AN8812SC, AN8812SCR

4ch. Linear Driver IC for CD/CD-ROM

Overview

The AN8812SC and AN8812SCR are 4ch. drivers using the power operational-amplifier method. They employ the surface mounting type package superior in radiation characteristics.

Features

- Wide output D-range is available regardless of reference voltage on the system
- Setting of driver input/output gain enabled by external resistance
- 2ch. independently controllable PC (Power Cut) feature built-in
- Thermal shut down circuit (with hysteresis) built-in
- Proper heat of IC controllable by separating the output supply and setting each independently for 2ch.
- Construction of 5V supply enabled by external PNP Tr
- Accessary operational amplifier built in
- Relatively easy pattern design by separating and concentrating the input line and output line

Application

Actuator for CD/CD-ROM, motor driver

Block Diagram

Pin No. in a circle, \bigcirc is for AN8812SC Pin No. in a square, \square is for AN8812SCR

ICs for CD/CD-ROM Player

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{CC}	18	V
Supply Curren	I _{CC}		mA
Power Dissipation Note)	PD	2083	mW
Operating Ambient Temperature	T _{opr}	-30 ~ + 85	°C
Storage Temperature	T _{stg}	-55 ~ + 150	°C

Note) For surface mounting on $50 \times 50 \times 1.2$ mm glass epoxy board

■ Recommended Operating Range (Ta=25°C)

Parameter	Symbol	Range	
Operating Supply Voltage Bange	SV _{CC} Note)	5.5V ~ 14V	
	PV_{CC1}, PV_{CC2}		

Note) Set SV_{CC} to the maximum electric potential.

■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min.	typ.	max.	Unit
No Load Consumption Current	I _{tot}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	5	10	15	mA
Drivers 1 to 4						
Input Offset Voltage	V _{IOF}	$\begin{aligned} PV_{CC1} &= PV_{CC2} = SV_{CC} = 8V\\ R_L &= 8\Omega, \ R_{IN} = 10k\Omega \end{aligned}$	-10		10	mV
Output Offset Voltage	V_{OOF}	$\begin{aligned} PV_{CC1} &= PV_{CC2} = SV_{CC} = 8V\\ R_L &= 8\Omega, \ R_{IN} = 10k\Omega \end{aligned}$	-50		50	mV
Gain	G	$\begin{aligned} PV_{CC1} &= PV_{CC2} = SV_{CC} = 8V \\ R_L &= 8\Omega, \ R_{IN} = 10k\Omega \end{aligned}$	18	20	22	dB
Maximum Output Amplitude (+)	$V_{L^{+}}$	$\begin{aligned} PV_{CC1} &= PV_{CC2} = SV_{CC} = 8V \\ R_L &= 8\Omega, \ R_{IN} = 10k\Omega \end{aligned}$	4.4	5.0		V
Maximum Output Amplitude (-)	V_{L-}	$\begin{array}{c} PV_{\rm CC1} = PV_{\rm CC2} = SV_{\rm CC} = 8V\\ R_{\rm L} = 8\Omega, R_{\rm IN} = 10k\Omega \end{array}$		-5.0	-4.4	v
Threshold H	V _{PCH}	$\begin{aligned} PV_{CC1} &= PV_{CC2} = SV_{CC} = 8V \\ R_L &= 8\Omega, \ R_{IN} = 10k\Omega \end{aligned}$	2.0			v
Threshold L	V _{PCL}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$ $R_L = 8\Omega, R_{IN} = 10k\Omega$	_		0.3	v
Reset circuit						
Reset Operation Release Supply Voltage	V _{RST}	$I_{IN} = 10 \mu A, R_{IN} = 10 k \Omega$	3.0	3.2	3.3	V
V _{REF} Detection	V _{REF}		2.0			V
5 V Regulator						
Output Voltage	V _{REG}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	4.75	5.0	5.25	V
Output Load Fluctuation	DV_R	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	-50		50	mV
Supply Voltage Fluctuation	DV_{V}	$PV_{CC1} = PV_{CC2} = SV_{CC}$ $= 8V \sim 12V$	-5		5	mV
OP Amp.						
Input Offset Voltage	V _{OF}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	-5		5	mV
Input Bias Current	I _{BOP}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$		150	500	nA
High-Level Output Voltage	V _{OH}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	6.0			v
Low-Level Output Voltage	VOL	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$			1.7	v
Output Drive Current Sink	I _{SIN}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	2.0			mA
Output Drive Current Source	I _{SOU}	$PV_{CC1} = PV_{CC2} = SV_{CC} = 8V$	2.0			mA
Heat Protection Circuit		1				
Operation Temperature Equilibrium Value Note)	T_{THD}		()	(180)	()	°C
Operation Temperature Hysteresis Width Note)	DT_{THD}		()	(45)	()	°C

Note 1) Characteristic value in parentheses is a reference value for design but not a guaranteed value.

Panasonic

AN8812SC, AN8812SCR

Characteristic Curve

Description for Use

(Pin No. in the following text are for the AN8812SC. For the AN8812SCR, refer to the block diagram.)

Driver Portion

Calculate the driver gain by using the following formula for setting.

 $G = \frac{60k\Omega}{R_{IN1} + 100 (\Omega)} \times 2$

The power supply for Ch.1 and 2 is supplied from Pin27 and the power supply for Ch.3 and 4 is supplied from Pin16 independently.

Output amplitude is increased by increasing the supply voltage. Set the power supply voltage as necessary. However, always set Pin 14 of V_{CC} to the maximum electric potential.

Pins15 and 28 may require a capacitor for ripple removal.

As protection functions, V_{CC} reset circuit, V_{REF} detector and heat protection circuit are incorporated.

The V_{CC} reset circuit operates at approx. 3V and is released at 3.2V, when the supply (Pin14) decreases. For the V_{REF} detector, the protection function works at approx. 1V (max. 2V).

Also, the set temperature for operation of the heat protection circuit is approx. 180°C.

In Ch.1 and 2, independently controllable PC (Power Cut) functions are incorporated respectively.

5V Supply

By adding the external PNP transistor, 5V regulator can be constructed. Attach an external capacitor for loop filter to Output Pin10.

In Pin9, the base current limiting circuit (typ. 10mA) is incorporated.

When 5V supply is used, the external PNP Tr emitter must be connected to Pin14 (V_{CC} pin).

Operational Amplifier

When the operational amplifier is not used, make connection as follows :

Panasonic

|--|

Pin	No.		- / -		
AN8812SC	AN8812SCR	Symbol	I/O	Pin Description	Equivalent Circuit
1	28	SGND		SGND pin for driver control circuit	(1)
27	2	PV _{CC} 1		Power V_{CC} pin supplying the current flowing in output power transistors, 22, 23, 24 and 25	27) or (16)
16	13	PV _{CC} 2		Power V_{CC} pin supplying the current flowing in output power transistors, 18, 19, 20 and 21	
26	3	PGND1		GND pin for output transistors, 22, 23, 24 and 25	26 or (17)
17	12	PGND2		GND pin for output transistors, 18, 19, 20 and 21	т
28	1	$\frac{1}{2}$ PV _{cc} 1	0	$\frac{1}{2}$ PV _{CC} output pin 1	2) or (6)
15	14	$\frac{1}{2}$ PV _{cc} 2	0	$\frac{1}{2}$ PV _{CC} output pin 2	28 or 15

Pin AN8812SC	No.	Symbol	I/O	Pin Description	Equivalent Circuit
2	27	V _{REF}	I	V _{REF} input pin	SV _{cc} Ø 2 m m m m m
3	26	IN1	I	Input pin of Driver 1	3 SV _{cc} Ø
5	24	IN2	I	Input pin of Driver 2	
7	22	IN3	Ι	Input pin of Driver 3	or ∪ IN
8	21	IN4	Ι	Input pin of Driver 1	8 777
4	25	PC1	I	Power cut input pin of Driver 1	a a a b a c b c c c c c c c c c c c c c
6	23	PC2	Ι	Power cut input pin of Driver 2	
18	11	VO4–	о	Reverse rotation output pin of Driver 4	PV _{cc}
19	10	VO4+	0	Normal rotation output pin of Driver 4	
20	9	VO3-	о	Reverse rotation output pin of Driver 3	
21	8	VO3+	0	Normal rotation output pin of Driver 3	
22	7	VO2-	0	Reverse rotation output pin of Driver 2	
23	6	VO2+	0	Normal rotation output pin of Driver 2	
24	5	VO1-	0	Reverse rotation output pin of Driver 1	
25	4	VO1+	0	Normal rotation output pin of Driver 2	(19) or (21) or (23) or (25) (18) or (20) or (22) or (24)
Note) Pi	n No. shov	vn in the equi	ivalent cir	cuit diagram are only for the AN881	2SC. For the AN8812SCR, they must be replaced

Panasonic

Pin Description		Pin	Description
-----------------	--	-----	-------------

Pin AN8812SC	No. AN8812SCR	Symbol	I/O	Pin Description	Equivalent Circuit
9	20	ТВ	0	Output pin for controlling the power transistor base of 5V regulator	
10	19	V _{MON}	Ι	Monitor input pin for 5V regulator output	
11	18	OPO	0	Output pin of operational amplifier	
12	17	IN-	I	Inverting input pin of operational amplifier	
13	16	IN+	I	Non-inverting input pin of opera- tional amplifier	
14 Note) P	15	SV _{CC}		SV_{CC} pin for driver control circuit, not connected with power V_{CC} pin	(14) Ø ram. For the AN8812SCR, they must be replaced

Cautions for use

• AN8812SC

When the AN8812SC is used, take into account the following cautions and follow the power dissipation characteristic curve. (1) Load current, I_{P1} flowing in loads R_{L1} and R_{L2} is supplied through Pin27.

$$I_{P1} = \frac{|V_{25} - V_{24}|}{R_{L1}} + \frac{|V_{23} - V_{22}|}{R_{L2}}$$

(2) Load current, I_{P2} flowing in loads $R_{\rm L3}$ and $R_{\rm L4}$ is supplied through Pin16.

$$I_{P2} = \frac{|V_{21} - V_{20}|}{R_{L3}} + \frac{|V_{19} - V_{18}|}{R_{L4}}$$

(3) Dissipation increase (ΔP_d) inside the IC (power output stage) caused by loads R_{L1} , R_{L2} , R_{L3} and R_{L4} is as follows :

$$\begin{split} \Delta P_{d} &= (PV_{CC1} - |V_{25} - V_{24}|) \quad \times \quad \frac{|V_{25} - V_{24}|}{R_{L1}} + (PV_{CC1} - |V_{23} - V_{22}|) \quad \times \quad \frac{|V_{23} - V_{22}|}{R_{L2}} \\ &+ (PV_{CC2} - |V_{21} - V_{20}|) \quad \times \quad \frac{|V_{21} - V_{20}|}{R_{L3}} + (PV_{CC2} - |V_{19} - V_{18}|) \quad \times \quad \frac{|V_{19} - V_{18}|}{R_{L4}} \end{split}$$

(4) Dissipation increase (ΔP_d) inside the IC (signal block supplied from Pin14) caused by loads R_{L1} , R_{L2} , R_{L3} and R_{L4} is almost as follows :

$$\Delta P_{d} = 3 \left\{ \frac{V_{1}}{R_{1}} \left(2SV_{CC} + |V_{25} - V_{24}| \right) + \frac{V_{2}}{R_{2}} \left(2SV_{CC} + |V_{23} - V_{22}| \right) \right. \\ \left. + \frac{V_{3}}{R_{3}} \left(2SV_{CC} + |V_{21} - V_{20}| \right) + \frac{V_{4}}{R_{4}} \left(2SV_{CC} + |V_{19} - V_{18}| \right) \right\}$$

(5) Dissipation increase inside the IC during driver running is $\Delta P_d + \Delta P_s$.

(6) Inside loss under no load (P_{d1}) is almost as follows :

$$P_{d1} = SV_{CC} \times I(SV_{CC}) + PV_{CC1} \times I(PV_{CC1}) + PV_{CC2} \times I(PV_{CC2})$$

(7) Entire IC inside loss (ΔP_d) is almost as follows :

$$\mathbf{P}_{\mathrm{d}} = \mathbf{P}_{\mathrm{d}1} + \Delta \mathbf{P}_{\mathrm{d}} + \Delta \mathbf{P}_{\mathrm{S}}$$

- Cautions for use
- AN8812SCR

When the AN8812SCR is used, take into account the following cautions and follow the power dissipation characteristic curve. (1) Load current, I_{P1} flowing in loads R_{L1} and R_{L2} is supplied through Pin2.

$$I_{P1} = \frac{|V_4 - V_5|}{R_{L1}} + \frac{|V_6 - V_7|}{R_{L2}}$$

(2) Load current, I_{P2} flowing in loads $R_{\rm L3}$ and $R_{\rm L4}$ is supplied through Pin13.

$$I_{P2} = \frac{|V_8 - V_9|}{R_{L3}} + \frac{|V_{10} - V_{11}|}{R_{L4}}$$

(3) Dissipation increase (ΔP_d) inside the IC (power output stage) caused by loads R_{L1} , R_{L2} , R_{L3} and R_{L4} is as follows :

$$\begin{split} \Delta P_{d} &= (PV_{CC1} - |V_{4} - V_{5}|) \quad \times \frac{|V_{4} - V_{5}|}{R_{L1}} + (PV_{CC1} - |V_{6} - V_{7}|) \quad \times \frac{|V_{6} - V_{7}|}{R_{L2}} \\ &+ (PV_{CC2} - |V_{8} - V_{9}|) \quad \times \frac{|V_{8} - V_{9}|}{R_{L3}} + (PV_{CC2} - |V_{10} - V_{11}|) \quad \times \frac{|V_{10} - V_{11}|}{R_{L4}} \end{split}$$

(4) Dissipation increase (ΔP_S) inside the IC (signal block supplied from Pin15) caused by loads R_{L1} , R_{L2} , R_{L3} and R_{L4} is almost as follows :

$$\begin{split} \Delta P_{\rm S} = &3 \left\{ \frac{V_1}{R_1} \left(2SV_{\rm CC} + |V_4 - V_5| \right) + \frac{V_2}{R_2} \left(2SV_{\rm CC} + |V_6 - V_7| \right) \\ &+ \frac{V_3}{R_3} \left(2SV_{\rm CC} + |V_8 - V_9| \right) + \frac{V_4}{R_4} \left(2SV_{\rm CC} + |V_{10} - V_{11}| \right) \end{split} \right\} \end{split}$$

(5) Dissipation increase inside the IC during driver running is $\Delta P_d + \Delta P_s$.

(6) Inside loss under no load (P_{d1}) is almost as follows :

$$P_{d1} = SV_{CC} \times I_{SVCC} + PV_{CC1} \times I_{PVCC1} + PV_{CC2} \times I_{PVCC2}$$

(7) Entire IC inside loss (P_d) is almost as follows :

$$P_d = P_{d1} + \Delta P_d + \Delta P_S$$