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3321 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The PCD3321 can regenerate access pauses during redial. During the original entry, access pauses are stored either automatically or via the keyboard. A regenerated access pause can be terminated during redial in three ways: automatically after a built-in time, or via the keyboard, or with an external dial tone recogniser circuit. This makes the circuit very suitable for redial in PABX (Private Automatic Branch Exchange) systems. The PCD3321 is pin to pin compatible with the DF320 and the MT4320 (however, including additional functions).

The circuit has the following features:

- Operation from 2,5 V to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- 23-digit capacity, including access pauses, for redial operation.
- Memory overflow possibility (with internally disabled redial).
- Selectable dialling pulse frequency: $10 \mathrm{~Hz}, 16 \mathrm{~Hz}$ and 20 Hz .
- Test pulse frequency: 932 Hz .
- Selectable dialling pulse mark/space ratios; 2:1 or 3:2.
- Hold facility for lengthening the inter-digit period.
- Circuit reset for line power breaks; $>160 \mathrm{~ms}$ (10 Hz dialling pulse frequency).
- Access pause generation automatically or via the keyboard.
- Access pause reset:
automatically after 3 s (10 Hz dialling pulse frequency),
via the keyboard, with external tone recogniser.
- All inputs with pull-up/pull-down (except CE).
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3321P: 18-lead DIL; plastic (SOT-102GE).
PCD3321D: 18-lead DIL; ceramic (SOT-133B).

PINNING
$\begin{array}{ll}1 & V_{D D} \\ 10 & V_{S S}\end{array}$
Inputs

4	M/S	controls the mark-to-space ratio of the line pulses
5	F01	
6	F02	the dialling pulse frequency is defined by the logic state of these two inputs
7	CE	Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks
11	X1	
12	X2	column keyboard inputs with pull-down on chip
13	X3	
14	Y1	
15	Y2	
16	Y3	row keyboard inputs with pull-up on chip
17	Y4	

Outputs

2	DP	Dialling Pulse; drive of the external line switching transistor or relay
3	M1	Muting; normally used for muting during the dialling sequence

Input/output
18 HOLD/APO This pin will go HIGH when an access pause code is read from the memory during pulsing and will interrupt dialling. It can also be externally controlled; it will interrupt dialling after completion of the current digit or immediately during an inter-digit pause (t_{id}); further keyboard data will be accepted.

Oscillator

$\left.\begin{array}{ll}8 & \text { OSC IN } \\ 9 & \text { OSC OUT }\end{array}\right\}$ input and output of the on-chip oscillator

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)
Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3321 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set (F01 and F02) to provide one of four chip system clocks; three 'normal' clock frequencies and one higher test frequency.
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
$\mathrm{CE}=$ LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.

When CE $=$ HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time $t_{r d}$ (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<t_{r d}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs (Y_{n}) are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4-bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the dt bouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.

If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. If the redial pushbutton (\#) is operated again during the redialling sequence it will be decoded as an Access Pause Reset. This function will be described later during the description of the access pause system of the PCD3321. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored at the RAM position after the last digit code of the original entry and converted into correctly timed dialling pulses.

\star Access pause set.
\# Redial or Access Pause Reset.

Fig. 4 Double contact keyboard. February 1982

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.
Then, approximately 4 ms ($\mathrm{t}_{\text {on }}$) after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods (t_{d}) later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at output M1. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.
- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).
When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period $t_{e}, \mathrm{M} 1$ goes HIGH and the pushbutton can be released. The supply to VDD and CE is then maintained via the muting circuit controlled by M1.
The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M 2 then goes HIGH (M 2 is an internally generated signal, used for explanation only), the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to V_{DD}). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $\mathrm{V}_{\text {DD }}$ above $\mathrm{V}_{\text {DDO }}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{D D}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts). M 2 is an internal signal.

Fig. 7 Timing diagram for initiating the dialling mode with V_{DD} and $C E$ initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A. M2 is an internal signal.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD/APO is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on DP until the HOLD/APO is set LOW again and an inter-digit pause has elapsed.

7 Z84496

Fig. 8 Timing diagram showing the effect of activating the HOLD/APO during the transmission of dialling pulses. M2 is an internal signal.

Access pause regeneration during redial

During original entry, access pause codes can be stored at the appropriate positions in the RAM. During redial the Access Pause Output (HOLD/APO)will go HIGH as soon as an access pause code is read from the RAM, thereby interrupting dialling until HOLD/APO is made LOW again as described above. In this way the normal inter-digit pause with a duration $t_{i d}$ can be replaced by a proper access pause. An access pause code is now automatically stored in the RAM during original entry, when M1 goes LOW, after all digits so far entered have been transmitted (see Fig. 6). This occurs between entering of the trunk exchange code and the subscriber code, whilst the access tone is available. Up to two access pauses can be entered into the RAM in this manner. Alternatively, the access pause key (\star) can still be pressed to insert (more) access pauses manually (digits + access pauses $\leqslant 23$).
During redial, access pauses will be automatically regenerated.
Three methods of terminating an access pause:

1. Automatically, if the built-in time $\mathrm{t}_{\text {ap }}$ expires; HOLD/APO then goes LOW.
2. Manually, by pressing the redial key before t_{ap} expires.
3. With an external tone recogniser, by forcing HOLD/APO to LOW or HIGH respectively, for shortening or lengthening an access pause.

(1) a. Access pause (t_{ap}) expires or press redial before end of t_{ap}.
b. HOLD/APO controlled by tone recogniser:

HOLD/APO forced to LOW before $t_{a p}$ expires; access pause $<t_{a p}$ HOLD/APO forced to HIGH after $t_{a p}$ expires; access pause $>t_{a p}$.

Fig. 10 Timing diagram showing Access Pause Reset.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range
$V_{D D}$
V_{1}
Tamb
$\mathrm{T}_{\text {stg }}$
$-0,3$ to 8 V
$\mathrm{~V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
-25 to $+70^{\circ} \mathrm{C}$
-55 to $+125^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\mathrm{Smax}}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

	symbol	min. typ.	max.		conditions
Operating supply voltage	$V_{\text {DD }}$	2,5	6	V	$\mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$
Standby supply voltage (note 1)	VDDO	1,8	6	V	
Operating supply current	IDD	40	-	$\mu \mathrm{A}$	CE $=\mathrm{HIGH}$; notes 2, 3
	IDD	50	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{CE}=\mathrm{HIGH} ; \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V} ; \\ \text { notes } 2,3 \end{array}\right.$
Standby supply current	IDDO IDDO	- 1	5	$\mu \mathrm{A}$	CE = LOW; note 2
		- -	2	$\mu \mathrm{A}$	$\left\{\begin{array}{l} V_{D D}=1,8 \mathrm{~V} \\ T_{a m b}=-25 \text { to }+70^{\circ} \mathrm{C} \end{array}\right.$
Input voltage LOW	$V_{\text {IL }}$	-	0,3 $V_{\text {DD }}$		$1,8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 6 \mathrm{~V}$
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	0,7 $\mathrm{V}_{\text {DD }}{ }^{-}$	-		
Input leakage current; CE LOW	$-\mathrm{IIL}$		50	nA	$C E=L O W$
HIGH	${ }_{\text {IH }}$	- -	50	nA	$\mathrm{CE}=\mathrm{HIGH}$
Pull-up input current M/S	$-\mathrm{IIL}$	30100	300	nA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$
Pull-down input current F01, F02	$\mathrm{IIH}^{\text {H }}$	30100	300	nA	$V_{1}=V_{D D}$
Matrix keyboard operation					
Keyboard current	${ }^{\prime} \mathrm{K}$	10	-	$\mu \mathrm{A}$	$\mid \mathrm{CE}=\mathrm{HIGH}$
Keyboard 'ON' resistance	$\mathrm{R}_{\text {KON }}$	- -	500	Ω	contact ON; note 4
Keyboard 'OFF' resistance	$\mathrm{R}_{\text {KOFF }}$	1	-	$\mathrm{M} \Omega$	contact OFF; note 4
Other keyboard operation					
Input current for X_{n} 'ON'	${ }^{1 / \mathrm{IH}}$	- -	30	$\mu \mathrm{A}$	$\mathrm{V}_{1}=1,5$ to 3 V
Input current for $\mathrm{Y}_{\mathrm{n}}{ }^{\prime} \mathrm{ON}$ '	$-\mathrm{IL}$	10	-	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0$ to $2,5 \mathrm{~V}$
Input current Y_{n}	-11	- -	0,7	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
3. All other inputs and outputs open.

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.		conditions
Outputs M1, DP						
\quad sink current	I_{OL}	0,7	1,5	3,2	mA	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	I_{OH}	0,65	1,3	2,7	mA	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$
Latch output HOLD/APO sink current source current	I_{OL}	50	130	300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
	$-\mathrm{I}_{\mathrm{OH}}$	45	110	250	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

TIMING DATA

$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=3,579545 \mathrm{MHz}$

input levels of F01 and F02$\left(\mathrm{V}_{S S}=\mathrm{LOW} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{HIGH}\right)$		$\mathrm{V}_{\text {F01 }}$	LOW	HIGH	LOW	HIGH	
		$\mathrm{V}_{\text {F02 }}$	LOW	HIGH	HIGH	LOW	conditions (note 4)
		symbol				(test mode)	
Dialling pulse frequency	$1 / T_{\text {DP }}$	fDP	10,13	15,54	19,42	939,2 Hz	note 1
Dialling pulse period	1/fDP	TDP	98,7	64,4	51,5	$1,073 \mathrm{~ms}$	
Clock pulse frequency	$30 \times \mathrm{f} P$	${ }^{\mathrm{f}} \mathrm{CL}$	303,9	466,1	582,6	27965 Hz	
Break time (note 2)	$3 / 5 \times T_{\text {DP }}$	t_{b}	59,2	38,6	30,9	$0,644 \mathrm{~ms}$	M/S = H; n.c.
Make time (note 2)	$2 / 5 \times T_{\text {DP }}$	t_{m}	39,5	25,8	20,6	$0,429 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{H}$; n.c.
Break time (note 3)	$2 / 3 \times$ TDP	t_{b}	65,8	42,9	34,6	$0,715 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Make time (note 3)	$1 / 3 \times T_{\text {DP }}$	${ }^{t} \mathrm{~m}$	32,9	21,5	17,2	0,358 ms	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Inter-digit pause	$8 \times T_{\text {DP }}$	$t_{\text {id }}$	790	515	412	8,58 ms	
Reset delay time	$1,6 \times T_{\text {DP }}$	$t_{\text {rd }}$	158	103	82,4	$1,72 \mathrm{~ms}$	
Access pause time	$32 \times{ }^{1}$ DP	$t_{\text {ap }}$	3,16	2,06	1,65	0,034 s	
Prepulse duration	$1 / 3 \times$ TDP	t_{d}	33	21,5	17,2	0,358 ms	
Debounce time min	$4 / 30 \times T_{\text {DP }}$	$\mathrm{t}_{\mathrm{e} \text { min }}$	13,2	8,58	6,87	0,143 ms	
max.	$1 / 6 \times T_{\text {DP }}$	$t_{\text {e max }}$	16,5	10,7	8,58	$0,179 \mathrm{~ms}$	
Clock start-up time		tontyp	4	-	-	- ms	$\begin{aligned} & \text { CE: } \mathrm{V}_{\text {SS }} \rightarrow \\ & \mathrm{V}_{\mathrm{DD}}(\text { note } 5) \end{aligned}$
Initial data entry time (typ.)	$\mathrm{t}_{\text {on }}+\mathrm{t}_{\mathrm{e}}$	t_{i}	18	14	12	4 ms	

Notes

1. Exactly 10 Hz with $3,5328 \mathrm{MHz}$ crystal.
2. Mark-to-space ratio: 3:2.
3. Mark-to-space ratio: 2:1.
4. In the n.c. (not connected) condition, the input is drawn to the appropriate state by the internal pull-up/pull-down current.
5. Stray capacitance between pins 8 and $9:<3 \mathrm{pF}$.

TYPICAL CURVES

Fig. 11 Standby supply current as a function of standby supply voltage.

Fig. 13 Pull-down input current as a function of input voltage at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

Fig. 12 Operating supply current as a function of operating supply voltage.

Fig. 14 Pull-down input current as a function of supply voltage at $V_{1}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 15 Keyboard current as a function of supply voltage;
X-pins connected to Y -pins.

Fig. 17 Output (N-channel) sink characteristics for M1 and DP.

Curves for Figs 17 and 18

$T_{\text {amb }}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

Fig. 16 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 18 Output (P-channel) source characteristics for M1 and DP.

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3322 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- All inputs with pull-up/pull-down (except CE).
- 23-digit capacity for redial operation.
- Circuit reset for line power breaks; $>160 \mathrm{~ms}$.
- Dialling pulse frequency: 10 Hz .
- Test pulse frequency: 932 Hz .
- Hold facility for lengthening the inter-digit period.
- Memory overflow possibility (with internally disabled redial.
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3322P: 18-lead DIL; plastic (SOT-102GE).
PCD3322D: 18-lead DIL; ceramic (SOT-133B).

Fig. 1 Pinning diagram.

PINNING

1	V $_{\text {DD }}$	positive supply
10	V SS	negative supply

Inputs

6	F01
7	CE
11	X1
12	X2
13	X3
14	Y1
15	Y2
16	Y3
17	Y4
18	HOLD

the dialling pulse frequency is defined by the logic state of this input Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks.
11 X1
12×2
column keyboard inputs with pull-down on chip
14 Y1
15 Y2
16 Y3
18 HOLD
row keyboard inputs with pull-up on chip
interrupts dialling after completion of the current digit or immediately following an inter-digit pause (t_{id}); further keyboard data will be accepted

Outputs

2 DP

Dialling Pulse; drive of the external line switching transistor or relay Muting; normally used for muting during the dialling sequence inverted output of M1
strobe; HIGH during pulsing of each digit, LOW during an inter-digit pause

Oscillator

8 OSC IN 9 OSC OUT

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)
Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3322 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set by input F01 to provide one of two chip system clocks; the 'normal' clock frequency (F01 = LOW) and the test frequency (F01 = HIGH).
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
CE = LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When CE = HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time $t_{r d}$ (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<\mathrm{t}_{\mathrm{rd}}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs $\left(\mathrm{Y}_{\mathrm{n}}\right)$ are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig.3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4-bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the debouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.
If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored in the RAM and converted into correctly timed dialling pulses.

\# Redial.

Fig. 4 Double contact keyboard.
 STATIC
STANDBY MODE

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.

Then, approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods $\left(t_{d}\right)$ later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at output M1. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).

When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse-generator starts and data entry period t_{e} commences. After period $t_{e}, M 1$ goes HIGH and the pushbutton can be released. The supply to $V_{D D}$ and CE is then maintained via the muting circuit controlled by M1.
The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH, the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to $V_{D D}$). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $V_{D D}$ above $V_{D D O}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{\text {DD }}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts).

Fig. 7 Timing diagram for initiating the dialling mode with $V_{D D}$ and CE initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD input is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on DP until the HOLD input is set LOW again and an inter-digit pause has elapsed.

Fig. 8 Timing diagram showing the effect of activating the HOLD input during the transmission of dialling pulses.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range
$\begin{array}{lr}V_{D D} & -0,3 \text { to } 8 \mathrm{~V} \\ \mathrm{~V}_{\text {I }} & \mathrm{V}_{\mathrm{SS}}-0,3 \text { to } \mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V} \\ \mathrm{~T}_{\text {amb }} & -25 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{T}_{\text {stg }} & -55 \text { to }+125^{\circ} \mathrm{C}\end{array}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\mathrm{Smax}}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

	symbol	min .	typ.	max.		conditions
Operating supply voltage Standby supply voltage (note 1)	$V_{\text {DD }}$	2,5	3	6	V	$\mathrm{T}_{\mathrm{amb}}=-25$ to $+70{ }^{\circ} \mathrm{C}$
		1,8	-	6	V	
Operating supply current	IDD	-	40	-	$\mu \mathrm{A}$	CE = HIGH; notes 2,3
	IDD	-	50	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{CE}=\mathrm{HIGH} ; \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V} \\ \text { notes } 2,3 \end{array}\right.$
Standby supply current	IDDO	-	1	5	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{CE}=\mathrm{LOW} ; \text { note } 2 \\ \left\{\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} \\ T_{\mathrm{amb}}=-25 \text { to }+70^{\circ} \mathrm{C} \end{array}\right. \end{gathered}$
	IDDO	-	-	2	$\mu \mathrm{A}$	
Input voltage LOW Input voltage HIGH Input leakage current; CE LOW	$\left\lvert\, \begin{aligned} & v_{I L} \\ & v_{I H} \end{aligned}\right.$		-	$\underset{-}{0,3} \mathrm{~V}_{\mathrm{DD}}$, $1,8 \mathrm{~V} \leqslant \mathrm{~V}_{\text {DD }} \leqslant 6 \mathrm{~V}$
	-IIL	-	-	50	nA	CE = LOW
HIGH	${ }_{\text {IH }}$	-	-	50	nA	$C E=H I G H$
Pull-down input current F01, HOLD	Ith	30	100	300	nA	$V_{1}=V_{D D}$
Matrix keyboard operation			10	-	$\mu \mathrm{A}$	$\left\{\begin{array}{l} X \text { connected to } \mathrm{Y}, \\ \mathrm{CE}=\mathrm{HIGH} \end{array}\right.$
Keyboard current	${ }^{\prime} \mathrm{K}$	-				
Keyboard 'ON' resistance	$\mathrm{R}_{\text {KON }}$	-	-	500	Ω	contact ON; note 4
Keyboard 'OFF' resistance	$\mathrm{R}_{\text {KOFF }}$	1	-	-	M Ω	contact OFF; note 4
Other keyboard operation						
Input current for X_{n} 'ON'	${ }_{1 / \mathrm{H}}$	-	-	30	$\mu \mathrm{A}$	$\mathrm{V}_{1}=1,5$ to 3 V
Input current for Y_{n} 'ON'	-IIL	10	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0$ to $2,5 \mathrm{~V}$
Input current Y_{n}	-11	-	-	0,7	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$
Output sink current	${ }^{\text {IOL }}$	0,7	1,5	3,2	mA	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
Output source current	${ }^{-1} \mathrm{OH}$	0,65	1,3	2,7	mA	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

Notes

1. $\mathrm{V}_{\text {DDO }}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

TIMING DATA I
$V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSc}}=3,58 \mathrm{MHz} ; \mathrm{R}_{\text {Smax }}=100 \Omega$

	symbol	min.	typ.	max.		conditions	
Clock start-up time	${ }^{\text {ton }}$	-	4	-	ms	Figs 6, 7; note 1	
Initial data entry time $\left(t_{i}=t_{o n}+t_{e}\right)$	$\begin{aligned} & t_{i \min } \\ & t_{i} \text { max } \end{aligned}$	-	$\begin{aligned} & 18 \\ & 4 \end{aligned}$	-	ms	$\left.\begin{array}{l} \text { FO1 }=\mathrm{LOW} \\ \mathrm{FO1}=\mathrm{HIGH} \end{array}\right\}$	Fig. 7

TIMING DATA II (exact values)
$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}$

	symbol	F01 = LOW (dialling)	$\begin{aligned} & \text { FO1 = HIGH } \\ & \text { (testing) } \end{aligned}$		conditions
Dialling pulse frequency	${ }^{\text {f }}$ P	10,13	932,2	Hz	note 2
Dialling pulse period; $1 / \mathrm{f}$ DP	TDP	98,7	1,073	ms	Figs 6, 7
Prepulse duration; $1 / 3 \times T_{\text {DP }}$	${ }^{\text {t }}$ d	33	0,358	ms	Figs 6, 7
Inter-digit pause; $8 \times \mathrm{T}_{\text {DP }}$	$\mathrm{t}_{\text {id }}$	790	8,58	ms	Figs 6, 7
Break time; $3 / 5 \times T_{\text {DP }}$	t_{b}	59,2	0,644	ms	Fig. 6
Make time; $2 / 5 \times T_{\text {DP }}$	${ }^{\text {t }}$ m	39,5	0,429	ms	Fig. 6
Debounce time $\min .4 / 30 \times T_{D P}$	${ }^{t} \times$ min	13,2	$0,143$	ms	Fig. 5
max.; $1 / 6 \times T_{D P}$ Reset delay time; $1,6 \times$ TDP	$\mathrm{t}_{\mathrm{e} \text { max }}$ $\mathrm{t}_{\text {rd }}$	16,5	$\begin{aligned} & 0,179 \\ & 1,7 \end{aligned}$	ms	Fig. 5 Figs 5, 6, 7

Notes

1. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
2. Exactly 10 Hz and 920 Hz respectively when a $3,5328 \mathrm{MHz}$ crystal is used.

TYPICAL CURVES

Fig. 9 Standby supply current as a function of standby supply voltage.

Fig. 11 Pull-down input current as a function of input voltage at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

Fig. 10 Operating supply current as a function of operating supply voltage.

Fig. 12 Pull-down input current as a function of supply voltage at $V_{I}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 13 Keyboard current as a function of supply voltage;
X -pins connected to Y -pins.

Fig. 15 Output (N -channel) sink characteristics for $\mathrm{M} 1, \overline{\mathrm{M} 1}, \mathrm{M} 2$ and DP .

Curves for Figs 15 and 16

$T_{\text {amb }}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

Fig. 14 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 16 Output (P-channel) source characteristics for $\mathrm{M} 1, \overline{\mathrm{M}} 1, \mathrm{M} 2$ and DP .

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3323 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The PCD3323 can regenerate access pauses during redial. During the original entry, access pauses are stored either automatically or via the keyboard. A regenerated access pause can be terminated during redial in three ways: automatically after a built-in time, or via the keyboard, or with an external dial tone recogniser circuit. This makes the circuit very suitable for redial in PABX (Private Automatic Branch Exchange) systems.
The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- 23-digit capacity, including access pauses, for redial operation.
- Memory overflow possibility (with internally disabled redial).
- Selectable dialling pulse frequency: $10 \mathrm{~Hz}, 16 \mathrm{~Hz}$ and 20 Hz .
- Test pulse frequency: 932 Hz .
- Selectable dialling pulse mark/space ratios; 2: 1 or $3: 2$.
- Selectable inter-digit pause (t_{id}); 8 or 9 times the pulse period ($T_{D P}$).
- Hold facility for lengthening the inter-digit period.
- Selectable circuit reset for line power breaks; $>160 \mathrm{~ms}$ or $>320 \mathrm{~ms}$ (10 Hz dialling pulse frequency).
- Access pause generation automatically or via the keyboard.
- Access pause reset:
automatically after 3 s or 6 s (10 Hz dialling pulse frequency), via the keyboard, with external tone recogniser.
- All inputs with pull-up/pull-down (except CE).
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3323P : 28-lead DIL; plastic (SOT-117).
PCD3323D: 28-lead DIL; ceramic (SOT-135A).
PCD3323T: 28-lead flat pack; plastic (SO-28; SOT-136A).

Fig. 1 Pinning diagram.

PINNING

1	$V_{\text {DD }}$	positive supply
15	V SS	negative supply

Inputs

7	M/S	controls the mark-to-space ratio of the line pulses
8	IDP	Inter-Digit-Pause; this occurs before each digit appears at the line output; the duration (t_{id}) can be controlled with this pin
9	F01	
10	F02	
12	CE	Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks
16	X1	
17	X2	column keyboard inputs with pull-down on chip
18	X3	
19	RDS	Reset Delay Selection; delay select for chip enable (CE) activity.

20	AAE	Automatic Access Pause Enable; AAE $=$ HIGH: the circuit generates a maximum of two automatic pauses; AAE $=$ LOW: only manual pauses (via keyboard) are possible
21	APR	Access Pause Reset; when any external circuit makes APR $=$ HIGH, a current access pause will be terminated
22	APD	Access Pause Delay; selects the maximum duration of an access pause if no external Access Pause Reset appears.
23	Y1	
24	Y2	
25	Y3	
26	Y4	row keyboard inputs with pull-up on chip
28	HOLD	interrupts dialling after completion of the current digit or immediately during an inter-digit pause ($t_{i d}$); further keyboard data will be accepted

Outputs

2	CL	output of the internal system clock; external forcing is possible for frequencies not selectable with F01/F02
3	DP	Dialling Pulse; drive of the external line switching transistor or relay 4
5	$\frac{M 1}{M 1}$	Muting; normally used for muting during the dialling sequence inverted output of M1
6	M2	strobe; HIGH during pulsing of each digit, LOW during an inter-digit pause AND function, with $\overline{D P}$ and M1 as input, for direct drive of a switching transistor for dialling pulses and muting
11	M3	Access Pause Output; this output will go HIGH when an access pause code is read from the memory during pulsing.
27	APO	

Oscillator

13 OSC IN
14 OSC OUT
input and output of the on-chip oscillator

Fig. 2 Block diagram.
FUNCTIONAL DESCRIPTION (see also Fig. 2)
Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3323 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set (F01 and FO2) to provide one of four chip system clocks; three 'normal' clock frequencies and one higher test frequency.
The system clock is available on pin CL and can be used for external logic. External forcing of CL is possible for frequencies which are not selectable with F01/F02.
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
$C E=$ LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When CE $=$ HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time $t_{r d}$ (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<t_{r d}$ will not affect the operation of the circuit. No reset pulses are then produced. The $t_{r d}$ pulse duration is selected by the RDS input.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs (Y_{n}) are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4-bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the debouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC reprents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.
If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. If the redial pushbutton (\#) is operated again during the redialling sequence it will be decoded as an Access Pause Reset. This function will be described later during the description of the access pause system of the PCD3323. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored at the RAM position after the last digit code of the original entry and converted into correctly timed dialling pulses.

* Access pause set.
\# Redia' or Access Pause Reset.

Fig. 3 Single contact keyboard.

Fig. 4 Double contact keyboard.

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.
Then, approximately 4 ms (t_{n}) after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods (t_{d}) later, a prepulse with a duration of ten clock pulse periods $\left(\mathrm{t}_{\mathrm{d}}\right)$ appears at outputs M1 and M3. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.
- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).

When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to V_{DD} and CE becomes HIGH. Approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period t_{e}, M1 goes HIGH and the pushbutton can be released. The supply to $V_{D D}$ and CE is then maintained via the muting circuit controlled by M1.
The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH, the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at outputs DP and M3. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed outt). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{r}}=1,6$ or 3,2 dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates $C E$ from the back-up supply connected to $V_{D D}$). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $V_{D D}$ above $V_{D D O}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{\text {DD }}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts).

Fig. 7 Timing diagram for initiating the dialling mode with $V_{D D}$ and $C E$ initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD input is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on M3 and DP until the HOLD input is set LOW again and an inter-digit pause has elapsed.
HOLD can be controlled by the Access Pause Output (see next section).

7279974

Fig. 8 Timing diagram showing the effect of activating the HOLD input during the transmission of dialling pulses.

Access pause regeneration during redial

During original entry, access pause codes can be stored the appropriate positions in the RAM. During redial the Access Pause Output (APO) will go HIGH as soon as an access pause code is read from the RAM. This can be used to make HOLD = HIGH, thereby interrupting dialling until HOLD is made LOW again as described above. In this way the normal inter-digit pause with a duration t_{id} can be replaced by a proper access pause.
Access pause codes can be stored in two ways:

- Manually, with AAE and APR both LOW. In this case access pause codes can only be stored by pressing the access pause key (\star) between entering the trunk exchange code and the subscriber code, or at any other moment an access pause is required. The number of access pauses that can be inserted in this manner is only limited by the capacity of the RAM (digits + access pauses $\leqslant 23$).
- Automatically, with AAE $=$ HIGH and APR $=$ LOW (see Fig. 9). An access pause code is now automatically stored in the RAM during original entry, when M1 goes LOW, after all digits so far entered have been transmitted (see Fig. 6). This occurs between entering of the trunk exchange code and the subscriber code, whilst the access tone is available. Up to two access pauses can be entered into the RAM in this manner. Alternatively, the access pause key can still be pressed to insert (more) access pauses manually.
During redial, access pauses will be regenerated only if APR = LOW and with APO connected to HOLD; they can be terminated in three ways (see Fig. 10 and next page).

Fig. 10 Timing diagram showing Access Pause Reset for APR = LOW or APR is controlled by tone recogniser.

Three methods of terminating an access pause:

1. Automatically, if the built-in time $t_{a p}$ expires; APO then goes LOW; $t_{a p}$ can be set to one of two values with the Access Pause Delay (APD) select input.
2. Manually, by pressing the redial key before $t_{a p}$ expires.
3. By making APR = HIGH before $t_{a p}$ expires, with an external tone recogniser (see Fig. 11).

Fig. 11 Circuit for automatic termination of an access pause during redialling by using a tone recogniser to set APR to HIGH for more than $10 \mu \mathrm{~s}$.

Access pauses longer than $t_{a p}$ can be obtained by connecting APO to HOLD via a latching device. Figure 12 shows a tone recogniser circuit, which automatically terminates access pauses upon receipt of the access tone, whether this is before or after $t_{a p}$ expires.

Fig. 12 Circuit for automatically shortening or lengthening an access pause under the control of a tone recogniser. For timing diagram see Fig. 13.

Fig. 13 Timing diagram showing automatic shortening or lengthening an access pause; for the circuit see Fig. 12.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range

$V_{D D}$	$-0,3$ to 8 V
$\mathrm{~V}_{1}$	$\mathrm{~V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{amb}}$	-25 to $+70{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\mathrm{Smax}}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

	symbol	min.	typ.	max.		conditions
Operating supply voltage	VDD	2,5	3	6	V	$T_{a m b}=-25$ to $+70^{\circ} \mathrm{C}$
Standby supply voltage (note 1)	$\mathrm{V}_{\text {DDO }}$		-		V	
Operating supply current	${ }^{\text {I D D }}$	-	40	-	$\mu \mathrm{A}$	CE = HIGH; notes 2, 3
Standby supply current	IDD	-	50	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{CE}=\mathrm{HIGH} ; \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V} ; \\ \text { notes } 2,3 \end{array}\right.$
	$\begin{aligned} & \text { IDDO } \\ & \text { IDDO } \end{aligned}$	-	1	5	$\mu \mathrm{A}$	$\left\{\begin{array}{l} C E=\text { LOW; note } 2 \\ V_{D D}=1,8 \mathrm{~V} \\ T_{a m b}=-25 \text { to }+70{ }^{\circ} \mathrm{C} \end{array}\right.$
			-		$\mu \mathrm{A}$	
Input voltage LOW Input voltage HIGH Input leakage current; CE LOW HIGH	$\left\lvert\, \begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}\right.$		-	0,3 V ${ }_{\text {DD }}$		1,8V $\leqslant V_{D D} \leqslant 6 \mathrm{~V}$
		$0,7 \mathrm{~V}_{\mathrm{DD}}$	-			
	-IIL	-	-	50	nA	CE = LOW
	${ }^{1} \mathrm{IH}$	-	-	50	nA	CE $=$ HIGH
Pull-up input current M/S, APR	$-1 / 2$			300	$n A$	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$
Pull-down input current IDP, F01, F02, HOLD, AAE, ADP, RDS	${ }_{1} \mathrm{H}$	30	100	300	nA	$V_{1}=V_{D D}$
Matrix keyboard operation						
Keyboard current	${ }^{\prime} \mathrm{K}$	-	10	-	$\mu \mathrm{A}$	$\left\{\begin{array}{l} X \text { connected to } Y, \\ C E=H I G H \end{array}\right.$
Keyboard 'ON' resistance	$\mathrm{R}_{\text {KON }}$	-	-	500	Ω	contact ON; note 4
Keyboard 'OFF' resistance	$\mathrm{R}_{\text {KOFF }}$	1	-	-	$\mathrm{M} \Omega$	contact OFF; note 4
Other keyboard operation						
Input current for $\mathrm{X}_{\mathrm{n}}{ }^{\prime} \mathrm{ON}^{\prime}$	${ }_{1}$	-	-	30	$\mu \mathrm{A}$	$\mathrm{V}_{1}=1,5$ to 3 V
Input current for $\mathrm{Y}_{\mathrm{n}}{ }^{\prime} \mathrm{ON}$ '	$-\mathrm{IIL}$	10	-	-	$\mu \mathrm{A}$	$V_{1}=0$ to $2,5 \mathrm{~V}$
Input current Y_{n}	-11	-	-	0,7	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 13 and $14<3 \mathrm{pF}$.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.		conditions
Outputs M1, $\overline{\mathrm{M} 1}, \mathrm{M} 2, \mathrm{M} 3, \mathrm{DP}$						
sink current	${ }^{\text {IOL }}$	0,7	1,5		mA	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	${ }^{-1} \mathrm{OH}$	0,65	1,3		mA	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$
Outputs CL, APO						
sink current	${ }^{1} \mathrm{OL}$	50	130	300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	${ }^{-1} \mathrm{OH}$	45	110		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

TIMING DATA
$V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OS}}=3,58 \mathrm{MHz}$

	symbol	min.	typ.	max.	conditions	
Clock start-up time	$\mathrm{t}_{\text {on }}$	-	4	-	ms	$\mathrm{CE}: \mathrm{V}_{\mathrm{SS}} \longrightarrow \mathrm{V}_{\mathrm{DD}}$ (note)
APR-hold time	$\mathrm{t}_{\text {APRH }}$	10	-	-	$\mu \mathrm{s}$	see Fig. 11

Note: stray capacitance between pins 13 and $14<3 \mathrm{pF}$.

TIMING DATA (continued)
$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=3,579545 \mathrm{MHz}$

input levels of F01 and F02$\left(V_{S S}=L O W ; V_{D D}=H I G H\right)$		$\mathrm{V}_{\mathrm{F} 01}$	LOW	HIGH	LOW	HIGH	
		$\mathrm{V}_{\mathrm{F} 02}$	LOW	HIGH	HIGH	LOW	conditions (note 4)
		symbol				(test mode)	
Dialling pulse frequency Dialling pulse period Clock pulse frequency Break time (note 2) Make time (note 2) Break time (note 3) Make time (note 3) Inter-digit pause Reset delay time Access pause time Prepulse duration Debounce time \min. max. Initial data entry time (typ.)	1/TDP	dr	10,13	15,54	19,42	932,2 Hz	$\begin{aligned} & \text { note } 1 \\ & \\ & M / S=H ; \text { n.c. } \\ & M / S=H ; \text { n.c. } \\ & M / S=L \\ & M / S=L \\ & I D P=L ; \text { n.c. } \\ & I D P=H \\ & R D S=L ; \text { n.c. } \\ & R D S=H \\ & A P D=L ; \text { n.c. } \\ & A P D=H \end{aligned}$
	$1 / \mathrm{f} D \mathrm{P}$	TDP	98,7	64,4	51,5	$1,073 \mathrm{~ms}$	
	$30 \times f$ PP	${ }^{\mathrm{f}} \mathrm{CL}$	303,9	466,1	582,6	27965 Hz	
	$3 / 5 \times$ TDP	t_{b}	59,2	38,6	30,9	$0,644 \mathrm{~ms}$	
	$2 / 5 \times$ TDP	t_{m}	39,5	25,8	20,6	$0,429 \mathrm{~ms}$	
	$2 / 3 \times$ TDP	t_{b}	65,8	42,9	34,6	$0,715 \mathrm{~ms}$	
	$1 / 3 \times$ TDP	t_{m}	32,9	21,5	17,2	0,358 ms	
	$8 \times T_{\text {DP }}$	$\mathrm{t}_{\text {id }}$	790	515	412	8,58 ms	
	$9 \times$ TDP	$\mathrm{tid}_{\text {id }}$	888	579	463	9,65 ms	
	$1,6 \times$ TDP	trd	158	103	82,4	1,72 ms	
	$3,2 \times$ TDP	t_{rd}	316	206	165	3,43 ms	
	$32 \times T_{\text {DP }}$	$t_{\text {ap }}$	3,16	2,06	1,65	0,034	
	$64 \times$ TDP	t_{ap}	6,32	4,12	3,30	0,069	
	$1 / 3 \times T_{\text {DP }}$	t_{d}	33	21,5	17,2	0,358 ms	
	$4 / 30 \times$ TDP	$t_{\text {e min }}$	13,2	8,58	6,87	0,143 ms	
	$1 / 6 \times$ TDP	$\mathrm{t}_{\text {e max }}$	16,5	10,7	8,58	0,179 ms	
	$\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{e}}$	t_{i}	18	14	12	4 ms	

Notes

1. Exactly 10 Hz with $3,5328 \mathrm{MHz}$ crystal.
2. Mark-to-space ratio: 3: 2.
3. Mark-to-space ratio: 2: 1.
4. In the n.c. (not connected) condition, the input is drawn to the appropriate state by the internal pull-up/pull-down current.

TYPICAL CURVES

Fig. 14 Standby supply current as a function of standby supply voltage.

Fig. 16 Pull-down input current as a function of input voltage at $V_{D D}=3 \mathrm{~V}$.

Fig. 15 Operating supply current as a function of operating supply voltage.

Fig. 17 Pull-down input current as a function of supply voltage at $V_{I}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 18 Keyboard current as a function of supply voltage; X -pins connected to Y -pins.

Fig. 20 Output (N -channel) sink characteristics for M1, $\overline{\mathrm{M} 1}, \mathrm{M} 2, \mathrm{M} 3$ and DP.

Fig. 19 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 21 Output (P-channel) source characteristics for M1, $\overline{\mathrm{M} 1}, \mathrm{M} 2, \mathrm{M} 3$ and DP.

Curves for Figs 20 and 21

$T_{\text {amb }}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3324 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The PCD3324 can regenerate access pauses during redial. During the original entry, only one access pause is stored automatically or several via the keyboard. A regenerated access pause can be terminated during redial in three ways: automatically after a built-in time, or via the keyboard, or with an external dial tone recogniser circuit. This makes the circuit very suitable for redial in PABX (Private Automatic Branch Exchange) systems. The PCD3324 is pin to pin compatible with the DF320 and the MT4320 (however, including additional functions).
The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- 23-digit capacity, including access pauses, for redial operation.
- Memory overflow possibility (with internally disabled redial).
- Selectable dialling pulse frequency: $10 \mathrm{~Hz}, 16 \mathrm{~Hz}$ and 20 Hz .
- Test pulse frequency: 932 Hz .
- Selectable dialling pulse mark/space ratios; 2:1 or 3:2.
- Hold facility for lengthening the inter-digit period.
- Circuit reset for line power breaks; $>160 \mathrm{~ms}$ (10 Hz dialling pulse frequency).
- Access pause generation automatically or via the keyboard.
- Access pause reset:
automatically after 3 s (10 Hz dialling pulse frequency),
via the keyboard, with external tone recogniser.
- All inputs with pull-up/pull-down (except CE).
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3324P : 18-lead DIL; plastic (SOT-102GE).
PCD3324D: 18-lead DIL; ceramic (SOT-133B).

PINNING

Fig. 1 Pinning diagram.

1	V $_{\text {DD }}$	positive supply
10	V $_{\text {SS }}$	negative supply

Inputs

4	M/S
5	$\mathrm{FO1}$
6	$\mathrm{FO2}$
7	CE
11	X 1
12	X 2
13	X 3
14	Y 1
15	Y 2
16	Y 3
17	Y 4

Outputs

2	DP
3	M1

Dialling Pulse; drive of the external line switching transistor or relay Muting; normally used for muting during the dialling sequence

Input/output

18 HOLD/APO This pin will go HIGH when an access pause code is read from the memory during pulsing and will interrupt dialling. It can also be externally controlled; it will interrupt dialling after completion of the current digit or immediately during an inter-digit pause (t_{id}); further keyboard data will be accepted.

Oscillator

$\left.\begin{array}{ll|l}8 & \text { OSC IN } \\ 9 & \text { OSC OUT }\end{array}\right\}$ input and output of the on-chip oscillator

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)
Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3324 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set (F01 and F02) to provide one of four chip system clocks; three 'normal' clock frequencies and one higher test frequency.
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
CE = LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When CE $=$ HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.

If the CE input is taken to a LOW level for more than the time t_{rd} (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<\mathrm{t}_{\text {rd }}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs (Y_{n}) are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4 -bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the debouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.
If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. If the redial pushbutton (\#) is operated again during the redialling sequence it will be decoded as an Access Pause Reset. This function will be described later during the description of the access pause system of the PCD3324. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored at the RAM position after the last digit code of the original entry and converted into correctly timed dialling pulses.

* Access pause set.
\# Redial or Access Pause Reset.

Fig. 4 Double contact keyboard.

Fig. 5 Timing diagram showing clock start-up, keyboard entry debouncing and the effect of interrupting the supply to CE during the transmission of dialling pulses.
N.B.: CL and M2 are internal signals.

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.

Then, approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods (t_{d}) later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at output M1. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).
When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period t_{e}, M1 goes HIGH and the pushbutton can be released. The supply to $V_{D D}$ and CE is then maintained via the muting circuit controlled by M1.

The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH (M2 is an internally generated signal, used for explanation only), the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to V_{DD}). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $V_{D D}$ above $V_{D D O}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{D D}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts). M2 is an internal signal.

Fig. 7 Timing diagram for initiating the dialling mode with V_{DD} and $C E$ initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A. M2 is an internal signal.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD/APO is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on DP until the HOLD/APO is set LOW again and an inter-digit pause has elapsed.

Fig. 8 Timing diagram showing the effect of activating the HOLD/APO during the transmission of dialling pulses. M2 is an internal signal.

Fig. 9 Dialling sequence showing how an access pause code is automatically stored in the RAM for possible redialling if no further key entries are made until all of the previously entered digits have been transmitted. The dialling sequence continues when another key is pressed.

Access pause regeneration during redial

During original entry, access pause codes can be stored at the appropriate positions in the RAM. During redial the Access Pause Output (HOLD/APO)will go HIGH as soon as an access pause code is read from the RAM, thereby interrupting dialling until HOLD/APO is made LOW again as described above. In this way the normal inter-digit pause with a duration $t_{i d}$ can be replaced by a proper access pause. An access pause code is now automatically stored in the RAM during original entry, when M1 goes LOW, after all digits so far entered have been transmitted (see Fig. 6). This occurs between entering of the trunk exchange code and the subscriber code, whilst the access tone is available. Only one access pause can be entered into the RAM in this manner. Alternatively, the access pause key (\star) can still be pressed to insert (more) access pauses manually (digits + access pauses $\leqslant 23$).
During redial, access pauses will be automatically regenerated.
Three methods of terminating an access pause:

1. Automatically, if the built-in time t_{ap} expires; HOLD/APO then goes LOW.
2. Manually, by pressing the redial key before t_{ap} expires.
3. With an external tone recogniser, by forcing HOLD/APO to LOW or HIGH respectively, for shortening or lengthening an access pause.

(1) a. Access pause ($t_{a p}$) expires or press redial before end of $t_{a p}$.
b. HOLD/APO controlled by tone recogniser:

HOLD/APO forced to LOW before $t_{a p}$ expires; access pause $<t_{a p}$
HOLD/APO forced to HIGH after $t_{a p}$ expires; access pause $>t_{a p}$.
Fig. 10 Timing diagram showing Access Pause Reset.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range

$V_{D D}$	$-0,3$ to 8 V
$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{amb}}$	-25 to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\text {Smax }}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. All other inputs and outputs open.
3. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
4. Guarantees correct keyboard operation.

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.		conditions
Outputs M1, DP sink current						
source current	I_{OL}	0,7	1,5	3,2	mA	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
Latch output HOLD/APO sink current source current	${ }^{-} \mathrm{OH}$	0,65	1,3	2,7	mA	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

TIMING DATA

$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=3,579545 \mathrm{MHz}$

input levels of F01 and F02$\left(V_{S S}=L O W ; V_{D D}=H I G H\right)$		$\mathrm{V}_{\mathrm{F} 01}$	LOW	HIGH	LOW	HIGH	
		$\mathrm{V}_{\mathrm{FO} 2}$	LOW	HIGH	HIGH	LOW	conditions (note 4)
		symbol				(test mode)	
Dialling pulse frequency	1/T ${ }_{\text {DP }}$	${ }^{\text {f }} \mathrm{DP}$	10,13	15,54	19,42	$939,2 \mathrm{~Hz}$	note 1
Dialling pulse period	1/fDP	TDP	98,7	64,4	51,5	$1,073 \mathrm{~ms}$	
Clock pulse frequency	$30 \times f$ PP	${ }^{\mathrm{f}} \mathrm{CL}$	303,9	466,1	582,6	27965 Hz	
Break time (note 2)	$3 / 5 \times T_{\text {DP }}$	t_{b}	59,2	38,6	30,9	$0,644 \mathrm{~ms}$	$M / S=H$; n.c.
Make time (note 2)	$2 / 5 \times T_{\text {DP }}$	${ }^{\text {t }} \mathrm{m}$	39,5	25,8	20,6	$0,429 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{H}$; n.c.
Break time (note 3)	$2 / 3 \times T_{\text {DP }}$	t_{b}	65,8	42,9	34,6	$0,715 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Make time (note 3)	$1 / 3 \times T_{\text {DP }}$	${ }^{\text {t }} \mathrm{m}$	32,9	21,5	17,2	$0,358 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Inter-digit pause	$8 \times T_{\text {DP }}$	$\mathrm{t}_{\text {id }}$	790	515	412	$8,58 \mathrm{~ms}$	
Reset delay time	$1,6 \times T_{\text {DP }}$	$t_{\text {rd }}$	158	103	82,4	1,72 ms	
Access pause time	$32 \times \mathrm{T}_{\text {D }}$	$t_{\text {ap }}$	3,16	2,06	1,65	0,034	
Prepulse duration	$1 / 3 \times T_{\text {DP }}$	t_{d}	33	21,5	17,2	0,358 ms	
Debounce time min	$4 / 30 \times T_{\text {DP }}$	$\mathrm{t}_{\mathrm{e} \text { min }}$	13,2	8,58	6,87	0,143 ms	
max.	$1 / 6 \times T_{\text {DP }}$	$t_{\text {e max }}$	16,5	10,7	8,58	$0,179 \mathrm{~ms}$	
Clock start-up time		$t_{\text {onty }}$	4	-	-	- ms	$\underset{V_{D D}(\text { note } 5)}{C E: V_{S S}}$
Initial data entry time (typ.)	$t_{\text {on }}+t_{e}$	t_{i}	18	14	12	4 ms	

Notes

1. Exactly 10 Hz with $3,5328 \mathrm{MHz}$ crystal.
2. Mark-to-space ratio: 3:2.
3. Mark-to-space ratio: 2:1.
4. In the n.c. (not connected) condition, the input is drawn to the appropriate state by the internal pull-up/pull-down current.
5. Stray capacitance between pins 8 and $9:<3 \mathrm{pF}$.

TYPICAL CURVES

Fig. 11 Standby supply current as a function of standby supply voltage.

Fig. 13 Pull-down input current as a function of input voltage at $V_{D D}=3 \mathrm{~V}$.

Fig. 12 Operating supply current as a function of operating supply voltage.

Fig. 14 Pull-down input current as a function of supply voltage at $V_{I}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 15 Keyboard current as a function of supply voltage;
X -pins connected to Y -pins.

Fig. 17 Output (N -channel) sink characteristics for M1 and DP.

Curves for Figs 17 and 18

$\mathrm{T}_{\text {amb }}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

Fig. 16 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 18 Output (P-channel) source characteristics for M1 and DP.

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3325A is a single chip silicon-gate C-MOS integrated circuit. It converts pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.
The PCD3325A can regenerate access pauses during redial. During the original entry, access pauses are stored via the keyboard. A regenerated access pause can be terminated during redial in two ways: via the keyboard, or with an external dial tone recogniser circuit. This makes the circuit very suitable for redial in PABX (Private Automatic Branch Exchange) systems. The PCD3325A is pin to pin compatible with the DF320 and the MT4320 (however, including additional functions).

The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- 23-digit capacity, including access pauses, for redial operation.
- Memory overflow possibility (with internally disabled redial).
- Selectable dialling pulse frequency: $10 \mathrm{~Hz}, 16 \mathrm{~Hz}$ and 20 Hz .
- Test pulse frequency: 932 Hz .
- Selectable dialling pulse mark/space ratios; 2: 1 or 3:2.
- Hold facility for lengthening the inter-digit period.
- Circuit reset for line power breaks; $>160 \mathrm{~ms}$ (10 Hz dialling pulse frequency).
- Access pause generation via the keyboard.
- Access pause reset: via the keyboard, with external tone recogniser.
- All inputs with pull-up/pull-down (except CE).
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102GE).

PINNING

1	$V_{D D}$	positive supply
10	$V_{S S}$	negative supply
Inputs		

4 M/S controls the mark-to-space ratio of the line pulses
$\left.\begin{array}{ll}5 & \text { F01 } \\ 6 & \text { F02 }\end{array}\right\}$
7 CE
the dialling pulse frequency is defined by the logic state of these two inputs
Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks
$\left.\begin{array}{ll}11 & \mathrm{X} 1 \\ 12 & \mathrm{X} 2 \\ 13 & \mathrm{X} 3 \\ 14 & \mathrm{Y} 1 \\ 15 & \mathrm{Y} 2 \\ 16 & \mathrm{Y} 3 \\ 17 & \mathrm{Y} 4\end{array}\right\} \quad$ column keyboard inputs with pull-down on chip

Outputs

$\begin{array}{lll}2 & \text { DP } & \text { Dialling Pulse; drive of the external line switching transistor or relay } \\ 3 & \text { M1 } & \text { Muting; normally used for muting during the dialling sequence }\end{array}$

Input/output

18 HOLD/APO This pin will go HIGH when an access pause code is read from the memory during pulsing and will interrupt dialling. It can also be externally controlled; it will interrupt dialling after completion of the current digit or immediately during an inter-digit pause (t_{id}); further keyboard data will be accepted.

Oscillator

$\left.\begin{array}{ll}8 & \text { OSC IN } \\ 9 & \text { OSC OUT }\end{array}\right\}$ input and output of the on-chip oscillator

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)

Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3325A is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set (F01 and F02) to provide one of four chip system clocks; three 'normal' clock frequencies and one higher test frequency.
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
CE = LOW provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When CE $=$ HIGH the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time $t_{r d}$ (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<\mathrm{t}_{\text {rd }}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs (Y_{n}) are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4 -bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4-bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the $d \epsilon$ houncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycodes replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.

If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. If the redial pushbutton (\#) is operated again during the redialling sequence it will be decoded as an Access Pause Reset. This function will be described later during the description of the access pause system of the PCD3325A. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored at the RAM position after the last digit code of the original entry and converted into correctly timed dialling pulses.

DEVELOPMENT DATA

* Access pause set.
\# Redial or Access Pause Reset.

Fig. 3 Single contact keyboard.

Fig. 4 Double contact keyboard.

STATIC
STATIC STANDBY MODE

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.
Then, approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods $\left(\mathrm{t}_{\mathrm{d}}\right)$ later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at output M1. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.
- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).
When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period $\mathrm{t}_{\mathrm{e}}, \mathrm{M} 1$ goes HIGH and the pushbutton can be released. The supply to $V_{D D}$ and CE is then maintained via the muting circuit controlled by M1.
The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH (M 2 is an internally generated signal, used for explanation only), the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to V_{DD}). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains V_{DD} above $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{D D}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts). M2 is an internal signal.

Fig. 7 Timing diagram for initiating the dialling mode with $V_{D D}$ and $C E$ initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A. $M 2$ is an internal signal.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD/APO is set HIGH, the dialling pulse-train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in that RAM. No further keycodes will be read from the RAM and converted into dialling pulses on DP until the HOLD/APO is set LOW again and an inter-digit pause has elapsed.

Fig. 8 Timing diagram showing the effect of activating the HOLD/APO during the transmission of dialling pulses. M2 is an internal signal.

Fig. 9 Dialling sequence showing how an access pause code is stored in the RAM (DIAL) and how the access pause code is reset during the REDIAL.

Note: access pause can be reset by pressing any key.

Access pause regeneration during redial

During original entry, access pause codes can be stored at the appropriate positions in the RAM. During redial the Access Pause Output (HOLD/APO) will go HIGH as soon as an access pause code is read from the RAM, thereby interrupting dialling until HOLD/APO is made LOW again as described above. In this way the normal inter-digit pause with a duration t_{id} can be replaced by a proper access pause. An access pause code is stored in the RAM during original entry by pressing the access pause key (*) between entering the trunk exchange code and the subscriber code, or at any other moment an access pause is required. The number of access pauses that can be inserted in this manner is only limited by the capacity of the RAM (digits + access pauses $\leqslant 23$).
During redial, access pauses will be automatically regenerated.
Two methods of terminating an access pause:

1. Manually, by pressing the redial key (\#)
2. With an external tone recogniser, by forcing HOLD/APO to LOW.

(1) a. Access pause reset by pressing redial key (\#).
b. HOLD/APO controlled by tone recogniser:

HOLD/APO forced to LOW.
Fig. 10 Timing diagram showing Access Pause Reset, during redial.
Note: access pause can be reset by pressing any key.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltage on any pin
Operating ambient temperature range
Storage temperature range
$V_{D D}$
V_{1}
$T_{\text {amb }}$
$T_{\text {stg }}$

$$
\begin{array}{r}
-0,3 \text { to } 8 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{SS}}-0,3 \text { to } \mathrm{V} \mathrm{DD}+0,3 \mathrm{~V} \\
-25 \text { to }+70^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{osc}}=3,58 \mathrm{MHz}, \mathrm{R}_{\text {Smax }}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=2{ }^{\circ}{ }^{\circ} \mathrm{C}$; unless otherwise specified.

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.		conditions
Outputs M1, DP						
sink current	I_{OL}	0,7	1,5	3,2	mA	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	I_{OH}	0,65	1,3	2,7	mA	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$
Latch output HOLD/APO sink current source current	IOL	50	130	300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$

TIMING DATA
$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSc}}=3,579545 \mathrm{MHz}$

input levels of FO1 and F02$\left(\mathrm{V}_{\mathrm{SS}}=\mathrm{LOW} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{HIGH}\right)$		$V_{\text {F01 }}$	LOW	HIGH	LOW	HIGH	
		$\mathrm{V}_{\text {F02 }}$	LOW	HIGH	HIGH	LOW	conditions (note 4)
		symbol				(test mode)	
Dialling pulse frequency	$1 / T_{\text {DP }}$	${ }^{\text {f }}$ P P	10,13	15,54	19,42	$939,2 \mathrm{~Hz}$	note 1
Dialling pulse period	1/fDP	TDP	98,7	64,4	51,5	$1,073 \mathrm{~ms}$	
Clock pulse frequency	$30 \times f$ P	${ }^{\mathrm{f}} \mathrm{CL}$	303,9	466,1	582,6	27965 Hz	
Break time (note 2)	$3 / 5 \times$ TDP	t_{b}	59,2	38,6	30,9	$0,644 \mathrm{~ms}$	$M / S=H ;$ n.c.
Make time (note 2)	$2 / 5 \times$ TDP	${ }^{\text {t }}$ m	39,5	25,8	20,6	$0,429 \mathrm{~ms}$	$M / S=H$; n.c.
Break time (note 3)	$2 / 3 \times T_{\text {DP }}$	t_{b}	65,8	42,9	34,6	$0,715 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Make time (note 3)	$1 / 3 \times$ TDP	t_{m}	32,9	21,5	17,2	$0,358 \mathrm{~ms}$	$\mathrm{M} / \mathrm{S}=\mathrm{L}$
Inter-digit pause	$8 \times \mathrm{T}_{\text {DP }}$	$t_{\text {id }}$	790	515	412	$8,58 \mathrm{~ms}$	
Reset delay time	$1,6 \times \mathrm{T}_{\text {DP }}$	$t_{\text {rd }}$	158	103	82,4	1,72 ms	
Prepulse duration	$1 / 3 \times$ TDP	t_{d}	33	21,5	17,2	$0,358 \mathrm{~ms}$	
Debounce time \min	$4 / 30 \times T_{\text {DP }}$	$\mathrm{t}_{\mathrm{e} \text { min }}$	13,2	8,58	6,87	0,143 ms	
max.	$1 / 6 \times T_{\text {DP }}$	$t_{\text {max }}$	16,5	10,7	8,58	$0,179 \mathrm{~ms}$	
Clock start-up time		tontyp	4	-	-	- ms	$\begin{aligned} & C E: V_{S S} \rightarrow \\ & \mathrm{~V}_{\mathrm{DD}}(\text { note } 5) \end{aligned}$
Initial data entry time (typ.)	$\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{e}}$	t_{i}	18	14	12	4 ms	

Notes

1. Exactly 10 Hz with $3,5328 \mathrm{MHz}$ crystal.
2. Mark-to-space ratio: 3:2.
3. Mark-to-space ratio: 2:1.
4. In the n.c. (not connected) condition, the input is drawn to the appropriate state by the internal pull-up/pull-down current.
5. Stray capacitance between pins 8 and $9:<3 \mathrm{pF}$.

TYPICAL CURVES

Fig. 11 Standby supply current as a function of standby supply voltage.

Fig. 13 Pull-down input current as a function of input voltage at $V_{D D}=3 \mathrm{~V}$.

Fig. 12 Operating supply current as a function of operating supply voltage.

Fig. 14 Pull-down input current as a function of supply voltage at $V_{I}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 15 Keyboard current as a function of supply voltage;
X-pins connected to Y-pins.

Fig. 17 Output (N -channel) sink characteristics for M1 and DP.

Curves for Figs 17 and 18

$T_{\text {amb }}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

Fig. 16 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 18 Output (P-channel) source characteristics for M1 and DP.

C-MOS INTERRUPTED CURRENT-LOOP DIALLING CIRCUIT

The PCD3326 is a single chip silicon-gate C-MOS integrated circuit. It is intended to convert pushbutton keyboard entries into streams of correctly-timed line current interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks.

The PCD3326 can regenerate access pauses during redial. During the original entry, access pauses are stored either automatically or via the keyboard. A regenerated access pause can be terminated during redial in three ways: automatically after a built-in time, or via the keyboard, or with an external dial tone recogniser circuit. This makes the circuit very suitable for redial in PABX (Private Automatic Branch Exchange) systems.
The circuit has the following features:

- Operation from $2,5 \mathrm{~V}$ to 6 V supply.
- Static standby operation down to $1,8 \mathrm{~V}$.
- Low current consumption; typ. $40 \mu \mathrm{~A}$.
- Low static standby current; typ. $1 \mu \mathrm{~A}$.
- On-chip oscillator for $3,58 \mathrm{MHz}$ crystal.
- Fully decoded and debounced inputs for 3×4 matrix keyboard.
- 23-digit capacity, including access pauses, for redial operation.
- Memory overflow possibility (with internally disabled redial).
- Selectable dialling pulse frequency: $10 \mathrm{kHz}, 16 \mathrm{~Hz}$ and 20 Hz .
- Test pulse frequency: 932 Hz .
- Hold facility for lengthening the inter-digit period.
- Circuit reset for line power breaks; $>160 \mathrm{~ms}$ (10 Hz dialling pulse frequency).
- Access pause generation automatically or via the keyboard.
- Access pause reset:
automatically after 3 s or 6 s (10 Hz dialling pulse frequency), via the keyboard, with external tone recogniser.
- All inputs with pull-up/pull-down (except CE)
- All inputs are internally protected against electrostatic charges.
- High input noise immunity.

PACKAGE OUTLINES

PCD3326P: 18-lead DIL; plastic (SOT-102GE).

Fig. 1 Pinning diagram.

PINNING

2	$V_{D D}$	positive supply
10	$V_{S S}$	negative supply

Inputs

5	F01	the dialling pulse frequency is defined by the logic state of these two inputs
6	F02	

7 CE Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks
11×1
12 X2
13 X3
14 APD
column keyboard inputs with pull-down on chip

15 Y1
16 Y2
17 Y3
18 Y4
Access Pause Delay; selects the maximum duration of an access pause.

Outputs
3 DP Dialling Pulse; drive of the external line switching transistor or relay
4 M1
Muting; normally used for muting during the dialling sequence
Input/output
1 HOLD/APO This pin will go HIGH when an access pasue code is read from the memory during pulsing and will interrupt dialling. It can also be externally controlled; it will interrupt dialling after completion of the current digit or immediately during an inter-digit pause (t_{id}); further keyboard data will be accepted.

Oscillator

8 OSC IN 9 OSC OUT

Fig. 2 Block diagram.

FUNCTIONAL DESCRIPTION (see also Fig. 2)
Clock oscillator (OSC IN, OSC OUT)
The time base for the PCD3326 is a crystal controlled on-chip oscillator which is completed only by connecting a crystal between the OSC IN and OSC OUT pins. The oscillator is followed by a frequency divider of which the division ratio can be externally set (F01 and FO2) to provide one of four chip system clocks; three 'normal' clock frequencies and one higher test frequency.
Alternatively, the OSC IN input may be driven from an external clock signal.

Chip Enable (CE)

The CE input is used to initialize the chip system.
$C E=V_{S S}$ provides the static standby condition. In this mode the clock oscillator is off and internal registers are clamped reset with the exception of the WRITE ADDRESS COUNTER (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM.
When $C E=V_{D D}$ the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
If the CE input is taken to a LOW level for more than the time t_{rd} (see Figs 5 and 6 and timing data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short CE pulses of $<\mathrm{t}_{\text {rd }}$ will not affect the operation of the circuit. No reset pulses are then produced.

Debouncing keyboard entries

The column keyboard inputs to the integrated circuit (X_{n}) and the row keyboard inputs (Y_{n}) are for direct connection to a 3×4 single contact keyboard matrix (with or without common contact) as shown in Fig. 3, or to a double contact keyboard with a common left open (see Fig. 4). An entry is decoded into a 4-bit binary keycode by the keyboard decoder when one column input is connected to one row input or, when one column input is set HIGH and one row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. Valid inputs are debounced on the leading and trailing edges as shown in Fig. 5. Keyboard entries are only decoded into 4-bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods (entry period t_{e}). The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods. The one clock pulse period of uncertainty in the debouncing process arises because keyboard entries are not detected until the trailing edge of the first clock pulse after the entry.

Data entry

After each keyboard entry has been debounced and decoded, the keycode is written into the RAM, and the WAC is incremented by one to select the next RAM location where the next keycode will be stored. As each keycode is recalled from the RAM for line pulsing, the READ ADDRESS COUNTER (RAC) is incremented by one to select the RAM location of the next keycode to be recalled. Consequently, the difference between the contents of the WAC and of the RAC represents the number of keycodes that have been written into the RAM but not yet converted into line pulses. If more than 23 keycodes are written into the RAM, memory overflow results and the excess keycode replace the data in the lower numbered RAM locations. In this event, since an erroneous number is stored, automatic redialling is inhibited until the WAC has been reset by the first digit entry of the next telephone call.
If the first pushbutton to be pressed is not redial (\#), the WAC is reset during entry time t_{e}, the corresponding keycode is written into the first RAM location, and the WAC is then incremented by one. If the first pushbutton to be pressed is redial (\#), the WAC is not reset and the keycodes stored in the RAM are sequentially recalled and converted into correctly timed dialling pulses at output DP. If the redial pushbutton (\#) is operated again during the redialling sequence it will be decoded as an Access Pause Reset. This function will be described later during the description of the access pause system of the PCD3326. During redial no keyboard entry will be accepted and stored in the RAM. But, when all in the RAM stored numbers have been pulsed out, new keyboard entry will be accepted, stored at the RAM position after the last digit code of the original entry and converted into correctly timed dialling pulses.

\star Access pause set.
\# Redial or Access Pause Reset.

Fig. 4 Double contact keyboard.

Fig. 5 Timing diagram showing clock start-up, keyboard entry debouncing and the effect of interrupting the supply to CE during the transmission of dialling.
N.B.: CL and M2 are internal signals.

Dialling sequence

The dialling sequence can be initiated under either of the following two conditions:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 6.
Then, approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right)$ after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods $\left(t_{d}\right)$ later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at output M1. This prepulse ensures that, if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the conversation mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.
- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts in series with a common keyboard contact (Fig. 7).
When the first digit of the required number is entered at the keyboard, the common keyboard contact connects the line voltage to $\mathrm{V}_{\text {DD }}$ and CE becomes HIGH. Approximately 4 ms (t_{on}) after CE goes HIGH, the clock pulse generator starts and data entry period t_{e} commences. After period t_{e}, M1 goes HIGH and the pushbutton can be released. The supply to $V_{D D}$ and CE is then maintained via the muting circuit controlled by M1.
The further dialling sequence will be described with the aid of Fig. 6. When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 then goes HIGH (M2 is an internally generated signal, used for explanation only), the RAC addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the conversation mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during the conversation or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. because an external diode isolates CE from the back-up supply connected to V_{DD}). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains V_{DD} above $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$.

Fig. 6 Timing diagram of dialling sequence with $V_{D D}$ and CE HIGH before keyboard entry (e.g. supply via the cradle contacts). M2 is an internal signal.

Fig. 7 Timing diagram for initiating the dialling mode with $V_{D D}$ and CE initially supplied via the cradle contacts in series with a common contact on the keyboard. See Fig. 6 for pulse timings after point A. M2 is an initial signal.

Hold function

As shown in Fig. 8, the hold function allows the interval between consecutive pulsed digits to be prolonged under the control of external equipment. When the HOLD/APO is set HIGH, the dialling pulse train is interrupted as soon as M2 goes LOW to signal that the current digit has been pulsed out. In the hold condition, further keyboard entries will be accepted, debounced, decoded and stored in the RAM. No further keycodes will be read from the RAM and converted into dialling pulses on DP until the HOLD/APO is set LOW again and an inter-digit pause has elapsed.

Fig. 8 Timing diagram showing the effect of activating the HOLD/APO during the transmission of dialling pulses. M2 is an internal signal.

Fig. 9 Dialling sequence showing how an access pause code is automatically stored in the RAM for possible redialling if no further key entries are made until all of the previously entered digits have been transmitted. The dialling sequence continues when another key is pressed.

Access pause regeneration during redial

During original entry, access pause codes can be stored at the appropriate positions in the RAM. During redial the Access Pause Output (HOLD/APO)will go HIGH as soon as an access pause code is read from the RAM, thereby interrupting dialling until HOLD/APO is made LOW again as described above. In this way the normal inter-digit pause with a duration $t_{i d}$ can be replaced by a proper access pause. An access pause code is now automatically stored in the RAM during original entry, when M1 goes LOW, after all digits so far entered have been transmitted (see Fig. 6). This occurs between entering of the trunk exchange code and the subscriber code, whilst the access tone is available. Up to two access pauses can be entered into the RAM in this manner. Alternatively, the access pause key (\star) can still be pressed to insert (more) access pauses manually (digits + access pauses $\leqslant 23$).
During redial, access pauses will be automaticaily regenerated.
Three methods of terminating an access pause:

1. Automatically, if the built-in time $\mathrm{t}_{\text {ap }}$ expires; HOLD/APO then goes LOW; tap can be set to one of two values with the Access Pause Delay (APD) select input.
2. Manually, by pressing the redial key before $t_{a p}$ expires.
3. With an external tone recogniser, by forcing HOLD/APO to LOW or HIGH respectively, for shortening or lengthening an access pause.

(1) a. Access pause ($t_{a p}$) expires or press redial before end of $t_{a p}$.
b. HOLD/APO controlled by tone recogniser:

HOLD/APO forced to LOW before $t_{\text {ap }}$ expires; access pause $<t_{a p}$ HOLD/APO forced to HIGH after $t_{a p}$ expires; access pause $>t_{a p}$.

Fig. 10 Timing diagram showing Access Pause Reset.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$V_{D D}$	$-0,3$ to 8 V
Voltage on any pin	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+70{ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSC}}=3,58 \mathrm{MHz}, \mathrm{R}_{\text {Smax }}=100 \Omega$ (note 3); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

Notes

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. Stray capacitance between pins 8 and $9<3 \mathrm{pF}$.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.	conditions
Outputs M1, DP					
sink current	I_{OL}	0,7	1,5	$3,2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	$-\mathrm{I}_{\mathrm{OH}}$	0,65	1,3	$2,7 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$
Latch output HOLD/APO					
sink current	OL	50	130	$300 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
source current	$-\mathrm{I}_{\mathrm{OH}}$	45	110	$250 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

TIMING DATA

$V_{D D}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=3,579545 \mathrm{MHz}$

input levels of F01 and F02		$\mathrm{V}_{\mathrm{F} 01}$	LOW	HIGH	LOW	HIGH	
$\left(\mathrm{V}_{\text {SS }}=\right.$ LOW; $\mathrm{V}_{\text {DD }}=$ HIGH $)$		$\mathrm{V}_{\mathrm{F} 02}$	LOW	HIGH	HIGH	LOW	conditions (note 3)
		symbol				(test mode)	
Dialling pulse frequen Dialling pulse period Clock pulse frequenc Break time (note 2) Make time (note 2) Inter-digit pause Reset delay time Access pause time Prepulse duration Debounce time min. max. Clock start-up time Initial data entry time (typ.)	$1 / T_{\text {DP }}$	fDP	10,13	15,54	19,42	939,2 Hz	note 1
	$1 / \mathrm{f}$ DP	TDP	98,7	64,4	51,5	$1,073 \mathrm{~ms}$	
	$30 \times{ }^{\text {f }}$ P	${ }^{\mathrm{f}} \mathrm{CL}$	303,9	466,1	582,6	27965 Hz	
	$3 / 5 \times T_{\text {DP }}$	t_{b}	59,2	38,6	30,9	$0,644 \mathrm{~ms}$	$M / S=H$ n.c.
	$2 / 5 \times T_{\text {DP }}$	${ }^{\text {t }} \mathrm{m}$	39,5	25,8	20,6	$0,429 \mathrm{~ms}$	$M / S=H$; n.c.
	$8 \times{ }^{\text {T }}$ DP	t_{id}	790	515	412	8,58 ms	
	$1,6 \times \mathrm{T}_{\text {DP }}$	${ }_{\text {trd }}$	158	103	82,4	1,72 ms	
	$32 \times \mathrm{T}_{\text {DP }}$	${ }^{\text {tap }}$	3,16	2,06	1,65	0,034	ADP $=\mathrm{L}$; nc
	$64 \times T_{\text {DP }}$	${ }^{\text {tap }}$	6,32	4,12	3,30	0,069	ADP $=\mathrm{H}$
	$1 / 3 \times$ TDP	t_{d}	33	21,5	17,2	0,358 ms	
	$4 / 30 \times$ TDP	$t_{\text {e min }}$	13,2	8,58	6,87	0,143 ms	
	$1 / 6 \times$ TDP	$\mathrm{t}_{\mathrm{e} \text { max }}$	16,5	10,7	8,58	$0,179 \mathrm{~ms}$	
		ton typ		4	4	4 ms	$\begin{aligned} & \text { CE: VSS } \rightarrow \text { (note 4) } \end{aligned}$
	$t_{o n}+t_{e}$	t_{i}	18	14	12	4 ms	

Notes

1. Exactly 10 Hz with $3,5328 \mathrm{MHz}$ crystal.
2. Mark-to-space ratio: 3:2.
3. In the n.c. (not connected) condition, the input is drawn to the appropriate state by the internal pull-up/pull-down current.
4. Stray capacitance between pins 8 and $9:<3 \mathrm{pF}$.

TYPICAL CURVES

Fig. 11 Standby supply current as a function of standby supply voltage.

Fig. 13 Pull-down input current as a function of input voltage at $V_{D D}=3 \mathrm{~V}$.

Fig. 12 Operating supply current as a function of operating supply voltage.

Fig. 14 Pull-down input current as a function of supply voltage at $V_{1}=V_{D D}$.

TYPICAL CURVES (continued)

Fig. 15 Keyboard current as a function of supply voltage;
X -pins connected to Y -pins.

Fig. 17 Output (N -channel) sink characteristics for M1 and DP.

Curves for Figs 17 and 18

$T_{\text {amb }}$	$V_{D D}=3 \mathrm{~V}$	$V_{D D}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

Fig. 16 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 18 Output (P-channel) source characteristics for M1 and DP.

PULSE DIALLER WITH REDIAL

GENERAL DESCRIPTION

The PCD3327 is a single-chip silicon-gate CMOS integrated pulse dialler with radial function. The 455 kHz frequency reference for the on-chip oscillator is performed by an inexpensive ceramic resonator. It converts pushbutton keyboard entries into streams of correctly-timed line interruptions. The input data is derived from a telephone keyboard with a 3×4 pushbutton matrix. Numbers with up to 23 digits can be retained in a RAM for redial. A delayed reset is built-in for line power breaks in order to avoid untimely line interrupts.

Features

- Direct telephone line operation
- Inexpensive standard single-contact keyboard use
- Ceramic resonator for the frequency reference
- CMOS technology for low voltage operation ($2,5 \mathrm{~V}$ to $6,0 \mathrm{~V}$)
- Mark/space ratio selectable
- Redial facility with 23 digit capacity (memory overflow)
- Circuit reset for line power breaks
- Mute output
- Automatic reset of access pauses

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCD3327P : 18-lead DIL; plastic (SOT-102GE).
PCD3327U: die in trays.

Fig. 2 Pinning diagram.

1	$V_{D D}$	positive supply
10	$V_{S S}$	negative supply

Inputs
$4 \mathrm{M} / \mathrm{B} \quad$ mark/space input; controls the mark-to-space ratio of the line pulses
5 F01
6 F02
the dialling pulse frequency is defined by the logic state of these two inputs
7 CE
$\left.\begin{array}{ll}11 & \mathrm{C} 1 \\ 12 & \mathrm{C} 2 \\ 13 & \mathrm{C} 3\end{array}\right\}$

14 R1
15 R2
Chip Enable; used to initialize the system; to select between the operational mode and the static standby mode; to handle line power breaks

16 R3
17 R4
column keyboard inputs with pull-down on chip

Outputs
2 DP
3 M1
Dialling Pulse; drive of the external line switching transistor or relay Muting; normally used for muting during the dialling sequence

Input/output

18 HOLD/APO
This pin will go HIGH when an access pause code is read from the memory during pulsing and will interrupt dialling. It can also be externally controlled; it will interrupt dialling after completion of the current digit or immediately during an inter-digit pause ($\mathrm{tid}^{\mathrm{d}}$); further keyboard data will be accepted.

Oscillator

$\left.\begin{array}{ll|l}8 & \text { OSC IN } \\ 9 & \text { OSC OUT }\end{array}\right\}$ input and output of the on-chip oscillator

FUNCTIONAL DESCRIPTION

Power supply ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$)
Pin $1\left(V_{D D}\right)$ is the positive supply pin of the IC and the voltage is measured referenced to pin 10 ($\mathrm{V}_{\text {SS }}$). This voltage must not exceed 6 V . For a redial operation, the RAM content is retained if $\mathrm{V}_{\text {DD }}$ does not drop below $1,8 \mathrm{~V}$.

Oscillator input/output (OSC IN, OSC OUT)
The PCD3327 contains an oscillator with sufficient gain to provide oscillation when using an inexpensive 455 kHz ceramic resonator. In addition, two external capacitors are required (see Fig. 3). Alternatively, the OSC IN input pin may be driven from an external 455 kHz clock signal.

Fig. 3 Oscillator circuit.

Mark/space selection (M/S)

The mark/space ratio of the line pulse can be selected by connecting M/S (pin 4) to either V_{DD} or V_{SS} with mark/space ratio of $3: 2$ or $2: 1$ respectively (see also section Timing Data).

Chip enable (CE)

This input is used to control between the standby mode (ON-HOOK) and the operation mode (OFF-HOOK). When ON-HOOK (CE is LOW) the clock oscillator is off and the internal registers are clamped reset with the exception of the Write Address Counter (WAC). The keyboard input is inhibited, but data previously entered is saved in the RAM (under static standby condition).
When OFF-HOOK (CE is HIGH) the clock oscillator is operating, the internal registers are enabled and data can be entered from the keyboard.
The CE input is also used to handle the line power breaks. If this input is taken to a LOW level for more than the time $t_{r d}$ (see section Timing Data) an internal reset pulse will be generated at the end of the $t_{r d}$ period. The system is then in the static standby mode. Short pulses ($<\mathrm{t}_{\mathrm{rd}}$) on the CE input will not affect the operation of the circuit and no reset pulses are then produced.

FUNCTIONAL DESCRIPTION (continued)

Keyboard inputs ($\mathrm{R}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}$)
The column keyboard inputs $\left(C_{n}\right)$ and the row keyboard inputs (R_{n}) are for direct connection to a 3×4 single contact keyboard matrix (see Fig. 4). Column and row keyboard inputs have on-chip pullup and pull-down respectively. A valid key entry is defined by a single column input being connected to a single row input or, when a single column input is set HIGH and a single row input is set LOW. Any other input combinations will be judged to be not valid and will not be accepted. The valid inputs are debounced on the leading and trailing edges. Keyboard entries are only decoded into 4 -bit binary keycodes and written into the RAM if the keyboard contact remains closed for four or five clock pulse periods. The next keyboard entry will not be accepted until the previously closed contact has been open for three or four clock pulse periods.

* Access pause set.
\# Redial or access pause reset.
Fig. 4 Single-contact keyboard.

Mute output (M1)

The M1 output is normally used for muting of the speech network during the dialling sequence. Figure 5 shows the timing diagram of the mute output (see also section Dialling Sequence).

Pulse output (DP)

This output is used to drive the external line switching transistor or relay. It provides the output pulse frequency with the correct Make/Break, the pulse rate and the inter-digit pause timing (see Fig. 5).

Dialling frequency selection (FO1, FO2)

The dialling pulse frequency is defined by the logic states of the inputs F01 and F02. With F01 = HIGH and F02 = LOW the device is in the test mode and the pulse frequency is increased by a factor 92 (see section Timing Data).

Dialling sequence

The dialling sequence can be initiated under the following condition:

- The supply to the integrated circuit is derived from the telephone lines via the cradle contacts (power supply before keyboard entry); see Fig. 5.
Then, approximately $4 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}}\right.$) after CE goes HIGH, the clock pulse generator starts and, ten clock pulse periods $\left(t_{d}\right)$ later, a prepulse with a duration of ten clock pulse periods (t_{d}) appears at the mute output M 1 . This prepulse ensures, that if a polarized muting relay with two stable positions is used, it switches to the de-muted position so that the circuit is then in the speech mode whilst the subscriber awaits the dialling tone. When the first digit of the required number is entered at the keyboard, data entry period t_{e} commences.
The further dialling sequence will be described with the aid of Fig. 5 . When the keyboard entry has been decoded and written into the RAM, M1 goes HIGH to mute the telephone and an inter-digit pause (t_{id}) ensues. M2 Then goes HIGH (M2 is an internally generated signal, used for explanation only), the RAC (Read Address Counter) addresses the RAM and the first keycode is loaded into the register of the output counter which generates the appropriate number of correctly-timed dialling pulses at output DP. When the digit has been pulsed out, M2 goes LOW, the RAC is incremented by one and the procedure repeats until the WAC and RAC contents are equal (all digits pulsed out). Output M1 then goes LOW, the circuit assumes the speech mode. The circuit reverts to the static standby mode if CE goes LOW for more than the reset delay time ($\mathrm{t}_{\mathrm{rd}}=1,6$ dialling pulse periods) at any time during speech or dialling mode (e.g. because the handset is replaced). CE remains LOW although $V_{D D}$ is maintained by a back-up supply (e.g. is an external diode isolates CE from the back-up supply connected to VDD). The RAM retains its contents for subsequent automatic redialling as long as the back-up supply maintains $V_{D D}$ above $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$.

Access pause generation during dial and redial

During original entry, access pause codes can be stored at the appropriate positons in the RAM. During radial the Access Pause Output (HOLD/APO) will go HIGH as soon as an access pause code is read from the RAM, thereby interrupting dialling until HOLD/APO is made LOW. In this way the normal inter-digit pause with a duration $t_{i d}$ can be replaced by a proper access pause. An access pause code is stored in the RAM during original entry by pressing the access pause key (*) between entering the trunk exchange code and the subscriber code, or at any other moment an access pause is required. The number of access pause that can be inserted in this manner is only limited by the capacity of the RAM (digits + access pauses <23).
During redial, access pauses will be automatically regenerated.
Three methodes of terminating an access pause:

1. Automatically, if the built-in time $t_{\text {ap }}$ expires; HOLD/APO then goes LOW.
2. Manually, by pressing the redial key before $t_{a p}$ expires.
3. With an external tone recognizer, by forcing HOLD/APO to LOW or HIGH respectively, for shortening or lengthening an access pause.

Fig. 5 Timing diagram of dialling sequence with $V_{D D}$ and CE is HIGH before keyboard entry (e.g. supply via the craddle contacts). M2 is an internal signal.

Fig. 6 Dialling sequence showing how an access pause code is stored in the RAM (DIAL) and how the access pause code is reset during the REDIAL.

Note: access pause can be reset before t_{ap} expires by pressing any key or by HOLD/APO forced to LOW.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	\min.	\max.	unit
Supply voltage range	V_{DD}	$-0,3$	$+8,0$	V
Voltage on any input pin	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0,3$	$\mathrm{~V}_{\mathrm{DD}}+0,3$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-25	+70	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; ceramic resonator parameters: $\mathrm{f}_{\text {OSC }}=455 \mathrm{kHz}, \mathrm{R}_{\text {Smax }}=12 \Omega$;
$\mathrm{C}_{\mathrm{omax}}=300 \mathrm{pF} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit	conditions
Supply						
Operating supply voltage	$V_{\text {DD }}$	2,5	3,0	6,0	V	$\mathrm{T}_{\mathrm{amb}}=$
Standby supply voltage (note 1)	$V_{\text {DD0 }}$	1,8	-	6,0	V	$1-25$ to $+70^{\circ} \mathrm{C}$
Operating supply current	${ }^{\text {I D D }}$	-	40	-	$\mu \mathrm{A}$	$C E=V_{\text {DD }}$; note 2
	IDD	-	50	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} C E=V_{D D} ; \\ V_{D D}=6 V \text {; note } 2 \end{array}\right.$
Standby supply current	IDD0	-	1	5	$\mu \mathrm{A}$	$C E=V_{S S}$; note 2
Inputs						
Input voltage LOW	$\mathrm{V}_{\text {IL }}$	-	-	$0,3 V_{\text {DD }}$	V	$1,8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$
Input voltage HIGH	$V_{\text {IH }}$	0,7V VDD	-	-	V	
Input leakage current CE input: LOW	-IIL	-	-	50	nA	$C E=V_{S S}$
HIGH	1 IH	-	-	50	nA	$C E=V_{D D}$
Pull-up input current M/S	$-\mathrm{IIL}$	30	100	300	nA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$
Pull-down input current; F01, F02	IH	30	100	300	nA	$V_{1}=V_{D D}$
Matrix keyboard operation						
Keyboard current	${ }^{\prime} \mathrm{K}$	-	10	-	$\mu \mathrm{A}$	$C E=V_{\text {DD }}$; note 3
Keyboard resistance "ON"			-	500	Ω	contact ON; note 4
"OFF"	RKON RKOFF	1	-	500	M Ω	contact OFF; note 4
Other keyboard operation						
Input current C_{n} "ON"	${ }_{1 / \mathrm{H}}$	-	-	30	$\mu \mathrm{A}$	$\mathrm{V}_{1}=1,5$ to 3 V
R_{n} "ON"	-IIL	10	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0$ to $2,5 \mathrm{~V}$
R_{n}	-11	-	-	0,7	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$
Outputs						
Sink current M1, DP	${ }^{\text {IOL }}$	0,7	1,5	3,2	mA	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
HOLD/APO (latch)	IOL	50	130	300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$
Source current M1, DP	$-\mathrm{IOH}$	0,65	1,3	2,7	mA	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$
HOLD/APO (latch)	$-\mathrm{OH}$	45	110	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V}$

Notes to characteristics

1. $\mathrm{V}_{\mathrm{DDO}}=1,8 \mathrm{~V}$ only for redial.
2. C_{n} connected to R_{n}.
3. All other inputs and outputs open.
4. Guarantees correct keyboard operation.

TIMING DATA
$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=455 \mathrm{kHz}$

		$\mathrm{V}_{\mathrm{F} 01}$	LOW	HIGH	LOW	HIGH		
		$\mathrm{V}_{\text {F02 }}$	LOW	HIGH	HIGH	LOW		
parameter		symbol				$\begin{array}{\|l\|} \hline \text { (test } \\ \text { mode) } \end{array}$	unit	conditions see also note 4
Dialling pulse frequency	$1 / T_{\text {DP }}$	f_{DP}	10,3	15,8	19,7	948	Hz	note 1
Dialling pulse period	1/fDP	TDP	97	63	51	1,05	ms	
Clock pulse frequency	$30 \times f$ PP	${ }^{\mathrm{f}} \mathrm{CL}$	309	474	592	28438	Hz	
Break time	$3 / 5 \times T_{\text {DP }}$	t_{b}	58	38	30	0,63	ms	note 2
Make time	$2 / 5 \times T_{\text {DP }}$	${ }^{\text {t }} \mathrm{m}$	39	25	20	0,42	ms	note 2
Break time	$2 / 3 \times T_{\text {DP }}$	t_{b}	65	42	34	0,70	ms	note 3
Make time	$1 / 3 \times T_{\text {DP }}$	t_{m}	32	21	17	0,35	ms	note 3
Inter-digit pause	$8 \times \mathrm{T}_{\text {DP }}$	$\mathrm{tid}_{\text {d }}$	776	506	405	8,4	ms	
Reset delay time	$1,6 \times T_{D P}$	t_{rd}	155	101	81	1,7	ms	
Access pause duration	$32 \times T_{\text {DP }}$	t_{ap}	3,11	2,03	1,62	0,034	s	
Prepulse duration	$1 / 3 \times T_{\text {DP }}$	t_{d}	32	21	17	0,35	ms	
Debounce time min.	$4 / 30 \times T_{\text {DP }}$	$\mathrm{t}_{\mathrm{e} \text { min }}$	13	8,4	6,7	0,14	ms	
max.	$1 / 6 \times T_{\text {DP }}$	$\mathrm{t}_{\mathrm{e} \text { max }}$	16	10,5	8,4	0,18	ms	
Clock start-up time; typical		$\mathrm{t}_{\text {on typ }}$	4	4	4	4	ms	$C E: V_{S S} \rightarrow V_{D D}$
Initial data entry time; typical	$t_{o n}+t_{e}$	t_{i}	18	14	12	4	ms	

Notes to timing data

1. $\mathrm{f} D \mathrm{P}$ is exactly 10 Hz with a $441,6 \mathrm{kHz}$ PXE.
2. Mark-to-space ratio is $3: 2 ; \mathrm{M} / \mathrm{S}$ is HIGH (not connected).
3. Mark-to-space ratio is $2: 1 ; \mathrm{M} / \mathrm{S}$ is LOW.
4. In the not connected condition, the input is drawn to the appropriate state by the internal pull-up/ pull-down current.

TYPICAL CURVES

Fig. 7 Standby supply current as a function of standby supply voltage.

Fig. 9 Pull-down current as a function of input voltage at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

Fig. 8 Operating supply current as a function of operating supply voltage.

Fig. 10 Pull-down input current as a function of supply voltage at $V_{1}=V_{D D}$.

Fig. 11 Keyboard current as a function of supply voltage; R_{n} pins connected to C_{n} pins.

DEVELOPMENT DATA

Fig. 13 Output (N -channel) sink characteristics for M1 and DP outputs.

Fig. 12 Keyboard input characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 14 Output (P-channel) source characteristics of M1 and DP outputs.

Curves for Figs 13 and 14

$\mathrm{T}_{\mathrm{amb}}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$	1	4
$+25^{\circ} \mathrm{C}$	2	5
$+70^{\circ} \mathrm{C}$	3	6

CMOS REPERTORY DIALLER TELEPHONE SET CONTROLLER

GENERAL DESCRIPTION

The PCD3341 is a low threshold voltage IC fabricated in CMOS. It is designed to control display, redial and repertory dialling in a telephone set. The IC has two dialling modes; pulse dialling (PD) and dual tone multi-frequency (DTMF). The architecture of the PCD3341 is identical to that of the PCD3343. It comprises an 8 -bit CPU, 224 RAM bytes and 3 K ROM bytes (the ROM is already programmed). The operating supply voltage is 2,5 to $6,0 \mathrm{~V}$ with a low current consumption in all operating modes: standby, conversation and dialling modes.
Up to 18 digits and 2 manual access pauses can be stored for redial, extended redial and direct dial purposes together with on-chip storage for 10 repertory numbers.
For expansion of the system the PCD3341 provides a two wire serial input/output port, in accordance with the $I^{2} \mathrm{C}$ bus specifications, to control the DTMF tone generator, LCD drivers and additional RAMs for additional repertory numbers.

Features

- Pulse dialling
- DTMF dial control of tone generator PCD3312
- Redial
- Extended redial
- Electronic notepad
- Direct dialling (emergency call)
- On-chip storage for 10 repertory dial numbers
- 18-digit capacity for each autodial memory
- Flash or register recall
- Access pause generation and termination
- Manual reset of autodial RAM
- On-chip power-on reset
- Programmed for improved noise immunity
- Extention possible with external RAM for up to 110 repertory dial numbers
- Uses standard 4×4 keyboard (single or double contact)
- Additional 10-digits first in first out memory, for infinite long numbers control an LCD via the $I^{2} \mathrm{C}$ bus.
- Four extra function keys: program/autodial, flash, redial, access pause
- Keyboard expansion possible for 10 separated repertory dialled numbers
- Automatic recognition of PABX-digits; resulting in an access pause insertion
- Hold input and access pause output (APO) to adjust the duration of the access pause and facilitate use of tone recognizers
- Six diode or strap functions: mark-to-space ratio, tone burst time, inter-digit pause time, access pause time, normal or expanded keyboard, normal or direct dialling

QUICK REFERENCE DATA

PACKAGE OUTLINES

PCD3341P: 28-lead DIL; plastic (SOT-117).
PCD3341T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING		
1	$\overline{\mathrm{M} 1}$	inverted output of M1
2	SDA	serial data
3	SCL	serial clock
4	ROW 1	scanning row keyboard outputs
5	ROW 2	
6	ROW 3	
7	ROW 4	
8	ROW 5	
9	ROW 6	
10	$\overline{\text { APO }}$	access pause output
11	$\overline{\text { HOLD }}$	hold input
12	CE	chip enable input
13	$\overline{\text { PD/DTMF }}$	input to select pulse or DTMF dialling
14	$\mathrm{V}_{\text {SS }}$	negative supply
15	XTAL 1	input to on-chip oscillator
16	XTAL 2	output from on-chip oscillator
17	RESET	reset input/output
18	COL 1	sense column keyboard inputs
19	COL 2	
20	COL 3	
21	COL 4	
22	COL 5	
23	COL 6	
24	M3	muting output
25	$\overline{\text { DP }}$	inverted pulse dialling output
26	DP	pulse dialling output
27	M1	muting output
28	$\mathrm{V}_{\text {DD }}$	positive supply

FUNCTIONAL DESCRIPTION

Power supply (VDD V_{SS})

Power supply must be retained for data storage.

Clock oscillator (XATL 1; XTAL 2)

The time base for the PCD3341 is a crystal controlled on-chip oscillator which is completed by connecting a $3,58 \mathrm{MHz}$ crystal between XTAL 1 and XTAL 2. The oscillator starts when $\mathrm{V}_{\text {DD }}$ reaches the operating voltage level and CE $=$ HIGH. The output XTAL 2 can be used to drive the oscillator input of the PCD3312.

Chip Enable (CE)

This active HIGH input is used to initialize part of the system, to select the operational or standby mode and to handle line power breaks.

Pulse dialling outputs (DP; $\overline{\mathrm{DP}}$)

DP output drives an external switching transistor or relay in pulse dialling mode. This output is also used to pulse out a calibrated FLASH pulse (recall register) of 90 ms duration as soon as the keyboard input FLASH is activated by depressing the key F. The FLASH function acts like CE with respect to redial.

Muting outputs (M1; $\overline{\mathrm{M} 1}$; M3)

M1 output is used for muting during the dialling sequence. For pulse dialling M1 goes HIGH with the first inter-digit pause and remains active for 33 or 40 ms (mark-to-space selection) following the last break pulse after the last digit held in store has been transmitted. In DTMF dialling, input $\overline{\text { PD }} /$ DTMF 2 is HIGH. M1 is HIGH as long as two out of the eight frequency signals are sent, then remains HIGH for an additional 80 ms (hold-over time).
$\overline{\mathrm{M} 1}$ output is the inverted output of M1.
M3 output is an AND function with $\overline{\mathrm{DP}}$ and M1 as input, used for direct drive of a switching transistor for dialling pulses and muting.

Hold input ($\overline{H O L D}$); access pause output ($\overline{\mathrm{APO}}$)

The hold input suspends dialling after completion of the current digit, or in pulse dialling during an inter-digit pause.
The hold function facilitates an extra time delay during dialling under control of external circuits (dialling tone recognizer). In the hold state ($\overline{\mathrm{HOLD}}=\mathrm{LOW}$) the muting output is also LOW, thus the IC is in the conversation mode. The $\overline{\text { HOLD }}$ input can be controlled by the access pause output (APO) directly or indirectly via a dialling tone recognizer (see Fig. 3). The tone recognizer automatically terminates access pauses upon receipt of the access tone, regardless of whether this occurs during or after the access pause time (t_{ap}). The $\overline{\text { APO }}$ output will go LOW when an access pause is recognized.

Fig. 3 Automatic variation of length of an access pause under control of a dialling tone recognizer.

Serial data (SDA); serial clock (see Fig. 8)
The serial I/O lines SDA and SCL are used to control the PCD3312 in the DTMF dialling mode, additional RAMs (PCD8570) for repertory dialling and LCD drivers (PCF8577). Both outputs require external pull-up resistors.

Keyboard inputs/outputs (COL 1 to 6; ROW 1 to 6)

The sense column inputs COL 1 to COL 6 and the scanning row outputs ROW 1 to ROW 6 are directly connected to a 4×4 single contact keyboard matrix. The keyboard organization is shown in Fig. 4.
In pulse dialling mode the valid keys are the 10 numeric keys (0 to 9). The 6 non-numeric keys (A, B, $C, D,{ }^{*}, \#$) have no effect on the dialling.
In DTMF dialling mode the 10 numeric keys and the 6 non-numeric keys are valid. On-chip repertory dialling uses the 10 numeric numbers (no external RAM).
With extended repertory dialling 10 extra keys (M 1 to M 10) are used (on-chip or external RAM).
Row 5 of the keyboard contains the following special function keys:

- P memory clear and programming (notepad)
- FL flash or register recall
- R redial
- AP manual access pause entry

Diode options (ROW 6)
Row 6 is added to the keyboard matrix to provide the following selections:

Mark-to-space ratio (M/S)
OFF M/S 3:2
ON M/S 2:1
Tone burst time (t_{tb})
OFF $\mathrm{t}_{\mathrm{tb}}=70 \mathrm{~ms}$
ON $\mathrm{t}_{\mathrm{tb}}=100 \mathrm{~ms}$
Inter-digit pause (IDP)
OFF IDP $=900 \mathrm{~ms}$
ON IDP $=500 \mathrm{~ms}$

Access pause time (t_{ap})
OFF $\mathrm{t}_{\mathrm{ap}}=1,5 \mathrm{~s}$ (DTMF); 3 s (PD)
ON $t_{a p}=2,5 \mathrm{~s}$ (DTMF); 5 s (PD)
Keyboard expansion (EKB)
OFF normal keyboard
ON expanded keyboard
Normal/direct call (N/D)
OFF normal call mode
ON direct call (emergency)

Fig. 4 Keyboard organization.

FUNCTIONAL DESCRIPTION (continued)

Dialling mode selection input ($\overline{\mathrm{PD}} / \mathrm{DTMF}$)
This input selects the dialling mode:

- $\overline{\mathrm{PD}} / \mathrm{DTMF}=$ LOW selects pulse dialling
- $\overline{P D} / D T M F=$ HIGH selects DTMF dialling

Reset input/output (RESET)

When the reset input is active HIGH it can be used to initialize the IC.
In normal application this is achieved by the CE input.
Reset is also an output of the internal power-on-reset circuit, which generates a reset pulse if $V_{D D}$ drops below 1,3 V (typ.).

OPERATION

The PCD3341 has 3 operating modes:

- Standby
- Conversation
- Dialling

Standby mode

When the chip enable input (CE) is LOW the IC is disabled. In the standby mode the only current drawn is from a back up supply (battery or line powered), for memory retention, holding up to 13 call numbers for repertory and redialling.

Conversation mode

After the handset is lifted CE is activated and $V_{D D}$ rises to the working voltage. M1 muting is inactive and speech or dial tone can be heard. With the oscillator operating the chip is ready to accept keyboard entries. Current consumption is $<300 \mu \mathrm{~A}$.

Dialling mode

The dialling mode starts with first valid keyboard entry when it initiates:

- a normal call of a newly dialled number
or
- a repertory or redialling cycle of previously entered and stored numbers

The current consumption is $<600 \mu \mathrm{~A}$.
Pulse dialling ($\overline{\mathrm{PD}} / \mathrm{DTMF}=$ LOW)
The keyboard entry initiates a recall from a previously stored number or is a simultaneous keying-in and pulsing-out activity, with storing for possible later recall. If in the recalled number or at keying-in the keys *, \#, A, B, C, D keys are used these digits will not be transmitted. Normally, keying-in is faster than pulsing-out (fed from the redial register). Pulsing sequences start with M1 going HIGH followed by an inter-digit pause of 900 or 500 ms duration (diode option IDP), followed by a sequence of pulses corresponding to the present digit in store. Each pulse starts with a mark (line break) followed by space (line make).
The pulse period is 100 ms with a mark-to-space ratio of $3: 2$ or $2: 1$ (diode option). After transmission os a digit, the next digit will be processed again starting with an inter-digit pause. The pulsing is suspensed if $\overline{\text { HOLD }}$ goes LOW. It will be terminated if the current memory content has been transmitted or the handset is replaced ($C E=L O W<t_{r d}$). The pulses are available on the DP line. After completion of the number string M1 goes LOW and the circuit changes from dialling mode to conversation mode.

Dual Tone Multi Frequency dialling ($\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{HIGH}$)

The PCD3341 converts keyboard inputs into serial data, via the I^{2} bus lines SDA and SCL, suitable for control of the PCD3312 DTMF tone generator. These tones are transmitted with minimum tone burst durations of $70,70 \mathrm{~ms}$. The maximum tone burst duration is equal to the key depression time. With redial and repertory dialling tones are automatically fed at a rate of $70,70 \mathrm{~ms}$. After dialling the muting output goes LOW after a hold-over time of 80 ms and the circuit is switched to the conversation mode.

SYSTEM EXTENSION

The PCD3341 can control the extensions of a telephone set via its $I^{2} \mathrm{C}$ bus. Both in DTMF dialling and pulse dialling, an extended repertory dialler provides more than 10 stored on-chip numbers and the indication on a L.C. display of all keys pressed (programming or dialling procedure).
The following ICs can be used in combination with the PCD3341:

- PCD3312 DTMF generator
- PCD8570 256×8 static CMOS RAM
- PCF 85772 LCD drivers in LCD module

DTMF dialling

By using a PCD3312 DTMF generator with $I^{2} \mathrm{C}$ bus interface, the PCD3341 may be extended to Dual Tone Multi Frequency dialling applications. This is selected when the input pin $\overline{\mathrm{PD}} / \mathrm{DTMF}=\mathrm{HIGH}$. DTMF dialling is much faster than pulse dialling. Each keypad digit corresponds to a unique combination of two frequencies; one from a group of 4 high frequencies, and one from a group of 4 low frequencies. Both frequencies are applied simultaneously to the line.
The PCD3341 is capable of directly driving the PCD3312 oscillator.

Repertory dialling

If more than 10 stored numbers are required repertory dialling can be extended by the $I^{2} \mathrm{C}$ bus lines and external CMOS RAMs (PCD8570) with serial interface. With a RAM capacity of 256×8 bits another 20 stored numbers can be added. A maximum of 5 external RAMs can be served by the PCD3341 directly. This provides a telephone with a total capacity of 110 (100) stored numbers. The number of external RAMs connected on the $I^{2} \mathrm{C}$ bus lines is automatically checked by the PCD3341 at initial turn-on.
To identify each RAM, the PCD8570 has 3 hardware address pins (A2, A1, A0) which allows a maximum of 8 RAMs to be connected.

Table 1 Repertory number organisation

PCD8570 address		Keyboard digit(s)		
A2	A1	A0	Without EKB	With EKB
0	0	0	10 to 29	00 to 19
0	0	1	30 to 49	20 to 39
0	1	0	50 to 69	40 to 59
0	1	1	70 to 89	60 to 79
1	0	0	90 to 99	80 to 99
PCD3341			00 to 09	M1 to M10

Display

To display the dialled phone number or programmed number the PCD3341 provides the signals to control a LC Display module using two PCD8577 duplex drivers. These signals are fed via the $\mathrm{I}^{2} \mathrm{C}$ bus lines.
In the dialling and programming modes the digits are displayed from right to left in the sequence entered by the keyboard. The access pause is indicated by the bar. If the number of digits exceeds 16 , they drop out on the left side of the display.

OPERATING PROCEDURE

Initialization

At the first application of the standby power supply, the PCD3341 will clear the RAM in order to avoid a wrong content.
By lifting the handset the buffer capacitor for $V_{D D}$ is charged to the operating voltage. CE will than be activated. Within start-up time the oscillator starts and the initialization program begins.

Automatic access pause setting

Before the start procedure, the system can also be initialized by setting the access pause system (e.g. for PABX applications). The circuit will automatically insert an access pause after recognition of access of a number within a digit group. This (or these) digit(s) must be programmed. Up to a maximum of 3 digits per group can be programmed.
The procedure is as follows:

- Depress and hold pushbutton P
- Press and release pushbutton R
- Enter 1, 2 or 3 digits as access digit for first group
- Release pushbutton P (only if no second group is required)
- Press and release pushbutton R
- Enter 1, 2 or 3 digits for second group
- Release pushbutton P

Apart from the procedure that automatically detectes and insertes access pause(s), a telephone number with up to 2 additional manually inserted access pauses can be dialled or programmed, by pressing button AP. In DTMF dialling mode each access pause has a duration of 1,5 or 2,5 seconds. In PD mode each access pause has a duration of 3 or 5 seconds.

Data entry

The debounce keyboard entries are written into the on-chip CMOS RAM in consecutive order.

Dialling

If the first pushbutton pressed is 0 to 9 in pulse dialling or $0-9, A$ to $D, *, \#$ in DTMF dialling, digits are entered into the redial register after initial clearing. During the data entry the circuit starts with the transmission of the call and is unaffected by the speed of entry. Transmission continues as long as further data input has to be processed. Up to 18 digits can be stored in the redial register. After the main store overflows, a 10 digit First-In First-Out register (FIFO) takes over as buffer. After transmitting the first digit of the FIFO register this position is automatically cleared to provide space for the storage of new data. In this way, the total number that can be transmitted is unlimited, provided the key-in rate is not excessive. However, if the FIFO register overflows (more than 10 digits in store) further input will be ignored.

Redial

If the first digit entered is "REDIAL" R, the stored number in the redial register will be recalled and transmitted.
If the current content is less than 18 digits, new digits entered are appended automatically to the redial number. After the 18th digit has been entered the FIFO register will take over as previously described in the dialling section.

OPERATING PROCEDURE (continued)

Extended Redial

The dialled number is saved in the extended redial buffer if pushbutton P is the last key pressed before the handset is replaced.
By pressing and releasing pushbutton P followed by pressing and releasing pushbutton R, will cause the extended redial register to be recalled and transmitted in the same manner as by redial. If less than 18 digits are contained in the extended redial register, digits can be added until the total content is 18. After the 18th digit the FIFO register will take over as before. The original number is not affected by the new digits

Direct call/Emergency call

This is a diode option usually operated by a turn key switch. If set the programmed number will be dialled by pressing ANY key. In normal mode the turn key switch is positioned OFF with the diode option OFF.
Programmed is achieved by lifting the handset, depressing the P pushbutton with key in the OFF position, then turning the key switch to ON position (diode option ON). The required telephone number is now entered. Pushbutton P can now be released and the handset replaced.
After programming, the key switch can remain in the ON position (activating emergency call) or be switched off (normal mode). If the key switch is the ON position, emergency calling is possible by removing the handset and pressing ANY pushbutton.

Repertory dialling

The PCD3341 has an on-chip CMOS RAM to store up to ten 18 digit numbers, and can be extended up to 100 (110) numbers using external CMOS RAMs with 2-line serial interface. The circuit automatically checks the number of external RAMs. If no external RAM is connected the on-chip repertory is limited to 10 numbers. In this application the standard keypad (0 to 9) and one digit address can be used. With the diode option EKB (expanded keyboard) ON the extended keypad matrix (M1 to M10) can be used to access the on-chip repertory. If external RAMs are connected the capacity of the repertory can be increased up to 100 (110) numbers. In this application the standard keypad (0 to 9) and/or the extended keypad (M 1 to M 10) can be used to access the repertory (see Table 1). Programming is possible only after the handset is lifted and no pushbutton is operated before P. Programming is achieved by pushbutton P being continually depressed, entering the repertory address of one or two digits, followed by the number (including access digits) then releasing pushbutton P. The designated telephone number, including access digits, is dialled after pressing pushbutton P followed by the address. With extended keypad a single address pushbutton is required. After transmission of the repertory sequence, it is possible to manually enter additional digits (see redial).

Successive repertory dialling during a call (chain dialling)

It is possible to dial more than one repertory number during one single telephone call. The following procedures are possible:

- Redial, extended redial or a repertory number followed by new digits
- Repertory number followed by one or more repertory numbers
- Normal dial, redial or extended redial followed by one or more repertory numbers

Note pad

Note pad provides the facility to store a number during conversation mode without dialling and muting. This number will be stored in the extended redial register and recalled with the extended redial procedure.
The programming procedure is as follows:

- Depress and release pushbutton P
- Depress and release pushbutton P
- Enter the telephone number
- Depress and release pushbutton P

If a wrond number is entered, correction is achieved by re-starting the programming procedure.

Memory clear

A built-in manually total clear facilitates resetting of the autodial RAM after servicing, maintenance or telephone set delivery.
The procedure is as follows:

- Hook-on, depress and keep depressed keys 2, 5, 8, 0
- Hook-off, release keys 2,5,8, 0

Table 2 Display indications

procedure	key procedure	display indication
Programming automatic access pauses after access digits dialling redial Extended redial programming dialling emergency redial programming dialling repertory programming programming dialling repertory with extended keyboard programming dialling note pad programming note pad dialling error	Р R R00R9 004627530 R 004627530P PR N/D OFF, $\bar{P}, N / D O N(+T N)$ N/D ON any key $\overline{\mathrm{P}} 12004627530$ $\overline{\mathrm{P}} 12004627530$ P12 $\overline{\mathrm{P}} \mathrm{M} 1004627530$ M1 PP0080808P PR incorrect key procedure	$\begin{aligned} & \mathrm{Pr}-00-9 \\ & 00-4627530 \\ & \mathrm{r}=00-4627530 \\ & 00-4627530 \mathrm{P} \\ & \mathrm{Pr}=00-4627530 \\ & \text { PH-00-4627530} \\ & \mathrm{H}=00-4627530 \\ & \mathrm{P} 12-00-4627530 \\ & \mathrm{P} 12-00-4627530 \\ & \mathrm{P} 12=00-4627530 \\ & \text { PM 1-00-4627530 } \\ & \mathrm{M} 1=00-4627530 \\ & 7530 \mathrm{PP} 00-808080 \mathrm{P} \\ & 00-808080 \\ & \equiv \end{aligned}$

Where: TN = telephone number
$\underline{P}=$ depress and release pushbutton P
$\bar{P} \quad=$ depress pushbutton P continually during programming
$R=$ depress and release pushbutton R

RATINGS

Limiting values in accordance with the Absolute maximum System (IEC 134)

Supply voltage range (pin 28)
D.C. current into any input or output

All input voltages
Total power dissipation
Power dissipation per output
Storage temperature range
Operating ambient temperature range

$V_{D D}$		$-0,8$ to 8 V
$\pm I_{1} \pm \mathrm{I}_{\mathrm{O}}$	max.	10 mA
$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0,8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0,8 \mathrm{~V}$	
$\mathrm{P}_{\text {tot }}$	max.	500 mW
P_{O}	max.	50 mW
$\mathrm{~T}_{\mathrm{stg}}$		-65 to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$		-25 to $+70{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; crystal parameters: $\mathrm{f}_{\mathrm{OSc}}=3,57954 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=50 \Omega$ max.; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply					
Operating supply voltage	V_{DD}	2,5	3	6,0	V
Operating supply current conversation mode ($C E=1$)	${ }^{\text {I DDC }}$	-	270	-	$\mu \mathrm{A}$
dialling mode ($C E=1$)	IDDD	-	600	-	$\mu \mathrm{A}$
Standby supply voltage ($C E=0$)	$V_{\text {DDO }}$	1,8	3	6,0	V
Standby supply current ($C E=0$)	${ }^{\text {I DDO }}$	-	-	2,5	$\mu \mathrm{A}$
RESET I/O					
Switching level at $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {RESET }}$	$V_{\text {RESET }}$	-	1,3	1,5	V
$\begin{aligned} & \text { Sink current } \\ & \text { at } \mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {RESET }} \end{aligned}$	${ }^{\text {I OL }}$	-	7	-	$\mu \mathrm{A}$
Inputs					
Input voltage LOW (any pin)	$V_{\text {IL }}$	0	-	$0,3 V_{\text {DD }}$	V
Input voltage HIGH (any pin)	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	-	V
Input leakage current; CE at $V_{I}=V_{S S}$ to $V_{D D}$	$-1 / 12$	-	-	100	nA
at $C E=1$	IIL	-	-	1	$\mu \mathrm{A}$
Keyboard contact resistance					
Keyboard ON	$\mathrm{R}_{\text {KON }}$	-	-	1	$k \Omega$
Keyboard OFF	$\mathrm{R}_{\text {KOFF }}$	100	-	-	$k \Omega$
Outputs M1, $\overline{M 1}, M 3, D P, \overline{D P}$					
Output sink current at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\prime} \mathrm{OL}$	-	1,5	-	mA
Output source current at $\mathrm{V}_{\mathrm{OH}}=2,6 \mathrm{~V}$ (push-pull) SDA, SCL	${ }^{-1} \mathrm{OH}$	-	1,5	-	mA
Output sink current at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {I OL }}$	1,5	-	-	mA
Output source leakage current at $\mathrm{V}_{\mathrm{OH}}=0$ to V_{DD} (open drain)	${ }^{-1} \mathrm{OH}$	-	-	1	$\mu \mathrm{A}$

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Inputs/Outputs COL 1 to 6, ROW 1 to 6, $\overline{\text { HOLD }}, \overline{\text { APO }}$					
Output sink current at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	Iol	0,6	1,5	-	mA
Output source current at $\mathrm{V}_{\mathrm{OH}}=2,6 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	25	-	-	$\mu \mathrm{A}$
Output source current at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$	${ }^{-1} \mathrm{OH}$	-	-	200	$\mu \mathrm{A}$
TIMING (see Figs. 5, 6 and 7)					
Clock start-up time	${ }^{\text {ton }}$	-	-	10	ms
Oscillator period	C_{P}	-	-	0,279	$\mu \mathrm{S}$
Pulse dialling ($\overline{\mathrm{PD}} / \mathrm{DTMF}$ input LOW; M/S diode OFF) Mark-to-space ratio 3:2					
Dialling pulse frequency	${ }^{\prime} \mathrm{DP}$	-	9,94	-	Hz
Dialling pulse period	${ }^{t}{ }_{\text {D }}$	-	100,6	-	ms
Break time	t_{b}	-	60,3	-	ms
Make time	t_{m}	-	40,3	-	ms
Mark-to-space ratio 2:1 (M/S diode ON)					
Dialling pulse frequency	${ }^{\text {f }}$ P	-	9,94	-	Hz
Dialling pulse period	${ }^{\text {t }}$ P	-	100,6	-	ms
Break time	t_{b}	-	67	-	ms
Make time	t_{m}	-	33,5	-	ms
Access pause					
$t_{a p}$ diode OFF	t_{ap}	-	3	-	s
$\mathrm{t}_{\text {ap }}$ diode ON	t_{ap}	-	5	-	s
Mute hold-over time during access pause	t_{h}	-	1	-	s
Inter-digit pause IDP diode OFF	$t_{\text {id }}$	-	892	-	ms
IDP diode ON	$\mathrm{tid}_{\text {id }}$	-	496	-	ms
Reset delay time	$\mathrm{trg}^{\text {d }}$	-	160,9	180	ms
Reset delay time during access pause	$\mathrm{trd}^{\text {d }}$	-	302	320	ms
Debounce time	t_{e}	13,5	-	-	ms
Flash pulse duration	${ }_{\text {t }}$ L	-	94	-	ms

parameter	symbol	min.	typ.	max.	unit
DTMF dialling ($\overline{\text { PD } / D T M F ~ i n p u t ~ H I G H ; ~}$					
SDA timing via PCD3312)					
Tone transmission time ($t_{t b}$ diode OFF)	t_{t}	-	74	-	ms
Tone break time	t_{b}	-	74	-	ms
Mute hold-over time during dialling	t_{h}	-	154	-	ms
Tone transmission time (t_{tb} diode ON)	t_{t}	-	101	-	ms
Tone break time	t_{b}	-	101	-	ms
Mute hold-over time during dialling	t_{h}	-	101	-	ms
Access pause					
t_{ap} diode OFF	t_{ap}	-	1,5	-	s
$\mathrm{t}_{\text {ap }}$ diode ON	t_{ap}	-	2,5	-	s
Mute hold-over time during access pause	t_{h}	-	1	-	s

Timing diagrams

Fig. 5 Pulse dialling; DTMF dialling.

Fig. 6 Keyboard entry with noise debounced.

Fig. 7 Access pause with reset by; internal 3 s timer, key R, tone recognizer.

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

APPLICATION INFORMATION

Fig. 8 PCD3341 in combination with PCD3312 (DTMF dialler), PCD8570 (2 K RAM) and PCF8577 (display drivers).

CMOS MICROCONTROLLER FOR TELEPHONE SETS

GENERAL DESCRIPTION

The PCD3343 is a single-chip 8-bit microcontroller fabricated in CMOS. It has special on-chip features \leftarrow for application in telephone sets.
The device is mask programmable, designed to provide telephone dialling facilities such as redial, repertory dial, emergency call, keyboard scan and control for liquid crystal display, pulse dial and/or DTMF dial via dedicated peripheral.

Features

- 8-bit CPU, ROM, RAM, I/O in a single 28 -lead DIL or SO package
- 3 K ROM bytes
- 224 RAM bytes
- 20 quasi-bidirectional I/O port lines
- Two test inputs: one of which is also the external interrupt input (CE/TO)
- Single-level vectored interrupts: external, timer/event counter, serial I/O
- Serial I/O which can be used in bus systems with more than one master (serial I/O data via an existing port line and clock via a dedicated line)
- 8-bit programmable timer/event counter
- Over 80 instructions (based on MAB8048, MAB8400 and PCF8500)
- All instructions 1 or 2 cycles
- Clock frequency 100 kHz to 10 MHz
- Single supply voltage from $1,8 \mathrm{~V}$ to 6 V
- Low standby voltage and current
- STOP and IDLE mode
- On-chip oscillator with output drive capability for peripherals (e.g. PCD3312 DTMF generator)
- Configuration of all I/O port lines individually selected by mask: pull-up, open drain or push-pull
- Power-on-reset circuit and low supply voltage detection
- Reset state of all ports individually selected by mask
- Operating temperature range: -25 to $+70^{\circ} \mathrm{C}$

PACKAGE OUTLINES

PCD3343P : 28-lead DIL; plastic (SOT-117).
PCD3343D: 28-lead DIL; ceramic (CERDIP) (SOT-135A).
PCD3343T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

Fig. 1 Block diagram; PCD3343.

(a)

Fig. 1a Replacement of dotted part in Fig. 1, for the PCF8500F bond-out version.

(b)

Fig. 1b Replacement of dotted part in Fig. 1, for the PCF8500B 'Piggy-back' version.

PINNING

Note CE/TO is labelled $\overline{\mathrm{INT}} / \mathrm{TO}$ on the PCF8500B and has inverted polarity.
Fig. 2 Pinning diagram: PCD3343 and bottom pinning PCF8500B.

PIN DESIGNATION

3	SCLK	Clock: bidirectional clock for serial I/O.
4-11	P00-P07	Port 0: 8 -bit quasi-bidirectional I/O port.
12	$\mathrm{CE} / \overline{\mathrm{TO}}$	Interrupt/Test 0: external interrupt input (sensitive to positive-going edge)/test input pin; when used as a test input directly tested by conditional branch instructions JTO and JNTO.
13	T1	Test 1: test input pin, directly tested by conditional branch instructions JT1 and JNT1. T1 also functions as an input to the 8-bit timer/event. counter, using the STRT CNT instruction.
14	$\mathrm{V}_{\text {SS }}$	Ground: circuit earth potential.
15	XTAL 1	Crystal input: connection to timing component (crystal) which determines the frequency of the internal oscillator; also the input for an external clock source.
16	XTAL 2	connection to the other side of the timing component.
17	RESET	Reset input: used to initialize the processor (active HIGH), or output of power-on-reset circuit.
18-25	P10-P17	Port 1: 8 -bit quasi-bidirectional I/O port.
26, 27, 1, 2	P20-P23	Port 2: 4-bit quasi-bidirectional I/O port. P23 is the serial data input/output in serial I/O mode.
28	$V_{\text {DD }}$	Power supply: $1,8 \mathrm{~V}$ to 6 V .

PINNING (continued)

Fig. 3a Connection of EPROM to ‘Piggy-back' package PCF8500B.

Fig. 3 Pinning diagram: PCF8500B
'Piggy-back' version top pinning; to access a 2732 or 2764 EPROM.

PIN DESIGNATION

14, 22
1, 26-28
$10-3,25,24,21,23,2$
11-13, 15-19
20
v_{ss}
$V_{D D}$
AO-A12
D0-D7
$\overline{\text { PSEN }}$

Ground
Power supply
Address outputs
Data
Program store enable

Notes

1. RAM capacity of PCF 8500 B is 256 bytes.
2. Access time for ROMS/EPROMS to be below $7 \times 1 / \mathrm{f} \times T A L$.
3. Pin $12 \mathrm{CE} / \overline{\mathrm{TO}}$ is on the PCF8500B, inverted and labelled $\overline{\mathrm{INT}} / \mathrm{TO}$.

FUNCTIONAL DESCRIPTION

Bond-out version PCF8500F

The PCF8500F is a microcontroller that contains no on-board ROM, but has all address and data lines brought-out to access an external ROM or EPROM. This version has more pins than the PCD3343 with on-board ROM (see Fig. 1a). The RAM has 256 bytes. It can address 8 K bytes of ROM.

'Piggy-back' version PCF8500B

The PCF8500B is a special package that has standard pinning to the bottom which facilitates insertion as a mask-programmed device. An EPROM can be mounted on top in an additional socket. The total package height is greater than the standard DIL package. The RAM has 256 bytes and can also address 8 K bytes of program memory.

Program memory PCD3343

The program memory consists of 3072 bytes (8 -bit words), in a read-only memory (ROM). Each location is directly addressable by the program counter. The memory is mask-programmed at the factory. Figure 4 shows the program memory map.
Four program memory locations are of special importance:

- Location 0; contains the first instruction to be executed after the processor is initialized (RESET),
- Location 3; contains the first byte of an external interrupt service subroutine,
- Location 5; contains the first byte of a serial I/O interrupt service subroutine,
- Location 7; contains the first byte of a timer/event counter interrupt service subroutine.

Program memory is arranged in banks of 2 K bytes, which are selected by SEL MB instructions. The program memory is further divided into location 'pages', each of 256 bytes. This latter division applies only for conditional branches. Memory bank boundaries can be crossed only by using the unconditional branch instructions after the appropriate memory bank has been selected. A CALL instruction can transfer control to a subroutine on any 'page'; RET and RETR instructions can transfer control from a subroutine back to the main program.

Data memory PCD3343

Data memory consists of 224 bytes (8 -bit words), random-access data memory (RAM). All locations are indirectly addressable using RAM pointer registers; up to 16 designated locations are directly addressable. Memory also includes an 8 -level program counter stack addressed by a 3-bit stack pointer. Figure 5 shows the data memory map.

Working registers

Locations 0 to 7 are designated as working registers, directly addressable by the direct register instructions. Ease of addressing, and a minimum requirement of instruction bytes to manipulate their contents, makes these locations suitable for storing frequently addressed intermediate results. This bank of registers can be selected by the SEL RBO instruction.
Executing the select register bank instruction SEL RB1, designates locations 24 to 31 as working registers, instead of locations 0 to 7, and these are then directly addressable. This second bank of working registers may be used as an extension of the first or reserved for use during interrupt service subroutines saving the first bank for use in the main program. If the second bank is not used, locations 24 to 31 may serve as general purpose RAM.
The first locations of each bank contain the RAM pointer registers RO, R1, RO' and R1', which indirectly address all RAM locations.
All RAM locations make efficient program loop counters when used with the decrement register and test instruction DJNZ.

FUNCTIONAL DESCRIPTION (continued)

Fig. 4 Program memory map.

Fig. 5 Data memory map.

Program counter stack

Locations 8 to 23 may be designated as an 8 -level program counter stack (2 locations per level), or as general purpose RAM. The program counter stack (Fig. 6) enables the processor to keep track of the return addresses and status generated by interrupts or CALL instructions by storing the contents of the program counter prior to servicing the subroutine. A 3 -bit stack pointer determines which of the eight register pairs of the program counter stack will be loaded with next generated return address.
The stack pointer, when initialized to 000 by RESET, points to RAM locations 8 and 9 . On the first subroutine CALL or interrupt, the contents of the program counter and bits 4,6 and 7 of the program status word (PSW) are transferred to locations 8 and 9 . The stack pointer increments by one and points to locations 10 and 11 ready for another CALL. Because an address may be up to 13 bits long, two bytes must be used to store each address.
At the end of a subroutine, which is signalled by a return instruction (RET or RETR), the stack pointer decrements by one and the contents of the register pair on top of the stack are transferred to the program counter. The saved PSW bits are transferred to the PSW only by the RETR instruction.

If not all 8 levels of subroutine and interrupt nesting are used, the unused portion of the stack may be used as any other indirectly addressable RAM locations. Possible locations from 32 to 223 may be used for storage of program variables or data.
Nesting of subroutines within subroutines can continue up to 8 times without overflowing the stack. If overflow does occur the deepest address stored (locations 8 and 9) will be overwritten and lost since the stack pointer overflows from 111 to 000 . It also underflows from 000 to 111.

The value of the saved contents of the program counter is different for an interrupt CALL compared to a normal CALL to subroutine. With an interrupt CALL, the program counter return address is saved; with a subroutine CALL, the saved program counter value is one less than the program counter return address.

Fig. 6 Program counter stack.

IDLE and STOP modes

IDLE mode

When the microcontroller enters the IDLE mode via the IDLE instruction ($\mathrm{H}^{\prime} 01^{\prime}$) the oscillator, timer/counter and serial I/O are kept running. The microcontroller exits from the IDLE mode by one of three interrupts if they are enabled or by activating a RESET. If the interrupt is not enabled the processor will remain in the IDLE mode. An active signal on the RESET pin restarts the microcontroller and a normal RESET sequence is executed (see Fig. 7).

Fig. 7 Exit from IDLE mode via a RESET.

FUNCTIONAL DESCRIPTION (continued)

An active signal coming from an enabled interrupt causes the execution of the normal interrupt routine since normal interrupt scanning is still being carried out. A LOW-to-HIGH transition on the external interrupt pin (CE/TO) reactivates the microcontroller. A HIGH level applied to $C E / \overline{\mathrm{TO}}$ will reactivate the microcontroller only in the STOP mode. Thus, if $\mathrm{CE} / \overline{\mathrm{TO}}$ was HIGH before the microcontroller entered the IDLE mode, it must go LOW before the microcontroller can be reactivated (see Fig. 8).

Fig. 8 Exit from IDLE mode via an interrupt.
Wake-up from the IDLE mode is ensured when CE/TO is LOW for 4 CP (clock periods) followed by a HIGH for 7 CP . After the initial forced CALL H'003' operation (60 CP) the program continues with the external interrupt service routine.

STOP mode

The microcontroller enters the STOP mode by the STOP instruction ($\mathrm{H}^{\prime} 22^{\prime}$). The oscillator is switched off. The internal status of the CPU, RAM contents and the state of I/O ports are not affected. The microcontroller can be brought-out of the STOP mode by an active signal at the external interrupt input or by an external RESET signal. When one of these two signals is applied an internal delay of 1866 CP is provided to ensure that all internal clocks are operating correctly before restart (see Fig. 9). If the microcontroller exits from the STOP mode by activating RESET, a normal RESET sequence is executed.

Fig. 9 Entering and exiting the STOP mode.

If the microcontroller exits the STOP mode by pulling the external interrupt input pin HIGH, an interrupt sequence is executed only if the external interrupt is enabled. In this event the microcontroller resumes the normal program sequence after returning from the interrupt routine, as in the normal mode. If the interrupt is not enabled, it continues the normal program sequence, executing the instruction following the STOP instruction.
The microcontroller is restarted by a HIGH level applied at the CE/ $\overline{\mathrm{TO}}$ pin, and not by a LOW-to-HIGH transition as in a normal interrupt mechanism.
When the CE/TO level is active during the STOP instruction then no STOP is executed.
A HIGH level on the external interrupt input of at least $1 \mu \mathrm{~s}$ will cause the microcontroller to exit the STOP mode.

I/O facilities

The PCD3343 family has 23 I/O lines arranged as:

- Port 0 parallel port of 8 lines (P00 to P07)
- Port 1 parallel port of 8 lines (P10 to P17)
- Port 2 parallel port of 4 lines (P20 to P23)
- SCLK serial I/O consisting of a data line shared with a parallel port line (P23) and a separate clock line SCLK
- CE/ $\overline{\mathrm{TO}}$ external interrupt and test input. When used as a test input can be directly tested by conditional branch instructions JTO and JNTO
test input which can alter program sequences when tested by conditional jump instructions JT1 and JNT1. T1 also functions as an input to the 8-bit timer/event counter.

Parallel ports

All parallel ports can be used as outputs or inputs, their structure is quasi-bidirectional. Output data written to a port is latched and remains unchanged until rewritten. Input data is not latched and so must be present until read by an input instruction.

Input lines are fully CMOS compatible, output lines can drive one LS-TTL or CMOS load.

Fig. 10 Timing diagram of all ports on IN and OUTL instructions; for ANL and ORL instructions, the ports change on the time slot 7 of cycle 2.

Fig. 11 shows the quasi-bidirectional I/O interface with push-pull output and switched pull-up current source.
Each line is pulled up to VDD via a constant current source (TR4), which is enabled via TR3 whenever one of the two output latches contains a logic 1. This current provides sufficient source current for a TTL HIGH level, yet can be pulled LOW by an external CMOS device, thus allowing the same pin to be used for both input and output.

FUNCTIONAL DESCRIPTION (continued)

When a logic 1 is written to the line for the first time ($M Q=1, S Q=0$), TR2 is switched on for the duration of the internal write pulse (one oscillator period), to provide a fast transition from logic 0 to logic 1. Subsequent writing of a logic 1 to the port lines will not switch TR2 on. This prevents unnecessary current through external components connected to the port lines of the same port which might be in the input mode and also connected to ground.
When a logic 0 is written to the line, TR3 switches off the current source. Current sinking capability is provided by TR1, which is now switched on. When used as an input, a logic 1 must first be written to the line, otherwise TR1 will remain low impedance.
In telephone applications this switched pull-up source may not be sufficient. Therefore the PCD3343 offers the possibility to select individually 19 of the 20 parallel port pins (not P23), by the following mask options:
Option 1-STANDARD PORT; quasi-bidirectional I/O with switched pull-up current source of $100 \mu \mathrm{~A}$ (typ.) and P-channel booster transistor TR2 ($1,5 \mathrm{~mA}$). TR2 is only active during 1 clock cycle ($0,28 \mu \mathrm{~s}$ at $3,58 \mathrm{MHz}$).
Option 2- OPEN DRAIN; quasi-bidirectional I/O with only an N -channel open drain output. Application as an output requires connection of an external pull-up resistor (Fig. 12).
Option 3- PUSH-PULL OUTPUT; drive capability of the output will be $1,5 \mathrm{~mA}$ (typ.) at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ in both polarities. To avoid a large current flowing through the output transistors during the input mode, these push-pull pins must only be used as outputs (Fig. 13).
Also, individual mask selection of the RESET state of these port pins can be achieved by appending the following options S and R to options 1, 2 or 3.
Option S-SET; after RESET this pin will be initialized to HIGH.
Option R-RESET; after RESET this pin will be initialized to LOW.

Fig. 11 Standard output with switched pull-up current source.

Fig. 12 Open drain output.

Fig. 13 Push-pull output.

FUNCTIONAL DESCRIPTION (continued)
Serial I/O (SIO)
The PCD3343 has an on-chip serial I/O interface. This SIO interface is a versatile feature in an intelligent telephone set, as shown in application diagram Fig. 32.
In this application the SIO is used to communicate with the different peripherals, such as:

- DTMF generator (PCD3312)
- LCD drivers (PCF8577)
- External RAM (PCD8571)
- Clock calendar (PCB8573)

No extra hardware is required for decoding, addressing and data processing.
Whereas a normal microcontroller must regularly monitor the serial data bus for the presence of data, the serial I/O interface detects, receives and converts the serial data stream into parallel format without interrupting the execution of the current program. An interrupt is sent to the PCD3343 only when a complete byte is received. It then reads the data byte in one instruction. Likewise during transmission the serial I/O interface performs parallel to serial conversion and subsequent serial output of the data. The microcontroller is only interrupted in the execution of its programmed tasks when a complete byte has been transmitted.
The design of the PCD3343 serial I/O system allows any number of devices from PCF8500 family (clips) to be connected via the two-line serial bus. The ability of any devices to communicate, without interrupting the operation of any other devices on the bus, is an outstanding attribute of the system. This is achieved by allocating a specific 7 -bit address to each device and providing a system whereby a device reacts only to a message prefixed with its own address or the 'general CALL' address. Address recognition is performed by the interface hardware so that operation of the microcontroller need only be interrupted when a valid address has been received. This saves significant processing time and memory space compared with a conventional microcontroller employing a software serial interface. When the addressing facility is not required, for instance in a system with only two microcontrollers, direct data transfer without addressing can be performed. In multi-master systems, an automatically invoked arbitration procedure prevents two or more devices from continuing simultaneous transmission.
In NORMAL (running) and IDLE mode, the serial I/O logic remains active; its internal system clock will be switched off when there is no activity on the serial bus.
After execution of the STOP instruction, the oscillator of the PCD3343 is switched off. This means that the serial I/O logic will remain in the state it was at the occurance of the STOP instruction. To avoid "bus block" problems and to assure correct start-up of the bus after exit from the STOP mode, the user should disable the serial logic (ESO = 0) prior to the execution of the STOP instruction. This must be carried out only when the PCD3343 has finished a serial data transfer.

Serial I/O interface

Figure 14 shows the serial I/O interface. The clock line of the serial bus has exclusive use of pin 3 (SCLK) while the data line shares pin 2 (serial data) with the I/O line P23 of port 2. When the serial I/O is enabled, P23 is disabled as a parallel port line; (P23 and SCLK only open drain).
The microcontroller and interface communicate via the internal microcontroller bus and the Serial Interrupt Request line. Data and information controlling the operation of the interface are stored in four registers:

- Data shift register (SO)
- Serial I/O interface status word (S1)
- Serial clock control word (S2)
- Address register

Data shift register (SO)

Register S0 converts serial data to parallel format and vice versa. A pending interrupt is generated only after a complete byte has been transmitted, or after a complete data byte, specific address or 'general CALL' address has been received. The most significant bit is transmitted first.
Serial I/O interface status word (S1)
Register S1 provides information concerning the state of the interface and stores information from the microcontroller. Bits 0 to 3 are duplicated: control bits in these positions can only be written by the microcontroller, while interface bits can only be read.
MST and TRX (see Table 1)
These bits determine the operating mode of the serial I/O interface.
Table 1 Operating modes of the serial I/O interface

MST	TRX	operating mode
0	0	slave receiver
1	0	master receiver
0	1	slave transmitter
1	1	master transmitter

BB: Bus Busy.
This is the flag which indicates the status of the bus.

PIN: Pending Interrupt Not

PIN = '0' indicates the presence of a pending interrupt, which will cause a Serial Interrupt Request when the serial interrupt mechanism is enabled.
ESO: Enable Serial output
The ESO flag enables/disables the serial I/O interface: $\mathrm{ESO}=‘ 1$ ' enables, $\mathrm{ESO}={ }^{\prime} 0$ ' disables. ESO can only be written by software.
$\mathrm{BCO}, \mathrm{BC} 1$ and BC2
Bits $\mathrm{BCO}, \mathrm{BC} 1$ and BC 2 indicate the number of bits received or transmitted in a data stream. These bits can only be written by software.

AL: Arbitration Lost

The arbitration lost flag is set by hardware when the serial I/O interface, as master transmitter, loses a bus arbitration procedure.
AAS: Addressed As Slave
This flag is set by hardware when the interface detects either its own specific address or the 'general CALL' address as the first byte of a transfer and the interface has been programmed to operate in the address recognition mode.
ADO: Address Zero
This flag is set by hardware after detection of the 'general CALL' address when the interface is operating in the address recognition mode.
LRB: Last Received Bit
This contains either the last data bit received or, for a transmitting device in the acknowledgement mode, the acknowledgement signal from the receiving device.

Bits AL, AAS, ADO and LRB can only be read by software.

FUNCTIONAL DESCRIPTION (continued)

Serial clock control word (S2)
Bits 0 to 4 of the clock control register S2 are used to set the frequency of the serial clock signal. When a $3,58 \mathrm{MHz}$ crystal is used, the frequency of the serial clock can be varied between 92 kHz and 580 Hz (see Table 2). An asymmetrical clock with a HIGH-to-LOW ratio of $3: 1$ can be generated using bit 5 . The asymmetrical clock allows a microcontroller more time per clock period for sampling the data line, making the timing of this action less critical. Bit 6 can be used to activate the acknowledge mode of the serial I/O. S 2 is a write only register.
Address register
The address register contains the 7-bit address back-up latches and the bit (ALS) used to enable/disable the address recognition mode. The address register can be written using the MOV SO, A and MOV SO, \# data instructions, but only when $\mathrm{ESO}={ }^{\prime} 0^{\prime}$.

Serial I/O interrupt logic
An EN SI instruction enables and a DIS SI instruction disables the interrupt logic. When the logic is enabled, a pending interrupt results in a serial I/O interrupt to the processor, causing a CALL to location 5 in the ROM. When disabled, the presence of an interrupt is still indicated by PIN in S1, allowing the interrupt to be serviced. However, vectored interrupt will not occur.

Table 2 SIO clock pulse frequency control when using a $3,58 \mathrm{MHz}$ crystal

hexadecimal S20-S24 code	divisor	${ }^{\mathrm{f}} \mathrm{SCLK}^{(\mathrm{kHz})}$ (approximate)
0	not allowed	
1	39	92
2	45	80
3	51	70
4	63	57
5	75	48
6	87	41
7	99	36
8	123	29
9	147	24
A	171	21
B	195	18
C	243	15
D	291	12
E	339	11
F	387	9,2
10	483	7,4
11	579	6,2
12	675	5,3
13	771	4,6
14	963	3,7
15	1155	3,1
16	1347	2,7
17	1539	2,3
18	1923	1,9
19	2307	1,6
1A	2691	1,3
1B	3075	1,2
1 C	3843	0,93
1D	4611	0,78
1 E	5379	0,67
1F	6147	0,58

FUNCTIONAL DESCRIPTION (continued)
Table 3 Serial I/O addresses for telephony peripherals

* LCD driver requires an additional enable line.

DEVELOPMENT DATA

Fig. 14 Serial I/O interface.

FUNCTIONAL DESCRIPTION (continued)

Interrupts (see Fig. 15)

When the external interrupt is enabled, a LOW-to-HIGH transition on the CE/TO input initiates an external interrupt subroutine which causes a CALL to program memory location 3 following completion of the current instruction.
The interrupt must remain enabled until the interrupt instruction is completed, otherwise the next instruction of the main program will be executed. Serial I/O interrupt, when enabled, causes a CALL to location 5, and a timer/event counter overflow forces a CALL to location 7 when the timer interrupt is enabled.
When an interrupt subroutine starts, the contents of the program counter and bits 4, 6 and 7 of the PSW have been saved in the program counter stack. Accumulator contents have to be saved by software. Interrupt acknowledgement can be carried out by software via port pins. All interrupt subroutines must reside in memory bank 0 .
Since the interrupt system is single level, once an interrupt is detected, all further interrupt requests are latched, but ignored, pending a RETR instruction to re-enable the interrupt input logic. After executing RETR, the program continues in the main part; this is independent of the occurance of a second interrupt during the running of the first routine. If 2 or 3 interrupts occur simultaneously, their priority is:

- (1) external
- (2) serial I/O
- (3) timer/event counter

An external interrupt can be generated by using the timer/counter in the event counter mode. The counter is first preset to (H^{\prime} FF'), then EN TCNTI instruction is executed. A LOW-to-HIGH transition of the T1 input will then initiate an interrupt subroutine and cause a CALL to location 7.
On execution of a DIS I instruction, the PCD3343 always clears the digital filter/latch and the External Interrupt Flag.
The Timer Flag (TF) is reset only when the JTF or JNTF instruction is executed or after RESET.
The Timer Interrupt Flag is set when timer overflow occurs, only if the timer interrupt is enabled.
The microcontroller will exit the IDLE mode when any one of the following three interrupts is enabled:

- External
- Serial I/O
- Timer/event counter

There is no internal pull-up or pull-down device connected to the external interrupt input (pin 12). If required pin 12 must be externally connected to a resistor ($R \leqslant 100 \mathrm{k} \Omega$). When the external interrupt is not used pin 12 must be connected to V_{SS}.

Fig. 15 Interrupt logic.

Notes to figure 15

1. $\mathrm{CE} / \overline{\mathrm{TO}}$ positive edge is always latched in the digital filter/latch.
2. Correct interrupt timing in ensured when CE/TO is LOW for $>4 \mathrm{CP}$ followed by a HIGH for $>7 \mathrm{CP}$.
3. When the interrupt in progress flag is set, further interrupts are latched but ignored, until RETR is executed.
4. A DIS I instruction always clears a pending external interrupt.

FUNCTIONAL DESCRIPTION (continued)

Oscillator (see Fig. 16)

The $3,58 \mathrm{MHz}$ oscillator can be inhibited by the STOP instruction under software control. It is also inhibited when a low-voltage condition is present to prevent discharge of a weak back-up battery.
Provided the supply voltage is within the operating range, the oscillator will be restarted after a STOP instruction by a HIGH level at either the CE/TO or RESET pin.

Fig. 16 Oscillator with integrated elements.
The oscillator has the output drive capability for the DTMF generator (PCD3311/3312) via pin 16 (XTAL 2). An external clock can be applied to pin 15 (XTAL 1). A machine cycle consists of 10 time slots, each time slot being 3 oscillator periods.
In telephony applications the $3,58 \mathrm{MHz}$ crystal provides a $8,4 \mu$ s machine cycle. The range of the clock frequency is from 100 kHz up to a maximum which is a function of the supply voltage (see Fig. 23).

Timer/event counter (see Fig. 17)

An internal 8-bit up-counter is provided. This can count external events, modulo-32 machine cycles, or machine cycles directly. Table 4 gives the instructions that control the counter and the prescaler, and the functions performed.
When used as a timer, the input to the counter is either the overflow or input of a 5 -bit prescaler. When used as an event counter, LOW-to-HIGH transitions on pin 13 (T1) are counted. The maximum rate at which the counter may be incremented is once every machine cycle $(182,6 \mathrm{kHz}$ for a $8,4 \mu \mathrm{~s}$ machine cycle). When the counter overflows, the timer flag is set. The flag can be tested and reset using the JTF (jump if timer flag $=1$) or JNTF instruction. Overflow also generates an interrupt to the processor via setting of the Timer Interrpt Flag when the timer/event counter interrupt is enabled.

Table 4 Timer/event counter control

function	timer mode modulo-1, modulo-32*	counter mode
CLEAR	MOV T,A (A) $=0$	MOV T,A (A) = 0
	or RESET	or RESET
PRESET	MOV T,A	MOV T,A
START	STRT T	STRT CNT
STOP	STOP TCNT	STOP TCNT
	or RESET	or RESET
TEST	JTF/JNTF	JTF/JNTF
READ**	MOV A,T	MOVA,T

Fig. 17 Timer/event counter.

Program status word (see Fig. 18)

The program status word (PSW) is an 8-bit word (1 byte) in the CPU which stores information about the current status of the microcontroller.
The PSW bits are:

- Bits 0 to 2 stack pointer bits $\left(\mathrm{SP}_{0}, \mathrm{SP}_{1}, \mathrm{SP}_{2}\right)$
- Bit 3 prescaler select (PS); $0=$ modulo-32; 1 = modulo-1 (no prescaling)
- Bit 4 working register bank select (RBS);

0 = register bank 0; 1 = register bank 1

- Bit 5 not used (1)
- Bit 6 auxiliary carry (AC); half-carry bit generated by an ADD instruction and used by the decimal adjust instruction DA A
- Bit 7 carry (CY); the carry flag indicates that previous operation has resulted in an overflow of the accumulator.

Fig. 18 Program status word.

* With prescaler select, $\mathrm{PS}=0$, the timer counts modulo- 32 machine cycles, with $\mathrm{PS}=1$ it counts modulo-1 cycles (prescaler not used); prescaler cleared with STRT T, prescaler not readable.
** READ does not disturb the counting process.

FUNCTIONAL DESCRIPTION (continued)

Program status word (continued)

All bits can be read using the MOV A, PSW instruction. Bits 7 and 6 are set and cleared by CPU operation. Bit 4 can be changed by a SEL RB instruction, bit 3 by the MOV PSW, A instruction, and bits 0,1 and 2 by the CALL, RET or RETR instructions and in the event of an interrupt. Bits 7,6 and 4 are stored in the program counter stack during subroutine and interrupt calls. These bits are restored in the PSW with a RETR (return and restore) instruction which must be used at the end of an interrupt and can be used at the end of a normal subroutine. The RET instruction has no restore feature and cannot be used at the end of an interrupt.

Program counter (see Fig. 19)
A 13-bit program counter is used to facilitate 8 K bytes of ROM being addressed. The arrangement of the bits is shown in figure 19. During an interrupt subroutine PC_{11} and PC_{12} are forced to logic 0. All 13 bits are saved in the stack during CALL and interrupt routines.

Fig. 19 Program counter.

Central processing unit

The PCD3343 has arithmetic, logical and branching capabilities. The DA A, SWAP A and XCHD instructions simplify BCD arithmetic and the handling of nibbles. The MOVP A,@A instruction permits efficient table look-up from the current ROM page.

Conditional branch logic

The conditional branch logic within the processor enables several conditions, internal and external to the processor, to be tested by the user's program. Table 5 lists the conditional jump instructions used to change the program sequence. The DJNZ instruction decrements a designated register or data memory location and branches if the contents are not zero. This instruction is useful for looping control. The JMPP@A instruction allows multiway branches to destinations determined by the contents of the accumulator.

Table 5 Conditional branches

test	jump condition	jump instruction
accumulator	all bits zero	JZ
accumulator bit test	any bit non-zero	JNZ
carry flag	1	JBO to JB7
timer overflow flag	1	JC
	0	JNC
test input T0	1	JTF
test input T1	0	JNTF
	1	JNTO
register	0	JTO*
	1	JN1
	0	DJNZ

Test input T1 (pin 13)

The T1 input line can be used as:

- A test input for branch instructions JT1 and JNT1
- An external input to the event counter

When used as a test input:

- JT1 instruction tests for logic 1 level
- JNT1 instruction tests for logic 0 level

When used as an input to the event counter, T1 must be LOW for $>4 \mathrm{CP}$, followed by a HIGH for $>4 \mathrm{CP}$. The transition can be recognized with a repetition rate of once per 30 oscillator clock periods (1 machine cycle).
There is no internal pull-up or pull-down resistor connected to the T1 input. If required it must be externally connected to a resistor ($\mathrm{R}=\leqslant 100 \mathrm{k} \Omega$). When T 1 is not used pin 13 must be connected to V_{DD} or V_{SS}.

Reset (pin 17)

A positive-going signal on the RESET input/output:

- Sets the program counter to zero
- Selects location 0 of memory band 0 and register bank 0
- Sets the stack pointer to zero (000); pointing to RAM address 8
- Disables the interrupts (external, timer and serial I/O)
- Stops the timer/event counter, then sets it to zero
- Sets the timer prescaler to modulo-32
- Resets the timer flag
- Sets all ports according to reset states
- Sets the serial I/O to slave receiver mode and disables the serial I/O
- Cancels IDLE and STOP mode

After the voltage is applied to RESET an internal delay of 1866 CP is introduced before the microcontroller commences operation.

[^4]
FUNCTIONAL DESCRIPTION (continued)

Power-on-reset and low-voltage detection (see Fig. 20)

In telephony applications, correct operation of the PCD3343 during moments of slowly changing supply voltages and low-voltage conditions is essential. This is achieved by the addition of an internal power-on-reset and low-voltage detection circuit.
To allow an external RESET signal being fed into the PCD3343, the reset pin (pin 17) has been configured as an input/output.
While a reset condition exists in the detection circuit, pin 17 is pulled HIGH by TR1 controlled by the reset circuit.
When the reset condition is not present a pull-down current source (TR2) will be activated. TR2 forces pin 17 LOW thus removing the RESET signal from the microcontroller.
Since the level at pin 17 is recognized by the microcontroller, the reset time constant can be stretched by connecting an external capacitor between V_{DD} and pin 17 (see Fig. 22).
The signal at pin 17 can also be used as an output to reset other devices in the system.
The internal reset circuit monitors the PCD3343 supply voltage. If the voltage drops below the switching level (typ. 1,3 V), a reset (HIGH) is applied to pin 17. This reset is removed (pin 17 goes LOW), after a fixed delay (t_{d}), when the supply voltage rises above the switching level again. The delay ensures a complete reset even when the supply voltage quickly rises above switching level after initial switch-on.
During a low-voltage condition the oscillator is inhibited to prevent complete discharge of a weak battery. The timing of the power-on-reset and low-voltage detection circuit is shown in figure 21.

Fig. 20 Power-on-reset configuration.

Where: (1) Oscillator inhibited
(2) Oscillator starting
(3) Oscillator running, but may be stopped with a STOP condition

Fig. 21 Timing of power-on-reset and low-voltage detection.

Fig. 22 Stretched power-on-reset with external capacitor.

INSTRUCTION SET

The PCD3343 instruction set consists of over 80 one and two byte instructions and is based on the MAB8048 instruction set. New instructions include those for serial I/O operation and memory bank selection. Program code efficiency is high because all RAM locations and all ROM locations on a 256 byte page require only a single byte address.

Table 8 gives the instruction set of the PCD3343. Table 7 shows the instruction map and Table 6 details the symbols and definition descriptions that are used.

Table 6 Symbols and definitions used in Table 8

symbol	definition description
A	accumulator
addr	program memory address
Bb	bit designation (b $=0-7$)
RBS	register bank select
C	carry bit (bit CY)
CNT	event counter
D	mnemonic for 4-bit digit (nibble)
data	8-bit number or expression
1	interrupt
MB	memory bank
MBFF	memory bank flip-flop
P	mnemonic for 'in-page' operation
PC	program counter
Pp	port designation ($p=0,1$ or 2)
PSW	program status word
RB	register bank
Rr	register designation ($r=0-7$)
Sn	serial I/O register
SP	stack pointer
T	timer
TF	timer flag
T0, T1	test 0 and 1 inputs
$\#$	immediate data prefix
$@$	indirect address prefix
(X)	contents of X
((X))	contents of location addressed by X
\leftarrow	is replaced by
\leftrightarrow	is exchanged with

DEVELOPMENT DATA

Table 7 PCD3343 instruction map

INSTRUCTION SET (continued)
Table 8 Instruction set

$$
\text { ৮86L łsn6n } \forall
$$

	mnemonic	opcode (hex.)	bytes/ cycles	description	function		notes
	ADD A, Rr	6*	1/1	Add register contents to A	$(A) \leftarrow(A)+(R r)$	$r=0-7$	1
	ADD A, @Rr	60	1/1	Add RAM data, addressed by Rr, to A	$\begin{aligned} & (A) \leftarrow(A)+((R 0)) \\ & (A) \leftarrow(A)+((R 1)) \end{aligned}$		1
	ADD A, \#data	03 data	2/2	Add immediate data to A	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ data		1
	ADDC A, Rr	7*	1/1	Add carry and register contents to A	$(A) \leftarrow(A)+(R r)+(C)$	$r=0-7$	1
	ADDC A, @Rr	70 71	1/1	Add carry and RAM data, addressed by Rr , to A	$\begin{aligned} & (A) \leftarrow(A)+((R 0))+(C) \\ & (A) \leftarrow(A)+((R 1))+(C) \end{aligned}$		1
	ADDC A, \#data	13 data	2/2	Add carry and immediate data to A	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ data $+(\mathrm{C})$		1
	ANL A, Rr	5*	1/1	'AND' Rr with A	$(A) \leftarrow(A)$ AND (Rr)	$r=0-7$	
	ANL A, @Rr	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	1/1	'AND' RAM data, addressed by Rr, with A	$\begin{aligned} & (A) \leftarrow(A) \text { AND }((R 0)) \\ & (A) \leftarrow(A) \text { AND }((R 1)) \end{aligned}$		
	ANL A, \#data	53 data	2/2	'AND' immediate data with A	$(A) \leftarrow(A)$ AND data		
	ORL A, Rr	4*	1/1	'OR' Rr with A	$(A) \leftarrow(A) O R(R r)$	$r=0-7$	
	ORL A, @Rr	$\begin{array}{\|l} 40 \\ 41 \end{array}$	1/1	'OR' RAM data, addressed by Rr, with A	$\begin{aligned} & (A) \leftarrow(A) \text { OR }((R 0)) \\ & (A) \leftarrow(A) \text { OR }((R 1)) \end{aligned}$		
	ORL A, \#data	43 data	2/2	'OR' immediate data with A	$(A) \leftarrow(A) O R$ data		
	XRL A, Rr	D*	1/1	'XOR' Rr with A	$(A) \leftarrow(A)$ XOR (Rr)	$r=0-7$	
	XRL A, @Rr	D0	1/1	'XOR' RAM, addressed by Rr, with A	$\begin{aligned} & (A) \leftarrow(A) \operatorname{XOR}((R O)) \\ & (A) \leftarrow(A) \operatorname{XOR}((R 1)) \end{aligned}$		
	XRL A, \#data	D3 data	2/2	'XOR' immediate data with A	$(A) \leftarrow(A)$ XOR data		
	INC A	17	1/1	increment A by 1	$(A) \leftarrow(A)+1$		
	DEC A	07	1/1	decrement A by 1	$(A) \leftarrow(A)-1$		
	CLR A	27	1/1	clear A to zero	$(A) \leftarrow 0$		
	CPL A	37	1/1	one's complement A	$(\mathrm{A}) \leftarrow \operatorname{NOT}(\mathrm{A})$		
	RL A	E7	1/1	rotate A left	$\begin{aligned} & \left(A_{n}+1\right) \leftarrow\left(A_{n}\right) \\ & \left(A_{0}\right) \leftarrow\left(A_{7}\right) \end{aligned}$	$n=0-6$	

DEVELOPMENT DATA

	RLC A	F7	1/1	rotate A left through carry	$\begin{aligned} & \left(A_{n}+1\right) \leftarrow A_{n} \\ & \left(A_{0}\right) \leftarrow(C),(C) \leftarrow\left(A_{7}\right) \end{aligned}$	$\mathrm{n}=0-6$	2
	RR A	77	1/1	rotate A right	$\begin{aligned} & \left(A_{n}\right) \leftarrow\left(A_{n}+1\right) \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \end{aligned}$	$\mathrm{n}=0-6$	
$\stackrel{ \pm}{ \pm}$	RRC A	67	1/1	rotate A right through carry	$\begin{aligned} & \left(A_{n}\right) \leftarrow\left(A_{n}+1\right) \\ & \left(A_{7}\right) \leftarrow(C),(C) \leftarrow\left(A_{0}\right) \end{aligned}$	$\mathrm{n}=0-6$	2
$\begin{aligned} & \text { N } \\ & \text { U } \\ & \hline \end{aligned}$	DA A SWAP A	$\begin{aligned} & 57 \\ & 47 \end{aligned}$	$\begin{aligned} & 1 / 1 \\ & 1 / 1 \end{aligned}$	decimal adjust A swap nibbles of A	$\left(\mathrm{A}_{4-7}\right) \leftrightarrow\left(\mathrm{A}_{0-3}\right)$		2
	MOV A, Rr	F*	1/1	move register contents to A	$(\mathrm{A}) \leftarrow(\mathrm{Rr})$	$r=0-7$	
	MOV A, @Rr	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	1/1	move RAM data, addressed by Rr, to A	$\begin{aligned} & (A) \leftarrow((R 0)) \\ & (A) \leftarrow((R 1)) \end{aligned}$		
	MOV A, \#data	23 data	2/2	move immediate data to A	(A) \leftarrow data		
	MOV Rr, A	A*	1/1	move accumulator contents to register	$(\mathrm{Rr}) \leftarrow(\mathrm{A})$	$r=0-7$	
	MOV @Rr, A	A0	1/1	move accumulator contents to RAM location addressed by Rr	$\begin{aligned} & ((R O)) \leftarrow(A) \\ & ((R 1)) \leftarrow(A) \end{aligned}$		
	MOV Rr, \#data	B* data	2/2	move immediate data to Rr	$(\mathrm{Rr}) \leftarrow$ data		
	MOV @Rr, \#data	B0 data B1 data	2/2	move immediate data to RAM location addressed by Rr	$\begin{aligned} & ((\text { RO }))<\text { data } \\ & ((\mathrm{R} 1)) \leftarrow \text { data } \end{aligned}$		
	XCH A, Rr	2*	1/1	exchange accumulator contents with Rr	$(\mathrm{A}) \leftrightarrow(\mathrm{Rr})$	$r=0-7$	
	XCH A, @Rr		1/1	exchange accumulator contents with RAM data addressed by Rr	$\begin{aligned} & (A) \leftrightarrow((R 0)) \\ & (A) \leftrightarrow((R 1)) \end{aligned}$		
	XCHD A, @Rr	$\begin{array}{\|l\|} \hline 30 \\ 31 \end{array}$	1/1	exchange lower nibbles of A and RAM data addressed by Rr	$\begin{aligned} & \left(\mathrm{A}_{0-3}\right) \leftrightarrow\left(\left(\mathrm{RO}_{0-3}\right)\right) \\ & \left(\mathrm{A}_{0-3}\right) \leftrightarrow\left(\left(\mathrm{R} 1_{0-3}\right)\right) \end{aligned}$		
	MOV A, PSW	C7	1/1	move PSW contents to accumulator	$(\mathrm{A}) \leftarrow$ (PSW)		
	MOV PSW, A	D7	1/1	move accumulator bit 3 to PSW_{3}	$\left(\mathrm{PSW}_{3}\right) \leftarrow\left(\mathrm{A}_{3}\right)$		3
	MOVP A, @A	A3	1/2	move indirectly addressed data in current page to A	$\left(\mathrm{PC}_{0-7}\right) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow((\mathrm{PC}))$		
	CLR C	97	1/1	clear carry bit	(C) $\leftarrow 0$		2
	CPL C	A7	1/1	complement carry bit	(C) \leftarrow NOT(C)		2

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
MOV A, T \\
MOV T, A \\
STRT CNT \\
STRT T \\
STOP TCNT \\
EN TCNTI \\
DIS TCNTI
\end{tabular} \& 42
62
45
55
65
25
35 \& \[
\begin{aligned}
\& \hline 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1
\end{aligned}
\] \& \begin{tabular}{l}
move timer/event counter contents to accumulator \\
move accumulator contents to timer/event counter start event counter start timer stop timer/event counter enable timer/event counter interrupt disable timer/event counter interrupt
\end{tabular} \& \[
\begin{aligned}
\& (A) \leftarrow(T) \\
\& (T) \leftarrow(A)
\end{aligned}
\] \& \\
\hline \& \begin{tabular}{l}
EN I \\
DIS I \\
SEL RBO \\
SEL RB1 \\
SEL MBO \\
SEL MB1 \\
SEL MB2 \\
SEL MB3 \\
STOP \\
IDLE
\end{tabular} \& O5
15
C5
D5
E5
F5
A5
B5
22
01 \& \[
\begin{aligned}
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1 \\
\& 1 / 1
\end{aligned}
\] \& enable external interrupt disable external interrupt select register bank 0 select register bank 1 select program memory bank 0 select program memory bank 1 select program memory bank 2 select program memory bank 3 enter STOP mode enter IDLE mode \& \[
\begin{aligned}
\& (\mathrm{RBS}) \leftarrow 0 \\
\& (\mathrm{RBS}) \leftarrow 1 \\
\& (\mathrm{MBFFO}) \leftarrow 0,(\text { MBFF } 1) \leftarrow 0 \\
\& (\text { MBFFO }) \leftarrow 1,(\text { MBFF } 1) \leftarrow 0 \\
\& (\text { MBFF0 }) \leftarrow 0,(\text { MBFF } 1) \leftarrow 1 \\
\& (\text { MBFF0 }) \leftarrow 1,(\text { MBFF1 }) \leftarrow 1
\end{aligned}
\] \& 5 \\
\hline \& \begin{tabular}{l}
CALL addr \\
RET \\
RETR
\end{tabular} \& \begin{tabular}{l}
A 4 address \\
83 \\
93
\end{tabular} \& \begin{tabular}{l}
\(2 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& \begin{tabular}{l}
jump to subroutine \\
return from subroutine \\
return from interrupt and restore bits 4, 6, 7 of PSW
\end{tabular} \& \[
\begin{aligned}
\& ((\mathrm{SP})) \leftarrow(\mathrm{PC}),\left(\mathrm{PSW}_{4}, 6,7\right) \\
\& (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\
\& \left(\mathrm{PC}_{8}-10\right) \leftarrow \text { addr } 8-10 \\
\& \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addro-7 } \\
\& (\mathrm{PC} \\
\& 11-12) \leftarrow \mathrm{MBFF} 0-1 \\
\& (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{SP})) \\
\& (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \\
\& \left(\mathrm{PSW}_{4,}, 7,7\right)+(\mathrm{PC}) \leftarrow((\mathrm{SP}))
\end{aligned}
\] \& 6

6
6

\hline
\end{tabular}

	mnemonic	opcode (hex.)	bytes/ cycles	description	function	notes
	IN A, Pp OUTL Pp, A ANL Pp, \#data ORL Pp, \#data	08 09 OA 38 39 3A 98 99 9A 88 89 8A	1/2 $1 / 2$ 2/2 2/2	input port p data to accumulator output accumulator data to port p AND port p data with immediate data OR port p data with immediate data	$\begin{aligned} & (A) \leftarrow(P 0) \\ & (A) \leftarrow(P 1) \\ & (A) \leftarrow(P 2) \\ & (P 0) \leftarrow(A) \\ & (P 1) \leftarrow(A) \\ & (P 2) \leftarrow(A) \\ & (P 0) \leftarrow(P 0) \text { AND data } \\ & (P 1) \leftarrow(P 1) \text { AND data } \\ & (P 2) \leftarrow(P 2) \text { AND data } \\ & (P 0) \leftarrow(P 0) \text { OR data } \\ & (P 1) \leftarrow(P 1) \text { OR data } \\ & (P 2) \leftarrow(P 2) \text { OR data } \end{aligned}$	7
	MOV A, S_{n} MOV S_{n}, A MOV S_{n}, \#data EN SI DIS SI	$\begin{aligned} & 0 C \\ & 0 D \\ & 3 C \\ & 3 D \\ & 3 E \\ & 9 C \\ & 9 D \\ & 9 E \\ & 85 \\ & 95 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 2 / 2 \\ & \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$	move serial I/O register contents to accumulator move accumulator contents to serial I/O register move immediate data to serial I/O register enable serial I/O interrupt disable serial I/O interrupt	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{SO}) \\ & (\mathrm{A}) \leftarrow(\mathrm{S} 1) \\ & (\mathrm{SO}) \leftarrow(\mathrm{A}) \\ & (\mathrm{S} 1) \leftarrow(\mathrm{A}) \\ & (\mathrm{S} 2) \leftarrow(\mathrm{A}) \\ & (\mathrm{S}) \leftarrow \text { data } \\ & (\mathrm{S} 1) \leftarrow \text { data } \\ & (\mathrm{S} 2) \leftarrow \text { data } \end{aligned}$	8 9
	NOP	00	1/1	no operation		

Notes to Table 8

1. PSW CY, AC	affected	5. PSW RBS
2. PSW CY	affected	6. PSW SP $, S P_{1}, S P_{2} \quad$ affected
affected		
3. PSW PS	affected	7. (A) $=1111 \mathrm{P} 23, \mathrm{P} 22, \mathrm{P} 21, \mathrm{P} 20$.

4. Execution of JTF and JNTF instructions resets the Timer Flag (TF).

* : 8, 9, A, B, C, D, E, F
- : 0, 2, 4, 6, 8, A, C, E
© : $1,3,5,7,9, B, D, F$

8. (S1) has a different meaning for read and write operation, see serial I/O interface.
9. (S2) is a write only register. Reading S2 will give value FFH.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 28)
All input voltages
D.C. current into any input or output

Total power dissipation (see note)
Power dissipation per output
except P23, SCLK
P23, SCLK
Storage temperature range
Operating ambient temperature range
Operating junction temperature

Note

Thermal resistance (junction to ambient) for SOT-117
for SOT-135A
DEVELOPMENT DATA
for SOT-136A

$V_{D D}$	$-0,8$ to +8 V
V_{1}	0,8 to $V_{D D}+0,8 \mathrm{~V}$
$\pm 1_{1}, \pm 10$	max. $\quad 10 \mathrm{~mA}$
$\mathrm{P}_{\text {tot }}$	max. $\quad 500 \mathrm{~mW}$
PO_{0}	max. $\quad 50 \mathrm{~mW}$
PO_{0}	max. 180 mW
$\mathrm{T}_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$
T amb	-25 to $+70{ }^{\circ} \mathrm{C}$
Tj	max. $125^{\circ} \mathrm{C}$

$R_{\text {th j-a }}$	max.	$120 \mathrm{~K} / \mathrm{W}$
$R_{\text {th j-a }}$	max.	$60 \mathrm{~K} / \mathrm{W}$
$R_{\text {th j-a }}$	max.	$150 \mathrm{~K} / \mathrm{W}$

D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,75$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; all voltages with respect to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{f}=3,58 \mathrm{MHz}$ with $R_{S}=50 \Omega$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit	
Supply voltage operating (see Fig. 23)	$V_{\text {DD }}$	1,8	-	6	V	
STOP mode for RAM retention	$V_{\text {DD }}$	1,0	-	6	V	
Supply current operating at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ (see Fig. 24)	${ }^{\text {I DD }}$	-	600	-	$\mu \mathrm{A}$	
IDLE mode at $V_{D D}=3 V$ (see Fig. 25)	${ }^{\prime} \mathrm{DD}$	-	300	-	$\mu \mathrm{A}$	
STOP mode (see Fig. 26 and note 1) $\text { at } \mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{DD}$	-	1,2	2,5	$\mu \mathrm{A}$	
at $\mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	IDD	-	-	5	$\mu \mathrm{A}$	
at $\mathrm{V}_{\mathrm{DD}}=1,8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	${ }^{\text {I D D }}$	-	-	10	$\mu \mathrm{A}$	
RESET I/O						
Switching level	$V_{\text {RESET }}$	-	1,3	-	V	
$\begin{aligned} & \text { Sink current } \\ & \text { at } V_{D D}>V_{\text {RESET }} \end{aligned}$	${ }^{\text {IOL }}$	-	7	-	$\mu \mathrm{A}$	
Inputs						
Input voltage LOW	$V_{\text {IL }}$	0	-	$0,3 \mathrm{~V}_{\text {DD }}$	V	
Input voltage HIGH	$V_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	$\mathrm{V}_{\text {DD }}$	V	
Input leakage current at $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{I}}<\mathrm{V}_{\mathrm{DD}}$	$\pm 1 / \mathrm{L}$	-	-	1	$\mu \mathrm{A}$	
Outputs						
Output voltage LOW at $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}} ; \\| \mathrm{I} \mid<1 \mu \mathrm{~A}$	V_{OL}	-	-	0,05	V	
Output sink current LOW at $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V}$ except P23/SDA, SCLK (see Fig. 27)	IOL	0,75	1,5	0.0 -	mA	
P23/SDA, SCLK (see Fig. 28)	IOL	1,5	-	-	mA	
Pull-up output source current HIGH (see Fig. 29) at $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0,9 \mathrm{~V}_{\mathrm{DD}}$	${ }^{-1} \mathrm{OH}$	25	-	-	$\mu \mathrm{A}$	
at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{S S}$	${ }^{-1} \mathrm{OH}$	-	-	200	$\mu \mathrm{A}$	
Push-pull output source current HIGH at $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-0,4 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	0,75	1,5	-	mA	

Note 1

Crystal connected between XTAL 1 and XTAL 2; SCL and SDA pulled to $\mathrm{V}_{\text {DD }}$ via $5,6 \mathrm{k} \Omega$ resistor; CE and T1 at V_{SS}.

(1) $\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$

Fig. 23 Maximum clock frequency (${ }^{(X T A L}$) as a function of the supply voltage (V_{DD}).

(1) clock frequency $=4 \mathrm{MHz}$
(2) clock frequency $=2 \mathrm{MHz}$
(3) clock frequency $=500 \mathrm{kHz}$

Fig. 25 Typical supply current (IDD) in IDLE mode as a function of the supply voltage ($V_{D D}$); $T_{a m b}=25^{\circ} \mathrm{C}$.

(1) clock frequency $=4 \mathrm{MHz}$
(2) clock frequency $=2 \mathrm{MHz}$
(3) clock frequency $=500 \mathrm{kHz}$

Fig. 24 Typical supply current (IDD) in operating mode as a function of the supply voltage ($V_{D D}$); $T_{a m b}=25^{\circ} \mathrm{C}$.

(1) $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Fig. 26 Typical supply current (IDD) in STOP mode as a function of the supply voltage (V_{DD}).

(1) $\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$

Fig. 27 Output sink current LOW (IOL), except outputs P23/SDA and SCLK, as a function of supply voltage (V_{DD}); $\mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V}$.

(1) $\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=+70^{\circ} \mathrm{C}$

Fig. 28 Output current LOW (IOL), outputs P23/SDA and SCLK, as a function of supply voltage (V_{DD}); $\mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V}$.

(1) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$
(2) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{O}}=0,9 \mathrm{~V}_{\mathrm{DD}}$
(3) $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{S S}$
(4) $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{O}}=0,9 \mathrm{~V}_{\mathrm{DD}}$

Fig. 29 Output source current HIGH ($-\mathrm{I}_{\mathrm{OH}}$) as a function of supply voltage ($V_{D D}$).

A.C. CHARACTERISTICS

Rise and fall times between 10 and 90% levels; $C_{L}=50 \mathrm{pF}$

parameter	symbol	at $70^{\circ} \mathrm{C}$ max. value			unit
	V_{DD}	1,8	3,0	6,0	V
Fall time	t_{f}	200	100	70	ns
Rise time	t_{r}	200	100	80	ns

Fig. 30 PCD3343 timing requirements for the P23 and SCLK input signals.
Table 9 Input timing shown in figure 30

symbol	timing
${ }_{\text {t }}$ BUF	$\geqslant 14 \mathrm{t} \times$ TAL
thD; STA	$\geqslant 14 \mathrm{t} \times$ TAL
${ }^{\text {tHIGH }}$	$\geqslant 17 \mathrm{t} \times$ TAL
t LOW	$\geqslant 17 \mathrm{t} \times$ TAL
${ }^{\text {t SY; STO }}$	$\geqslant 14 t \times$ TAL
thD;DAT	>0
tSU;DAT	$\geqslant 250 \mathrm{~ns}$
${ }^{\text {tr }}$ d	$\leqslant 1 \mu \mathrm{~s}$
${ }^{\text {t }} \mathrm{RC}$	$\leqslant 1 \mu \mathrm{~s}$
${ }^{\text {t }}$ FD	$\leqslant 1 \mu \mathrm{~s}$
${ }^{\text {t }}$ C	$\leqslant 0,3 \mu \mathrm{~s}$

Notes to Table 9

${ }^{\mathrm{t}} \mathrm{XTAL}=$ one period of the XTAL input frequency (f XTAL) $=280 \mathrm{~ns}$ for ${ }^{\mathrm{f}} \mathrm{XTAL}=3,58 \mathrm{MHz}$.
These figures apply to all modes.

A.C. CHARACTERISTICS (continued)

Fig. 31 PCD3343 timing requirements for the P23 and SCLK output signals.
Table 10 Output timing shown in figure 31

Notes to Table 10

${ }^{\mathrm{t}} \mathrm{XTAL}=$ one period of the XTAL input frequency ($\mathrm{f}_{\mathrm{XTAL}}$)
$=280 \mathrm{~ns}$ for ${ }^{\mathrm{f}} \mathrm{XTAL}=3,58 \mathrm{MHz}$.
DF = divisor (see Table 2 Serial I/O section).
$C_{b} \quad=$ the maximum bus capacitance for each line.

APPLICATION INFORMATION

A block diagram of an electronic featurephone built around the PCD3343 is shown in figure 32. It comprises the following dedicated telephony IC's:

- TEA1060/1061
- PCD3312
- PCE2111 or PCF8577
- PCD8571
- PCD3360/3361
transmission circuit for telephony
DTMF generator with Serial I/O
2 LCD drivers in LCD module MB7020160
1 K RAM's with Serial I/O; the number of RAM's depends on the required amount of stored telephone numbers programmable multi-tone ringer

```
TRANSMISSION
DIALLING
```


Fig. 32 Block diagram of electronic featurephone with common line interface.
A detailed application diagram of the PCD3343 with PCD3312 (DTMF), two PCD8571 (RAM) and two PCE2111 (LCD display drivers) is shown in figure 33.
Row 5 of the keyboard contains the following special keys:

- P program and autodial
- FL flash or register recall
- R redial or extended redial
- AP access pause

Row 6 contains the different diode options.
Columns 5 and 6 contain the button keys MO to M9; single name keys for repertory telephone numbers.

Fig. 33 Application diagram of PCD3343 for electronıc featurephone with associated keyboard.
Additional information is available on request for the following:

- Serial I/O
- $I^{2} \mathrm{C}$ bus specification
- Interrupt logic
- Instruction set descriptions
- Software routines for an intelligent telephone set

PROGRAMMABLE MULTI-TONE TELEPHONE RINGER

GENERAL DESCRIPTION

The PCD3360 is a CMOS integrated circuit, designed to replace the electro-mechanical bell in telephone sets. It meets most postal requirements, particularly with tone sequence possibilities and input frequency selectivity. Output signals for a loudspeaker or for a piezo-electric (PXE) transducer are provided. No audio transformer is required since the loudspeaker is driven in class D.

Features

- Output signals for electro-dynamic transducer (loudspeaker) or for piezo-electric transducer (PXE)
- 7 basic frequencies (tones) and a pause
- 4 selectable tone sequences
- 4 selectable repetition rates
- 3 selectable impedance settings
- 3-step automatic swell
- Delta-modulated output signal that approximates a sinewave
- Input frequency discriminator with selectable upper and lower frequency limits
- Output for optical signal

Note

Tone sequences (up to 16 tones long), impedance settings and automatic swell levels are mask programmable for customized versions.

QUICK REFERENCE DATA

Available frequencies (tones)	$533 / 600 / 667 / 800 /$
	$1000 / 1067$ and 1333 Hz
Number of intervals per tone sequence	15 or 16
Lower limits of frequency discriminator	13,33 or 20 Hz
Upper limits of frequency discriminator	30 or 60 Hz
Impedance settings (with 50Ω loudspeaker)	approx.
Switch-on delay at 25 Hz	max.

PACKAGE OUTLINES

PCD3360P: 16-lead DIL; plastic (SOT-38).
PCD3360T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

Fig. 1 Block diagram.

PINNING

Fig. 2 Pinning diagram for PCD3360P and PCD3360T.

1	$\overline{\mathrm{FDE}}$	frequency discriminator enable
2	RR2	repetition rate selection
3	RR1	
4	OSC	oscillator
5	$V_{\text {DD }}$	positive supply
6	TONE	tone output
7	$\overline{\text { OPT }}$	optical signal output
8	DM	drive mode selection
9	IS2	impedance setting and automatic swell
10	IS1	
11	$\mathrm{V}_{\text {SS }}$	negative supply
12	TS2	tone sequence selection
13	TS1	tone sequence selection
14	FDI	frequency discriminator input
15	FL	lower frequency limit selection
16	FH	- cy limit selection

FUNCTIONAL DESCRIPTION (see Fig. 1)

Supply pins (V_{DD} and V_{SS})

If the supply voltage (V_{DD}) drops below the standby voltage (V_{SB}), the oscillator and most other functions are switched off and the supply current is reduced to the standby current (ISB). The automatic swell register retains its information until $\mathrm{V}_{\text {DD }}$ drops further to a value V_{AS} at which reset occurs.

Oscillator (OSC)

The 64 kHz oscillator is operated via an external resistor and capacitor connected to pin OSC. The oscillator signal is divided by two to provide the 32 kHz internal system clock.

Selection pins ($\overline{F D E}$, RR2, RR1, DM, IS2, IS1, TS2, TS1, FL and FH)
These pins are pulled down internally by a pull-down current $I_{I H}$ when they are connected to $V_{D D}$, and by a pull-down resistance $R_{I L}$ when they are connected to $\mathrm{V}_{S S}$ (see Fig. 3). Thus when the pins are open-circuit they are defined LOW. Therefore only a single-contact switch is required to connect the pins to V_{DD}; yet the supply current is only marginally increased as I_{IH} is very small.

(1) Transistor resistance $=R_{\text {IL }}$ when switched on.

Fig. 3 Input circuit of selection pins.
Frequency discriminator circuit (pins $\overline{\mathrm{FDE}}$ and FDI)
The frequency discriminator circuit prevents the ringer being activated by dial pulses, speech or other unqualified signals.
The circuit is enabled or disabled by input $\overline{\text { FDE. }}$
When $\overline{\text { FDE }}$ is HIGH, FDI acts as a logic enable input.
The circuit will produce tone sequences provided FDI is HIGH and $V_{D D}$ exceeds $V_{S B}$. When $\overline{\text { FDE }}$ is LOW, FDI acts as the frequency discriminator input.
The circuit will produce tone sequences provided $V_{D D}$ exceeds $V_{S B}$ and the signal at FDI fulfils the conditions set by FL and FH.
When the frequency discriminator is enabled ($\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\mathrm{SB}}$ and $\overline{\mathrm{FDE}}=\mathrm{LOW}$) the circuit will start to produce tone sequences after two rising or two falling edges have occurred at FDI. The time between these edges must be within the limits set by FL and FH.

FUNCTIONAL DESCRIPTION (continued)

The circuit will continue to produce tone sequences provided the time between subsequent falling edges or between subsequent rising edges remains within the limits set by FL and FH, otherwise it will stop. Because two edges are required for detection, either positive or negative, the switch-on delay will vary between 1 and 1,5 cycles of the incoming ringing frequency.
FDI has a Schmitt-trigger action; the levels are set by an external resistor R2 (see Fig. 8) and an internal sink current that is switched from $20 \mu \mathrm{~A}$ (typ.) for FDI $=$ LOW to $<0,1 \mu \mathrm{~A}$ for $\mathrm{FDI}=\mathrm{HIGH}$. Excess current entering FDI via R2 is absorbed by internal diodes clamped to V_{DD} and V_{SS}.

Selection of frequency discriminator limits (FL and FH)
With the frequency discriminator enabled ($\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\mathrm{SB}}$ and $\overline{\mathrm{FDE}}=\mathrm{LOW}$) the lower and upper limits of the input frequency are set by inputs FL and FH as shown by Table 1 and Table 2 respectively.

Table 1 Selection of lower frequency discriminator limits ($\mathrm{f}_{\mathrm{osc}}=64 \mathrm{kHz}$)

FL input state	lower discriminator limit (Hz)
LOW	20
HIGH	13,33

Table 2 Selection of upper frequency discriminator limits ($\mathrm{f}_{\text {osc }}=64 \mathrm{kHz}$)

FH input state	upper discriminator limit (Hz)
LOW	60
HIGH	30

Selection of tone sequences (TS1 and TS2)

A tone sequence is composed of 15 or 16 equal time intervals. Each time interval may be filled with one of seven available tones or with a pause; these are shown together with their corresponding internal ROM tone code in Fig. 4.

Fig. 4 Available tones and their corresponding internal ROM tone code.

Four tone sequences are programmed in the internal ROM (see Fig. 5). Inputs TS1 and TS2 determine which tone sequence is selected and output at pin TONE. The sequences are mask programmable with any length up to 16 time intervals.
The tone sequences are repeated continuously provided the enable conditions at inputs $\overline{\text { FDE }}$ and FDI are valid and $V_{D D}>V_{S B}$; the first sequence always starts with the first tone shown in Fig. 5.

Fig. 5 Tone sequences mask-programmed in the PCD3360.

Selection of repetition rates (RR1 and RR2)

The duration of a time interval within a tone sequence is determined by the state of inputs RR1 and RR2 as shown in Table 3. The resultant variation of repetition rate acts as a distinguishing feature between adjacent telephones.

Table 3 Duration of time intervals ($\mathrm{f}_{\mathrm{osc}}=64 \mathrm{kHz}$)

input state		time interval ms
RR1	RR2	
L	L	15
L	H	30
H	L	45
H	H	60

The repetition rate variation can be extended by mask programming (for customer defined versions) the same tone combination for all 4 tone sequences, but with a different number of time intervals per tone. Thus the repetition rate can be selected from 16 values by inputs RR1, RR2, TS1 and TS2.

FUNCTIONAL DESCRIPTION (continued)

Drive mode selection (DM)

The output signal at pin TONE can be selected for application with electro-dynamic or piezo-electric transducers. An example of both signals, for a tone frequency of 667 Hz , is shown in Fig. 6.

Loudspeaker mode

In the loudspeaker mode ($D M=L O W$), pin TONE outputs a delta-modulated signal that approximates a sinewave sampled at a rate of 32 kHz . The output pulse duration is determined by pins IS1 and IS2. The resultant acoustic spectrum is aurally more acceptable and has greater penetration than a square wave spectrum because more power is concentrated at the fundamental frequency.

PXE mode

In the PXE mode ($\mathrm{DM}=\mathrm{HIGH}$), pin TONE outputs a square wave. In this mode the ringer impedance and sound pressure level are determined by the characteristics (e.g. the size) of the PXE transducer; inputs IS1 and IS2 are inactive.

Setting of impedance, sound pressure level and automatic swell (IS1 and IS2)
With DM = LOW (loudspeaker mode), inputs IS1 and IS2 determine the pulse duration of the output signal and thereby the d.c. resistance $R_{x y}$ (seen at points x and y in Fig. 8), the input impedance Z_{I} and and also the Sound Pressure Level (SPL). The selection of 3 impedance settings and automatic swell is shown in Table 4.

Table 4 Setting of pulse duration and automatic swell (DM = LOW)

input state		function	ringing burst number (N)	pulse duration ($\mu \mathrm{s}$)		$\begin{aligned} & R_{x y} \\ & (k \Omega) \end{aligned}$	$\begin{aligned} & Z_{1} \\ & (k \Omega) \end{aligned}$	$\begin{aligned} & \mathrm{SPL} \\ & (\mathrm{dBr}) \end{aligned}$
IS1	IS2			fund.	harm.			
L	L	automatic swell	1	1,9	-	40	tbf	tbf
			2	2,9	-	20	17,5	-4
			>2	4,1	1,8	5	7	0
L	H		-	2,9	-	20	17,5	-4
H	L	constant	-	3,8	-	10	10,5	tbf
H	H	level	-	5,4	-	5	7	0

Where:

1. Typical pulse duration values of the fundamental and harmonic frequencies are for $f_{\text {osc }}=64 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{CK}}=32 \mathrm{kHz}$.
2. SPL is the relative Sound Pressure Level, and 0 dBr is defined as the SPL for $\operatorname{IS} 1=\mathrm{IS} 2=\mathrm{HIGH}$.
3. Values of the d.c. resistance $R_{x y}$, bell impedance $\left(Z_{l}\right)$ and SPL are valid for a value of input voltage $\mathrm{V}_{\mathrm{I}}=40 \mathrm{~V}_{\mathrm{rms}}$ at 25 Hz in Fig. 8.

Setting of impedance, sound pressure level and automatic swell

When pins IS1 and IS2 are both LOW, the circuit operates in the automatic swell mode. The SPL then increases in three steps so that the maximum level is reached for the third ringing burst.
Each time V_{DD} drops below $\mathrm{V}_{\text {AS }}$ the automatic swell register is reset and the next ringing burst is considered as $\mathrm{N}=1$ (see Table 4).
A buffer capacitor C 3 (see Fig. 8) must hold $\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\text {AS }}$ during the time between two consecutive ringing bursts of a series.
For each of the other three combinations of pins IS1 and IS2 the pulse duration has a constant value. Thus the ringer can be designed so that the impedance represented at the telephone line will comply with postal requirements that vary in relation to parallel or series connections of more than one ringer.
To satisfy some applications, a harmonic signal is added to the fundamental frequency in the last step of the automatic swell mode. The pulses representing this harmonic signal are interleaved with the pulses of the fundamental signal (see Fig. 7). The difference in pulse duration shown in Table 4, is chosen so that the harmonic level is 10 dB below the fundamental level.
The harmonic frequency range is from 2 kHz to $3,2 \mathrm{kHz}$. The individual harmonic frequencies for the seven tone codes and the relative fundamental frequencies are shown in Table 5.

Table 5 Harmonic frequency in relation to tone code and fundamental frequency

tone code	frequency (Hz)	
	fundamental	harmonic
1	533	3200
2	600	2400
3	667	2667
4	800	3200
5	1000	2000
6	1067	2133
7	1333	2667

Using a single mask it is possible to program the following:-

- Addition of harmonics in all the other input states of IS1 and IS2
- All pulse duration values
- Other even harmonic frequencies.

Optical output ($\overline{\mathrm{OPT}}$)

The $\overline{\text { OPT }}$ output is designed to drive an optical signal transducer or lamp. It is LOW when the ringer circuit is enabled and HIGH when the ringer circuit is disabled. This output can also be used to switch the transmitter ON and OFF in the base of a cordless telephone set.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage range
Supply current
D.C. current into any input or output

All input voltages
Total power dissipation
Total dissipation per output
Storage temperature range
Operating ambient temperature range

$V_{D D}$		$-0,8$ to +9 V
$I_{D D}$	max.	50 mA
$\pm \mathrm{I}_{1} \pm \mathrm{I}_{\mathrm{O}}$	max.	10 mA
$\mathrm{~V}_{\mathrm{I}}$	$-0,8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0,8 \mathrm{~V}$	
$\mathrm{P}_{\text {tot }}$	max.	300 mW
P_{O}	max.	50 mW
$\mathrm{~T}_{\mathrm{stg}}$		-65 to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$		-25 to $+70{ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

D.C. CHARACTERISTICS

$V_{D D}=6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 ; \mathrm{f}_{\mathrm{OSc}}=64 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; valid enable conditions at FDI and $\overline{\text { FDE }}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Operating supply voltage	$V_{\text {DD }}$	$\mathrm{V}_{\mathrm{SB}}+0,1$	-	8,0	V
Standby supply voltage (note 1)	$V_{\text {SB }}$	3,9	4,8	5,7	V
Supply voltage for automatic swell reset (note 2)	$\mathrm{V}_{\text {AS }}$	-	$0,5 V_{\text {SB }}$	-	V
Operating supply current (note 3)	${ }^{\prime} \mathrm{DD}$	-	110	140	$\mu \mathrm{A}$
Stańdby supply current at $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{SB}}$ (note 4)	${ }^{\text {ISB }}$	-	3	8	$\mu \mathrm{A}$
Inputs					
Input voltage LOW (any pin)	$\mathrm{V}_{\text {IL }}$	0	-	$0,3 V_{\text {DD }}$	V
Input voltage HIGH (any pin)	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	$V_{\text {DD }}$	V
Pull-down circuits of inputs					
FDE, RR1, RR2, DM, IS1, IS2, TS1, TS2, FL, FH pull-down resistance with input at V_{SS}	$\mathrm{R}_{\text {IL }}$	-	20	-	k Ω
pull-down current with input at $\mathrm{V}_{\text {DD }}$	I_{IH}	-	0,1	-	$\mu \mathrm{A}$
Pull-down circuit of FDI					
$\begin{aligned} & \text { pull-down current with } V_{F D I}=0,3 V_{D D} \text {; } \\ & T_{a m b}=25^{\circ} \mathrm{C} \end{aligned}$	ISL	14	23	32	$\mu \mathrm{A}$
temperature coefficient of ISL	$-\Delta l_{\text {SL }}$	-	0,5	-	\%/ ${ }^{\circ} \mathrm{C}$
pull-down current with $\mathrm{V}_{\text {FDI }}=0,8 \mathrm{~V}_{\mathrm{DD}}$	ISH	-	0,1	-	$\mu \mathrm{A}$
pull-down current with $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{SB}}$	ISX	-	0,1	-	$\mu \mathrm{A}$
Current into input FDI (note 5)	\pm IIS	-	-	0,2	mA
Outputs					
TONE, OPT					
Output sink current at $\mathrm{V}_{\mathrm{OL}}=0,5 \mathrm{~V}$	${ }^{1} \mathrm{OL}$	1	2	-	mA
Output source current at $V_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0,5 \mathrm{~V}$	$-\mathrm{OH}$	1	2	-	mA

A.C. CHARACTERISTICS

$V_{D D}=6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 ; \mathrm{f}_{\mathrm{OSc}}=64 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; valid enable conditions at FDI and $\overline{\text { FDE }}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Switch-on delay (with $\overline{\mathrm{FDE}}=$ LOW and ringing frequency within limits set by FL and FH)	$\mathrm{t}_{\mathrm{d}}(\mathrm{on})$	1	-	1,5	note 6
$\begin{aligned} & \text { Switch-off delay (with } \overline{\mathrm{FDE}}=\mathrm{LOW} \text {) } \\ & \text { at } F \mathrm{FL}=\text { LOW } \\ & \text { at } F L=\text { HIGH } \end{aligned}$	t_{d} (off) t_{d} (off)	-	-	50 75	ms ms
$\begin{aligned} & \text { Oscillator frequency } \\ & \text { at } \mathrm{R}_{\text {osc }}=365 \mathrm{k} \Omega ; \mathrm{C}_{\text {osc }}=56 \mathrm{pF} \text {; } \\ & T_{\text {amb }}=25^{\circ} \mathrm{C}(\text { note } 7) \end{aligned}$	${ }^{\text {fosc }}$	60	64	68	kHz
Frequency variation as a function of $V_{D D}$ as a function of $\mathrm{T}_{\text {amb }}$	$\begin{aligned} & -\Delta f_{\text {OSC }} \\ & -\Delta f_{\text {osc }} \end{aligned}$	-	1 0,05	-	$\begin{aligned} & \% / V \\ & \% / K \end{aligned}$

Notes to the characteristics

1. For $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{SB}}$ the circuit is in standby.
2. At $V_{D D}=V_{A S}$ the automatic swell register is reset.
3. $R_{\text {OsC }}=365 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{OSC}}=56 \mathrm{pF} ; \mathrm{FDI}=\overline{\mathrm{FDE}}=\mathrm{V}_{\mathrm{DD}}$; all other inputs and outputs open circuit.
4. The standby supply current is measured with all inputs and outputs open-circuit with the exception of OSC.
5. The current $I_{\text {IS }}$ is clamped to V_{DD} and to $\mathrm{V}_{\text {SS }}$ by two internal diodes. Correct operation is ensured with $\mathrm{V}_{\text {FDI }}>\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {FDI }}<\mathrm{V}_{\mathrm{SS}}$, provided the maximum value of $\mathrm{I}_{\text {IS }}$ is not exceeded. (The input FDI has an extended HIGH and LOW input voltage range.)
6. The switch-on delay is measured in cycles of incoming ringing frequency.
7. Lead lengths of $\mathrm{R}_{\mathrm{osc}}$ and $\mathrm{C}_{\text {osc }}$ to be kept to a minimum.

APPLICATION INFORMATION

Application of the PCD3360 in a telephone ringer circuit together with a loudspeaker is shown in Fig. 8. The threshold levels V_{H} and V_{L} of the frequency discriminator circuit are determined by:

- The logic threshold of input FDI ($0,5 \mathrm{~V}_{\mathrm{DD}}$ typ. $3,4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=6,8 \mathrm{~V}$)
- The pull-down current of input FDI ($20 \mu \mathrm{~A}$ typ. for FDI $<3,4 \mathrm{~V}$)
- The value of R2 ($680 \mathrm{k} \Omega$ in Fig. 8)

For a positive slope, the voltage at $R 2$ must exceed the value V_{H} before FDI will become HIGH ; V_{H} is the sum of the input threshold and the voltage drop across R 2 thus:

$$
V_{H}=3,4+\left(680 \times 10^{3}\right) \times\left(20 \times 10^{-6}\right)=17 \mathrm{~V} .
$$

For a negative slope, the voltage at R 2 must decrease below the value V_{L} before FDI will become LOW. Because the current into FDI is negligible with FDI $=$ HIGH the voltage drop across R2 can be discounted, thus $V_{L}=3,4 \mathrm{~V}$.
The minimum operating voltage across C 3 is $17,8 \mathrm{~V}$ which is determined by:

- The minimum operating voltage of the PCD3360 $(5,8 \mathrm{~V})$
- The supply current of the PCD3360 ($120 \mu \mathrm{~A}$ max.)
- The value of R3 (100 $\mathrm{k} \Omega$ in Fig. 8)

The total switch-on delay equals approximately the time required to charge the supply capacitor C 3 to the minimum operating value, plus the specified switch-on delay of the PCD3360.
The high operating voltage combined with the class D output stage ensures optimal energy conversion and thereby a high sound level. The design can easily be optimized for parallel or series connection of more than one ringer. The diode bridge, zener diode (D1) and resistor R1 protect the ringer against transients up to 5 kV . During these surges the voltage on the 68 V zener diode (BZWO3) can rise to 100 V ; the DMOS transistor BST72A (TR1) has a maximum drain-source voltage of 100 V . Up to 220 V , 50 Hz can be applied to the a / b terminals without damaging the ringer.
The choke (L1) in series with the 50Ω loudspeaker increases the sound pressure level by approximately 3 dB by suppression of the 32 kHz carrier frequency and its sidebands.
The flyback diode BAX18A (D2) is a fast type with low forward voltage to obtain high efficiency.
Application of the PCD3360 together with a PXE transducer is shown in Fig. 9. The only significant difference between Fig. 8 and Fig. 9 is the output stage. Two BST72A transistors provide an output voltage swing almost equal to the voltage at C3. Pins IS1 and IS2 are inoperative because DM $=$ HIGH. Volume control is possible using resistor R_{V}.

Fig. 8 Transformerless electronic ringer with PCD3360 and a loudspeaker.

Fig. 9 PCD3360 ringer with PXE transducer.

MICROPOWER D.C. VOLTAGE DETECTOR

GENERAL DESCRIPTION

The PCF1251 is a CMOS micropower d.c. voltage detector and it is especially designed for power-on/off voltage detection monitoring and reset. The IC has an extremely low current consumption and is therefore particularly suited for battery operated applications. The internal bandgap reference voltage is stable with temperature variations. The voltage trip-point and the hysteresis can be set independently with external resistors. Two of the four outputs can be delayed with an external capacitor.

Features

- Extremely low current consumption
- Built-in bandgap voltage reference
- Wide range of voltage trip-points
- Two pairs of outputs; one pair with delay possibility
- 8-lead DIL or SO-8 mini-pack (plastic packages)

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply voltage range with respect to V_{SS}	V DD	1	-	6	V
Supply current	I_{DD}	-	1	-	$\mu \mathrm{A}$
Output currents at $\mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}$	I_{O}	-	2	-	mA
Bandgap voltage reference at $25{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{REF}}$	1,05	1,15	1,25	V

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF1251P: 8-lead DIL; plastic (SOT-97AE).
PCF1251T: 8-lead mini-pack; plastic (SO-8; SOT-96A).

Fig. 2 Pinning diagram.

PINNING

1	POWF	power-fail output
2	$\overline{\text { POWF }}$	power-fail output (inverted)
3	VSS 2	negative supply voltage
4	REGND	reset ground
5	$\overline{\text { RESET }}$	reset output (inverted; delayed)
6	RESET	reset output (delayed)
7	CT	capacitor for additional delay
8	V $_{\text {DD }}$	positive supply voltage

FUNCTIONAL DESCRIPTION

The PCF1251 consists of a bandgap voltage reference, a comparator and delay circuitry (see Fig. 1). The supply voltage of the circuit (V_{DD} with respect to V_{SS}) is compared with an internal bandgap voltage reference by means of a special comparator. This comparator is connected to the circuit supply voltage. As long as the supply voltage is above the reference voltage level, the four open-drain outputs are all switched off and an extended drain-source voltage of up to 6 V is allowed. When the supply voltage is reduced and reaches the reference voltage level ($\mathrm{V}_{\mathrm{REF}}$), the power-fail outputs are switched on (p -channel for POWF and n-channel for POWF outputs). After a delay, determined by an external capacitor between pins CT and $\mathrm{V}_{\text {DD }}$, the outputs RESET and RESET are switched on. The same delay will be active when the supply voltage is increased again and exceeds the internal voltage reference, resulting in switching off the outputs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage with respect to V_{SS}	$V_{\text {DD }}$	-	8	V
Output voltage at pin 2 $V_{\text {DD }}$ with respect to V_{2}	V_{2}	-	8	V
Output voltage at pin 5 (pin 4 at V_{SS}) $V_{\text {DD }}$ with respect to V_{5}	V_{5}	-	8	V
Output voltage at pin 1 V_{1} with respect to V_{SS}	V_{1}	-	8	V
Output voltage at pin 6 V_{6} with respect to V_{SS}	V_{6}	-	8	V
Voltage at pin 7 (CT)	V_{7}	-0,5	$V_{D D}+0,5$	V
Current at pin 7 (CT)	17	-	20	mA
Output currents at pins 1, 2, 5 and 6	1101	-	25	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	150	mW
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=1$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	$\mathrm{V}_{\text {DD }}$	1	-	6	V
Operating supply current $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$; all outputs open	${ }^{\text {I D D }}$	-	1	3	$\mu \mathrm{A}$
Bandgap voltage reference; $\mathrm{Tamb}^{\text {a }}$ 25 ${ }^{\circ} \mathrm{C}$	$V_{\text {REF }}$	1,05	1,15	1,25	\checkmark
$\mathrm{V}_{\text {REF }}$ temperature coefficient	$\Delta V_{\text {REF }} / \Delta T$	-	-0,4	-	mV / K
Output current at pins 2 and 5 $\begin{aligned} & T_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {REF }} ; \\ & \mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V} \text { with respect to } \mathrm{V}_{\mathrm{SS}} \end{aligned}$	${ }^{1} \mathrm{O}$	1	2	-	mA
Output current at pins 1 and 6 $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{REF}} ; \\ & -\mathrm{V}_{\mathrm{O}}=0,4 \mathrm{~V} \text { with respect to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$	-10	1	2	-	mA

(1) For correct switching of the outputs the slew rate of the supply voltage should be less than $1 \mathrm{~V} / \mathrm{ms}$.

Fig. 3 Test circuit for timing measurements.

Fig. 4 Timing diagram for slow supply voltage changes.

PCF1251

(1) t $_{\text {RESET }}=$

$$
\left[0,1 \mathrm{~ms}+3,2 \mathrm{~ms} \times \mathrm{C}_{\top}(\mathrm{nF})\right]_{-50 \%}^{+75 \%}
$$

Fig. 5 Timing diagram for fast supply voltage switching on (non-repetitive).

* $=$ undefined (typ. $7 \mu \mathrm{~s}$)

APPLICATION INFORMATION

(1) The value of capacitor C is chosen to limit the slew rate of the supply voltage to less than $1 \mathrm{~V} / \mathrm{ms}$ (e.g. the hysteresis voltage step on resistor R3).
(2) CT (pin 7) is a high-impedance connection for the capacitor C_{T}. This capacitor adds to the reset delay time provided by an internal current source (120 nA) and capacitor. Care must be taken to avoid external leakage current at this pin but the pin should not be left open circuit as stray capacitances to $V_{S S}$ can then disturb the delay function.

Fig. 6 Application circuit diagram.

Fig. 7 Timing diagram for the circuit of Fig. 6.

LCD DUPLEX DRIVER

GENERAL DESCRIPTION

The PCF2111 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid Crystal Display) with up to 64 segments in a duplex manner; specially for low voltage applications. A three-line bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 64 LCD-segment drive capability
- Supply voltage 2,25 to 6,5 V
- Low current consumption
- Serial data input
- CBUS control
- One-point built-in oscillator
- Expansion possiblity

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF2111P: 40-lead DIL; plastic (SOT-129).
PCF2111T: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage with respect to $\mathrm{V}_{\text {SS }}$
Voltage on any pin
Operating ambient temperature range
Storage temperature range

$V_{D D}$	$-0,3$ to 8 V
V_{n}	$V_{S S}-0,3$ to $V_{D D}+0,3 \mathrm{~V}$
$\mathrm{~T}_{\text {amb }}$	-40 to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,25$ to $6,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{O}}=1 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{O}}=680 \mathrm{pF}$; unless otherwise specified

parameter	condition	symbol	min.	typ.	max.	unit
Supply current	no external load	${ }^{\prime}$ DD	-	10	50	$\mu \mathrm{A}$
Supply current	no external load; $\mathrm{T}_{\mathrm{amb}}=-25 \text { to }+85^{\circ} \mathrm{C}$	IDD	-	-	30	$\mu \mathrm{A}$
Display frequency	see Fig. 8; T $=680 \mu \mathrm{~s}$	fLCD	60	80	100	Hz
D.C. component of LCD drive	with respect to V_{SX}	$V_{B P}$	-	± 10	-	mV
Load on each segment driver			-	-	$\begin{array}{\|l\|l\|} \hline 10 \\ 500 \end{array}$	$\begin{array}{l\|l} \mathrm{M} \Omega \\ \mathrm{pF} \end{array}$
Load on each backplane driver			-	-	$\begin{array}{\|l\|l} 1 \\ 5 \end{array}$	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{nF} \end{aligned}$
Input voltage HIGH	ee Fig 9	$V_{\text {IH }}$	2	-	-	V
Input voltage LOW		$V_{\text {IL }}$	-	-	0,6	V
Rise time $V_{B P}$ to $V_{S X}$	max. load	t_{r}	-	20	-	$\mu \mathrm{s}$
Inputs CLB, DATA, DLEN	see note on next page					
Input capacitance	for SOT-129 package	$c_{I N}$	-	-	10	pF
Rise and fall times	see Fig. 2	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	10	$\mu \mathrm{s}$
CLB pulse width HIGH	see Fig. 2	twh	1	-	-	$\mu \mathrm{s}$
CLB pulse width LOW	see Fig. 2	tWL	9	-	-	$\mu \mathrm{s}$

CHARACTERISTICS (continued)

parameter	condition	symbol	min.	typ.	max.	unit
Data set-up time $\text { DATA } \rightarrow \text { CLB }$	see Fig. 2	tSUDA	8	-	-	$\mu \mathrm{s}$
Data hold time DATA \rightarrow CLB	see Fig. 2	${ }^{\text {thDDA }}$	8	-	-	$\mu \mathrm{s}$
Enable set-up time DLEN \longrightarrow CLB	see Fig. 2	tsuen	1	-	-	$\mu \mathrm{S}$
Disable set-up time $\mathrm{CLB} \rightarrow \mathrm{DLEN}$	see Fig. 2	tSUDI	8	-	-	$\mu \mathrm{s}$
Set-up time (load pulse) DLEN \rightarrow CLB	see Fig. 2	tsuld	8	-	-	$\mu \mathrm{s}$
Busy-time from load pulse to next start of transmission	see Fig. 2	${ }^{\text {t B }}$ USY	8	-	-	$\mu \mathrm{S}$
Set-up time (leading zero) DATA \rightarrow CLB	see Fig. 2	tsulz	8	-	-	$\mu \mathrm{s}$

Note

All timing values are referred to $V_{I H}$ min and $V_{I L}$ max ${ }^{*}$ (see Fig. 2). If external resistors are used in the bus lines (see Fig. 9), the extra time constant has to be added.

[^5]

Fig. 2 CBUS timing.

Fig. 3 CBUS data format.

Notes to Fig. 3

An LCD segment is activated when the corresponding DATA-bit is HIGH. When DATA-bit 33 is HIGH, the A-latches (BP1) are loaded. With DATA-bit 33 LOW, the B-latches (BP2) are loaded. CLB-pulse 35 transfers data from shift register to selected latches.
The following tests are carried out by the bus control logic:
a. Test on leading zero.
b. Test on number of DATA-bits.
c. Test of disturbed DLEN and DATA signals during transmission.

If one of the test conditions is not fulfilled, no action follows the load condition (load pulse with DLEN is LOW) and the driver is ready to receive new data.

Fig. 4 Output resistance of backplane and segments.
$-\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$;
$-\cdot-T_{a m b}=+85^{\circ} \mathrm{C}$.

Fig. 6 Display frequency as a function of $\mathrm{R}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{o}}$ time; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 5 Display frequency as a function of supply voltage; $\mathrm{R}_{\mathrm{o}} \mathrm{C}_{\mathrm{o}}=680 \mu \mathrm{~s}$.
$-\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$;
$-.-\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 7 Supply current as a function of supply voltage.
$— \mathrm{~T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$;
$-\cdot-\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 8 Timing diagram.

Fig. 9 Input circuitry.

Note to Fig. 9

$\mathrm{V}_{\text {SS }}$ line is common. In systems where it is expected that $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{\mathrm{DD} 1}+0,5 \mathrm{~V}$, a resistor should be inserted to reduce the current flowing through the input protection.
Maximum input current $\leqslant 40 \mu \mathrm{~A}$.

(1) In the slave mode, the serial resistors between BP1 and BP2 of the PCF2111 and the backplane of the LCD must be $>2,7 \mathrm{k} \Omega$. In most applications the resistance of the interconnection to the LCD already has a higher value.

Fig. 10 Diagram showing expansion possibility for a 16 -digit plus 16 decimal points LCD.

Note to Fig. 10

By connecting OSC to $\mathrm{V}_{\text {SS }}$ the BP-pins become inputs and generate signals synchronized to the single oscillator frequency, thus allowing expansion of several PCF2111, PCF2110 and PCF2100 ICs up to the BP drive capability of the master.
PCF2100 is a 40 LCD-segment driver; PCF2110 is a 60 LCD-segment driver plus 2 LED driver outputs.

Fig. 11 Pinning diagram.

PINNING

Supply

2	$V_{D D}$	Positive supply
4	$V_{S S}$	Negative supply

Inputs
$\left.\begin{array}{lll}\begin{array}{ll}3 & \text { OSC } \\ 39 & \text { DATA }\end{array} & \text { Oscillator input } \\ \text { Data line } \\ 40 & \text { DLEN } & \text { Data line enable } \\ 1 & \text { CLB } & \text { Clock burst }\end{array}\right\}$ CBUS

Outputs

38 BP1 37 BP2	Backplane drivers (common of LCD)		
S1 to S32		\quad	LCD driver outputs
:---			

VOICE SYNTHESIZER

GENERAL DESCRIPTION

The PCF8200 is a CMOS integrated circuit for generating good quality speech from digital code with a programmable bit rate. The circuit is primarily intended for applications in microprocessor controlled systems, where the speech code is stored separately.
Applications include automotive, telephony, personal computers, annunciators, aids for the handicapped, and general industrial devices.

Features

- Male and female speech with good quality
- Speech-band from 0 to 5 kHz
- Bit-rate between 455 bits/second and 4545 bits/second
- Programmable frame duration
- Programmable speaking speed
- CMOS technology
- Operating temperature range -40 to $+85^{\circ} \mathrm{C}$
- Single 5 V supply with low power consumption and power-down stand-by mode
- Interfaces easily with most popular microcomputers and microprocessors through 8 bit parallel bus or $\mathrm{I}^{2} \mathrm{C}$ bus
- Software readable status word (parallel bus or $I^{2} \mathrm{C}$ bus)
- BUSY-signal and $\overline{\text { REO-signal hardware readable }}$
- Internal low-pass filter and 11-bit D/A converter

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply voltage	VDD	-	5	-	V
Supply current	${ }^{1} \mathrm{DD}$	-	12	\#	mA
Supply current (stand-by)	${ }^{\prime} \mathrm{DD}(\mathrm{SB})$	-	1	-	$\mu \mathrm{A}$
Inputs					
Input voltage	$\mathrm{V}_{\text {IH }}$	2,0	-	VDD	V
Input voltage	$V_{\text {IL }}$	0	-	0,8	V
Input capacitance	C_{1}	-	7	-	pF
Outputs (D5 to D7)					
Output voltage high	V_{OH}	3,5	-	VDD	V
Output voltage low	$\mathrm{V}_{\text {OL }}$	0	-	0,4	V
Load capacitance	C_{L}	-	-	80	pF
Operating ambient temperature range	Tamb	-40	-	+85	${ }^{\circ} \mathrm{C}$

[^6]PACKAGE OUTLINE
24-lead DIL; plastic (SOT-101A).

FUNCTIONAL DESCRIPTION

The synthesizer has been designed for a vocal tract modelling technique of voice synthesis. An excitation signal is fed to a series of resonators. Each resonator simulates one of the formants in the original speech. It is controlled by two parameters, one for the resonant frequency and one for the bandwidth. Five formants are needed for male speech and four for female speech. The output of this system is defined by the excitation signal, the amplitude values and the resonator settings. By periodic updating of all parameters very high quality speech can be produced.

OPERATION

Speech characteristics change quite slowly, therefore the control parameters for the speech synthesizer can be adequately updated every few tens of milliseconds with interpolation during the interval to ensure a smooth changeover from one parameter value to the next. In the PCF8200 the standard-frame duration can be set to $8,8,10,4,12,8$ or 17,6 milliseconds with the speed-option, speaking speed, in the commandregister.
The duration of each individual speech frame is programmable to be 1, 2, 3 or 5 times the standard-frame duration.

	10	01	00	11	FSO, FS1
00	8,8	10,4	12,8	17,6	ms
01	17,6	20,8	25,6	35,2	ms
10	26,4	31,2	38,4	52,8	ms
11	44,0	52,0	64,0	88,0	ms

FD1, FD0
Table 1. Frame duration as a function of speed-option (FS1, FSO) and frame-duration (FD1, FD0).
The excitation signal is a random noise source for unvoiced sounds and a programmable pulse generator for voiced sounds. Both sources have an amplitude modulator which is updated 8 times in one speechframe by linear interpolation. The pitch is updated every $1 / 8$ of a standard frame.
The excitation signal is filtered with a five formant filter for male speech and a four formant filter for female speech. The formant filter is a cascade of all second-order sections. The control parameters, formantfrequency and formant-bandwidth, are updated eight times per speech frame by linear interpolation. A block diagram of the formant synthesizer is shown in Fig. 3.

The filter output is upsampled to 80 kHz and filtered with a digital low-pass filter. Before the signal is digital to analogue converted (DAC), with an 11-bit switched capacitor DAC, the signal is multiplied with a DAC-amplitude factor. The use of a digital filter means that no external audio filtering is required for low-medium applications and minimal filtering is required for those applications requiring very high quality speech.

Fig. 3 Block diagram of formant synthesizer.

DATA FORMAT

Three types of format are used for data transfer to the synthesizer.

DAC-amplitude factor

The DAC-amplitude factor is one byte, which is used to optimize the digital speech signal to the 11 -bit DAC. It is the first byte after a STOP or a BADSTOP or $V_{D D}$ on. Table 2 indicates the amplitude factor.

byte	factor	dB
01110000	3,5	10,88
10110000	3,25	10,24
00110000	3,0	9,54
11010000	2,75	8,97
01010000	2,5	7,96
10010000	2,25	7,04
00010000	2,0	6,02
11100000	1,75	4,86
01100000	1,5	3,52
10100000	1,25	1,94
00100000	1,0	0,00
11000000	0,75	$-2,50$
0100000	0,5	$-6,02$
1000000	0,25	$-12,04$
0000000	0,0	
11110000	HEX code FO is not allowed as a DAC amplitude	

Table 2 DAC amplitude factor.

Start pitch

The second byte after a STOP or BADSTOP, or $V_{D D}$ on is the start pitch. It is a one byte start value for the on-chip pitch-period generator.

Frame Data

The frame data is a five byte block which contains the filter and source information:

pitch increment/decrement value	5 bits
amplitude	4 bits
frame duration	2 bits
frequency of 1st formant	5 bits
frequency of 2nd formant	5 bits
frequency of 3rd formant	3 bits
frequency of 4th formant	3 bits
frequency of 5 th formant	1 bit
bandwidth of 1st formant	3 bits
bandwidth of 2nd formant	3 bits
bandwidth of 3rd formant	2 bits
bandwidth of 4th formant	2 bits
bandwidth of 5th formant	2 bits

The frame-data bits are organized as shown in Fig. 4.

It is not allowed to set byte 0 to the hexadecimal value 00 .
Fig. 4 Format of frame-date.

CONTROL FORMAT

Command Write

A command write consists of two bytes, and it may occur before a data block. The four bits which can be written are shown in Fig. 5.

Fig. 5 Control write: first byte fixed, second byte control.
FSO, FS1 speed option

FS1	FSO	speech speed	standard-frame duration
0	0	100%	$12,8 \mathrm{~ms}$
0	1	145%	$8,8 \mathrm{~ms}$
1	0	123%	$10,4 \mathrm{~ms}$
1	1	73%	$17,6 \mathrm{~ms}$

$\overline{\mathbf{M}} / \mathrm{F}$, male/female option

$\bar{M} / \mathrm{F}=0$ male quantization table
$=1$ female quantization table
STOP
STOP $=1$ stop; repeat last complete frame with amplitude $=0$
(no excitation signal)
$=0$ if the frame data is not sent within the duration of a half frame, there will be a BADSTOP:

1. $\overline{\text { REO }}=1 \mathrm{STOP}=0$
2. Repeat last frame with amplitude $=0$
3. $B U S Y=0$

Status Read

Three status bits can be read out at any time without a preceding byte (00).
This is shown in Fig. 6.

Fig. 6 Status read.
$\overline{\mathrm{REQ}}=1$ No data required
$=0$ Synthesizer requesting for new data
BUSY $=1$ Busy (an utterance is pronounced)
$=0$ Idle, $\overline{\mathrm{REQ}}$ will set to 1 ; the synthesizer is in STOP or BADSTOP mode
STOP The STOP bit is the same as the stop bit written to the synthesizer during a command write. STOP $=1$, BUSY $=0$ stopped by the user. $S T O P=0, B U S Y=0$ BADSTOP because the data was not sent in time.

After initial power-up the status/command register is set to the following status:
FSO, FS1 = 0 Standard-frame duration of $12,8 \mathrm{~ms}$
$\bar{M} / \mathrm{F}=0$ Male quantization table
STOP $=0$
BUSY $=0$ Idle
$\overline{\mathrm{REO}}=1$ No data required

INTERFACE PROTOCOL

Data can be written to the synthesizer when $\overline{\mathrm{REQ}}=0$ or, when $\overline{\mathrm{REO}}=1$ and $\mathrm{BUSY}=0$. Figure 7 shows the interface protocol of the synthesizer.
In parallel mode the synthesizer is activated by sending the DAC-amplitude factor. In serial mode the DAC-amplitude factor can be sent as soon as the synthesizer is powered-up.
The $I^{2} \mathrm{C}$ transmitter/receiver will then acknowledge. When the request for the pitch-byte occurs the byte must be provided within the duration of a half standard frame. If the byte is not provided in time a BADSTOP will be generated.
During each data write operation, the status bit $\overline{\mathrm{REQ}}$ will be set to ' 1 '.
Within a frame data block, it disappears within a few microseconds, asking for the next byte of that block. If the bytes of frame data are not provided within the time-duration of a half frame, a BADSTOP will be generated.

1^{2} C ADDRESS

On chip there is a $I^{2} \mathrm{C}$ slave receiver/transmitter with the address:

$$
\begin{array}{llllllll}
7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & R / W
\end{array}
$$

POWER UP

The synthesizer will be set to power-up on a parallel-write sequence.
PAR-mode: The input-latches are active so they can receive the first byte
SER-mode: \quad The $I^{2} \mathrm{C}$ transmitter/receiver will not acknowledge until the synthesizer has poweredup. To power up the synthesizer a parallel write sequence (Fig. 9) must be made to the synthesizer by using external logic for the control lines; at least one line must be toggled, $\overline{C E}$, while $\bar{W}=0$ and $\bar{R} / W=1$.
The synthesizer can be set to permanent power-up by hard-wired control pins ($\overline{C E}=0, \bar{R} / W=1, \bar{W}=0$).

POWER DOWN MODE

When BUSY = 0 the synthesizer will be set to power-down. In the power-down mode the status/command register will be retained.
In power-down mode the clock-oscillator is switched off. After initial $V_{D D}$ the synthesizer is in powerdown mode.

HANDLING

All inputs and outputs are protected against electrostatic charge under normal handling conditions.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage	any pin with respect to V_{SS}	VDD	-0,3	7,5	V
Input voltage	any pin with respect to V_{SS}	V_{1}	-0,3	7,5	V
Output voltage	any pin with respect to V_{SS}	V_{0}	-0,3	7,5	V
D.C. input diode current	$\begin{aligned} & \mathrm{V}_{1}<\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{1}>\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & -I_{I K} \\ & I_{I K} \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
D.C. output diode current	$\begin{aligned} & \mathrm{v}_{\mathrm{O}}<\mathrm{v}_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{O}}>\mathrm{v}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & \text {-IOK } \\ & \text { IOK } \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Operating ambient temperature range		Tamb	-40	85	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$T_{\mathrm{amb}}=-45$ to $+85^{\circ} \mathrm{C}$; supply voltage (V_{DD} to $\left.\mathrm{V}_{\mathrm{SS}}\right)=4,5$ to $5,5 \mathrm{~V}$ with respect to V_{SS}, unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage	$V_{\text {DD }}$	4,5	5,0	5,5	V
Supply current	IDD	-	10	-	mA
Standby current	${ }^{\prime} \mathrm{DD}(\mathrm{SB})$	-	200	-	$\mu \mathrm{A}$
Inputs					
$\overline{\mathrm{CE}}, \overline{\mathbf{R}} / \mathbf{W}, \overline{\mathbf{W}}$					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	2,0	-	VDD	V
Input voltage LOW	$V_{\text {IL }}$	0	-	0,8	V
Input leakage current $\mathrm{V}_{\text {in }}=0 \text { to } 5,5 \mathrm{~V}$	IIR	-10	-	10	$\mu \mathrm{A}$
Rise and fall times (note 2)	$\mathrm{trf}^{\text {r }}$	-	-	50	ns
Input capacitance	C_{1}	-	-	7	pF
OSCI					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	2,2	-	$V_{\text {DD }}$	V
Input voltage LOW	$V_{\text {IL }}$	0	-	0,8	V
Input leakage current $V_{\text {in }}=0 \text { to } 5,5 \mathrm{~V}$	IIR	-10	-	10	$\mu \mathrm{A}$
Rise and fall times (note 2)	t_{rf}	-	-	50	ns
Input capacitance	C_{1}	-	-	7	pF
PARALLEL MODE					
Input Characteristics (D0 to D7)					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	2,0	-	$V_{\text {DD }}$	V
Input voltage LOW	$\mathrm{V}_{\text {IL }}$	0	-	0,8	V
Input leakage current $\left(V_{\text {in }}=0 \text { to } 5,5 \mathrm{~V}\right. \text {, }$ output off)	IIR	-10	-	10	$\mu \mathrm{A}$
Input capacitance	C_{1}	-	-	7	pF
Output Characteristics (D5 to D7 only)					
Output voltage HIGH $\left(I_{\mathrm{OH}}=-100 \mu \mathrm{~A}\right)$	V_{OH}	3,5	-	$V_{\text {DD }}$	V
Output voltage LOW ($I_{O L}=3,2 \mathrm{~mA}$)					
Load capacitance	${ }_{C} \mathrm{C}_{\mathrm{L}} \mathrm{OL}$	0	-	0,4 80	$\stackrel{\mathrm{V}}{\mathrm{pF}}$
Rise and fall times (note 3)	t_{rf}	-	-	50	ns
SERIAL MODE					
Input characteristics (SDA and SDL)					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	3,0	-	$V_{\text {DD }}$	V
Input voltage LOW	$V_{\text {IL }}$	0	-	1,5	V
Input leakage current $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=0 \text { to } 5,5 \mathrm{~V}\right. \text {, } \\ & \text { output off) } \end{aligned}$	IIR	-10	-	10	$\mu \mathrm{A}$
Input capacitance	C_{1}	-	-	10	pF

parameter	symbol	min.	typ.	max.	unit
Output Characteristics (SDA only, open drain)					
Output voltage LOW $\left(\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}\right)$	VOL	0	-	0,4	V
OSCILLATOR					
Crystal frequency	${ }^{\text {f }}$ XTAL	-	6	6,1	MHz
$V_{\text {REF }}$				$\underline{\mathrm{V}_{\text {DD }}-1,5}$	
Reference voltage	$V_{\text {REF }}$	1,9	-	1,25	V
Input leakage current (active)	IIR	-	5	-	$\mu \mathrm{A}$
Outputs					
RED, BUSY					
Output voltage HIGH $\left(\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}\right)$	V OH	3,5	-	$V_{\text {DD }}$	V
Output voltage LOW $\left(\mathrm{I}_{\mathrm{QL}}=3,2 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL }}$	0	-	0,4	V
Load capacitance	C_{L}	-	-	80	pF
Rise and fall times (note 3)	${ }^{\text {trf }}$	-	-	50	ns
OUT					
Output voltage Minimum external load	VOUT	$\begin{aligned} & 0,66 \\ & 600 \end{aligned}$	EF	$\underline{1,34 \times V_{\text {REF }}}$	$\begin{aligned} & \mathrm{V} \\ & \Omega \end{aligned}$
Timing characteristics (note 1) (Figs 8 and 9)					
Write enable	${ }^{\text {t }}$ WR	200	-	-	ns
Data set-up for write	${ }^{\text {t }}$ S	150	-	-	ns
Data hold for write	${ }^{\text {t }}$ D ${ }^{\text {d }}$	30	-	-	ns
Read enable	${ }^{\text {t }} \mathrm{RD}$	200	-	-	ns
Data delay for read (note 2)	${ }^{t} \mathrm{DD}$	-	-	150	ns
Data floating for read (note 2)	${ }^{\text {t }}$ F	-	-	150	ns
Control set-up	${ }^{\text {t }} \mathrm{CS}$	0	-	-	ns
Control hold	${ }^{\text {t }} \mathrm{CH}$	0	-	-	ns
REQ new (new byte of the same speech frame)	${ }^{\text {trN }}$	-	\# (≈ 3)		$\mu \mathrm{s}$
REQ Valid	${ }^{t} \mathrm{RV}$	0	-	\#	ns
REQ Hold	${ }^{\text {t }} \mathrm{RH}$	-	250	\#	ns

NOTES TO THE CHARACTERISTICS

1. Timing reference level is $1,5 \mathrm{~V}$; supply $5 \mathrm{~V} \pm 10 \%$; temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
2. Levels greater than 2 V for a ' 1 ' or less than $0,8 \mathrm{~V}$ for a ' 0 ' are reached with a load of one TTL input and 50 pF .
3. Rise and fall times between $0,6 \mathrm{~V}$ and $2,2 \mathrm{~V}$ levels.

Fig. 7 Interface protocol.

Timing diagrams

The control signals $\overline{C E}, \overline{\mathrm{R}} / \mathrm{W}$ and $\overline{\mathrm{W}}$ have been specified to enable easy interface to most microprocessors and microcomputers. For instance with connection to an MAB8048 microcomputer the $\overline{\mathrm{R}} / \mathrm{W}$ and $\overline{\mathrm{W}}$ inputs can be used as the RD and WR strobe inputs.

Typical connection of control signals.

Fig. 8 Read timing.

Fig. 9 Write timing.

Fig. 10 Typical application configuration with parallel interface.

Fig. 11 Typical application configuration with series interface.

Fig. 12 An example of an output configuration.

Fig. 13 Oscillator clock configurations.

UNIVERSAL LCD DRIVER FOR LOW MULTIPLEX RATES

GENERAL DESCRIPTION

The PCF8566 is a peripheral device which interfaces to almost any liquid crystal display (LCD) having low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 24 segments and can easily be cascaded for larger LCD applications. The PCF8566 is compatible with most microprocessors/microcontrollers and communicates via a two-line bidirectional bus ($I^{2} \mathrm{C}$). Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

Features

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or $2 / 3 / 4$ backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ or $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 24 segment drives: up to twelve 8 -segment numeric characters; up to six 15 -segment alphanumeric characters; or any graphics of up to 96 elements
- 24×4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- 3 V to 6 V power supply range
- Low power consumption
- Power-saving mode for extremely low power consumption in battery-operated and telephone applications
- $1^{2} \mathrm{C}$ bus interface
- TTL/CMOS compatible
- Compatible with any 4 -bit, 8 -bit or 16 -bit microprocessors/microcontrollers
- May be cascaded for large LCD applications (up to 1536 segments possible)
- Cascadable with the 40 segment LCD driver PFC8576
- Optimized pinning for single plane wiring in both single and multiple PCF8566 applications
- Space-saving 40-lead plastic mini-pack (VSO-40; SOT-158A)
- No external components required (even in multiple device applications)
- Manufactured in silicon gate CMOS process

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips' $\left.\right|^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips.

PACKAGE OUTLINES

PCF8566T: 40-lead mini-pack; (VSO-40; SOT-158A).
PCF8566P: 40-lead DIL; plastic (SOT-129).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1	SDA	$1^{2} \mathrm{C}$ bus data input/output
2	SCL	$1^{2} \mathrm{C}$ bus clock input/output
3	SYNC	cascade synchronization input/output
4	CLK	external clock input/output
5	$V_{\text {DD }}$	positive supply voltage
6	OSC	oscillator input
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$1^{2} \mathrm{C}$ bus subaddress inputs
10	SAO	$1^{2} \mathrm{C}$ bus slave address bit 0 input
11	$\mathrm{V}_{\text {SS }}$	logic ground
12	$V_{\text {LCD }}$	LCD supply voltage
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	BPO BP2 BP1 BP3	LCD backplane outputs
$\begin{aligned} & 17 \\ & \text { to } \\ & 40 \end{aligned}$	$\begin{aligned} & \text { So } \\ & \text { to } \\ & \text { S23 } \end{aligned}$	LCD segment outputs

FUNCTIONAL DESCRIPTION

The PCF8566 is a versatile peripheral device designed to interface any microprocessor to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 24 segments. The display configurations possible with the PCF8566 depend on the number of active backplane outputs required; a selection of display configurations is given in Table 1.

Table 1 Selection of display configurations

active back- plane outputs	no. of segments	7-segment numeric	14 -segment alphanumeric	dot matrix
4	96	12 digits + 12 indicator symbols	6 characters + 12 indicator symbols	96 dots (4×24)
3	72	9 digits + 9 indicator symbols	4 characters + 16 indicator symbols	72 dots (3×24)
2	48	6 digits + 6 indicator symbols	3 characters + 6 indicator symbols	48 dots (2×24)
1	24	3 digits + 3 indicator symbols	1 characters + 10 indicator symbols	24 dots

All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig. 3. The host microprocessor/microcontroller maintains the two-line $I^{2} \mathrm{C}$ bus communication channel with the PCF8566. The internal oscillator is selected by tying OSC (pin 6) to $\mathrm{V}_{\text {SS }}$. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{LCD}}$) and to the LCD panel chosen for the application.

Fig. 3 Typical system configuration.

Power-on reset

At power-on the PCF8566 resets to a defined starting condition as follows:

1. All backplane outputs are set to $V_{D D}$.
2. All segment outputs are set to $V_{D D}$.
3. The drive mode '1:4 multiplex with $1 / 3$ bias' is selected.
4. Blinking is switched off.
5. Input and output bank selectors are reset (as defined in Table 5).
6. The $I^{2} \mathrm{C}$ bus interface is initialized.
7. The data pointer and the subaddress counter are cleared.

Data transfers on the $I^{2} \mathrm{C}$ bus should be avoided for 1 ms following power-on to allow completion of the reset action.

LCD bias generation

The full-scale LCD voltage ($V_{o p}$) is obtained from $V_{D D}-V_{L C D}$. The LCD voltage may be temperature compensated externally through the $V_{\text {LCD }}$ supply to pin 12. Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between $V_{D D}$ and $V_{L C D}$. The centre resistor can be switched out of circuit to provide a $1 / 2$ bias voltage level for the $1: 2$ multiplex configuration.

LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD according to the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $V_{o p}=V_{D D}-V_{L C D}$ and the resulting discrimination ratios (D), are given in Table 2.

Table 2 Preferred LCD drive modes: summary of characteristics

LCD drive mode	LCD bias configuration	$\frac{V_{\text {off(rms) }}}{V_{\text {op }}}$	$\frac{V_{\text {on }}(r m s)}{V_{\text {op }}}$	$D=\frac{V_{\text {on }}(r m s)}{V_{\text {off }}(r m s)}$
static (1 BP)	static (2 levels)	0	1	∞
$1: 2$ MUX (2 BP)	$1 / 2$ (3 levels)	$\sqrt{2 / 4}=0,354$	$\sqrt{10 / 4=0,791}$	$\sqrt{5}=2,236$
$1: 2$ MUX (2 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{5 / 3=0,745}$	$\sqrt{5}=2,236$
$1: 3$ MUX (3 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{33 / 9}=0,638$	$\sqrt{33} / 3=1,915$
$1: 4$ MUX (4 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{3 / 3}=0,577$	$\sqrt{3}=1,732$

LCD voltage selector (continued)

A practical value for V_{op} is determined by equating $\mathrm{V}_{\mathrm{off}}(\mathrm{rms})$ with a defined LCD threshold voltage ($\mathrm{V}_{\text {th }}$), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $\mathrm{V}_{\mathrm{op}} \gtrsim 3 \mathrm{~V}_{\text {th }}$.
Multiplex drive ratios of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller $(\sqrt{3}=1,732$ for $1: 3$ multiplex or $\sqrt{21} / 3=1,528$ for $1: 4$ multiplex).
The advantage of these modes is a reduction of the LCD full scale voltage $V_{o p}$ as follows:
1 : 3 multiplex ($1 / 2$ bias) : $\mathrm{V}_{\mathrm{op}}=\sqrt{6} \mathrm{~V}_{\text {off }(\mathrm{rms})}=2,449 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
$1: 4$ multiplex ($1 / 2$ bias) : $V_{o p}=4 \sqrt{3} / 3 \mathrm{~V}_{\text {off }}(\mathrm{rms})=2,309 \mathrm{~V}_{\mathrm{off}}(\mathrm{rms})$
These compare with $V_{o p}=3 V_{\text {off }}(\mathrm{rms})$ when $1 / 3$ bias is used.

LCD drive mode waveforms

The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Fig. 4.

$-V_{\text {op }}-$
(b) RESULTANT WAVEFORMS
at lCD SEGMENT

Fig. 4 Static drive mode waveforms: $V_{o p}=V_{D D}-V_{L C D}$.

When two backplanes are provided in the LCD the $1: 2$ multiplex drive mode applies．The PCF8566 allows use of $1 / 2$ or $1 / 3$ bias in this mode as shown in Figs 5 and 6.

Fig． 5 Waveforms for 1：2 multiplex drive mode with $1 / 2$ bias：$V_{o p}=V_{D D}-V_{L C D}$ ．

LCD drive mode waveforms (continued)

$2 \mathrm{~V}_{\mathrm{op}} / 3$
$\mathrm{V}_{\mathrm{op}} / 3$
state 2

$$
\begin{aligned}
& -v_{\mathrm{op}} / 3- \\
& -2 \mathrm{~V}_{\mathrm{op}} / 3
\end{aligned}
$$

$$
-\mathrm{V}_{\mathrm{op}}
$$

(b) RESULTANT WAVEFORMS at lCD SEGMENT

Fig. 6 Waveforms for $1: 2$ multiplex drive mode with $1 / 3$ bias: $V_{o p}=V_{D D}-V_{L C D}$.

The backplane and segment drive wavefront for the $1: 3$ multiplex drive mode (three LCD backplanes) and for the 1:4 multiplex drive mode (four LCD backplanes) are shown in Figs 7 and 8 respectively.

Fig. 7 Waveforms for $1: 3$ multiplex drive mode: $V_{o p}=V_{D D}-V_{L C D}$.

LCD drive mode waveforms (continued)

(a) WAVEFORMS AT DRIVER

(b) RESULTANT WAVEFORMS AT LCD SEGMENT

At any instant (t : :
$V_{\text {state } 1}(t)=$
$V_{S_{n}}(t)-V_{B P O}(t)$
$V_{\text {on(rms) }}=$
$\frac{V_{\mathrm{op}}}{3} \sqrt{3}=0,577 \mathrm{~V}_{\mathrm{op}}$
$V_{\text {state } 2}(t)=$
$V_{S_{n}}(t)-V_{B P 1}(t)$
$V_{\text {off }}(r m s)=$
$\frac{V_{\text {op }}}{3}=0,333 V_{\text {op }}$

Fig. 8 Waveforms for 1:4 multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Oscillator

The internal logic and the LCD drive signals of the PCF8566 or PCF8576 are timed either by the built-in oscillator or from an external clock.

The clock frequency (f CLK) determines the LCD frame frequency and the maximum rate for data reception from the $1^{2} \mathrm{C}$ bus. To allow $\mathrm{I}^{2} \mathrm{C}$ bus transmissions at their maximum data rate of 100 kHz , ${ }^{f}$ CLK should be chosen to be above 125 kHz .
A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a d.c. state.

Internal clock

When the internal oscillator is used, OSC (pin 6) should be tied to VSS. In this case, the output from CLK (pin 4) provides the clock signal for cascaded PCF8566s and PCF8576s in the system.

External clock

The condition for external clock is made by tying OSC (pin 6) to VDD; CLK (pin 4) then becomes the external clock input.

Timing

The timing of the PCF8566 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal $\overline{\text { SYNC maintains the correct timing relationship between the PCF8566s in the }}$ system. The timing also generates the LCD frame frequency which it derives as an integer multiple of the clock frequency (Table 3). The frame frequency is set by MODE SET commands when internal clock is used, or by the frequency applied to pin 4 when external clock is used.

Table 3 LCD frame frequencies

PCF8566 mode	fframe	nominal frame (Hz)
normal mode	f CLK/2880	64
power-saving mode	fCLK/480	64

The ratio between the clock frequency and the LCD frame frequency depends on the mode in which the device is operating. In the power-saving mode the reduction ratio is six times smaller; this allows the clock frequency to be reduced by a factor of six. The reduced clock frequency results in a siçnificant reduction in power dissipation. The lower clock frequency has the disadvantage of increasing the response time when large amounts of display data are transmitted on the $I^{2} \mathrm{C}$ bus. When a device is unable to 'digest' a display data byte before the next one arrives, it holds the SCL line low until the first display data byte is stored. This slows down the transmission rate of the $I^{2} \mathrm{C}$ bus but no data loss occurs.

Display latch

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and one column of the display RAM.

Shift register

The shift register serves to transfer display information from the display RAM to the display latch while previous data are displayed.

Segment outputs

The LCD drive section includes 24 segment outputs S 0 to S 23 (pins 17 to 40) which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with the data resident in the display latch. When less than $\mathbf{2 4}$ segment outputs are required the unused segment outputs should be left open.

Backplane outputs

The LCD drive section includes four backplane outputs BPO to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required the unused outputs can be left open. In the 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the $1: 2$ multiplex drive mode BP0 and BP2, BP1 and BP3 respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

Display RAM

The display RAM is a static 24×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the 'on' state of the corresponding LCD segment; similarly, a logic 0 indicates the 'off' state. There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 24 segments operated with respect to backplane BPO (Fig. 9). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with $\mathrm{BP} 1, \mathrm{BP} 2$ and BP 3 respectively.

Fig. 9 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

When display data are transmitted to the PCF8566 the display bytes received are stored in the display RAM according to the selected LCD drive mode. To illustrate the filling order, an example of a 7 -segment numeric display showing all drive modes is given in Fig. 10; the RAM filling organization depicted applies equally to other LCD types.
With reference to Fig. 10, in the static drive mode the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight transmitted data bits are placed in bits $\mathbf{0}$ and 1 of four successive display RAM addresses. In the $1: 3$ multiplex drive mode these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted. In the 1:4 multiplex drive mode the eight transmitted data bits are placed in bits $0,1,2$ and 3 of two successive display RAM addresses.

Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte is stored starting at the display RAM address indicated by the data pointer thereby observing the filling order shown in Fig. 10. The data pointer is automatically incremented according to the LCD configuration chosen. That is, after each byte is stored, the contents of the data pointer are incremented by eight (static drive mode), by four (1:2 multiplex drive mode), by three (1:3 multiplex drive mode) or by two ($1: 4$ multiplex drive mode).

Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to A0, A1 and A2 (pins 7, 8, and 9). A0, A1 and A2 should be tied to VSS or VDD. The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.
The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are being sent to the display RAM, automatic wrap-over to the next PCF8566 occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character.

Fig. 10 Relationships between LCD layout, drive mode, display RAM filling order

Output bank selector

This selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence. In 1:4 multiplex, all RAM addresses of bit 0 are the first to be selected, these are followed by the contents of bit 1 , bit 2 and then bit 3 . Similarly in $1: 3$ multiplex, bits 0,1 and 2 are selected sequentially. In 1 : 2 multiplex, bits 0 then 1 are selected and, in the static mode, bit 0 is selected.
The PCF8566 includes a RAM bank switching feature in the static and $1: 2$ multiplex drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of bit 0 contents. In the $1: 2$ drive mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

Input bank selector

The input bank selector loads display data into the display RAM according to the selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode or in bits 2 and 3 in $1: 2$ drive mode by using the BANK SELECT command. The input bank selector functions independently of the output bank selector.

Blinker

The display blinking capabilities of the PCF8566 are very versatile. The whole display can be blinked at frequencies selected by the BLINK command. The blinking frequencies are integer multiples of the clock frequency; the ratios between the clock and blinking frequencies depend on the mode in which the device is operating, as shown in Table 4.
An additional feature is for an arbitrary selection of LCD segments to be blinked. This applies to the static and 1:2 LCD drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blinking frequency. This mode can also be specified by the BLINK command.
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.
If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.

Table 4 Blinking frequencies

blinking mode	normal operating mode ratio	power-saving mode ratio	nominal blinking frequency $f_{\text {blink }}(\mathrm{Hz})$
off	-	-	blinking off
2 Hz	$\mathrm{f}_{\mathrm{CLK}} / 92160$	$\mathrm{f}_{\mathrm{CLK}} / 15360$	2
1 Hz	$\mathrm{f}_{\mathrm{CLK}} / 184320$	$\mathrm{f}_{\mathrm{CLK}} / 30720$	1
$0,5 \mathrm{~Hz}$	$\mathrm{f}_{\mathrm{CLK}} / 368640$	$\mathrm{f}_{\mathrm{CLK}} / 61440$	0,5

CHARACTERISTICS OF THE $I^{2} C$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 11 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 12 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is a "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 13 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 14 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$ bus.

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.

PCF8566 I 2 C bus controller

The PCF8566 acts as an $I^{2} \mathrm{C}$ slave receiver. It does not initiate $\mathrm{I}^{2} \mathrm{C}$ bus transfers or transmit data to an $1^{2} \mathrm{C}$ master receiver. The only data output from the PCF8566 are the acknowledge signals of the selected devices. Device selection depends on the $I^{2} \mathrm{C}$ bus slave address, on the transferred command data and on the hardware subaddress.

In single device applications, the hardware subaddress inputs A0, A1 and A2 are normally left open or tied to $V_{\text {SS }}$ which defines the hardware subaddress 0 . In multiple device applications A0, A1 and A2 are tied to $V_{S S}$ or $V_{D D}$ according to a binary coding scheme such that no two devices with a common $1^{2} \mathrm{C}$ slave address have the same hardware subaddress.

In the power-saving mode it is possible that the PCF8566 is not able to keep up with the highest transmission rates when large amounts of display data are transmitted. If this situation occurs, the PCF8566 forces the SCL line LOW until its internal operations are completed. This is known as the 'clock synchronization feature' of the $1^{2} \mathrm{C}$ bus and serves to slow down fast transmitters. Data loss does not occur.

Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

$1^{2} \mathrm{C}$ bus protocol

Two $I^{2} \mathrm{C}$ bus slave addresses (0111110 and 0111111) are reserved for PCF8566. The least-significant bit of the slave address that a PCF8566 will respond to is defined by the level tied at its input SA0 (pin 10). Therefore, two types of PCF8566 can be distinguished on the same $I^{2} \mathrm{C}$ bus which allows:
(a) up to 16 PCF8566s on the same $I^{2} \mathrm{C}$ bus for very large LCD applications;
(b) the use of two types of LCD multiplex on the same $I^{2} \mathrm{C}$ bus.

The $I^{2} \mathrm{C}$ bus protocol is shown in Fig. 15. The sequence is initiated with a start condition (S) from the $1^{2} \mathrm{C}$ bus master which is followed by one of the two PCF8566 slave addresses available. All PCF8566s with the corresponding SAO level acknowledge in parallel the slave address but all PCF8566s with the alternative SAO level ignore the whole $I^{2} \mathrm{C}$ bus transfer. After acknowledgement, one or more command bytes (m) follow which define the status of the addressed PCF8566s. The last command byte is tagged with a cleared most-significant bit, the continuation bit C. The command bytes are also acknowledged by all addressed PCF8566s on the bus.

After the last command byte, a series of display data bytes (n) may follow. These display data bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data are directed to the intended PCF8566 device. The acknowledgement after each byte is made only by the (A0, A1, A2) addressed PCF8566. After the last display byte, the $\mathrm{I}^{2} \mathrm{C}$ bus master issues a stop condition (P).

Fig. $15 I^{2} \mathrm{C}$ bus protocol.

Command decoder

The command decoder identifies command bytes that arrive on the $I^{2} \mathrm{C}$ bus. All available commands carry a continuation bit C in their most-significant bit position (Fig. 16). When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command. If the bit is reset, it indicates the last command byte of the transfer. Further bytes will be regarded as display data.
$0=$ last command
1 = commands continue

7291471

Fig. 16 General format of command byte.
The five commands available to the PCF8566 are defined in Table 5.

Command decoder (continued)
Table 5 Definition of PCF8566 commands

Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the PCF8566 and coordinates their effects. The controller is also responsible for loading display data into the display RAM as required by the filling order.

Cascaded operation

In large display configurations, up to 16 PCF8566s can be distinguished on the same $I^{2} \mathrm{C}$ bus by using the 3-bit hardware subaddress ($\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$) and the programmable $I^{2} \mathrm{C}$ slave address (SAO). It is also possible to cascade up to 16 PCF8566s. When cascaded, several PCF8566s are synchronized so that they can share the backplane signals from one of the devices in the cascade. Such an arrangement is costeffective in large LCD applications since the backplane outputs of only one device need to be throughplated to the backplane electrodes of the display. The other PCF8566s of the cascade contribute additional segment outputs but their backplane outputs are left open (Fig. 17).
The $\overline{S Y N C}$ line is provided to maintain the correct synchronization between all cascaded PCF8566s. This synchronization is guaranteed after the power-on reset. The only time that $\overline{\text { SYNC }}$ is likely to be needed is if synchronization is accidently lost (e.g. by noise in adverse electrical environments; or by the definition of a multiplex mode when PCF8566s with differing SAO levels are cascaded). $\overline{\text { SYNC }}$ is organized as an input/output pin; the output section being realized as an open-drain driver with an internal pull-up resistor. A PCF8566 asserts the $\overline{\text { SYNC }}$ line at the onset of its last active backplane signal and monitors the $\overline{S Y N C}$ line at all other times. Should synchronization in the cascade be lost, it will be restored by the first PCF8566 to assert $\overline{S Y N C}$. The timing relationships between the backplane waveforms and the $\overline{S Y N C}$ signal for the various drive modes of the PCF8576 are shown in Fig. 18. The waveforms are identical with the parent device PCF8576. Casadability between PCF8566s and PCF8576s is possible, giving cost effective LCD applications.

Fig. 17 Cascaded PCF8566 configuration.

DEVELOPMENT DATA

Fig. 18 Synchronization of the cascade for the various PCF8566 drive modes.

For single plane wiring of PCF8566s, see section "APPLICATION INFORMATION".

PCF8566

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range; see note
LCD supply voltage range Input voltage range (SCL;SDA;

A0 to A2; OSC; CLK; SYNC; SAO)
Output voltage range (S 0 to S 23 ; BPO to BP3)
D.C. input current
D.C. output current
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\text {LCD }}$ current
Power dissipation per package
Power dissipation per output
Storage temperature range
$V_{D D}$
$V_{\text {LCD }}$
V_{O}
± 1
± 10
$\pm I_{\text {DD }}, \pm I_{S S}, I_{\text {LCD }}$
$P_{\text {tot }}$
P_{O}
$T_{\text {stg }}$

$$
-0,5 \text { to }+7 \mathrm{~V}
$$

$$
V_{D D}-7 \text { to } V_{D D} V
$$

$$
V_{S S}^{-0,5} \text { to } V_{D D}+0,5 \mathrm{~V}
$$

$$
V_{L_{C D}--0,5} \text { to } V_{D D}+0,5 \mathrm{~V}
$$

max.

$$
20 \mathrm{~mA}
$$

max. 25 mA max. 50 mA max. 400 mW
max. 100 mW -65 to $+150{ }^{\circ} \mathrm{C}$

Note

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is advised to take handling precautions appropriate to handling MOS devices (see 'Handling MOS devices').

D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=3$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V}$;
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	$V_{\text {DD }}$	3	-	6	V
LCD supply voltage	$V_{\text {LCD }}$	V ${ }_{\text {D }}$-6	-	$V_{\text {DD }}-3$	V
Operating supply current (normal mode) at f CLK $=200 \mathrm{kHz}$ (note 1)	IDD	-	-	180	$\mu \mathrm{A}$
Power-saving mode supply current at $\mathrm{V}_{\mathrm{DD}}=3,5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; $\mathrm{f}_{\mathrm{CLK}}=35 \mathrm{kHz}$; A0, A1 and A2 tied to V_{SS} (note 1)	ILP	-	-	60	$\mu \mathrm{A}$

DEVELOPMENT DATA

parameter	symbol	min.	typ.	max.	unit
Logic					
Input voltage LOW	$\mathrm{V}_{\text {IL }}$	VSS	-	0,3 VDD	V
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	0,7 V ${ }_{\text {DD }}$	-	VDD	V
Output voltage LOW at $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	V_{OL}	-	-	0,05	V
Output voltage HIGH at $\mathrm{I}^{\mathrm{O}}=0 \mathrm{~mA}$	V_{OH}	VDD $-0,05$	-	-	V
Output current LOW (CLK, $\overline{\text { SYNC }})$ at $\mathrm{V}_{\mathrm{OL}}=1,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	IOL1	1	-	-	mA
Output current HIGH (CLK) at $\mathrm{V}_{\mathrm{OH}}=4,0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	IOH	-	-	-1	mA
Output current LOW (SDA; SCL) at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1OL2	3	-	-	mA
Leakage current (SAO, CLK, OSC, AO, $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{SCL}, \mathrm{SDA}$) at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$	$\pm 1 \mathrm{~L}$	-	-	1	$\mu \mathrm{A}$
Pull-up resistor ($\overline{\text { SYNC }}$)	RSYnC	15	25	60	$k \Omega$
Power-on reset level (note 2)	$\mathrm{V}_{\text {REF }}$	-	1,3	1,8	V
Tolerable spike width on bus	$\mathrm{t}_{\text {sw }}$	-	-	100	ns
Input capacitance (note 3)	C_{1}	-	-	7	pF
LCD outputs					
D.C. voltage component (BPO to BP3) at $\mathrm{C}_{\mathrm{BP}}=35 \mathrm{nF}$	$\pm \mathrm{V}_{\text {BP }}$	-	20	-	mV
D.C. voltage component (SO to S 23) at $\mathrm{C}_{\mathrm{S}}=5 \mathrm{nF}$	$\pm \mathrm{V}_{\text {S }}$	-	20	-	mV
Output impedance (BPO to BP3) at $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$ (note 4)	$R_{\text {BP }}$	-	-	5	k Ω
Output impedance (S 0 to S 23) at $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$ (note 4)	RS	-	-	7,0	k Ω

A.C. CHARACTERISTICS (note 5)

$V_{S S}=0 \mathrm{~V} ; V_{D D}=3$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V}$;
$T_{a m b}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Oscillator frequency (normal mode) (note 6)	${ }^{\text {f CLK }}$	125	200	315	kHz
Oscillator frequency (power-saving mode) at $\mathrm{V}_{\mathrm{DD}}=3,5 \mathrm{~V}$	${ }^{\text {f CLKLP }}$	21	31	48	kHz
CLK HIGH time	${ }^{\text {t CLKH }}$	1	-	-	$\mu \mathrm{s}$
CLK LOW time	${ }^{\text {t CLKL }}$	1	-	-	$\mu \mathrm{s}$
$\overline{\text { SYNC propagation delay }}$	tPSYNC	-	-	400	ns
$\overline{\text { SYNC LOW time }}$	${ }^{\text {t SYNCL }}$	1	-	-	$\mu \mathrm{s}$
Driver delays with test loads at $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	tPLCD	-	-	30	$\mu \mathrm{s}$
$1^{2} \mathbf{C}$ bus					
Bus free time	${ }_{\text {t }}$ BUF	4,7	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	4	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	4,7	-	-	$\mu \mathrm{s}$
SCL HIGH time	thigh	4	-	-	$\mu \mathrm{s}$
Start condition set-up time (repeated start code only)	tSU; STA	4,7	-	-	$\mu \mathrm{s}$
Data hold time	thD; DAT	0	-	-	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {tSU }}$ [DAT	250	-	-	ns
Rise time	${ }^{\text {tR }}$	-	-	1	$\mu \mathrm{s}$
Fall time	${ }^{\text {t }}$ F	-	-	300	ns
Stop condition set-up time	${ }^{\text {tsu; STO }}$	4,7	-	-	$\mu \mathrm{s}$

Notes to characteristics

1. Outputs open; inputs at $V_{S S}$ or VDD; external clock with 50% duty factor; $1^{2} \mathrm{C}$ bus inactive.
2. Resets all logic when $V_{D D}<V_{R E F}$.
3. Periodically sampled, not 100% tested.
4. Outputs measured one at a time.
5. All timing values referred to $V_{I H}$ and $V_{\text {IL }}$ levels with an input voltage swing of $V_{S S}$ to VDD.
6. At $\mathrm{f}^{2} \mathrm{CLK}<125 \mathrm{kHz}, 1^{2} \mathrm{C}$ bus maximum transmission speed is derated.

Fig. 19 Test loads.

Fig. 20 Driver timing waveforms.

Fig. $21 I^{2} \mathrm{C}$ bus timing waveforms.

Fig. 23 Typical characteristics of LCD outputs.

256×8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCF8570 is a low power 2048-bit static CMOS RAM organized as 256 words by 8 -bits. Addresses and data are transferred serially via a two-line bidirectional bus $\left(I^{2} \mathrm{C}\right)$. The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1, A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltage
- Low data retention voltage
- Low standby current
- Power saving mode
$2,5 \mathrm{~V}$ to 6 V
min. $1,0 \mathrm{~V}$
max. $15 \mu \mathrm{~A}$
typ. 50 nA
- Serial input/output bus $\left(1^{2} \mathrm{C}\right)$
- Address by 3 hardware address pins
- Automatic word address incrementing
- 8-lead DIL package

Applications

- Telephony
- Radio and television
- Video cassette recorder
- General purpose

RAM expansion for stored numbers in repertory dialling (e.g. PCD3343 applications) channel presets

RAM expansion for the microcontroller families MAB8400 and PCF $84 C 00$

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8570P: 8-lead DIL; plastic (SOT-97AE).
PCF8570T: 8-lead mini-pack plastic (SO-8L; SOT-176).

PINNING

1 to 3	A0 to A2	address inputs
4	VSS	negative supply
5	SDA	serial data line $1_{12} \mathrm{C}$ bus
6	SCL	serial clock line $\int^{12} \mathrm{C}$ bus
7	TEST	test input for test speed-up; must be connected to $\mathrm{V}_{\text {SS }}$ when not in use (power saving mode, see Figs 14 and 15)
8	$V_{\text {DD }}$	positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range (pin 8)
Voltage range on any input
D.C. input current (any input)
D.C. output current (any output)

Supply current (pin 4 or pin 8)
Power dissipation per package
Power dissipation per output
Storage temperature range
Operating ambient temperature range

$V_{D D}$	$-0,8$ to $+8,0 \mathrm{~V}$	
V_{I}	$-0,8$ to $V_{D D}+0,8 \mathrm{~V}$	
$\pm I_{I}$	max.	10 mA
$\pm I_{\mathrm{O}}$	max.	10 mA
$\pm I_{D D} ; I_{S S}$	max.	50 mA
$P_{\text {tot }}$	max.	300 mW
P	max.	50 mW
$T_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$	
$T_{\text {amb }}$	-40 to $+85^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage	$\mathrm{V}_{\text {DD }}$	2,5	-	6	V
Supply current at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}					
operating at ${ }^{\text {f }}$ SCL $=100 \mathrm{kHz}$	IDD	-	-	200	$\mu \mathrm{A}$
standby at ${ }^{\text {f }} \mathrm{SCL}=0 \mathrm{~Hz}$	IDDO	-	-	15	$\mu \mathrm{A}$
standby at $\mathrm{T}_{\text {amb }}=-25$ to $+70^{\circ} \mathrm{C}$	IDDO	-	-	5	$\mu \mathrm{A}$
Power-on reset voltage level*	$V^{\text {POR }}$	1,5	1,9	2,3	V
Inputs; input/output SDA					
Input voltage LOW**	$V_{\text {IL }}$	-0,8	-	0,3 $\times V_{\text {DD }}$	V
Input voltage HIGH**	$\mathrm{V}_{\text {IH }}$	$0,7 \times V_{\text {DD }}$	-	$V_{D D}+0,8$	V
Output current LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {I OL }}$	3	-	-	mA
Output leakage current HIGH at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	${ }^{\mathrm{I} O H}$	-	-	250	nA
Input leakage current at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	± 1	-	-	250	nA
Clock frequency (Fig. 7)	${ }^{\text {f SCL }}$	0	-	100	kHz
Input capacitance (SCL, SDA) at $V_{I}=V_{S S}$	C_{1}	-	-	7	pF
Tolerable spike width on bus	${ }^{\text {t }}$ W	-	-	100	ns
LOW $\mathrm{V}_{\text {DD }}$ data retention					
Supply voltage for data retention	$V_{\text {DDR }}$	1	-	6	V
Supply current at $\mathrm{V}_{\text {DDR }}=1 \mathrm{~V}$	IDDR	-	-	5	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply current at } \mathrm{V}_{\mathrm{DDR}}=1 \mathrm{~V} ; \\ & T_{\text {amb }}=-25 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	IDDR	-	-	2	$\mu \mathrm{A}$
Power saving mode (Figs 14 and 15)					
Supply current at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; TEST $=V_{\text {DDR }}$	I DDR	-	50	400	nA

* The power-on reset circuit resets the $I^{2} \mathrm{C}$ bus logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
** If the input voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow; this current must not exceed $\pm 0,5 \mathrm{~mA}$.

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The I ${ }^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 5 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $I^{2} \mathrm{C}$ bus.

Timing specifications

Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The device operates in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 7.

Fig. 7 Timing of the high-speed mode.
Where:

tBuF	$t \geqslant \mathrm{t}_{\text {LOWmin }}$	The minimum time the bus must be free before a new transmission can start
thD; STA	$t \geqslant t$ HIGHmin	Start condition hold time
${ }^{\text {t LOWmin }}$	$4,7 \mu \mathrm{~s}$	Clock LOW period
thighmin	$4 \mu \mathrm{~s}$	Clock HIGH period
${ }^{\text {t SU; STA }}$	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
thD; DAT	$t \geqslant 0 \mu \mathrm{~s}$	Data hold time
${ }^{\text {t }}$ U ; DAT	$\mathrm{t} \geqslant 250 \mathrm{~ns}$	Data set-up time
${ }^{\text {t }}$ R	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
${ }^{\text {t }}$ F	$\mathrm{t} \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
tSU; STO	$t \geqslant t_{\text {LOWmin }}$	Stop condition set-up time

Note

All the timing values refer to V_{IH} and V_{IL} levels with a voltage swing of V_{SS} to V_{DD}.

Fig. 8 Complete data transfer in the high-speed mode.
Where:

Clock t LOWmin	$4,7 \mu \mathrm{~s}$
tHIGHmin	$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1:1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition
must be provided by the master

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of 365μ s. The mark-to-space ratio is $1: 3$ LOW-to-HIGH. Detailed timing is shown in Fig. 9.

Fig. 9 Timing of the low-speed mode.

Timing specifications (continued)
Where:

$t_{\text {BUF }}$	$t \geqslant 105 \mu \mathrm{~s}$ ($\mathrm{t}_{\text {LOWmin }}$)
tHD; STA	$t \geqslant 365 \mu$ s (t HIGHmin)
t LOW	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
thigh	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
tSU; STA	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$ *
thD; DAT	$\mathrm{t} \geqslant 0 \mu \mathrm{~s}$
${ }^{\text {t }}$ U ${ }^{\text {; DAT }}$	$\mathrm{t} \geqslant 250 \mathrm{~ns}$
t_{R}	$\mathrm{t} \leqslant 1 \mu \mathrm{~s}$
${ }^{\text {t }}$	$\mathrm{t} \leqslant 300 \mathrm{~ns}$
tsu; STO	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$

Note

All the timing values refer to V_{IH} and V_{IL} levels with a voltage swing of V_{SS} to V_{DD}. For definitions see high-speed mode.

Fig. 10 Complete data transfer in the low-speed mode.
Where:

Clock tLOWmin	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
t HIGHmin	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
Mark-to-space ratio	$1: 3$ (LOW-to-HIGH)
Start byte	00000001
Max. number of bytes	6
Premature termination of transfer	not allowed
Acknowledge clock bit	must be provided by master

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook "ICs for digital systems in radio, audio and video equipment".

* Only valid for repeated start code.

Bus protocol

Before any data is transmitted on the $I^{2} \mathrm{C}$ bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The $I^{2} \mathrm{C}$ bus configuration for different PCF8570 READ and WRITE cycles is shown in Fig. 11.

Fig. 11(a) Master transmits to slave receiver (WRITE mode).

Fig. 11(b) Master reads after setting word address (WRITE word address; READ data).

Fig. 11(c) Master reads slave immediately after first byte (READ mode).

APPLICATION INFORMATION

The PCF8570 slave address has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig. 12).

Fig. 12 PCF8570 address.

Fig. 13 PCF8570 application diagram.

Note

$A 0, A 1$, and $A 2$ inputs must be connected to $V_{D D}$ or $V_{S S}$ but not left open.

POWER SAVING MODE

With the condition TEST = V DDR, the PCF8570 goes into the power saving mode and the $1^{2} \mathrm{C}$ bus logic is reset.

Where:
${ }^{\mathrm{t}} \mathrm{SU} \geqslant 4 \mu \mathrm{~s}$
Fig. 14 Timing for power saving mode.
$\mathrm{t}_{\mathrm{HD}} \geqslant 4 \mu \mathrm{~s}$

Fig. 15 Application example for power saving mode.
Note to Fig. 15

1. In the operating mode, $\mathrm{TEST}=0$.
2. In the power saving mode, TEST $=\mathrm{V}_{\text {DDR }}$.

Purchase of Philips' $1^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specification defined by Philips.

PCF8571

128×8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCF8571 is a low power 1024 -bit static CMOS RAM organized as 128 words by 8 -bits. Addresses and data are transferred serially via a two-line bidirectional bus ($I^{2} \mathrm{C}$). The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1, A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltage
- Low data retention voltage
- Low standby current
- Power saving mode

Applications

- Telephony
- Radio and television
- Video cassette recorder
- General purpose
$2,5 \mathrm{~V}$ to 6 V
min. $1,0 \mathrm{~V}$
max. $5 \mu \mathrm{~A}$
typ. 50 nA

RAM expansion for stored numbers in repertory dialling (e.g. PCD3340 applications) channel presets

RAM expansion for the microcomputer families MAB8400 and PCF84C00

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8571P : 8-lead DIL; plastic (SOT-97AE).
PCF8571T : 8-lead mini-pack (SO-8L;SOT-176).

PINNING

1 to 3	A0 to A2	address inputs
4	$V_{\text {SS }}$	negative supply
5	SDA	serial data line $\} 1^{2} \mathrm{C}$ bus
6	SCL	serial clock line $\int^{12} \mathrm{C}$ bus
7	TEST	test input for test speed-up; must be connected to V_{SS} when not in use (power saving mode, see Fig. 14 and 15)
8	$V_{\text {DD }}$	positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range (pin 8)
Voltage range on any input
D.C. input current (any input)
D.C. output current (any output)

Supply current (pin 4 or pin 8)
Power dissipation per package
Power dissipation per output
Storage temperature range
Operating temperature range

$V_{\text {DD }}$	$-0,8$ to $+8,0$	
V_{1}	-0,8	
± 11	max.	
$\pm \mathrm{l}_{0}$	max.	
$\pm \mathrm{IDD}^{\text {I }}$ SS	max.	
$\mathrm{P}_{\text {tot }}$	max.	300
P	max.	50
$\mathrm{T}_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$	
Tamb	-40 to $+85^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
SUPPLY					
Supply voltage	$\mathrm{V}_{\text {DD }}$	2,5	-	6	v
$\begin{aligned} & \text { Supply current } \\ & V_{I}=V_{S S} \text { or } V_{D D} \\ & \text { operating at } f S C L=100 \mathrm{kHz} ; \\ & \text { standby at } f S C L=0 \mathrm{~Hz} \\ & \text { standby at } T_{a m b}=-25 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$					
	IDD	-	-	200	$\mu \mathrm{A}$
	IDDO	_	-	15	$\mu \mathrm{A}$
	IDDO	-	-	5	$\mu \mathrm{A}$
Power-on reset voltage level at $\mathrm{V}_{\mathrm{SCL}}=\mathrm{V}_{\mathrm{SDA}}=\mathrm{V}_{\mathrm{DD}}$	$V_{\text {POR }}$	1,5	1,9	2,3	V
Inputs; input/output SDA					
Input voltage LOW**	$\mathrm{V}_{\text {IL }}$	-0,8	-	$0,3 \times V_{\text {DD }}$	v
Input voltage HIGH**	$\mathrm{V}_{\text {IH }}$	$0,7 \times V_{\text {DD }}$	-	$V_{D D}+0,8$	V
Output current LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {IOL }}$	3	-	-	mA
Output leakage current HIGH at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	${ }^{\mathrm{O}} \mathrm{OH}$	-	-	250	nA
Input leakage current at $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	± 11	-	-	250	nA
Clock frequency (Fig. 7)	${ }^{\text {f SCL }}$	0	-	100	kHz
Input capacitance (SCL, SDA) at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$	C_{1}	-	-	7	pF
Tolerable spike width on bus	${ }^{\text {tSW }}$	-	-	100	ns
LOW $V_{\text {DD }}$ data retention					
Supply voltage for data retention	$V_{\text {DDR }}$	1	-	6	V
Supply current at $\mathrm{V}_{\text {DDR }}=1 \mathrm{~V}$	'DDR	-	-	5	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply current at } V_{D D R}=1 \mathrm{~V} ; \\ & T_{a m b}=-25 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	IDDR	-	-	2	$\mu \mathrm{A}$
Power saving mode (Fig. 14)					
Supply current at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; TEST $=\mathrm{V}_{\mathrm{DDR}}$	${ }^{\prime}$ DDS	-	50	200	nA

* The power-on reset circuit resets the $I^{2} \mathrm{C}$ bus logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
** If the input voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow: this current must not exceed $\pm 0,5 \mathrm{~mA}$.

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 5 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $I^{2} \mathrm{C}$ bus.

Timing specifications
Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The PCF8571 operates in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 7.

Fig. 7 Timing of the high-speed mode.
Where:

tBUF	$t \geqslant t_{\text {LOWmin }}$	The minimum time the bus must be free before a new transmission can start
thD; STA	$t \geqslant t_{\text {HIGHmin }}$	Start condition hold time
${ }^{\text {t LOWmin }}$	$4,7 \mu \mathrm{~s}$	Clock LOW period
$\mathrm{t}_{\text {HIGHmin }}$	$4 \mu \mathrm{~s}$	Clock HIGH period
${ }^{\text {t SU; STA }}$	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
thD; DAT	$t \geqslant 0 \mu \mathrm{~s}$	Data hold time
${ }^{\text {t }}$ UU; DAT	$t \geqslant 250 \mathrm{~ns}$	Data set-up time
tr_{r}	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
tf_{f}	$t \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
${ }^{\text {tSU }}$; STO	$t \geqslant \mathrm{t}_{\text {LOWmin }}$	Stop condition set-up time

Note

All the timing values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{S S}$ to $V_{D D}$.

Fig. 8 Complete data transfer in the high-speed mode.
Where:

Clock t LOWmin	$4,7 \mu \mathrm{~s}$
tHIGHmin	$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1: 1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition
must be provided by the master

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of 365μ s. The mark-to-space ratio is $1: 3$ LOW-to-HIGH. Detailed timing is shown in Fig. 9.

Fig. 9 Timing of the low-speed mode.

Timing specifications (continued)
Where:

$t_{\text {BUF }}$	$t \geqslant 105 \mu \mathrm{~s}$ (L LOWmin)
${ }^{\text {tHD }}$; STA	$\mathrm{t} \geqslant 365 \mu \mathrm{~s}$ ($\mathrm{t}_{\text {HIGHmin }}$)
t LOW	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
thigh	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
tSU; STA	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$ *
${ }^{\text {thD }}$; DAT	$\mathrm{t} \geqslant \mathrm{0} \mu \mathrm{s}$
${ }^{\text {t }}$ SU; DAT	$\mathrm{t} \geqslant 250 \mathrm{~ns}$
t_{r}	$\mathrm{t} \leqslant 1 \mu \mathrm{~s}$
t_{f}	$\mathrm{t} \leqslant 300 \mathrm{~ns}$
tSU; STO	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$

Note

All the timing values refer to $\mathrm{V}_{I H}$ and V_{IL} levels with a voltage swing of V_{SS} to V_{DD}. For definitions see high-speed mode.

Fig. 10 Complete data transfer in the low-speed mode.
Where:

Clock tLOWmin
${ }^{t}$ HIGHmin
Mark-to-space ratio
Start byte
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit
$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
1 : 3 (LOW-to-HIGH)
00000001
6
not allowed
must be provided by master

Note

The general characteristics and detailed specification of the $\mathrm{I}^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook "ICs for digital systems in radio, audio and video equipment".

[^7]
Bus protocol

Before any data is transmitted on the $I^{2} \mathrm{C}$ bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The $I^{2} \mathrm{C}$ bus configuration for different PCF8571 READ and WRITE cycles is shown in Fig. 11.

Fig. 11(a) Master transmits to slave receiver (WRITE mode).

Fig. 11(b) Master reads after setting word address (WRITE word address; READ data).

Fig. 11(c) Master reads slave immediately after first byte (READ mode).

Note

X $=$ don't care bit.

APPLICATION INFORMATION

The PCF8571 slave address has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig. 12).

Fig. 12 PCF8571 address.

Fig. 13 PCF8571 application diagram.

Note

A0, A1, and A2 inputs must be connected to $V_{\text {DD }}$ or $V_{S S}$ but not left open.

POWER SAVING MODE

With the condition TEST $=V_{\text {DDR }}$, the PCF8571 goes into the power saving mode and $I^{2} \mathrm{C}$ bus logic is reset.

Where:
${ }^{\mathrm{t}} \mathrm{SU} \geqslant 4 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{HD}} \geqslant 4 \mu \mathrm{~s}$
Fig. 14 Timing for power saving mode.

Fig. 15 Application example for power saving mode.

Note

1. In the operating mode, TEST $=0$.
2. In the power saving mode, TEST $=\mathrm{V}_{\text {DDR }}$.

Purchase of Philips' $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

CLOCK/CALENDAR WITH SERIAL I/O

GENERAL DESCRIPTION

The PCF8573 is a low threshold, monolithic CMOS circuit that functions as a real time clock/calendar in the Inter IC $\left(I^{2} \mathrm{C}\right)$ bus-oriented microcomputer systems. The device includes an addressable time counter and an addressable alarm register, both for minutes, hours, days and months. Three special control/status flags, COMP, POWF and NODA, are also available. Information is transferred serially via a two line bidirectional bus $\left(I^{2} \mathrm{C}\right)$. Back-up for the clock during supply interruptions is provided by a $1,2 \mathrm{~V}$ nickel cadmium battery. The time base is generated from a $32,768 \mathrm{kHz}$ crystal-controlled oscillator.

Features

- Serial input/output bus ($\mathrm{I}^{2} \mathrm{C}$) interface for minutes, hours, days and months
- Additional pulse outputs for seconds and minutes
- Alarm register for presetting a time for alarm or remote switching functions
- Battery back-up for clock function during supply interruption
- Crystal oscillator control ($32,768 \mathrm{kHz}$)

QUICK REFERENCE DATA

Supply voltage range (clock)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	1,1 to $6,0 \mathrm{~V}$	
Supply voltage range ($1^{2} \mathrm{C}$ interface)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$	2,5 to $6,0 \mathrm{~V}$	
Crystal oscillator frequency	$\mathrm{f}_{\mathrm{osc}}$	typ.	$32,768 \mathrm{kHz}$

PACKAGE OUTLINES

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1	AO	address input
2	A1	address input
3	COMP	comparator output
4	SDA	serial data line
5	SCL	serial clock line
6	EXTPF	enable power fail flag input
7	PFIN	power fail flag input
8	VSS2	negative supply 2 (I ${ }^{2} \mathrm{C}$ interface)
9	MIN	one pulse per minute output
10	SEC	one pulse per second output
11	FSET	oscillator tuning output
12	TEST	test input; must be connected
		to VSS2 when not in use
13	OSCI	oscillator input
14	OSCO	oscillator input/output
15	VSS1	negative supply 1 (clock)
16	VDD	common positive supply

FUNCTIONAL DESCRIPTION

Oscillator

The PCF8573 has an integrated crystal-controlled oscillator which provides the timebase for the prescaler. The frequency is determined by a single $32,768 \mathrm{kHz}$ crystal connected between OSCl and OSCO. A trimmer is connected between OSCI and VDD.

Prescaler and time counter

The prescaler provides a 128 Hz signal at the FSET output for fine adjustment of the crystal oscillator without loading it. The prescaler also generates a pulse once a second to advance the seconds counter. The carry of the prescaler and the seconds counter are available at the outputs SEC, MIN respectively, and are also readable via the $I^{2} \mathrm{C}$ bus. The mark-to-space ratio of both signals is $1: 1$. The time counter is advanced one count by the falling edge of output signal MIN. A transition from HIGH to LOW of output signal SEC triggers MIN to change state. The time counter counts minutes, hours, days and months, and provides a full calendar function which needs to be corrected once every four years. Cycle lengths are shown in Table 1.

Table 1 Cycle length of the time counter

unit	number of bits	counting cycle	carry for following unit	content of month counter
minutes hours days months	7 6 6 5	00 to 59 00 to 23 01 to 28 01 to 30 01 to 31 01 to 12	$\begin{aligned} 59 & \longrightarrow 00 \\ 23 & \rightarrow 00 \\ 28 & \longrightarrow 01 \\ \text { or } 29 & \rightarrow 01 \\ 30 & \longrightarrow 01 \\ 31 & \rightarrow 01 \\ 12 & \longrightarrow 01 \end{aligned}$	$\begin{aligned} & 2 \text { (see note) } \\ & 4,6,9,11 \\ & 1,3,5,7,8,10,12 \end{aligned}$

Note: Day counter may be set to 29 by a write transmission with EXECUTE ADDRESS.

Alarm register

The alarm register is a 24 -bit memory. It stores the time-point for the next setting of the status flag COMP. Details of writing and reading of the alarm register are included in the description of the characteristics of the $I^{2} \mathrm{C}$ bus.

Comparator

The comparator compares the contents of the alarm register and the time counter, each with a length of 24 bits. When these contents are equal the flag COMP will be set 4 ms after the falling edge of MIN. This set condition occurs once at the beginning of each minute. This information is latched, but can be cleared by an instruction via the $I^{2} \mathrm{C}$ bus. A clear instruction may be transmitted immediately after the flag is set and will be executed. Flag COMP information is also available at the output COMP. The comparison may be based upon hours and minutes only if the internal flag NODA (no date) is set. Flag NODA can be set and cleared by separate instructions via the $I^{2} \mathrm{C}$ bus, but it is undefined until the first set or clear instruction has been received. Both COMP and NODA flags are readable via the $1^{2} \mathrm{C}$ bus.

FUNCTIONAL DESCRIPTION (continued)

Power on/power fail detection

If the voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$ falls below a certain value the operation of the clock becomes undefined. Thus a warning signal is required to indicate that faultless operation of the clock is not guaranteed. This information is latched in a flag called POWF (Power Fail) and remains latched after restoration of the correct supply voltage until a write procedure with EXECUTE ADDRESS has been received. The flag POWF can be set by an internally generated power fail level-discriminator signal for application with ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$) greater than V_{TH}, or by an externally generated power fail signal for application with ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$) less than $\mathrm{V}_{\mathrm{TH} 1}$. The external signal must be applied to the input PFIN. The input stage operates with signals of any slow rise and fall times. Internally or externally controlled POWF can be selected by input EXTPF as shown in Table 2.

Table 2 Power fail selection

EXTPF	PFIN	function
0	0	power fail is sensed internally
0	1	test mode
1	0	power fail is sensed externally
1	1	no power fail sensed

0 : connected to $\mathrm{V}_{\mathrm{SS} 1}$ (LOW)
1 : connected to $\mathrm{V}_{\text {DD }}$ (HIGH)
The external power fail control operates by absence of the $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ supply. Therefore the input levels applied to PFIN and EXTPF must be within the range of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS1 }}$. A LOW level at PFIN indicates a power fail. POWF is readable via the $I^{2} \mathrm{C}$ bus. A power on reset for the $I^{2} \mathrm{C}$ bus control is generated on-chip when the supply voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$ is less than $\mathrm{V}_{\mathrm{TH} 2}$.

Interface level shifters

The level shifters adjust the 5 V operating voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$) of the microcontroller to the internal supply voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$) of the clock/calendar. The oscillator and counter are not influenced by the $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$ supply voltage. If the voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$ is absent $\left(\mathrm{V}_{\mathrm{SS} 2}=\mathrm{V}_{\mathrm{DD}}\right)$ the output signal of the level shifter is HIGH because $V_{D D}$ is the common node of the $V_{D D}-V_{S S 2}$ and the $V_{D D}-V_{S S 1}$ supplies. Because the level shifters invert the input signal, the internal circuit behaves as if a LOW signal is present on the inputs. FSET, SEC, MIN and COMP are CMOS push-pull output stages. The driving capability of these outputs is lost when the supply voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=0$.

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $\mathrm{I}^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer (see Fig. 3)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions (see Fig. 4)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

System configuration (see Fig. 5)

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 5 System configuration.

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ bus (continued)

Acknowledge (see Fig. 6)

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition. (See Fig. 13 and Fig. 14.)

Fig. 6 Acknowledgement on the $I^{2} \mathrm{C}$ bus.

Timing specifications

Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The PCF8573 operates in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 7.

Fig. 7 Timing of the high-speed mode.

Where:

$t_{\text {buF }}$	$\mathrm{t} \geqslant \mathrm{t}$ LOWmin	The minimum time the bus must be free before a new transmission can start
${ }^{\text {t HD }}$; STA	$\mathrm{t} \geqslant \mathrm{t}$ HIGHmin	Start condition hold time
$\mathrm{t}_{\text {LOW }}$ min	4,7 $\mu \mathrm{s}$	Clock LOW period
thighmin	$4 \mu \mathrm{~s}$	Clock HIGH period
${ }^{\text {t SU; STA }}$	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
thD; DAT	$\mathrm{t} \geqslant 0 \mu \mathrm{~s}$	Data hold time
${ }^{\text {t }}$ SU; DAT	$\mathrm{t} \geqslant 250 \mathrm{~ns}$	Data set-up time
t_{R}	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
${ }^{\text {t }}$ F	$t \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
${ }^{\text {t SU; STO }}$	$t \geqslant t_{\text {LOWmin }}$	Stop condition set-up time

Note

All the values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{D D}$ to $V_{S S 2}$.

Fig. 8 Complete data transfer in the high-speed mode.
Where:
Clock thowmin
$4,7 \mu \mathrm{~s}$
thIGHmin
$4 \mu \mathrm{~s}$
The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1:1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition must be provided by the master

CHARACTERISTICS OF THE ${ }^{2}$ C BUS (continued)

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of $365 \mu \mathrm{~s}$. The mark-to-space ratio is $1: 3 \mathrm{LOW}$-to-HIGH. Detailed timing is shown in Fig. 9.

Fig. 9 Timing of the low-speed mode.
Where:

tBUF	$t \geqslant 105 \mu \mathrm{~s}$ ($\mathrm{L}_{\text {LOWmin }}$)
${ }^{\text {tHD }}$; STA	$\mathrm{t} \geqslant 365 \mu \mathrm{~s}$ (t HIGHmin)
t LOW	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
thigh	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
${ }^{\text {t SU; STA }}$	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s} *$
thD; DAT	$t \geqslant 0 \mu \mathrm{~s}$
tSU; DAT	$t \geqslant 250 \mathrm{~ns}$
${ }_{\text {t }} \mathrm{R}$	$t \leqslant 1 \mu s$
${ }^{\text {tF }}$	$\mathrm{t} \leqslant 300 \mathrm{~ns}$
tSU; STO	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$

Note

All the values refer to V_{IH} and V_{IL} levels with a voltage swing of V_{DD} to $\mathrm{V}_{\mathrm{SS} 2}$, for definitions see high-speed mode.

* Only valid for repeated start code.

Fig. 10 Complete data transfer in the low-speed mode.
Where:

Clock t towmin	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
\quad tHIGHmin	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
Mark-to-space ratio	$1: 3$ (LOW-to-HIGH)
Start byte	00000001
Max. number of bytes	6
Premature termination of transfer	not allowed
Acknowledge clock bit	must be provided by master

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.

ADDRESSING

Before any data is transmitted on the $I^{2} \mathrm{C}$ bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure.

Slave address

The clock/calendar acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line. The clock calendar slave address is shown in Fig. 11.

Fig. 11 Slave address.
The subaddress bits A0 and A1 correspond to the two hardware address pins A0 and A1 which allows the device to have 1 of 4 different addresses.

Clock/calendar READ/WRITE cycles

The $I^{2} \mathrm{C}$ bus configuration for different clock/calendar READ and WRITE cycles is shown in Fig. 12 and Fig. 13.

Fig. 12 Master transmitter transmits to clock/calendar slave receiver.
The write cycle is used to set the time counter, the alarm register and the flags. The transmission of the clock/calendar address is followed by the MODE-POINTER-WORD which contains a CONTROL-nibble (Table 3) and an ADDRESS-nibble (Table 4). The ADDRESS-nibble is valid only if the preceding CONTROL-nibble is set to EXECUTE ADDRESS. The third transmitted word contains the data to be written into the time counter or alarm register.

Table 3 CONTROL-nibble

	C2	C1	C0	function
0	0	0	0	execute address
0	0	0	1	read control/status flags
0	0	1	0	reset prescaler, including seconds counter; without carry for minute counter
0	0	1	1	time adjust, with carry for minute counter (see note)
0	1	0	0	reset NODA flag
0	1	0	1	set NODA flag
0	1	1	0	reset COMP flag

Note

If the seconds counter is below 30 there is no carry. This causes a time adjustment of max. -30 s . From the count 30 there is a carry which adjusts the time by max. +30 s .

Table 4 ADDRESS-nibble

	B2	B1	B0	addressed to:
0	0	0	0	time counter hours
0	0	0	1	time counter minutes
0	0	1	0	time counter days
0	0	1	1	time counter months
0	1	0	0	alarm register hours
0	1	0	1	alarm register minutes
0	1	1	0	alarm register days
0	1	1	1	alarm register months

At the end of each data word the address bits $\mathrm{B} 1, \mathrm{~B} 0$ will be incremented automatically provided the preceding CONTROL-nibble is set to EXECUTE ADDRESS. There is no carry to B2.
Table 5 shows the placement of the BCD upper and lower digits in the DATA byte for writing into the addressed part of the time counter and alarm register respectively.

Table 5 Placement of BCD digits in the DATA byte

MSB							DATA			
upper digit				Lower digit						
UD	UC	UB	UA	LD	LC	LB	LA	addressed to:		
X	X	D	D	D	D	D	D	hours		
X	D	D	D	D	D	D	D	minutes		
X	X	D	D	D	D	D	D	days		
X	X	X	D	D	D	D	D	months		

Where " X " is the don't care bit and " D " is the data bit.
Acknowledgement response of the clock calendar as slave receiver is shown in Table 6.

(1) The master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave.

Fig. 13 Master transmitter reads clock/calendar after setting mode pointer.
To read the addressed part of the time counter and alarm register, plus information from specified control/status flags, the BCD digits in the DATA byte are organized as shown in Table 7.

(1) The master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave.

Fig. 14 Master reads clock/calendar immediately after first byte.
The status of the MODE-POINTER-WORD concerning the CONTROL-nibble remains unchanged until a write to MODE POINTER condition occurs.

ADDRESSING (continued)
Table 6 Slave receiver acknowledgement

								acknowledge on byte			
	C2	C1	C0		B2	B1	B0			mode pointer	data
0	0	0	0	0	X	X	X	yes	yes	yes	
0	0	0	0	1	X	X	X	yes	no	no	
0	0	0	1	X	X	X	X	yes	yes	no	
0	0	1	0	X	X	X	X	yes	yes	no	
0	0	1	1	X	X	X	X	yes	yes	no	
0	1	0	0	X	X	X	X	yes	yes	no	
0	1	0	1	X	X	X	X	yes	yes	no	
0	1	1	0	X	X	X	X	yes	yes	no	
0	1	1	1	X	X	X	X	yes	no	no	
1	X	yes	no	no							

Where " X " is the don't care bit.
Table 7 Organization of the BCD digits in the DATA byte

Where: " D " is the data bit.

* $=$ minutes.
** $=$ seconds.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage ranges

Voltage on pins 4 and 5
Voltage on pins 6, 7, 13 and 14
Voltage on any other pin
Input current
Output current
Power dissipation per output
Total power dissipation per package
Operating ambient temperature range
Storage temperature range
$\left.\begin{array}{lr} & -0,3 \text { to }+8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1} & -0,3 \text { to }+8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2} & \\ & \\ & \mathrm{~V}_{\mathrm{SS} 2}-0,8 \text { to } \mathrm{V}_{\mathrm{DD}}+0,8 \mathrm{~V}\end{array}\right)$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

[^8]
CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS} 2}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified. Typical values at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage ($1^{2} \mathrm{C}$ interface)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS2 }}$	2,5	5	6,0	V
Supply voltage (clock)	$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS } 1}$	1,3	1,5	$\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS2 }}\right)$	V
Supply voltage (clock) at $\mathrm{t}_{\mathrm{HD}}>500 \mathrm{~ns}$	$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS1 }}$	1,1	1,5	$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS2 }}\right)$	V
$\begin{aligned} & \text { Supply current } V_{S S 1} \\ & \text { at } V_{D D}-V_{S S 1}=1,5 \mathrm{~V} \\ & \text { at } V_{D D}-V_{S S 1}=5 \mathrm{~V} \end{aligned}$	-ISS1 -ISS1	-	3 12	10 50	${ }_{\mu}^{\mu} \mathrm{A}$
$\begin{aligned} & \text { Supply current } V_{S S 2} \\ & \text { at } V_{D D}-V_{S S 2}=5 \mathrm{~V} \\ & \text { (IO }=0 \mathrm{~mA} \text { on all outputs) } \end{aligned}$	${ }^{-1}$ SS2	-	-	50	$\mu \mathrm{A}$
Inputs SCL, SDA, A0, A1, TEST					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	$0,7 \times V_{\text {DD }}$	-	-	V
Input voltage LOW	$V_{\text {IL }}$	-	-	$0,3 \times V_{\text {DD }}$	V
Input leakage current at $V_{1}=V_{S S 2}$ to $V_{D D}$	± 11	-	-	1	$\mu \mathrm{A}$
Inputs EXTPF, PFIN					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {SS } 1}$	$0,7 \times\left(V_{D D}-V_{S S 1}\right)$	-	$-$	V
Input voltage LOW	$\mathrm{V}_{\text {IL }}-\mathrm{V}_{\text {SS } 1}$		-	$0,3 \times\left(V_{D D}-V_{S S 1}\right)$	V
Input leakage current at $V_{1}=V_{S S 1}$ to $V_{D D}$					
$\begin{aligned} & \text { at } V_{1}=V_{S S 1} \text { to } V_{\text {DD }} \\ & \text { at } T_{\text {amb }}=25^{\circ} \mathrm{C} \text {; } \end{aligned}$	± 11	-	-	1	$\mu \mathrm{A}$
$V_{1}=V_{S S 1}$ to $V_{D D}$	± 11	-	-	0,1	$\mu \mathrm{A}$
Outputs SEC, MIN, COMP, FSET (normal buffer outputs)					
$\begin{aligned} & \text { Output voltage } \mathrm{HIGH} \\ & \text { at } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=2,5 \mathrm{~V} \text {; } \\ & -\mathrm{I}_{\mathrm{O}}=0,1 \mathrm{~mA} \end{aligned}$	V_{OH}	$V_{D D}-0,4$	-	-	V
$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=4 \text { to } 6 \mathrm{~V} ; \\ & -\mathrm{I}_{\mathrm{O}}=0,5 \mathrm{~mA} \end{aligned}$	V_{OH}	$V_{\text {DD }}-0,4$	-	-	V
$\begin{aligned} & \text { Output voltage LOW } \\ & \text { at } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=2,5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0,3 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	-	0,4	V
$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=4 \text { to } 6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=1,6 \mathrm{~mA} \end{aligned}$	$\mathrm{v}_{\text {OL }}$	-	-	0,4	V

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Output SDA (N -channel open drain)					
$\begin{aligned} & \text { Output "ON": } I_{O}=3 \mathrm{~mA} \\ & \text { at } V_{D D}-V_{S S 2}=2,5 \text { to } 6 \mathrm{~V} \end{aligned}$	V_{OL}	-	-	0,4	V
Output "OFF" (leakage current) at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=6 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$	10	-	-	1	$\mu \mathrm{A}$
Internal threshold voltage					
Power failure detection	$\mathrm{V}_{\text {TH1 }}$	1	1,2	1,4	v
Power "ON" reset at $\mathrm{V}_{\mathrm{SCL}}=\mathrm{V}_{\mathrm{SDA}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{TH} 2}$	1,5	2,0	2,5	V
Rise and fall times of input signals					
Input EXTPF	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	1	$\mu \mathrm{s}$
Input PFIN	t_{r}, t_{f}	-	-	∞	$\mu \mathrm{s}$
Input signals except EXTPF and PFIN between V_{IL} and $\mathrm{V}_{\text {IH }}$ levels					
fall time	t_{f}	-	-	0,3	$\mu \mathrm{s}$
Frequency at SCL at $V_{D D}-V_{S S 2}=4$ to 6 V					
Pulse width LOW (see Figs 7 and 9)	t LOW	4,7	-	-	$\mu \mathrm{s}$
Pulse width HIGH (see Figs 7 and 9)	tHIGH	4	-	-	$\mu \mathrm{s}$
Noise suppression time constant at SCL and SDA input	T_{1}	0,25	1	2,5	$\mu \mathrm{s}$
Input capacitance (SCL, SDA)	C_{1}	-	-	7	pF
Oscillator					
Integrated oscillator capacitance	Cout	-	40	-	pF
Oscillator feedback resistance	R_{f}	-	3	-	$\mathrm{M} \Omega$
Oscillator stability for: $\begin{aligned} & \Delta\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}\right)=100 \mathrm{mV} \\ & \text { at } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}=1,55 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	f/fosc	-	2×10^{-6}	-	-
Quartz crystal parameters					
Frequency $=32,768 \mathrm{kHz}$					
Series resistance	R_{S}	-	-	40	$k \Omega$
Parallel capacitance	C_{L}	-	9	-	pF
Trimmer capacitance	${ }^{\text {C }}$	5	- -	25	pF

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

APPLICATION INFORMATION

Fig. 15 Application example of the PCF8573 clock/calendar.

Fig. 16 Application example of the PCF8573 with common $\mathrm{V}_{\mathrm{SS} 1}$ and $\mathrm{V}_{\mathrm{SS} 2}$ supply.

PCF8574

REMOTE 8-BIT I/O FOR $1^{2} \mathrm{C}$ BUS

GENERAL DESCRIPTION

The PCF8574 is a single-chip silicon gate CMOS circuit. It provides remote I/O expansion for the MAB8400 and PCF8500 microcomputer families via the two-line serial bidirectional bus ($\left.1^{2} \mathrm{C}\right)$. It can also interface microcomputers without a serial interface to the $I^{2} \mathrm{C}$ bus (as a slave function only). The device consists of an 8 -bit quasi-bidirectional port and an $I^{2} \mathrm{C}$ interface.
The PCF8574 has low current consumption and includes latched outputs with high current drive capability for directly driving LEDs. It also possesses an interrupt line (INT) which is connected to the interrupt logic of the microcomputer on the $I^{2} \mathrm{C}$ bus. By sending an interrupt signal on this line, the remote I/O can inform the microcomputer if there is incoming data on its ports without having to communicate via the $I^{2} \mathrm{C}$ bus. This means that the PCF8574 can remain a simple slave device.

Features

- Operating supply voltage
- Low stand-by current consumption
- Bidirectional expander
- Open drain interrupt output
- 8 -bit remote I/O port for the $\mathrm{I}^{2} \mathrm{C}$ bus
- Peripheral for the MAB8400 and PCF8500 microcomputer families
- Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for use of up to 8 devices (up to 16 possible with mask option)

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8574P: 16-lead DIL; plastic (SOT-38).
PCF8574T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

PINNING

Fig. 2 Pinning diagram.

1 to 3	A0 to A2	address inputs
4 to 7	PO to P3	
9 to 12	P4 to P7	8-bit quasi-bidirectional I/O port
8	V SS 2	negative supply
13	$\underline{\text { INT }}$	interrupt output
14	SCL	serial clock line
15	SDA	serial data line
16	VDD	positive supply

Fig. 3 Simplified schematic diagram of each port.

CHARACTERISTICS OF THE $I^{2} \mathrm{C}$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 4 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 5 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 6 System configuration.

CHARACTERISTICS OF THE ${ }^{2}$ C BUS (continued)

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 7 Acknowledgement on the $I^{2} \mathrm{C}$ bus.

Timing specifications

Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The PCF8574 operates in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 8.

Fig. 8 Timing of the high-speed mode.

Where:

$t_{\text {BUF }}$	$t \geqslant t_{\text {LOWmin }}$	The minimum time the bus must be free before a new transmission can start
thD; STA	$t \geqslant t$ HIGHmin	Start condition hold time
t LOWmin	$4,7 \mu \mathrm{~s}$	Clock LOW period
${ }^{\text {thIGHmin }}$	$4 \mu \mathrm{~s}$	Clock HIGH period
${ }^{\text {t }}$ SU; STA	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
${ }^{\text {t HD }}$; DAT	$t \geqslant 0 \mu \mathrm{~s}$	Data hold time
${ }^{\text {t }}$ SU; DAT	$t \geqslant 250 \mathrm{~ns}$	Data set-up time
t_{R}	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
${ }^{\text {t }}$ F	$t \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
${ }^{\text {t SU }}$; STO	$t \geqslant t_{\text {LOWmin }}$	Stop condition set-up time

Note

All the values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{S S}$ to $V_{D D}$.

Fig. 9 Complete data transfer in the high-speed mode.
Where:
Clock t LOWmin
${ }^{\text {thIGHmin }}$
$4,7 \mu \mathrm{~s}$
$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1: 1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition must be provided by the master

CHARACTERISTICS OF THE ${ }^{2} \mathbf{C}$ BUS (continued)

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of 365μ s. The mark-to-space ratio is $1: 3$ LOW-to-HIGH. Detailed timing is shown in Fig. 10.

Fig. 10 Timing of the low-speed mode.
Where:
tBUF
thD; STA
t LOW
thigh
${ }^{\text {ts }}$ SU; STA
thD; DAT
${ }^{\text {t }}$ SU; DAT
${ }^{t}$ R
${ }^{t}$ F
${ }^{\text {tsu }}$ STO

$$
\begin{aligned}
& t \geqslant 105 \mu \mathrm{~s}(\mathrm{t} \text { LOWmin }) \\
& \mathrm{t} \geqslant 365 \mu \mathrm{~s}(\mathrm{t} \text { HIGHmin }) \\
& 130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s} \\
& 390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s} \\
& 130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}^{*} \\
& \mathrm{t} \geqslant 0 \mu \mathrm{~s} \\
& \mathrm{t} \geqslant 250 \mathrm{~ns} \\
& \mathrm{t} \leqslant 1 \mu \mathrm{~s} \\
& \mathrm{t} \leqslant 300 \mathrm{~ns} \\
& 130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}
\end{aligned}
$$

Note

All the values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{S S}$ to $V_{D D}$, for definitions see high-speed mode.

* Only valid for repeated start code.

Fig. 11 Complete data transfer in the low-speed mode.

Where:

	Clock thowmin	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
	${ }^{\text {t }} \mathrm{HIGHmin}$	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
	Mark-to-space ratio	1:3 (LOW-to-HIGH)
	Start byte	00000001
	Maximum number of bytes	6
	Premature termination of transfer	not allowed
$\stackrel{\varangle}{\overleftarrow{~}}$	Acknowledge clock bit	must be provided by master
	Note	
	The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.	

FUNCTIONAL DESCRIPTION

Addressing (see Figs 12 and 13)
Each bit of the PCF8574 I/O port can be independently used as an input or an output. Input data is transferred from the port to the microcomputer by the READ mode. Output data is transmitted to the port by the WRITE mode.

Fig. 12 WRITE mode (output port).

Fig. 13 READ mode (input port).

Note

A LOW-to-HIGH transition of SDA, while SCL is HIGH is defined as the stop condition (P). Transfer of data can be stopped at any moment by a stop condition. When this occurs, data present at the last acknowledge phase is valid (output mode). Input data is lost.

Interrupt (see Figs 14 and 15)
The PCF8574 provides an open drain output (INT) which can be fed to a corresponding input of the microcomputer. This gives these chips a type of master function which can initiate an action elsewhere in the system.

Fig. 14 Application of multiple PCF8574s with interrupt.
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time t_{iv} the signal INT is valid.
Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from or written to the port which has generated the interrupt.
Resetting occurs as follows:

- In the READ mode at the acknowledge bit after the rising edge of the SCL signal.
- In the WRITE mode at the acknowledge bit after the HIGH to LOW transition of the SCL signal.

Each change of the ports after the resettings will be detected and after the next rising clock edge, will be transmitted as INT.
Reading from or writing to another device does not affect the interrupt circuit.

Fig. 15 Interrupt generated by a change of input to port P5.

FUNCTIONAL DESCRIPTION (continued)
Quasi-bidirectional I/O ports (see Fig. 16)
A quasi-bidirectional port can be used as an input or output without the use of a control signal for data direction. The bit designated as an input must first be loaded with a logic 1 . In this mode only a current source to V_{DD} is active. An additional strong pull-up to V_{DD} allows fast rising edges into heavily loaded outputs. These devices turn on when an output changes from LOW to HIGH, and are switched off by the negative edge of SCL. SCL should not remain HIGH when a short-circuit to $\mathrm{V}_{\text {SS }}$ is allowed (input mode).

Fig. 16 Transient pull-up current IOHt while P3 changes from LOW-to-HIGH and back to LOW.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range
Input voltage range (any pin)
D.C. current into any input
D.C. current into any output
V_{DD} or V_{SS} current
Total power dissipation
Power dissipation per output
Storage temperature range
Operating ambient temperature range
$V_{D D}$
V_{1}
± 1
± 10
$\pm I_{D D}$ ISS
$P_{\text {tot }}$
P_{0}
$\mathrm{T}_{\text {stg }}$
Tamb
$-0,5$ to +7 V
$V_{S S}-0,5$ to $V_{D D}+0,5 \mathrm{~V}$ max. $\quad 20 \mathrm{~mA}$ max. 25 mA max. 100 mA
max. 400 mW
max.
100 mW
-65 to $+150{ }^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 16)					
Supply voltage	$\mathrm{V}_{\text {DD }}$	2,5	-	6	V
Supply current at $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$; no load, inputs at $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ operating; (SCL $=100 \mathrm{kHz}$) standby	$\begin{aligned} & \text { IDD } \\ & \text { IDDO } \end{aligned}$	-	40 1,5	100	${ }_{\mu} \mathrm{A}^{\mathrm{A}}$
Power-on reset voltage level (note 1)	$\mathrm{V}_{\text {REF }}$	-	1,3	2,4	V
Input SCL; input/output SDA (pins 14; 15)					
Input voltage LOW	$V_{\text {IL }}$	-0,5 V	-	$0,3 V_{\text {DD }}$	V
Input voltage HIGH	V_{IH}	$0,7 V_{\text {DD }}$	-	$\mathrm{V}_{\mathrm{DD}}+0,5 \mathrm{~V}$	V
Output current LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {IOL }}$	3	-	-	mA
Input/Output leakage current	\| L I	-	-	100	nA
Clock frequency (see Fig. 8)	${ }^{\text {f SCL }}$	-	-	100	kHz
Tolerable spike width at SCL and SDA input	$\mathrm{t}_{\text {s }}$	-	-	100	ns
Input capacitance (SCL, SDA) at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$	C_{1}	-	-	7	pF
I/O ports (pins 4 to 7; 9 to 12)					
Input voltage LOW	$V_{\text {IL }}$	-0,5 V	-	$0,3 V_{\text {DD }}$	V
Input voltage HIGH	V_{IH}	0,7V VD	-	$V_{D D}+0,5 \mathrm{~V}$	V
Maximum allowed input current through protection diode at $\mathrm{V}_{1} \geqslant \mathrm{~V}_{\mathrm{DD}}$ or $\leqslant \mathrm{V}_{\mathrm{SS}}$	$\pm 1 / \mathrm{HL}$	-	-	400	$\mu \mathrm{A}$
Output current LOW at $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	${ }^{1} \mathrm{OL}$	10	30	-	mA
Output current HIGH at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$ (current source only)	${ }^{-1} \mathrm{OH}$	30	100	300	$\mu \mathrm{A}$
Transient pull-up current HIGH during acknowledge (see Fig. 16) at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$	${ }^{-1} \mathrm{OHt}$	-	0,5	-	mA
Input/Output capacitance	$\mathrm{C}_{1 / \mathrm{O}}$	-	-	10	pF
Port timing; $\mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$ (see Figs 12 and 13)					
Output data valid	${ }^{t} \mathrm{pv}$	-	-	4	$\mu \mathrm{s}$
Input data set-up	${ }^{\text {tps }}$	0	-	-	$\mu \mathrm{s}$
Input data hold	${ }^{\text {ph }}$	4	-	-	$\mu \mathrm{S}$

parameter	symbol	min.	typ.	max.	unit
Interrupt $\overline{\text { NT }}$ (pin 13)					
Output current LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {IOL }}$	1,6	-	-	mA
Output current HIGH at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	${ }^{\prime} \mathrm{OH} \mid$	-	-	100	nA
$\overline{\text { INT }}$ timing; $\mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$ (see Fig. 13)					
Input data valid	$\mathrm{tiv}_{\text {iv }}$	-	-	4	$\mu \mathrm{s}$
Reset delay	t_{ir}	-	-	4	$\mu \mathrm{S}$
Select inputs A0, A1, A2 (pins 1 to 3)					
Input voltage LOW	$\mathrm{V}_{\text {IH }}$	-0,5 V	-	$0,3 V_{\text {DD }}$	v
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	$0,7 V_{\text {DD }}$	-	$\mathrm{V}_{\mathrm{DD}}+0,5 \mathrm{~V}$	V
Input leakage current at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	\|ILI	-	-	100	nA

Note 1

The power-on reset circuit resets the $\mathrm{I}^{2} \mathrm{C}$ bus logic with $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{REF}}$ and sets all ports to logic 1 (input mode with current source to V_{DD}).

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

UNIVERSAL LCD DRIVER FOR LOW MULTIPLEX RATES

GENERAL DESCRIPTION

The PCF8576 is a peripheral device which interfaces to almost any liquid crystal display (LCD) having low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments and can easily be cascaded for larger LCD applications. The PCF8576 is compatible with most microprocessors and communicates via a two-line bidirectional bus $\left(I^{2} \mathrm{C}\right)$. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

Features

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or $2 / 3 / 4$ backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ or $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 40 segment drives: up to twenty 8 -segment numeric characters; up to ten 15 -segment alphanumeric characters; or any graphics of up to 160 elements
- 40×4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- Wide power supply range: from 2 V for low-threshold LCDs and up to 9 V for guest-host LCDs and high-threshold (automobile) twisted nematic LCDs
- Low power consumption
- Power-saving mode for extremely low power consumption in battery-operated and telephone applications
- ${ }^{2} \mathrm{C}$ bus interface
- TTL/CMOS compatible
- Compatible with any 4-bit, 8-bit or 16-bit microprocessors
- May be cascaded for large LCD applications (up to 2560 segments possible)
- Optimized pinning for single plane wiring in both single and multiple PCF8576 applications
- Space-saving 56-lead plastic mini-pack (VSO-56)
- Very low external component count (at most one resistor, even in multiple device applications)
- Compatible with chip-on-glass technology
- Manufactured in silicon gate CMOS process

PACKAGE OUTLINES

PCF8576T: 56-lead mini-pack; plastic (VSO-56; SOT-190). PCF8576U: uncased chip in tray

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1	SDA	$1^{2} \mathrm{C}$ bus data input/output
2	SCL	$1^{2} \mathrm{C}$ bus clock input/output
3	SYNC	cascade synchronization input/output
4	CLK	external clock input/output
5	$V_{\text {DD }}$	positive supply voltage
6	OSC	oscillator input
7 8 9	A0	$1^{2} \mathrm{C}$ bus subaddress inputs
10	SAO	$1^{2} \mathrm{C}$ bus slave address bit 0 input
11	$\mathrm{V}_{\text {SS }}$	logic ground
12	$V_{\text {LCD }}$	LCD supply voltage
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	BPO BP2 BP1 BP3	LCD backplane outputs
$\begin{aligned} & 17 \\ & \text { to } \\ & 56 \end{aligned}$	$\begin{aligned} & \text { So } \\ & \text { to } \\ & \text { S39 } \end{aligned}$	LCD segment outputs

FUNCTIONAL DESCRIPTION

The PCF8576 is a versatile peripheral device designed to interface any microprocessor to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 40 segments. The display configurations possible with the PCF8576 depend on the number of active backplane outputs required; a selection of display configurations is given in Table 1.

Table 1 Selection of display configurations

active back- plane outputs	no. of segments	7-segment numeric	14-segment alphanumeric	dot matrix
4	160	20 digits + 20 indicator symbols	10 characters + 20 indicator symbols	160 dots (4×40)
3	120	15 digits + 15 indicator symbols	8 characters + 8 indicator symbols	120 dots (3×40)
2	80	10 digits + 10 indicator symbols	5 characters + 10 indicator symbols	80 dots (2×40)
1	40	5 digits + 5 indicator symbols	2 characters + 12 indicator symbols	40 dots

All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig. 3. The host microprocessor maintains the 2-line $I^{2} \mathrm{C}$ bus communication channel with the PCF8576. A resistor connected between OSC (pin 6) and $\mathrm{V}_{\text {SS }}$ (pin 11) controls the device clock frequency. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{LCD}}$) and to the LCD panel chosen for the application.

Fig. 3 Typical system configuration.

Power-on reset

At power-on the PCF8576 resets to a defined starting condition as follows:

1. All backplane outputs are set to $V_{D D}$.
2. All segment outputs are set to $V_{D D}$.
3. The drive mode ' $1: 4$ multiplex with $1 / 3$ bias' is selected.
4. Blinking is switched off.
5. Input and output bank selectors are reset (as defined in Table 5).
6. The $I^{2} \mathrm{C}$ bus interface is initialized.
7. The data pointer and the subaddress counter are cleared.

Data transfers on the $I^{2} \mathrm{C}$ bus should be avoided for 1 ms following power-on to allow completion of the reset action.

LCD bias generator

The full-scale LCD voltage $\left(\mathrm{V}_{\mathrm{op}}\right)$ is obtained from $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$. The LCD voltage may be temperature compensated externally through the $\mathrm{V}_{\text {LCD }}$ supply to pin 12 . Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between V_{DD} and $\mathrm{V}_{\text {LCD }}$. The centre resistor can be switched out of circuit to provide a $1 / 2$ bias voltage level for the $1: 2$ multiplex configuration.

LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD according to the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$ and the resulting discrimination ratios (D), are given in Table 2.

Table 2 Preferred LCD drive modes: summary of characteristics

LCD drive mode	LCD bias configuration	$\frac{V_{\text {off(rms) }}}{V_{\text {op }}}$	$\frac{V_{\text {on (rms) }}}{V_{\text {op }}}$	$D=\frac{V_{\text {on }}(r m s)}{V_{\text {off }}(r m s)}$
static (1 BP)	static (2 levels)	0	1	∞
$1: 2$ MUX (2 BP)	$1 / 2$ (3 levels)	$\sqrt{2} / 4=0,354$	$\sqrt{10 / 4}=0,791$	$\sqrt{5}=2,236$
$1: 2$ MUX (2 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{5 / 3}=0,745$	$\sqrt{5}=2,236$
$1: 3$ MUX (3 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{33} / 9=0,638$	$\sqrt{33} / 3=1,915$
$1: 4$ MUX (4 BP)	$1 / 3$ (4 levels)	$1 / 3=0,333$	$\sqrt{3 / 3}=0,577$	$\sqrt{3}=1,732$

LCD voltage selector (continued)
A practical value for $V_{O p}$ is determined by equating $V_{0 f f}(r m s)$ with a defined LCD threshold voltage ($V_{\text {thLCD }}$), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $V_{\text {op }} \gtrsim 3 V_{\text {thLCD }}$.
Multiplex drive ratios of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller $(\sqrt{3}=1,732$ for $1: 3$ multiplex or $\sqrt{21} / 3=1,528$ for $1: 4$ multiplex).
The advantage of these modes is a reduction of the LCD full scale voltage V_{op} as follows:
1 : 3 multiplex ($1 / 2$ bias) : $\mathrm{V}_{\mathrm{op}}=\sqrt{6} \mathrm{~V}_{\mathrm{off}}(\mathrm{rms})=2,449 \mathrm{~V}_{\mathrm{off}}(\mathrm{rms})$
$1: 4$ multiplex ($1 / 2$ bias) : $V_{o p}=4 \sqrt{3} / 3 V_{\text {off(rms) }}=2,309 \mathrm{~V}_{\text {off }}(\mathrm{rms})$
These compare with $V_{o p}=3 V_{o f f(r m s)}$ when $1 / 3$ bias is used.

LCD drive mode waveforms

The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Fig. 4.

Fig. 4 Static drive mode waveforms: $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

When two backplanes are provided in the LCD the 1:2 multiplex drive mode applies. The PCF8576 allows use of $1 / 2$ or $1 / 3$ bias in this mode as shown in Figs 5 and 6.

Fig. 5 Waveforms for 1:2 multiplex drive mode with $1 / 2$ bias: $V_{o p}=V_{D D}-V_{L C D}$.

LCD drive mode waveforms (continued)

Fig. 6 Waveforms for $1: 2$ multiplex drive mode with $1 / 3$ bias: $V_{o p}=V_{D D}-V_{L C D}$.

The backplane and segment drive wavefront for the $1: 3$ multiplex drive mode (three LCD backplanes) and for the 1:4 multiplex drive mode (four LCD backplanes) are shown in Figs 7 and 8 respectively.

BPO

S_{n+2}
state 1
$V_{\text {op }}$
$2 V_{\text {op }} / 3$
$V_{\text {op }} / 3$
$-V_{\mathrm{op}} / 3$
$-2 V_{\mathrm{op}} / 3$
$-V_{\text {op }}$
$V_{\text {op }}$
$2 \mathrm{~V}_{\mathrm{op}} / 3$
$V_{o p} / 3$
state 2

$$
\begin{aligned}
& -V_{\mathrm{op}} / 3- \\
& -2 V_{\mathrm{op}} / 3
\end{aligned}
$$

$$
-\mathrm{v}_{\mathrm{op}}
$$

(a) WAVEFORMS AT DRIVER

$\mathrm{V}_{\text {state } 1}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BPO}}(\mathrm{t})$
$V_{\text {on }(\text { rms })}=\frac{V_{\text {op }}}{9} \sqrt{33}=0,638 V_{\text {op }}$
$V_{\text {state } 2}(t)=V_{S_{n}}(t)-V_{B P 1}(t)$
$V_{\text {off }(r m s)}=\frac{V_{\text {op }}}{3}=0,333 V_{o p}$
(b) RESULTANT WAVEFORMS AT LCD SEGMENT

Fig. 7 Waveforms for $1: 3$ multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

LCD drive mode waveforms (continued)

Fig. 8 Waveforms for 1:4 multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Oscillator

Internal clock

The internal logic and the LCD drive signals of the PCF8576 are timed either by the built-in oscillator or from an external clock. When the internal oscillator is used, frequency control is performed by a single resistor connected between OSC (pin 6) and $\mathrm{V}_{\mathrm{SS}}(\mathrm{pin} 11)$ as shown in Fig. 9. In this case, the output from CLK (pin 4) provides the clock signal for cascaded PCF8576s in the system.

Fig. 9 Oscillator frequency as a function of $\mathrm{R}_{\mathrm{Osc}}$: ${ }^{\mathrm{f}} \mathrm{CLK} \approx\left(3,4 \times 10^{7} / \mathrm{R}_{\mathrm{OSC}}\right) \mathrm{kHz} \cdot \Omega$.

External clock

The condition for external clock is made by tying OSC (pin 6) to V_{DD}; CLK (pin 4) then becomes the external clock input.
The clock frequency (f CLK) determines the LCD frame frequency and the maximum rate for data reception from the $I^{2} \mathrm{C}$ bus. To allow $I^{2} \mathrm{C}$ bus transmissions at their maximum data rate of 100 kHz , ${ }^{\mathrm{f}} \mathrm{CLK}$ should be chosen to be above 125 kHz .
A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a d.c. state.

Timing

The timing of the PCF8576 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal $\overline{\text { SYNC maintains the correct timing relationship between the PCF8576s in the }}$ system. The timing also generates the LCD frame frequency which it derives as an integer multiple of the clock frequency (Table 3). The frame frequency is set by the choice of value for $\mathrm{R}_{\mathrm{osc}}$ when internal clock is used, or by the frequency applied to pin 4 when external clock is used.

Table 3 LCD frame frequencies

PCF8576 mode	recommended $R_{\text {osc }}(\mathrm{k} \Omega)$	$\mathrm{f}_{\text {frame }}$	nominal $\mathrm{f}_{\text {frame }}(\mathrm{Hz})$
normal mode	180	${ }^{\mathrm{f}} \mathrm{CLK} / 2880$	64
power-saving mode	1200	$\mathrm{f}_{\mathrm{CLK}} / 480$	64

Timing (continued)
The ratio between the clock frequency and the LCD frame frequency depends on the mode in which the device is operating. In the normal mode, $R_{\text {OSC }}=180 \mathrm{k} \Omega$ will result in the nominal frame frequency. In the power-saving mode the reduction ratio is six times smaller; this allows the clock frequency to be reduced by a factor of six and for the same frame frequency $R_{\text {osc }}$ will be $1,2 \mathrm{M} \Omega$. The reduced clock frequency and the increased value of $\mathrm{R}_{\mathrm{osc}}$ together contribute to a significant reduction in power dissipation. The lower clock frequency has the disadvantage of increasing the response time when large amounts of display data are transmitted on the $I^{2} \mathrm{C}$ bus. When a device is unable to 'digest' a display data byte before the next one arrives, it holds the SCL line LOW until the first display data byte is stored. This slows down the transmission rate of the $\mathrm{I}^{2} \mathrm{C}$ bus but no data loss occurs.

Display latch

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and one column of the display RAM.

Shift register

The shift register serves to transfer display information from the display RAM to the display latch while previous data are displayed.

Segment outputs

The LCD drive section includes 40 segment outputs S 0 to S 39 (pins 17 to 56) which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with the data resident in the display latch. When less than 40 segment outputs are required the unused segment outputs should be left open.

Backplane outputs

The LCD drive section includes four backplane outputs BPO to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required the unused outputs can be left open. In the 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the $1: 2$ multiplex drive mode BPO and BP2, BP1 and BP3 respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

Display RAM

The display RAM is a static 40×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the 'on' state of the corresponding LCD segment; similarly, a logic 0 indicates the 'off' state. There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 40 segments operated with respect to backplane BPO (Fig. 10). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with $\mathrm{BP} 1, \mathrm{BP} 2$ and BP 3 respectively.

Fig. 10 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

When display data are transmitted to the PCF8576 the display bytes received are stored in the display RAM according to the selected LCD drive mode. To illustrate the filling order, an example of a 7 -segment numeric display showing all drive modes is given in Fig. 11; the RAM filling organization depicted applies equally to other LCD types.
With reference to Fig. 11, in the static drive mode the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses. In the $1: 3$ multiplex drive mode these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted. In the 1 : 4 multiplex drive mode the eight transmitted data bits are placed in bits $0,1,2$ and 3 of two successive display RAM addresses.

Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte is stored starting at the display RAM address indicated by the data pointer thereby observing the filling order shown in Fig. 11. The data pointer is automatically incremented according to the LCD configuration chosen. That is, after each byte is stored, the contents of the data pointer are incremented by eight (static drive mode), by four ($1: 2$ multiplex drive mode), by three ($1: 3$ multiplex drive mode) or by two ($1: 4$ multiplex drive mode).

Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to A0, A1 and A2 (pins 7, 8, and 9). The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

Fig. 11 Relationships between LCD layout, drive mode, display RAM filling order

Subaddress counter (continued)

The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are being sent to the display RAM, automatic wrap-over to the next PCF8576 occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character (such as during the 14th display data byte transmitted in $1: 3$ multiplex mode).

Output bank selector

This selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence. In 1:4 multiplex, all RAM addresses of bit 0 are the first to be selected, these are followed by the contents of bit 1, bit 2 and then bit 3 . Similarly in $1: 3$ multiplex, bits 0,1 and 2 are selected sequentially. In 1:2 multiplex, bits 0 then 1 are selected and, in the static mode, bit 0 is selected.
The PCF8576 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of bit 0 contents. In the $1: 2$ drive mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1 . This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

Input bank selector

The input bank selector loads display data into the display RAM according to the selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode or in bits 2 and 3 in $1: 2$ drive mode by using the BANK SELECT command. The input bank selector functions independently of the output bank selector.

Blinker

The display blinking capabilities of the PCF8576 are very versatile. The whole display can be blinked at frequencies selected by the BLINK command. The blinking frequencies are integer multiples of the clock frequency; the ratios between the clock and blinking frequencies depend on the mode in which the device is operating, as shown in Table 4.

An additional feature is for an arbitrary selection of LCD segments to be blinked. This applies to the static and 1:2 LCD drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blinking frequency. This mode can also be specified by the BLINK command.
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.
If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.

Blinker (continued)
Table 4 Blinking frequencies

blinking mode	normal operating mode ratio	power-saving mode ratio	nominal blinking frequency $f_{\text {blink }}(\mathrm{Hz})$
off	-	-	blinking off
2 Hz	$\mathrm{f}^{\mathrm{CLK}} / 92160$	$\mathrm{f}_{\mathrm{CLK}} / 15360$	2
1 Hz	$\mathrm{f}_{\mathrm{CLK}} / 184320$	$\mathrm{f}_{\mathrm{CLK}} / 30720$	1
$0,5 \mathrm{~Hz}$	${ }^{\mathrm{f}} \mathrm{CLK} / 368640$	$\mathrm{f}_{\mathrm{CLK}} / 61440$	0,5

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $I^{2} C$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 12 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 13 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is a "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 14 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 15 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$ bus.

Note

The general characteristics and detailed specification of the $I^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.

PCF8576 $1^{2} \mathrm{C}$ bus controller

The PCF8576 acts as an $I^{2} \mathrm{C}$ slave receiver. It does not initiate $I^{2} \mathrm{C}$ bus transfers or transmit data to an $1^{2} \mathrm{C}$ master receiver. The only data output from the PCF8576 are the acknowledge signals of the selected devices. Device selection depends on the $I^{2} \mathrm{C}$ bus slave address, on the transferred command data and on the hardware subaddress.
In single device applications, the hardware subaddress inputs A0, A1 and A2 are normally tied to $\mathrm{V}_{\text {SS }}$ which defines the hardware subaddress 0 . In multiple device applications A0, A1 and A2 are tied to $V_{S S}$ or V_{DD} according to a binary coding scheme such that no two devices with a common $I^{2} \mathrm{C}$ slave address have the same hardware subaddress.
In the power-saving mode it is possible that the PCF8576 is not able to keep up with the highest transmission rates when large amounts of display data are transmitted. If this situation occurs, the PCF8576 forces the SCL line LOW until its internal operations are completed. This is known as the 'clock synchronization feature' of the $I^{2} \mathrm{C}$ bus and serves to slow down fast transmitters. Data loss does not occur.

Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

$1^{2} \mathrm{C}$ bus protocol

Two I ${ }^{2} \mathrm{C}$ bus slave addresses (0111000 and 0111001) are reserved for PCF8576. The least-significant bit of the slave address that a PCF8576 will respond to is defined by the level tied at its input SAO (pin 10). Therefore, two types of PCF8576 can be distinguished on the same $I^{2} \mathrm{C}$ bus which allows:
(a) up to 16 PCF8576s on the same $I^{2} \mathrm{C}$ bus for very large LCD applications;
(b) the use of two types of LCD multiplex on the same $I^{2} \mathrm{C}$ bus.

The $I^{2} \mathrm{C}$ bus protocol is shown in Fig. 16. The sequence is initiated with a start condition (S) from the $1^{2} \mathrm{C}$ bus master which is followed by one of the two PCF8576 slave addresses available. All PCF8576s with the corresponding SAO level acknowledge in parallel the slave address but all PCF8576s with the alternative SAO level ignore the whole $I^{2} \mathrm{C}$ bus transfer. After acknowledgement, one or more command bytes (m) follow which define the status of the addressed PCF8576s. The last command byte is tagged with a cleared most-significant bit, the continuation bit C . The command bytes are also acknowledged by all addressed PCF8576s on the bus.
After the last command byte, a series of display data bytes (n) may follow. These display data bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data are directed to the intended PCF8576 device. The acknowledgement after each byte is made only by the (A0, A1, A2) addressed PCF8576. After the last display byte, the $I^{2} \mathrm{C}$ bus master issues a stop condition (P).

Fig. $16 I^{2} \mathrm{C}$ bus protocol.

Command decoder

The command decoder identifies command bytes that arrive on the $I^{2} \mathrm{C}$ bus. All available commands carry a continuation bit C in their most-significant bit position (Fig. 17). When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command. If the bit is reset, it indicates the last command byte of the transfer. Further bytes will be regarded as display data.

7291471

Fig. 17 General format of command byte.
The five commands available to the PCF8576 are defined in Table 5.

Command decoder (continued)
Table 5 Definition of PCF8576 commands

Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the PCF8576 and coordinates their effects. The controller is also responsible for loading display data into the display RAM as required by the filling order.

Cascaded operation

In large display configurations, up to 16 PCF8576s can be distinguished on the same $I^{2} \mathrm{C}$ bus by using the 3 -bit hardware subaddress (A0, A1, A2) and the programmable $I^{2} \mathrm{C}$ slave address (SAO). It is also possible to cascade up to 16 PCF8576s. When cascaded, several PCF8576s are synchronized so that they can share the backplane signals from one of the devices in the cascade. Such an arrangement is costeffective in large LCD applications since the backplane outputs of only one device need to be throughplated to the backplane electrodes of the display. The other PCF8576s of the cascade contribute additional segment outputs but their backplane outputs are left open (Fig. 18).
The $\overline{\text { SYNC }}$ line is provided to maintain the correct synchronization between all cascaded PCF8576s. This synchronization is guaranteed after the power-on reset. The only time that $\overline{\text { SYNC }}$ is likely to be needed is if synchronization is accidently lost (e.g. by noise in adverse electrical environments; or by the definition of a multiplex mode when PCF8576s with differing SAO levels are cascaded). SYNC is organized as an input/output pin; the output section being realized as an open-drain driver with an internal pull-up resistor. A PCF8576 asserts the $\overline{\text { SYNC line at the onset of its last active backplane }}$ signal and monitors the $\overline{\text { SYNC }}$ line at all other times. Should synchronization in the cascade be lost, it will be restored by the first PCF8576 to assert $\overline{\text { SYNC. The timing relationships between the backplane }}$ waveforms and the $\overline{S Y} \overline{N C}$ signal for the various drive modes of the PCF8576 are shown in Fig. 19.

Fig. 18 Cascaded PCF8576 configuration.

Fig. 19 Synchronization of the cascade for the various PCF8576 drive modes.

For single plane wiring of packaged PCF8576s and chip-on-glass cascading, see application information.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	$V_{\text {DD }}$	$-0,5$ to +11 V		
LCD supply voltage range	$V_{\text {LCD }}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-11}$ to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}$		
Input voltage range (SCL; SDA; A0 to A2; OSC; CLK; SYNC; SAO)	V_{1}	$\mathrm{V}_{\text {SS }}-0,5$ to $\mathrm{V}_{\mathrm{DD}}+0,5 \mathrm{~V}$		
Output voltage range (SO to S 39 ; BPO to BP3)	V_{O}	$\mathrm{V}_{\text {LCD }}{ }^{-0,5}$ to $\mathrm{V}_{\text {DD }}+0,5 \mathrm{~V}$		
D.C. input current	± 11	max.	20	mA
D.C. output current	± 10	max.	25	mA
$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {LCD }}$ current	$\pm \mathrm{I}_{\mathrm{DD}}, \pm \mathrm{I}_{\text {SS }}, \pm \mathrm{I}_{\text {LCD }}$	max.	50	mA
Power dissipation per package	$\mathrm{P}_{\text {tot }}$	max.		
Power dissipation per output	P_{O}	max.		
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$		

D.C. CHARACTERISTICS

$V_{S S}=0 V^{\prime} V_{D D}=2$ to $9 V_{;} V_{L C D}=V_{D D}-2$ to $V_{D D}-9 \mathrm{~V}$;
$T_{a m b}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	$V_{\text {DD }}$	2	-	9	V
LCD supply voltage (note 1)	$V_{\text {LCD }}$	$\mathrm{V}_{\mathrm{DD}}-9$	-	$\mathrm{V}_{\text {DD }}{ }^{-2}$	V
Operating supply current (normal mode) at f CLK $=200 \mathrm{kHz}$ (note 2)	IDD	--	-	180	$\mu \mathrm{A}$
Power-saving mode supply current at $V_{D D}=3,5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; ${ }^{\mathrm{f}} \mathrm{CLK}=35 \mathrm{kHz}$ (note 2)	${ }^{\text {LPP }}$	-	-	60	$\mu \mathrm{A}$
LCD supply current (normal mode) at $\mathrm{f}_{\mathrm{CLK}}=200 \mathrm{kHz}$ (note 2)	${ }^{\prime} \mathrm{LCD}$	-	-	120	$\mu \mathrm{A}$
Logic					
Input voltage LOW	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0,3 $V_{\text {DD }}$	V
Input voltage HIGH	$V_{\text {IH }}$	0,7 $V_{\text {DD }}$	\cdots	$V_{\text {DD }}$	V
Output voltage LOW at $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	V_{OL}	-	-	0,05	V
Output voltage HIGH at $\mathrm{I}=0 \mathrm{~mA}$	V_{OH}	$V_{D D}-0,05$	-	-	V
Output current LOW (CLK, $\overline{\mathrm{SYNC}}$) at $\mathrm{V}_{\mathrm{OL}}=1,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	${ }^{\text {I OL1 }}$	1	-	-	mA
Output current HIGH (CLK) at $\mathrm{V}_{\mathrm{OH}}=4,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	${ }^{\mathrm{O}} \mathrm{OH}$	-	-	-1	mA
Output current LOW (SDA; SCL) at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	${ }^{\text {I OL2 }}$	3	-	-	mA
Leakage current (SA0; A0 to A2; CLK; SCL; SDA) at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}	$\pm \mathrm{I}_{\text {L }}$	-	-	1	$\mu \mathrm{A}$

parameter	symbol	min.	typ.	max.	unit
Leakage current (OSC) at $V_{1}=V_{D D}$	$\pm \mathrm{l}$ L2	-	-	1	$\mu \mathrm{A}$
Pull-up resistor ($\overline{\text { SYNC }}$)	RSYNC	20	50	150	$\mathrm{k} \Omega$
Power-on reset level (note 3)	$V_{\text {REF }}$	-	1,0	1,6	V
Tolerable spike width on bus	$\mathrm{t}_{\text {sw }}$	-	-	100	ns
Input capacitance (note 4)	Cl_{1}	-	-	7	pF
LCD outputs					
D.C. voltage component (BPO to BP3) at $\mathrm{C}_{\mathrm{BP}}=35 \mathrm{nF}$	$\pm \mathrm{V}_{\mathrm{BP}}$	-	20	-	mV
D.C. voltage component (S 0 to S 39) at $\mathrm{C}_{\mathrm{S}}=5 \mathrm{nF}$	$\pm \mathrm{V}_{\mathrm{S}}$	-	20	-	mV
Output impedance (BPO to BP3) at $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$ (note 5)	R_{BP}	-	-	5	k Ω
Output impedance (SO to S 39) at $V_{\text {LCD }}=V_{D D^{-5}} \mathrm{~V}$ (note 5)	R_{S}	--	-	7,0	k Ω

A.C. CHARACTERISTICS (note 6)
$V_{S S}=0 V_{;} V_{D D}=2$ to $9 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V}$;
$T_{a m b}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Oscillator frequency (normal mode) at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{OSC}}=180 \mathrm{k} \Omega$ (note 7)	${ }^{\text {f CLK }}$	125	185	288	kHz
Oscillator frequency (power-saving mode) at $\mathrm{V}_{\mathrm{DD}}=3,5 \mathrm{~V} ; \mathrm{R}_{\mathrm{OSC}}=1,2 \mathrm{M} \Omega$	${ }^{\text {f CLKLP }}$	21	31	48	kHz
CLK HIGH time	${ }^{\text {t CLKH }}$	1	-	-	$\mu \mathrm{s}$
CLK LOW time	${ }^{\text {t CLKL }}$	1	-	-	$\mu \mathrm{s}$
SYNC propagation delay	tpSYNC	-	-	400	ns
SYNC LOW time	${ }^{\text {t SYNCL }}$	1	-	-	$\mu \mathrm{S}$
Driver delays with test loads at $V_{L C D}=V_{D D}-5 V$	${ }^{\text {tPLCD }}$	-	-	30	$\mu \mathrm{s}$

A.C. CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
$I^{2} \mathrm{C}$ bus high-speed mode					
Bus free time	${ }^{\text {t }}$ BUF	4,7	-	-	$\mu \mathrm{S}$
Start condition hold time	thD; STA	4	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	4,7	-	-	$\mu \mathrm{s}$
SCL HIGH time	${ }^{\text {tHIGH }}$	4	--	-	$\mu \mathrm{s}$
Start condition set-up time (repeated start code only)	${ }^{\text {tSU }}$; STA	4,7	-	-	$\mu \mathrm{s}$
Data hold time	${ }^{\text {thD }}$; DAT	0	-	-	$\mu \mathrm{S}$
Data set-up time	${ }^{\text {t }}$ SU: DAT	250	-	-	ns
Rise time	${ }^{\text {t }}$ R	-	-	1	$\mu \mathrm{s}$
Fall time	${ }^{\text {t }}$ F	-	-	300	ns
Stop condition set-up time	${ }^{\text {tSU }}$; STO	4,7	-	--	$\mu \mathrm{s}$
$1^{2} \mathrm{C}$ bus low-speed mode					
Bus free time	${ }^{\text {t }}$ BUF	105	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	365	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	105	-	155	$\mu \mathrm{s}$
SCL HIGH time	${ }^{\text {thigh }}$	365	-	415	$\mu \mathrm{s}$
Start condition set-up time (repeated start code only)	tSU; STA	105	-	155	$\mu \mathrm{s}$
Data hold time	thD; DAT	0	-	-	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ U; DAT	250	-	-	ns
Rise time	${ }^{\text {t }}$ R	-	-	1	$\mu \mathrm{s}$
Fall time	${ }^{\text {t }}$ F	-	-	300	ns
Stop condition set-up time	tSU; STO	105	-	155	$\mu \mathrm{S}$

Notes to characteristics

1. $\mathrm{V}_{\mathrm{LCD}}<\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$ for $1 / 3$ bias.
2. Outputs open; inputs at V_{SS} or V_{DD}; external clock with 50% duty cycle; ${ }^{2} \mathrm{C}$ bus inactive.
3. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{REF}}$.
4. Periodically sampled, not 100% tested.
5. Outputs measured one at a time.
6. All timing values referred to $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ levels with an input voltage swing of V_{SS} to V_{DD}.
7. At ${ }^{\mathrm{f}} \mathrm{CLK}<125 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$ bus maximum transmission speed is derated.

Fig. 20 Test loads.

Fig. 21 Driver timing waveforms.

Fig. $22 I^{2} \mathrm{C}$ bus high-speed mode timing waveforms.

Fig. $23 I^{2} \mathrm{C}$ bus low-speed mode timing waveforms.

Fig. 24 Typical supply current characteristics.

(a) $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

(b) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$.

Fig. 25 Typical characteristics of LCD outputs.

APPLICATION INFORMATION

Fig. 26 Single plane wiring of packaged PCF8576s.

Chip-on-glass cascadability in single plane

In chip-on-glass technology, where driver devices are bonded directly onto the glass of the LCD, it is important that the devices may be cascaded without the crossing of conductors, but the paths of conductors can be continued on the glass under the chip. All of this is facilitated by the PCF8576 bonding pad layout (Fig. 27). Pads needing bus interconnection between all PCF8576s of the cascade are $V_{D D}, V_{S S}, C L K, S C L, S D A$ and $\overline{S Y N C}$. These lines may be led to the corresponding pads of the next PCF8576 through the wide opening between the $\mathrm{V}_{\text {LCD }}$ pad and the backplane output pads. The only bussed line that does not require a second opening to lead through to the next PCF8576 is $\mathrm{V}_{\text {LCD }}$, being the cascade centre. The placing of $\mathrm{V}_{\text {LCD }}$ adjacent to V_{SS} allows the two supplies to be tied together.
Fig. 28 shows the connection diagram for a cascaded PCF8576 application with single plane wiring. Note the use of the open space between the $V_{\text {LCD }}$ pad and the backplane output pads to route $V_{D D}$, $V_{\text {SS }}$, CLK, SCL, SDA and SYNC. The external connections may be made to either end of the cascade, wherever most convenient for the connector.
When an external clocking source is to be used, OSC of all devices should be tied to VDD. The pads $\mathrm{OSC}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ and SA 0 have been placed between V_{SS} and V_{DD} to facilitate wiring of oscillator, hardware subaddress and slave address.

APPLICATION INFORMATION (continued)

Fig. 27 PCF8576 bonding pad locations.

Bonding pad locations

All x / y coordinates are referenced to left-hand bottom corner (0/0, Fig. 27).
Dimensions in $\mu \mathrm{m}$

pad	x	y		pad	x	y	
S34	160	160	bottom	S33	160	400	left
S35	380			S32	4	640	
S36	580			S31		860	
S37	780			S30		1060	
S38	980			S29		1260	
S39	1180			S28		1460	
SDA	1380			S27		1660	
SCL	1580			S26		1860	
SYNC	1780			S25		2260	
CLK	1980			S24		2460	
VDD	2180			S23		2660	
OSC	2400			S22		2860	
A0	2640		\dagger	S21		3060	
A1	2910	160	bottom	S20		3260	
				S19	\dagger	3480	\dagger
S17	160	3960	top	S18	160	3720	left
S16	380	4	-				
S15	580			A2	2910	360	right
S14	780			SAO		560	\uparrow
S13	980			$V_{\text {SS }}$		760	
S12	1180			$V_{\text {LCD }}$		960	
S11	1380			BPO		2360	
S10	1580			BP2		2560	
S9	1780			BP1		2760	
S8	1980			BP3		2960	
S7	2180			S0		3160	
S6	2400			S1		3360	
S5	2640	\dagger	,	S2	-	3560	,
S4	2910	3960	top	S3	2910	3760	right

Purchase of Philips $I^{12} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

LCD DIRECT/DUPLEX DRIVER WITH $I^{2} \mathrm{C}$ BUS INTERFACE

GENERAL DESCRIPTION

The PCF8577 is a single chip, silicon gate CMOS circuit. It is designed to drive liquid crystal displays with up to 32 segments directly, or 64 segments in a duplex manner.
The two-line $I^{2} \mathrm{C}$ bus interface substantially reduces wiring overheads in remote display applications. Bus traffic is minimized in multiple IC applications by automatic address incrementing, hardware subaddressing and display memory switching (direct drive mode).
The PCF8577 and PCF8577A differ only in their slave address.

Features

- Direct/duplex drive modes with up to 32/64 LCD-segment drive capability per device
- Operating supply voltage: 2,5 to 9 V
- Low power consumption
- $1^{2} \mathrm{C}$ bus interface
- Optimized pinning for single plane wiring
- Single-pin built-in oscillator
- Auto-incremented loading across device sub-address boundaries
- Display memory switching in direct drive mode
- May be used for $I^{2} \mathrm{C}$ bus output expander
- System expansion up to 256 segments (512 segments with PCF8577A)
- Power-on-reset sets all segments off (to blank)

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8577P, PCF8577AP: 40-lead DIL; plastic (SOT-129).
PCF8577T, PCF8577AT: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

Hardware sub-address A0, A1, A2
The hardware sub-address lines A0, A1, A2 are used to program the device sub-address for each PCF8577 on the bus. Lines AO and A2 are shared with OSC and BP2 respectively to reduce pin-out requirements.
A0/OSC Line AO is defined as LOW (logic 0) when this pin is used for the local oscillator or when connected to $\mathrm{V}_{\text {SS }}$. Line A0 is defined as HIGH (logic 1) when connected to $\mathrm{V}_{\text {DD }}$.
A1 Line A1 must be defined as LOW (logic 0) or as HIGH (logic 1) by connection to V_{SS} or V_{DD} respectively.
A2/BP2 In the direct drive mode the second backplane signal BP2 is not used and the A2/BP2 pin is exclusively the A2 input. Line A2 is defined as LOW (logic 0) when connected to $\mathrm{V}_{\text {SS }}$ or, if this is not possible, by leaving it unconnected (internal pull-down). Line A2 is defined as HIGH (logic 1) when connected to $V_{\text {DD }}$.
In the duplex drive mode the second backplane signal BP2 is required and the A2 signal is undefined. In this mode device selection is made exclusively from lines A0 and A1.

Oscillator AO/OSC

The PCF8577 has a single-pin built-in oscillator which provides the modulation for the LCD segment driver outputs. One external resistor and one external capacitor are connected to the AO/OSC pin to form the oscillator. In an expanded system containing more than one PCF8577 the backplane signals are usually common to all devices and only one oscillator is needed. The devices which are not used for the oscillator are put into the expansion mode by connecting the AO/OSC pin to either VDD or V_{SS} depending on the required state for AO. In the expansion mode each PCF8577 is synchronized from the backplane signal(s).

User-accessible registers

There are nine user-accesible 1-byte registers. The first is a control register which is used to control the loading of data into the segment byte registers and to select display options. The other eight are segment byte registers, split into two banks of storage, which store the segment data. The set of even numbered segment byte registers is called BANK A. Odd numbered segment byte registers are called BANK B.

There are two slave addresses, one for PCF8577, and one for PCF8577A (see Fig. 14). All addressed devices load the second byte into the control register and each device maintains an identical copy of the control byte in the control register at all times (see $\mathrm{I}^{2} \mathrm{C}$ bus protocol Fig. 15).
The control register is shown in more detail in Fig. 3. The least-significant bits select which device and which segment byte register are loaded next. This part of the register is therefore called the Segment Byte Vector (SBV).
The upper three bits of the SBV (V5 to V3) are compared with the hardware sub-address input signals A2, A1 and A0. If they are the same then the device is enabled for loading, if not the device ignores incoming data but remains active.
The three least-significant bits of the SBV (V2 to VO) address one of the segment byte registers within the enabled chip for loading segment data.

Fig. 3 PCF8577 register organization.

FUNCTIONAL DESCRIPTION (continued)

The control register also has two display control bits. These bits are named MODE and BANK. The MODE bit selects whether the display outputs are configured for direct or duplex drive displays. The BANK bit allows the user to display BANK A or BANK B.

Auto-incremented loading

After each segment byte is loaded the SBV is incremented automatically, thus auto-incremented loading occurs if more than one segment byte is received in a data transfer.
Since the SBV addresses both device and segment registers, auto-incremented loading may proceed across device boundaries provided that the hardware sub-addresses are arranged contiguously.

Direct drive mode

The PCF8577 is set to the direct drive mode by loading the MODE control bit with logic 0 . In this mode only four bytes are needed to store the data for the 32 segment drivers. Setting the BANK bit to logic 0 selects even bytes (BANK A); setting the BANK bit to logic 1 selects odd bytes (BANK B).
In the direct drive mode the SBV is auto-incremented by two after the loading of each segment byte register. This means that auto-incremented loading of BANK A or BANK B is possible. Either bank may be completely or partially loaded irrespective of which bank is being displayed. Direct drive output waveforms are shown in Fig. 4.

$V_{O N}=V_{D D}-V_{S S}$
$V_{\text {OFF }}=0$

Fig. 4 Direct drive mode display output waveforms.

Duplex mode

The PCF8577 is set to the duplex mode by loading the MODE bit with logic 1. In this mode a second backplane signal (BP2) is needed and pin A2/BP2 is used for this; therefore A2 and its equivalent SBV bit V5 are undefined. The SBV auto-increments by one between loaded bytes.
All of the segment bytes are needed to store data for the 32 segment drivers and the BANK bit is ignored.

Duplex mode output waveforms are shown in Fig. 5.

Fig. 5 Duplex mode display output waveforms.

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 6 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 7 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 8 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 9 Acknowledgement on the $I^{2} \mathrm{C}$ bus.

Timing specifications

Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode and a low-speed mode are defined. The PCF8577 operates in both modes and the timing requirements are as follows:

High-speed mode

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 10.

Fig. 10 Timing of the high-speed mode.

CHARACTERISTICS OF THE I^{2} C BUS (continued)

Where:

$t_{\text {buF }}$	$t \geqslant t_{\text {LOWmin }}$	The minimum time the bus must be free before a new transmission can start
${ }^{\text {tHD }}$; STA	$t \geqslant t_{\text {HIGHmin }}$	Start condition hold time
${ }^{\text {t LOWmin }}$	4,7 $\mu \mathrm{s}$	Clock LOW period
$\mathrm{t}_{\text {HIGHmin }}$	$4 \mu \mathrm{~s}$	Clock HIGH period
${ }^{\text {t SU; STA }}$	$t \geqslant t_{\text {LOWmin }}$	Start condition set-up time, only valid for repeated start code
thD; DAT	$\mathrm{t} \geqslant 0 \mu \mathrm{~s}$	Data hold time
${ }^{\text {t }}$ U ; DAT	$t \geqslant 250 \mathrm{~ns}$	Data set-up time
${ }^{\text {t } R}$	$t \leqslant 1 \mu \mathrm{~s}$	Rise time of both the SDA and SCL line
${ }^{\text {t }}$ F	$\mathrm{t} \leqslant 300 \mathrm{~ns}$	Fall time of both the SDA and SCL line
tSU; STO	$t \geqslant t_{\text {LOW }}$ min	Stop condition set-up time

Note

All the timing values referred to $\mathrm{V}_{I H}$ and V_{IL} levels with a voltage swing of V_{SS} to V_{DD}.

Fig. 11 Complete data transfer in the high-speed mode.

Where:

Clock t LOWmin	$4,7 \mu \mathrm{~s}$
tHIGHmin	$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Mark-to-space ratio
Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

1:1 (LOW-to-HIGH)
unrestricted
allowed by generation of STOP condition
must be provided by the master

Low-speed mode

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of $365 \mu \mathrm{~s}$. The mark-to-space ratio is $1: 3 \mathrm{LOW}$-to-HIGH. Detailed timing is shown in Fig. 12.

Where:
tBUF
$t \geqslant 105 \mu \mathrm{~s}\left(\mathrm{t}_{\text {LOWmin }}\right)$
${ }^{\text {thD }}$; STA
$t \geqslant 365 \mu \mathrm{~s}$ (t HIGHmin)
t LOW
$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
tHIGH
$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
${ }^{t}$ SU; STA
$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s} *$
thD; DAT
$\mathrm{t} \geqslant 0 \mu \mathrm{~s}$
${ }^{\text {t }}$ SU; DAT
$\mathrm{t} \geqslant 250 \mathrm{~ns}$
t_{R}
t_{F}
$t \leqslant 1 \mu \mathrm{~s}$
$\mathrm{t} \leqslant 300 \mathrm{~ns}$
tSU; STO

Note

All the timing values referred to $V_{I H}$ and $V_{\text {IL }}$ levels with a voltage swing of $V_{S S}$ to $V_{D D}$, for definitions see high-speed mode.

* Only valid for repeated start code.

CHARACTERISTICS OF THE $\mathbf{I}^{2} \mathbf{C}$ BUS (continued)

Fig. 13 Complete data transfer in the low-speed mode.

Where:

Clock t LOWmin	$130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
\quad tHIGHmin	$390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
Mark-to-space ratio	$1: 3$ (LOW-to-HIGH)
Start byte	00000001
Maximum number of bytes	6
Premature termination of transfer	not allowed
Acknowledge clock bit	must be provided by master

Note

The general characteristics and detailed specification of the $\mathrm{I}^{2} \mathrm{C}$ bus are described in a separate data sheet (serial data buses) in handbook: ICs for digital systems in radio, audio and video equipment.

ADDRESSING

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$ bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure.

Slave address

The slave address for PCF8577 and PCF8577A are shown in Fig. 14.

Fig. 14 PCF8577 and PCF8577A slave addresses.

$1^{2} \mathrm{C}$ bus protocol

The PCF8577 $1^{2} \mathrm{C}$ bus protocol is shown in Fig. 15.

Fig. $15 I^{2} \mathrm{C}$ bus protocol.
The PCF8577 is a slave receiver and has a fixed slave address (Fig. 14). All PCF8577 on the same bus acknowledge the slave address in parallel. The second byte is always the control byte and is loaded into the control register of each PCF8577 on the bus. Subsequent data bytes are loaded into the segment registers of the selected device. Any number of data bytes may be loaded in one transfer and in an expanded system rollover of the SBV from 111111 to 000000 is allowed. If a stop (P) condition is given after the control byte acknowledge the segment data remains unchanged. This allows the BANK bit to be toggled without changing the segment register contents. During loading of segment data only the selected PCF8577 gives an acknowledge. Loading is terminated by generating a stop (P) condition.

DISPLAY MEMORY MAPPING

The mapping between the eight segment registers and the segment outputs S 1 to S 32 is shown in Tables 1 and 2.

Since only one register bit per segment is needed in the direct drive mode, the BANK bit allows swapping of display information. If BANK is set to logic 0 even bytes (BANK A) are displayed; if BANK is set to logic 1 odd bytes (BANK B) are displayed. BP1 is always used for the backplane output in the direct drive mode.

Table 1 Segment byte - segment driver mapping in the direct drive mode.

MODE	BANK	V2	V1	Vo	$\begin{array}{\|l\|} \hline \text { SEGMENT } \\ \hline \text { REGIT } \\ \hline \end{array}$	$\int \begin{gathered} \text { M S B } \\ 7 \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} \text { L S B } \\ 0 \end{gathered}$	BACKPLANE
0	0	0	0	0	0	S8	S7	S6	S5	S4	S3	S2	S1	3P1
0	1	0	0	1	1	S8	S7	S6	S5	S4	S3	S2	S1	BP1
0	0	0	1	0	2	S16	S15	S14	S13	S12	S11	S10	S9	BP1
0	1	0	1	1	3	S16	S15	S14	S13	S12	S11	S10	S9	BP1
0	0	1	0	0	4	S24	S23	S22	S21	S20	S19	S18	S17	BP1
0	1	1	0	1	5	S24	S23	S22	S21	S20	S19	S18	S17.	BP1
0	0	1	1	0	6	S32	S31	S30	S29	S28	S27	S26	S25	BP1
0	1	1	1	1	7	S32	S31	S30	S29	S28	S27	S26	S25	BP1

Mapping example: bit 0 of register 7 controls the LCD segment S25 if BANK bit is a logic 1 .

DISPLAY MEMORY MAPPING (continued)
Even bytes (BANK A) correspond to backplane 1 (BP1) and odd bytes (BANK B) correspond to backplane 2 (BP2).

Table 2 Segment byte - segment driver mapping in the duplex mode.

MODE	BANK	V2	V1	Vo	$\begin{array}{\|l\|} \hline \text { SEGMENT BIT } \\ \hline \text { REGISTER } \\ \hline \end{array}$	$\begin{gathered} \text { M S B } \\ 7 \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} \text { LS } B \\ 0 \end{gathered}$	BACKPLANE
1	x	0	0	0	0	S8	S7	S6	S5	S4	S3	S2	S1	BP1
1	x	0	0	1	1	S8	S7	S6	S5	S4	S3	S2	S1	BP2
1	x	0	1	0	2	S16	S15	S14	S13	S12	S11	S10	S9	BP1
1	x	0	1	1	3	S16	S15	S14	S13	S12	S11	S10	S9	BP2
1	x	1	0	0	4	S24	S23	S22	S21	S20	S19	S18	S17	BP1
1	x	1	0	1	5	S24	S23	S22	S21	S20	S19	S18	S17	BP2
1	x	1	1	0	6	S32	S31	S30	S29	S28	S27	S26	S25	BP1
1	x	1	1	1	7	S32	S31	S30	S29	S28	S27	S26	S25	BP2

$X=$ don't care.

Mapping example: bit 7 of register 5 controls the LCD segment S24/BP2.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	$V_{\text {DD }}$	$-0,5$ to 11	V
Voltage on any pin	V_{1}	$\mathrm{V}_{S S}-0,8$ to $\mathrm{V}_{\mathrm{DD}}+0,8$	V
D.C. input current	± 11	max. 20	mA
D.C. output current	± 10	max. 25	mA
$\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ current	$\pm I_{\text {DD }}{ }^{\text {I }}$ SS	max. 50	mA
Power dissipation per package	$P_{\text {tot }}$	max. 500*	mW
Power dissipation per output	P	max. 100	mW
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

[^9]
CHARACTERISTICS

$V_{D D}=2,5$ to $9 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.*	max.	unit
Supply voltage	VDD	2,5	-	9,0	V
$\begin{aligned} & \text { Supply current } \\ & \quad \mathrm{fSCL}^{=} 100 \mathrm{kHz} ; \text { no load } ; \text { ROSC }=1 \mathrm{M} \Omega \\ & \mathrm{f}_{\mathrm{SCL}}=0 ; \text { no load; ROSC }=1 \mathrm{M} \Omega ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \\ & \quad \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	IDD	-	80	250	$\mu \mathrm{A}$
	IDD	-	35	70	$\mu \mathrm{A}$
Power-on-reset level**	$V_{\text {REF }}$	-	1,1	2,0	V
Input SCL; input/output SDA input voltage LOW	$V_{\text {IL }}$	0	-	0,8	V
input voltage HIGH	$V_{\text {IH }}$	2,0	-	9,0	V
output current LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	${ }^{\text {IOL }}$	3,0	-	-	mA
output leakage current HIGH at $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	${ }^{\mathrm{IOH}}$	-	-	250	nA
tolerable spike width on bus	$\mathrm{t}_{\text {sw }}$	-	-	100	ns
input capacitance at $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	CI	-	-	7	pF
A1 input leakage current at $\mathrm{V}_{1}=\mathrm{V}_{S S}$ or V_{DD}	11	-	-	250	nA
A2/BP2 input current at $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	11	-	2,0	-	$\mu \mathrm{A}$
A0/OSC input current at $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ or V_{DD}	± 11	-	5,0	-	$\mu \mathrm{A}$
DC component of LCD driver	$\pm \mathrm{V}_{\text {BP }}$	-	20	-	mV
Segment loads	$\mathrm{C}_{\text {SX }}$	-	-	5	nF
	RSX	1	-	-	$\mathrm{M} \Omega$
Segment output current $\text { at } \mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	${ }^{\text {I OL }}$	0,3	-	-	mA
Segment output current at $V_{O H}=V_{D D}-0,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$-\mathrm{IOH}$	0,3	-	-	mA
Backplane load (direct drive)	$\mathrm{C}_{\text {BP }}$	-	-	50	nF
	$\mathrm{R}_{\text {BP }}$	100	-	-	k Ω
Backplane loads (duplex drive)	C_{BP}	-	-	35	nF
	R_{BP}	100	-	-	$k \Omega$
Rise and fall times ($V_{B P}-V_{S X}$) at maximum load	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}$	-	-	200	$\mu \mathrm{S}$
Display frequency at $\operatorname{COSC}=680 \mathrm{pF} ; \mathrm{ROSC}_{\mathrm{OSC}}=1 \mathrm{M} \Omega$	${ }^{\text {f LCD }}$	65	90	120	Hz

[^10]APPLICATION INFORMATION

(1) The series resistance of the display backplane must be greater than 1Ω.

Fig. 16 Direct drive display; expansion to 256 segments using eight PCF8577.

(1) The series resistances of the display backplanes must be greater than $1 \mathrm{k} \Omega$.

Fig. 17 Duplex display; expansion to 2×128 segments using four PCF8577.

APPLICATION INFORMATION (continued)

Notes

1. MODE bit must always be set to 0 (direct drive)
2. BANK switching is permitted
3. BP1 must always be connected to V_{SS} and $\mathrm{AO} / \mathrm{OSC}$ must be connected to either V_{DD} or V_{SS} (no LCD modulation)

Fig. 18 Use of PCF8577 as 32-bit output expander in $\mathrm{I}^{2} \mathrm{C}$ bus application.

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

8-BIT A/D AND D/A CONVERTER

GENERAL DESCRIPTION

The PCF8591 is a single chip, single supply low power 8-bit CMOS data acquisition device with four analogue inputs, one analogue output and a serial $I^{2} \mathrm{C}$ bus interface. Three address pins A0, A1 and A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the $I^{2} \mathrm{C}$ bus without additional hardware. Address, control and data to and from the device are transferred serially via the two-line bidirectional bus ($\left.I^{2} \mathrm{C}\right)$.
The functions of the device include analogue input multiplexing, on-chip track and hold function, 8 -bit analogue-to-digital conversion and an 8 -bit digital-to-analogue conversion. The maximum conversion rate is given by the maximum speed of the $I^{2} \mathrm{C}$ bus.

FEATURES

- Single power supply
- Operating supply voltage $2,5 \mathrm{~V}$ to 6 V
- Low standby current
- Serial input/output via $I^{2} \mathrm{C}$ bus
- Address by 3 hardware address pins
- Sampling rate given by $\mathrm{I}^{2} \mathrm{C}$ bus speed
- 4 analogue inputs programmable as single-ended or differential inputs
- Auto-incremented channel selection
- Analogue voltage range from $\mathrm{V}_{S S}$ to V_{DD}
- On-chip track and hold circuit
- 8-bit successive approximation A/D conversion
- Multiplying DAC with one analogue output

APPLICATIONS

Closed loop control systems; low power converter for remote data acquisition; battery operated equipment; acquisition of analogue values in automotive, audio and TV applications.

PACKAGE OUTLINES

PCF8591P:16-lead DIL; plastic (SOT-38).
PCF8591T:16-lead mini-pack; plastic (SO-16L; SOT-162A).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1. AINO
2. AIN1
3. AIN2
4. AIN3
5. AO
6. A1
7. A2
8. V_{SS}
9. SDA
10. SCL
11. OSC
12. EXT
13. AGND
14. VREF
15. AOUT

16 VDD
analogue inputs (A/D converter)
hardware address negative supply voltage $I^{2} \mathrm{C}$ bus data input/output
$1^{2} \mathrm{C}$ bus clock input/output oscillator input/output external/internal switch for oscillator input analogue ground voltage reference input analogue output (D/A converter) positive supply voltage

FUNCTIONAL DESCRIPTION

Adressing

Each PCF8591 device in an $I^{2} \mathrm{C}$ bus system is activated by sending a valid address to the device. The address consists of a fixed part and a programmable part. The programmable part must be set according to the address pins A0, A1 and A2. The address always has to be sent as the first byte after the start condition in the $1^{2} \mathrm{C}$ bus protocol. The last bit of the address byte is the read/write-bit which sets the direction of the following data transfer (see Figs 3 and 10).

Fig. 3 Address byte.

Control byte

The second byte sent to a PCF8591 device will be stored in its control register and is required to control the device function.

The upper nibble of the control register is used for enabling the analogue output, and for programming the analogue inputs as single-ended or differential inputs. The lower nibble selects one of the analogue input channels defined by the upper nibble (see Fig. 4). (f the auto-increment flag is set the channel number is incremented automatically after each A / D conversion.

The selection of a non-existing input channel results in the highest available channel number being allocated. Therefore, if the auto-increment flag is set, the next selected channel will be always channel 0. The most significant bits of both nibbles are reserved for future functions and have to be set to 0 . After a power-on reset condition all bits of the control register are reset to 0 . The D/A converter and the oscillator are disabled for power saving. The analogue output is switched to a high impedance state.

ANALOGUE INPUT PROGRAMMING:
00 Four single ended inputs

01 Three differential inputs

10 Single ended and differential mixed

11 Two differential inputs

ANALOGUE OUTPUT ENABLE FLAG:
(analogue output active if 1)

Fig. 4 Control byte.

D/A conversion

The third byte sent to a PCF8591 device is stored in the DAC data register and is converted to the corresponding analogue voltage using the on-chip D/A converter. This D/A converter consists of a resistor divider chain connected to the external reference voltage with 256 taps and selection switches. The tap-decoder switches one of these taps to the DAC output line (see Fig. 5).
The analogue output voltage is buffered by an auto-zeroed unity gain amplifier. This buffer amplifier may be switched on or off by setting the analogue output enable flag of the control register. In the active state the output voltage is held until a further data byte is sent.
The on-chip D/A converter is also used for successive approximation A/D conversion. In order to release the DAC for an A/D conversion cycle the unity gain amplifier is equipped with a track and hold circuit. This circuit holds the output voltage while executing the A/D conversion.
The output voltage supplied to the analogue output AOUT is given by the formula shown in Fig. 6. The waveforms of a D/A conversion sequence are shown in Fig. 7.

Fig. 5 DAC resistor divider chain.
MSB

D7	D6	D5	D4	D3	D2	D1	D0

DAC data
register

Fig. 6 DAC data and d.c. conversion characteristics.

Fig. 7 D/A conversion sequence.

A/D conversion

The A/D converter makes use of the successive approximation conversion technique. The on-chip D/A converter and a high gain comparator are used temporarily during an A/D conversion cycle.
An A/D conversion cycle is always started after sending a valid read mode address to a PCF8591 device. The A/D conversion cycle is triggered at the trailing edge of the acknowledge clock pulse and is executed while transmitting the result of the previous conversion (see Fig. 8).

Once a conversion cycle is triggered an input voltage sample of the selected channel is stored on the chip and is converted to the corresponding 8 -bit binary code. Samples picked up from differential inputs are converted to an 8 -bit two's complement code (see Fig. 9). The conversion result is stored in the ADC data register and awaits transmission. If the auto-increment flag is set the next channel is selected.
The first byte transmitted in a read cycle contains the conversion result code of the previous read cycle. After a power-on reset condition the first byte read is a hexadecimal 80 . The protocol of an $1^{2} \mathrm{C}$ bus read cycle is shown in Fig. 10.
The maximum A/D conversion rate is given by the actual speed of the $I^{2} \mathrm{C}$ bus.

PROTOCOL | S | ADDRESS | 1 | A | DATA BYTE 0 | A | DATA BYTE 1 | A | DATA BYTE 2 | A | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. $8 \mathrm{~A} / \mathrm{D}$ conversion sequence.

Fig. 9a A / D conversion characteristics of single-ended inputs.

Fig. 9b A/D conversion characteristics of differential inputs.

Reference voltage

For the D / A and A / D conversion either a stable external voltage reference or the supply voltage has to be applied to the resistor divider chain (pins $V_{\text {REF }}$ and AGND). The AGND pin has to be connected to the system analogue ground and may have a d.c. off-set with reference to V_{SS}.
A low frequency may be applied to the $V_{\text {REF }}$ and AGND pins. This allows the use of the D/A converter as a one-quadrant multiplier; see Application Information and Fig. 6.
The A/D converter may also be used as a one or two quadrant analogue divider. The analogue input voltage is divided by the reference voltage. The result is converted to a binary code. In this application the user has to keep the reference voltage stable during the conversion cycle.

Oscillator

An on-chip oscillator generates the clock signal required for the A / D conversion cycle and for refreshing the auto-zeroed buffer amplifier. When using this oscillator the EXT pin has to be connected to V_{SS}. At the OSC pin the oscillator frequency is available.
If the EXT pin is connected to VDD the oscillator output OSC is switched to a high impedance state allowing the user to feed an external clock signal to OSC.

Bus protocol

After a start condition a valid hardware address has to be sent to a PCF8591 device. The read/write bit defines the direction of the following single or multiple byte data transfer. For the format and the timing of the start condition (S), the stop condition (P) and the acknowledge bit (A) refer to the $I^{2} \mathrm{C}$ bus characteristics. In the write mode a data transfer is terminated by sending either a stop condition or the start condition of the next data transfer.

Fig. 10a Bus protocol for write mode, D/A conversion.

Fig. 10b Bus protocol for read mode, A/D conversion.

CHARACTERICS OF THE I^{2} C BUS

The $I^{2} \mathrm{C}$ bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transfered during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 11 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

Fig. 12 Definition of start and stop condition.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 13 System configuration.

Acknowledge.

The number of data bytes transfered between the start and stop conditions from transmitter to receiver is not limited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master also generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 14 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$ bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{\text {IL }}$ and $V_{\text {IH }}$ with an input voltage swing of $V_{\text {SS }}$ to $V_{D D}$.

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	-	-	100	kHz
Tolerable spike width on bus	tSW	-	-	100	ns
Bus free time	tBUF	4,0	-	-	$\mu \mathrm{s}$
Start condition set-up time	tSU; STA	4,0	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	4,7	-	-	$\mu \mathrm{s}$
SCL LOW time	tLOW	4,7	-	-	$\mu \mathrm{s}$
SCL HIGH time	thIGH	4,0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	tr 2	-	-	1,0	$\mu \mathrm{~s}$
SCL and SDA fall time	tF	-	-	0,3	$\mu \mathrm{~s}$
Data set-up time	tSU; DAT	250	-	-	ns
Data hold time	tHD; DAT	0	-	-	ns
SCL LOW to data out valid	tVD; DAT	-	-	3,4	$\mu \mathrm{~s}$
Stop condition set-up time	tSU; STO	4,0	-	-	$\mu \mathrm{s}$

PROTOCOL

	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6	

BIT 0	ACKNOW-	STOP	
LSB	LEDGE	CONDITION	
(R / W)	(A)	(P)	

SCL

Fig. $151^{2} \mathrm{C}$ bus timing diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	$V_{\text {DD }}$		$-0,5$ to $+8,0 \mathrm{~V}$
Voltage on any pin	V_{1}		$-0,5$ to $\vee_{\text {DD }}+0,5 \mathrm{~V}$
Input current d.c.	11	max.	10 mA
Output current d.c.	10	max.	20 mA
$\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ current	IDD, ISS	max.	50 mA
Power dissipation per package	$\mathrm{P}_{\text {tot }}$	max.	300 mW
Power dissipation per output	P	max.	100 mW
Storage temperature range	$\mathrm{T}_{\text {stg }}$		-65 to $+150{ }^{\circ} \mathrm{C}$
Operating ambient temperature range	Tamb		-40 to $+85{ }^{\circ} \mathrm{C}$

Note:

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is advised to take handling precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2,5 \mathrm{~V}$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage	operating	$V_{\text {DD }}$	2,5	-	6,0	V
Supply current	standby					
	$V_{1}=V_{S S}$ or $V_{D D}$; no load	IDDO	-	1	15	$\mu \mathrm{A}$
Supply current	operating; AOUT off; $f S C L=100 \mathrm{kHz}$	IDD1	-	125	250	$\mu \mathrm{A}$
Supply current	AOUT active; $\mathrm{fSCL}=100 \mathrm{kHz}$	IDD2	-	0,45	1,0	mA
Power-on reset level	note 1	VPOR	0,8	-	2,0	\checkmark
Digital inputs/output	SCL, SDA, A0, A1, A2					
Input voltage	LOW	$V_{\text {IL }}$	0	-	$0,3 \times V_{\text {DD }}$	V
Input voltage	HIGH	$\mathrm{V}_{\text {IH }}$	$0,7 \times V_{\text {DD }}$	-	$V_{\text {DD }}$	V
Input current	leakage; $V_{I}=V_{S S} \text { to } V_{D D}$	11	-	-	250	nA
Input capacitance		Cl_{1}	-	-	5	pF
SDA output current	leakage; HIGH at $V_{O H}=V_{D D}$	IOH	-	-	250	nA
SDA output current	LOW at $\mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V}$	IOL	3,0	-	-	mA

parameter	conditions	symbol	min.	typ.	max.	unit
Reference voltage inputs	VREF, AGND					
Voltage range	reference	$V_{\text {REF }}$	VAGND	-	VDD	V
Voltage range	analogue ground	$V_{\text {AGND }}$	VSS	-	$V_{\text {REF }}$	V
Input current	leakage	11	-	-	250	nA
Input resistance	VREF to AGND	$\mathrm{R}_{\text {REF }}$	-	100	-	$k \Omega$
Oscillator	OSC, EXT					
Input current	leakage	11	-	-	250	nA
Oscillator frequency		fosc	0,75	-	1,25	MHz

D/A CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=5,0 \mathrm{~V} ; \mathrm{V}_{\text {AGND }}=0 \mathrm{~V} ; \mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega ; \mathrm{C}_{\text {load }}=100 \mathrm{pF}$;
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Analogue output						
Output voltage range	no resistive load	$\mathrm{V}_{\text {OA }}$	VSS	-	$V_{D D}$	V
Output voltage range	$\mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega$	VOA	VSS	-	$0,9 x \vee D D$	V
Output current	leakage; AOUT disabled	ILO	-	-	250	nA
Accuracy						
Offset error	$\mathrm{Tamb}=25^{\circ} \mathrm{C}$	$\mathrm{OS}_{\text {e }}$	-	-	50	mV
Linearity error		L_{e}	-	-	$\pm 1,5$	LSB
Gain error	no resistive load	G_{e}	-	-	1	\%
Settling time	to $1 / 2$ LSB full scale step	$t_{\text {t }}$	-	-	90	$\mu \mathrm{s}$
Conversion rate		$f_{\text {f }}$	-	-	11,1	kHz
Supply noise rejection	$\begin{aligned} & \text { at } \mathrm{f}=100 \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{DD}}=0,1 \mathrm{VPP} \end{aligned}$	SNRR	-	40	-	dB

A/D CHARACTERISTICS
$V_{D D}=5,0 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=5,0 \mathrm{~V} ; \mathrm{V}_{\text {AGND }}=0 \mathrm{~V} ; \mathrm{R}_{\text {source }}=10 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ unless otherwise specified

Note

1. The power on reset circuit resets the $I^{2} \mathrm{C}$ bus logic when $V_{D D}$ is less than $V_{P O R}$.

(a) internal oscillator; $\mathrm{T}_{\mathrm{amb}}=+27^{\circ} \mathrm{C}$.

(b) external oscillator.

Fig. 16 Operating supply current against supply voltage (analogue output disabled).

(a) output impedance near negative power rail; $\mathrm{T}_{\mathrm{amb}}=+27^{\circ} \mathrm{C}$.

(b) output impedance near positive power rail; $\mathrm{T}_{\mathrm{amb}}=+27^{\circ} \mathrm{C}$.

Fig. 17 Output impedance of analogue output buffer (near power rails).
The x-axis represents the hex input-code equivalent of the output voltage.

APPLICATION INFORMATION

Inputs must be connected to V_{SS} or V_{DD} when not in use. Analogue inputs may also be connected to AGND or VREF.
In order to prevent excessive ground and supply noise and to minimize cross-talk of the digital to analogue signal paths the user has to design the printed-circuit board layout very carefully. Supply lines common to a PCF8591 device and noisy digital circuits and ground loops should be avoided. Decoupling capacitors ($>10 \mu \mathrm{~F}$) are recommended for power supply and reference voltage inputs.

Fig. 18 Application diagram.

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $1^{2} \mathrm{C}$ specification defined by Philips.

LOW VOLTAGE MONO/STEREO POWER AMPLIFIER

GENERAL DESCRIPTION

The TDA7050T is a low voltage audio amplifier for small radios with headphones (such as watch, pen and pocket radios) in mono (bridge-tied load) or stereo applications.

Features

- Limited to battery supply application only (typ. 3 and 4 V)
- Operates with supply voltage down to $1,6 \mathrm{~V}$
- No external components required
- Very low quiescent current
- Fixed integrated gain of 26 dB , floating differential input
- Flexibility in use - mono BTL as well as stereo
- Small dimension of encapsulation (see package design example)

QUICK REFERENCE DATA

PACKAGE OUTLINE

8-lead mini-pack; plastic (SO-8; SOT-96A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Peak output current
Total power dissipation
Storage temperature range
Crystal temperature

V_{P}	max.	6 V
I_{OM}	max.	150 mA
see derating curve	Fig. 1	

Fig. 1 Power derating curve.

SO PACKAGE DESIGN EXAMPLE

To achieve the small dimension of the encapsulation the SO package is preferred with only 8 pins. Because a heatsink is not applicable, the dissipation is limited by the thermal resistance of the 8 -pin SO encapsulation until:
$\frac{T_{j \max }-T_{a m b}}{R_{\text {th j }-\mathrm{a}}}=\frac{100-60}{300}=0,1 \mathrm{~W}$.

CHARACTERISTICS

$V_{P}=3 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=32 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	\min.	typ.	max.	unit
Supply					
Supply voltage	V_{P}	1,6	-	6,0	V
Total quiescent current	$\mathrm{I}_{\text {tot }}$	-	3,2	4	mA
Bridge-tied load application (BTL); see Fig. 4					
Output power* $V_{P}=3,0 V ; d_{\text {tot }}=10 \%$	P_{o}	-	140	-	mW
$V_{P}=4,5 \mathrm{~V} ; \mathrm{d}_{\text {tot }}=10 \%\left(\mathrm{R}_{\mathrm{L}}=64 \Omega\right)$	P_{0}	-	150	-	mW
Voltage gain	G_{v}	-	32	-	dB
Noise output voltage (r.m.s. value) $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega ; \mathrm{f}=1 \mathrm{kHz}$	$V_{\text {no }}$ (rms)	-	140	-	$\mu \mathrm{V}$
$\mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{f}=500 \mathrm{kHz} ; \mathrm{B}=5 \mathrm{kHz}$	$\mathrm{V}_{\text {no }}$ (rms)	-	tbf	-	$\mu \mathrm{V}$
D.C. output offset voltage (at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$)	$\|\Delta V\|$	-	-	70	mV
Input impedance (at $\mathrm{R}_{\mathrm{S}}=\infty$)	$\left\|Z_{i}\right\|$	1	-	-	$\mathrm{M} \Omega$
Input bias current	I_{i}	-	40	-	nA
Stereo application; see Fig. 5					
Output power* $V_{P}=3,0 \mathrm{~V} ; \mathrm{d}_{\mathrm{tot}}=10 \%$	P_{O}	-	35	-	mW
$V_{P}=4,5 \mathrm{~V} ; \mathrm{d}_{\text {tot }}=10 \%$	P_{o}	-	75	-	mW
Voltage gain	G_{v}	-	26	-	dB
Noise output voltage (r.m.s. value) $R_{S}=5 \mathrm{k} \Omega ; f=1 \mathrm{kHz}$	$\mathrm{V}_{\text {no }}$ (rms)	-	100	-	$\mu \mathrm{V}$
$\mathrm{R}_{\text {S }}=0 \Omega ; \mathrm{f}=500 \mathrm{kHz} ; \mathrm{B}=5 \mathrm{kHz}$	$\mathrm{V}_{\text {no }}$ (rms)	-	tbf	-	$\mu \mathrm{V}$
Channel separation $\mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{f}=1 \mathrm{kHz}$	α	30	40	-	dB
Input impedance (at $\mathrm{R}_{\mathrm{S}}=\infty$)	$\left\|Z_{i}\right\|$	2	-	-	M Ω
Input bias current	l_{i}	-	20	-	nA

* Output power is measured directly at the output pins of the IC. It is shown as a function of the supply voltage in Fig. 2 (BTL application) and Fig. 3 (stereo application).

Fig. 2 Output power across the load impedance (R_{L}) as a function of supply voltage (V_{P}) in BTL application. Measurements were made at $f=1 \mathrm{kHz} ; d_{\text {tot }}=10 \% ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

APPLICATION INFORMATION

Fig. 4 Application diagram (BTL); also used as test circuit.

Fig. 3 Output power across the load impedance $\left(R_{L}\right)$ as a function of supply voltage (V_{P}) in stereo application. Measurements were made at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{d}_{\mathrm{tot}}=10 \% ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 5 Application diagram (stereo); also used as test circuit.

TELEPHONE TRANSMISSION CIRCUIT FOR HANDSFREE LOUDSPEAKING

GENERAL DESCRIPTION

The TEA1042 is a bipolar integrated circuit performing all speech and line interface functions in electronic telephone sets. It is especially designed for handsfree loudspeaking equipment.
Its features are:

- Supplied from telephone line current
- Voltage regulator with adjustable d.c. voltage drop and d.c. resistance
- High and low-impedance handset microphone inputs
- High-impedance base microphone input
- Handset/base selection input
- Muting input for pulse or DTMF dialling
- Gain setting facility on all amplifiers
- Line current dependent gain control facility with corrections for the exchange supply voltage and its feeding bridge resistance
- Supply output for additional circuits.

QUICK REFERENCE DATA

Line voltage at $l_{\text {line }}=15 \mathrm{~mA}$	$V_{\text {line }}$	typ.	4,2 V
Line current operating range	line	10 to 140 mA	
Telephone line impedance	$\left\|Z_{\text {line }}\right\|$	nom.	600Ω
Supply current	${ }^{1} \mathrm{CC}$	typ.	1 mA
Voltage gain, transmitting amplifier			
MIC1 input	A_{vd}	typ.	44,5 dB
MIC2 input	$A_{\text {vd }}$	typ.	20 dB
MIC3 input	$A_{\text {vd }}$	typ.	20 dB
DTMF input	Avd	typ.	26 dB
Voltage gain, receiving amplifier	$A_{\text {vd }}$	typ.	27 dB
Gain adjustment range transmitting amplifier receiving amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$ $\Delta \mathrm{A}_{\mathrm{vd}}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & \pm 6 \mathrm{~dB} \\ & \pm 8 \mathrm{~dB} \end{aligned}$
Range of gain control with line current, all amplifiers	$\Delta \mathrm{A}_{\mathrm{vd}}$	typ.	6 dB
Exchange supply voltage range	Vexch		to 60 V
Exchange feeding bridge resistance	Rexch	400	800Ω
Operating ambient temperature range	Tamb	-25	$+70{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

Fig. 1 Block diagram. The blocks marked dB are attenuators. The M and MUTE inputs operate analogue switches that activate or inhibit the inputs and outputs as required by their function.

FUNCTIONAL DESCRIPTION

The TEA1042 contains two receiving amplifiers, a transmitting amplifier, means to switch the inputs and the outputs, means to adjust the gain of all amplifiers individually, means to vary the gain with the line current and means to adjust the d.c. voltage drop and d.c. resistance. See the block diagram, Fig. 1.

Supply: LN, VCC, VEE, RA, CX1 and CX2 (pins 1, 21, 4, 24, 6 and 13)

The circuit is supplied from the line current, the arrangement is shown in Fig. 3. The circuit develops its own supply voltage at V_{CC} (pin 21). This supply voltage may also be used to supply an external circuit, e.g. a CMOS pulse or DTMF dialler or an electret microphone amplifier stage. The current available for this circuit depends on external components, see Fig. 4.

All line current has to flow through the circuit. If the line current exceeds the current required by the circuit itself via V_{CC} (pin 21), i.e. about 1 mA , plus the current required by the peripheral circuits connected to this pin, then the excess current is diverted via LN, the positive line terminal (pin 1), to RA (d.c. resistance adjustment; pin 24).
The minimum line voltage may be chosen by external resistor R5 and the variation with line current by external resistor $R 10$. The circuit regulates the line voltage at $T_{a m b}=25^{\circ} \mathrm{C}$ to:

$$
V_{\text {line }}=V_{L N}=\frac{R 5+R 9}{R 9} \times 0,62+I_{L N} \times R 10,
$$

I LN being the current diverted via LN.
A regulator decoupling capacitor has to be connected between $R C X$ (pin 22) and $V_{E E}$, the negative line terminal (pin 4), a smoothing capacitor has to be connected between $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 21)$ and V_{EE}, and a stabilizing capacitor between CX2 (pin 13) and V_{EE}. Further a decoupling capacitor has to be connected between CX1 (reference decoupling; pin 6) and V_{EE} (pin 4).
The dynamic impedance that the circuit presents to the line in the speech band is determined primarily by resistor R1 connected between LN (pin 1) and $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 21)$.

Mode (handset/base selection) input M (pin 16)

The mode input permits selection of operation via the handset or via the base. A HIGH level on the M input or an open circuit selects handset operation, i.e. it activates the microphone inputs MIC1 and MIC2 and the handset telephone output QTEL. A LOW level on M selects the base microphone input MIC3 and the loudspeaker preamplifier output OLSP.

Microphone inputs MIC1, MIC2 and MIC3 (pins 10, 18 and 19)

Handset and base may be equipped with a sensitive microphone, e.g. an electret microphone with preamplifier. This has to be connected to the MIC2 or MIC3 input respectively. The available gain from these inputs is typ. 20 dB .

The handset may also be equipped with an insensitive low-impedance microphone, e.g. a dynamic or magnetic microphone. This has to be connected between MIC1 (pin 10) and (REF (pin 11). The available gain from this input is typ. 44,1 dB.

Dual-tone multi-frequency input DTMF and mute input MUTE (pins 20 and 17)

A HIGH level on the MUTE input inhibits all microphone inputs and the telephone and loudspeaker outputs QTEL and OLSP and enables the DTMF input, a LOW level does the reverse. Switching the MUTE input will not produce any clicks on the line or in the telephone or loudspeaker. The available gain from the DTMF input is typ. $25,6 \mathrm{~dB}$.

Telephone output OTEL and loudspeaker preamplifier output OLSP (pins 5 and 8)
As described before, the M input determines which of the outputs QTEL and QLSP will be activated. The receiving amplifier input IR (pin 12) is the input for both outputs. For both outputs the available gain is typ. 27 dB . The output QTEL is intended for telephone capsules with an impedance of 150Ω or more. The QLSP output is intended to drive a power amplifier. Its output impedance is less than $1 \mathrm{k} \Omega$.

Gain adjustment: GAT1, GAT2, GAP and GAL (pins 2, 3, 7 and 9)
The gain of the transmitting amplifier may be adjusted by an external resistor R2 connected between GAT1 and GAT2 (pins 2 and 3 ; see Fig. 9). This adjustment influences the sensitivity of the inputs MIC1, MIC2, MIC3 and DTMF to the same amount. The gain is proportional to R2 and inversely proportional to R10 and R12.

The gain of the telephone amplifier may be adjusted by an external resistor R14 between GAP (pin 7) and CX1 (pin 6). The gain is proportional to R14 and inversely proportional to R12.
The gain of the loudspeaker preamplifier may be adjusted by an external resistor R13 between GAL ($\operatorname{pin} 9$) and CX1 ($\operatorname{pin} 6$). The gain is proportional to R13 and inversely proportional to R12.

Gain control with line current: GALN (pin 23)

The circuit offers a facility to automatically vary the gain of all its amplifiers with the line current. In this way the circuit compensates for differences in line attenuation. The variation is accomplished by connecting an external resistor R11 between GALN (pin 23) and V_{EE} (pin 4). The value of this resistor should be chosen in accordance with the supply voltage of the exchange (see Figs 5 and 6).
If no gain variation with line current is required the GALN connection may be left open. All amplifiers have their maximum gain then.

Selection input for gain control adaptation to feeding bridge impedance: BRDG (pin 15)

A LOW level at the BRDG input optimizes the gain control characteristics of the circuit for a 400Ω feeding bridge in the exchange, a HIGH level for 800Ω.

Side tone suppression

In the circuit diagram shown in Fig. 9 side tone suppression is obtained with components C2, R3, R4, R7 and R8. Their component values have to be chosen to suit the cable type used. This network attenuates the signal from the telephone line to the IR input of the receiving amplifier. This attenuation may be adjusted by choosing the value of $R 7$ without affecting the side tone suppression.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply current d.c. $l_{\text {line }}$
non-repetitive ($\mathrm{t}<100 \mathrm{~h}$)
Storage temperature range
Operating ambient temperature range
Junction temperature

line	max.	140 mA
$l_{\text {line }}$	max.	250 mA
$\mathrm{~T}_{\text {stg }}$	-40	to +125

CHARACTERISTICS

$l_{\text {line }}=10$ to $140 \mathrm{~mA} ; \mathrm{f}=1000 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply: LN and $\mathrm{V}_{\text {CC }}$ (pins 1 and 21)					
Line voltage					
$\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	$\mathrm{V}_{\text {line }}$	4,05	4,25	4,45	V
$\mathrm{l}_{\text {line }}=50 \mathrm{~mA}$	$V_{\text {line }}$	4,7	5,1	5,5	V
$l_{\text {line }}=100 \mathrm{~mA}$	$V_{\text {line }}$	5,2	6,1	7,0	V
Variation with temperature	$-\Delta \mathrm{V}_{\text {line }} / \Delta \mathrm{T}$	10	12	14	mV / K
Line current operating range	$l_{\text {line }}$	10	-	140	mA
Supply current at $\mathrm{V}_{\mathrm{CC}}=2,3 \mathrm{~V}$; $l_{\text {line }}=15 \mathrm{~mA}$	${ }^{\text {I CC }}$	-	-	1,6	mA
$\mathrm{V}_{\mathrm{CC}}=2,3 \mathrm{~V} ; \mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$	${ }^{\text {I CC }}$	-	-	1,0	mA
Mode (handset/base selection) input M (pin 16)					
Input voltage					
HIGH level	$\mathrm{V}_{\text {IH }}$	1	-	$\mathrm{V}_{\text {cc }}$	V
LOW level	$\mathrm{V}_{\text {IL }}$	0	-	0,2	V
Input current	${ }^{-1} 16$	-	8	20	$\mu \mathrm{A}$
Attenuation of non-selected signals	$-\Delta A_{v d}$	45	-	-	dB

Low-impedance handset microphone input MIC1 and reference voltage pin REF (pins 10 and 11)

Input impedance	$\|$$\left\|Z_{10-11}\right\|$ $A_{\text {vd }}$
Voltage gain, see Fig. 7	

High-impedance handset microphone input MIC2 (pin 18)
Input impedance
Voltage gain, see Fig. 7
Base microphone input MIC3 (pin 19)
Input impedance
Voltage gain, see Fig. 7
DTMF input (pin 20)
Input impedance
Voltage gain, see Fig. 7
$\left|Z_{18-4}\right|$
$A_{v d}$

$\left|z_{19-4}\right|$
$A_{v d}$

$\left|z_{20-4}\right|$
$A_{v d}$

2,3	3
43,5	4

3
44,5

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Transmitting amplifier output LN (pin 1)					
Output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R}_{\text {line }}=600 \Omega ; \mathrm{d}=2 \%$	v_{LN} (rms)	1,4	-	-	V
Psophometrically weighted* noise output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R}_{\text {line }}=600 \Omega$	$\mathrm{v}_{\text {LN }}$ (rms)		-70	-	dBmp
MUTE input (pin 17)					
Input voltage					
HIGH level	$V_{\text {IH }}$	1	-	V_{CC}	V
LOW level	$V_{\text {IL }}$	0	-	0,1	V
Input current	-1_{17}	-	8	20	$\mu \mathrm{A}$
Attenuation of non-selected signals	$-\Delta A_{v d}$	45	-	-	dB
Receiving amplifier input IR (pin 12)					
Input impedance	$\left\|Z_{12-4}\right\|$	7,8	10	12,3	$k \Omega$
Telephone output OTEL (pin 5)					
Voltage gain at $l_{\text {line }}=15 \mathrm{~mA}$; $R_{\text {load }}=150 \Omega$; R13 $=15 \mathrm{k} \Omega$; see Fig. 8	$A_{\text {vd }}$	25,4	26,6	27,8	dB
Gain variation with frequency, $f=300 \text { to } 4000 \mathrm{~Hz}$	$\Delta A_{\text {vd }}$	-	$\pm 0,5$	-	dB
Gain variation with temperature at $\mathrm{l}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-5$ to $+45^{\circ} \mathrm{C}$	$\Delta A_{v d}$	-	$\pm 0,5$	-	dB
Maximum output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$; $\mathrm{R}_{\text {load }}=150 \Omega ; \mathrm{d}=2 \%$	${ }^{\text {v O }}$ (rms)	325	-	-	mV
Psophometrically weighted* noise output voltage at $l_{\text {line }}=15 \mathrm{~mA}$	${ }^{\mathrm{v}} \mathrm{O}$ (rms)	-	40	-	$\mu \mathrm{V}$
Gain adjustment pin; telephone amplifier: GAP (pin 7)					
Gain adjustment range	$\Delta A_{\text {vd }}$	-	± 8	-	dB
Loudspeaker preamplifier output OLSP (pin 8)					
Voltage gain at $l_{\text {line }}=15 \mathrm{~mA}$; $R_{\text {load }}=10 \mathrm{k} \Omega$; R14 $=15 \mathrm{k} \Omega$; see Fig. 8	Avd	26,6	27,6	28,6	dB
Gain variation with frequency, $f=300$ to 4000 Hz	$\Delta A_{\text {vd }}$	-	$\pm 0,5$	-	dB
Gain variation with temperature	$\Delta A_{\text {vd }}$	-	$\pm 0,5$	-	dB
Psophometrically weighted* noise output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	${ }^{\mathrm{v}} \mathrm{O}$ (rms)	-	40	-	$\mu \mathrm{V}$
Output impedance	$\left\|z_{8-4}\right\|$	-	-	1	k Ω
Gain adjustment pin; loudspeaker preamplifier: GAL (pin 9)					
Gain adjustment range	$\Delta A_{\text {vd }}$	-	± 8	-	dB

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Selection input for gain control adaptation to feeding bridge impedance BRDG (pin 15)					
Input voltage					
HIGH level	$\mathrm{V}_{\text {IH }}$	1	-	V_{CC}	V
LOW level	VIL	0	-	0,1	V
Input current	-115	-	8	20	$\mu \mathrm{A}$
Gain control with line current pin GALN (pin 23)					
Gain control range	$\Delta \mathrm{A}_{\mathrm{vd}}$	-	6	-	dB
Highest line current for maximum gain, $\mathrm{R} 11=105 \mathrm{k} \Omega$;					
$\mathrm{BRDG}=\mathrm{HIGH} \quad\left(\mathrm{R}_{\text {exch }}=800 \Omega\right)$	${ }^{1}$ line	22,5	25	27,5	mA
$B R D G=$ LOW $\quad\left(R_{\text {exch }}=400 \Omega\right)$	Iline	31,5	35	38,5	mA
Lowest line current for minimum gain, $\mathrm{R} 11=105 \mathrm{k} \Omega$;					
BRDG $=$ HIGH $\quad\left(\mathrm{R}_{\text {exch }}=800 \Omega\right)$	Iline	49,5	55	60,5	mA
$B R D G=L O W \quad\left(R_{\text {exch }}=400 \Omega\right)$	line	81	90	99	mA

* P53 curve.

Fig. 3 Supply arrangement.

Fig. 4 Maximum current I_{p} available from V_{CC} for external (peripheral) circuits.

Fig. 5 Gain variation with line current, with R11 as a parameter, and with the BRDG input HIGH, i.e. the circuit optimized for 800Ω. The values chosen for R11 suit the usual values for the supply voltage of the exchange. The curves are valid for $0,5 \mathrm{~mm}$ twisted-pair cables with an attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$ and a d.c. resistance of $176 \Omega / \mathrm{km}$.

Fig. 6 Gain variation with line current, with R11 as a parameter, and with the BRDG input LOW, i.e. the circuit optimized for 400Ω. The values chosen for R11 suit the usual values for the supply voltage of the exchange. The curves are valid for $0,5 \mathrm{~mm}$ twisted-pair cables with an attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$ and a d.c. resistance of $176 \Omega / \mathrm{km}$.

Fig. 7 Test circuit for defining voltage gain of MIC1, MIC2, MIC3 and DTMF inputs. Gain is defined as: $A_{\text {vd }}=20 \log \left|v_{\text {out }} / v_{\text {in }}\right|$. For measuring the MIC1 or MIC2 input the M input should be HIGH and the MUTE input LOW, for measuring the MIC3 input M and MUTE should both be LOW and for measuring the DTMF input M and MUTE should be HIGH. Inputs not under test should be open.

Fig. 8 Test circuit for defining voltage gain of QTEL and QLSP outputs. Gain is defined as: $A_{\text {vd }}=20 \log \left|v_{\text {out }} / v_{\text {in }}\right|$. For measuring the QTEL output the M input should be HIGH and the MUTE input LOW, for measuring the QLSP output M and MUTE should both be LOW.

Fig. 9 Typical application of the TEA1042 in an electronic handsfree telephone set. The connections to the MIC1 and MIC2 inputs are alternatives. The connection to the BRDG input is not shown, see the Functional Description. The diagram does not show voice switches and associated control circuits required in a practical circuit for stable loudspeaking operation.

APPLICATION INFORMATION SUPPLIED ON REQUEST

DTMF/SPEECH TRANSMISSION INTEGRATED CIRCUIT FOR TELEPHONE APPLICATIONS

This integrated circuit is a dual-tone multi-frequency (DTMF) generator and a speech transmission circuit on a single chip. It supplies frequency combinations in accordance with CCITT recommendations for use in push-button telephones. It can be operated with a single contact keyboard or via a direct interface with a microcomputer. $I^{2} L$ technology allows digital and analogue functions to be implemented on the same chip.
The speech-transmission part incorporates microphone and telephone amplifiers, anti-sidetone and line adaption. The microphone inputs, suitable for different types of transducer, are symmetrical to allow long cable connections with good immunity against radio-frequency interference.

The logic inputs contain an interference circuit to guarantee well defined states and on and off resistance of the keyboard contacts.

Features

- stabilized DTMF levels to be set externally
- wide operating range of line current and temperature
- no individual DTMF level adjustments required
- microcomputer compatible logic inputs
- gain setting for microphone and receiver amplifiers
- internally generated electronic muting
- low spreads on amplifier gains
- low number of external components
- on-chip oscillator for $3,58 \mathrm{MHz}$ crystal

QUICK REFERENCE DATA

Line voltage	V_{L}	typ.	4,8	V
Line current	${ }_{1} \mathrm{~L}$	10 to 120 mA		
Adjustable dynamic resistance	R_{i}	600 to 900Ω		
Microphone signal amplification	A_{M}	typ.	50	dB
Receiver signal amplification	A_{T}	typ.	20	
DTMF tone levels (adjustable)				
lower tones	VLG	max.	-6	dBm
higher tones	$V_{\text {HG }}$	max.		dBm
Operating temperature range	Tamb	-25 to $+70{ }^{\circ} \mathrm{C}$		

PACKAGE OUTLINE

TEA1046P: 24-lead DIL, plastic (SOT-101A).

Fig. 1 Functional block diagram.

Fig. 2 Pinning diagram.

PINNING

1	VL	positive line voltage
2	VN1	negative line voltage
3	VS	voltage stabilizer filter
4	IR	receiver amplifier input
5	QR	receiver amplifier output
6	i.c.	internaily connected
7	ZI	impedance setting input
8	AT	anti-sidetone output
9	F2	second filter
10	F1	first filter
11	VN2	negative line voltage
12	VR	reference voltage output
13	MIC1	microphone input (pos.)
14	MIC2	microphone input (neg.)
15	ROW4	row input $941 \mathrm{~Hz} / \mathrm{BCD}$ input
16	ROW3	row input $852 \mathrm{~Hz} / \mathrm{BCD}$ input
17	ROW2	row input $770 \mathrm{~Hz} / \mathrm{BCD}$ input
18	TLS	DTMF level setting
19	ROW1	row input $697 \mathrm{~Hz} / \mathrm{BCD}$ input
20	COL1	column input $1209 \mathrm{~Hz} /$ mute input
21	COL2	column input $1336 \mathrm{~Hz} /$ mute input
22	COL3	column input $1477 \mathrm{~Hz} /$ enable input
23	COL4	column input $1633 \mathrm{~Hz} /$ mute input
24	OSC	oscillator input

FUNCTIONAL DESCRIPTION

Voltage regulator (Fig. 3)

Different line lengths and feeding bridge resistances of the exchange cause a large line current range to supply this circuit. As all functions on this chip are working within a total current of 10 mA , the rest of the line current is shunted by the voltage regulator circuit. It regulates the voltage drop over the circuit on a nominal level of $4,8 \mathrm{~V}$.
The capacitor connected to input VS provides a low-pass filter function to avoid influence of the audio signals on the line.
The static behaviour of the voltage regulator is expressed by:

$$
V_{L}=V_{O}+\left(I_{L}-I_{i}\right) R 13
$$

where $\mathrm{V}_{\mathrm{O}}=4,8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{R} 13=5 \Omega, \mathrm{I}_{\mathrm{i}}=10 \mathrm{~mA}$.
The dynamic impedance of the regulator is equivalent to a resistor in series with a simulated inductor:

$$
\operatorname{Zr}(\omega)=R_{\mathrm{eq}}+j \omega L_{\mathrm{eq}}
$$

where $R_{\text {eq }}=R 13=5 \Omega$

$$
\mathrm{L}_{\mathrm{eq}} \approx 5 \mathrm{H}\left(\mathrm{C}_{\mathrm{VS}}=68 \mu \mathrm{~F}\right)
$$

Fig. 3 Voltage regulator principle.
Within limited values, the d.c. level V_{L} can be decreased by connecting a resistor in parallel with R12, or increased by connecting a resistor in parallel with C_{VS}. The shunt regulator contains a thyristor which short-circuits R12 for a short period during switch-on time; this reduces the overshoot voltage to only 1 V above the level set by the regulator.

Active output stage

The amplifier consists of a voltage to current converter with a class-A output stage. Because of the feedback from the line to the input the circuit acts as a dynamic resistance (R_{a}). This resistance can be adjusted by the external resistor R_{ZI} (Fig. 11) and the value can be found by:

$$
\mathrm{R}_{\mathrm{a}}=8,93 \times \mathrm{R}_{\mathrm{ZI}}(\Omega)
$$

The total dynamic resistance R_{i} equals R_{a} parallel with the resistance R_{p} of all other circuit parts, which value is approximately $7 \mathrm{k} \Omega$.
With $R_{Z 1}=75 \Omega, R_{a}=670 \Omega$ and $R_{i}=610 \Omega$.
For $R_{Z 1}=120 \Omega, R_{a}=1070 \Omega$ and $R_{i}=900 \Omega$.

Microphone amplifier (Figs 4 and 5)

Pins 13 and 14 respectively are the non-inverting and inverting inputs for the microphone. The purely symmetrical inputs are suitable for low ohmic dynamic or magnetic capsules. The input impedance equals $4 \mathrm{k} \Omega$. The voltage amplification from microphone input to pin $1(\mathrm{VL})$ is 50 dB and if a lower gain is required the attenuation for a series resistor $\mathrm{R}_{\text {MS }}$ will be:

$$
\frac{A_{M}\left(R_{M S} \neq 0\right)}{A_{M}\left(R_{M S}=0\right)}=\frac{4}{4+R_{M S}} \quad\left(R_{M S} \text { in } k \Omega\right)
$$

$$
A_{M}=\left|\frac{V_{L}}{V_{M}}\right|
$$

Fig. 4 Symmetrical microphone connection. Resistor R_{MP} may be used to lower the microphone termination resistance.

The microphone amplifier also has an excellent behaviour for connection of an electret microphone with built in FET-source follower. In this condition pin 14 is decoupled for a.c. and the amplifier is driven at pin 13. The input impedance in this asymmetrical mode is $22 \mathrm{k} \Omega$. If attenuation of the amplification is required the value of $R_{M A}$ is given by:

$$
\frac{A_{M}\left(R_{M A} \neq 0\right)}{A_{M}\left(R_{M A}=0\right)}=\frac{22+R_{M A}}{22+11 R_{M A}} \quad\left(R_{M A} \text { in } k \Omega\right)
$$

$$
A_{M}=\left|\frac{v_{L}}{v_{M I C 1}}\right|
$$

Fig. 5 Electret microphone circuit.

Receiver amplifier and anti-sidetone network (Fig. 14)

This amplifier is a non-inverting, fixed feedback amplifier with a class-A output stage. The gain is fixed and measures 20 dB from pin 4 (IR) to pin 5 (QR). The output is intended to drive dynamic capsules of nom. 220Ω. For capsule impedances $\left(Z_{T}\right)$ less than 220Ω the maximum output voltage swing is determined by Z_{T} and the bias current of $3,9 \mathrm{~mA}$. For Z_{T} greater than 220Ω the maximum voltage swing is determined and soft-limited internally. The received line signal is attenuated by the anti-sidetone network and can be adjusted using R ${ }_{\text {AT }}$. The amplification from the line to the telephone output is given by:

$$
A_{T}=10 \frac{R_{A T}}{R_{A T}+Z_{S}} \times \frac{Z_{T}}{Z_{T}+R_{O}}
$$

Z_{S} is the impedance of the anti-sidetone network
Z_{T} is the capsule impedance
R_{O} is the amplifier output resistance
Optimum side-tone suppression is obtained as $Z_{S}\left(R_{A 1}, R_{A 2}\right.$ and $\left.C_{A}\right)$ equals

$$
Z_{S}=K \frac{Z_{L} \times R_{i}}{Z_{L}+R_{i}}
$$

$Z_{L}=$ line terminating impedance
$\mathrm{R}_{\mathrm{i}}=$ output stage impedance / / passive circuit impedance
$K=200$
In the application of Fig. 14 the network is optimized for 2 km of twisted copper wire ($\phi 0,5 \mathrm{~mm}$) cable with a d.c. resistance of $176 \Omega / \mathrm{km}$. The side-tone suppression in the range from 0 to 10 km is at least 10 dB compared with the case when no compensation is applied.

Keyboard inputs

Inputs for the logic control are compatible with different types of keyboard. Using a keyboard, tone combinations are generated:

- by connecting one of the row inputs to one of the column inputs by means of a single switch of the matrix
- by applying a dual contact keyboard having its common row contact tied to VN1 and the common column contact tied to VR.
Single tones can be generated by connecting the column input to VR or the row input to VN1.
An anti-bounce circuit eliminates switch bounce for up to 2 ms . Two key roll-over is provided by blocking other inputs as soon as one key is pressed.

Microcomputer mode (Figs 6 to 10)

The inputs for keyboard connections can also be used for direct connection to a microcomputer. If the column inputs are interconnected and made HIGH (= VR) the row inputs are changed to another mode, allowing the circuit to be driven by 4-bit data plus an enable signal. In this mode, it is also possible to connect a separate mute enable signal on inputs COL1, 2 and 4 and a tone enable input on COL3.

Fig. 6 Microcomputer mode. All column inputs interconnected.

Fig. 7 Tone/speech waveform in circuit diagram Fig. 6.

Fig. 8 Microcomputer mode. Column inputs COL1, 2 and 4 interconnected.

Fig. 9 Tone/speech waveform in circuit diagram Fig. 8.

Truth table microcomputer mode

row				column		tones Hz	symbol	mute
1	2	3	4	1, 2, 4	3			
H	H	H	H	L	L	-	-	off
X	X	X	X	H	L	-	-	on
H	H	H	H	H	H	697/1209	1	on
H	H	H	L	H	H	697/1336	2	on
H	H	L	H	H	H	697/1477	3	on
H	H	L	L	H	H	697/1633	A	on
H	L	H	H	H	H	770/1209	4	on
H	L	H	L^{\prime}	H	H	770/1336	5	on
H	L	L	H	H	H	770/1477	6	on
H	L	L	L	H	H	770/1633	B	on
L	H	H	H	H	H	852/1209	7	on
L	H	H	L	H	H	852/1336	8	on
L	H	L	H	H	H	852/1477	9	on
L	H	L	L	H	H	852/1633	C	on
L	L	H	H	H	H	941/1209	*	on
L	L	H	L	H	H	941/1336	0	on
L	L	L	H	H	H	941/1477	\#	on
L	L	L	L	H	H	941/1633	D	on

ROW 1

ROW 3

ROW 4

COL 3

COL 1, 2, 4

Fig. 10 Waveforms tones $687 / 1336 \mathrm{~Hz}$ (dialling number 2).

Dial tone generator

The crystal oscillator frequency ($3,579545 \mathrm{MHz}$) is divided by a factor of nine to give the clock frequency. A maximum division error of $0,25 \%$ is achieved in the TEA1046; CCITT recommendations are that tones should be within $1,5 \%$ of the specified frequencies.

The output from the dividers for the higher and the lower frequency tones are symmetrical square-wave pulses which contain considerable odd-numbered harmonics. The lower order odd numbered harmonics (11th and less) are eliminated by synthesising the tone frequencies as crude stepped sinewave approximations. Each half cycle of the tone waveform comprises seven discrete amplitudes for the lower frequency tones and nine discrete amplitudes for the higher frequency tones. Each amplitude increment is generated by switching on and off an individual current source for the duration of each step of the sinewave. The frequency of the tones is varied by changing the duration of each step. This circuit allows the connecting of two low-pass first order filters to pins 9 and 10 to reduce distortion of the DTMF harmonics.
The second filter is also used for filtering the microphone signal. If lower requirements for the distortion can be applied the filter at pin 10 can be omitted. In that case the filter at pin 9 must have a lower cut-off frequency (1800 Hz) to achieve a correct pre-emphasis since the roll-off of the filters is compensated internally.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply current max. 150 mA

Surge current ($\mathrm{t}_{\mathrm{p}}<250 \mu \mathrm{~s}$) Is max. 850 mA
Operating ambient temperature range
Tamb $\quad-25$ to $+70{ }^{\circ} \mathrm{C}$
Storage temperature range
-55 to $+125{ }^{\circ} \mathrm{C}$
Junction temperature
max. $125^{\circ} \mathrm{C}$

CHARACTERISTICS

$T_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} ; \mathrm{f}=1 \mathrm{kHz}$; unless otherwise specified. See also Fig. 11.

parameter	symbol	min.	typ.	max.	unit
Supply					
Line voltage d.c.					
$I_{\mathrm{L}}=15 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{L}}$	4,3	4,8	5,3	V
$\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{L}}$	4,5	5,0	5,5	V
$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{L}}$	5,0	5,4	6,5	V
Temperature coefficient	TC	-	-10	-	mV / K
Line current range	I_{L}	10	-	120	mA
Stabilized voltage (pin 3)					
$I_{\mathrm{L}}=15 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{S}}$	-	3,5	-	V
$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{S}}$	-	4,0	-	V
Reference voltage (pin 12)	V_{R}	-	1,0	-	V

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Microphone					
Input resistance (symmetrical)	R_{i} 13-14	-	4	-	k Ω
Input resistance (asymmetrical)	$\mathrm{R}_{\mathrm{i}} 13$	-	22	-	$k \Omega$
Voltage amplification $R_{L}=600 \Omega$	A_{M}	49	50	51	dB
Temperature coefficient	TC	-	0,01	-	$d B / K$
Common mode rejection ratio	CMRR	60	-	-	dB
Distortion at $\mathrm{V}_{\mathrm{L}}=3 \mathrm{dBm}$	d_{t}	-	-	2	\%
Noise output voltage $Z_{L}=600 \Omega$; psophometrically weighted (P53 curve)	V_{NO}	-	-	-65	dBmp
Amplification reduction during dialling	ΔA_{M}	70	-	-	dB
Anti-sidetone					
Voltage amplification, microphone to anti-sidetone output ($\mathrm{R}_{\mathrm{AT}}=3,9 \mathrm{k} \Omega$)	${ }^{\text {A }}$ T	-	25	-	dB
Transmitter output stage					
Dynamic resistance setting range	R_{i}	600	-	900	Ω
Variation of output impedance over line current range $\mathrm{R}_{\mathrm{i}}=600 \Omega$	$\Delta \mathrm{Z}_{\mathrm{o}}$	-	100	-	Ω
Balance return loss from 300 up to 3400 Hz at $600 \Omega\left(R_{Z 1}=75 \Omega, C_{L}=10 \mathrm{nF}\right)$	BRL	20	-	-	dB
at $900 \Omega\left(\mathrm{R}_{\mathrm{ZI}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{nF}\right)$	BRL	20	-	-	dB
Receiver amplifier					
Voltage amplification $\mathrm{R}_{\mathrm{T}}=350 \Omega$	A_{T}	19	20	21	dB
Amplification variation $\mathrm{f}=300$ to 3400 Hz	$\Delta \mathrm{A}_{T} / \mathrm{f}$	-	0	-	dB
Amplification variation in temperature and current range	$\Delta A_{T} / T$	-	-	-0,5	dB
Amplification reduction during dialling	ΔA_{T}	60	-	-	dB
Output voltage swing ($\mathrm{d}_{\mathrm{t}}=10 \%$)	$V_{o(p-p)}$	1300	1600	-	mV
Output impedance	Z_{0}	-	4	7	Ω
Input impedance	Z_{i}	-	100	-	$k \Omega$
Output distortion level $<-7 \mathrm{dBV}$	d_{0}	-	-	2	\%
Output noise voltage psophometrically weighted (P53 curve)	V_{no} (rms)	-	-	150	$\mu \mathrm{V}$
Bias current	I_{M}	-	3,9	-	mA

Fig. 11 Test circuit for measuring amplifier voltage gains and frequencies and levels of DTMF generator. $X=3,58 \mathrm{MHz}$.
$A_{M}=\left|\frac{V_{L}}{V_{M}}\right|\left(V_{T I}=0\right) \quad A_{T}=\left|\frac{V_{R O}}{V_{I R}}\right|\left(V_{M}=0\right) \quad A_{A T}=\left|\frac{V_{A T}}{V_{M}}\right|\left(V_{T I}=0\right)$

Fig. 12 DTMF level selection. The curve is valid for a dynamic impedance of $600 \Omega\left(R_{Z 1}=75 \Omega\right)$.

(a)

(b)

Fig. 13 Equivalent configuration of inputs: (a) COL1, 2, 3 and 4; (b) ROW1, 2, 3 and 4.

Fig. 14 Application diagram TEA 1046 using dynamic transducers, $R_{M S}, R_{A T}, R_{Z I}$ and $R_{\text {TLS }}$ determined by transducers and system requirements.

VERSATILE TELEPHONE TRANSMISSION CIRCUITS WITH DIALLER INTERFACE

GENERAL DESCRIPTION

The TEA1060 and TEA1061 are bipolar integrated circuits performing all speech, and line interface functions required in fully electronic telephone sets. The circuits internally perform electronic switching between dialling and speech.

Features

- Voltage regulator with adjustable static resistance
- Provides supply for external circuitry
- Symmetrical low-impedance inputs for dynamic and magnetic microphones (TEA1060)
- Symmetrical high-impedance inputs for piezoelectric microphone (TEA1061)
- Asymmetrical high-impedance input for electret microphone (TEA1061)
- DTMF signal input with confidence tone
- Mute input for pulse or DTMF dialling
- Power down input for pulse dial or register recall
- Receiving amplifier for magnetic, dynamic or piezoelectric earpieces
- Large amplification setting range on microphone and earpiece amplifiers
- Line loss compensation facility, line current dependent (microphone and earpiece amplifiers)
- Gain control adaptable to exchange supply
- Possibility of DC line voltage adjustment

QUICK REFERENCE DATA

Line voltage at $l_{\text {line }}=15 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	typ. $4,45 \mathrm{~V}$
Line current operating range (pin 1)	${ }^{\text {line }}$	10 to 140 mA
Internal supply current power down input LOW power down input HIGH	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{CC}} \end{aligned}$	typ. 1 mA typ. $55 \mu \mathrm{~A}$
$\begin{aligned} & \text { Supply current for peripherals } \\ & \text { at } I_{\text {line }}=15 \mathrm{~mA} \text {, mute input HIGH } \\ & V_{\mathrm{CC}}>2,2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}>3,0 \mathrm{~V} \end{aligned}$	Ip Ip	$\begin{array}{ll} \max . & 2,5 \mathrm{~mA} \\ \max . & 1,2 \mathrm{~mA} \end{array}$
Voltage amplification range microphone amplifier TEA1060 TEA1061 receiving amplifier	A_{vd} Avd Avd	$\begin{aligned} & 44 \text { to } 60 \mathrm{~dB} \\ & 30 \text { to } 46 \mathrm{~dB} \\ & 17 \text { to } 39 \mathrm{~dB} \end{aligned}$
Line loss compensation Amplification control range Exchange supply voltage range Exchange feeding bridge resistance range	$\Delta A_{\text {vd }}$ Vexch Rexch	
Operating ambient temperature range	Tamb	-25 to $+75{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Block diagram.
The blocks marked " dB " are attenuators. The block marked (1) is only present in the TEA1061.

Fig. 2 Pinning diagram.

PINNING

1	LN	positive line connection
2	GAS1	gain adjustment connection, sending amplifier
3	GAS2	gain adjustment connection, sending amplifier
4	QR-	inverting output, receiving amplifier
5	QR+	non-inverting output, receiving amplifier
6	GAR	gain adjustment connection, receiving amplifier
7	MIC-	non-inverting microphone input
8	MIC+	inverting microphone input
9	STAB	current stabilizer connection
10	VEE	negative line connection
11	IR	receiving amplifier input
12	PD	power-down input
13	DTMF	dual-tone multi-frequency input
14	MUTE	mute input
15	VCC	positive supply decoupling connection
16	REG	voltage regulator decoupling connection
17	AGC	automatic gain control input
18	SLPE	slope (d.c. resistance) adjustment connection

FUNCTIONAL DESCRIPTION

Supply: V_{CC}, LN, SLPE, REG and STAB

The circuit and its peripheral circuits usually are supplied from the telephone line. The circuit develops its own supply voltage at V_{CC} and regulates its voltage drop. The supply voltage V_{CC} may also be used to supply external peripheral circuits, e.g. dialling and control circuits.
The supply has to be decoupled by connecting a smoothing capacitor between V_{CC} and V_{EE}; the internal voltage regulator has to be decoupled by a capacitor from REG to $V_{E E}$. An internal current stabilizer is set by a resistor of $3,6 \mathrm{k} \Omega$ between STAB and $V_{E E}$.
The d.c. current flowing into the set is determined by the exchange supply voltage ($\mathrm{V}_{\text {exch }}$), the feeding bridge resistance ($\mathrm{R}_{\text {exch }}$), the d.c. resistance of the subscriber line ($\mathrm{R}_{\text {line }}$) and the d.c. voltage on the subscriber set (see Fig. 3).
If the line current ($l_{\text {line }}$) exceeds the current $I_{C C}+0,5 \mathrm{~mA}$ required by the circuit itself ($\mathrm{I}_{\mathrm{CC}} \mathrm{ca} .1 \mathrm{~mA}$), plus the current I_{P} required by the peripheral circuits connected to V_{C}, then the voltage regulator diverts the excess current via LN.
The voltage regulator adjusts the average voltage on LN to:

$$
V_{L N}=V_{\text {ref }}+I_{S L P E} \times R 9=V_{\text {ref }}+\left(I_{\text {line }}-I_{C C}-0,5 \times 10^{-3}-I_{P}\right) \times R 9 .
$$

$\mathrm{V}_{\text {ref }}$ being an internally generated temperature compensated reference voltage of $4,2 \mathrm{~V}$ and R9 being an external resistor connected between SLPE and $V_{E E}$. The preferred value of R9 is 20Ω. Changing R9 will have influence on microphone gain, DTMF gain, gain control characteristics, side tone and maximum output swing on LN.
Under normal conditions ISLPE $>I^{C} C+0,5 \mathrm{~mA}+\mathrm{I}_{\mathrm{P}}$. The static behaviour of the circuit then equals a $4,2 \mathrm{~V}$ voltage regulator diode with an internal resistance R9. In the audio frequency range the dynamic impedance equals R1. The internal reference voltage can be adjusted by means of an external resistor RVA.

FUNCTIONAL DESCRIPTION (continued)

Supply: VCC, LN, SLPE, REG and STAB (continued)
This resistor connected between pins 1 and 16 (LN and REG) will decrease the internal reference voltage. RVA connected between pins 16 and 18 (REG and SLPE) will increase the internal reference voltage.
The current Ip available from V_{CC} for supplying peripheral circuits depends on external components and on the line current. Fig. 4 shows this current for $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ and for $\mathrm{V}_{\mathrm{Cc}}>3 \mathrm{~V}$. Of which 3 V is the minimum supply voltage for most CMOS circuits including a diode voltage drop for an enable diode. If MUTE is LOW the available current is further reduced when the receiving amplifier is driven.

Microphone inputs MIC+ and MIC- and gain adjustment connections GAS1 and GAS2

The TEA1060 and TEA1061 have symmetrical microphone inputs.
The TEA 1060 is intended for low-sensitivity low-impedance dynamic or magnetic microphones. Its input impedance is $8,2 \mathrm{k} \Omega(2 \times 4,1 \mathrm{k} \Omega$ and its voltage amplification is typ. 52 dB .
The TEA1061 is intended for a piezoelectric microphone or an electret microphone with built-in FET source follower. Its input impedance is $40,8 \mathrm{k} \Omega(2 \times 20,4 \mathrm{k} \Omega)$ and its voltage amplification is typ. 38 dB . The arrangements with the microphone types mentioned are shown in Fig. 5.
The amplification of the microphone amplifier in both types can be adjusted over a range of + and -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R7 connected between GAS1 and GAS2.
An external capacitor C6 of 100 pF between GAS1 and SLPE is required to ensure stability. A larger value may be chosen to obtain a first-order low-pass filter. The cut-off frequency corresponds with the time constant R7 \times C6.

Mute input MUTE

A HIGH level at MUTE enables the DTMF input and inhibits the microphone inputs and the receiving amplifier, a LOW level or an open circuit does the reverse. Switching the mute input will cause negligible clicks at the telephone outputs and on the line.

Dual-tone multi-frequency input DTMF

When the DTMF input is enabled, dialling tones may be sent onto the line. The voltage amplification from DTMF to LN is typ. $25,5 \mathrm{~dB}$ and varies with R7 in the same way as the amplification of the microphone amplifier. The signalling tones can be heard in the earpiece at a low level (confidence tone).

Receiving amplifier: IR, QR+, QR - and GAR

The receiving amplifier has one input IR and two complementary outputs, a non-inverting output QR+ and an inverting output QR -. These outputs may be used for single-ended or for differential drive, depending on the sensitivity and type of earpiece used (see Fig. 6). Amplification from IR to QR+ is typ. 25 dB . This will be sufficient for low-impedance magnetic or dynamic earpieces; these are suited for single-ended drive. By using both outputs (differential drive) the amplification is increased by 6 dB and differential drive becomes possible. This feature can be used in case the earpiece impedance exceeds 450Ω (high-impedance dynamic, magnetic or piezoelectric earpieces).
The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions, where the ratio of peak and r.m.s. value is higher.
The amplification of the receiving amplifier can be adjusted over a range of + and -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R4 connected from GAR to QR+.

Two external capacitors $\mathrm{C} 4=100 \mathrm{pF}$ and $\mathrm{C} 7=10 \times \mathrm{C} 4=1 \mathrm{nF}$ are necessary to ensure stability. A larger value of C4 may be chosen to obtain a first-order low-pass filter. The "cut-off" frequency corresponds with the time constant R4×C4.

Automatic gain control input AGC

Automatic line loss compensation will be obtained by connecting a resistor R6 from AGC to VEE. This automatic gain control varies the amplification of the microphone amplifier and the receiving amplifier in accordance with the d.c. line current. The control range is 6 dB . This corresponds with a line length of 5 km for a $0,5 \mathrm{~mm}$ diameter copper twisted-pair cable with a d.c. resistance of $176 \Omega / \mathrm{km}$ and an average attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$.
Resistor R 6 should be chosen in accordance with the exchange supply voltage and its feeding bridge resistance (see Fig. 7 and Table 1). Different values of R6 give the same ratio of line currents for begin and end of the control range.

If automatic line loss compensation is not required AGC may be left open. The amplifiers then all give their maximum amplification as specified.

Power-down input PD

During pulse dialling or register recall (timed loop break) the telephone line is interrupted, as a consequence it provides no supply for the transmission circuit and the peripherals connected to V_{CC}. These gaps have to be bridged by the charge in the smoothing capacitor C 1 . The requirements on this capacitor are relaxed by applying a HIGH level to the PD input during the time of the loop break, which reduces the supply current from typ. 1 mA to typ. $55 \mu \mathrm{~A}$.
A HIGH level at PD further disconnects the capacitor at REG, with the effect that the voltage stabilizer will have no switch-on delay after line interruptions. This results in no contribution of the IC to the current waveform during pulse dialling or register recall.

When this facility is not required PD may be left open.

Side-tone suppression

Suppression of the transmitted signal in the earpiece is obtained by the anti-side-tone network consisting of $\mathrm{R} 1 / / \mathrm{Z}_{\text {line }}, R 2, R 3, R 8$ and $Z_{\text {bal }}$ (see Fig. 10). Maximum compensation is obtained when the following conditions are fulfilled:
a) $R 9 . R 2=R 1\left(R 3+\left[R 8 / / Z_{\text {bal }}\right]\right)$
b) $\left[Z_{b a l} /\left(Z_{\text {bal }}+R 8\right)\right]=\left[Z_{\text {line }} /\left(Z_{\text {line }}+R 1\right)\right]$

If fixed values are chosen for R1, R2, R3 and R9, then condition a) will always be fulfilled provided that $\left|R 8 / / Z_{\text {bal }}\right| \ll R 3$.

To obtain optimum side-tone-suppression, condition b) has to be fulfilled resulting in:

$$
Z_{\text {bal }}=(R 8 / R 1) Z_{\text {line }}=k . Z_{\text {line }}
$$

where k is a scale factor; $k=(R 8 / R 1)$
Scale factor k (value of R8) must be chosen to meet the following criteria:

- compatibility with a standard capacitor from the E6 or E 12 range for $Z_{b a l}$
$-\left|Z_{b a}\right| / R 8 \mid \ll R 3$
$-\left|Z_{b a}\right|+R 8 \mid \gg R 9$
In practice $Z_{\text {line }}$ varies strongly with line length and cable type; consequently an average value has to be chosen for $Z_{b a l}$. The suppression further depends on the accuracy with which $Z_{b a l}$ equals the average line impedance.

FUNCTIONAL DESCRIPTION (continued)

Side-tone suppression (continued)
The anti-side-tone network as used in the standard application (Fig. 10) attenuates the signal from the line with 32 dB . The attenuation is nearly flat over the audio-frequency range.
Instead of the above described special bridge, the conventional Wheatstone bridge configuration can be used as an alternative anti-side tone circuit. Both bridges can be used with either a resistive set impedance or with a complex set impedance.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Positive line voltage (d.c.)
$V_{\mathrm{LN}} \max$
12 V
Repetitive line voltage during switch-on or line interruption
$V_{\mathrm{LN}} \max \quad 13,2 \mathrm{~V}$
Repetitive peak line voltage
$\mathrm{t}_{\mathrm{p}} / \mathrm{P}=1 \mathrm{~ms} / 5 \mathrm{~s}$;
$\mathrm{R}_{10}=13 \Omega ; \mathrm{R}_{9}=20 \Omega$ (see Fig. 10)
$V_{\text {LN (RM) }} \max .28 \mathrm{~V}$
$l_{\text {line }} \quad \max . \quad 140 \mathrm{~mA}$
Voltage on all other pins

Total power dissipation
Vi
$\max . V_{C C}+0,7 \mathrm{~V}$

Storage temperature range
Operating ambient temperature range
$P_{\text {tot }}$
$\mathrm{T}_{\text {stg }}$
Tamb
max. $0,7 \mathrm{~V}$
max. $\quad 640 \mathrm{~mW}$
-40 to $+125{ }^{\circ} \mathrm{C}$
-25 to $+75^{\circ} \mathrm{C}$

CHARACTERISTICS

$l_{\text {line }}=10$ to $140 \mathrm{~mA} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{f}=800 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R} 9=20 \Omega$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply: LN and $\mathrm{V}_{\mathbf{C C}}$ (pins 1 and 15)					
Voltage drop over circuit at $l_{\text {line }}=5 \mathrm{~mA}$	$V_{\text {LN }}$	3,95	4,25	4,55	V
at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	$V_{\text {LN }}$	4,25	4,45	4,65	v
at $\mathrm{l}_{\text {line }}=100 \mathrm{~mA}$	$V_{\text {LN }}$	5,40	6,10	7	V
at $\mathrm{l}_{\text {line }}=140 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	-	-	8	V
Variation with temperature at $l_{\text {line }}=15 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{LN}} / \Delta \mathrm{T}$	-4	-2	0	mV / K
Voltage drop over circuit at $l_{\text {line }}=15 \mathrm{~mA}$					
$\mathrm{R}_{V} \mathrm{VA}=\mathrm{R}_{1-16}=68 \mathrm{k} \Omega$	$\mathrm{V}_{\text {LN }}$	3,50	3,80	4,05	v
$\mathrm{R}_{\mathrm{VA}}=\mathrm{R}_{16-18}=39 \mathrm{k} \Omega$	$\mathrm{V}_{\text {LN }}$	4,70	5,0	5,30	V
Supply current					
$\mathrm{PD}=\mathrm{LOW} ; \mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	ICC	-	0,96	1,30	mA
$\mathrm{PD}=\mathrm{HIGH} ; \mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	ICc	-	55	82	$\mu \mathrm{A}$
Microphone inputs MIC+ and MIC (pins 7 and 8)					
Input impedance TEA1060	$z_{\text {is }}$	3,3	4.1	4,9	k Ω
TEA1061	$\left\|z_{\text {is }}\right\|$	16,5	20,4	24,3	$\mathrm{k} \Omega$
Common-mode rejection ratio; TEA1060	${ }^{\text {k CMR }}$	-	82	-	dB
Voltage amplification					
$\begin{aligned} & \text { line }=151 \\ & \text { TEA1060 } \end{aligned}$	A_{vd}	51	52	53	dB
TEA1061	$A_{v d}$	37	38	39	dB
Variation with frequency at $f=300$ to 3400 Hz	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{f}$	-0,5	$\pm 0,2$	+ 0,5	dB
Variation with temperature at $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB
Dual-tone multi-frequency input DTMF (pin 13)					
Voltage amplification $l_{\text {line }}=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega$	Avd	24,5	25,5	26,5	dB
Variation with frequency $f=300$ to 3400 Hz	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{f}$	-0,5	$\pm 0,2$	+ 0,5	dB
Variation with temperature at $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB
Gain adjustment GAS1 and GAS2 (pins 2 and 3)					
Amplification variation with R7 connected between pins 2 and 3 ; transmitting amplifier	$\Delta A_{\text {vd }}$	-8	-	+ 8	dB

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Transmitting amplifier output LN (pin 1)					
$\begin{aligned} & \text { Output voltage at } l_{\text {line }}=15 \mathrm{~mA} ; \\ & d_{\text {tot }}=2 \% \\ & d_{\text {tot }}=10 \% \end{aligned}$	$\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$ $\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$	$\underline{1,9}$	2,3 2,6	-	V
Noise output voltage $l_{\text {line }}=15 \mathrm{~mA}$; R7 $=68 \mathrm{k} \Omega$; pins 7 and 8 open psophometrically weighted (P53 curve)	$V_{\text {no(rms }}$	-	-70	-	dBmp
Receiving amplifier input IR (pin 11) Input impedance	$\left\|z_{\text {is }}\right\|$	16,5	20,4	24,3	k Ω
Receiving amplifier outputs QR+ and QR(pins 5 and 4)					
Output impedance; single-ended	$\left\|z_{o s}\right\|$	-	4	-	Ω
Voltage amplification from pin 11 to pin 4 or 5 $\begin{aligned} & l_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R} 4=100 \mathrm{k} \Omega ; \\ & \text { ingle-ended; } \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & \text { differential; } \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	A_{vd} $A_{v d}$	24 30	25 31	26 32	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Variation with frequency $f=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	$\pm 0,2$	+0,5	dB
Variation with temperature $I_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta A_{v d} / \Delta T$	-	$\pm 0,2$	-	dB
Output voltage at $I_{p}=0 ; d_{\text {tot }}=2 \%$; sine-wave drive; $\mathrm{R} 4=100 \mathrm{k} \Omega$ single-ended; $R_{L}=150 \Omega$		0,3	0,38	-	
	$\begin{aligned} & v_{\mathrm{o}(\mathrm{rms})} \mathrm{V}_{\mathrm{o}(\mathrm{rms})} \end{aligned}$	0,3 0,4	0,38	-	V
$\begin{aligned} & \text { differential; } C_{L}=47 \mathrm{nF} \\ & R_{\text {series }}=100 \Omega ; f=3400 \mathrm{~Hz} \end{aligned}$	V_{o} (rms)	0,8	1,0	-	V
Noise output voltage $\mathrm{I}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R} 4=100 \mathrm{k} \Omega ; \text { pin } 11 \text { open }$					
psophometrically weighted (P53 curve) single-ended; $R_{L}=300 \Omega$ differential; $R_{L}=600 \Omega$	$V_{\text {no(rms) }}$ $V_{\text {no(rms) }}$	-	$\begin{array}{\|l\|} \hline 50 \\ 100 \end{array}$	-	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
Gain adjustment GAR (pin 6)					
Amplification variation with R4 between pins 6 and 5 ; receiving amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	+ 8	dB
MUTE input (pin 14)					
Input voltage					
HIGH LOW	$\mathrm{V}_{\text {IH }}$	1,5	-	V_{Cc}	V
LOW	$V_{\text {IL }}$	-	-	0,3	V
Input current	Imute	-	8	15	$\mu \mathrm{A}$

parameter	symbol	min.	typ.	max.	unit
Reduction of voltage amplification from MIC + and MIC- to LN at MUTE $=\mathrm{HIGH}$	$-\Delta A_{v d}$	-	70	-	dB
Voltage amplification from DTMF to QR+ or QR-; MUTE $=\mathrm{HIGH} ; \mathrm{R} 4=100 \mathrm{k} \Omega$; single-ended load $\mathrm{R}_{\mathrm{L}}=300 \Omega$	$A_{v d}$	-21	-19	-17	dB
Power down input PD (pin 12)					
Input voltage					
HIGH LOW	$V_{\text {IH }}$ $V_{\text {IL }}$	1,5	-	V_{CC} 0,3	V
Input current	${ }^{\text {IPD }}$	-	5	10	$\mu \mathrm{A}$
Automatic gain control input AGC (pin 17)					
Controlling the gain from pin 11 to pins 4-5 and the gain from pins $7-8$ to pin 1 R6 $=110 \mathrm{k} \Omega$ (connected between pins 17 and 10) amplification control range	$-\Delta A_{v d}$	-	6	-	dB
Highest line current for maximum amplification	line	-	22	-	mA
Lowest line current for minimum amplification	Iline	-	60	-	mA

Fig. 3 Supply arrangement.

$l_{\text {line }}=15 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{LN}}=4,45 \mathrm{~V}$
$R 1=620 \Omega$
$R 9=20 \Omega$

Fig. 4 Maximum current I_{p} available from V_{CC} for external (peripheral) circuitry with $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}>3 \mathrm{~V}$. Curves (a) and (a^{\prime}) are valid when the receiving amplifier is not driven or when MUTE $=$ HIGH, curves (b) and (b^{\prime}) are valid when MUTE $=$ LOW and the receiving amplifier is driven, $V_{\mathrm{O}}(\mathrm{rms})=150 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ (asymmetrical).
a) $\left.=2,55 \mathrm{~mA} ; b)=2,1 \mathrm{~mA} ; \mathrm{a}^{\prime}\right)=1,2 \mathrm{~mA}$ and $\left.\mathrm{b}^{\prime}\right)=0,75 \mathrm{~mA}$.

Fig. 5 Alternative microphone arrangements. a) magnetic or dynamic microphone, TEA1060. The resistor marked (1) may be connected to lower the terminating impedance. b) electret microphone, TEA1061. c) piezoelectric microphone, TEA1061.

Fig. 6 Alternative receiver arrangements. a) dynamic telephone with less than 450Ω impedance. b) dynamic telephone with more than 450Ω impedance. c) magnetic telephone with more than 450Ω impedance. The resistor marked (1) may be connected to prevent distortion (inductive load) d) piezoelectric telephone. The resistor marked (2) is required to increase the phase margin (capacitive load).

Fig. 7 Variation of amplification with line current, with R6 as a parameter.

		$\mathrm{R}_{\text {exch }}(\Omega)$			
		400	600	800	1000
		$R 6$ (k Ω)			
$V_{\text {exch }}(\mathrm{V})$	24	61,9	48,7	X	X
	36	100	78,7	68	60,4
	48	140	110	93,1	82
	60	X	X	120	102

Table 1. Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply voltage $V_{\text {exch }}$ and exchange feeding bridge resistance $\mathrm{R}_{\text {exch }} ; \mathrm{R} 9=20 \Omega$.

Fig. 8 Test circuit for defining voltage amplification of MIC+, MIC- and DTMF inputs. Voltage amplification is defined as: $\mathrm{A}_{\mathrm{vd}}=20 \log \left|\mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$. For measuring the amplification from MIC+ and MIC- the MUTE input should be LOW or open, for measuring the DTMF input MUTE should be HIGH. Inputs not under test should be open.

Fig. 9 Test circuit for defining voltage amplification of the receiving amplifier. Voltage amplification is defined as: $A_{v d}=20 \log \left|V_{0} / V_{i}\right|$.

APPLICATION INFORMATION

Fig. 10 Typical application of the TEA 1060 or TEA1061, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left and R10 limit the current into the circuit and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.

Fig. 11 Typical applications of the TEA 1060 or TEA1061 (simplified). a) DTMF set with a CMOS DTMF dialling circuit. The dashed lines show an optional flash (register recall by timed loop break). b) Pulse dial set with the one of the PCD3320 family of CMOS interrupted current-loop dialling circuits. c) Dual-standerd (pulse and DTMF) feature phone with the PCD3343 CMOS telephone controller and the PCD3312 CMOS DTMF generator with $I^{2} \mathrm{C}$ bus.

VERSATILE TELEPHONE TRANSMISSION CIRCUIT WITH DIALLER INTERFACE

GENERAL DESCRIPTION

The TEA1066T is a bipolar integrated circuit performing all speech, and line interface functions required in fully electronic telephone sets. The circuit internally performs electronic switching between dialling and speech.

Features

- Voltage regulator with adjustable static resistance
- Provides supply for external circuitry
- Symmetrical low-impedance inputs for dynamic and magnetic microphones
- Symmetrical high-impedance inputs for piezoelectric microphone
- Asymmetrical high-impedance input for electret microphone
- DTMF signal input with confidence tone
- Mute input for pulse or DTMF dialling
- Power down input for pulse dial or register recall
- Receiving amplifier for magnetic, dynamic or piezoelectric earpieces
- Large amplification setting range on microphone and earpiece amplifiers
- Line loss compensation facility, line current dependent (microphone and earpiece amplifiers)
- Gain control adaptable to exchange supply
- Possibility of d.c. line voltage adjustment

QUICK REFERENCE DATA

Line voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	typ.	4,4	V
Line current operating range	Iline	10 to 100 mA		
Internal supply current				
power down input LOW	${ }^{1} \mathrm{CC}$	typ.		mA
power down input HIGH	${ }^{1} \mathrm{CC}$	typ.	55	
Voltage amplification range microphone amplifier				
low impedance inputs (pins 9 and 7)	$\mathrm{A}_{\text {vd }}$	44 to 60 dB		
high impedance inputs (pins 10 and 8)	$A_{\text {vd }}$	30 to 46 dB		
receiving amplifier	$A_{v d}$	17 to 39 dB		
Supply current for peripherals				
$\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$; MUTE input HIGH				
$\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$	I_{p}	max.	2,5	mA
$\mathrm{V}_{\mathrm{CC}}>3,0 \mathrm{~V}$	I_{p}	max.	1,2	mA
Line loss compensation				
Amplification control range	$\Delta \mathrm{A}_{\mathrm{vd}}$	typ.		dB
Exchange supply voltage range	V exch	24 to 60 V		
Exchange feeding bridge resistance range	Rexch	400 to 1000Ω		
Operating ambient temperature range	Tamb	-25 to $+75{ }^{\circ} \mathrm{C}$		

PACKAGE OUTLINE

20-lead MINI-PACK; plastic (SO-20; SOT-163A).

Fig. 1 Block diagram.
The blocks marked " dB " are attenuators.

Fig. 2 Pinning diagram.

PINNING

1	LN	positive line terminal
2	GAS1	gain adjustment transmitting amplifier
3	GAS2	gain adjustment transmit ing amplifier
4	QR-	inverting output, receiving amplifier
5	QR+	non-inverting output, receiving amplifier
6	GAR	gain adjustment receiving amplifier inverting microphone input,
7	MICL--	low impedance inverting microphone input, 8
	MICH-	high impedance
9	MICL+	non-inverting microphone input,
		low impedance
10	MICH+	non-inverting microphone input,
		high impedance
11	STAB	current stabilizer
12	VEE	negative line terminal
13	IR	receiving amplifier input
14	PD	power-down input
15	DTMF	dual-tone multi-frequency input
16	MUTE	mute input
17	VCC	positive supply decoupling
18	REG	voltage regulator decoupling
19	AGC	automatic gain control input
20	SLPE	slope (d.c. resistance) adjustment

FUNCTIONAL DESCRIPTION

Supply: VCC, LN, SLPE, REG and STAB

The circuit and its peripheral circuits usually are supplied from the telephone line. The circuit develops its own supply voltage at V_{CC} and regulates its voltage drop. The supply voltage V_{CC} may also be used to supply external peripheral circuits, e.g. dialling and control circuits.
The supply has to be decoupled by connecting a smoothing capacitor between V_{CC} and V_{EE}; the internal voltage regulator has to be decoupled by a capacitor from REG to V_{EE}. An internal current stabilizer is set by a resistor of $3,6 \mathrm{k} \Omega$ between STAB and V_{EE}.
The d.c. current flowing into the set is determined by the exchange supply voltage $\mathrm{V}_{\text {exch }}$, the feeding bridge resistance $R_{\text {exch }}$, the d.c. resistance of the subscriber line $R_{\text {line }}$ and the d.c. voltage on the subscriber set (see Fig. 3).
If the line current line exceeds the current $\mathrm{I}_{\mathrm{CC}}+0,5 \mathrm{~mA}$ required by the circuit itself, about 1 mA , plus the current I_{p} required by the peripheral circuits connected to V_{CC}, then the voltage regulator diverts the excess current via LN.
The voltage regulator adjusts the average voltage on LN to:
$\mathrm{V}_{\mathrm{LN}}=\mathrm{V}_{\text {ref }}+I_{\text {SLPE }} \times R 9=\mathrm{V}_{\text {ref }}+\left(I_{\text {line }}-I_{C C}-0,5 \times 10^{-3}-I_{p}\right) \times R 9 . V_{\text {ref }}$ being an internally generated temperature compensated reference voltage of $4,2 \mathrm{~V}$ and $\mathrm{R9}$ being an external resistor connected between SLPE and V_{EE}. The preferred value for R 9 is 20Ω. Changing R9 will have influence on microphone gain, gain control characteristics, side tone and maximum output swing on LN.

FUNCTIONAL DESCRIPTION (continued)

Under normal conditions ISLPE $>{ }^{\prime} \mathrm{CC}+0,5 \mathrm{~mA}+\mathrm{I}_{\mathrm{p}}$. The static behaviour of the circuit then equals a $4,2 \mathrm{~V}$ voltage regulator diode with an internal resistance R9. In the audio frequency range the dynamic impedance equals R1. The internal reference voltage can be adjusted by means of an external resistor RVA. This RVA connected between LN and REG (pins 1 and 16) will decrease the internal reference voltage. RVA connected between REG and SLPE (pins 16 and 18) will increase the internal reference voltage.
The current I_{p} available from $V_{C C}$ for supplying peripheral circuits depends on external components and on the line current. Fig. 4 shows this current for $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ and $>3 \mathrm{~V}$. 3 volt being the minimum supply voltage for most CMOS circuits including a diode voltage drop for an enable diode. If MUTE is LOW the available current is further reduced when the receiving amplifier is driven.

Microphone inputs MICL+, MICH+, MICL- and MICH- and gain adjustment connections GAS1 and GAS2

The TEA1066T has symmetrical microphone inputs. The MICL+ and MICL- inputs are intended for low-sensitivity, low-impedance dynamic or magnetic microphones. Input impedance is $8,2 \mathrm{k} \Omega$ ($2 \times 4,1 \mathrm{k} \Omega$) and its voltage amplification is typ. 52 dB . The MICH + and MICH-inputs are intended for a piezoelectric microphone or an electret microphone with built-in FET source follower. Its input impedance is $40,8 \mathrm{k} \Omega(2 \times 20,4 \mathrm{k} \Omega)$ and its voltage amplification is typical 38 dB .
The arrangements with the microphone types mentioned are shown in Fig. 5.
The amplification of the microphone amplifiers can be adjusted over a range of + and -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R7 connected between GAS1 and GAS2.
An external capacitor C6 of 100 pF between GAS1 and SLPE is required to ensure stability. A larger value may be chosen to obtain a first-order low-pass filter. The cut-off frequency corresponds with the time constant R7 x C6.

Mute input MUTE

A HIGH level at MUTE enables the DTMF input and inhibits the microphone inputs and the receiving amplifier; a LOW level or an open circuit does the reverse. Switching the mute input will cause negligible clicks at the telephone outputs and on the line.

Dual-tone multi-frequency input DTMF

When the DTMF input is enabled, dialling tones may be sent onto the line. The voltage amplification from DTMF to LN is typ. $25,5 \mathrm{~dB}$ and varies with R7 in the same way as the amplification of the microphone amplifier. The signalling tones can be heard in the earpiece at a low level (confidence tone).

Receiving amplifier: IR, QR+, QR- and GAR

The receiving amplifier has one input IR and two complementary outputs, a non-inverting output QR+ and an inverting output QR-. These outputs may be used for single-ended or for differential drive, depending on the sensitivity and type of earpiece used (see Fig. 6). Amplification from IR to QR+ is typ. 25 dB . This will be sufficient for low-impedance magnetic or dynamic earpieces; these are suited for single-ended drive. By using both outputs (differential drive) the amplification is increased by 6 dB and differential drive becomes possible. This feature can be used in case the earpiece impedance exceeds 450Ω (high-impedance dynamic, magnetic or piezo-electric earpieces.
The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions, where the ratio of peak and r.m.s. value is higher.

The amplification of the receiving amplifier can be adjusted over a range of + and -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R4 connected from GAR to QR+.
Two external capacitors $\mathrm{C} 4=100 \mathrm{pF}$ and $\mathrm{C} 6=10 \times \mathrm{C} 4=1 \mathrm{nF}$ are necessary to ensure stability. A larger value of C 4 may be chosen to obtain a first-order, low-pass filter. The "cut-off' frequency corresponds with the time constant $\mathrm{R} 4 \times \mathrm{C} 4$.

Automatic gain control input AGC

Automatic line loss compensation will be obtained by connecting a resistor R6 from AGC to V_{EE}. This automatic gain control varies the amplification of the microphone amplifier and the receiving amplifier in accordance with the d.c. line current. The control range is 6 dB . This corresponds with a line length of 5 km for a $0,5 \mathrm{~mm}$ diameter copper twisted-pair cable with a d.c. resistance of $176 \Omega / \mathrm{km}$ and an average attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$.
Resistor R 6 should be chosen in accordance with the exchange supply voltage and its feeding bridge resistance (see Fig. 7 and Table 1). Different values of R6 give the same ratio of line currents for begin and end of the control range.
If automatic line loss compensation is not required AGC may be left open. The amplifiers then all give their maximum amplification as specified.

Power-down input PD

During pulse dialling or register recall (timed loop break) the telephone line is interrupted, as a consequence it provides no supply for the transmission circuit and the peripherals connected to V_{CC}. These gaps have to be bridged by the charge in the smoothing capacitor C 1 . The requirements on this capacitor are relaxed by applying a HIGH level to the PD input during the time of the loop break, which reduces the supply current from typ. 1 mA to typ. $55 \mu \mathrm{~A}$.
A HIGH level at PD further disconnects the capacitor at REG, with the effect that the voltage stabilizer will have no switch-on delay after line interruptions. This results in no contribution of the IC to the current waveform during pulse dialling or register recall.
When this facility is not required PD may be left open.

Side-tone suppression

Suppression of the transmitted signal in the earpiece is obtained by the anti-side-tone network consisting of $\mathrm{R} 1 / / \mathrm{Z}_{\text {line }}, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 8, \mathrm{R} 9$ and $\mathrm{Z}_{\text {bal }}$ (see Fig. 10). Maximum compensation is obtained when the following conditions are fulfilled:
a) $R 9 . R 2=R 1\left(R 3+\left[R 8 / / Z_{\text {bal }}\right]\right)$
b) $\left[Z_{\text {bal }} /\left(Z_{\text {bal }}+R 8\right)\right]=\left[Z_{\text {line }} /\left(Z_{\text {line }}+R 1\right)\right]$

If fixed values are chosen for R1, R2, R3 and R9, then condition a) will always be fulfilled provided that $\left|R 8 / / Z_{\text {bal }}\right|<R 3$.
To obtain optimum side tone suppression, condition b) has to be fulfilled resulting in:

$$
Z_{\text {bal }}=(R 8 / R 1) Z_{\text {line }}=k \cdot Z_{\text {line }}
$$

where k is a scale factor; $k=(R 8 / R 1)$.
Scale factor k (value of R8) must be chosen to meet the following criteria:

- compatibility with a standard capacitor from the E6 or E12 range for $Z_{b a l}$
$-\left|Z_{b a l}\right| / R 8 \mid \ll R 3$
$-\left|Z_{b a l}+R 8\right| \gg R 9$
In practice $Z_{\text {line }}$ varies strongly with line length and cable type; consequently an average value has to be chosen for $Z_{\text {bal }}$. The suppression further depends on the accuracy with which $Z_{b a l} / k$ equals the average line impedance.

FUNCTIONAL DESCRIPTION (continued)

The anti-side-tone network as used in the standard application (Fig. 10) attenuates the signal from the line with 32 dB . The attenuation is nearly flat over the audio-frequency range.
Instead of the above described special TEA1066 bridge, the conventional Wheatstone bridge configuration can be used as an alternative anti-side-tone circuit. Both bridge types can be used with either a resistive set impedance or with a complex set impedance.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Positive line voltage (d.c.)
Repetitive line voltage during switch-on or line interruption
Repetitive peak line voltage
$\mathrm{t}_{\mathrm{p}} / \mathrm{P}=1 \mathrm{~ms} / 5 \mathrm{~s} ; \mathrm{R}_{\text {lim }}=13 \Omega$;
$\mathrm{R}_{10}=13 \Omega ; \mathrm{R}_{9}=20 \Omega$ (see Fig. 10)
Line current
Voltage on all other pins

Total power dissipation
Storage temperature range
Operating ambient temperature range
$\mathrm{V}_{\mathrm{LN}} \max .12 \mathrm{~V}$
V_{LN} max. $13,2 \mathrm{~V}$

$\mathrm{V}_{\mathrm{LN}(\mathrm{RM})}$	max.	28 V
$\mathrm{l}_{\text {line }}$	max.	100 mA
$\mathrm{~V}_{\mathrm{i}}$	max.	$\mathrm{V}_{\mathrm{CC}}+0,7 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{i}}$	max.	$0,7 \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	max.	450 mW
$\mathrm{~T}_{\text {stg }}$	-40 to $+125 \mathrm{o}^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	-25 to $+75 \mathrm{o}_{\mathrm{C}}$	

CHARACTERISTICS

$I_{\text {line }}=I_{1}=10$ to $100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{f}=800 \mathrm{~Hz} ; \mathrm{R} 9=20 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply: LN and $\mathbf{V}_{\mathbf{C C}}$ (pins 1 and 17)					
Voltage drop over circuit					
at $l_{\text {line }}=5 \mathrm{~mA}$	V_{1-12}	3,95	4,25	4,55	V
at line $=15 \mathrm{~mA}$	V_{1-12}	4,25	4,45	4,65	V
at $l_{\text {line }}=100 \mathrm{~mA}$	V_{1-12}	5,40	6,10	7,00	V
Voltage drop variation with temperature at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{LN}}$	-4	-2	0	mV / K
Voltage drop over circuit at $\mathrm{I}_{\text {line }}=15 \mathrm{~mA}$;	V	3,50	3,80	4,05	V
$\mathrm{R}_{V A}=\mathrm{R}_{18-20}=39 \mathrm{k} \Omega$	$\mathrm{V}_{\text {LN }}$	4,70	5,0	5,30	V
Supply current (pin 17)					
$P D(p i n 14)=L O W ; V_{C C}=2,8 \mathrm{~V}$	ICC	-	0,96	1,3	mA
$\mathrm{PD}(\mathrm{pin} 14)=\mathrm{HIGH} ; \mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	${ }^{\text {I C C }}$	-	55	82	$\mu \mathrm{A}$
Microphone inputs MICL+ and MICL-; $\mathrm{MICH}+$ and $\mathrm{MICH}-$					
Input impedance					
MICL+ (pin 9); MICL- (pin 7)	$\left\|z_{i s}\right\|$	3,3	4,1	4,9	k Ω
$\mathrm{MICH}+(\operatorname{pin} 10) ; \mathrm{MICH}-(\operatorname{pin} 8)$	$\left\|z_{\text {is }}\right\|$	16,5	20,4	24,3	$k \Omega$
Common-mode rejection ratio	${ }^{\text {k CMR }}$	-	82	-	dB
```Voltage amplification at l}\mp@subsup{l}{\mathrm{ line }}{=15mA; R7 = 68 k\Omega MICL+; MICL- MICH+; MICH-```					
	$\mathrm{A}_{\mathrm{vd}}$	51	52	53	dB
	$A_{v d}$	37	38	39	dB
Variation with frequency at $\mathrm{f}=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	$\pm 0,2$	+0,5	dB
Variation with temperature at $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta A_{v d} / \Delta T$	-	$\pm 0,2$	-	dB
Dual-tone multi-frequency input DTMF (pin 15)					
Input impedance	$\left\|z_{\text {is }}\right\|$	16,8	20,7	24,6	$k \Omega$
Voltage amplification (pin 15 to pin 1) at $l_{\text {line }}=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega$	$\mathrm{A}_{\mathrm{vd}}$	24,5	25,5	26,5	dB
Variation with frequency at $f=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	+0,2	+ 0,5	dB
Variation with temperature at $\mathrm{l}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Gain adjustment connections GAS1 and GAS2 (pins 2 and 3)					
Amplification variation with R7, transmitting amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	+ 8	dB
Transmitting amplifier output LN (pin 1)					
$\begin{aligned} & \text { Output voltage at } l_{\text {line }}=15 \mathrm{~mA} ; \\ & d_{\text {tot }}=2 \% \\ & d_{\text {tot }}=10 \% \end{aligned}$	$\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$ $\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$	1,9	2,3 2,6	-	V
Noise output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega$; microphone inputs open; psophometrically weighted (P53 curve)	$\mathrm{V}_{\text {no }}$ (rms)	-	-70	-	dBmp
Receiving amplifier input IR (pin 13) Input impedance	$\left\|z_{i s}\right\|$	16,5	20,4	24,3	$k \Omega$
Receiving amplifier outputs QR+ and QR(pins 5 and 4)					
Output impedance; single-ended	$\left\|z_{\text {os }}\right\|$	-	4	-	$\Omega$
Voltage amplification from pin 13 to pins 4 or 5 $\begin{aligned} & \text { line }=15 \mathrm{~mA} ; \mathrm{R}^{\text {l }}=100 \mathrm{k} \Omega ; \\ & \text { single-ended; } ; \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & \text { differential; } \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\mathrm{A}_{\mathrm{vd}}$ $\mathrm{A}_{\mathrm{vd}}$	24 30	25 31	26 32	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Amplification variation at $\mathrm{f}=300$ to 3400 Hz	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{f}$	-0,5	$\pm 0,2$	+ 0,5	dB
Amplification variation $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB
Output voltage at $I_{p}=0 ; d_{\text {tot }}=2 \%$; sine-wave drive; R4 $=100 \mathrm{k} \Omega$					
single-ended; $\mathrm{R}_{\mathrm{L}}=150 \Omega$	$\mathrm{V}_{\mathrm{o}}$ (rms)	0,30	0,38	-	V
single-ended; $\mathrm{R}_{\mathrm{L}}=450 \Omega$ differential; $\mathrm{C}_{\mathrm{L}}=47 \mathrm{nF}$;	$\mathrm{V}_{\mathrm{o}}$ (rms)	0,4	0,52	-	V
$R_{\text {series }}=100 \Omega ; f=3400 \mathrm{~Hz}$	$V_{0}$ (rms)	0,8	1,0	-	v
Noise output voltage $\begin{aligned} & l_{\text {line }}=15 \mathrm{~mA} \text {; R4 }=100 \mathrm{k} \Omega \text {; } \\ & \text { pin } 13 \text { (IR) open } \end{aligned}$					
psophometrically weighted (P53 curve)   single-ended $R_{L}=300 \Omega$   differential $R_{L}=600 \Omega$	$\mathrm{V}_{\text {no }}$ (rms)	-	50 100		$\begin{aligned} & \mu V \\ & u V \end{aligned}$
	$\mathrm{V}_{\text {no }}$ (rms)				
Gain adjustment GAR (pin 6)					
Amplification variation with R4 connected between pin 6 and pin 5 ; receiving amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	+ 8	dB


parameter	symbol	min.	typ.	max.	unit
MUTE input (pin 16)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	1,5	-	$\mathrm{V}_{\mathrm{CC}}$	V
LOW	$\mathrm{IIL}^{\text {IL }}$	-	-	0,3	V
Input current	${ }_{14}$	-	5	10	$\mu \mathrm{A}$
Reduction of voltage amplification from MICL+ (pin 9) and MICL- (pin 7) to LN (pin 1) at MUTE $=$ HIGH	$\Delta \mathrm{A}_{\mathrm{vd}}$	-	70	-	dB
Voltage amplification from DTMF to QR+ or QR - at MUTE $=$ HIGH; R4 $=100 \mathrm{k} \Omega$ single-ended load $R_{L}=300 \Omega$	Avd	-21	-19	-17	dB
Power-down input PD (pin 14)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	1,5	-	$\mathrm{V}_{\mathrm{CC}}$	V
LOW	$V_{\text {IL }}$	-	-	0,3	V
Input current	${ }_{1} 14$	-	5	10	$\mu \mathrm{A}$
Automatic gain control input AGC (pin 19)					
Amplification control range from pin 13 to pins 4 and 5 from pins 9 and 7 to pin 1 $R 6=R_{19-12}=110 \mathrm{k} \Omega$ Amplification control range	$-\Delta \mathrm{A}_{\mathrm{vd}}$	-	6	-	dB
Highest line current for maximum amplification	${ }^{\prime}$ line	-	22	-	mA
Lowest line current for minimum amplification	line	-	60	-	mA



Fig. 3 Supply arrangement.


Fig. 4 Maximum current $I_{p}$ available from $\mathrm{V}_{\mathrm{CC}}$ for external (peripheral) circuitry with $\mathrm{V}_{\mathrm{CC}}>2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}>3 \mathrm{~V}$. Curves (a) and ( $\mathrm{a}^{\prime}$ ) are valid when the receiving amplifier is not driven or when MUTE $=$ HIGH, curves (b) and ( $b^{\prime}$ ) are valid when MUTE = LOW and the receiving amplifier is driven, $V_{o(r m s)}=150 \mathrm{mV}, R_{L}=150 \Omega$ (asymmetrical).
$\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{V}_{\mathrm{LN}}=4,45 \mathrm{~V} ; \mathrm{R} 1=620 \Omega$ and $\mathrm{R} 9=20 \Omega$.
(a) $=2,55 \mathrm{~mA} ;(b)=2,1 \mathrm{~mA} ;\left(\mathrm{a}^{\prime}\right)=1,2 \mathrm{~mA}$ and $\left(b^{\prime}\right)=0,75 \mathrm{~mA}$.


Fig. 5 Alternative microphone arrangements. (a) magnetic or dynamic microphone. The resistor marked (1) may be connected to lower the terminating impedance. (b) electret microphone, (c) piezo-electric microphone.


Fig. 6 Alternative receiver arrangements. (a) dynamic telephone with less than $450 \Omega$ impedance. (b) dynamic telephone with more than $450 \Omega$ impedance. (c) magnetic telephone with more than $450 \Omega$ impedance. The resistor marked (1) may be connected to prevent distortion (inductive load). (d) piezoelectric telephone. The resistor marked (2) is required to increase the phase margin (capacitive load).


Fig. 7 Variation of amplification with line current, with R6 as a parameter.

		$\mathrm{R}_{\text {exch }}(\Omega)$			
		400	600	800	1000
		R6 (k $)^{\text {) }}$			
Vexch (V)	24	61,9	48,7	X	X
	36	100	78,7	68	60,4
	48	140	110	93,1	82
	60	X	X	120	102

Table 1. Values of resistor R 6 for optimum line loss compensation, for various usual values of exchange supply voltage $V_{\text {exch }}$ and exchange feeding bridge resistance $\mathrm{R}_{\text {exch }} ; \mathrm{R} 9=20 \Omega$.


Fig. 8 Test circuit for defining voltage amplification of MICL+, MICL-, MICH+, MICH- and DTMF inputs. Voltage amplification is defined as: $A_{v d}=20 \log \left|V_{0} / V_{i}\right|$. For measuring the amplification from MICL+; MICL- or MICH+ and MICH- the MUTE input should be LOW or open, for measuring the DTMF input MUTE should be HIGH. Inputs not under test should be open.


Fig. 9 Test circuit for defining voltage amplification of the receiving amplifier. Voltage amplification is defined as: $A_{v d}=20 \log \left|V_{0} / V_{i}\right|$.


Fig. 10 Typical application of the TEA1066T, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left and R10 limit the current into the circuit and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.


Fig. 11 Typical applications of the TEA1066T (simplified). (a) DTMF set with a CMOS DTMF dialling circuit. The dashed lines show an optional flash (register recall by timed loop break).
b: Pulse dial set with one of the PCD3320 family of CMOS interrupted current-loop dialling circuits.
(c) Dual-standard (pulse and DTMF) feature phone with the PCD3343 CMOS telephone controller and the PCD3312 CMOS DTMF generator with $I^{2} \mathrm{C}$ bus.

## LOW VOLTAGE VERSATILE TELEPHONE TRANSMISSION CIRCUIT WITH DIALLER INTERFACE

## GENERAL DESCRIPTION

The TEA1067 is a bipolar integrated circuit performing all speech and line interface functions required in fully electronic telephone sets. It performs electronic switching between dialling and speech. The circuit is able to operate down to DC line voltage of $1,6 \mathrm{~V}$ (with reduced performance) to facilitate the use of more telephone sets in parallel.

## Features

- Low DC line voltage; operates down to $1,6 \mathrm{~V}$ (excluding polarity guard)
- Voltage regulator with adjustable static resistance
- Provides supply with limited current for external circuitry
- Symmetrical high-impedance inputs ( $64 \mathrm{k} \Omega$ ) for dynamic, magnetic or piezoelectric microphones
- Asymmetrical high-impedance input ( $32 \mathrm{k} \Omega$ ) for electret microphone
- DTMF signal input with confidence tone
- Mute input for pulse or DTMF dialling
- Power down input for pulse dial or register recall
- Receiving amplifier for magnetic, dynamic or piezoelectric earpieces
- Large amplification setting range on microphone and earpiece amplifiers
- Line loss compensation facility, line current dependent (microphone and earpiece amplifiers)
- Gain control adaptable to exchange supply
- Possibility to adjust the DC line voltage


## QUICK REFERENCE DATA

Line current operating range (pin 1) VLN typ. 3,9 V				
normal operation	1 line	11 to 140 mA		
with reduced performance	line	1 to 11 mA		
Internal supply current				
power down input LOW	$I_{\text {CC }}$	typ.		mA
power down input HIGH	${ }^{\text {c C }}$	typ.		$\mu \mathrm{A}$
at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$, mute input HIGH				
$\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$	Ip	typ.		mA
$\mathrm{V}_{\mathrm{CC}}>2,8 \mathrm{~V}$	Ip	typ.		mA
Voltage amplification range				
microphone amplifier	Avd	44 to 52 dB		
receiving amplifier	$A_{\text {vd }}$	20 to 45 dB		
Line loss compensation				
Amplification control range	$\mathrm{A}_{\mathrm{vd}}$	typ.		dB
Exchange supply voltage range	$\mathrm{V}_{\text {exch }}$		60	
Exchange feeding brdige resistance range	Rexch	400 to	000	
Operating ambient temperature range	Tamb	-25	75	${ }^{\circ} \mathrm{C}$

## PACKAGE OUTLINE

18-lead dual in-line; plastic (SOT-102HE).


Fig. 1 Block diagram.


Fig. 2 Pinning diagram.

## PINNING

1	LN	positive line terminal
2	GAS1	gain adjustment; transmitting amplifier
3	GAS2	gain adjustment; transmitting amplifier
4	QR-	inverting output, receiving amplifier
5	QR+	non-inverting output, receiving amplifier
6	GAR	gain adjustment; receiving amplifier
7	MIC-	inverting microphone input
8	MIC+	non-inverting microphone input
9	STAB	current stabilizer
10	VEE	negative line terminal
11	IR	receiving amplifier input
12	PD	power-down input
13	DTMF	dual-tone multi-frequency input
14	MUTE	mute input
15	VCC	positive supply decoupling
16	REG	voltage regulator decoupling
17	AGC	automatic gain control input
18	SLPE	slope (d.c. resistance) adjustment

## FUNCTIONAL DESCRIPTION

## Supply: VCC, LN, SLPE, REG and STAB

The circuit and its peripheral circuits usually are supplied from the telephone line. The circuit develops its own supply voltage at $\mathrm{V}_{\mathrm{CC}}$ and regulates its voltage drop. The supply voltage $\mathrm{V}_{\mathrm{CC}}$ may also be used to supply external peripheral circuits, e.g. dialling and control circuits.
The supply has to be decoupled by connecting a smoothing capacitor between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$; the internal voltage regulator has to be decoupled by a capacitor from REG to $V_{E E}$. An internal current stabilizer is set by a resistor of $3,6 \mathrm{k} \Omega$ between STAB and $\mathrm{V}_{\text {EE. }}$
The DC current flowing into the set is determined by the exchange supply voltage $\mathrm{V}_{\text {exch }}$, the feeding bridge resistance $\mathrm{R}_{\text {exch }}$, the d.c. resistance of the subscriber line $\mathrm{R}_{\text {line }}$ and the DC voltage on the subscriber set (see Fig. 3).

If the line current line exceeds the current $I_{C C}+0,5 \mathrm{~mA}$ required by the circuit itself ( $I_{C C} \simeq 1 \mathrm{~mA}$ ), plus the current $I_{p}$ required by the peripheral circuits connected to $\mathrm{V}_{\mathrm{CC}}$, then the voltage regulator diverts the excess current via LN.
The voltage regulator adjusts the average voltage on LN to:

$$
V_{\text {LN }}=V_{\text {ref }}+I_{S L P E} \times R 9=V_{\text {ref }}+\left(I_{\text {line }}-I_{C C}-0,5 \times 10^{-3}-I_{p}\right) \times R 9 .
$$

$V_{\text {ref }}$ being an internally generated temperature compensated reference voltage of $3,6 \mathrm{~V}$ and $\mathrm{R9}$ being an external resistor connected between SLPE and $V_{E E}$. The preferred value of R9 is $20 \Omega$. Changing R9 will have influence on microphone gain, DTMF gain, gain control characteristics, side tone, maximum output swing on LN and on the DC characteristic (especially in the low voltage part). Under normal conditions ISLPE $\gg I_{C C}+0,5 \mathrm{~mA}+\mathrm{I}_{\mathrm{p}}$. The static behaviour of the circuit then equals a $3,6 \mathrm{~V}$ voltage regulator diode with an internal resistance R9. In the audio frequency range the dynamic impedance equals R1. The internal reference voltage can be adjusted by means of an external resistor RVA. RVA (1-16) connected between pins LN and REG will decrease the internal reference voltage. RVA (16-18) connected between REG and SLPE will increase the internal reference voltage.
At line currents below 9 mA the internal reference voltage is automatically adjusted to a lower value (Typ. 1,6 V at 1 mA ). This means that the operation of more telephone sets in parallel is possible with DC line voltages (excluding the polarity guard) down to an absolute minimum voltage of $1,6 \mathrm{~V}$.
At line currents below 9 mA the circuit has limited sending and receiving levels.

## FUNCTIONAL DESCRIPTION (continued)

The current $I_{p}$ available from $\mathrm{V}_{\mathrm{C}}$ for supplying peripheral circuits depends on external components and on the line current. Fig. 4 shows this current for $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ minimum. If MUTE is LOW the available current is further reduced when the receiving amplifier is driven. To increase the supply possibilities, the supply IC TEA1080 can be connected in parallel with R1 (Fig. 11(c)). An alternative is to set the DC line voltage to a higher value by means of an external resistor RVA (16-18) connected between REG and SLPE.

## Microphone inputs MIC+ and MIC- and gain pins: GAS1 and GAS2

The TEA 1067 has symmetrical microphone inputs. Its input impedance is $64 \mathrm{k} \Omega(2 \times 32 \mathrm{k} \Omega)$ and its voltage amplification is typ. 52 dB . Either dynamic, magnetic, piezoelectric microphones or an electret microphone with built-in FET source follower can be used.
The arrangements with the microphone types mentioned are shown in Fig. 5.
The amplification of the microphone amplifier can be adjusted between 44 dB to 52 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R7 connected between GAS1 and GAS2. An amplification more than 52 dB is possible (up to 60 dB ), however in that case the spread of the $D C$ voltage $\left(V_{L N}\right)$ will increase and the minimum voltage at 11 mA $\left(V_{\mathrm{LN}}=3,55 \mathrm{~V}\right.$ ) cannot be guaranteed. An external capacitor C6 of 100 pF between GAS1 and SLPE is required to ensure stability. A larger value may be chosen to obtain a first-order low-pass filter. The cut-off frequency corresponds with the time constant $\mathrm{R} 7 \times \mathrm{C} 6$.

## Mute input: MUTE

A HIGH level at MUTE enables the DTMF input and inhibites the microphone inputs and the receiving amplifier input: a LOW level or an open circuit does the reverse. Switching the mute input will cause negligible clicks at the telephone outputs and on the line. In case the line current drops below 6 mA (parallel operation of more sets) the circuit is always in speech condition independent of the DC level applied to the MUTE input.

## Dual-tone multi-frequency input DTMF

When the DTMF input is enabled, dialling tones may be sent onto the line. The voltage amplification from DTMF to LN is typ. $25,5 \mathrm{~dB}$ and varies with R7 in the same way as the amplification of the microphone amplifier. The signalling tones can be heard in the earpiece at a low level (confidence tone).

## Receiving amplifier: IR, QR+, QR- and GAR

The receiving amplifier has one input IR and two complementary outputs, a non-inverting output QR+ and an inverting output QR-. These outputs may be used for single-ended or for differential drive, depending on the sensitivity and type of earpiece used (see Fig. 6). Amplification from IR to QR+ is typ. 31 dB . This will be sufficient for low-impedance magnetic or dynamic earpieces; these are suited for single-ended drive. By using both outputs (differential drive) the amplification is increased by 6 dB and differential drive becomes possible. This feature can be used in case the earpiece impedance exceeds $450 \Omega$ (high-impedance dynamic, magnetic or piezoelectric earpieces).
The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions, where the ratio of peak and r.m.s. value is higher.
The amplification of the receiving amplifier can be adjusted between 20 and 39 dB with single ended drive and between 26 and 45 dB in case of differential drive to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R4 connected from GAR to QR+.
Two external capacitors $\mathrm{C} 4=100 \mathrm{pF}$ and $\mathrm{C} 7=10 \times \mathrm{C} 4=1 \mathrm{nF}$ are necessary to ensure stability. A larger value of C4 may be chosen to obtain a first-order low-pass filter. The "cut-off" frequency corresponds with the time constant R4×C4.

## Automatic gain control input AGC

Automatic line loss compensation will be obtained by connecting a resistor R6 from AGC to $\mathrm{V}_{\mathrm{EE}}$. This automatic gain control varies the amplification of the microphone amplifier and the receiving amplifier in accordance with the d.c. line current. The control range is 6 dB . This corresponds with a line length of 5 km for a $0,5 \mathrm{~mm}$ diameter copper twisted-pair cable with a DC resistance of $176 \Omega / \mathrm{km}$ and an average attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$.
Resistor R6 should be chosen in accordance with the exchange supply voltage and its feeding bridge resistance (see Fig. 7 and Table 1). Different values of R6 give the same ratio of line currents for begin and end of the control range. If automatic line loss compensation is not required AGC may be left open. The amplifiers then all give their maximum amplification as specified.

## Power-down input PD

During pulse dialling or register recall (timed loop break) the telephone line is interrupted, as a consequence it provides no supply for the transmission circuit and the peripherals connected to $\mathrm{V}_{\mathrm{CC}}$. These gaps have to be bridged by the charge in the smoothing capacitor C 1 . The requirements on this capacitor are relaxed by applying a HIGH level to the PD input during the time of the loop break, which reduces the supply current from typ. 1 mA to typ. $55 \mu \mathrm{~A}$.
A HIGH level at PD further disconnects the capacitor at REG, with the effect that the voltage stabilizer will have no switch-on delay after line interruptions. This results in no contribution of the IC to the current waveform during pulse dialling or register recall.
When this facility is not required PD may be left open.

## Side-tone suppression

Suppression of the transmitted signal in the earpiece is obtained by the anti-side-tone network consisting of $\mathrm{R} 1 / / Z_{\text {line }}, R 2, R 3, R 8, R 9$ and $Z_{\text {bal }}$ (see Fig. 10). Maximum compensation is obtained when the following conditions are fulfilled:
a) $R 9 . R 2=R 1\left(R 3+\left[R 8 / / Z_{b a l}\right]\right)$
b) $\left[Z_{\text {bal }} /\left(Z_{\text {bal }}+R 8\right)\right]=\left[Z_{\text {line }} /\left(Z_{\text {line }}+R 1\right)\right]$

If fixed values are chosen for R1, R2, R3 and R9, then condition a) will always be fulfilled provided that $\left|R 8 / / Z_{\text {bal }}\right| \ll R 3$.
To obtain optimum side-tone-suppression, condition b) has to be fulfilled resulting in:

$$
Z_{\text {bal }}=(R 8 / R 1) Z_{\text {line }}=k \cdot Z_{\text {line }}
$$

where $k$ is a scale factor; $k=(R 8 / R 1)$.
Scale factor $k$ (value of R8) must be chosen to meet the following criteria:

- compatibility with a standard capacitor from the E6 or E12 range for $\mathrm{Z}_{\mathrm{bal}}$
$-\left|Z_{b a}\right| / R 8 \mid \ll R 3$
$-\left|Z_{b a l}+R 8\right| \ll R 9$
In practice $Z_{\text {line }}$ varies strongly with the line length and cable type; consequently an average value has to be chosen for $Z_{b a l}$. The suppression further depends on the accuracy with which $Z_{b a l} / k$ equals the average line impedance.
The anti-side-tone network as used in the standard application (Fig. 10) attenuates the signal from the line with 32 dB . The attenuation is nearly flat over the audio-frequency range.
Instead of the above described special bridge, the conventional Wheatstone bridge configuration can be used as an alternative anti-side-tone circuit. Both bridges can be used with either a resistive set impedance or with a complex set impedance.
More information can be found in the application report.


## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Positive line voltage continuous
Repetitive line voltage
during switch-on or line interruption
Repetitive peak line voltage

$$
\mathrm{t}_{\mathrm{p}} / \mathrm{p}=1 \mathrm{~ms} / 5 \mathrm{~s} ; \mathrm{R} 10=13 \Omega ;
$$

R9 $=20 \Omega$ (see Fig. 10)
Line current
Voltage on all other pins

Total power dissipation
Storage temperature range
Operating ambient temperature range
$V_{\mathrm{LN}}$ max.
12 V
$V_{\mathrm{LN}} \max$ 13,2 V

	28 V	
$\mathrm{~V}_{\mathrm{LN}}$	max.	140 mA
$\mathrm{I}_{\text {line }}$		$\mathrm{V}^{2}$
$\mathrm{~V}_{\mathrm{i}}$	max.	$\mathrm{V}_{\mathrm{CC}}+0,7 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{i}}$	max.	$0,7 \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	max.	640 mW
$\mathrm{~T}_{\text {stg }}$	-40 to $+125^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+75^{\circ} \mathrm{C}$	

## CHARACTERISTICS

$l_{\text {line }}=11$ to $140 \mathrm{~mA} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{f}=800 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply: LN and $\mathrm{V}_{\mathbf{C C}}$ (pins 1 and 15)					
Voltage drop over circuit; between pin 1 and pin $10=\mathrm{V}_{\mathrm{LN}}$; microphone inputs open					
at line ${ }_{\text {line }}$	$\mathrm{V}_{\text {LN }}$	-	1,6	-	V
at $l_{\text {line }}=4 \mathrm{~mA}$	$V_{\text {LN }}$	1,75	2,0	2,25	V
at $l_{\text {line }}=7 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	2,25	2,8	3,35	V
at $l_{\text {line }}=11 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	3,55	3,8	4,05	V
at $l_{\text {line }}=15 \mathrm{~mA}$	$V_{\text {LN }}$	3,65	3,90	4,15	V
at $l_{\text {line }}=100 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	4,9	5,6	6,5	V
at $l_{\text {line }}=140 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	-	-	7,5	V
Variation with temperature at $l_{\text {line }}=15 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{LN}} / \Delta \mathrm{T}$	-3	-1	1	$\mathrm{mV} / \mathrm{K}$
Voltage drop over circuit with external resistor RVA;					
$R_{V A}(\operatorname{pin} 1$ to pin 16) $=68 \mathrm{k} \Omega$	$\mathrm{V}_{\text {LN }}$	3,1	3,4	3,7	v
$R_{V A}($ pin 16 to pin 18) $=39 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{LN}}$	4,2	4,5	4,8	V
Supply current ICC; current into pin 15 $P D=L O W(p i n 12) ; V_{C C}=2,8 \mathrm{~V}$	${ }^{\text {I C C }}$	-	1,0	1,35	mA
$\mathrm{PD}=\mathrm{HIGH}(\mathrm{pin} 12) ; \mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	${ }^{\text {ICC }}$	-	55	82	$\mu \mathrm{A}$
Current available from pin 15 to					
$\begin{aligned} & \text { at } l_{\text {line }}=15 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}>=2,2 \mathrm{~V} ; \text { Mute }=\mathrm{High} \end{aligned}$	Ip	1,4	1,8	-	mA


parameter	symbol	min.	typ.	max.	unit
Microphone inputs MIC+ and MIC- (pins 7 and 8)					
Input impedance					
Differential (between pins 7 and 8)   Single ended (pin 7 or w.r.t. $\mathrm{V}_{\mathrm{EE}}$ )	$\begin{aligned} & z_{i s} \mid \\ & \left\|z_{i s}\right\| \end{aligned}$	51 25,5	64 32	38,5	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
Common-mode rejection ratio	$\mathrm{k}_{\text {CMR }}$	-	82	-	dB
Voltage amplification (from pin 7-8 to pin 1); $l_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R7}=68 \mathrm{k} \Omega$	$\mathrm{A}_{\mathrm{vd}}$	51	52	53	dB
Variation with frequency at $\mathrm{f}=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	$\pm 0,2$	+ 0,5	dB
Variation with temperature at $I_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	t.b.n.	-	dB
Dual-tone multi-frequency input DTMF (pin 13) Input impedance	$\left\|z_{\text {is }}\right\|$	t.b.n.	20,7	t.b.n.	k $\Omega$
Voltage amplification (from pin 13 to pin 1); at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega$	Avd	24,5	25,5	26,5	dB
Variation with frequency $f=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	$\pm 0,2$	+ 0,5	dB
Variation with temperature at $I_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB
Gain adjustment GAS1 and GAS2 (pins 2 and 3)					
Amplification variation with R7 (connected between pins 2 and 3 ), transmitting amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	0	dB
Sending amplifier output LN (pin 1)					
Output voltage at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$; $d_{\text {tot }}=2 \%$	$\mathrm{V}_{\text {LN(rms }}$	-	1,9	-	V
$d_{\text {tot }}=10 \%$	$\mathrm{V}_{\text {LN }}(\mathrm{rms}$ )	1,9	2,2	-	V
at $\mathrm{l}_{\text {line }}=4 \mathrm{~mA} ; \mathrm{d}_{\text {tot }}=10 \%$	$\mathrm{V}_{\text {LN }(\mathrm{rms})}$	-	0,8	-	V
at line $=7 \mathrm{~mA}$; $\mathrm{d}_{\text {tot }}=10 \%$	$\mathrm{V}_{\mathrm{LN} \text { (rms) }}$	-	1,4	-	V
Noise output voltage $\begin{aligned} & l_{\text {line }}=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega ; \\ & 200 \Omega \text { between pins } 7 \text { and } 8 ; \\ & \text { psophometrically weighted (P53 curve) } \end{aligned}$	$\mathrm{V}_{\mathrm{no}}(\mathrm{rms})$	-	-72	-	dBmp
Receiving amplifier input IR (pin 11) Input impedance	$\left\|z_{i s}\right\|$	t.b.n.	20	t.b.n.	k $\Omega$

CHARACTERISTICS (continued)


parameter	symbol	min.	typ.	max.	unit
Voltage amplification from DTMF (pin 13) to QR + (pin 5) or QR- $($ pin 4$)$ at MUTE $=\mathrm{HIGH}$; single-ended load $R_{L}=300 \Omega$	Avd	-21	-19	-17	dB
Power-down input PD (pin 12)					
Input voltage HIGH LOW	$\mathrm{V}_{\text {IH }}$ $\mathrm{V}_{\text {IL }}$	1,5	-	$\mathrm{V}_{\mathrm{CC}}$ 0,3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input current (into pin 12)	IPD	-	5	10	$\mu \mathrm{A}$
Automatic gain control input AGC (pin 17)					
Controlling the gain from pin 11 to pins 4-5 and the gain from pins $7-8$ to pin 1 $R 6=110 \mathrm{k} \Omega$ (between pins 17 and 10 ) Amplification control range	Avd	-	-6	-	dB
Highest line current for maximum amplification	Iline	-	22	-	mA
Lowest line current for minimum amplification	Iline	-	60	-	mA



Fig. 3 Supply arrangement.

a) $=1,8 \mathrm{~mA}$, b) $=1,35 \mathrm{~mA}$
$l_{\text {line }}=15 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{LN}}=3,9 \mathrm{~V}$
$\mathrm{R} 1=620 \Omega$ and $\mathrm{R} 9=20 \Omega$

Fig. 4 Typical current $I_{p}$ available from $\mathrm{V}_{\mathrm{CC}}$ for peripheral circuitry with $\mathrm{V}_{\mathrm{CC}}>=2,2 \mathrm{~V}$. Curve (a) is valid when the receiving amplifier is not driven or when MUTE $=$ HIGH, curve (b) is valid when MUTE $=$ LOW and the receiving amplifier is driven; $\mathrm{V}_{\mathrm{o}}(\mathrm{rms})=150 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ asymmetrical. The supply possibilities can be increased simply by setting the voltage drop over the circuit $\mathrm{V}_{\mathrm{LN}}$ to a higher value by means of resistor RVA (16-18).


Fig. 5 Alternative microphone arrangements. a: magnetic or dynamic microphone. The resistor marked (1) may be connected to lower the terminating impedance. In case of sensitive microphone types a resistor attenuator can be used to prevent overloading of the microphone inputs (b) electret microphone, (c) piezoelectric microphone.


Fig. 6 Alternative receiver arrangements. (a) dynamic telephone with less than $450 \Omega$ impedance. (b) dynamic telephone with more than $450 \Omega$ impedance. (c) magnetic telephone with more than $450 \Omega$ impedance. The resistor marked (1) may be connected to prevent distortion (inductive load). (d) piezoelectric telephone. The resistor marked (2) is required to increase the phase margin (capacitive load).


Fig. 7 Variation of amplification with line current, with R6 as a parameter.

		$\mathrm{R}_{\text {exch }}(\Omega)$			
		400	600	800	1000
		R6 (k)			
Vexch   (V)	36	100	78,7	X	X
	48	140	110	93,1	82
	60	X	X	120	102

$$
R 9=20 \Omega
$$

Table 1. Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply voltage $\mathrm{V}_{\text {exch }}$ and exchange feeding bridge resistance $\mathrm{R}_{\text {exch }}$.


Fig. 8 Test circuit for defining voltage amplification of MIC+, MIC- and DTMF inputs. Voltage amplification is defined as: $\mathrm{A}_{\mathrm{vd}}=20 \log \left|\mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$. For measuring the amplification from MIC+ and MIC- the MUTE input should be LOW or open, for measuring the DTMF input MUTE should be HIGH. Inputs not under test should be open.


Fig. 9 Test circuit for defining voltage amplification of the receiving amplifier. Voltage amplification is defined as: $A_{v d}=20 \log \left|V_{0} / V_{i}\right|$.

APPLICATION INFORMATION


Fig. 10 Typical application of the TEA1067, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left, the zener diode and R10 limit the current into the circuit during and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement. By means of resistor $R_{V A}\left(R_{16-18}\right)$ the $D C$ line voltage can be set to a higher value.


Fig. 11 Typical applications of the TEA 1067 (simplified).
a) DTMF-Pulse set with CMOS-bilingual dialling circuit PCD3310. The dashed lines show an optional flash (register recall by timed loop break).
b) Pulse dial set with one of the PCD3320 family of CMOS interrupted current-loop dialling circuits.
c) Dual-standard (pulse and DTMF) feature phone with the PCD3343 CMOS telephone controller and the PCD3312 CMOS DTMF general with $I^{2} \mathrm{C}$ bus. Supply is provided by the TEA 1080 supply circuit.
.

## VERSATILE TELEPHONE TRANSMISSION CIRCUIT

## GENERAL DESCRIPTION

The TEA1068 is a bipolar integrated circuit performing all speech and line interface functions required in fully electronic telephone sets. The circuit internally performs electronic switching between dialling and speech.

## Features

- Voltage regulator with adjustable static resistance
- Provides supply for external circuitry
- Symmetrical high-impedance inputs ( $64 \mathrm{k} \Omega$ ) for dynamic, magnetic or piezoelectric microphones
- Asymmetrical high-impedance input ( $32 \mathrm{k} \Omega$ ) for electret microphone
- DTMF signal input with confidence tone
- Mute input for pulse or DTMF dialling
- Power down input for pulse dial or register recall
- Receiving amplifier for magnetic, dynamic or piezoelectric earpieces
- Large amplification setting range on microphone and earpiece amplifiers
- Line loss compensation facility, line current dependent for microphone and receiving amplifiers
- Gain control adaptable to exchange supply
- Possibility to adjust the d.c. line voltage


## QUICK REFERENCE DATA

Line voltage at $\mathrm{I}_{\mathrm{LN}}=15 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	typ. $4,45 \mathrm{~V}$
Line current operating range	${ }_{\text {I LN }}$	10 to 140 mA
Internal supply current   power down input PD = LOW   Power down input PD $=$ HIGH	ICC	$\begin{array}{lr} \text { typ. } & 1 \mathrm{~mA} \\ \text { typ. } & 55 \mu \mathrm{~A} \end{array}$
$\begin{aligned} & \text { Supply current for peripherals } \\ & \text { at liline }=15 \mathrm{~mA} \text {, mute input HIGH } \\ & \mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}>3,0 \mathrm{~V} \end{aligned}$	Ip Ip	$\begin{array}{ll} \max . & 2,5 \mathrm{~mA} \\ \max . & 1,2 \mathrm{~mA} \end{array}$
Voltage amplification range microphone amplifier receiving amplifier	$\begin{aligned} & \mathrm{A}_{\mathrm{vd}} \\ & \mathrm{~A}_{\mathrm{vd}} \end{aligned}$	$\begin{aligned} & 44 \text { to } 60 \mathrm{~dB} \\ & 17 \text { to } 39 \mathrm{~dB} \end{aligned}$
Line loss compensation   Amplification control range Exchange supply voltage range Exchange feeding bridge resistance range	$\Delta A_{v d}$   $V_{\text {exch }}$   Rexch	$\begin{aligned} & \text { typ. } 6 \mathrm{~dB} \\ & 24 \text { to } 60 \mathrm{~V} \\ & 400 \text { to } 1000 \Omega \end{aligned}$
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-25 to $+75{ }^{\circ} \mathrm{C}$

## PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).


Fig. 1 Block diagram.


Fig. 2 Pinning diagram.

## PINNING

1 LN

2 GAS1
3 GAS2
4 QR-
5 QR+
6 GAR
7 MIC+
8 MIC-
9 STAB
$10 \mathrm{~V}_{\mathrm{EE}}$
11 IR
12 PD
13 DTMF
14 MUTE
15 VCC
16 REG
17 AGC
18 SLPE
positive line connection gain adjustment connection, sending amplifier gain adjustment connection, sending amplifier
inverting output, receiving amplifier non-inverting output, receiving amplifier gain adjustment connection, receiving amplifier non-inverting microphone input inverting microphone input current stabilizer connection negative line connection receiving amplifier input power-down input dual-tone multi-frequency input mute input positive supply decoupling connection voltage regulator decoupling connection automatic gain control input slope (d.c. resistance) adjustment connection

## FUNCTIONAL DESCRIPTION

## Supply: VCc, LN, SLPE, REG and STAB

The circuit and its peripheral circuits usually are supplied from the telephone line. The circuit develops its own supply voltage at $\mathrm{V}_{\mathrm{CC}}$ and regulates its voltage drop. The supply voltage $\mathrm{V}_{\mathrm{CC}}$ may also be used to supply external peripheral circuits, e.g. dialling and control circuits.
The supply has to be decoupled by connecting a smoothing capacitor between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$; the internal voltage regulator has to be decoupled by a capacitor from REG to $V_{E E}$. An internal current stabilizer is set by a resistor of $3,6 \mathrm{k} \Omega$ between STAB and $V_{\mathrm{EE}}$.
The d.c. current flowing into the set is determined by the exchange supply voltage $\mathrm{V}_{\text {exch }}$, the feeding bridge resistance $\mathrm{R}_{\text {exch }}$, the d.c. resistance of the subscriber line $\mathrm{R}_{\text {line }}$ and the d.c. voltage on the subscriber set (see Fig. 3).
If the line current $l_{\text {line }}$ exceeds the current $\mathrm{I}_{\mathrm{CC}}+0,5 \mathrm{~mA}$ required by the circuit itself, ( ${ }_{\mathrm{CC}} \mathrm{ca} .1 \mathrm{~mA}$ ), plus the current $I_{p}$ required by the peripheral circuits connected to $\mathrm{V}_{\mathrm{CC}}$, then the voltage regulator diverts the excess current via LN.

The voltage regulator adjusts the average voltage on LN to:
$V_{\text {LN }}=V_{\text {ref }}+I_{\text {SLPE }} \times R 9=V_{\text {ref }}+\left(I_{\text {line }}-I_{C C}-0,5.10^{-3}-I_{p}\right) \times R 9$.
$V_{\text {ref }}$ being an internally generated temperature compensated reference voltage of $4,2 \mathrm{~V}$ and R 9 being an external resistor connected between SLPE and $V_{E E}$. The preferred value of R9 is $20 \Omega$. Changing R9 will have influence on microphone gain, DTMF gain, gain control characteristics, side tone and maximum output swing on LN.
Under normal conditions ISLPE $>I_{I C C}+0,5 \mathrm{~mA}+\mathrm{I}_{\mathrm{p}}$. The static behaviour of the circuit then equals a $4,2 \mathrm{~V}$ voltage regulator diode with an internal resistance R 9 . In the audio frequency range the dynamic impedance equals R1.

## FUNCTIONAL DESCRIPTION (continued)

The internal reference voltage can be adjusted by means of an external resistor $R_{V A}$. This resistor connected between LN (pin 1) and REG (pin 16) will decrease the internal reference voltage. RVA connected between REG (pin 16) and SLPE (pin 18) will increase the internal reference voltage. The current $I_{p}$ available from $V_{C C}$ for supplying peripheral circuits depends on external components and on the line current. Fig. 4 shows this current for $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ and for $\mathrm{V}_{\mathrm{CC}}>3 \mathrm{~V}$. Of which 3 V being the minimum supply voltage for most CMOS circuits including a diode voltage drop for an enable diode. If MUTE is LOW the available current is further reduced when the receiving amplifier is driven.

## Microphone inputs MIC+ and MIC- and gain adjustment pins GAS1 and GAS2

The TEA1068 has symmetrical microphone inputs. Its input impedance is $64 \mathrm{k} \Omega(2 \times 32 \mathrm{k} \Omega)$ and its voltage amplification is typical 52 dB . Either dynamic, magnetic, piezoelectric microphones or an electret microphone with built-in FET source follower can be used.
The arrangements with the microphone types mentioned are shown in Fig. 5.
The amplification of the microphone amplifier can be adjusted over a range of + or -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R7 connected between GAS1 and GAS2.
An external capacitor C6 of 100 pF between GAS1 and SLPE is required to ensure stability. A larger value may be chosen to obtain a first-order low-pass filter. The cut-off frequency corresponds with the time constant R7 $\times$ C6.

## Mute input MUTE

A HIGH level at MUTE enables the DTMF input and inhibits the microphone inputs and the receiving amplifier input, a LOW level or an open circuit does the reverse. Switching the mute input will cause negligible clicks at the telephone outputs and on the line.

## Dual-tone multi-frequency input DTMF

When the DTMF input is enabled, dialling tones may be sent onto the line. The voltage amplification from DTMF to LN is typ. $25,5 \mathrm{~dB}$ and varies with R7 in the same way as the amplification of the microphone amplifier. The signalling tones can be heard in the earpiece at a low level (confidence tone).

## Receiving amplifier: IR, $\mathrm{QR}+$, $\mathrm{QR}-$ and GAR

The receiving amplifier has one input IR and two complementary outputs, a non-inverting output QR+ and an inverting output QR-. These outputs may be used for single-ended or for differential drive, depending on the sensitivity and type of earpiece used (see Fig. 6). Amplification from IR to QR + is typ. 25 dB . This will be sufficient for low-impedance magnetic or dynamic earpieces; these are suited for single-ended drive. By using both outputs (differential drive) the amplification is increased by 6 dB and this makes differential drive possible. This feature can be used in case the earpiece impedance exceeds $450 \Omega$ (high-impedance dynamic, magnetic or piezoelectric earpieces).
The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions, where the ratio of peak and r.m.s. value is higher.
The amplification of the receiving amplifier can be adjusted over a range of + and -8 dB to suit the sensitivity of the transducer used. The amplification is proportional to external resistor R4 connected from GAR to QR +.
Two external capacitors $\mathrm{C} 4(100 \mathrm{pF})$ and $\mathrm{C} 7(10 \times C 4=1 \mathrm{nF})$ are necessary to ensure stability. $A$ larger value of $C 4$ may be chosen to obtain a first-order low-pass filter. The cut-off frequency corresponds with the time constant R4×C4.

## Automatic gain control input AGC

Automatic line loss compensation will be obtained by connecting a resistor R6 from AGC to $V_{E E}$. This automatic gain control varies the amplification of the microphone amplifier and the receiving amplifier in accordance with the d.c. line current. The control range is 6 dB . This corresponds with a line length of 5 km for a $0,5 \mathrm{~mm}$ diameter copper twisted-pair cable with a d.c. resistance of $176 \Omega / \mathrm{km}$ and an average attenuation of $1,2 \mathrm{~dB} / \mathrm{km}$.
Resistor R6 should be chosen in accordance with the exchange supply voltage and its feeding bridge resistance (see Fig. 7 and Table 1). Different values of R6 give the same ratio of line currents for begin and end of the control range.
If automatic line loss compensation is not required AGC may be left open. The amplifiers then all give their maximum amplification as specified.

## Power-down input PD

During pulse dialling or register recall (timed loop break) the telephone line is interrupted, as a consequence it provides no supply for the transmission circuit and the peripherals connected to $\mathrm{V}_{\mathrm{CC}}$. These gaps have to be bridged by the charge in the smoothing capacitor C 1 . The requirements on this capacitor are relaxed by applying a HIGH level to the PD input during the time of the loop break, which reduces the supply current from typ. 1 mA to typ. $55 \mu \mathrm{~A}$.
A HIGH level at PD further disconnects the capacitor at REG, with the effect that the voltage stabilizer will have no switch-on delay after line interruptions. This results in no contribution of the IC to the current waveform during pulse dialling or register recall.
When this facility is not required PD may be left open.

## Side-tone suppression

Suppression of the transmitted signal in the earpiece is obtained by the anti-side-tone network consisting of $\mathrm{R} 1 / / Z_{\text {line }}, R 2, R 3, R 8, R 9$ and $Z_{\text {bal }}$ (see Fig. 10). Maximum compensation is obtained when the following conditions are fulfilled:
a) $R 9 . R 2=R 1\left(R 3+\left[R 8 / / Z_{b a l}\right]\right)$
b) $\left[Z_{\text {bal }} /\left(Z_{\text {bal }}+R 8\right)\right]=\left[Z_{\text {line }} /\left(Z_{\text {line }}+R 1\right)\right]$.

If fixed values are chosen for R1, R2, R3 and R9 then condition a) will always be fulfilled provided that $\left|R 8 / / Z_{\text {bal }}\right| \leqslant R 3$.
To obtain optimum side tone suppression condition b) has to be fulfilled resulting in:

$$
Z_{\text {bal }}=(R 8 / R 1) Z_{\text {line }}=k \cdot Z_{\text {line }}
$$

where $k$ is a scale factor $k=(R 8 / R 1)$.
Scale factor $k$ (value of R8) must be chosen to meet the following criteria:

- compatibility with a standard capacitor from the E6 or E12 range for $Z_{b a l}$
$-\left|Z_{b a l} / / R 8\right| \ll R 3$
$-\left|Z_{\text {bal }}+R 8\right| \gg R 9$
In practice $Z_{\text {line }}$ varies strongly with line length and cable type; consequently an average value has to be chosen for $Z_{\text {bal }}$. The suppression further depends on the accuracy with which $Z_{\text {bal }} / k$ equals the average line impedance.
The anti-side-tone network as used in the standard application (Fig. 10) attenuates the signal from the line with 32 dB . The attenuation is nearly flat over the audio frequency range.
Instead of the above described special TEA1068 bridge, the conventional Wheatstone bridge configuration can be used as an alternative anti-side-tone circuit. Both bridge types can be used with either a resistive set impedance or with a complex set impedance.


## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Positive line voltage (d.c.)
Repetitive line voltage during switch-on or line interruption
Repetitive peak line voltage
$\mathrm{t}_{\mathrm{p}} / \mathrm{P}=1 \mathrm{~ms} / 5 \mathrm{~s} ;$
$\mathrm{R}_{10}=13 \Omega ; \mathrm{R}_{9}=20 \Omega$ (see Fig. 10)
Line current
Voltage on all other pins
Total power dissipation
Storage temperature range
Operating ambient temperature range
$V_{\mathrm{LN}} \quad \max . \quad 12 \mathrm{~V}$
$V_{\mathrm{LN}}$ max. $13,2 \mathrm{~V}$
$V_{\text {LNRM }}$ max. 28 V
$l_{\text {line }} \quad \max . \quad 140 \mathrm{~mA}$
$\begin{array}{lrr}V_{i} & \text { max. } & V_{C C}+0,7 \mathrm{~V} \\ -V_{i} & \text { max. } & 0,7 \mathrm{~V}\end{array}$
$P_{\text {tot }} \quad \max . \quad 640 \mathrm{~mW}$
$\mathrm{T}_{\text {stg }} \quad-40$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}} \quad-25$ to $+75{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$l_{\text {line }}=I_{1}=10$ to $140 \mathrm{~mA} ; \mathrm{V}_{\mathrm{EE}}=\mathrm{V} 10=0 \mathrm{~V} ; \mathrm{f}=800 \mathrm{~Hz} ; \mathrm{R} 9=20 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply: LN and $\mathbf{V C C}_{\text {( }}$ (pins 1 and 15)					
Voltage drop over circuit $\mathrm{V}_{1-10}$ microphone inputs open					
at $\mathrm{l}_{\text {line }}=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{LN}}$	3,95	4,25	4,55	V
at $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	4,20	4,45	4,70	V
at line $=100 \mathrm{~mA}$	$V_{\text {LN }}$	5,4	6,1	7	V
at $l_{\text {line }}=140 \mathrm{~mA}$	$\mathrm{V}_{\text {LN }}$	-	-	8	V
Variation with temperature at $l_{\text {line }}=15 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{LN}} / \Delta \mathrm{T}$	-4	-2	0	mV/K
Voltage drop over circuit at $l_{\text {line }}=15 \mathrm{~mA}$					
$\mathrm{R}_{V A}=\mathrm{R}_{1-16}=68 \mathrm{k} \Omega$ $\mathrm{R}_{\mathrm{VA}}=\mathrm{R}_{16-18}=39 \mathrm{k} \Omega$	$\mathrm{V}_{\text {LN }}$	3,45 4,65	3,80 5,0	4,10 5,35	V
Supply current					
PD (pin 12) $=$ LOW; $\mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	${ }^{\prime} \mathrm{CC}$	-	0,96	1,30	mA
PD $\left(\right.$ pin 12) $=$ HIGH; $\mathrm{V}_{\mathrm{CC}}=2,8 \mathrm{~V}$	${ }^{\text {ICC }}$	-	55	82	$\mu \mathrm{A}$
Microphone inputs MIC+ and MIC- (pins 8 and 7)					
Input impedance differential (between pins 7 and 8)	$\left\|z_{\text {is }}\right\|$	51	64	77	k $\Omega$
single-ended (pin 7-10 or pin 8-10)	$\left\|z_{\text {is }}\right\|$	25,5	32	38,5	$k \Omega$
Common-mode rejection ratio	$\mathrm{k}_{\text {CMR }}$	-	82	-	dB
$\begin{aligned} & \text { Voltage amplification (pins 7, 8-1) } \\ & \quad \text { Iline }=15 \mathrm{~mA} ; R 7=68 \mathrm{k} \Omega \end{aligned}$	$\mathrm{A}_{\mathrm{vd}}$	51	52	53	dB
Variation with frequency at $f=300$ to 3400 Hz	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{f}$	-0,5	$\pm 0,2$	+0,5	dB
Variation with temperature at $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$		$\pm 0,2$	-	dB
Dual-tone multi-frequency input DTMF (pin 13)					
Input impedance	$\left\|z_{\text {is }}\right\|$	16,8	20,7	24,6	$k \Omega$
Voltage amplification $\prime_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R} 7=68 \mathrm{k} \Omega$	$A_{\text {vd }}$	24,5	25,5	26,5	dB
Variation with frequency $f=300$ to 3400 Hz	$\Delta A_{v d} / \Delta f$	-0,5	$\pm 0,2$	+0,5	dB
Variation with temperature at $I_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$		$\pm 0,2$	-	dB
Gain adjustment GAS1 and GAS2 (pins 2 and 3)					
Amplification variation with R7 transmitting amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	+ 8	dB

## CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Transmitting amplifier output LN (pin 1)					
Output voltage at $\mathrm{I}_{\text {line }}=15 \mathrm{~mA}$; $d_{\text {tot }}=2 \%$	$\mathrm{V}_{\text {LN(rms }}$	1,9		-	V
$d_{\text {tot }}=10 \%$	$\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$	1,9		-	V
Receiving amplifier input IR (pin 11)					
Input impedance	$\left\|z_{\text {is }}\right\|$	16,5	20,4	24,3	k $\Omega$
Receiving amplifier outputs QR+ and QR(pins 5 and 4)					
Output impedance; single-ended	$\left\|z_{\text {os }}\right\|$	-	4	-	$\Omega$
Voltage amplification from pin 11 to pins 4 or 5) $l_{\text {line }}=15 \mathrm{~mA}$; R4 $=100 \mathrm{k} \Omega$;					
differential; $R_{L}=600 \Omega$	$\mathrm{A}_{\mathrm{vd}}$	30	31	32	dB
Variation with frequency, $f=300 \text { to } 3400 \mathrm{~Hz}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{f}$	-0,5	$\pm 0,2$	+0,5	dB
Variation with temperature $\mathrm{I}_{\text {line }}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C}$	$\Delta \mathrm{A}_{\mathrm{vd}} / \Delta \mathrm{T}$	-	$\pm 0,2$	-	dB
Output voltage at$I_{\mathrm{p}}=0 ; \mathrm{d}_{\text {tot }}=2 \% ;$					
R4 $=100 \mathrm{k} \Omega$; sine-wave drive					
single-ended; $\mathrm{R}_{\mathrm{L}}=150 \Omega$	$\mathrm{V}_{\mathrm{o}}$ (rms)	0,3	0,38	-	V
single-ended; $R_{L}=450 \Omega$	$\mathrm{V}_{\mathrm{o}}(\mathrm{rms})$	0,4	0,52	-	V
$\text { resistor) ; } f=3400 \mathrm{~Hz}$	$\mathrm{V}_{\mathrm{o}}$ (rms)	0,8	1,0	-	V
Noise output voltage					
$\begin{aligned} & l_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R} 4=100 \mathrm{k} \Omega ; \\ & \text { pin } 11=\mathrm{IR}=\text { open } \end{aligned}$					
psophometrically weighted (P53 curve)   single-ended; $R_{L}=300 \Omega$	$V_{\text {no }}$ (rms)	-	50	-	$\mu \mathrm{V}$
differential; $R_{L}=600 \Omega$	$\mathrm{V}_{\text {no }}$ (rms)	-	100	-	$\mu \mathrm{V}$
Gain adjustment GAR (pin 6)					
Amplification variation with R4 between pins 6 and 5 receiving amplifier	$\Delta \mathrm{A}_{\mathrm{vd}}$	-8	-	+ 8	dB


parameter	symbol	min.	typ.	max.	unit
MUTE input (pin 14)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	1,5	-	$\mathrm{V}_{\mathrm{CC}}$	V
LOW	$V_{\text {IL }}$	-	-	0,3	V
Input current	Imute	-	8	15	$\mu \mathrm{A}$
Reduction of voltage amplification MIC+ and MIC - to LN at MUTE $=$ HIGH	$\mathrm{A}_{\mathrm{vd}}$	-	70	-	dB
Voltage amplification from DTMF to QR + or QR - at MUTE $=\mathrm{HIGH}$ $R 4=100 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}$ single-ended $=300 \Omega$	Avd	-21	-19	-17	dB
Power-down input PD (pin 12)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	1,5	-	$\mathrm{V}_{\mathrm{Cc}}$	V
LOW	$V_{\text {IL }}$	-	-	0,3	V
Input current	IPD	-	5	10	$\mu \mathrm{A}$
Automatic gain control AGC (pin 17)					
Controlling the gain from pin 11 to pins 4 and 5 and the gain from pins 7 and 8 to pin 1					
R6 $=110 \mathrm{k} \Omega$; connected between pins 17 and 10 Amplification control range	$-\Delta \mathrm{A}_{\mathrm{vd}}$	-	6	-	dB
Highest line current for $A_{\max }$		-	22	-	mA
Lowest line current for $\mathrm{A}_{\mathrm{min}}$	line	-	60	-	mA



Fig. 3 Supply arrangement.


Fig. 4 Maximum current $\mathrm{I}_{\mathrm{p}}$ available from $\mathrm{V}_{\mathrm{CC}}$ for peripheral circuitry with $\mathrm{V}_{\mathrm{CC}}>2,2 \mathrm{~V}$ and
$\mathrm{V}_{\mathrm{CC}}>3 \mathrm{~V}$. Curves ( a ) and ( $\mathrm{a}^{\prime}$ ) are valid when the receiving amplifier is not driven or when MUTE is HIGH, curves (b) and ( $b^{\prime}$ ) are valid when MUTE is LOW and the receiving amplifier is driven at
$V_{0(r m s)}=150 \mathrm{mV}$ and $R_{L}=150 \Omega$ asymmetrical.
$\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{LN}}=4,45 \mathrm{~V} ; \mathrm{R} 1=620 \Omega$ and $\mathrm{R} 9=20 \Omega$.
a) $\left.=2,55 \mathrm{~mA} ; \mathrm{b})=2,1 \mathrm{~mA} ; \mathrm{a}^{\prime}\right)=1,2 \mathrm{~mA}$ and $\left.\mathrm{b}^{\prime}\right)=0,75 \mathrm{~mA}$.


Fig. 5 Alternative microphone arrangements. a: magnetic or dynamic microphone. The resistor marked (1) may be connected to lower the terminating impedance. In case of sensitive microphone types a resistor attenuator can be used to prevent overloading of the microphone inputs (b) electret microphone, (c) piezoelectric microphone.


Fig. 6 Alternative receiver arrangements. (a) dynamic telephone with less than $450 \Omega$ impedance. (b) dynamic telephone with more than $450 \Omega$ impedance. (c) magnetic telephone with more than $450 \Omega$ impedance. The resistor marked (1) may be connected to prevent distortion (inductive load). (d) piezoelectric telephone. The resistor marked (2) is required to increase the phase margin (capacitive load).


Fig. 7 Variation of amplification with line current, with R 6 as a parameter.

		$\mathrm{R}_{\text {exch }}(\Omega)$			
		400	600	800	1000
		R6 ( $k$ ת)			
$V_{\text {exch }}$   (V)	24	61,9	48,7	X	X
	36	100	78,7	68	60,4
	48	140	110	93,1	82
	60	X	X	120	102

$$
R 9=20 \Omega
$$

Table 1. Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply voltage $\mathrm{V}_{\text {exch }}$ and exchange feeding bridge resistance $\mathrm{R}_{\text {exch }}$.


Fig. 8 Test circuit for defining voltage amplification of MIC+, MIC- and DTMF inputs. Voltage amplification is defined as: $\mathrm{A}_{\mathrm{vd}}=20 \log \left|\mathrm{~V}_{0} / \mathrm{V}_{\mathrm{i}}\right|$. For measuring the amplification from MIC+ and MIC - the MUTE input should be LOW or open, for measuring the DTMF input MUTE should be HIGH. Inputs not under test should be open.


Fig. 9 Test circuit for defining voltage amplification of the receiving amplifier. Voltage amplification is defined as: $A_{v d}=20 \log \left|V_{0} / V_{i}\right|$.

APPLICATION INFORMATION


Fig. 10 Typical application of the TEA1068, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left, the zener diode and R10 limit the current into the circuit during and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.

(a)

(b)

(c)

Fig. 11 Typical applications of the TEA1068 (simplified).
a: DTMF set with a CMOS DTMF dialling circuit. The dashed lines show an optional flash (register recall by times loop break).
b: Pulse dial set with the one of the PCD3320 family of CMOS interrupted current-loop dialling circuits.
c: Dual-standard (pulse and DTMF) feature phone with the PCD3343 CMOS telephone controller and the PCD3312 CMOS DTMF generator with $I^{2} \mathrm{C}$ bus.

## DTMF GENERATOR FOR TELEPHONE DIALLING

The TEA1075 is a dual tone multi-frequency (DTMF) generator with line interface for use in push--button telephone sets containing an electronic speech circuit or a conventional hybrid transformer. The IC contains a mute switch handling the full line current, which allows two-wire connection between dial and speech parts. The logic inputs can be operated with a single contact keyboard or via a direct interface with a microcontroller. The line interface incorporates a filter amplifier, an output stage and a voltage regulator all of which are switched off when the speech circuit is connected to the line. The tone generator is supplied by a temperature compensated current stabilizer and is driven by a $3,58 \mathrm{MHz}$ crystal.
The logic inputs contain an interface circuit which ensures well-defined states of the keyboard.

## Features

- Two wire connection between dial and speech parts allowed
- Wide operating line current and temperature range
- No individual tone level adjustment required
- Few external components required
- All mute functions on chip
- Common inputs for keyboard and microcontroller
- Signal levels are independent from line current and temperature
- All pins protected against electrostatic discharges
- On-chip output stage and line regulator
- Single tone generation possible


## QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Operating d.c. line voltage   Line current range   TEA1075P	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{L}}$	3,0	3,3	3,6	V
$\quad$ TEA1075T	-	$\mathrm{I}_{\mathrm{L}}$	10	-	120	mA
DTMF output levels (adjustable)	-	$\mathrm{I}_{\mathrm{L}}$	10	-	90	mA
$\quad$ low tones						
high tones	$\mathrm{I}_{\mathrm{L}}>12 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{LG}}$	-11	-	-6	dBm
Pre-emphasis						
Operating ambient temperature   range	-	$\mathrm{I}_{\mathrm{L}}>12 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{HG}}$	-9	-	-4
dBm						

## PACKAGE OUTLINES

TEA1075P: 18-lead DIL; plastic (SOT-102HE).
TEA1075T: 20-lead mini-pack; plastic (SO-20; SOT-163A).


Fig. 1 Block diagram.


Fig. 2 Pinning diagram; TEA1075P.

## PINNING



Fig. 3 Pinning diagram; TEA1075T.

1	VN 2
2	FO 2
3	ROW 2
4	ROW 3
5	MUTE
6	$Z_{\text {I }}$
7	ROW 4
8	ROW 1
9	FI $_{10}$
10	DAC
11	NS
12	OSC
13	COL 1
14	COL 2
15	COL 4
16	COL 3
17	$V_{S}$
18	$V_{\text {L }}$

negative line voltage filter output
row input $770 \mathrm{~Hz} / \mathrm{BCD}$ input row input $852 \mathrm{~Hz} / \mathrm{BCD}$ input mute switch
impedance setting terminal row input $941 \mathrm{~Hz} / \mathrm{BCD}$ input row input $697 \mathrm{~Hz} / \mathrm{BCD}$ input filter input DTMF level setting noise suppression input oscillator input
column input 1209 Hz /mute input column input 1336 Hz /mute input column input 1633 Hz /mute input column input 1477 Hz /enable input voltage regulator filter positive line voltage

1	$V_{N}$	negative line voltage
2	Fo	filter output
3	ROW 2	row input $770 \mathrm{~Hz} / \mathrm{BCD}$ input
4	ROW 3	row input $852 \mathrm{~Hz} / \mathrm{BCD}$ input
5	MUTE	mute switch
6	Z1	impedance setting terminal
7	ROW 4	row input $941 \mathrm{~Hz} / \mathrm{BCD}$ input
8	ROW 1	row input $697 \mathrm{~Hz} / \mathrm{BCD}$ input
9	$\mathrm{F}_{1}$	filter input
10	n.c.	not connected
11	DAC	DTMF level setting
12	NS	noise suppression input
13	OSC	oscillator input
14	COL 1	column input $1209 \mathrm{~Hz} /$ mute input
15	COL 2	column input 1336 Hz /mute input
16	COL 4	column input 1633 Hz /mute input
17	COL 3	column input 1477 Hz /enable input
18	$\mathrm{V}_{S}$	voltage regulator filter
19	$V_{L}$	positive line voltage
20	n.c.	not connected

## FUNCTIONAL DESCRIPTION

## Voltage regulator

The voltage regulator is switched on when a keyboard button is pressed. It regulates the d.c. voltage drop across the IC to a nominal level of $3,3 \mathrm{~V}$, shunting excess line current to maintain a working current of 8 mA within the chip. The voltage regulator is switched to a higher voltage level when the keyboard button is released.
The capacitor connected to input $\mathrm{V}_{\mathrm{S}}$ provides a low-pass filter function to avoid influence of audio signals on the line. For a short period during switch-on time the capacitor is directly connected to the line to be charged and to reduce overshoot voltages.

When the TEA1075 is in the stand-by mode the voltage regulator circuit conducts as the d.c. line voltage set by the speech part reaches $6,0 \mathrm{~V}$. Part of the line current then flows through the regulator.

## Active output stage

The transmitter amplifier consists of a voltage to current converter with a class-A output stage. The circuit acts as a dynamic resistance ( $\mathrm{R}_{\mathbf{i}}$ ) because of the feedback from the line to the input. This impedance can be set by output $Z_{I}$ at pin 6:
$R_{i}=900 \Omega$ if pin 6 is left open
$R_{i}=600 \Omega$ if pin 6 is connected to $V_{N}(\operatorname{pin} 1)$.
The impedance is high as long as no key is depressed (stand-by mode).

## Speech muting (see Fig. 4)

All mute functions are performed by internal switches. Pressing any keyboard push button switches the TEA1075 to the operating mode and isolates the speech part from the line.
The line adaption is taken over by the dial circuit which causes:

- line voltage to be set by the voltage regulator of the TEA1075
- impedance to be set by the active output stage of the TEA1075
- audio output stage to be connected to the line for DTMF tone transmission.

During the stand-by mode (no key pressed) the voltage on the line is set by the speech circuit. The minimum d.c. operating voltage of the dial circuit to guarantee detection of push button operation on the keyboard is $2,5 \mathrm{~V}$. The impedance is equivalent to an $8 \mathrm{k} \Omega$ resistance and the current consumption 3 mA at $\mathrm{V}_{\mathrm{L}}=4,5 \mathrm{~V}$. The stand-by current is used for the logic part as well as driving current for the internal switch which can switch the full line current available.


Fig. 4 Muting system.

## Oscillator and DTMF generator

The crystal oscillator frequency ( $3,579545 \mathrm{MHz}$ ) is divided by a factor of nine to give the clock frequency. A maximum division error of $0,31 \%$ is achieved in the TEA1075; CCITT recommendations are that tones should be within $1,5 \%$ of the specified frequencies.
A bias resistor of 1 to $4,7 \mathrm{M} \Omega$ must be connected between the oscillator input and $\mathrm{V}_{\mathrm{L}}$. An external frequency generator can be connected instead of a crystal (see Fig. 6).


Fig. 5 Quartz crystal oscillator.

$7 Z 87745.2$

Fig. 6 External frequency generator.
The output from the dividers for the higher and the lower frequency tones are symmetrical square-wave pulses which contain considerable odd-numbered harmonics. The lower order odd-numbered harmonics (11th and less) are eliminated by synthesizing the tone frequencies as crude stepped sinewave approximations. Each half cycle of the tone waveform comprises seven discrete amplitudes for the lower frequency tone and nine for the higher frequency tone. Each amplitude increment is generated by switching on and off an individual current source for the duration of each step of the sinewave. The frequency of the tones is varied by changing the duration of each step. This circuit allows the connection of a first or second order filter, depending on the distortion requirements (see filter and DTMF level).

Table 1 Deviation of ROW and COLUMN frequencies

	required   freq.   Hz	deviation   $\%$	real   freq.   Hz
ROW 1	697	$-0,24$	695,33
ROW 2	770	$-0,28$	767,81
ROW 3	852	$-0,25$	849,84
ROW 4	941	$-0,31$	938,04


	required   freq.   Hz	deviation   $\%$	real   freq.   Hz
COL 1	1209	$-0,31$	1205,23
COL 2	1336	$-0,10$	1334,66
COL 3	1477	$-0,27$	1473,06
COL 4	1633	$-0,18$	1603,03

## Filter and DTMF level

The output current from the DAC causes a voltage drop across RTLS. At this point the signal path is broken to allow insertion of filter components in series with the amplifier input at pin 9 .
The output of this amplifier is brought out to pin 2 to allow connection of filter components in the feedback path to provide additional attenuation of the higher-order odd harmonics of the tone frequencies.
The output amplitude of the tones is directly proportional to the value of RTLS and can therefore be adjusted to meet specific requirements. Fig. 7 shows the output level as a function of RTLS with $\mathrm{R}_{\mathrm{i}}=600 \Omega$. If $\mathrm{R}_{\mathrm{i}}=900 \Omega$, $\mathrm{R}_{\text {TLS }}$ must be multiplied by 1,28 .

## FUNCTIONAL DESCRIPTION (continued)



Fig. 7 DTMF level selection ( $\mathrm{R}_{\mathbf{i}}=600 \Omega$ ).
When RTLS is selected for the required tone level, $C_{F I}$ can be calculated to minimize influence of the filter characteristic on the pre-emphasis parameter. The time constant for a single pole filter is determined by:

$$
R_{T L S} \times C_{F I}=26 \mu \text { (see Fig. 17) }
$$

If higher attenuation is required a second-order filter can be applied. The time constants for a second order filter are determined by:

$$
R_{T L S} \times C_{F O}=46 \mu \text { and } R_{F S} \times C_{F I}=59 \mu \text { (see Fig. 16) }
$$

## Keyboard inputs

Inputs for the logic control are compatible with different types of keyboard. Tone combination are generated by:

- connecting one of the row inputs to one of the column inputs by one switch of a single contact keyboard
or
- application of a double contact keyboard with the common row contact tied to $\mathrm{V}_{\mathrm{N}}$ and the common column contact connected to $\mathrm{V}_{\mathrm{L}}$ via a $68 \mathrm{k} \Omega$ resistor.

Single tones can be generated by connecting a row input to $V_{N}$ or a column input to $V_{L}$ via a $68 \mathrm{k} \Omega$ resistor.

A debounce circuit eliminates switch bounce.


Fig. 8 Configuration of column inputs.


Fig. 9 Configuration of row inputs.

## Microcontroller mode

The inputs for the keyboard can be used for direct connection to a microcontroller. If the column inputs are interconnected and made $\mathrm{HIGH}(>0,9 \mathrm{~V})$ the row inputs are changed to another mode, allowing the circuit to be driven by 4 -bit data plus an enable signal. In this mode, it is possible to connect a separate mute enable signal on inputs COL 1, COL 2 and COL 4 and a tone enable input on COL 3.

Table 2 Truth table; microcontroller mode.


* Mute "on" = switch between pin 5 and pin 1 is open.

FUNCTIONAL DESCRIPTION (continued)


Fig. 10 Waveform tones $697 / 1336 \mathrm{~Hz}$ (dialling number 2).


Fig. 11 Microcontroller mode; all column inputs interconnected.


Fig. 12 Tone/speech waveform in application diagram Fig. 11.


Fig. 13 Microcontroller mode; column inputs COL 1,2 and 4 interconnected.


Fig. 14 Tone/speech waveform in application diagram Fig. 13.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply current Ip max. 150 mA

Surge current ( $\mathrm{t}_{\mathrm{p}}<250 \mu \mathrm{~s}$ )
Input voltage (any pin)
D.C. line voltage

Total power dissipation TEA1075P

TEA1075T
Storage temperature range
Operating ambient temperature range
Junction temperature

Ip max. 150 mA
IS max. 1000 mA
$\mathrm{V}_{\mathrm{I}} \quad\left(\mathrm{V}_{\mathrm{N}}-0,5\right)$ to $\left(\mathrm{V}_{\mathrm{L}}+0,5\right) \mathrm{V}$
$\mathrm{V}_{\mathrm{L}} \max \quad 10 \mathrm{~V}$
$P_{\text {tot }} \quad$ max. $\quad 750 \mathrm{~mW}$
$P_{\text {tot }} \quad$ max. 450 mW
$\mathrm{T}_{\text {stg }} \quad-55$ to $+125{ }^{\circ} \mathrm{C}$
Tamb $\quad-25$ to $+70{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$ max. $125{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Measured in Fig. 15.

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Dial mode						
D.C. line voltage						
	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{L}}$	3,0	3,3	3,6	V
	$\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{L}}$	3,2	3,7	4,2	V
	$\mathrm{I}_{\mathrm{L}}=90 \mathrm{~mA}$	$V_{L}$	3,6	4,2	4,9	V
	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$V_{L}$	4,2	4,7	5,4	V
Temperature coefficient over temperature range	-	TC	-	-8	-	$\mathrm{mV} / \mathrm{K}$
Line current range						
TEA1075T	-	$\mathrm{I}_{\mathrm{L}}$	10	-	90	mA
Stand-by mode						
Standby current						
	$\mathrm{V}_{\mathrm{L}}=4,5 \mathrm{~V}$	$l_{\text {LS }}$	-	3,2	4,0	mA
	$\mathrm{V}_{\mathrm{L}}=6,0 \mathrm{~V}$	ILS	-	6,7	-	mA
D.C. line voltage						
	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{L}}$	-	6,4	-	$v$
	$\mathrm{I}_{\mathrm{L}}=70 \mathrm{~mA}$	$V_{L}$	-	7,4	-	V
Temperature coefficient over temperature range	-	TC	-	19	-	$\mathrm{mV} / \mathrm{K}$
Mute switch (no key pressed)						
Mute output sink current						
TEA1075T	-	IMS	-	-	90	mA
Saturation voltage						
	$\begin{aligned} & \mathrm{I}_{\mathrm{MS}}=15 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{L}}=4,5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {MT }}$	-	65	100	mV
	$\begin{aligned} & \mathrm{I}_{\mathrm{MS}}=75 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{L}}=4,5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {MT }}$	-	320	500	mV
Balance return loss from 300 to 3400 Hz Speech part: $600 \Omega$	$\mathrm{V}_{\mathrm{L}}=4,5 \mathrm{~V}$	BRLS	20	-	- -	dB
	$V_{L}=6,0 \mathrm{~V}$	BRLS	18	-	-	dB
Switch delay after key release	-	$\mathrm{t}_{\mathrm{d}} \mathrm{r}$	-	-	10	$\mu \mathrm{s}$

CHARACTERISTICS (continued)

parameter	conditions	symbol	min.	typ.	max.	unit
Transmitter output stage						
Dynamic resistance setting range	pin 6 open	$\mathrm{R}_{\mathrm{i}}$	-	900	-	$\Omega$
	pin 6 to $\mathrm{V}_{\mathrm{N}}$	$\mathrm{R}_{\mathrm{i}}$	-	600	-	$\Omega$
Variation of output impedance over the line current range						
	$\mathrm{R}_{\mathrm{i}}=600 \Omega$	$\Delta Z_{0}$	-	100	-	$\Omega$
	$\mathrm{R}_{\mathrm{i}}=900 \Omega$	$\Delta \mathrm{Z}_{\mathrm{O}}$	-	200	-	$\Omega$
Balance return loss from 300 to 3400 Hz	$\mathrm{R}_{\mathrm{i}}=600 \Omega$	BRL	20	-	-	dB
Total harmonic distortion with respect to total output level	-	THD	-	-40	-	dB
DTMF generator						
Tone frequencies low tones (row inputs) high tones (column inputs)	-		697, 7	852,		Hz
	-		1209,	36,147	, 1633	Hz
Crystal frequency dividing error   Tone output level (adjustable) low tones	$\mathrm{f}=3,579545 \mathrm{MHz}$	$\Delta f_{d}$	-0,1	-	-0,31	\%
	$\mathrm{I}_{\mathrm{L}}>10 \mathrm{~mA}$	$V_{\text {LG }}$	-11	-	-8	dBm
	$\mathrm{I}_{\mathrm{L}}>12 \mathrm{~mA}$	VLG	-11	-	-6	dBm
high tones	$\mathrm{I}_{\mathrm{L}}>10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{H}}$	-9	-	-6	dBm
	$\mathrm{I}_{\mathrm{L}}>12 \mathrm{~mA}$	VHG	-9	-	-4	dBm
Variation of output voltage level as a function of temperature and line current range	-	$\Delta V_{O}$	-2	-	+2	dB
Pre-emphasis high/low tones as a function of temperature and line current range	-	$\mathrm{V}_{\mathrm{HG}}-\mathrm{V}_{\text {LG }}$	1	2	3	dB
Tone delay after key depressed	-	$\mathrm{t}_{\mathrm{td}}$	-	-	5	ms
Debounce time	-	${ }^{\text {t }}$ d	-	2	-	ms


parameter	conditions	symbol	min.	typ.	max.	unit
Keyboard inputs						
Keyboard ON resistance	-	$\mathrm{R}_{\mathrm{K}} \mathrm{ON}$	-	-	10	k $\Omega$
Keyboard OFF resistance	-	RK OFF	300	-	-	$k \Omega$
Low frequency inputs (ROW 1, 2, 3, 4) input voltage LOW	-		-	-		
input voltage HIGH	-	$V_{\text {IH }}$	1,5	_	-	V
d.c. input current	$V_{\text {IL }}$ dial mode	IILD	-	30	-	$\mu \mathrm{A}$
High frequency inputs (COL 1, 2, 3, 4) input voltage LOW	-	$\mathrm{V}_{\text {IL }}$	-	-	0,5	V
input voltage HIGH	-	$V_{\text {IH }}$	0,9	-	0,5	V
d.c. input current	$\mathrm{V}_{\text {IH }}$ dial mode	IIHD	-	50	-	$\mu \mathrm{A}$



Fig. 15 Test circuit.

APPLICATION INFORMATION


(1) Capacitor $\mathrm{C}_{\mathrm{C}}$ is connected only when the confidence tone is required.

Fig. 17 DTMF telephone set with TEA1075P using a single pole filter and a classical hybrid transformer as the transmission part.

## SUPPLY CIRCUIT FOR TELEPHONE SET PERIPHERALS

## GENERAL DESCRIPTION

The TEA1080 is a bipolar integrated circuit intended for use in line powered telephone sets to supply peripheral circuits for extended dialling and/or loudspeaking facilities.
The IC uses a part of the surplus of the line current normally sinked in the voltage regulator of the applied speech/transmission circuit.

## Features

- High input impedance for audio signals
- High output current
- Large audio signal handling
- Low distortion
- Two modes of operation:
- regulated output voltage
- constant d.c. voltage drop in series with a resistor between line and output terminal
- Low number of external components


## QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
D.C. line voltage		$V_{\text {LN }}$	2,5	-	10	V
D.C. output voltage		$V_{0}$	2,0	-	9,5	$v$
Voltage drop line/output		$V_{L N}-V_{O}$	0,5	-	-	V
Series resistance		$\mathrm{R}_{1-8}$	-	18	-	$\Omega$
Output current	$\mathrm{V}_{\mathrm{LN}}=4 \mathrm{~V}$, TEA1080P	${ }^{1} \mathrm{O}$	-	-	30	mA
Output current	$\mathrm{V}_{\mathrm{LN}}=4 \mathrm{~V}$, TEA1080T	${ }^{1} 0$	-	-	20	mA
A.C. line voltage	$\begin{aligned} & V_{\mathrm{LN}}=4,5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA} ; \mathrm{d}=2 \% \end{aligned}$	vLN(rms)	-	1,5	-	V
Internal supply current		IINT	-	-	1	mA
Operating ambient temperature range		$\mathrm{T}_{\text {amb }}$	-25	-	+ 70	${ }^{\circ} \mathrm{C}$

## PACKAGE OUTLINES

TEA 1080P: 8 -lead dual in-line; plastic (SOT-97AE).
TEA1080T: 8 -lead mini-pack; plastic (SO-8; SOT-96A).


Fig. 1 Block diagram.


Fig. 2 Pinning diagram.

PINNING

1	LN	positive line terminal
2	VN	negative line terminal
3	AD	amplifier decoupling
4	RD	regulator input
5	IF	input low-pass filter
6	VA	output voltage adjustment
7	SO	supply output
8	ER	supply terminal of the   internal circuit

## FUNCTIONAL DESCRIPTION

The TEA1080 is the interface between the telephone line and the peripheral devices, which have to be supplied. The circuit can be connected directly to the telephone line (via the diode bridge) because of its high input impedance. An inductor function is obtained by amplifier A1, resistor $\mathrm{R}_{1-8}$ (Fig. 1) and external low-pass RC filter.
Amplifier A2 controls both transistors TR1 and TR2. To avoid a large increase of the distortion the input current will flow to ground (via TR2) during the time that the momentary line voltage drops below the output voltage.
The internal circuitry is biased by a temperature and line voltage compensated reference current source.

## Supply LN and VN (pins 1 and 2)

The input terminals LN and VN can be connected directly to the line. The minimum required d.c. line voltage at the input is given by:
$V_{L N \text { min }}=I_{1} \times R_{1-8}+v_{L N \text { min }}+v_{L N(P)}$
in which:
$I_{1}=$ input current
R1-8 = internal series resistance
$\mathrm{v}_{\mathrm{LN} \text { min }}=$ minimum level of a.c. line voltage ( $1,8 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ )
$v_{L N}(P)=$ required peak level of a.c. line voltage
The internal current ( $\mathrm{I}_{\mathrm{NT}}$ ) consumption is typical $0,7 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$
and $V_{\mathrm{LN}}=5 \mathrm{~V}$ and will be maximum 1 mA at $\mathrm{V}_{\mathrm{LN}}=10 \mathrm{~V}$.

## Output voltage SO and VA (pins 7 and 6)

The output SO (pin 7) supplies the peripheral circuits. The circuit includes two modes for regulation of the output voltage:
without external resistor $R_{V}$ (see Figs 3 and 17)
the output voltage is expressed by

$$
\begin{equation*}
v_{\mathrm{O}}=\mathrm{V}_{\mathrm{LN}}-\left(1_{1} \times \mathrm{R}_{1.8}+0,5\right) \tag{V}
\end{equation*}
$$

in which:
$\mathrm{V}_{\mathrm{LN}} \quad=$ line voltage
$I_{1}=$ input current
$\mathrm{R}_{1-8}=$ internal series resistance (typ. $18 \Omega$ )
with external resistor $R_{V}$, connected between SO and VA (see Figs 4 and 17), the output voltage will be regulated at a constant level of

$$
\begin{equation*}
V_{O}=2 \times I_{6} \times R_{V} \tag{V}
\end{equation*}
$$

as soon as the line voltage $V_{L N}>2 \cdot I_{6} \cdot R_{V}+I_{1} \cdot R_{1-8}+0,5$
The control current $\mathrm{I}_{6}$ is typical $20 \mu \mathrm{~A}$.

(1) $I_{1}=30 \mathrm{~mA}$ is only valid for TEA1080P

Fig. 3 Output voltage versus line voltage for application without $\mathrm{R}_{\mathrm{V}}$.

(1) $I_{1}=30 \mathrm{~mA}$ is only valid for TEA 1080P

Fig. 4 Output voltage versus line voltage ( $R_{V}=75$ or $100 \mathrm{k} \Omega$ ).

## Input current $\mathrm{I}_{1}$ and output $\mathrm{I}_{0}$

The minimum line current (ISET), available for the telephone set must be sufficient to cover the specified minimum line current ( $I_{L N}$ min ) of the speech/transmission IC and the maximum input current ( $I_{1 \text { max }}$ ) required by the application of the TEA1080. $I_{S E T}=I_{\mathrm{LN}}$ min ${ }^{+} I_{1 \text { max }}$.
At $v_{L N}(\mathrm{rms})<150 \mathrm{mV}$ the input current $\mathrm{I}_{1}$ can be approximated by:

$$
\begin{equation*}
I_{1}=I_{N T}+k \cdot I_{O} \tag{mA}
\end{equation*}
$$

in which:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{INT}}= & \text { internal supply current }\left(0,7 \mathrm{~mA} \text { at } \mathrm{V}_{\mathrm{LN}}=5 \mathrm{~V}\right) \\
\mathrm{k} \quad= & \text { correction factor which depends on the output current } \\
& k=1,04 \text { for } \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \\
& k=1,08 \text { for } \mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA} \\
& k=1,12 \text { for } \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}
\end{aligned}
$$

For large line signals the a.c. line voltage may drop below $\mathrm{V}_{\mathrm{O}}+0,4 \mathrm{~V}$. The instantaneous current flows from LN to SO (pin 1 to pin 7) into the output load during the time $\mathrm{V}_{\mathrm{LN}}>\mathrm{V}_{\mathrm{O}}+0,4 \mathrm{~V}$ and will be internally rerouted to $\mathrm{VN}(\operatorname{pin} 2)$ during the time $\mathrm{V}_{\mathrm{LN}}<\mathrm{V}_{\mathrm{O}}+0,4 \mathrm{~V}$ in order to prevent distortion of the line signal.
The input current for $\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}=1 \mathrm{~V}$ and without $\mathrm{R}_{\mathrm{V}}$ can be approximated by:

$$
\begin{equation*}
I_{1}=I_{N T}+2 \cdot k \cdot I_{0} \tag{mA}
\end{equation*}
$$

If $\mathrm{R}_{\mathrm{V}}$ is not applied the ratio between input current $\mathrm{I}_{1}$ and output current $\mathrm{I}_{0}$ is shown in Fig .7 for different line signal levels.
When $R_{V}$ is applied the ratio $I_{1} / I_{0}$ is given in Fig. 8 for $V_{L N}=4 \mathrm{~V}$ and in Fig. 9 for $V_{L N}=5 \mathrm{~V}$.

## Input impedance IF (pin 5)

The equivalent circuit diagram for small a.c. signals is shown in Fig. 5. The input impedance is mainly determined by the negative input impedance $Z_{l}$ which is $10 \mathrm{k} \Omega$ in parallel with L 1 .

$$
L_{I}=C_{L} \cdot R_{L} \cdot R_{1-8}=10 H \text { if } C_{L}=4,7 \mu F, R_{L}=100 \mathrm{k} \Omega \text { and } R_{1-8}=18 \Omega .
$$

The filter elements $C_{L}$ and $R_{L}$ are connected to pin 1 (LN) and pin 5 (IF) respectively to pin 5 (IF) and pin 7 (SO): See Figs 15, 16 and 17.
The absolute value of the input impedance for audio frequencies is more than $8 \mathrm{k} \Omega$ with $L_{1}=10 \mathrm{H}$.


Fig. 5 Equivalent circuit diagram for small signals.

## Decoupling ER and AD (See Fig. 15)

An external capacitor $\mathrm{C}_{\mathrm{r}}=27 \mathrm{pF}$ between ER (pin 8) and $A D(\mathrm{pin} 3$ ) is required to ensure stability. Capacitor $\mathrm{C}_{\mathrm{d}}(68 \mathrm{pF}$ ) between AD (pin 3) and VN (pin 2) limits the distortion at high output currents and high line levels.

## A.C. behaviour

$R_{V}$ not applied
The voltage drop $\mathrm{V}_{\mathrm{LN}}{ }^{-} \mathrm{V}_{\mathrm{O}}$ between LN ( pin 1 ) and SO ( pin 7 ) as a function of a.c. line signal for different output currents is given in Fig. 10, while Fig. 11 presents the a.c. line voltage for $2 \%$ distortion as a function of the output current for some d.c. line voltages.

RV connected ( $75 \mathrm{k} \Omega$ )
Figures 12 and 13 show the decrease of the output voltage, relative to $\mathrm{V}_{\mathrm{O}}$ at $\mathrm{I}_{\mathrm{O}}=0$ as a function of the a.c. line signal if the d.c. output voltage is 3 V and if the d.c. line voltage is 4 respectively 5 volt. The a.c. line signal for $2 \%$ distortion as a function of the output current is shown in Fig. 14.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	typ.	max.	unit
Positive d.c. line voltage	$V_{\text {LN }}$	-	-	10	V
Voltage on all other terminals	V	$\mathrm{V}_{\mathrm{VN}}-0,5$	-	$\mathrm{V}_{\mathrm{LN}}+0,5$	V
Input current (d.c.)   TEA1080P   TEA1080T	$\begin{aligned} & I_{1} \\ & I_{1} \end{aligned}$	-	-	$\begin{aligned} & 120 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Current into terminals IF, VA, RD and AD	${ }^{\prime} 5,6,4,3$	-1	-	+1	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	see derating curve Fig. 6			
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40	-	+ 125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range	Tamb	-25	-	+ 70	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	-	-	+ 125	${ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE					
From junction to ambient in free air TEA1080P TEA1080T (mounted on printed circuit board; $50 \times 50 \times 1,5 \mathrm{~mm}$ )	$R_{\text {th } j-a}$   $R_{\text {th j-a }}$	$=$ $=$		120	K/W K/W



Fig. 6 Power derating curve.

## CHARACTERISTICS

$V_{L N}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LN}}(\mathrm{rms})=100 \mathrm{mV} ; \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=4,7 \mu \mathrm{~F}$;
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified (see Figs 15 and 16)


[^11]

Fig. 7 Ratio of input and output current as a function of a.c. line voltage.
$R_{V}$ is not applied.


Fig. 9 Ratio of input and output current as a function of a.c. line voltage. $\mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega$, $\mathrm{V}_{\mathrm{LN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}$.


Fig. 8 Ratio of input and output current as a function of a.c. line voltage.
$\mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{LN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}$.


Fig. 10 Voltage drop between input and output voltage as a function of a.c. line voltage. $R_{V}$ is not applied.
(1) $\mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$ is only valid for TEA1080P, $\mathrm{I}_{\mathrm{Omax}}=20 \mathrm{~mA}$ for TEA1080T.


Fig. 11 A.C. line voltage as a function of output current. $\mathrm{d}_{\text {tot }}=2 \% ; \mathrm{R}_{\mathrm{V}}$ not applied.

DEVELOPMENT DATA


Fig. 13 Output voltage drop as a function of a.c. line voltage.
$\mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{LN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}$.


Fig. 12 Output voltage drop as a function of a.c. line voltage.
$\mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{LN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}$.


Fig. 14 A.C. line voltage as a function of output current at $\mathrm{d}_{\text {tot }}=2 \%$. $\mathrm{R}_{\mathrm{V}}=75 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$.
(1) $\mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$ is only valid for TEA1080P, $\mathrm{I}_{\mathrm{max}}=20 \mathrm{~mA}$ for TEA1080T.


Fig. 15 Test circuit diagram d.c. characteristics. $\mathrm{V}_{\mathrm{O}}$ versus $\mathrm{V}_{\mathrm{LN}}$ (with and without $\mathrm{R}_{\mathrm{V}}$ ), a.c. line voltage $=v_{\text {LN }}$, internal supply current $=I_{I N T}$, noise output voltage $=v_{n o}$.


Fig. 16 Test circuit diagram a.c. characteristics. $I_{1}$ versus $v_{L N}$ (for different $I_{0}$ ), input impedance $=\mathrm{Z}_{\mathrm{l}}$, line distortion versus $\mathrm{v}_{\mathrm{LN}}$ and $\mathrm{I}_{\mathrm{O}}$, start time $=\mathrm{t}_{\mathrm{st}}$.

## APPLICATION INFORMATION



Fig. 17 Application circuit diagram.

## PACKAGE INFORMATION

 Package outlinesSoldering


Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).


Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).


Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).

## 14-LEAD DUAL IN-LINE; PLASTIC (SOT-27KE, ME, MF)



top view

$\bigoplus$ Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)



$\bigoplus$ Positional accuracy.
(II) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

## PACKAGE OUTLINES

8-LEAD MINI-PACK; PLASTIC (SO-8; SOT-96A)

top view
Dimensions in mm
$\bigoplus$ Positional accuracy.
(M) Maximum Material Condition.

## 8-LEAD DUAL IN-LINE; PLASTIC (SOT-97AE, DE, EE)



Dimensions in mm

$\theta$ Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Only for devices with asymmetrical end-leads.

24-LEAD DUAL IN-LINE; PLASTIC (SOT-101A, B, F, G, L)


7273670.5

## 18-LEAD DUAL IN-LINE; PLASTIC (SOT-102HE, HG, KE, ME, PG)


$\bigoplus$ Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

## Dimensions in mm

## 18-LEAD DUAL IN-LINE; PLASTIC (SOT-102NE, GE, PE)



Dimensions in mm

28-LEAD DUAL IN-LINE; PLASTIC (SOT-117)

7273669.2

## Dimensions in mm

(3) Index may be horizontal as shown, or vertical.


18-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-133B)


Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

## 28-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-135A)



## Dimensions in mm

## PACKAGE OUTLINES

## 28-LEAD MINI-PACK; PLASTIC (SO-28; SOT-136A)



Dimensions in mm
© Positional accuracy.
(I) Maximum Material Condition.

## 20-LEAD DUAL IN-LINE; PLASTIC (SOT-146)



Dimensions in mm

## 8-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-151A)


$\bigoplus$ Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
Dimensions in mm

## 40-LEAD MINI-PACK; PLASTIC (VSO-40; SOT-158A)



Dimensions in mm
© Positional accuracy.
(M) Maximum Material Condition.

## 16-LEAD MINI-PACK; PLASTIC (SO-16L; SOT-162A)



Dimensions in mm
© Positional accuracy.
(M) Maximum Material Condition.

## 20-LEAD MINI-PACK; PLASTIC (SO-20; SOT-163A)



Dimensions in mm
© Positional accuracy.
(M) Maximum Material Condition.

## 8-LEAD MINI-PACK; PLASTIC (SO-8L; SOT-176)



## 56-LEAD MINI-PACK; PLASTIC (VSO-56; SOT-190)



## Dimensions in mm

$\dagger$ Positional accuracy.
(IM) Maximum Material Condition.

## SOLDERING PLASTIC DUAL IN-LINE (DIL) PACKAGES

## 1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

## 2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

## 3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

## SOLDERING PLASTIC MINI-PACK (SO) PACKAGES

1. By hand-held soldering iron or pulse-heated solder tool

Apply the heating tool to the flat part of the lead only. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using proper tools, all leads can be soldered in one operation within 2 to 5 seconds at between 270 and $320^{\circ} \mathrm{C}$. (Pulse-heated soldering is not recommended for SO packages).
For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to substrate by dipping or by an extra thick tin/lead plating before package placement.

## 2. By wave

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder bath is 10 seconds, if allowed to cool to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A modified wave soldering technique is recommended, using two solder waves (dual-wave); a first turbulent wave with high upward pressure is followed by a smooth, laminar wave. A mildly activated flux will eliminate the need for removal of corrosive residues in most applications.

## 3. By solder paste reflow

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing or pressure-syringe dispensing before device placement.
Several techniques exist for reflowing, for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 8 and 60 seconds according to method. Typical reflow temperatures range from 215 to $250{ }^{\circ} \mathrm{C}$.
Pre-heating is necessary to dry paste and evaporate binding agent, and to reduce thermal shock on entry to reflow zone.

## 4. Repairing soldered joints

The same precautions and limits apply as in (1) above.

# Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies 

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747.
Australia: PHILIPS INDUSTRIES LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, A-1101 WIEN, Tel. (0222) 6291 11-0.
Belgium: N.V. PHILIPS \& MBLEASSOCIATED, rue du Pavillon 9, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600, (Passive Devices \& Materials): Av. Francisco Monteiro, 702 - RIBEIRO PIRES-SP, Tel. (011) 459-8211.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624.
Denmark: MINIWATTA/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. (90) 17271.
France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. (01) 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894 911.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., $24-28$ Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. (022) 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th FI., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Elcoma Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.
Italy: PHILIPS S.p.A., Div. Componenti Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.
Malaysia: PHILIPS MALAYSIA SDN BHD, Elcoma Div., 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. (02) 680200.
Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. (014) 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: S.A. PHILIPS (Pty) LTD., EDAC Div., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. (011) 402-4600/07.
Spain: MINIWATTS.A., Balmes 22, BARCELONA 7, Tel. (03) 3016312.
Sweden: PHILIPS KOMPONENTERA.B., Lidingövägen 50 , S-11584 STOCKHOLM 27, Tel. (08) 7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 7120500.
Thailand: PHILIPS ELECTRICAL CO. OFTHAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.
Turkey:TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad., No. 78-80, 80090 Ayazpasa ISTANBUL., Tel. (01) 1435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive \& Electromech. Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404, Tel. (305) 881-3200.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 985395.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.
For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl
AS53
(C) Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.
Printed in The Netherlands


[^0]:    * The Microprocessors were included in handbook IC14N 1985, so IC18 will replace that part of IC14N.

[^1]:    * Preliminary value.

[^2]:    * Only valid for repeated start code.

[^3]:    * Without diode.
    © Only during access pause.
    ** With diode.

[^4]:    * Because of the inverted interrupt input $\mathrm{CE} / \overline{\mathrm{TO}}$ the conditional jump JTO is also inverted.

[^5]:    * With an input voltage swing of $V_{I L}$ max $-0,1 \mathrm{~V}$ to $V_{I H \min }+0,1 \mathrm{~V}$.

[^6]:    \# Value not yet available.

[^7]:    * Only valid for repeated start code.

[^8]:    * Impedance min. $500 \Omega$.

[^9]:    * Derate $7,7 \mathrm{~mW} / \mathrm{K}$ when $\mathrm{T}_{\mathrm{amb}}>60^{\circ} \mathrm{C}$.

[^10]:    * $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
    ** The power-on-reset circuit resets the $1^{2} \mathrm{C}$ bus logic with $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{REF}}$.

[^11]:    \# Value not available.

