Pana \ Series

TheOnetoWatch for Constant Innovation-Making the Future ComeAlive

MICROCOMPUTER MN21030/MN103S

MN1030/MN103S Series
Instruction Manual

Pub.No.13250-040E

Panasonic

PanaX Seriesis atrademark of Matsushita Electric Industrial Co., Ltd.
All other corporation names, logotype and product names written in this book are trademarks or registered trademarks of their
respective corporations.

Request for your special attention and precautions in using the technical information

@

@

©)

4)

®)

(6)

)

©)

and semiconductors described in this book

An export permit needs to be obtained from the competent authorities of the Japanese Government if any of
the products or technologies described in this book and controlled under the "'Foreign Exchange and Foreign
Trade Law" isto be exported or taken out of Japan.

The technical information described in this book is limited to showing representative characteristics and
applied circuits examples of the products. It neither warrants non-infringement of intellectual property right
or any other rights owned by our company or athird party, nor grants any license.

We are not liable for the infringement of rights owned by athird party arising out of the use of the product or
technologies as described in this book.

The products described in this book are intended to be used for standard applications or general electronic
equipment (such as office equipment, communications equipment, measuring instruments and household
appliances).

Consult our sales staff in advance for information on the following applications:

Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion
equipment, life support systems and safety devices) in which exceptional quality and reliability are required,
or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Any applications other than the standard applications intended.

The products and product specifications described in this book are subject to change without notice for
modification and/or improvement. At the final stage of your design, purchasing, or use of the products,
therefore, ask for the most up-to-date Product Standards in advance to make sure that the |atest specifications
satisfy your requirements.

When designing your equipment, comply with the guaranteed values, in particular those of maximum rating,
the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be
liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of
break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as
redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent
physical injury, fire, social damages, for example, by using the products.

When using products for which damp-proof packing is required, observe the conditions (including shelf life
and amount of time let standing of unsealed items) agreed upon when specification sheets are individually
exchanged.

This book may be not reprinted or reproduced whether wholly or partially, without the prior written
permission of Matsushita Electric Industrial Co., Ltd.

If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales
officeslisted at the back of this book.

About This Manual

This document contains a detailed description of the instruction set for the MN1030/MN103S Series.

This document concentrates on the AM 32 microcontroller core. When the specifications differ between cores,
separate descriptions appear next to icons indicating the appropriate core or cores

Chapter 1 provides an overview of the instruction set--instruction functions, formats, and the like.

Chapter 2 contains detailed descriptions of the individua instructions--operation, effect on PSW flags, and the like.
Chapter 3 contains usage notes--a description of the pipeline architecture, programming notes, usage
recommendations, and the like.

The Appendix contains charts for the entire instruction set and instruction mappings.

m Finding Information

This document incorporates the following aids for locating necessary information as quickly as possible.
(1 Index tabsin the inside margins of left-hand pages indicate Chapters.
(2) Thetable of contents near the beginning of this document lists section headings.
(3) Asyou flip through the document, the page header gives the chapter; the footer, the section heading.
(4) Theindex near the end of this document lists page references for all instructions and instruction variants.

In Chapter 2, the instruction mnemonic appearsin the page footer for right-hand pages.
m Related Manuals

The following related manual s are available. Please contact our sales representative for more details.

< For MN1030 Series Users >

MN21030 Series Cross Assembler User's Manual
<Describes the assembler syntax and notation>

MN1030 Series C Compiler User's Manual: Usage Guide
<Describes the installation, the commands, and options of the C Compiler>

MNZ1030/MN103S/MN103E Series C Compiler User's Manual: Language Description
<Describes the syntax of the C Compiler>

MNZ1030/MN103S/MN103E Series C Compiler User's Manual: Library Reference
<Describes the the standard library of the C Compiler>

MNZ1030/MN103S Series C Source Code Debugger for Windows® User's Manual
<Describes the use of the C source code debugger for Windows®>

MN1030/MN103S Series Installation Manual

<Describes the installation of the C compiler, cross-assembler and C source code debugger and the
procedure for bringing up the in-circuit emulator>

< About ThisManual -1 >

< For MN103S Series Users >

MN103S Series Cross Assembler User's Manual
<Describes the assembler syntax and notation>

MN103S Series C Compiler User's Manual: Usage Guide
<Describes the installation, the commands, and options of the C Compiler>

MN1030/MN103S/MN103E Series C Compiler User's Manual: Language Description
<Describes the syntax of the C Compiler>

MNZ1030/MN103S/MN103E Series C Compiler User's Manual: Library Reference
<Describes the the standard library of the C Compiler>

MN1030/MN103S Series C Source Code Debugger for Windows® User's Manual
<Describes the use of the C source code debugger for Windows®>

MN1030/MN103S Series |nstallation Manual

<Describes the installation of the C compiler, cross-assembler and C source code debugger and the

procedure for bringing up the in-circuit emulator>

< About ThisManual -2 >

Instruction function and type

Flag changes

Instruction format

Chapter 2 InSXglion Specifications

M OV B U Zero-extend Byte Move

Operation details

MOVBU Mem,Reg

e : may change

- :will not change
0: always 0

1: always 1

?: undifined

*: user defined

Code size, cycles

N
N

Assemble mnemonic

supplementr

icon core marks

Operation Mem->Reg
Byte-data-moves the contents of the memory(Mem) to the register(Reg)

» (8 bits—32 bits; zero-extended) K
Assembler mnemonic Notes V|C|N|Z]| size {Cycles
movbu_(Am).Dn === 2 1
movbu_ (d8,Am),Dn d8 is sign-extended —|==1-1 3 1
movbu (d16,Am),Dn d16 is sign-extended — === 4 1
movbu_ (d32,Am),.Dn === s 2
movbu (d8,SP),Dn d8 is zero-extended —|—|—|— 3 1
movbu_(d16,SP).Dn d16 zero-extended —T=T=1=1 4 1
movbu (d32,SP).Dn === & 5
movbu_(Di,Am).Dn === 2 1
movbu_(abs16),0n abs16 zero-extended —|=[=]—] s 1
movbu (abs32),0n === s 2

Flag Changes

VF: No Changes.

CF: No Changes.
NF: No Changes. <

requires following

conditions;

(1) no pipeline install

(2) instruction fetch: 2
data load/store : 1

Flag changes details

ZF: No Changes.

Notes

1 In register-relative indirect addressing mode or index decoration register indirect addressing mode, when the
: address specified by based register(Am,SP) and the address derived from address caluculation are not in the same <

memory space, one cycle will be added

1 In register-relative indirect addressing mode or index decoration register indirect addressing
: % m mode, the address specified by based register(Am,SP) and the address derived from address

calculation must be in the same memory space.

indicates objective
micom core

Footer

indecates instructions

< About ThisManual - 3 >

MOVBU

Read carefully to run
the program right.

m Page Layouts

The three layouts below are the standards for the three Chapters.

Chapter 1 pages give the section title, an overview, the main text, and notes.

Chapter 2 pages give the instruction syntax, operational description, and notes.

Chapter 3 pages feature such items as pipeline operation diagrams, code samples, and notes.

Chapter 1 Overview

Section title >
Instruction Functions
verview
O € € >~ The instruction set has been kept simple so that C compiler output is compact and highly optimized.
(Fl rst page Of section on |y) The following table shows all instructions divided into functional groups.
Data Transfer Sign Extension Clear
Transfer MoV EXT CLR
Instructions MOVBU EXTB
MOVB*1 EXTB
MOVHU EXTH
MOVH*1 EXTHU
MOVM
Arithmetic Addition Subtraction Multiplication Division
Instructions ADD suB MUL DIV
ADDC SUBC MuULU DIVU
INC
Table Summary of > o
. Compare Comparison
section contents Instructions oMP
Bitwise Logical Logical Sum Logical Product Inversion Exclusive OR
OR AND NOT XOR
Bit Manipula- Test Test and Set Test and Clear
tion Instructions BTST BSET BCLR
Shift Shift Rotation
Instructions ASR2 ROR
LSR*2 ROL
ASL
ASL2
Branch Branch Loop Setup Subroutine Call Return
Instructions Boc SETLB CALL RET
Lec CALLS RETF
MP JSR*1 RETS
TRAP RTS*1
RTI
NOP Instruction No Operation
NOP
Expansion
User Defined UDFnn
Instructions UDFUnn
*1.MOVB, MOVH, and JSR are assembler shorthand for instruction sequences. RTSis an liasfor RETS:
Notes Observe >_ *2. TheASR Dn and LSR Dn variants are assembler shorthand for single-bit shifts of the specified register.

these precautions to ensure
reliable program operation.

Core icons

The BSET and BCLR instructions temporarily disable interrupts and lock the bus for exclusive
= CPU use while they execute.

% % The BSET and BCLR instructions do not lock the bus for operations on data
in the cachable region of external memory.

-

Instruction Functions 7

These indicate the applicable

microcontroller cores.

MN1030 Series
AM30: First generation
AM31: Second generation

MN103S Series
AMB32: Third generation

< About ThisManua - 4 >

Expalanation for Code
Sequences to avoid

Chapter 3 Usage Notes

Description

(3) Cachable Memory, DCBY PS = 0, Follower Storing without d32/abs32

o [Description]

Pipeline architecture

To prevent pipeline stalls, we recommend inserting at least one cycle when the DCBY PS bit is“0,”
m the leading instruction accesses cachable external memory, and the followina instruction stores the
data without using a d32 or abs32 operand.

o OV 90 ot 32.bit immerdite valve

Example of problematic

s

we wiite cache)

cache readdus
e

program

Example of revised

program

Applicable instructions

[Example]

» [Problematic Version]
inc al
mov (a0),d0 Load instruction
mov do,(al) Instruction storing loaded data without d32/abs32 operand
Retrieving and aligning the data from the cache takes one cycle, so the pipeline stalls
until the data loaded with the first MOV instruction is available to the second MOV
instruction.

[Revised Version]

» mov (a0),d0 Load instruction
inc al
mov do,(al) Instruction storing loaded data without d32/abs32 operand

The dataloaded with the first MOV instruction is available to the second MOV instruc-
tion, so the pipeline does not stall.

[Applicable Instructions]
> <Leading instruction> All load variants of MOV, MOVBU, and MOVHU

Notes

<Following instruction> MOV, MOVBU, MOVB, MOVHU, and MOVH store without d32/abs32
operands

Read carefully to run
the program right

< About ThisManua -5 >

> Here cachable external memory refers to the cachable portions of AM31 or AM32
G external memory.
H

Code SequencestoAvoid 131

Table of Contents

Chapter 1 Overview

Chapter 2 Instruction Specifications

Chapter 3 Usage Notes

Appendix

Index

Table of Contents

Chapter 1 Overview

1 INSEIUCHTION SEL ... ettt b et n et n et nsenes 2
2 REGISIEN SEL ...ttt 3
2 R B T = U 2 = o [= RS 4
2.2 AJUrESS REJISIES .. .c.ciuiiitiieteriete ettt 4
P2 B =0 Q= o101 = SRS 4
2.4 Program COUNMTEScoiieiieiireste et e e see e enennes 4
25 Multiply/Divided REJISIEN ...ccoociiieiieeeseeseee e e 4
2.6 Processor StAUSWWOIGcooiiiieiiiieieree ettt st neene e 5
2.7 L0oOP INSLIUCHION REJISLENveiviieieiieieieeeeetee ettt reens 6
2.8 LOOP AJUreSS REJISENccvcuiieiiiieiiiiei ettt 6
3 [NSEFUCETON FUNCLIONS ...ttt ettt enes 7
31 DataTransfer INSIUCIONScoueiieeeeieieieee et 8
3.2 ArithmEtiC INSIIUCLIONS......cvcuiiieiiieeieriee e 8
3.3 COMPAre INSIIUCTIONSeveiiieeiiieeieieeet ettt ene e 9
34 Bitwise Logical INSITUCLIONScceiveiieieieiceiseee st 9
35 Bit Manipulation INSITUCHIONScoeiiveriiierieiereeie et 9
3.6 ShIft INSIIUCHIONS ..ot e 9
3.7 BranCh INSITUCHIONScoueiiieiieiesese et 10
3.8 NOP INSIIUCHION ...ttt 10
3.9 User Defined INSLIUCHIONSccueiuiieeieereeeeeeeeeee e 10
4 MEMOTY LAYOUL ...ouveiiiiiesieeeie ettt sttt st st ssae et e e snseenbee s 11
5 AJAreSSING MOTES ...ttt bbbt b e et eb e ene e 14
5.1 Register DireCt AAreSSING ..ocvcvieeiieieiieiieieieseeeeeee et se et s saeeenens 16
52 IMMediate AQArESSINGcciviiriiiriiiriieereee e 16
53 Register INdireCt AAAreSSINGccveiveiveieieieieiee e s eneas 16
54 Register Relative INdireCt AddreSSiNgcovveerieerieenieeseseseseee e 17
55 ADSOIULE AAAIrESSING ...ocvecveieieiciecie ettt eneas 18
56 Register Indirect Addressing With INAeXingcoeveerreneeneieneiiee e 18
6 [NSEFUCHION FOMMALS ...ttt et sttt s beseeneseene e 19
6.1 Da@FOIMEALSocueieieiiee ettt st e e see e e e sae e 20
L =Y (=X @ (o (= OSSPSR 21

Chapter 2 Instruction Specifications

SYMDOI DEFINITIONS ...t 24
Data Transfer Instructions
MOV REGLIREGZ ..ottt sttt reens 26
MOV MEIMLRET ..ottt ettt b e s se s ene s senenn 27
MOV S o A = S 28
MOV L g I L= SRR 29

<TOC 1>

Bit Manipulation Instructions

BTST 1010 11 5 o T TURPPRP 65
BTST 1] 011, =T o PSRRI 65
BSET)0 0 (AN 2) ISR 66
BSET 18] 81, =T o o P REPRRR 67
2108 I S B T 1 (AN 0) I PR PPRRRRUUPRPR 68
21O I 103 g T4 1Y/ 1= o USSP 69
Shift Instructions
ASR 3 10 5 o P 70
ASR IMIMB, DN et e e e e e e e e eaaaaas 71
ASR 5] o SRR 72
LSR DI, DIN e a s 73
LSR 1] 0= T8 PP 74
LSR D) SR U UURRRRRRPPPR 75
ASL 5 0 TH 5 o PRSP 76
ASL IMIMB,DIN et e e e e e e e e e e e aeaeees 77
ASL2 5 o P PEERRRRN 78
ROR 5] o DO U TUTRRRRRRSPPP 79
ROL 5 P PEERRRRN 80
Branch Instructions
Bcc = =S 81
o o PRSP PPRRS 82
S I PSSR 83
JMP N) PP RRSTPRRR 84
JMP = =SS 84
CALL 1ADEL et 85
(O 2 I S T (2 o) I PEESRR 87
CALLS 1ADEL ..ttt 88
N SRS 89
RE T et e e e e e e e e e e e e e — e e e e e e e e e e e e —raaaaaas 90
N I T PR 91
JSR N1) P TSR PRR 92
JSR JRD et ———————————— 93
R S e — e e e e e e e e e e e —aaaaas 94
SO 95
TR A P e e e e e e e e e aaaaaaaas 96
NOP Instruction
N O P e e e e e e e e aaas 97
User Defined Instructions
UDFnNn Dm,DN(NN=00 t015, 20 0 35)uuttiiiiiiiiaiiieiiiiieiee e 98
UDFnn imm,DN(NN=00 t0 15, 2010 35) ..eeuvirieeeeeiiiiiiiiiiiieireeee e e e e seesnnevnneeeeee e 99
UDFUNN imm,DN(NN=00 t0 15, 20 t0 35) ...ettttiiiiiiiiiiiiiiiiiieieeee e 100

<TOC 2>

<TOC 3>

MOVBU MEM,REQG ...ttt e e e e e e e aeae s 30
MOVBU REG,MEBIM ... e e e e e eeraans 31
MOVB MEMLREQG ..ttt e e e e e e e e e e 32
MOVB REG,MEIM . e e e aabaans 33
MOVHU MEM,REQG ... ittt e e e e e e e e e e 34
MOVHU REQG,MEBIM ... e e e e aeraans 35
MOVH MEM,REQG .t e e e e e e e e e e e e e eeeeeeeeeneees 36
MOVH REG,MEIM .ot a e e e b s 37
MOVM (SP),FBOS ettt ettt ettt ettt e et e e e e bt e e e e s nnbb e e e e e e 38
[L@ AN =T o [(5 = ISP 39
EXT 5 o P PPERURRR 40
[= T 5 o D TP PPPPPPPPPPPTPN 41
[=1 I o PRSP 42
L I N B o DO PP P PO TPPPPPPRPPPRN 43
[I = 1 I o PRSP PERRPR 44
CLR 3] OO PP PP TT PR TPPPPPP 45
Arithmetic Instructions
ADD REGLIREOZ ... 16
ADD I, R G e e e 47
ADDC DIMLDIN ittt 48
SUB REGL,REG2Z ... 49
SUB I, R B e e 50
10 1 =T O I o T4 5 o P UURRRRN 51
MUL DIMLDIN et a e 52
L T o 4 0 o PSSR 53
DIV DIMLDIN et a e 54
DIvU 3] 08 o SO PPPR 55
INC R B0 ittt 56
INC4 2 o P ERUPR P 57
Compare Instructions
CMP REGL,REOZ ..o 58
CMP 18] 08 =T o PRSP 58
Bitwise Logical Instructions
AND DIMLDIN et e e 59
AND (10010 01 o [PRI 59
AND IMIMPSWV et a e e e 60
OR 5] 00 o TP 61
OR 12210214 5o PO 61
OR IMIML P SV e 62
XOR DIMLDIN e 63
XOR (10011 o [UUTRRPPN 63
NOT 3] TP PP PP PP PR TPPPPPP 64

Chapter 3 Usage Notes

NOLES 10 PrOgIraMIMEISiiiiiiieee ettt e e e e e e e e e e e n et e e e e e 102
Pipeling ArChItENCIUIEooiii e 103
1.1 Pipelin@ OPEratiONeeiiiiiiiiee ittt e 103
1.2 Register to Register (RR) OPEratioNScooiiiiiiiiiiiiiiiieeee e e e 104
1.3 Data Load OPEratiONSeevieiiiiiiieeiiiiie ettt ettt 104
1.4 Data StOre OPEratiONSccoiiiiiiiiiiiiiie et e ettt e e e e e e e e e e e e e e e e e e aneaes 105
1.5 Branching OPEratiONScuueeieiiiuuiiieeiiiiiee ettt e e ettt e et e e e st e e e e s sbaeeee e e 105
1.6 COmMPIEX INSITUCHIONSuuiiiiiiiiieiiei it e e e e 106
1.7 SPECIAl INSIIUCLIONSeiiiiiiiiieei ittt 107
1.8 PiIPlNe STAUl ..o 108
Dangerous COUE SEUUENCESceiiiiiiiiieeiitiitee ettt e e e stb et e e s s stbe e e e e s ssbae e e e s abbeeeeessbaeeeeean 110
2.1 LoAd/StOre INSrUCTIONSccoiiiiiiiieiiiiiet ettt 112
2.2 Instructions Writing to IE and IM BitScccvvieiiiiiiieiiiiiiee e 113
2.3 Sequences Updating and Referencing PSW Flagsccccoooiiiiiiiiiiiiinis 114
2.4 Sequences Writing to and Referencing PSW Flagscccooovvviiiiiiiiieniiienen, 115
2.5 MUL/MULU after WIite 10 ADoiiiiiiiiieeiiiiee et 116
2.6 Displacements with CALLS and JSR(AMS31 ONly)coovvvvviiiiiiiiiieeiiiiieee e 117
2.7 User Defined Instructions after MOVM[regs],(SP) (AM31 Only) 118
2.8 BSET and BCLR with Cachable External MEMOIYccccouvveeiiiiiiieeiiiiiieeene 119
Code SEqUENCES TO AVOIUoiiiiiiiiiiitie ettt e e e e e 120
3.1 TIME-CritiCal COUE ..ttt e e e e e e e s e e e e e e aeees 123
3.2 LoAad/Store INSIUCTIONScoiiiriiiieiiiiiiee ettt 124
3.3 Instructions Following Branch and Other Instructionsccccccccvveeeeeniinnnns 125
3.4 Instructions Following Load INStrUCtIONSccccuuiiiiiiiiiieeieeiieieeeeee e 128
3.5 Instructions Following DIV/DIVU with Zero Dividendccccccoviiieeennnnne. 139
3.6 INStructions PreCeaiNg LOCccouiiiiiiiiiiiiiiiieee et 143
3.7 Instructions Preceding SETLBc.uuviiiiiiiiiiiiiiie e 146
3.8 Instructions Preceding RETFE ... 147
3.9 Instructions at CALL/CALLS TAIQELSccoviuiiieeiiiiiieeiiiiieee et 151
Boiler Plate Code SEQUENCESccoiiiiiiitiiiie et e e e e s e s s e e e e e e e e e e s aannes 153
4.1 RESEEROULINE ..ooiiiiieiii ittt e e e e e e e e e e e e e e enne e e eaees 153
4.2 INterrupt HANAIEIS .ooooeee e 154
4.3 Function Called With CALL ONIYccoiiiiiiiiiiiiieeieeeee e 156
4.4 Function Called with Both CALL and CALLScccoviiiiiiiieiieeeee e 157
Appendix

INSEIUCHION SELS ...eeiiiiiiiii et 160

INSEIUCTION MBI +etiiiitiiee ettt e et e e e s it e e e e s abaeeeaean 183
INDEX
100 1= R PPPPRRRRR 192.....

<TOC 4>

Overview 1

Chapter 1 Overview

Instruction Set

The MN1030/MN103S Series of 32-bit microcontrollers has a simple instruction set designed to make C
compiler output compact and highly optimized. It minimizes code size by adopting a variable length instruction
format with a basic instruction length of only one byte. It is thus able to minimize increases in assembler
program code size even though the only data transfers supported by the simple instruction set are load and
store.

CPU Cores

AM30, AM31, and AM32 are 32-bit embedded application microcontroller cores from the Matsushita AM
Series of C-oriented 8-, 16-, and 32-bit microcontrollers. Their specifications differ for certain instructions.
The following are brief overviews of these three cores.

MN1030 Series

AM30: First-generation microcontroller core
% supporting connection to ROM, RAM, and Flash memory for instructions and RAM
for data.

AM31: Second-generation microcontroller core

supporting connection to cache memory for both instructions and data.
General-purpose microcomputer based on this core:

MN103002A

MN103S Series

AM32: Third-generation microcontroller core
supporting connection to ROM, RAM, Flash memory, and cache memory for
% instructions and RAM and cache memory for data.

This document concentrates on the AM32 microcontroller core. When the specifications differ between
cores, separate descriptions appear next to icons indicating the appropriate core or cores.

2 Instruction Set

Chapter 1 Overview

Register Set

The register set includes data registers for arithmetic and general use, address registers for use as pointers,
and the stack pointer. This set greatly contributes to increasing the internal architecture's performance by
reducing code size and boosting parallel use of pipeline stages.

This register set incorporates features enabling the use of C and other high-level languages.

31 0
Data registers DO
D1
D2
D3
31 0
Address registers AO
Al
A2
A3
31 0
Stack pointer ‘ SP ‘
31 0
Program counter \ PC \
31 0
Multiply/divide register \ MDR \
15 0
Processor status word PSW
31 0
Loop instruction register \ LIR \
31 0
Loop address register ‘ LAR ‘

The Loop Instruction Register (LIR) and Loop Address Register (LAR) are for speeding up the branch to
and execution of the first instruction in a loop. The SETLB (Set Loop Beginning) instruction loads them
with the next four instruction bytes and the address of the fifth, respectively. The Lcc (Loop) instruction then
uses these stored values to jump-start execution of the first instruction in the loop while fetching additional
instruction bytes.

Register Set 3

Chapter 1 Overview

2.1 Data Registers

DO to D3: Data Registers (32 bits x 4)

These four 32-bit registers are for arithmetic and general use. Data values are automatically zero-extended
to 32 bits when they are loaded from memory. The EXTB and EXTH instructions are also available for sign-
extending them once loaded.

For 8-bit data, a load operation copies the data from memory into the lowest eight bits of the register and
zeros the other bits. A store copies the lowest eight bits of the register to memory. Following the load
operation with an EXTB instruction sign-extends it from 8 bits to 32.

For 16-bit data, a load operation copies the data from memory into the lowest 16 bits of the register and
zeros the other bits. A store copies the lowest 16 bits of the register to memory. Following the load operation
with an EXTH instruction sign-extends it from 16 bits to 32.

2.2 Address Registers

A0 to A3: Address Registers (32 bits x 4)

These four 32-bit registers are for use as address pointers, so support only the operations relevant to address
calculations: addition, subtraction, and comparison.

Because the contents are pointers, transfers to and from memory are always 32 bits wide.

2.3 Stack Pointer

SP: Stack Pointer (32 bits x 1)

This 32-bit pointer indicates the address at the top of the stack.
Because addressing is by the word, the lowest two bits of any value loaded into this register must be '00'--
that is, a multiple of four.

2.4 Program Counter
PC: Program Counter (32 bit x1)

This 32-bit register holds the address of the instruction currently executing.

2.5 Multielx/Divide Register

MDR: Multiply/ Divide Register (32 bits x 1)

This 32-bit register is for use by multiply and divide instructions. After a multiply operation, it holds the top
32 bits of the 64-bit result. After a divide operation, it holds the 32-bit remainder; before, the top 32 bits of
the 64-bit dividend.

4 Register Set

Chapter 1 Overview

2.6 Processor Status Word

PSW: Processor Status Word (16 bits x 1)

This 16-bit register displays CPU status and controls certain operations. Examples of the former function
include the flag bits indicating calculation results; of the latter, the interrupt mask level bits.

15 0

0|0 |S1|SO|IE |IM2{IM1|]IMOj O | O |O0O|O|V|C|N|Z

Z: Zero flag
This bit goes to "1" if the calculation leaves "0" in all bits of the result and to "0" otherwise. After a reset, it
is"0."

N: Negative flag
This bit goes to "1" if the calculation leaves "1" in the most significant bit (MSB) of the result and to "0"
otherwise. After a reset, it is "0."

C: Carry flag
This bit goes to "1" if the calculation produces a carry out of or borrow into the most significant bit (MSB)
of the result and to "0" otherwise. After a reset, it is "0."

V: Overflow flag
This bit goes to "1" if the result exceeds the bounds for signed integers and to "0" otherwise. After a reset, it
is"0."

IM2 to IMO: Interrupt mask level

These three bits offer a choice of eight interrupt mask levels from 0 (000B) to 7 (111B). The hardware
accepts only interrupt requests with levels higher than the specified value, and, when it accepts one, sets
these bits to the interrupt request level to block subsequent interrupt requests at that and lower levels until
interrupt processing is complete. After a reset, all bits are "0" for an interrupt mask level of 0.

IE: Interrupt Enable

This control bit is normally "1" to enable interrupts. When the hardware accepts an interrupt request, however,
this bit goes to "0" to disable further interrupts. To support nested interrupts, the user application program
must, therefore, reset this bit to "1." After a reset, itis "0."

S1 to SO: Software Bits
These two bits are for operating system use in controlling software. They are not for use by user application
programs. After a reset, they are both "0."

Register Set 5

Chapter 1 Overview

2.7 LooE Instruction Register

LIR: Loop Instruction Register (32 bits x 1)

This 32-bit register, used only by the SETLB (Set Loop Beginning) and Lcc (Loop) instructions, holds the
first four instruction bytes of the loop for use in speeding up iterations. The SETLB instruction loads it prior
to the loop, and the Lcc instruction at the end of the loop then executes the copy while the pipeline fetches
more instruction bytes starting from the fifth.

For further details, see the SETLB description in Chapter 2.

2.8 LooE Address Register

LAR: Loop Address Register (32 bit x 1)

This 32-bit register, used only by the SETLB (Set Loop Beginning) and Lcc (Loop) instructions, holds the
address of the fifth instruction byte of the loop.

6 Register Set

Instruction Functions

The instruction set has been kept simple so that C compiler output is compact and highly optimized.

The following table shows all instructions divided into functional groups.

Chapter 1 Overview

Data Transfer Sign Extension Clear
Transfer MOV EXT CLR
Instructions MOVBU EXTB
MOVB*1 EXTB
MOVHU EXTH
MOVH*1 EXTHU
MOVM
Arithmetic Addition Subtraction Multiplication Division
Instructions ADD SUB MUL DIv
ADDC SUBC MULU DIVU
INC
INC4
Compare Comparison
Instructions CMP
BitWise_Logical Logical Sum Logical Product Inversion Exclusive QR
Instructions OR AND NOT XOR
Bit Manipula- Test Test and Set Test and Clear
tion Instructions BTST BSET BCLR
Shift Shift Rotation
Instructions ASR*2 ROR
LSR*2 ROL
ASL
ASL2
Branch. Branch Loop Setup Subroutine Call Return
Instructions Bce SETLB CALL RET
Lcc CALLS RETF
JMP JSR*1 RETS
TRAP RTS*1
RTI
NOP Instruction No Operation
NOP
Expansion
User Defined UDFnn
Instructions UDFUNN
*1. MOVB, MOVH, and JSR are assembler shorthand for instruction sequences. RTS is an alias for RETS.
*2. The ASR Dn and LSR Dn variants are assembler shorthand for single-bit shifts of the specified register.
G The BSET and BCLR instructions temporarily disable interrupts and lock the bus for exclusive
= CPU use while they execute.

The BSET and BCLR instructions do not lock the bus for operations on

Q> B

data in the cachable region of external memory.

Instruction Functions 7

Chapter 1 Overview

3.1 Data Transfer Instructions

Data transfer instructions copy data between registers or between a register and memory. They fall into three
groups: MOV, EXT, and CLR.

The MOV group offers a variety of modes for addressing data and provides sign- and zero-extension as
necessary for displacements, immediate values, etc.

The EXT group provides sign- and zero-extension within the specified register or to the Multiply/Divide
Register (MDR).

The CLR instruction sets the specified register to zero.

Instruction | Description

MOV Word (32-bit) transfer between registers, word transfer between a register
and memory, or loading of an immediate value into a register
MOVBU Byte transfer between registers with zero-extension for loads
MOVB*1 | Byte transfer between registers with sign-extension for loads
MOVHU | Half-word (16-bit) transfer between registers with zero-extension for loads
MOVH*1 | Half-word (16-bit) transfer between registers with sign-extension for logds

MOVM Multiregister transfer to and from stack in memory

EXT Sign-extension of 32-bit word register into Multiply/Divide Register (MOR)
EXTB Sign-extension of byte to 32 bits

EXTBU Zero-extension of byte to 32 bits

EXTH Sign-extension of half-word to 32 bits

EXTHU Zero-extension of half-word to 32 bits

CLR Register clear

*1. MOVB and MOVH are assembler shorthand for instruction sequences.

3.2 Arithmetic Instructions

Arithmetic instructions perform an arithmetic operation on the two source operands (or one), store the result
in a register, and--except for INC and INC4 with address registers, ADD with the Stack Pointer (SP), etc.--
update the PSW flags according to the result. Because of their frequent use in address calculations, there are
separate instructions for incrementing by 1 and 4.

Instruction Description

Addition Addition with carry
Subtraction Subtraction with carry
Multiplication (signed) Multiplication (unsigned)
Division (signed) Division (unsigned)

8 Instruction Functions

Chapter 1 Overview

3.3 Comeare Instructions

The compare instructions subtract an immediate value or the contents of a register from the contents of
another register, setting PSW flags for use in conditional branch instructions.

Instruction Description
CMP Comparison

3.4 Bitwise Logical Instructions

Bitwise logical instructions perform a logical operation on the two source operands (or one), store the result
in a register, and update the PSW flags according to the result.

Instruction Description

AND Logical Product

OR Logical Sum

XOR Exclusive OR

NOT Inversion (ones complement)

3.5 Bit Manieulation Instructions

Bit manipulation instructions perform logical operations on the two source operands--an immediate value
and a register, an immediate value and a memory location, a register and a memory location--and update the
PSW flags according to the result.

Instruction Description

BTST Bit test

BSET Bit test and set (byte)
BCLR Bit test and clear (byte)

3.6 Shift Instructions

Shift instructions shift or rotate the specified register by the specified (or implied) amount and update the
PSW flags according to the result.

Instruction Description

ASR*2 Arithmetic shift right
LSR*2 Logical shift right

ASL Arithmetic shift left
ASL2 Arithmetic 2-bit shift left
ROR Single-bit rotation right
ROL Single-bit rotation left

*2. The ASR Dn and LSR Dn variants are assembler shorthand for single-bit shifts of the specified register.

Instruction Functions 9

Chapter 1 Overview

3.7 Branch Instructions

Branch instructions change the flow of execution. In addition to the usual conditional branch (Bcc) instruc-
tion, there is a separate variant (Lcc) for use in loops. The latter relies on special registers to reduce the
penalty normally associated with taking the branch and thus speed up loop execution. The subroutine call
and return instructions feature high-performance specifications that automatically take care of manipulating
the Program Counter (PC), saving the appropriate registers to and restoring them from the stack, and secur-
ing and releasing the necessary stack space.

Instruction Description

Bcc Conditional branch (relative to PC)

Lcc Loop conditional branch (relative to PC)

SETLB Loop setup

JMP Unconditional branch (relative to PC or register indirect)
CALL Subroutine call (high-performance variant)

CALLS Subroutine call

RET Return from subroutine (high-performance variant)
RETF Return from subroutine (high-performance, high-speed variant)
RETS Return from subroutine

JSR*3 Subroutine call

RTS*3 Return from subroutine

RTI Return from interrupt handler

TRAP Subroutine call to predetermined address

*3. JSR is assembler shorthand for an instruction sequence.
*4. RTS is an alias for RETS.

3.8 NOP Instruction

The NOP instruction does nothing but consume one cycle. It does not affect any resources.

Instruction

Description

NOP

No Operation

3.9 User Defined Instructions

User defined instructions access add-on expansion units. They have a fixed format and reserved positions in
. For further details, refer to the documentation for the particular device.

the instruction mapping

Instruction Description
UDFnn User defined instruction (with sign extension)
UDFUnn User defined instruction (with zero extension)

10 Instruction Functions

Memory Lavout

Chapter 1 Overview

The MN1030/MN103S Series of 32-bit microcontrollers has a 4-gigabyte linear address space. Memory

assignments within this address space follow the patterns below. Note how the memory map varies with
such factors as internal memory configuration and memory mode. One assignment that is common throughout,
however, is the location of the reset vector. It is always at 0x40000000.

m AM30

[Single chip mode]

- For instruction ROM -

[Expansion Memory Mode]
- For Instruction ROM/RAM -

0x0000000 0x00000000
Internal Internal
Data RAM
0x20000000 R A 0x20000000
Onboard Internal
inperipherals peripherals
0x4000000 0x40000000
Internal
Imem.al Instruction RAM
Instruction Instruction ROM
ROM
0x8000000 0x80000000
reserved External
memory
0xC000000! 0xC0000000
reserved reserved
OXFFFFFFFF OxFFFFFFFF
[Processor mode]
= AM31 - For Cache -
0x00000000
External memory
(cachable)
0x20000000 Onboard
peripherals

(uncachable)

0x40000000

External memory
(cachable)

0x80000000

External memory
(uncachable)

0xC000000

OxFFFFFFFF

reserved

[Processor mode]
- For Instruction ROM/RAM -

0x00000000
Internal
Data RAM
0x20000000|
Internal
peripherals
0x40000000|
External
Memory
0xC0000000
reserved
OXFFFFFFFF

Memory Layout

11

Chapter 1 Overview

m AM32

12

0x00000000
0x20000000 0x00000000
Onboard DI “tte’g:'M
: ata
ox40000000REMRNEralS 0x00008000
Onboard periphefa
0x0000C000
Internal External Memory
Program ROM 0x00010000
0x80000000 Internal
Data RAM
reserved
0xC0000000 7 o
reserved 020000000
OXFFFFFFFF
[Extended Memory Mode]
- for Program ROM/RAM -
0x00000000,
0x20000000 0x000000
Onboard Internal
peripherals Data RAM
0x40000000 0x00008000
Onboard periphefa
0x0000C000
Internal External Memory|
Program ROM / 0x00010000
RAM
0x80000000 Internal
Data RAM
External Memory|
0xC0000000 7 o
reserved 0x20000000
OXFFFFFFFF

Memory Layout

[Single Chip Mode]
- for Instruction ROM -

S

S

m AM32

Chapter 1 Overview

[Processor Mode]

- for Program in external memory -

0x0000000
0x2000000
Onboard
eripherals
0x4000000 perip
External Memory
0xC0000000
reserved
OXFFFFFFFF
0x00000000
0x20000000
Onboard
0x40000000|R€ripherals

0x8000000

External Memory
(cachable)

External Memory
(uncachable)

0xC0000000

OXFFFFFFFF

reserved

0x0000000
Internal
Data RAM
0x00008000
Onboard periphefials
0x0000C000
0x00010000 External Memol
Internal
Data RAM
0x20000000

[Processor Mode]
- with cache -

0x00000001
External memory

(uncachable)
0x00008000

0x0000C000

Onboard peripherals

External Memory
(cachable)

0x20000000

A > o> B

Memory layout varies with such factors as
model and pin specifications. For further
details, refer to the documentation for the
particular device

Memory Layout 13

Chapter 1 Overview

Addressing Modes

The addressing modes available consist of the following six most heavily used by C compilers.
1. Register direct
2. Immediate value
3. Register indirect
4. Register relative indirect
5. Absolute
6. Register indirect with indexing

Data transfer instructions offer all six addressing modes: register direct, immediate, register indirect, register
relative indirect, absolute, and register indirect with indexing.

Register arithmetic instructions offer only two addressing modes: register direct and absolute.

Register indirect addressing with indexing is for more efficient access to arrays and the like.

14 Addressing Mode

m Addressing Modes

Chapter 1 Overview

Addressing Mode

Address Calculation

Final Address

Dm/Dn
Am/An
SP/PSW/MDR

Register direct

Immediate imm8/regs
imm16
imm24
imm32
imm40

imm48

Register indirect (am)/(An)

| Am/An |

31
| (32-bit address)

Register relative indirect : (d8,Am)/(d8,An)

1:d8 sigm-extended
| (d16,Am)/(d16,An)
: :d16 sign-extended

1(d32,Am)/(d32,An)

| only)

1(d8,PC)

: :d8 sign-extended
(d16,PC)

: :d16 sign-extended
1(d32,PC)

: :d8 zero-extended
1(d16, SP)

: :d16 zero-extended
'(d32, SP)

| Am/An |
+

31
| (32-bit address)

— O|— O

15 7 0
| d32/d6/d8 |

| (32-bit address) |
A

15 7 0
[d32/dI6[ds |

| (32-bit address) |
A

15 7 0
| d32/d16/d8 |

Absolute (abs16)
:abs16 zero-extended

(abs32)

| absl6/abs32 |

31 0
| (32-bit address) |

Register indirect with indexing
(di,Am)/(Di,An)

| Am/An |

31 0
| (32-bitaddress) |
}

All three have the range 0O to 3.

Q

The suffixes m, n, and i indicate the source, destination, and index registers, respectively.

Addressing Mode 15

Chapter 1 Overview

51 Register Direct Addressing

Register direct addressing specifies an operand as the name of a register from the following list.

Dn/Dm (32-hit) Data register

An/Am (32-bit) Address register

SP (32-bit) Stack Pointer

PSW (16-bit) Processor Status Word
MDR (32-bit) Multiply/Divide Register

5.2 Immediate Addressing

Immediate addressing specifies an operand as a value incorporated as is into the instruction code. Examples
include numbers for loading into registers, masks, and multiregister specifications (regs) for transfers to and
from the stack.

These operands are abbreviated to imm8, imm16, imm24, imm32, imm40, and imm48, where the numeric
suffix indicates the size in bits.

The abbreviation regs denotes an 8-bit immediate value containing five bits specifying the registers D2, D3,
A2, and A3 individually and seven other registers as a group.

7 0

D2 | D3 |As | A3 |other| - - -

other :DO, D1, A0, Al, MDR, LIR, and LAR
- : Reserved (always set to 0)

53 Register Indirect Addressing

Register indirect addressing, (An) or (Am), specifies an address operand as the contents of a 32-bit address
register.

Operand format: (An) or (Am)
| An/Am

31 0
| |

32-bit value used as memory address

16 Addressing Mode

Chapter 1 Overview

5.4 Register Relative Indirect Addressing

Register relative indirect addressing specifies an address operand as the sum of a displacement and a base
address in an address register (An or Am), the Program Counter (PC), or Stack Pointer (SP). Displacements
can be 8, 16, or 32 bits wide.

Short (8- or 16-bit) displacements are zero-extended for the base register Stack Pointer (SP) and sign-
extended for the others (An, Am, and PC).

Operand formats: (d8, An) or (d8, Am) .d8 sign-extended
(d16, An) or (d16, Am) :d16 sign-extended
(d32, An) or (d32, Am)
(d8, PC) :d8 sign-extended
(d16, PC) :d16 sign-extended
(d32, PC) :
(d8, SP) .d8 zero-extended
(d16, SP) :d16 zero-extended
(d32, SP) :
An/Am
+
d8/d16/d32
PC
+
d8/d16/d32
SP
+
d8/d16/d32
31 0

32-bit value used as memory address

base register.

m The result of adding the displacement to the base register An, Am, or
G PC must be in the same memory address space as the address in the

Any overflow arising during addition to the Program Counter (PC) is ignored. The
G effective address is the lowest 32 bits of the result.

Addressing Mode 17

Chapter 1 Overview

5.5 Absolute Addressinc_)

Absolute addressing specifies an address operand as a 16- or 32-bit value incorporated as is into the instruc-
tion code.

A 16-bit operand is zero-extended to 32 bits.

Operand formats: (abs16) :16-bit absolute address
(abs32) :32-bit absolute address
| zero extension| abs16 |
31 16 15 0
| abs32 |
31 0

32-bit value used as memory address

5.6 Register Indirect Addressing with Indexing

Register indirect addressing with indexing specifies an address operand as the sum of a base address in an
address register (An or Am) and an index in a data register (Di).

Operand format: (Di, An) or (Di, Am)

Am/An
+

Di

I |
32-bit value used as memory address

in the same memory address space as the address in the base

G m register.

ﬁ The result of adding the index to the base register (An or Am) must be

18 Addressing Mode

Chapter 1 Overview

Instruction Formats

There are 11 instruction formats.

8-bit

-
Format SO OP
Format S1 oP imm8, d8
Format S2 ‘ oP imm16, d16 , abs16
Format S4 OP imm32, d32, abs32
Format S6 OoP imm48
Format DO ‘ OoP ‘ OoP ‘
Format D1 OoP oP imm8/d8
Format D2 OoP OoP imm16/d16/abs16
Format D3 OP OoP imm24
Format D4 OoP OoP imm32/ d32/abs32
Format D5 OoP OoP imm40

The normal pattern consists of one or two opcode bytes following by an immediate value, displacement, or
absolute value that is 8, 16, or 32 bits long. Formats S2, S4, S6, D2, D3, and D5, however, can have two or
more such operands. For simplicity, the above diagram combines them under the immediate value labels
imm16, imm24, imm32, imm40, and imm48, where the numeric suffix indicates the size in bits.

The following are the instructions affected.

imm16: RET regs, imm8 imm32: CALL (D16, PC), regs, imm8
RETF regs, imm8 imm40: BTST imm8, (abs32)
BTST imm8, (d8, An) BSET imm8, (abs32)
BSET imm8, (d8, An) BCLR imm8, (abs32)
BCLR imm3, (d8, An) imm48: CALL (d32, PC), regs, imm8
imm24 BTST imm8, (absl16)

BSET imm8, (abs16)
BCLR imm8, (abs16)
The assembler does not normally specify the two operands regs and imm8 for the RET, RETF,
G and CALL instructions directly. It uses an indirect approach, specifying them, at the subroutine
.

entry point, in a directive subsequently resolved by the linker. For further details, refer to the
Cross Assembler User's Manual.

Instruction Formats 19

Chapter 1 Overview

6.1 Data Formats

Processing uses four data types: bit, byte, half-word, and word. The last three can be either signed or unsigned.
The sign bit is the most significant one (MSB) for the data size.

Alignment restrictions apply. The storage address for a word data item must have '00" in its lowest two bits-
-that is, must be a multiple of four. Similarly, that for a half-word data item must have '0' in its lowest bit--
that is, must be a multiple of two.

(1) Bit data
(2) Byte data

unsigned 8-bit data

signed 8-bit data (sign in bit 7) (signed:MSB)
(3) Half-word data

unsigned 16-bit data

signed 16-bit data (sign in bit 15) (signed: MSB)
(4) Word data

unsigned 32-bit data

signed 32-bit data (sign in bit 31) (signed: MSB)

MSB LSB

LTIy e iy Gy L rrrd]
Bit number 31 24| 23 16 15 8 7 0
address in memory (4n+ 3) (4n+2) (4n+1) 4n

Upper half word Lower half word
word data
highest byte lowest byte

half word data highest byte lowest byte
byte data

20 Instruction Formats

Chapter 1 Overview

6.2 the Order

Byte order is little endian: the bytes making up a 16- or 32-bit immediate value, displacement, or absolute

value (imm16, d16, abs16, imm32, d32, or abs32) are stored from least significant byte to most as addresses
increase.

[Example]
Little endian order stores the four bytes in the 32-bit immediate value 0x01234567 in the following order.

Address n 0x67
Address n+1 0x45
Address n+2 0x23
Address n+3 0x01

The formats with two or more operands (S2, S4, S6, D2, D3, and D5) maintain little endian order for their

16- or 32-bit immediate values and displacements (d16, abs16, d32, and abs32), but the order of the operands

making up the fields abbreviated to imm16, imm24, imm32, imm40, and imm48 varies with the instruction.
RET/RETF regs, imm8

Address n RET/RETF | ... RET or RETF Opecode
Address n+1 regs
Address n+2 imm8

BTST/BSET/BCLR imm8, (d8, An)

Address n BTST/BSET/BCLR BTST, BSET or BCLR Opecode
Address n+1

Address n+2 ds

Address n+3 imm8

BTST/BSET/BCLR imm8, (abs16)

Address n BTST/BSET/BCLUR BTST, BSET or BCLR Opecode
Address n+1

Address n+2 absl6

Address n+3

Address n+4 imm8

Addressing Mode 21

Chapter 1 Overview

22

CALL (d16, PC), regs, imm8

Address n

CALL

Address n+1
Address n+2

di6

Address n+3

regs

Address n+4

imm8

BTST/BSET/BCLR imm8, (abs32)

Address n
Address n+1

BTST/BSET/BCL

R

Address n+2
Address n+3
Address n+4
Address n+5

abs32

Address n+6|

imm8

CALL (d32, PC), regs, imm8

Instruction Formats

Address n

CALL

Address n+1
Address n+2
Address n+3
Address n+4

d32

Address n+5

regs

Address n+6

imm8

CALL Opecode

..BTST, BSET or BCLR Opecode

CALL Opecode

Instruction Specifications 2

Chapter 2 Instruction Specifications

Sxmbol Definitions

m Following isthelist of symbols used in the instruction specifications.

Reg

Am, An
Dm, Dn,Di
MDR
PSW

PC

SP

LIR

LAR
{MDR,Dn}
Mem

imm
imm8
imm16
imm32

as

di6

d32

absl6
abs32

O

regs
0x....
.bpn
Isb
.msb

<<n
>>n
®

(sign_ext)
(zero_ext)
label

VF

CF

NF

ZF

temp

24

:register (used for general meaning)
:addressregister (m, n=31t0 0)
.dataregister (m, n, i=3t0 0)
:multiply/divide register

:processor status word

:program counter

:stack pointer

:loop instruction register

:loop address register

:64-hit data defined whose upper 32-bit in MDR and lower 32-bit in register Dn withina"{ }".
:memory (used for general meaning)
:immediate value (used for general meaning)
:8-bit immediate value

:16-bit immediate value

:32-bit immediate value

:8-bit displacement

:16-bit displacement

:32-bit displacement

:16-bit absolute

:32-hit absolute

;indirect addressing

Refer to "Chapter 1 section 5, Addressing Mode" for details.

:multiple registers specification
-hexadecimal notation(the numbers following Ox are expressed in hexadecimal notation.)
:bit location ("n" means location of bit; 0 to 31)
:bit location (bit 0)

:bit location (bit 31)

:logical AND

:logical OR

:exclusive OR

:bit inverted

:n-bit shift left

:n-bit shift right

:move

:reflection of operation result
:sign-extend

:zero-extend

:address

.overflow flag

:carry flag

:nagative flag

:zero flag

:temporary register

Explanation of Notations

Chapter 2 Instruction Specifications

mem8(xxx) :8-bit datain memory specified with xxx
mem16(xxx) :16-bit datain memory specified with xxx
mem32(xxx) :32-bit datain memory specified with xxx
CodeSize :code size of assembler mnemonic

m Following isthelist of symbols used in flag changes.
("flag" isageneral term of lower 4-bit(V, C, N, Z) of PSW.
:flag changes
:no flag change
‘flag isalways"0"
‘flag isalways"0"
:flag change undefined
* :change by user defined

N R O

m "Cycles" will be changed by status of pipeline or memory space to access.
"Cycles" written in this chapter are calculated on the following conditions;
(1) No piplelineinstallation
(2) Instruction fetch: 2 cycles, dataload/store: 1 cycle
(ROM/RAM/flash build-in products:
Instructions: accessing internal instruction ROM space or internal instruction RAM space
Data: accessomg internal data RAM space
Cache build-in products:
Instructions/data: when accessing cachable area, cache is aways hit.

Refer to "Chapter 3, Using Instructions' for influence by piplelineinstallation, LSl Manual of each product for

cycle changes in memory space.

m Symbolsfor Notation
Each microcomputer core has different notations. Therefore, each notation iswritten with each microcomputer
core mark in thismanual. The microcomputer core marks are as followings;

Notice for AM30 core

Notice for AM31 core

Notice for AM32 core

A2

Explanation of Notations =

Chapter 2 Instruction Specifications

MOV ..

MOV Regl,Reg?2

Operation Regl - Reg2

Moves the contents of the register(Reg1l) to the register(Reg2). Not
moves to the same register.

Assembler mnemonic Notes V|C|N|Z| Size |Cycles
mov Dm,Dn Dm=Dn cannot be specified — | —|—|— 1 1
mov Dm,An — | — | —|— 2 1
mov Am,Dn — | —|—|— 2 1
mov Am,An Am=An cannot be specified — ||| 1 1
mov SP,An —|—— | 1 1
mov Am,SP — | —|—|— 2 1
mov PSW,Dn Zero-extends the upper 16 bits — || 2 1
mov Dm,PSW Omits the upper 16 bits ® | o |0 o 2 1
mov MDR,Dn — | —— | 2 1
mov Dm,MDR — ||| 2 1

Flag Changes

Other than mov Dm,PSW
VF: No Changes.
CF: No Changes.
NF: No Changes.
ZF: No Changes.

mov Dm,PSW
VF: Reflects the 3rd bit of Dm.
CF: Reflects the 2nd bit of Dm.
NF: Reflects the 1st bit of Dm.
ZF: Reflects the zero bit of Dm.

PSW-update by mov Dm,PSW instruction can be delayed for two instructions at most.
(Especially at interrupting affected by IE bit or IM field, note that the instruction during updating will be executethitughise$ore/after updaiing.

26 MOV

Chapter 2

Instruction Specifications

MOV Mem,Reg
Operation Mem - Reg
Word-data-moves the contents of the memory(Mem) to the register(Reg).
Assembler mnemonic Notes V|C|N|Z]| Size |Cycles
mov (Am),Dn — | === 1 1
mov (d8,Am),Dn d8 is sign-extended —=1=1=1 3 1
mov (d16,Am),Dn d16 is sign-extended N IS N 4 1
mov (d32,Am),Dn ol 6 5
mov (d8,SP),Dn d8 is zero-extended == 2 1
mov (d16,SP),Dn d16 is zero-extended = 4 1
mov (d32,SP),Dn = 6 5
mov (Di,Am),Dn I 2 1
mov (abs16),Dn absl6 is zero-extended === 3 1
mov (abs32),Dn _ 11 6 5
mov (Am),An | === 2 1
mov (d8,Am),An ds is sign-exended —|—=|—=|—| 3 1
mov (d16,Am),An d16 is sign-extended === 4 1
mov (d32,Am),An S N N 6 2
mov (d8,SP),An d8 is zero-extended | = = — 2 1
mov (d16,SP),An d16 is zero-extended === 4 1
mov (d32,SP),An — === 6 2
mov (Di,Am),An _ 11— 2 1
mov (abs16),An abs16 is zero-extended — === 4 1
mov (abs32),An | === 6 2
mov (d8,Am),SP d8 is sign-extended N B 3 1
Flag Changes

VF: No Changes.

CF: No Changes.

NF: No Changes.

ZF: No Changes.

G The operation of the memory(Mem) address other than multiple of four is not guaranteed.
L}

‘ In register-relative indirect addressing mode or index decoration register indirect addressing mode, when the
. address specified by based register(Am,SP) and the address derived from address caluculation are not in the same

memory space, one cycle will be added.

‘ In register-relative indirect addressing mode or index decoration register indirect addressing
H % mode, the address specified by based register(Am,SP) and the address derived from address

calculation must be in the same memory space.

MOV 27

Chapter 2

Instruction Specifications

MOV Reg,Mem

Operation

Regl—Mem

Word-data-moves the contents of the memory(Mem) to the register(Reg).

Assembler mnemonic

Notes

Vv

Size

Cycles

mov Dm,(An)

mov Dm,(d8,An)

d8 is sign-extended

mov Dm,(d16,An)

d16 is sign-extended

mov Dm,(d32,An)

mov Dm,(d8,SP)

d8 is zero-extended

mov Dm,(d16,SP)

d16 is zero-extended

mov Dm,(d32,SP)

mov Dm,(Di,An)

mov Dm,(abs16)

abs16 is zero-extended

mov Dm,(abs32)

mov Am,(An)

mov Am,(d8,An)

d8 is sign-extended

mov Am,(d16,An)

d16 is sign-extended

mov Am,(d32,An)

mov Am,(d8,SP)

d8 is zero-extended

mov Am,(d16,SP)

d16 is zero-extended

mov Am,(d32,SP)

mov Am,(Di,An)

mov Am,(abs16)

abs16 is zero-extended

mov Am,(abs32)

mov SP,(d8,An)

d8 is sign-extended

WO [NMNO|MAIN|O|AR|W|IMO|WINO|MN|O||W

RIN(RIMvIMVIP(RINIPIRRINRININ(R R[NP |-

Flag Changes

VF: No Changes.
CF: No Changes.
NF: No Changes.
ZF: No Changes.

G The operation of the memory(Mem) address other than multiple of four is not guaranteed.

In register-relative indirect addressing mode or index decoration register indirect addressing mode, when the
‘_ address specified by based register(An,SP) and the address derived from address caluculation are not in the same

memory space, one cycle will be added.

A

28 MOV

In register-relative indirect addressing mode or index decoration register indirect addressing
mode, the address specified by based register(An,SP) and the address derived from address
calculation must be in the same memory space.

Chapter 2 Instruction Specifications

MOV imm,Reg

Operation imm - Reg
Moves the contents of the immediate value(imm) to the register(Reg).

Assembler mnemonic Notes V|IC|N|Z| Size |Cycles
mov imm8,Dn imm8 issign-extended — || 2 1
mov imm16,Dn imm16 is sign-extended — | === 3 1
mov imm32,Dn — | — || 6 2
mov imm8,An imm8 is zero-extended — || 2 1
mov imm16,An imm16 is zero-extended — || 3 1
mov imm32,An — | —|— | 6 2

Flag Changes

VF: No Changes.
CF: No Changes.
NF: No Changes.
ZF: No Changes.

MOV 29

Chapter 2 Instruction Specifications

M OV B U Zero-extend Byte Move

MOVBU Mem,Reg

Operation Mem - Reg

Byte-data-moves the contents of the memory(Mem) to the register(Reg)
(8 bits— 32 hits; zero-extended)

Assembler mnemonic Notes V|C|N|Z | Size |Cycles
movbu (Am),Dn = == 1
movbu (d8,Am),Dn d8 is sign-extended — | === 3 1
movbu (d16,Am),Dn d16 is sign-extended — | —|—|— 4 1
movbu (d32,Am),Dn === 6 2
movbu (d8,SP),Dn d8 is zero-extended R U D 3 1
movbu (d16,SP),Dn d16 zero-extended === 4 1
movbu (d32,SP),Dn === 6 2
movbu (Di,Am),Dn === 2 1
movbu (abs16),Dn abs16 zero-extended — | —|— | 3 1
movbu (abs32),Dn === 6 2

Flag Changes

VF: No Changes.
CF: No Changes.
NF: No Changes.
ZF: No Changes.

‘ In register-relative indirect addressing mode or index decoration register indirect addressing mode, when the
H address specified by based register(Am,SP) and the address derived from address caluculation are not in the same

memory space, one cycle will be added.

In register-relative indirect addressing mode or index decoration register indirect addressing
G m mode, the address specified by based register(Am,SP) and the address derived from address

calculation must be in the same memory space.

30 MOVBU

Chapter 2 Instruction Specifications

MOVBU Reg,Mem

Operation Reg- Mem

Byte-moves the contents of the register(Reg) to the memory(Mem).
(32 bits- 8bits: Omit the upper)

Assembler mnemonic Notes V|C|N|[Z | Size |Cycles
movbu Dm,(An) === 2 1
movbu Dm,(d8,An) d8 is sign-extended — | — | —|— 1
movbu Dm,(d16,An) d16 is sign-extended — === 4 1
movbu Dm,(d32,An) === 6 2
movbu Dm,(d8,SP) d8 is zero-extended — === 3 1
movbu Dm,(d16,SP) d16 zero-extended — === 4 1
movbu Dm,(d32,SP) === 6 2
movbu Dm,(Di,An) === 2 2
movbu Dm,(abs16) abs16 zero-extended —|— | —|— 3 1
movbu Dm,(abs32) S N [- 6 2

Flag Changes

VF: No Changes.
CF: No Changes.
NF: No Changes.
ZF: No Changes.

In register-relative indirect addressing mode or index decoration register indirect addressing mode, when the
G address specified by based register(Am,SP) and the address derived from address caluculation are not in