
VR Series™ Programmer's Guide

~embly Language

November 1995

NEC

MIPS Assembly Language Programmer's Guide

November 1995
Document No. 50776

About This Book

This book Jescribes the assembly language supported by the
RISCompiler system, its syntax rules, and how to write some
assembly programs. For information about assembling and linking a
program written in assembly language, see the MIPS RISCompiler and
C Programmer's Guide.

The assembler converts assembly language statements into machine
code. In most assembly languages, each instruction corresponds to a
single machine instruction; however, some assembly language
instructions can generate several machine instructions. This feature
results in assembly programs that can run without modification on
future machines, which might have different machine instructions.
See Appendix B for more infonnation about assembler instructions
that generate multiple machine instructions.

Who Should Read This Book?

This book assumes that you are an experienced assembly language
programmer.

The assembler exists primarily to produce object modules from the
assembly instructions that the C, Fortran 77, and Pascal compilers
generate. It therefore lacks many functions normally present in
assemblers. Therefore, we recommend that you use the assembler
only when you need to:

• Maximize the efficiency of a routine, which might not be
possible in C, Fortran 77, Pascal, or another high-level
language-for example, to write low-level 1/0 drivers.

iii

Preface

• Access machine functions unavailable from high-level
languages or satisfy special constraints such as restricted
register usage.

• Change the operating system.

• Change the compiler system.

What Does This Book Cover?

iv

This book has these chapters:

Chapter I-Registers describes the format for the general
registers, the special registers, and the floating point registers.

Chapter 2-Addressing describes how addressing works.

Chapter 3-Exceptions describes exceptions you might
encounter with assembly programs.

Chapter 4-Lexical Conventions describes the lexical
conventions that the assembler foJlows.

Chapter S-lnstruction Set describes the main processor's
instruction set, including notation, load and store instructions,
computational instructions, and jump and branch instructions.

Chapter 6-Coprocessor Instruction Set describes the
coprocessor instruction sets.

Chapter 7-Linkage Conventions describes linkage
conventions for all supported high-level languages. It also
discusses memory allocation and register use.

Chapter 8-Pseudo-Op-Codes describes the assembler's
pseudo-operations (directives).

Chapter 9-0bject File Format provides an overview of the
components comprising the object file and describes the
headers and sections of the object file.

Chapter 10-Symbol Table describes the purpose of the
Symbol Table and the format of entries in the table. This
chapter also lists the symbol table routines that are supplied.

Chapter 11-Execution and Linking Format describes the
Execution and Linking Format (ELF) for object files. This
chapter also describes the components of an elf object file,
symbol table format, global data area, register infomration, and
relocation.

Assembly i.An~uage Programmer's Guide

Chapter 12- Program Loading and Dynamic Linking describes
the object file structures that relate to program execution. This
chapter also describes how the process image is created from
executable files and object files.

Appendix A-Instruction Summaries summarizes all
assembler instructions.

Appendix B-Basic Machine Definition describes instructions
that generate more than one machine instruction.

For More Information
As you use this manual, consult the following book(s):

• RISCompiler a11d C Programmer's Guide
(Order number CMP-01-DOC)

• MIPS RISC Arclzitecture (Order number SYS-02-DOC)

Assembly l.J111guage Programmrr's Guide

Preface

pj Assembly Language Programmer's Guide

Contents

About This Book iii

Who Should Read This Book? ... iii
What Does This Book Cover? .. iv
For More Information

1
Registers

Register Format .. 1-1
Special Registers ... 1-5

2
Addressing

Address Formats ... 2-2
Address Descriptions .. 2-2

3
Exceptions

Main Processor Exceptions .. 3-1
Floating Point Exceptions ... 3-1

4
Lexical Conventions

Tokens .. 4-1
Comments .. 4-2
Identifiers .. 4-2
Constants ... 4-2

Scalar Constants .. 4-3

Assembly um~ua}!r Programmer's Guide 1'i i

Floating Point Constants .. 4-3
String Constants ... 4-4

Statements ... 4-6
Label Definitions .. 4-6
Null Statements .. 4-6
Keyword Statements ... 4-7

Expressions .. 4-7
Precedence ... 4-7 _
Expression Operators ... 4-8
Data Types .. 4-8
Type Propagation in Expressions .. 4-10

5
Instruction Set

lnstn1ction Classes : ... 5-1
Reorganization Constraints and Rules ... 5-2
Instn1ction Notation .. 5-2
Load and Store Instructions.. 5-3

Load and Store Formats ... 5-3
Load Instruction Descriptions ... 5-4
Store Instruction Descriptions .. 5-7

Computational Instructions .. 5-9
Computational Formats ... 5-9
Computational Instruction Descriptions ~ 5-11

Jump and Branch Instructions ... 5-17
Jump and Branch Formats .. 5-17
Jump and Branch Instruction Descriptions 5-19

Special Instructions .. 5-23
Special Formats .. 5-23
Special Instruction Descriptions ... 5-24

Coprocessor Interface Instructions .. 5-25
Coprocessor Interface Formats ... 5-25
Coprocessor Interface Instruction Descriptions 5-26

6
Coprocessor Instruction Set

Instruction Notation ... 6-1
Floating Point Instructions .. 6-2

Floating Ptlint Formats ... 6-2

viii Assembly Lnn>:uagc Programmer's Guide

Floating Point Load and Store Formats 6-3
Floating Point Load and Store Descriptions 6-4
Floating Point Computational Formats 6-4
Floating Point Computational Instruction Descriptions 6-7

Floating Point Relational Operations .. 6-8
Floating Point Relational Instruction Formats 6-10
Floating Point Relational Instruction Descriptions 6-12
Floating Point Move Formats ... 6-15
Floating Point Move Instruction Descriptions 6-15

System Control Coprocessor Instructions 6-16
System Control Coprocessor Instruction Formats 6-16
System Control Coprocessor Instruction Descriptions 6-16
Control and Status Register ... 6-18
Floating Point Rounding .. 6-22

7
Linkage Conventions

Introduction .. 7-1
Program Design ... 7-2

Register Use and Linkage ... 7-2
The Stack Frame .. 7-3
The Shape of Data ... 7-8

Examples ... 7-8
Learning by Doing .. 7-12

Calling a High-Level Language Routine 7-12
Calling an Assembly Language Routine 7-14
Memory Allocation ... 7-16

8
Pseudo Op-Codes

9
MIPS Object File Format

Overview .. 9-1
The File Header .. 9-4

File Header Magic Field (f_magic) ... 9-5
Flags (f_flags) ... 9-6

Optional Header .. 9-7
Optional Header Magic Field (magic) 9-8

Assembly Liin>:ua~c Programmer's Guide ix

Section Headers ... 9-9
Section Name (s_name) ... 9-10
Flags (s_flags) .. 9-11
Global Pointer Tables ... 9-12
Shared Library Information .. 9-13

Section Data : ... 9-14
Section Relocation Information ... 9-16

Relocation Table Entry ... 9-16
Symbol Index (r_s·yrnndx) and
Extern Field (r_extem) .. 9-16
Relocation Type fr_type) .. 9-17

Assembler and Link Editor Processing 9-18
Examples .. 9-20

Object Files .. 9-22
Impure Format (OMAGIC) Files .. 9-23
Shared Text (NMAGIC) Files .. 9-24
Demand Paged (ZMAGIC) Files .. 9-25
Target Shared Library (LJBMAGIC) Files 9-27
Objects Using Shared Libraries ... 9-28
Ucode objects ... 9-29
Loading Object Files.: .. 9-29

Archive files ... 9-30
Link Editor Defined Symbols .. 9-30

R\.lntime Procedure Table Symbols ... 9-31

10
Symbol Table

Overview .. 10-2
Format of Symbol Table Entries .. 10-8

Symbolic Header ... 10-8
Line Numbers .. 10-9
Procedure Descriptor Table .. 10-14
Local Symbols ... 10-14
Optimization Symbols ... 10-19
Auxiliary Symbols .. 10-20
File Descriptor Table .. 10-23
External Symbols 10-24

x Assembly La11xuagc Programmer's Guide

11
Execution and Linking Format

Object File Format ... 11-2
ELF Header ... 11-3
Sections ... 11-6

Section Header Table .. 11-6
Section Header .. 11-7
Special Sections ... 11-14
String Tables .. 11-18

ELF Symbol Table ... 11-18
Symbol Type .. 11-20

Symbol Values ... 11-22
Global Data Area .. 11-23
Register Information ... 11-24
Relocation ... 11-25

12
Program Loading and Dynamic Linking

Program Header .. 12-1
Base Address ... 12-4
Segment Permissions .. 12-4
Segment Contents ... 12-5

Program Loading ... 12-6
Dynamic Linking ... 12-9

Program Interpreter .. 12-9
Dynamic Linker ... 12-9
Dynamic Section ... 12-11

Shared Object Dependencies .. : 12-17
Global Offset Table (GOT) .. 12-18

Calling Position Independent Functions 12-20
Symbols .. 12-21
Relocations ... 12-21

Hash table .. 12-22
Initialization and Termination Functions 12-22
Quickstart ... 12-23

Shared Object List ... 12-23
Conflict Section ... 12-24
Ordering ... 12-25

Assembly Language Programmer's Guide xi

A
Instruction Summary

B
Basic Machine Definition

Load and Store Instructions .. B-1
Computational Instructions .. B-2
Branch Instructions .. B-2
Coprocessor Instructions ... B-3
Special Instructions .. B-3

........

xii Assembly La11guaJ.:e Pro~rammer's Guide

Registers

1

This chapter describes the organization of data in memory, and the
naming and usage conventions that the assembler applies to the CPU and
FPU registers. See Chapter 7 for infonnation regarding register use and
linkage.

Register Format

The CPU's byte ordering scheme (or endian issues) affects memory
organization and defines the relationship between address and byte
position of data in memory.

The byte ordering is configurable (configuration occurs during hardware
reset) into either big-endian or little-endian byte ordering. When
configured as a big-endian system, byte 0 is always the most significant
(leftmost) byte. When configured as a little-endian system, byte 0 is
always the least significant (rightmost byte).

Figure 1.1 and Figure 12 illustrate the ordering of bytes within words and
the ordering of halfwords for big and little endian systems.

Assembly Language Programmer's Guide 1-1

Chapter 1

Word

Bit: 31 .••. 24 23 16 15 .•. 8 7 0

byteO byte 1 byte2 byte3

t
si9n& most
significant bits Halfword

Bit: 15 8 7 0

byteO bytet

t
sign& most

significant bits

Figure 1.1 Big-endia11 Byte Ordering

Word

Bit: 31 24 23 16 15 8 7 0

byte3 byte2 byte 1 I byteD

+
sign& most
significant bits

Halfword

Bit: 15 •.. 8 7 0

bytet byteO .,

+
sign & most
significant bits

Figure 1.2 Little-e11dia11 Byte Orderi11g

1-2 Assembly La11guagc Programmer's Guide

Registers

General Registers

The CPU has thirty-two 32-bit registers. Table 1.1 summarizes the
assembler's usage and conventions and restrictions for these registers. The
assembler reserves all register names; you must tJSe lowercase for the
names. All register names start with a dollar sign($).

The general registers have the names $0 .. $31. By including the file regdef.11
(use #include <regdef.h>) in your program, you can use software names for
some general registers. The operating system and the assembler use the
general registers $1, $26, $27, $28, and $29 for specific purposes.

Note: Attempts to use these general registers in other ways can produce
unexpected results.) If a program uses the names $1, $26, $27, $28, $29 rath
er than the names $at, $kt0, $kt1, $gp, $sp respectively, the assembler is
sues warning messages.

Assembly l.tmguage Programmer's Guide 1-3

Owpter 1

1-4

Table 1.1 General (Integer) Registers

Register Name Software Name
(from regdef.h)

Use and Linkage

$0

Sat

$2 .• $3

$4 .. $7

$8 .. $15

$16 .. $23

$24 .. $25

$26 .. $27 or
$kt0 .. $kt1

$28 or $gp

$29 or $sp

$30 or $fp

$31

vO-v1

aO-a3

t0-t7

sO-s7

t8-t9

k0-k1

gp

sp

fp

ra

Always has the value o.
Reserved for the assembler.

Used for expression evaluations and to hold
the integer type function results. Also used
.to pass the static link when calling nested
procedures.

Used to pass the first 4 words oi integer
type actual arguments, their values are
not preserved across procedure calls.

Temporary registers used for expression evalu-1
ations; their values aren't preserved across I
procedure calls. 1

Saved registers. Their values must be pre
served across procedure calls.

I

Temporary registers used for expression evalu-1
ations; their values aren't preserved across I
procedure calls. I

Reserved for the operating system kernel.

Contains the global pointer.

Contains the stack pointer.

Contains the frame pointer (if needed);
otherwise a saved register (like sO-s7).

Contains the return address and used
for expression evaluation.

Note: General register $0 always contains the value 0. All other general
registers are equivalent, except that general register $31 also serves as the

Assembly Language Programmer's Guide

Registers

implicit link register for jump and link instructions. See Chapter 7 for a de
scription of register assignments.

Special Registers

The CPU defines three 32 bit special registers: PC (program counter), HI
and LO. The HI and LO special registers hold the results of the
multiplication (mult and multu) and division (div and divu) instructions.

You usually do not need to refer explicitly to these special registers;
instructions that use the special registers refer to them automatically.

Table 1.2 Special Registers

Name

PC

HI

LO

Description

Program Counter.

Multiply/Divide special register holds the most significant
32 bits of multiply, remainder of divide.

Multiply/Divide special register holds the least significant
32 bits of multiply, quotient of divide.

Floating Point Registers

The FPU has sixteen floating point registers. Each register can hold either
a single-precision (32 bit) or double-precision (64 bit) value. All references
to these registers use an even register number (e.g., $f4). Table 1.3
summarizes the assembler's usage conventions and restrictions for these
registers.

Table 1.3 Floating Point Registers

Register Name Use and Linkage

$f0 .. f2 Used to hold floating-point type function results ($10) and /
complex type function results ($f0 has the real part, $12 ,,
has the imaginary part.)

$f4 .. f10 Temporary registers, used for expression evaluation, whose
values are not preserved across procedure calls.

$f12 .. $f14 Used to pass the first two single or double precision actual
arguments, whose values are not preserved across
procedure calls.

$f16 .. $f18

$f20 .. $f30

Temporary registers, used for expression evaluation, whose
values are not preserved across procedure calls.

Saved registers, whose values must be preserved across
procedure calls. ,

Assembly Language Programmer's Guide 1-5

Chapter 1

..

1-6 Assembly umguagr Programmer's Guide

Addressing

2

This chapter describes the formats that you can use to specify addresses.
The machine uses a byte addressing scheme. Access to halfwords re
quires alignment on even byte boundaries, and access to words requires
alignment on byte boundaries that are divisible by four. Any attempt to
address a data item that does not have the proper alignment causes an
alignment exception.

The unaligned assembler load and store instructions may generate multi
ple machine language instructions. They do not raise alignment excep
tions.

These instructions load and store unaligned data:

• Load word left Owl)

• Load word right (lwr)

• Store word left (swl)

• Store word right (swr)

• Unaligned load word (ulw)

• Unaligned load halfword (ulh)

• Unaligned load halfword unsigned (ulhu)

• Unaligned store word (usw)

• Unaligned store halfword (ush)

These instructions load and store aligned data

• Load word (lw)

• Load halfword (lh)

• Load halfword unsigned (lhu)

Assembly umguagc Programmer's Guide 2-1

Chapter 2

• Load byte (lb)

• Load byte unsigned (lbu)

• Store word (sw)

• Store halfword (sh)

• Store byte (sb)

Address Formats

The assembler accepts these formats for addresses:

Table 2.1: Address Formats

Format Address

(base register) Base address (zero
Offset assumed).

expression Absolute address.

expression (base register) Based address.

relocatable-symbol Relocatable address.

relocatable-symbol t expression Relocatable address.

relocatable-symbol t expression (index register) Indexed relocatable
address.

Address Descriptions

2-2

The assembler accepts any combination of the constants and operations de-
scribed in this chapter for expressions in address descriptions.

Assembly Language Programmer's Guide

Addressing

Table 2.2: Assembler Addresses

Expression

(base-register)

expression

expression (base-register)

relocatable-symbol

relocatable-symbol + expression

relocatable-symbol
(index register)

relocatable ± expression
(index register)

Address Description

Specifies an indexed address, which assumes a zero off
set. The base-register's contents specify the address.

Specifies an absolute address. The assembler generates
the most locally efficient code for referencing a value at the
specified address.

Specifies a based address. To get the address, the ma
chine adds the value of the expression to the contents of
the base-register.

Specifies a relocatable address. The assembler generates
the necessary instruction(s) to address the item and gener
ates relocatable information for the link editor.

Specifies a relocatable address. To get the address, the
assembler adds or subtracts the value of the expression,
which has an absolute value, from the relocatable symbol.
The assembler generates the necessary instruction(s) to :
address the item and generates relocatable information for I
the link editor. If the symbol name does not appear as a
label anywhere in the assembly, the assembler assumes !

that the symbol is external. j

Specifies an indexed relocatable address. To get the ad- j

dress, ttie machine adds the index-register to the relocat- j

able symbol's address. The assembler generates the nec-
1

essary instruction(s) to address the item and generates re
locatable information for the link editor. If the symbol name
does not appear as a label anywhere in the assembly, the
assembler assumes that the symbol is external.

Specifies an indexed relocatable address. To get the ad
dress, the assembler adds or subtracts the relocatable
symbol, the expression, and the contents of the index-reg-·
ister. The assembler generates the necessary instruc
tion(s) to address the item and generates relocation infor
mation for the link editor. If the symbol does not appear as
a label anywhere in the assembly, the assembler assumes
that the symbol is external.

Assembly Language Programmer's Guide 2-3

GUlpter 2

2-4 Assembly Language Programmer's Guide

Exceptions

3

This chapter describes the exceptions that you can encounter while run
ning assembly programs. The machine detects some exceptions directly,
and the assembler inserts specific tests that signal other exceptions. This
chapter lists only those exceptions that occur frequently.

Main Processor Exceptions

The following exceptions are the most common to the main processor:

• Address error exceptions, which occur when the machine references
a data item that is not on its proper memory alignment or when an
address is invalid for the executing process.

• Overflow exceptions, which occur when arithmetic operations
compute signed values and the destination lacks the precision to
store the result.

• Bus exceptions, which occur when an address is·invalid for the
executing process.

• Divide-by-zero exceptions, which occur when a divisor is zero.

Floating Point Exceptions

The following are the most common floating point exceptions:

• Invalid operation exceptions which include:

• Magnitude subtraction of infinities, for example: -1.

• Multiplication of 0 by 1 with any signs.

• Division of 0/0 or 1 /1 with any signs.

Assembly La118uogc Programmer's Guide 3-1

Chapter3

3-2

• Conversion of a binary floating-point number to an integer
format when an overflow or the operand value for the infinity
or NaN precludes a faithful representation in the format (see
Chapter4).

• Comparison of predicates that have unordered operands, and
that involve Greater Than or Less Than without Unordered.

• Any operation on a signaling NaN.

• Divide-by-zero exceptions.

• Overflow exceptions-these occur when a rounded floating point
result exceeds the destination format's largest finite number.

• Underflow exceptions-these occur when a result has lost accuracy
and also when a nonzero result is between 2Emin (2 to the minimum
expressible exponent).

• Inexact exceptions.

Assembly Language Programmer's Guide

Lexical Conventions

4

This chapter discusses lexical conventions for these topics:

• Tokens

• Comments

• Identifiers

• Constants

• Multiple lines per physical line

• Sections and location counters

• Statements

• Expressions.

This chapter uses the following notation to describe syntax:

• I (vertical bar) means "or".

• I) (square brackets) enclose options.

• ± indicates both addition and subtraction operations.

Tokens
The assembler has these tokens:

• Identifiers

• Constants

• Operators

Assembly Language Programmer's Guide 4-1

Chapter4

Comments

Identifiers

Constants

4-2

The assembler lets you put blank characters and tab characters anywhere
between tokens; however, it does not allow these characters within tokens
(except for character constants). A blank or tab must separate adjacent
identifiers or constants that are not otherwise separated.

The pound sign character(#) introduces a comment. Comments that start
with a# extend through the end of the line on which they appear. You can
also use C-language notation r ... "/ to delimit comments.

The assembler uses cpp (the C language preprocessor) to preprocess assem
bler code. Because cpp interprets #s in the first column as pragmas (com
piler directives), do not start a # comment in the first column.

An identifier consists of a case-sensitive sequence of alphanumeric charac
ters, including these:

• . (period)

• _ (underscore)

• $ (dollar sign)

Identifiers can be up to 31 characters long, and the first character cannot be
numeric.

If an identifier is not defined to the assembler (only referenced), the assem
bler assumes that the identifier is an external symbol. The assembler treats
the identifier like a .glob/ pseudo-operation (see Chapter 8). If the identifier
is defined to the assembler and the identifier has not been specified as glo
bal, the assembler assumes that the identifier is a local symbol.

The assembler has these constants:

• Scalar constants

• Floating point constants

• String constants

Assembly l..Jmguagc Programmer's Guide

Lexical Conventions

Scalar Constants

The assembler interprets all scalar constants as twos complement num
bers. Scalar constants can be any of the digits 0123456789abcdefABCDEF.

Scalar constants can be one of these constants:

• Decimal constants, which consist of a sequence of decimal digits
without a leading zero .

• Hexadecimal constants, which consist of the characters Ox (or OX)
followed by a sequence of digits.

• Octal constants, which consist of a leading zero followed by a
sequence of digits in the range 0 .. 7.

Floating Point Constants

Floating point constants can appear only in .float and .double pseudo-oper
ations (directives), see Chapter 8, and in the floating point Load Immedi
ate instructions, see Chapter 6. Floating point constants have this format:

+dl (. d2] [e I E+d3]

Where:

• d1 is written as a decimal integer and denotes the integral part of the
floating point value.

• d2 is written as a decimal integer and denotes the fractional part of
the floating point value.

• d3 is written as a decimal integer and denotes a power of 10.

• The"+" symbol is optional.

For example:

21.73E-3

represents the number .02173 .

. float and .double directives may optionally use hexadecimal floating point
constants instead of decimal ones. A hexadecimal floating point constant
consists of: .

<+ or -> Ox <l or 0 or nothing> . <hex digits> H Ox <hex digits>

The assembler places the first set of hex digits (excluding the 0or1 preced
ing the decimal point) in the mantissa field of the floating point format
without attempting to normalize it. It stores the second set of hex digits
into the exponent field without biasing them. It checks that the exponent
is appropriate if the mantissa appears to be denormalized. Hexadecimal
floating point constants are useful for generating IEEE special symbols,
and for writing hardware diagnostics.

Assembly Language Programmer's Guide 4-3

Chaptcr4

For example, either of the following generates a single-precision "1.0":

.float l.Oe+O

.float Oxl.Oh0x7f

String Constants

4-4

String constants begin and end with double quotation marks (").

The assembler observes C language backslash conventions. For octal nota
tion, the backslash conventions require three characters when the next
character could be confused with the octal number. For hexadecimal nota
tion, the backslash conventions require two characters when the next char-

. acter could be confused with the hexadecimal number (i.e., use a 0 for the
first character of a single character hex number).

The assembler follows the backslash conventions shown in Table 4.1:

Table 4.1: Backslasl1 Co11ve11tio11s

Convention Meaning 1
I

\a Alert (Ox07).
i

\b Backspace (OxOB).
\f Form feed (OxOc).
\n Newline (OxOa).
\r Carriage return (OxOd).
\t horizontal tab {Ox09).
\v Vertical feed (OxOb).

\\ Backslash (Ox5c).

\" Quotation mark (Ox22).
\' Single quote (Ox27).
\000 Character whose octal value is 000.
\Xnn Character whose hexadecimal value is nn.

Assembly Language Programmer's Guide

Lexical Conventions

Multiple Lines Per Physical Line

You can include multiple statements on the same line by separating the
statements with semicolons. The assembler does not recognize semicolons
as separators when they follow comment symbols(# or/").

Sections and Location Counters

Assembled code and data fall in one of the sections shown in Figure 4.1.

r··,

:".~~~ r'- Text section.

. .rdata ~.:.· R d 1 d . ,___ ea -on y ata section.
t ••.•••• - •... - •...•..•••••••••••••••••.•••••. ~

.data
.. ··························-·········--·

.litB ! ~ Data sections.
~ ·····. --·· -~

.lit4

.sdata :,._Small data ~ectio11. addressed
i through register :i>gp .

. sbss :~- Small bss section, addressed
through register $gp.

:~ bss (block started by storage)
.bss i section, which holds zero-

:.J initialized data.

Figure 4.1: Section and location counters

(For more information on section data, see Chapter 9 of this manual.)

The assembler always generates the text section before other sections.
Additions to the text section happen in four-byte units. Each section has
an implicit location counter, which begins at zero and increments by one
for each byte assembled in the section.

Assembly Language Programmer's Cuide 4-5

Owpter4

Statements

The bss section holds zero-initialized data. If a .lcomm pseudo-op defines·
a variable (see Chapter 8), the assembler assigns that variable to the bss
(block started by storage) section or to the sbss (short block started by stor
age) section depending on the variable's size. The default variable size for
sbss is 8 or fewer bytes.

The command line option -G for each compiler (C, Pascal, Fortran 77, or
the assembler), can increase the size of sbss to cover all but extremely large
data items. The link editor issues an error message when the-G value gets
too large. If a -G value is not specified to the compiler, 8 is the default.
Items smaller than, or equal to, the specified size go in sbss. Items greater
than the specified size go in bss.
Because you can address itefns much more quickly through $gp than
through a more general method, put as many items as possible in sdata or
sbss. The size of sdata and sbss combined must not exceed 64K bytes.

E.ach statement consists of an optional label, an operation code, and the op
erand(s). The machine allows these statements:

• Null statements

• Keyword statements

Label Definitions

A label definition consists of an identifier followed by a colon. Label defi
nitions assign the current value and type of the location counter to the
name. An error results when the name is already defined, the assigned val
ue changes the label definition, or both conditions exists.

Label definitions always end with a colon. You can put a label definition
on a line by itself.

A generated label is a single numeric value (1 ... 255). To reference a gener
ated label, put an f{forward) or ab (backward) immediately after the digit.
The reference tells the assembler to look for the nearest generated :abel that
corresponds to the number in the lexically forward or backward direction.

Null Statements

4-6

A null statement is an empty statement that the assembler ignores. Null
statements can have label definitions. For example, this line has three null
statements in it: ·

label: ; ;

Assembly Language Programmer's Guide

Lexical Conve11tio11s

Keyword Statements

Expressions

Precedence

A keyword statement begins with a predefined keyword. The syntax for
the rest of the statement depends on the keyword. All instruction opcodes
are keywords. All other keywords are assembler pseudo-operations (di
rectives).

An expression is a sequence of symbols that represent a value. Each ex
pression and its result have data types. The assembler does arithmetic in
twos complement integers with 32 bits of precision. Expressions follow
precedence rules and consist of:

• Operators.

• Identifiers.

• Constants.

Also, you may use a single character string in place of an integer within an
expression. Thus:

.byte •aw ; .word Naw+Ox19

is equivalent to:

.byte Ox61 ; .word Ox7a

Unless parentheses enforce precedence, the assembler evaluates all opera
tors of the same precedence strictly from left to right. Because parentheses
also designate index-registers, ambiguity can arise from parentheses in ex
pressions. To resolve this ambiguity, put a unary+ in front of parentheses
in expressions.
The assembler has three precedence levels, which are listed here from low
est to highest precedence:

least binding,
lowest precedence:

most binding
highest precedence:

binary +. -

binary •• 1. %, <<, >>, "· &, I
unary -, +, ...

Note: The assembler's precedence scheme differs from that of the C lan
guage.

Assembly Ltmguage Programmer's Guide 4-7

Chapter4

Expression Operators

Data Types

4·8

For expressions, you can rely on the precedence rules, or you can group ex
pressions with parentheses. The assembler has these operators:

Figure 42: Expression Operators

Operator Meaning

+ Addition.

- Subtraction.

* Multiplication.

I Division.

% Remainder.

<< Shift Left.

>> Shift Right (sign NOT extended).

/\ Bitwise EXCLUSIVE OR.

& Bitwise AND.

I Bitwise OR.

- Minus (unary).

+ Identity (unary).

- Complement.

The assembler manipulates several types of expressions. Each symbol you
reference or define belongs to one of the categories shown in Table 4.2:

Assembly La11xuagc Programmer's Guide

Lexie.al Conventio11s

Table 4.2: Data Types

Type Description
undefined Any symbol that is referenced but not defined becomes global undefined, and

this module will attempt to import it. The assembler uses 32-bit addressing
to access these symbols. (Declaring such a symbol in a .glob/ pseudo-op
merely makes its status clearer).

sundefined A symbol defined by a .extern pseudo-op becomes global small undefined if
its size is greater than zero but less than the number of bytes specified by the
-G option on the command line (which defaults to 8). The linker places these
symbols within a 64k byte region pointed to by the Sgp register, so that the
assembler can use economical 16-bit addressing to access them.

absolute A constant defined in an"=" expression.

text The text section contains the program's instructions, which are not modifiable
during execution. Any symbol defined while the .text pseudo-op is in effect be-
longs to the text section.

data The data section contains memory which the linker can initialize to nonzero val-
ues before your program begins to execute. Any symbol defined while the
.data pseudo-op is in effect belongs to the data section. The assembler uses
32-bit addressing to access these symbols.

sdata This category is similar to data, except that defining a symbol while the .sdata
("small data1 pseudo-op is in effect causes the linker to place it within a 64k
byte region pointed to by the Sgp register, so that the assembler can use eco-
nomical 16-bit addressing to access it.

rdata Any symbol defined while the .rdata pseudo-op is in effect belongs to this
category, which is similar to data, but may not be modified during execution.

bss and The bss and sbss sections consist of memory which the kernel loader initializes
sbss to zero before your program begins to execute. Any symbol defined in a .comm

or ./comm pseudo-op belongs to these sections (except that a .data, .sdata, or
.rdata pseudo-op can override a .comm directive). If its size is less than the
number of bytes specified by the-G option on the command Hne (which defaults
to 8), it belongs to sbss ("small bss"), and the linker places it within a 64k byte
region pointed to by the Sgp register so that the assembler can use economical
16-bit addressing to access it. Otherwise, it belongs to bss and the assembler
uses 32-bit addressing.
Local symbols in bss or sbss defined by ./comm are allocated memory by the
assembler; global symbols are allocated memory by the link editor; and symbols
defined by .comm are overlaid upon like-named symbols (in the fashion of For-
tran "COMMON" blocks) by the link editor.

Assembly LJ111guage Programmer's Guide 4-9

Clzapter4

Symbols in the undefined and small undefined categories are always
global (that is, they are visible to the link editor and can be shared with
other modules of your program). Symbols in the absolute, text, data, sdata,
rdata, bss, and sbss categories are local unless declared in a .globl pseudcr
op.

Type Propagation in Expressions

4-10

When expression operators combine expression operands, the result's type
depends on the types of the operands and on the operator. Expressions fol
low these type propagation rules:

• If an operand is undefined, the result is undefined.

• If both operands are absolute, the result is absolute.

• If the operator is + and the first operand refers to a relocatable text
section, data-section, bss-section, or an undefined external, the
result has the postulated type and the other operand must be
absolute.

• If the operator is - and the first operand refers to a relocatable text
section, data-section, or bss-section symbol, the second operand can
be absolute (if it previously defined) and the result has the first
operand's type; or the second operand can have the same type as the
first operand and the result is absolute. If the first operand is
external undefined, the second operand must be absolute.

• The operators•, I, 3 , << , >> , -, " , & , and I apply only to
absolute symbols.

Assembly I..a11guage Programmer's Guide

Instruction Set

5

This chapter describes instruction notation and discusses assembler
instructions for the main processor. Chapter 6 describes coprocessor
notation and instructions.

Instruction Classes

The assembler has these classes of instructions for the main processor:

• Load and Store Instructions. These instructions load immediate
values and move data between memory and general registers.

• Computational Instructions. These instructions do arithmetic and
logical operations for values in registers.

• Jump and Branch Instructions. These instructions change program
control flow.

• Coprocessor Interface. These instructions provide standard
interfaces to the coprocessors.

• Special Instructions.These instructions do miscellaneous tasks.

Assembly Language Programmer's Guide 5-1

Chapter 5

Reorganization Constraints and Rules

To maximize performance, the goal of RISC designs is to achieve an
execution rate of one machine cycle per instruction. In writing assembly
language instructions, you must be awa-re of the rules to achieve this goal.
This information is given in MIPS RISC Architecture (published by Prentice
Hall). You should refer to the following sections in this book for more
information:

Chapter

1
1
1
1
3
3
3
c

Section Title

Cycles/Instruction
Instruction Pipelines
Instruction Operation Time
Instruction Access Time
The Delayed Instruction Slot
Delayed Loads
Delayed Jumps and Branches
Filling the Branch Delay Slot

Refer also to Figure 7.4 FPA Instruction Execution Times in Chapter 7 of
the same book.

Instruction Notation

The tables in this chapter list the assembler format for each load, store,
computational, jump, branch, coprocessor, and special instruction. The
format consists of an op-code and a list of operand formats. The tables list
groups of closely related instructions; for those instructions, you can use
any op-code with any specified operand.

Operands can take any of these formats:

• Memory references. For example, a relocatable symbol+/- an
expression(register).

• Expressions (for immediate values).

• Two or three operands. For example, add $3 ,$4 is the same as add
$3,$3,$4.

5-2 Assembly Language Programmer's Guide

Instruction Set

Load and Store Instructions
The machine has general-purpose load and store instructions.

Load and Store Formats
The operands in Table 5.1 have the following meanings:

Operand Description

destination The destination register.
address A symbolic expression (see Chapter 2).
source The source register.
expression An absolute value.

Table 5.1: Load and Store Formats

Description Op-code Operands

Load Address la destination, address
Load Byte lb
Load Byte Unsigned lbu
Load Halfword lh
Load Halfword Unsigned lhu
Load Linked* II
Load Word lw
Load Word Left lwl
Load Word Right lwr
Load Double Id
Unaligned Load HaHword ulh
Unaligned Load Halfword Unsigned ulhu
Unaligned Load Word ulw

Load Immediate Ii destination, expression
Load Upper Immediate lui

Store Byte Sb source, address
Store Conditional* SC
Store Double sd
Store Halfword sh
Store Word Left swl
Store Word Right swr
Store Word SW
Unaligned Store Halfword ush
Unaligned Store Word usw

• Not valid in mips 1 architectures.

Assembly l.Jmguage Programmer's Guide 5-3

Chapter 5

Load Instruction Descriptions
For all machine load instructions, the effective address is the 32-bit
twos-complement sum of the contents of the index-register and the
(sig~xtended) 16-bit offset. Instructions that have symbolic labels imply
an index-register, which the assembler determine~. The assembler
supports additional load instructions, which can produce multiple
machine instructions.

Note: Load instructions can generate many code sequences for which the
link editor must fix the address by resolving external data items.

Table 5.2: Load Instruction Descriptio11s

Instruction Name Description

Load Address (fa) Loads the destination register with the effective address of the
specified data item.

Load Byte (lb) Loads the least significant byte of the destination register with the
contents of the byte that is at the memory location specified by the
effective address. The machine treats the loaded byte as a signed
value: bit seven is extended to fill the th~ee most significant bytes.

Load Byte Loads the feast significant byte of the destination register with the
Unsigned (fbu) contents of the byte that is at the memory location specified by the

effective address. Because the machine treats the loaded byte as
an unsigned value, it fills the three most significant bytes of the
destination register with zeros.

Load Double (Id) Id is a machine instructon in the mips3 architecture.

For the -mips3 option:

Loads the destination register with the contents of the double
word thta is at the memory location. The machine replaces all
bytes of the register with the contents of the loaded double word.
The machine signals an address error exception when the
effective address is not divisible by eight.

For the -mips1 (default] and -mips2 option: .
Loads the register pair (destination and destination + 1) with the
two successive words specified by the address. The destination
register must be the even register of the pair. When the address
is not on a word boundary, the machine signals an address error
exception.
Note: This is retained for use with the -mips1 and -mips2 options
to provide backward compatibility only.

5-4 Assembly Language Programmer's Guide

Instruction Set

Table 5.2: Load Instruction Descriptions (continued)

Instruction Name Description

Load Halfword (lh) Loads the two least significant bytes of the c!astination register
with the contents of the halfword that is at the memory location
specified by the effective address. The machine treats the loaded
halfword as a signed value. If the effective address is not even,
the machine signals an address error exception.

Load Halfword Loads the least significant bits of the destination register with the
Unsigned (lhu) contents of the halfword that is at the memory location specified

by the effective address. Because the machine treats the loaded
halfword as an unsigned value, it fills the two most significant
bytes of the destination register with zeros. If the effective
address is not even, the machine signals an address error

I
exception.

Load Immediate (Ii) Loads the destination register with the value of an expression that
can be computed at assembly time.
Note: Load Immediate can generate any efficient code sequence
to put a desired value in the register.

Load Linked (Ii) Loads the de~tination register with the contents of the word that is
at the memory location. This instruction implicitly perfomrs a
SYNC operation; all loads and stores to shared memory fetched
prior to the II must access memory before the II, and loads and
stores to shared memroy fetched subsequent to the II must access 1
memory after the II. Load Linked and Store Conditional can be use •
to automically update memory locations.
This instruction is not valid in the mips 1 architectures. The
machine signals an address exception when the effective address
is not divisible by four.

Load Upper Loads the most significant half of a register with the expression's
Immediate (lui) value. The machine fills the least significant half of the register

with zeros. The expression's value must be in the range
-32768 ... 65535 .

.

Assrmbly LA11guagc Programmer's Guide 5-5

G111pter 5

Table 5.2: Load Instruction Descriptions (continued)

Instruction Name Description

Load Word (lw) Loads the destination register with the contents of the
word that is at the memory location. The machine
replaces all bytes of the register with the contents of the
loaded word.
The machine signals an address error exception when
the effective address is not divisible by four.

Load Word Left (lwl) Loads the sign-that is, Load Word Left loads the
destination register with the most significant bytes of
the word specified by the effective address. The
effective address must specify the byte containing the
sign. In a big-endian machine, the effective address
specifies the lowest numbered byte, and in a littl&-
endian machine the effective address specifies the
highest numbered byte.
Only the bytes which share the same aligned word in
memory are merged into the destination register.

Load Word Right (lwr) Loads the lowest precision bytes-that is, Load Word
Right loads the destination register with the least
significant bytes of the word specified by the effective
address. The effective address must specify the byte
containing the least significant bits. In a big-endian
machine, the effective address specifies the highest
numbered byte, and in a little-endian machine the
effective address specifies the lowest numbered byte. I Only the bytes which share the same aligned word in I
memory are merged into the destination register.

Unaligned Load Loads a halfword into the destination register from the
Halfword (ulh) specified address and extends the sign of the halfword.

Unaligned Load Halfword loads a halfword regardless
of the halfword's alignment in memory.

Unaligned Load Loads a halfword into the destination register from the
Halfword Unsigned (ulhu) specified address and zero extends the halfword.

Unaligned Load Halfword Unsigned loads a halfword
regardless of the halfword's alignment in memory.

Unaligned Load Loads a word into the destination register from the
Word (ulw) specified address. Unaligned Load Word loads a word

regardless of the word's alignment in memory.

5·6 Assembly Language Programmer's Guide

Instruction Set

Store Instruction Descriptions
For all machine store instructions, the effective address is the 32-bit twos
complement sum of the contents of the index-register and the (sign
extended) 16-bit offsel The assembler supports additional store
instructions, which can produce multiple machine instructions.
Instructions that have symbolic labels imply an index-register, which the
assembler determines.

Table 5.3: Store Instruction Description

Instruction Name Description

Store Byte (sb) Stores the contents of the source register's least significant
byte in the byte specified by the effective address.

Store Halfword (sh) Stores the two least significant bytes of the source register
in the halfword that is at the memory location specified by
the effective address. The effective address must be
divisible by two, otherwise the machine signals an address
error exception.

Store Word (sw) Stores the contents of a word from the source register in the
memory location specified by the effective address. The
effective address must be divisible by four, otherwise the
machine signals an address error exception.

Store Double (sd) sd is a machine instruction in the mips3 architecture.

For the -mips3 option:

Stores the contents of a double word from the source
I

register in the memory location specified by the effective
address. The effective address must be divisible by eight,
otherwise the machine signals an address error exception.

For the -mips1 [default] and -mips2 options:

Stores the contents of the register pair in successive words,
which the address specifies. The source register must be
the even register of the pari, and the storage address must
be word aligned.
Note: This is retained for use with the -mips1 and -mips2
options to provide backward compatibility only.

Assembly Language Programmer's Guide 5-7

01apter5

Table 5.3: Store Instruction Description (continued)

Instruction Name Description

Store Word Left (swl) Stores the most significant bytes of a word in the memory
location specified by the effective address. The contents of
the word at the memory location, specified by the effective
address, are shifted right so that the leftmost byte of the
unaligned word is in the addressed byte position. The stored
bytes replace the corresponding bytes of the effective
address. The effective address's last two bits determine how
many bytes are involved.

Store Word Stores the least significant bytes of a word in the memory
Right (swr) location specified by the effective address. The contents of

the word at the memory location, specified by the effective
address, are shifted left so that the right byte of the unaligned
word is in the addressed byte position. The stored bytes
replace the corresponding bytes of the effective address.
The effective address's last two bits determine how many
bytes are involved.

Unaligned Store Stores the contents of the two least significant bytes of the
Halfword (ush) source register in a halfword that the address specifies. The

machine does not require alignment for the storage address.

Unaligned Store Stores the contents of the source register in a word specified
Word (usw) by the address. The machine does not require alignment for

the storage address.

I Store Conditional (sc) Stores the contents of a word from the source register into
the memory location specified by the effective address. This
instruction implicitly performs a SYNC operation; all loads
and stores to shared ;memrpy fetched prior to the sc must
access memory before the sc, and laods and stores to
shared memory fetched subsequent to teh sc must access
memory after the sc.
If any other processor or device has modified the physical
address since the time of the previous Load Linked
instruction, or if an RFE or ERET instruction occurs between
the Load Linked and this store instruction, the store fails.
The success or failure of the store operation (as defined
above) is Indicated by the contents of teh source register
after execution of the instruction. A successful store sets it
to 1 ; and failed store sets it to O.
This instruction is not valid in the mips1 architectures. The
machine signals an address exception when the effective
address is not divisible by four.

5-8 Assembly La11guage Programmcr"s Guide

btstruction Set

Computational Instructions
The machine has general-purpose and coprocessor-specific
computational instructions (for example, the floating point coprocessor).
This part of th.? book describes general-purpose computai.ional
instructions.

Computational Formats
In the Table 5.4, operands have the following meanings:

Operand Description

destination/src1 The destination register is
also source register 1.

destination The destination register.

immediate the immediate value.

src1,src2 The source registers.

Table 5.4: Computational btstruction Formats
Description Op-code Operand

Add (with overflow) add destination,src1 ,src2
Add (without overflow) addu destination/src1 ,src2

AND and destination,src1 ,
Divide (signed) div immediate
Divide (unsigned) di vu clestination/src1 ,

EXCLUSIVE OR xor immediate

Multiply mul

Multiply with Overflow mulo
Multiply with Overflow Unsigned mulou
NOT OR nor
OR or
Set Equal seq
Set Greater Sgt
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
Set Greater Unsigned sgtu
Set Less sit
Set Less/Equal sle
Set Less/Equal Unsigned sleu
Set Less Unsigned situ
Set Not Equal sne
Subtract (with overflow) sub
Subtract (without overflow) subu

Assembly Language Programmer's Guide 5-9

Owpter 5

Table 5.4: Computational Instruction Formats (continued)

Description Op-code Operand

Remainder (signed) rem destination,src1, src2
Remainder (unsigned) re mu destination/src1 ,src2
Rotate Left rol destination,src1 ,
Rotate Right ror immediate
Shift Right Arithmetic sra destination/src1,
Shift Left Logical Sil immediate
Shift Right Logical srl

Absolute Value abs destination,src1
Negate (with overflow) neg destination/src1
Negate (without overflow) negu
NOT not
Move move destination,src1

Multiply mutt src1 ,src2
Multiply (unsigned) multu

Trap if Equal teq src1, src2

Trap if not Equal tne src1, immediate

Trap if Less Than tit

Trap if Less than, Unsigned tltu

Trap if Greater Than or Equal tge I
Trap if Greater than or tgeu

J Equal, Unsigned

5-10 Assembly Language Programmer's Guide

Instruction Set

Computational Instruction Descriptions
Table 5.5: Computatio11al lnstrudio11 Descriptions

Instruction Name Description

Absolute Value (abs) Computes the absolute value of the contents of src1
and puts the result in the destination register. If the
value in src1 is-2147483648, the machine signals
an overflow exception.

Add (with overflow) (add) Computes the twos complement sum of two signed
values. This instruction adds the contents of src1 to
the contents of src2, or it can add the contents of src1
to the immediate value. Add (with overflow) puts the
result in the destination register. When the result
cannot be extended as a 32-bit number, the
machine signals an overflow exception.

Add (without overflow) (addu) Computes the twos complement sum of two 32-bit
values. This instruction adds the contents of src1 to
the contents of src2, or it can add the contents of
src1 to the immediate value. Add (without overflow) I puts the result in the destination register. Overflow

i

exceptions never occur.
AND (and) Computes the Logical AND of two values. This

instruction AN Os (bit-wise) the contents of src1 with
the contents of src2, or it can AND the contents of
src1 with the immediate value. The immediate value
is not sign extended. AND puts the result in the

I destination register.
Divide (signed) (div) Computes the quotient of two values. Divide (with I

I

overflow) treats src1 as the dividend. The divisor can
be src2 or the immediate value. The instruction
divides the contents of src1 by the contents of src2,
or it can divide src1 by the immediate value. It puts
the quotient in the destination register. If the divisor
is zero, the machine signals an error and may issue
a break instruction. The div instruction rounds toward
zero. Overflow is signaled when dividing -
2147483648 by-1. The machine may issue a break
instruction for divide-by-zero or for overflow.
Note: The special case

div $0,src1 ,src2

generates the real machine divide instruction and
leaves the result in the hi/lo register. The hi register
contains the remainder and the lo register contains
the quotient. No checking for divide by zero is
performed.

Assembly umguage Programmer's Guide 5-11

01apter 5

Table 55 Computational Instruction Descriptions (continued)

Instruction Name Description

Divide (unsigned) (divu) Computes the quotient of two unsigned 32-bit values .
. Divide (unsigned) treats src1 as the dividen1. The
divisor can be src2 or the immediate value. This
instruction divides the contents of src1 by the contents
of src2, or it can divide the contents of src1 by the
immediate value. Divide (unsigned) puts the quotient in
the destination register. If the divisor is zero, the
machine signals an exception and may issue a break
instruction.
See the note for div concerning $0 as a destination.
Overflow exceptions never occur.

EXCLUSIVE OR (xor) Computes the XOR of two values. This instruction
XORs (bit-wise) the contents of src1 with the contents
of src2, or it can XOR the contents of src1 with the
immediate value. The immediate value is not sign
extended. EXCLUSIVE OR puts the result in the
destination register.

Move (move) Moves the contents of src1 to the destination register.

Multiply (mul) Computes the product of two values. This instruction
puts the 32-bit product of src1 and src2, or the 32-bit
product of src1 and the immediate value, in the
destination register. The machine does not report
overflow.
Note: Use mul when you do not need overflow
protection: it's often faster than mulo and mulou. For
multiplication by a constant, the mul instruction
produces faster machine instruction sequences than
mult or multu instructions can produce.

Multiply (mult) Computes the 64-bit product of two 32-bit signed
values. This instruction multiplies the contents of src1
by the contents of src2 and puts the result in the hi and
lo registers (see Chapter 1). No overflow is possible.
Note: The mult instruction is a real machine language
instruction

Multiply Unsigned Computes the product of two unsigned 32-bit values. It
(multu) multiplies the contents ofsrc1 and the contents of src2

and puts the result in the hi and lo registers (see
Chapter 1). No overflow is possible.
Note: The multu instruction is a real machine language
instruction.

5-12 Assembly La11guagc Programmer's Guide

Instruction Set

Table 55 Computational Instruction Descriptions (continued)

Instruction Name Description I
Multiply with Computes the product of two 32-bit signed values.
Overflow (mulo) Multiply with Overflow puts the 32-bit product of src1 and

src2, or the 32-bit product of src1 and the immediate
value, in the destination register. When a overflow
occurs, the machine signals an overflow exception and
may execute a break instruction. Note: For
multiplication by a constant, mulo produces faster
machine instruction sequences than mult or mu/tu can
produce; ho~ever, if you do not need overflow detection,
use the mu/ instruction. It's often faster than mulo.

Multiply with Overflow Computes the product of two 32-bit unsigned values.
Unsigned (mulou) Multiply with Overflow Unsigned puts the 32-bit product of'

src1 and src2, or the product of src1 and the immediate
value, in the destination register. This instruction treats
the multiplier and multiplicand as 32-bit unsigned values.
When an overflow occurs, the machine signals an
overflow exception and may issue an break instruction.
Note: For multiplication by a constant, mulou produces
faster machine instruction sequences than mutt or mu/tu
can produce; however, if you do not need overflow
detection, use the mu/ instruction. Ifs often faster than
mulou.

Negate (with Computes the negative of a value. This instruction
overflow) (neg) negates the contents of src1 and puts the result in the

destination register. If the value in src1 is -2147 483648,
the machine signals an overflow exception.

Negate (without Negates the integer contents of src1 and puts the result in
overflow) (negu) the destination register. The machine does not report

overflows.
NOT (not) Computes the Logical NOT of a value. This instruction

complements (bit-wise) the contents of src1 and puts
the result in the destination register.

NOT OR (nor) Computes the NOT OR of two values. This instruction
combines the the contents of src1 with the contents of
src2 (or the immediate value). NOT OR complements
the result and puts it in the destination register.

OR (or) Computes the Logical OR of two values. This instruction
ORs (bit-wise) the contents of src1 with the contents of
src2, or it can OR the contents of src1 with the
immediate value. The immediate value is not sign
extended. OR puts the result in the destination register.

Assembly 1A11guagc Programmer's Guide 5-13

Owpter5

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name Description

Remainder (signed) Computes the remainder of the division of two unsigned
(rem) 32-bit values. The machine defines the remainder rem(i,j)

as i-ij*div(i,j)) where j . o. Remainder (with overflow) treats
src1 as the dividend. The divisor can be src2 or the
immediate value. This instruction divides the contents of
src1 by the contents of src2, or it can divide the contents of
src1 by the immediate value. It puts the remainder in the
destination register. The rem instruction rounds toward
zero, rather than toward negative infinity. For example,
div(S,-3)-1, and rem(S,-3)•2. For divide-by-zero, the
machine signals an error and may issue a break
instruction.

Remainder Computes the remainder of the division of two unsigned
(unsigned) (remu) 32-bit values. The machine defines the remainder rem(i,j)

as i-(j*div{i,j)) where j · 0. Remainder (unsigned) treats
src1 as the dividend. The divisor can be src2 or the
immediate value. This instruction divides the contents of
src1 by the contents of src2, or it can divide the contents of
src1 by the immediate value. Remainder {unsigned) puts
the remainder in the destination register. For divide by
zero, the machine signals an error and may issue a break
instruction.

Rotate Left (rol) Rotates the contents of a register left (toward the sign bit).
This instruction inserts in the least significant bit any bits
that were shifted out of the sign bit. The contents of src1
specify the value to shift, and the contents of src2 (or the
immediate value) specify the amount to shift. Rotateleft
puts the result in the destination register. If src2 (or the
immediate value) is greater than 31, src1 shifts by (src2
MOD 32).

Rotate Right (ror) Rotates the contents of a register right (toward the least
significant bit). This instruction inserts in the sign bit any
bits that were shifted out of the least significant bit. The
contents of src1 specify the value to shift, and the the
contents of src2 (or the immediate value) specify the
amount to shift. RotateRight puts the result in the
destination register. If src2 {or the immediate value) is
greater than 32, src1 shifts by src2 MOD 32.

Set Equal (seq) Compares two 32-bit values. If the contents of src1 equal
the contents of src2 (or src1 equals the immediate value)
this instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

5-14 Assembly Language Programmer's Guide

111struction Set

Table 5.5 Computational Instruction Descriptions (continued)
1

Instruction Name Description

Set Greater (sgt) Compares two signed 32-bit values. If the contents of
src1 are greater than the contents of src2 (or src1 is
greater than the immediate value), this instruction sets
the destination register to one; otherwise, it sets the
destination register to zero.

Set Greater/Equal Compares two signed 32-bit values. If the contents of
(sge) src1 are greater than or equal to the contents of src2 (or

src1 is greaterthan or equal to the immediate value), this
instruction sets the destination register to one; otherwise,
it sets the destination register to zero.

Set Greater/Equal Compares two unsigned 32-bit values. If the contents of
Unsigned(sgeu) src1 are greater than or equal to the contents of src2 (or

src1 is greater than or equal to the immediate value), this
instruction sets the destination register to one; otherwise, !

it sets the destination register to zero.
Set Greater Compares two unsigned 32-bit values. If the contents of
Unsigned (sgtu) src1 are greater than the contents of src2 (or src1 is

greater than the immediate value), this instruction sets the
destination register to one; otherwise, it sets the
destination register to zero.

Set Less (sit) Compares two signed 32-bit values. If the contents of
src1 are less than the contents of src2 (or src1 is less than
the immediate value), this instruction sets the destination
register to one; otherwise, it sets the destination register to
zero.

Set Less/Equal (sle) Compares two signed 32-bit values. If the contents of src1
are less than or equal to the contents of src2 (or src1 is less
than or equal to the immediate value), this instruction sets
the destination register to one; otherwise, it sets the
destination register to zero.

Set Less/Equal Compares two unsigned 32-bit values. If the contents of
Unsigned (sleu) src1 are less than or equal to the contents of src2 (or src1

is less than or equal to the immediate value) this instruction
sets the destination register to one; otherwise, it sets the
destination register to zero.

Set Less Compares two unsigned 32-bit values. If the contents of
Unsigned (situ) src1 are less than the contents of src2 (or src1 is less than

the immediate value), this instruction sets the destination
register to one; otherwise, it sets the destination register to
zero.

Assembly Language Programmer's Guide 5-15

Chapter 5

Table 5.5 Computationlll lnstruction Descriptions (continued)

Instruction Name Description

Set Not Compares two 32-bit values. If the contents of scr1 do not
Equal (sne) equal the contents of src2 (or src1 doe" not equal the

immediate value), this instruction sets the destination
register to one; otherwise, it sets the destination register to
zero.

Shift Left Shifts the contents of a register left (toward the sign bit) and
Logical (sll) inserts zeros at the least significant bit. The contents of src1

specify the value to shift, and the contents of src2 or the
immediate value specify the amount to shift. If src2 (or the
immediate value) is greaterthan 31 or less than O, src1 shifts
by src2 MOD 32.

Shift Right Shifts the contents of a register right (toward the least I
Arithmetic (sra) significant bit) and inserts the sign bit at the most significant !

bit. The contents of src1 specify the value to shift, and the I
contents of src2 (or the immediate value) specify the amount I
to shift. If src2 (or the immediate value) is greaterthan 31 or I
less than O, src1 shifts by the result of src2 MOD 32.

I Shift Right Shifts the contents of a register right (toward the least
Logical (srl) significant bit) and inserts zeros at the most significant bit.

I The contents of src1 specify the value to shift, and the
contents of src2 (or the immediate value) specify the amount i
to shift. If src2 (or the immediate value) is greater than 31 i or less than O, src1 shifts by the result of src2 MOD 32. I

I

Subtract (with Computes the twos complement difference for two signed
overflow) (sub)

I
values. This instruction subtracts the contents of src2 from
the contents of src1. or it can subtract the contents of the
immediate from the src1 value. Subtract puts the result in
the destination register. When the true result's sign differs

I

from the destination register's sign, the machine signals an
overflow exception.

Subtract (without Computes the twos complement difference for two
overflow) (subu) 32-bit values. This instruction subtracts the contents of src2

from the contents of src1 , or it can subtract the contents of
the immediate from the src1 value. Subtract (without
overflow) puts the result in the destination register. Overflow
exceptions never happen.

5-16 Assembly Langua~e Programmer's Guide

Instruction Set

Table 55: Computatio11al lnstructio11 Descriptions (co1itinued)

Instruction Name Description

Trap if Equal (teq) Compares two 2-bit values. If the canter.its of src1 equal 1he
contents of src2 (or src1 equals the immediate value), a trap
exception ocx;urs.

Trap if not Equal (tne) Compares two 32-bit values. If the contents of src1 do not
equal the contents of src2 (or src1 does not equal 1he
immediate value), a trap exception occurs.

Trap if Less Than (tit) Compares two signed 32-bit values. If the contents of src1
are less 'than the contents of src2 (or src1 is less 1hanl the
immediate value), a trap exception occurs.

Trap if Less Than Compares two unsigned 32-bit values. If the contents of
Unsigned (tltu) src1 are less than the contents of src2 (or src1 is less 'than

the immediate value), a trap exception occurs.

Trap if Greater than or Compares two signed 32-bit values. If the contents of src1
Equal (tge) are greater thanl the contents of src2 (or src1 is greater than

the immediate value), a trap exception occurs.

Trap if Greaterthan or Compares two unsigned 32-bit values. If the contents of
Equal Unsigned (tgeu) src1 are greaterthant the contents of src2 (or src1 is greater

than the immediate value), a trap exception occurs.

Jump and Branch Instructions
The jump and branch instructions let you change an assembly program's
control flow. This section of the book describes jump and branch
instructions.

Jump and Branch Formats
In Table 5.6 below, the operands have the following meanings:

Operand . Description

address An expression.

src1,src2 The source registers.

target Register containing the target.

label A symbol label.

return Register containing the return address.
immediate An expression with an absolutevalue.

Ass~mbly umguage Programmer's Guide 5-17

Ozapter 5

Table 5.6:]ump and Branclt Instruction Formats

Description Op-code Operand

Jump j address
Jump and Link jal address

target
return.target

Branch on Equal beq src1 ,src2,label
Branch on Greater bgt src1 • immediate.label
Branch on Greater/Equal bge
Branch on Greater/Equal Unsigned bgeu
Branch on Greater Unsigned bgtu
Branch on Less bit
Branch on Less/Equal ble
Branch on Less/Equal Unsigned bleu
Branch on Less Unsigned bltu
Branch on Not Equal bne

Branch on Equal Likely* =I src1 ,src2,label
Branch on Greater Likely* src1, immediate.label

I
Branch on Greater/Equal* bgel
Branch on Greater/Equal Unsigned Likely* bgeul
Branch on Greater Unsigned Likely* bgtul I
Branch on Less Likely* bltl I
Branch on Less/Equal Likely • blel I

I
Branch on Less/Equal Unsigned Likely" bleul
Branch on Less Unsigned Likely* bltul
Branch on Not Equal Likely* bnel J
Branch b label l Branch and Link bal

.. Not valid in mips 1 architecture.

5-18 Assembly La11~uagc Programmer's Guide

Instruction Set

Table 5.6: Jump and Branch Instruction Format

Description Op-code Operand

Branch on Equal to Zero beqz src1,label
Branch on Greater/Equal Zero bgez
Branch on Greater Than Zero bgtz
Branch on Greater or Equatto Zero bgezal
and Link

Branch on Less Than Zero and Link bttzal
Branch on Less/Equal Zero blez
Branch on Less Than Zero bttz
Branch on Not Equal to Zero bnez

Branch on Equal to Zero Likely* beqzl src1,label
Branch on Greater/Equal Zero Likely* bgezl
Branch on Greater Than Zero Likely* bgtzl
Branch on Greater or Equal to Zero bgezall
and Link Likely*
Branch on Less Than Zero and Link Likely* bttzall
Branch on Less/Equal Zero Likely* blezl
Branch on Less Than Zero Likely* bltzl
Branch on Not Equal to Zero Likely* bnezl

*Not valid in mips1 architecture.

Jump and Branch Instruction Descriptions
In the following branch instructions, branch destinations must be defined
in the source being assembled.

Assembly Language Programmer's Guide 5-19

Chapter 5

Table 5.7: Jump and Branch Instruction Descriptions

Instruction Name Description

Branch (b) Branches unconditionally to the specified label.

Branch and Link (bal) Branches unconditionally to the specified label and
puts the return address in general register $31.

Branch on Equal (beq) Branches to the specified label when the contents of
src1 equal the contents of src2, or it can branch when
the contents of src1 equal the immediate value.

Branch on Equal Branches to the specified label when the contents of
to Zero (beqz) src1 equal zero.

Branch on Greater (bgt) Branches to the specified label when the contents of
src1 are greater than the contents of src2, or it can
branch when the contents of src1 are greater than
the immediate value. The comparison treats the
comparands as signed 32-bit values.

I
Branch on Greater/ Branches to the specified label when the contents of
Equal Unsigned (bgeu) src1 are greater than or equal to the contents of src2,

or it can branch when the contents of src1 are greater
than or equal to the immediate value. The
comparison treats the comparands as unsigned 32-
bit values.

Branch on Greater/ Branches to the specified label when the contents of I
Equal Zero (bgez) src1 are greater than or equal to zero.

Branch on Greater/ Branches to the specified label when the contents of I
Equal Zero and Link src1 are greater than or equal to zero and puts the I
(bgezal) return address in general register $31. When this 1

write is done, it destroys the contents of the register. I
See the MIPS RISC Architecture book for more

Branch on Greater

information. Do not use bgezal $31. I
Branches to the specified label wh~n the contents of I

or Equal (bge) src1 are greater than or equal to the contents of src2,
or it can branch when the contents of src1 are
greater than or equal to the immediate value. The
comparison treats the comparands as signed 32-bit
values.

Branch on Greater Branches to the specified label when the contents of
Than Unsigned (bgtu) src1 are greater than the contents of src2, or it can

branch when the contents of src1 are greater than
the immediate value. The comparison treats the
comparands as unsigned 32-bit values.

5-20 Assembly Language Programmer's Guide

Instruction Set

Table 5.7 Jump and Branch Instruction Descriptions (continued)

Instruction Name Description

Branch on ~reater Branches to the specified label when the coritents
Than Zero (bgtz) o1 src1 are greater than zero.

Branch on Less (bit) Branches to the specified label when the contents of
src1 are less than the contents of src2, or it can branch
when the contents of src1 are less than the immediate
value. The comparison treats the comparands as
signed 32-bit values.

Branch on Less/Equal Branches to the specified label when the contents of
Unsigned (bleu) src1 are less than or equal l.o the contents of src2, or it

can branch when the contents of src1 are less than or
equal to the immediate value. The comparison treats
the comparands as unsigned 32-bit values.

Branch on Less/Equal Branches to the specified label when the contents of
Zero (blez) src1 are less than or equal to zero. The program must I define the destination.

I

Branch on Less or Branches to the specified label when the contents of
Equal (ble) src1 are less than or equal to the contents of src2, or it

can branch when the contents of src1 are less than or
equal to the immediate value. The comparison treats
the comparands as signed 32-bit values.

Branch on Less Branches to the specified label when the contents of
Than Unsigned (bltu) src1 are less than the contents of src2, or it can branch

when the contents of src1 are less than the immediate
value. The comparison treats the comparands as
unsigned 32-bit values.

Branch on Less Than Branches to the specified label when the contents of
Zero (bltz) src1 are less than zero. The program must define the

destination.
Branch on Less Than Branches to the specified label when the contents of
Zero and link (bltzal) src1 are less than zero and puts the return address in

general register $31. Because the value is always
stored in register 31, there is a chance of a stored
value being overwritten before it is used. See the
MIPS RISC Architecture book for more information.
Do not use bgezal $31.

Branch on Not Branches to the specified label when the contents of src1
Equal (bne) do not equal the contents of src2, or it can branch when

the contents of src1 do not equal the immediate value.

Branch on Not Equal Branches to the specified label when the contents of
to Zero (bnez) src1 do not equal zero.

Assembly LA11guagc Programmer's Guide 5-21

0111pter 5

Table 5.7 Jump and Branch Instruction Descriptions (continued)

Instruction Name Description

JumpO) Unconditionally jumps to a specified location.
A symbolic address or a general register
specifies the destination. The instruction j $31
returns from the a jal call instruction.

Jump And Link Oal) Unconditionally jumps to a specified location and
puts the return address in a general register. A
symbolic address or a general register specifies
the target location. By default, the return
address is placed in register $31. If you specify
a pair of registers, the first receives the return I
address and the second specifies the target.
The instruction jal procname transfers to j
procname and saves the return address.
For the two-i'egister form of the instruction, the I
target register may not be the same as the :
return-address register. For the one-register

I
form, the target may not be $31.

•Likely Same an the ordinary branch instruction (without i
I

the "Likely"), except in a branch likely instruction, I
I the instruction in the delay slot is nullified if the I

conditional branch is not taken. I
i

Note: The branch likely instructions should be i
used only inside a .set noreorder schedule in an
assembly program. The assembler does not
attempt to schedule the delay slot of a branch
likely instruction.

5-22 Assembly l.Jmgua~r Pro8rammer's Guide

Instruction Set

Special Instructions

The main processor's special instructions do miscellaneous tasks.

Special Formats
In Table 5.8, operands have the following meanings:

Operand Description

register Destination or source register.

breakcode Value that determines the break type.

Table 5.8: Special 11lstructio11 Formats

Description Op-code Operand

Break break breakcode

Exception Return er er
Restore From Exception rte•
Syscall syscall

Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register' mflo
Move To LO Register mtlo

*Not available in R4000. Use the eret instruction.
••Not available in mips1 and mips2 architectures.

Assembly Language Programmer's Guide 5-23

Oiapter 5

Special Instruction Descriptions
Table 5.9: Special Instruction Descriptions

Instruction Name Description

Break (break) Unconditionally transfers control to the exception
handler. The breakcode operand is interpreted by
software conventions.

Exception Return (eret) Returns from an interrupt, exception or error trap.
Similar to a branch or jump insturction, eret executes
the next instruction before taking effect. Use this on
R4000 processor machines in place of rfe.

Move From HI Moves the contents of the hi register to a general
Register (mfhi) purpose register.

Move From LO Moves the contents of the lo register to a general
Register (mflo) purpose register.

Move To HI Moves the contents of a general purpose register to
I Register (mthi) the hi register.
I

Move To LO Moves the contents of a general purpose register to
Register (mtlo) the lo register.

Restore From Restores the previous interrupt callee and user/kernel
J Exception (rfe) state. This instruction can execute only in kernel state

and is unavailable in user mode.

Syscall (syscall) Causes a system call trap. The operating system
interprets the information set in registers to determine
what system call to do.

5-24 Assembly Language Programmer's Guide

l11struction Set

Coprocessor Interface Instructions
The coprocessor interface instructions provide standard ways to access the
machine's coprocessoxs.

Coprocessor Interface Formats
In Table 5.10, the operands have the fo~lowing meanings:

Operand Description

z A coprocessor number in the range 0 ... 3 (2 in mips3).
destination The destination coprocessor register.
dest-gpr The destination general register.
address A symbolic expression.
source A coprocessor register from which values are assigned.
src-gpr A general register from which values are assigned.
operation The coprocessor specific operation.
label A symbolic label.

Table 5.10: Coprocessor Inte1jace Instruction Fonnats

Description OJH:Ode Operand

Load Word Coprocessor z lwcz destination.address
Load Double Coprocessor z* ldcz
Store Word Coprocessor z swcz source, address
Store Double Coprocessor z* sdcz

Move From Coprocessor z mfcz dest-gpr, source
Move To Coprocessor z mtcz src-gpr, destination

Branch Coprocessor z False bczf label
Branch Coprocessor z True bczt
Branch Coprocessor z FalseUkely* bczfl
Branch Coprocessor~ TrueUkely* bcztl
Coprocessor z Operation CZ expression

Control From Coprocessor z cfcz dest-gpr, source
Control To Coprocessor z ctcz src-gpr, destination

*Not valid in mips1 architectures.

Note: You cannot use coprocessor load and store instructions with the
system control coprocessor (cp0).

Assembly umguagc Programmer's Guide 5-25

I

Chapter 5

Coprocessor Interface Instruction Descriptions

5-26

Table 5.11: Coprocessor Interface Instruction Descriptions

Instruction Name

Branch Coprocessor z
True (bczt)

Branch Coprocessor z
False (bczf)

Branch Coprocessor z
True Likely (bcztl)

Branch Coprocessor z
False Likely (bczfl)

1 Control From Coprocessor
z (cfcz)

Control To Coprocessor z
(ctcz)

Coprocessor z
Operation (cz)

Description

Branches to the specified label when the
specified coprocessor asserts a true condition.
The z selects one of the coprocessors. A
previous coprocessor operation sets the
condition.

Branches to the specified label when the
specified coprocessor asserts a false
condition. The z selects one of the
coprocessors. A previous coprocessor
operation sets the condition.

Branches to the specified label when the
specified coprocessor asserts a true condition.
If the conditional branch is not taken, the
instruction inthe branch delay slot is nullified.

1 Branches to the specified label when the
specified coprocessor asserts a false
condition. If the conditional branch is not
taken, the instruction inthe branch delay slot is
nullified.

Stores the contents of the coprocessor control
register specified by the source in the general
register specified by dest-gpr.

Stores the contents of the general register
specified by src-gpr in the coprocessor
control register specified by the destination.

Executes a coprocessor-specific operation on
the specified coprocessor. The z selects one
of four distinct coprocessors.

Note: The branch likely insturcions should be used only within a
.set noreorder block. The assembler does not attempt to schedule
the delay slot of a branch likely instruction.

Assembly Uin~uage Programmer's Guide

Instruction Set

Table 5.11: Coprocessor Interface Instruction Descriptions (continued)

Instruction Name Description

Load Word Coprocessor Loads the destination witn the contents of a word that is
z (lwcz) at the memory location specified by the effective

address. The z selects one of four distinct
coprocessors. Load Word Coprocessor replaces all
register bytes with the contents of the loaded word. If
bits o and 1 of the effective address are not zero, the
machine signals an address exception.

Load Double Loads a doubleword from the memory location specified
Coprocessor z (ldcz) by the effective address and makes the data available to

coprocessor unit z. The manner in which each
coprocessor uses the data is defined by the individual
coprocessor specifications.
This insturction is not valid in mips1 architectures. If any
of the three least significant bits of the effective address
are non-zero, the machine signals an address error

I exception.
I

Move From Coprocessor Stores the contents of the coprocessor register
z (mfcz) specified by the source in the general register specified

by dest-gpr.

Move To Coprocessor z Stores the contents of the general register specified by I
(mtcz) src-gpr in the coprocessor register specified by the I destination. !
Store Word Coprocessor Stores the contents of the coprocessor register in the ! z (swcz) memory location specified by the effective address. !

The z selects one of four distinct coprocessors. If bits o
and 1 of the effective address are not zero, the machine '

signals an address error exception.

Store Double Coprocessor z sources a doubleword, which the
Coprocessor z (sdcz) processor writes the memory location specified by the

effective address. The data to be stored is defined by
the individual coprocessor specifications.
This insturction is not valid in mips1 architecture. If any
of the three least significant bits of the effective address
are non-zero, the machine signals an address error
exception.

Assembly Language Programmer's Guidr 5-27

Chapter 5

5-28 Assembly Language Programmer's Guide

Coprocessor Instruction Set

6

This chapter describes the coprocessor instructions for these coprocessors:

• System control coprocessor (cp0) instructions.

• Floating point coprocessor instructions.

See Chapter 5 for a description of the main processor's instructions and
the coprocessor interface instructions.

Instruction Notation
The tables in this chapter list the assembler format for each coprocessor's
load, store, computational, jump, branch, and special instructions. The
format consists of an op-code and a list of operand formats. The tables list
groups of closely related instructions; for those instructions, you can use
any op-code with any specified operand.

Note: The system control coprocessor instructions do not have operands.
Operands can have any of these formats:

• Memory references-for example a relocatable symbol+/- an
expression(register).

• Expressions (for immediate values).

• Two or three operands-for example, add $3,$4 is the same as add
$3,$3,$4.

The following tenns are used to discuss floating point operations:

• infinite-A value of +1 or -1.

• infinity-A symbolic entity that represents values with magnitudes
greater than the largest value in that format.

Assembly Language Programmer's Guide 6-1

Chapter 6

• ordered-The usual result from a comparison, namely: <,=, or >.

• NaN-Symbolic entities that represent values not otherwise
available in floating point formats. There are two kinds of NaNs.
Quiet NaNs represent unknown or uninitialized values. Signaling
NaNs represent symbolic values and values that are too big or too
precise for the format. Signaling NaNs raise an invalid operation
exception whenever an operation is attempted on them.

• unordered-The condition that results from a floating-point
comparison when one or both operands are NaNs.

Floating Point Instructions

The floating point coprocessor has these classes of instructions:

• Load and Store Instructions. Load values and move data between
memory and coprocessor registers.

• Move Instructions. Move data between registers.

• Computational Instructions. Do arithmetic and logical operations
on values in coprocessor registers.

• Relational Instructions. Compare two floating point values.

A particular floating point instruction may be implemented in hardware,
software, or a combination of hardware and software.

Floating Point Formats

6-2

The formats for the single and double precision flo;iting point con
stants are shown below.

o 1 8 9 31 (big-endian)
,~1~,-8-b-it-s~,--~-2-3-b-im~~--.,

31 30 23 22 o (little-endian)

Single Precision

0 1 1112

52 bits

63 62 52 51
Double Precision

Figure 6-1: Floati11g Point Formats

(big-endian)
63

0
(little-endian)

Assembly lA11guagc Programmer's Guide

Caprocessor Instruction Set

Floating Point Load and Store Formats

Floating point load and store instructions must use even registers. The op
erands in Table 6.1 have the following meanings:

Operand Meaning

destination The destination register.

address Offset (base).

source The source register.

Table 6.1: Floating Point Load and Store Formats

Description Op-code Operand
I

Load Fp I
I

Double l.d destination, address I

Single Ls

Load Immediate Fp

Double li.d destination, floating point constant

Single li.s

Store Fp I
I

Double s.d source, address

Single s.s

Assembly Language Programmer's Guide 6-3

Ozapter6

Floating Point Load and Store Descriptions

Instruction

This part of Chapter 6 groups the instructions by function. Please consult
Table 6.1 for the op-codes.

Table 6.2: Floating Point Load and Store Descriptions

Description

Load Fp Instructions Load eight bytes for double precision and four bytes for sin-
gle precision from the specified effective address into the
destination register, which must be an even register. The
bytes must be word aligned. Note: We recommend that you
use double word alignment for double precision operands.
It is required in the mips2 architecture (R4000 & R6000).

I Store Fp Instructions Stores eight bytes for double precision and four bytes for
single precision from the source floating point register in the

I
destination register, which must be an even register. Note:
We recommend that you use double word alignment for

I
double precision operands. It is required in the mips2 ar-
chitecture (R4000 & R6000).

I

Floating Point Computational Formats

6-4

This part of Chapter6 describes floating point computational instructions.
The operands in Table 6.3 below have the following meaning:

Operand I Meaning

destination The destination register.
source The source register.
gpr General purpose register.

Assembly lA11guagc Programmers Guide

Coprocessor lnstructio11 Set

Table 6.3: Floating Point Computational Instruction Formats

Description OJH:Ode Operand

Absolute Value Fp
Double abs.d destination, src1 Single abs.s

Negate Fp
Double neg.d
Single neg.s

'
Addfp

add.d Double
Single add.s destination, src1 , src2

Divide Fp
div.d Double

Single div.s
Multiply Fp

mul.d Double
Single mul.s

Subtract Fp
Double sub.d

Single sub.s

Convert Source to
Specified Fp Precision

Double to Single Fp cvt.s.d
destination, src1 I Fixed Point to Single Fp cvt.s.w

Single to Double Fp cvt.d.s

j Fixed Point to Double Fp cvt.d.w
Single to Fixed Point Fp cvt.w.s
Double to Fixed Point Fp cvt.w.d

Assembly l.a11guagc Programmer's Guide 6-5

01aptcr6

Table 6.3 Floating Point Computational Instruction Formats (continued)

Description Op-code Operand

Truncate and Round
Operations

Truncate to Single FPi trunc.w.s
Truncate to Double p trunc.w.d

Round to Single Fp round.w.s
Round to Double Fp round.w.d

Ceiling to Double Fp ceil.w.d
Ceiling to Single Fp ceil.w.s

Ceiling to Double Fp, Unsigned ceilu.w.d destination, src, gpr
Ceiling to Single Fp, Unsigned ceilu.w.s

Floor to Double Fp floor.w.d
Floor to Single Fp 1 floor.w.s

Floor to Double Fp, Unsigned flooru.w.d

Floor to Single Fp, Unsigned flooru.w.s

Round to Double Fp, Unsigned roundu.w.d

Round to Single Fp, Unsigned roundu.w.s I
Truncate to Double Fp, Unsigned truncu.w.d

I

Truncate to Single Fp, Unsigned j truncu.w.s

6-6 Assembly La118uage Programmer's Guide

Coprocessor Instruction Set

Floating Point Computational Instruction Descriptions

This part of Chapter 6 groups the instructions by function. Refer to Table
6.3 for the op-code names.

Table 6.4: Floating Point Computational Instruction Descriptions

Instruction

Absolute Value Fp
Instructions

Add Fp Single Instructions

Convert Source to Another
Precision Fp Instructions

Truncate and Round
Instructions

Divide Fp Instructions

Assembly Language Programmer's Guide

Description

Compute the absolute value of the contents c:if src1
and put the specified precision floating point result in
the destination register.

Add the contents of src1 (or the destination) to the
contents of src2 and put the result in the destination
register. When the sum of two operands with oppo
site signs is exactly zero, the sum has a positive sign
for all rounding modes except round toward-1. For
that rounding mode, the sum has a negative sign.

Convert the contents of src1 to the specified preci- ,
sion, round according to the rounding mode, and put i
the result in the destination register. i

The trunc instructions truncate the value in the I I
source floating-point register and put the resulting .
integer in the destination floating-point register, us- ;
ing the third (general-purpose) register to hold a :
temporary value. (This is a macro-instruction.) The
round instructions work like trunc, but round the
floating;>oint value to an integer instead of truncat
ing it.

Compute the quotient of two values. These instruc
tions treat src1 as the dividend and src2 as the divi
sor. Divide Fp instructions divide the contents of
src1 by the contents of src2 and put the result in the
destination register. If the divisor is a zero, the ma
chine signals a error if the divide-by-zero exception
is enabled.

6-7

Chapter 6

l

Table 6.4 Floating Point Computational Instruction Descriptions (continued)

Instruction

Multiply Fp Instructions

Negate FP Instructions

Subtract Fp Instructions

Description

Multiplies the contents of src1 (or the destination)
with the contents of src2 and puts the result in the
destination register.

Compute the negative value of the contents of src1
and put the specified precision floating point result
in the destination register.

Subtract the contents of src2 from the contents of
src1 (or the destination). These instructions put the
result in the destination register. When the differ
ence of two operands with the same signs is exactly
zero, the difference has a positive sign for all round
ing modes except round toward -1. For that round
ing mode, the sum has a negative sign.

Floating Point Rela~ional Operations

6-8

Table 6.5 summarizes the floating point relational instructions. The first
column under Co11ditio11 gives a mnemonic for the condition tested. As the
"branch on true/false" condition can be used to logically negate any con
dition, the second column supplies a mnemonic for the logical negation of
the condition in the first column. This provides a total of 32 possible con
ditions. The four columns under Relations give the result of the comparison
based on each condition. The final column states if an invalid operation is
signaled for each condition.

For example, with an equal condition (EQ mnemonic in the True column),
the logical negation of the condition is not equal (NEQ), and a comparison
that is equal is True for equal and False for greater than, less than, and un
ordered, and no Invalid Operation Exception is given if the relation is un
ordered.

Assembly l.a118uagc Programmer's Guide

Coprocessor I11structio11 Set

Table 65: Floating Point Relational Operators

Condition Relations Invalid

Mnemonic Operation
Greater Less Exception if

True False Than Than Equal Unordered Unordered

F T F F F F no
UN OR F F F T no
EQ NEQ F F T F no
UEQ OLG F F T T no
OLT UGE F T F F no
ULT OGE F T F T no
OLE UGT F T T F no
ULE OGT F T T T no

SF ST F F F F yes
NGLE GLE F F F T yes
SEQ SNE F F T F yes
NGL GL F F T T yes
LT NLT F T F F yes
NGE GE F T F T yes
LE NLE F T T F yes
NGT GT F T T T yes

AssF;mbly Language Programmer's Guide 6-9

Orapter6

The mnemonics in have the following meanings:
F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal

UEQ Unordered or Equal OLG Ordered or Less Thao
or Greater Thao

OLT Ordered Less Than UGE Unordered or Greater
Than or Equal

ULT Unordered or Less OGE Ordered Greater Than
Than

OLE Ordered Less Than UGT Unordered or Greater
or Equal Than

ULE Unorderd or Less OGT Ordered Greater Than
Than or Equal

SF Signaling False ST Signaling True
NGLE Not Greater Than or GLE Greater Than, or

Less Than or Equal Less Than or Equal
SEQ Signaling Equal SNE Signaling Not Equal

NGL Not Greater than or GL Greater Than or Less Than
Less Than

LT Less Than NLT Not Less Than
NGE Not Greater Than GE Greater Than or Equal

or Equal
LE Less Than or Equal NLE Not Less Than or Equal
NG Not Greater Than G Greater Than

To branch on the result of a relational:
/* branching on a compare result */

c.eq.s $fl,$f2 /* compare the single precision values */
belt true/* 1f $fl equals $f2, branch to true */
bclf false /* if $fl does not equal Sf2, branch to */
/* false */

Floating Point Relational Instruction Formats

6-10

In the table below, src1 and src2 refer to the source registers.
Note: These are the most common Compare instructions. The machine pro
vides other Compare instructions for IEEE compatibility.

Assembly Language Programmer's Guide

Coprocessor Instruction Set

Table 6.6: Floating Point Relational Instruction Formats

Description Op-code Operand

Compare F
.

Double c.f.d src1,src2
Single c.f.s

Compare UN
Double c.un.d
Single c.un.s

*Compare EQ
Double c.eq.d
Single

Compare UEQ
c.eq.s

Double c.ueq.d
Single c.ueq.s

Compare OLT
Double c.olt.d
Single c.olt.s

Compare ULT
Double c.ult.d
Single c.ult.s

Compare OLE
-Double c.ole.d
Single c.ole.s

Compare ULE
I Double c.ule.d

Single c.ule.s
Compare SF

Double c.sf.d
Single c.sf.s

I '

Assembly Language Programmer's Guide 6-11

01apter6

Table 6.6 Floating Point Relational Instruction Formats (continued)

Description Op-code Operand

Compare NGLE c.ngle.d
Double

c.ngle.s src1, src2
Single

Compare SEQ c.seq.d Double
Single

c.seq.s

CompareNGL c.ngl.d
Double c.ngl.s
Single

*Compare LT c.lt.d
Double c.lt.s
Single

CompareNGE c.nge.d
Double c.nge.s
Single

*Compare LE
c.le.d Double c.le.s

Single
Compare NGT c.ngt.d

Double c.ngt.s
I Single

I I

Floating Point Relationa• Instruction Descriptions

6-12

This part of Chapter 6 describes the relational instruction descriptions by
function. Refer to Chapter 1 for information regarding registers. Please
consult Table 6.6 for the op-code namt'S.

Assembly Language Pro8rammer's Guide

I!

1.i

!

Coprocessor ll!struction Set

Table 6.7: Floating Point Relational Instruction Descriptions

Instruction

Compare EQ
Instructions

Compare F
Instructions

Compare LE
Instructions

Compare LT
Instructions

Compare NGE
Instructions

Compare NGL
Instructions

Compare NGLE
Instructions

Compare NGT
Instructions

Description

. Compare the contents of src1 with the cont3nts of
src2. If src1 equals src2 a true condition results; oth
erwise, a false condition results. The machine does
not signal.an exception for unordered values.

Compare the contents of src1 with the contents of
src2. These instructions always produce a false con
dition. The machine does not signal an exception for
unordered values.

Compare the contents of src1 with the contents of
src2. If src1 is less than or equal to src2, a true con
dition results; otherwise, a false condition results. The
machine signals an exception for unordered values.

Compare the contents of src1 with the contents of !
src2. If src1 is less than src2, a true condition results; 1

otherwise, a false condition results. The machine sig-

1

,

nals an exception for unordered values.

Compare the contents of src1 with the contents of
src2. If src1 is less than src2 (or the contents are un- i
ordered), a true condition results; otherwise, a false i
condition results. The machine signals an exception i

I
I
l

for unordered values.

Compare the contents of src1 with the contents of src2. '
If src1 equals src2 or the contents are unordered, a j
true condition results; otherwise, a false condition re
sults. The machine signals an exception for unordered I
W~L I

Compare the contents of src1 with the contents of src2. I
If src1 is unordered, a true condition results; otherwise, ·
a false condition results. The machine signals an ex
ception for unordered values.

Compare the contents of src1 with the contents of src2.
If src1 is less than or equal to src2 or the contents are
unordered, a true condition results; otherwise, a false
condition results. The machine signals an exception
for unordered values.

Assembly Language Programmer's Guide 6-13

Olilpter6

Table 6.7: Floating Point Relational Instruction Descriptions (continued)

Instruction Description

Compare OLE Compare the contents of src1 with the contents of
Instructions src2. If src1 is less than or equal to src2, a true condi-

tion results; otherwise, a false condition results. The
machine does not signal an exception for unordered
values.

CompareOLT Compare the contents of src1 with the contents of
Instructions src2. If src1 is less than src2, a true condition results;

otherwise, a false condition results. The machine
does not signal an exception for unordered values.

Compare SEQ Compare the contents of src1 with the contents of
Instructions src2. If src1 equals src2, a true condition results;

otherwise, a false condition results. The machine
signals an exception for unordered values.

Compare SF Compare the contents of src1 with the contents of I
Instructions src2. This always produces a false condition. The

machine signals an exception for unordered values.

Compare ULE Compare the contents of src1 with the contents of
Instructions src2. If src1 is less than or equal to src2 (or src1 is

i unordered). a true condition results; otherwise, a
false condition results. The machine does not signal I

an exception for unordered values. I
Compare UEQ . Compare the contents of src1 with the contents of I Instructions I src2. If src1 equals src2 (or src1 and src2 are unor-

dered), a true condition results; otherwise, a false con- I dition results. The machine does not signal an excep- I tion for unordered values.

Compare ULT Compare the contents of src1 with the contents of src2.
Instructions If src1 is less than src2 (or the contents are unor-

dered), a true condition results; otherwise, a false con-
dition results. The machine does not signal an excep-
tion for unordered values.

Compare UN In- Compare the contents of src1 with the contents of src2.
S\ructions If either src1 or src2 i~ unordered, a true condition re-

suits; otherwise, a false condition results. The machine
does not signal an exception for unordered values.

6-14 Assembly Language Pro~ramn:cr's Guide

Coprocessor Instruction Set

Floating Point Move Formats

The floating point coprocessor's move instructions move data from source
to destination registers (only floating point registers are allowed).

Table 6.8: Floating Point Move Instruction Formats

Description Op-code Operand

Move Fp
mov.d Double destination, src1

Single mov.s

Floating Point Move Instruction Descriptions

This part of Chapter 6 describes the-floating point move instructions.
Please consult Table 6.8 for the op-code names.

Table 6.9: Floating Point Move Instruction Descriptions

Instruction

Move Fp Instructions

Assembly Language Programmer's Guide

Description

Move the double or single precision /
contents of src1 to the destination
register, maintaining the specified
precision.

J

6-15

Orapter6

System Control Coprocessor Instructions

The system control coprocessor (cp0) handles all functions and special and
privileged registers for the virtual memory and exception handling sub
systems. The system control coprocessor translates addresses from a large
virtual address space into the machine's physical memory space. The co
processor uses a translation lookaside buffer (TLB) to translate virtual ad
dresses to physical addresses.

System Control Coprocessor Instruction Formats

These coprocessor system control instructions do not have operands:

Table 6.10: System Control Instruction Formats.

Description Op-code

Cache** cache
Translation Lookaside Buffer Probe I tlbp
Translation Lookaside Buffer Read tlbr
Translation Lookaside Buffer Write Random tlbwr j Translation Lookaside Write Index tlbwi
Synchronize* sync

*Not valid in mips1 architectures.
* Not valid in mips1 and mips2 architectures ..

System Control Coprocessor Instruction Descriptions

6-16

This part of Chapter 6 describes the system control coprocessor
instructions.

Assembly l.A11~ua~e Pro~rammcr's Guide

Coprocessor Instruction Set

Table 6.11: System Control C.oprocessor Instruction Descriptions

Instruction

Cache (cache)

Translation Lookaside
Buffer Probe (tlbp)

Translation Lookaside
Buffer Read (tlbr)

Translation Lookaside

I ButterWrite Random
(tlbwr)

I Translation Lookaside
Buffer Write Index
(tlbwi)

\ Synchronize (sync)

I

Description

Cache is the R4000 instruction to perform cache operations.
The 16-bit offset is sign-extended and added to the contents
of general register base to form a virtual address. The virtual
address is translated to a physical address using the TLB.
The 5-bit sub-opcode ("op") specifies the cache operation for
that address. Part of the virtual address is used to specify
the cache block for the operation. Possible operations in
clude invalidating a cache block, writeback to a secondary
cache or memory, etc.

Probes the translation lookaside butter (TLB) to see if the
TLB has an entry that matches the contents of the EntryHi
register. If a match occurs, the machine loads the Index reg
ister with the number of the entry that matches the EntryHi
register. If no TLB entry matches, the machine sets the
high-order bit of the Index register.

Loads the EntryHi and EntryLo registers with the contents of
the translation lookaside buffer (TLB) entry specified in the
TLB Index register.

Loads the specified translation lookaside buffer (TLB) entry
with the contents of the EntryHi and EntryLo registers. The
contents of the TLB Random register specify the TLB entry to
be loaded.
Loads the specified translation lookaside buffer (TLB) entry
with the contents of the EntryHi and EntryLo registers. The
contents of the TLB Index register specify the TLB entry to be
loaded.
Ensures that all loads and stores fetched before the sync are

completed, before allowing any following loads or stores. Use
of sync to serialize certain memory references may be re-

, quired in multiprocessor environments.
This instruction is not valid in the mips1 architecture.

Assembly Language Programmer's Guide 6-17

0111pter 6

Control and Status Register

31

BITS:

6-18

0

Floating-point coprocessor control register 31 contains status and control
information. It controls the arithmetic rounding mode and the enabling of
user-level traps, and indicates exceptions that occurred in the most recent
ly executed instruction, and any exceptions that may have occurred with
out being trapped.

2423 22

0

18 17 12 11 7 6

I exceptions j enables sticky
b1ts

2 1 0

8 1 5 6 5 5 2

1110 9 8 7

j vlz!ol uj 1 I
Enable Bits

Control and Status Register
(c • compare bit)

171615141312

I EI v I z I 0 1 ui 1 I
Exception Bits

6 5 4 3 2

jvlzloJ u! 1 I
Sticky Bits

Figure 6-2: Floating Control and Status Register 31

The exception bits are set for instructions that cause an IEEE standard ex
ception or an optional exception used to emu late some of the more hard
ware-intensive features of the I~EE standard.

The exception field is loaded as a side-effect of each floating-point opera
tion (excluding loads, stores, and unformatted moves). The exceptions
which were caused by the immediately previous floating-point operation
can be determined by reading the exception field.

Asscn1bly Language Programmer's Guide

Coprocessor Instruction Set

The meaning of each bit in the exception field is given below. If two excep
tions occur together on one instruction, the field will contain the inclusive
OR of the bits for each exception.

Exception
Description Field Bit

E Unimplemented Operation.

v Invalid Operation.

z Division by Zero.

I Inexact Exception.

0 Overflow Exception.

u Underflow Exception.

The unimplemented operation exception is normally invisible to user
level code. It is provided to maintain IEEE compatibility for non-standard
implementations.

The five IEEE standard exceptions are listed below:

Field Description

v Invalid Operation.

z Division by Zero.

I Inexact Exception.

0 Overflow Exception.

u Underflow Exception.

Each of the five exceptions is associated with a trap under user control,
which is enabled by setting one of the five bits of the enable field, shown
above.
When an exception occurs, both the corresponding exception and status
bits are set. If the corresponding enable flag bit is set, a trap is taken. In
some cases the result of an operation is different if a trap is enabled.

Assembly Language Programmer's Guide 6·19

Chapter6

6-20

The status flags are never cleared as a side effect of floating-point opera
tions, but may be set or cleared by writing a new value into the status reg
ister, using a "move to coprocessor control" instruction.

The floating-point compare instruction places the condition which was de
tected into the" c' bit of the control and status register, so that the state of
the condition line may be saved and restored. The "c" bit is set if the con
dition is true, and cleared if the condition is false, and is affected only by
compare and move to control register instructions.

Exception Trap Processing

For each IEEE standard exception, a status flag is provided that is set on
any occurrence of the corresponding exception condition with no corre
sponding exception trap signaled. It may be reset by writing a new value
into the status register. The flags may be saved and restored individually,
or as a group, by software. When no exception trap is signaled, a default
action is taken by the floating-point coprocessor, which provides a substi
tute value for the original, exceptional, result of the floating-point opera
tion. The default action taken depends on the type of exception, and in the
case of the Overflow exception, the current rounding mode.

Invalid Operation Exception

The invalid operation exception is signaled if one or both of the operands
are invalid for an implemented operation. The r~ult, when the exception
occurs without a trap, is a quiet NaN when the destination has a floating
point format, and is indeterminate if the result has a fixed-point format.
The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such ns
(+ 1) - (-1).

• Multiplication: 0 timt>s l, with any signs.

• Division: 0 over 0or1 over l, with any signs.

• Square root: fX , where x is less than zero.

• Conversion of a floating-point number to a fixt>d-point format when
an overflow, or operand value of infinity or NaN, precludes a
faithful representation in that format.

• Comparison of predicates involving< or> without?, when the
operands are "unordered".

• Any operation on a signaling NaN.

Software may simulate this exception for other operations that nre invalid
for the given source operands. Examples of these operations include IEEE
spccificd functions implemented in software, such as Rcm;:iindcr: x REM y,

Assembly umguage Programmer's Guide

\1

Coprocessor Instruction Set

where y is zero or x is infinite; conversion of a floating-point number to a
decimal format whose value causes and overflow or is infinity of NaN; and
trancendental functions, such as In (-5) or cos -1 (3).

Division-by-zero Exception

The division by zero exception is signaled on an implemented divide op
eration if the divisor is zero and the dividend is a finite nonzero number.
The result, when no trap occurs, is a correctly signed infinity.

If division by zero traps are enabled, the result register is not modified, and
the source registers are preserved.

Software may simulate this exception for other OTIPT<itions that produce a
signed infinity, such as ln(O), sec(p/2), csc(O) or 0 -l .

Overflow Exce;>tion

The overflow exception is signaled when what would have been the mag
nitude of the rounded floating-point result, were the exponent range un
bounded, is larger than the destination format's largest finite number. The
result, when no trap occurs, is determined by the rounding mode and the
sign of the intermediate result.

If overflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Underflow Exception

Two related events contribute to underflow. One is the creation of a tinv
non-zero result between 2 Enun (minimum expressable exponent) which,
because it is tiny, may cause some other exception later. The other is ex
traordinary loss of accuracy during the approximation of such tiny num
bers by denormalized numbers.

The IEEE standard permits a choice in how these events are detected, but
requires that they must be detected the same way for all operations.

The IEEE standard specifies that "tininess" may be detected either: "after
rounding" (when a nonzero result computed as thou~ _the exponent
range were unbounded would lie strictly between 2 run, or "before
rounding" (when a nonzero result computed as though the exponent
ra~e and the precision were unbounded would lie strictly between
2 min. The architecture requires that tininess be detected after rounding.

Loss of accuracy may be detected as either "denorrnalization loss" (whl'n
the delivered result differs from what would have been computed if the
exponent range were unbounded), or "inexact result'' (when the delivered

Assembly LJ:mguage Programmer's Guide 6-21

Olilpter6

result differs from what would have been computed if the exponent range
and precision were both unbounded). The architecture requires that loss
of accuracy be detected as inexact result.

When an underflow trap is not enabled, underflow is signaled (via the
underflow flag) only when both tininess and loss of accuracy have be~n
detected. The delivered result might be zero, denormalized, or 2 Emin.

When an underflow trap is enabled, underflow is signaled when tininess
is detected regardless of loss of accuracy.
If underflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Inexact Exception

If the rounded result of an operation is not exact or if it overflows without
an overflow trap, then the inexact exception is signaled. The rounded or
overflowed result is delivered to the destination register, when no inexact
trap occurs. If inexact exception traps are enabled, the result register is not
modified, and the source registers are preserved.

Unimplemented Operation Exception

If an operation is specified that the hardware may not perform, due to an
implementation restriction on the supported operations or supported for
mats, an unimplemented operation exception may be signaled, which al
ways causes a trap, for which there are no corresponding enable or flag
bits. The trap cannot be disabled.

This exception is raised at the execution of the unimplemented instruction.
The instruction may be emulated in software, possibly using implemented
floating-point unit instructions to accomplish the emulation. Normal in
struction execution may then be restarted.

This exception is also raised when an attempt is made to execute an in
struction with an operation code or format code which has been reserved
for future architectural definition. The unimplemented instruction trap is
not optional, since the current definition contains codes of this kind.

This exception may be signaled when unusual operands or result condi
tions are detected, for which the implemented hardware cannot properly
handle the condition. These may include (but are not limited to), denor
malized operands or results, NaN operands, trapped overflow or under
flow conditions. The use of this exception for such conditions is optional.

Floating Point Rounding

6-22

Bits 0 and 1 of the coprocessor control register 31 sets the rounding mode
for flo<,ting point. The machine allows four rounding modes:

Asscm/1/y Language Programmer's Guide

Coprocessor Instruction Set

• Round to nearest rounds the result to the nearest representable
value. When the two nearest representable values are equally near,
this mode rounds to the value with the least significant bit zero. To
select this mode, set bits 1..0 of control register 31 to 0.

• Round toward zero rounds toward zero. It rounds to the value that
is closest to and not greater in magnitude than the infinitely precise
result. To select this mode, set bits 1..0 of control register 31 to 1.

• Round toward positive infinity rounds to the value that is closest to
and not less than the infinitely precise result. To select this mode,
set bits 1..0 of control register 31 to 2.

• Round toward negative infinity rounds toward negative infinity. It
rounds to the value that is closest to and not greater than the
infinitely precise result. To select this mode, set bits LO of control
register 31 to 3.

To set the rounding mode:
/* setting the rounding mode */
RoundNearest = OxO
RoundZero = Oxl
RoundPosinf = Ox2
RoundNeginf = Ox3

cfcl rt2, $31
and rt, Oxfffffffc
or rt, RoundZero
ctcl rt, Sf31

Asscm/Jly Lan>:ua~c Programmer's 6uidc

move from coprocessor 1
zero the round mode bits
set mask as round to zero
move to coprocessor 1

6-23

Chapter 6

6-24 Assembly Langua~c Pro8ranmrer's Guide

Linkage Conventions

Introduction

7

This chapter gives rules and examples to follow when designing an
assembly language program. The chapter concludes with a "learn by
doing" technique that you can use if you still have any doubts about how
a particular calling sequence should work. This involves writing a
skeleton version of your prospective assembly routine using a high level
language, and then compiling it with the-5 option to generate a human
readable assembly language file. The assembly language file can then be
used as the starting point for coding your routine.

When you write assembly language routines, you should follow the same
calling conventions that the compilers observe, for two reasons:

• Often your code must interact with compiler-generated code,
accepting and returning arguments or accessing shared global
data.

• The symbolic debugger gives better assistance in debugging
programs using standard calling conventions.

The conventions for the compiler system are a bit more complicated than
some, mostly to enhance the speed of each procedure call. Specifically:

• The compilers use the full, general calling sequence only when
necessary; where possible, they omit unneeded portions of it. For
example, the compilers don't use a register as a frame pointer
whenever possible.

Assembly Language Programmer's Guide 7-1

G112pter7

• The compilers and debugger observe certain implicit rules rather
than communicating via instructions or data at execution time. For
example, the debugger looks at information placed in the symbol
table by a ".frame" directive at compilation time, so that it can
tolerate the lack of a register containing a frame pointer at
execution time.

Program Design

This section describes three general areas of concern to the assembly
language programmer:

• Usable and restricted registers.

• Stack frame requirements on entering and exiting a routine.

• The "shape" of data (scalars, arrays, records, sets) laid out by the
various high level languages.

Register Use and Linkage

7-2

The main processor has 32 32-bit integer registers. The uses and
restrictions of these registers are described in Table 1.1 in Chapter 1.

The floating point coprocessor has 16 floating point registers. Each register
can hold either a single precision (32 bit) or a double precision (64 bit)
value. All references to these registers uses an even register number (e.g.,
$f4). Refer to Table 7.1 for details.

Assembly Lani.:uage Programmer's Guide

i,l

Unkage Conventions

Table 7.1: Floating Point Registers

Floating Point Registers

register name use and linkage

$f0 .. f3 Used to hold floating point type function
results ($10) and complex type function
results ($10 has the real part, $f2 has
the imaginary part).

$f4 .. f10 Temporary registers, used for expression
evaluation, whose values are not pre-
served across procedure calls.

$f12 .. $f14 Used to pass the first 2 single or double
precision actual arguments, whose values
are not preserved across procedure calls.

$f16 .. $f18 Temporary registers, used for expression
evaluations, whose values are not pre-
served across procedure calls.

$120 .. $130 Saved registers, whose values mustbe
preserved across procedure calls.

The Stack Frame

The compilers classify each routine into one of of the following categories:

• Non-leaf routines, that is, routines that call other procedures.

• Leaf routines, that is, routines that do not themselves execute any
procedure calls. Leaf routines are of two types:

• Leaf routines that require stack storage for local variables

• Leaf routines that do not require stack storage for local
variables.

You must decide the routine category before determining the calling
sequence.

Assembly Language Programmer's Guide 7-3

Chapter 7

7-4

To write a program with proper stack frame usage and debugging
capabilities, use the following procedure:

1. Regardless of the type of routine, you should include a .ent pseudo-op
and an entry label for the procedure. The .ent pseudo-op is for use by
the debugger, and the entry label is the procedure name. The syntax is:

.ent procedure_name
procedure name:

2. If you are writing a leaf procedure that does not use the stack, skip to
step 3. For leaf procedure that uses the stack or non-leaf procedures,
you must allocate all the stack space that the routine requires. The syn
tax to adjust the stack size is:

subu $sp,framesize

where framesiz.e is the size of frame required; framesi:.c must be a
multiple of 8. Space must be allocated for:

• Local variables.

• Saved general registers. Space should be allocated only for
those registers saved. For non-leaf procedures, you must save
$31, which is used in the calls to other procedures from this
routine. If you use registers $1~$23, you must also save them.

• Saved floating point registers. Space should be allocated only
for those registers saved. If you use registers $f20-$f30 you
must also save them.

• Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call
from this routine.

Note: Once you have modifi{'d $sp, you should not modify it again for the
rest of the routine.

3. Now include a .frame pseudo-op:

.frame frarnere9,frarnesize,returnre9

The virtual frame pointer is a frame pointer as used in other
compiler systems but has no register allocated for it. It consists of
the framereg ($sp, in most cases) added to the framesi:.e (see step 2
above). Figure 7.1 illustrates the stack components.

Assembly Lo11guasc Programmer's Guide

I~

high memory

virtual framepointer ($fp} __..

frame offset {

stack pointer($sp}--..
(framereg}

low memory

argument n . . .
argument 1

local & temporaries

s~ved registers
(including returnreg)

argument build

. . .

Figure 7.1: Stack Orga11i:atio11

Linkage Conventions

framesize

The returnreg specifies the register containing the return address
(usually $31). These usual values may change if you use a varying
stack pointer or are specifying a kernel trap routine.

4. If the procedure is a leaf procedure that does not use the stack, skip to
step 7. Otherwise you must save the registers you allocated space for
instep2.

To save the general registers, use the following operations:

.mask bitmask,frameoffset
sw reg,framesize+frameoffset-N($sp)

The .mask directive specifies the registers to be stored and where
they are stored. A bit should be on in bitmask for each register
saved (for example, if register $31 is saved, bit 31 should be 'l' in
bitmask. Bits are set in bitmask in little-endian order, even if the
machine configuration is big-cndian). The frameoffset is the offset
from the virtual frame pointer (this number is usually negative). N

Assembly l.An~ua~e Programmer's Guide 7-5

0Ulpter7

7-6

should be 0 for the highest numbered register saved and then
incremented by four for each subsequently lower numbered
register saved. For example:

sw $31,framesize+frameoffset($sp)
sw $17,framesize+frameoffset-4($sp)
sw $16,framesize+frameoffset-8($sp)

Figure 7 .2 illustrates this example.

high memory

framesize

stack pointer ($sp)--...

low memory
'--~~~~~~~~~~~~--'

Figure 7.2: Stack Example

Now save any floating point registers that you allocated space for
in step 2 as follows:

.fmask bitmask,frameoffset
s.[sd] reg,framesize+frameoffset-N($sp)

Notice that saving floating point registers is identical to saving
general registers except we use the .{mask pseudo-op instead of
.mask, and the stores are of floating point singles or doubles. The

Assembly Language Programmer's Guide

I''
I

Linkage Conventions

discussion regarding saving general registers applies here as well,
but remember that N should be incremented by 8 for doubles. The
stack framesize must be a multiple of 8.

5. This step describes parameter passing: how to access arguments
passed into your routine and passing arguments correctly to other
procedures. For information on high-level language specific con
structs (call-by-name, call-by-value, string or structure passing), re
fer to Chapter 4 of the RISCompiler and C Programmer's Guide.

As specified in step 2, space must be allocated on the stack for all
arguments even though they may be passed in registers. This
provides a saving area if their registers are needed for other
variables.

General registers $4-$7 and float registers $fl2, $f14 must be used
for passing the first four arguments (if possible). You must allocate
a pair of registers (even if it's a single precision argument) that start
with an even register for floating point arguments appearing in
registers.

In the table below, the' 'fN' arguments are considered single and
double precision floating point arguments, and'nN' arguments are
everything else. The ellipses (. ..) mean that the rest of the
arguments do not go in registers regardless of their type. The
'stack' assignment means that you do not put this argument in a
register. The register assignments occur in the order shown in
order to satisfy optimizing compiler protocols.

Arguments Register Assignments

(f1. f2, ...) f1 -> $f12, f2 -> $f14

(f1. n1. f2, ...) 11 -> $112, n1 -> $6, 12 ->stack

(11. n1, n2, ...) 11 -> $112, n1 -> $6, n2 -> $7

(n1. n2, n3, n4, ...) n1 -> $4, n2 -> $5, n3 -> $6, n4 -> $7

(n1, n2, n3, 11 •...) n1 -> $4, n2 -> $5, n3 -> $6, f1 ->stack
(n1, n2, 11, ...) n1 -> $4, n2 -> $5, f1 -> ($6, $6)
(n1. 11 •...) n1 -> $4, 11 -> ($6, $7)

6. Next, you must restore registers that were saved in step 4. To restore
general purpose registers:

lw reg,framesize+frameoffset-N($sp)

Assembly Language Programmer's Guide 7-7

'
I
I
I

Orapfer 7

To restore the floating point registers:

l.[sd] reg,framesize+frameoffset-N($sp)

Refer to step 4 for a discussion of the value of N.)

7. Get the return address:

lw $31,framesize+frameoffset($sp)

8. Clean up the stack:

addu $sp, framesize

9. Return:

j $31

10. To end the procedure:

.end procedurename

The Shape of Data

Examples

7-8

In most cases, high-level language routine and assembly routines
communicate via simple variables: pointers, integers, booleans, and
single- and double-precision real numbers. Describing the details of the

. various high-level data structures (arrays, records, sets, and so on) is
beyond our scope here. If you need to access such a structure as an
argument or as a shared global variable, refer to Chapter 4 of the
RISCompiler and C Programmer's Guide, and the "Learn by Doing"
technique described at the end of this section.

This section contains the examples that illustrate program design rules.
Each example shows a procedure written and C and its equivalent written
in assembly language.

Figure 7.3 shows a non-leaf procedure. Notice that it creates a stackframe,
and also saves its return address since it must put a new return address
into register $31 when it invokes its callee:

Assembly l.il11guagc Programmer's Guide

float
nonleaf(i, j)

int i, •j;

{
double atof ();
int temp;

temp = i - •j;
if (i < •j) temp -temp;
return atof(temp);
}

1
2
3
4

.globl
float
nonleaf(i, j)

int i, •j;
{

.ent

nonleaf

nonleaf 2
nonleaf:

5
6
7
8

9

$32:
10

subu Ssp, 24
SW $31, 20($Sp)
.mask Ox80000000, -4
.frame Ssp, 24, $31

double atof(};
int temp;

temp = i -
lw
subu

if(i<*j}
bge
negu

•j;
$2, 0($5}
$3, $4, $2

temp = -temp;
$4, $2, $32
$3, $3

return
move

atof(temp);.

jal
cvt.s.d
lw
addu
j
.end

$4, $3
atof
SfO, SfO
$31, 20(Ssp)
$Sp, 24
$31
nonleaf

Linkage Conventions

Create stackframe
Save the return address

Arguments are in $4 and SS

Note: $32 is a label, not a registe

Returnvalue goes in SfO
Restore return address
Delete stackframe
Return to caller

Figure 7 .3: Non-Leaf Procedure

Figure 7.4 shows a leaf procedure that does not require stack space for
local variables. Notice that it creates no stackframe, and saves no return
address:

Assembly IA11guagc Programmer's Guide 7-9

Chapter 7

int
leaf(pl, p2)

int pl, p2;
{
return (pl > p2) ? pl :p2;
}

.glob! leaf
t 1 int
t 2 leaf(pl, p2)
t 3 int pl, p2;
i 4 {

.ent leaf 2
leaf:

.frame $sp, O, $31
i 5 return (pl > p2) ? pl :

ble $4, $5, $32
move $3, $4
b $33

$32:
move $3, $5

$33:
move $2, $3

j $31

t 6 }

.end leaf

p2;
u Arguments in $4 and $5

#II Return value goes in $2

Return to caller

Figure 7.4: Leaf Procedure Without Stack Space for Local Variables

7-10

Figure 7.5 shows a leaf procedure that requires stack space for local
variables. Notice that it creates a stack frame, but does not save a return
address.

Ass£·mbly umguage Programmer's Guide

1~

char
leaf storage(i)

int i;
I
char a (16);
int j;

for (j
a[j]

for (j
a(j]

return
1

= O; j < 10; j++)
'0' + j;
10; j < 16; j++)
I a I + j;

a [i);

.globl
char
leaf_storage(i)

Linkage Conventions

leaf_storage
1
2
3
4

int i;
[

. ent
leaf storage:

2 ## "2" is the lexical level of th
leaf_storage ## procedure. You may omit it .

- subu Ssp, 24 ## Create stackframe .

$32:

5
6
7
8

~ 9

" 10

$33:
jl 11

If 12

. frame Ssp, 24, $31
char a[l6];
int j;

for (j = O; j < 10; j++)
SW $0, 4($Sp)
addu $3, $sp, 24

lw
ad du
ad du
sb
lw
ad du
SW
blt

a [j)

for (j
li
SW

a [j l
lw
addu
addu
sb
lw
ad du
SW
blt

return
ad du

I 0 I + j;
$14, 4($sp)
$15, $14 I 48
$24, $3, $14
$15, -16($24)
$25, 4($sp)
$8, $25, l
$8, 4($sp)
$8, 10, $32

10; j < 16; j++)
$9, 10
$9, 4($sp)

, a, + j;
$10, 4(Ssp)
$11, $10, 97
$12, $3, $10
$11, -16($12)
$13, 4($sp)
$14' $13, 1
$14, 4($sp)
$14 I 16, $33

a [i);
$15, $3, $4 II# Argument is in $4.

lbu $2, -16($15) If# Return value goes in $2.
ad du Ssp, 24 u Delete stackframe.
j $31 If# Return to caller.
.end leaf_storage

Figure 7.5: Leaf Procedure With Stack Space for Local Variables

Assembly urn~uage Programmer's Guide 7-11

Chapter 7

Learning by Doing

The rules and parameter requirements required between assembly
language and other languages are varied and complex. The simplest
approach to coding an interface between an assembly routine and a
routine written in a high-level language is to do the following:

• Use the high-level language to write a skeletal version of the
routine that you plan to code in assembly language.

• Compile the program using the -5 option, which creates an
assembly language (.s) version of the compiled source file.

• Study the assembly-language listing and then, imitating the rules
and conventions used by the compiler, write your assembly
language code.

The next two sections illustrate techniques to use in creating an interface
between assembly language and high-level language routines. The
examples shown are merely to illustrate what to look for in creating your
interface. Details such as register numbers will vary according to the
number, order, and data types of the arguments. You should write and
compile realistic examples of your own code in writing your particular
interface.

Calling a High-Level Language Routine

7-12

The following steps show a technique to follow in writing an assembly
language routine that calls atof, a routine written in C that converts ASCH
characters to numbers; for more information, see the ato/(3) in the RISC/os
Programmer's Reference Ma11ual.

1. Write a C program that calls atof. Pass global rather than local vari
ables; this makes them to recognize in the assembly language version
of the C program (and ensures that optimization doesn't remove any
of the code on the grounds that it has no effect).

Below is an example of a C program that calls atof

char c[) = "3.1415";
doubled, atof();
float f;
caller()

[
d = atof(c);
f = (float) atof(c);
I

c is declared as a
global variable.

Assembly Language Programmer's Guide

11

c:

caller:

Linkage Conve11tio11s

2. Compile the program using the compiler options shown below:

. globl

.align

.word

.word

.comm

.comm

.9lobl

.text

.ent

cc -S -0 caller.c

The -S option causes the compiler to produce the assembly
language listing; the -0 option, though not required, reduces the
amount o; code generated, making the listing easier to read.

After compilation, look at the file caller.s (shown below). The high
lighted section of the listing shows how the parameters are passed, the
execution of the call; and how the returned values are retrieved .

c
2

875638323 1
13617 : 1
d B
f 4
caller

caller 2

subu $sp, 24
SW $31, 20($sp)
.mask OxBOOOOOOO, -4
.frame Ssp, 24, $31

1 char c[) = "3.1415";
2 doubled, atof();
3 float f;
4 caller()
5 I

6 d = atof(c);

la $4, c ## load address of c
jal atof ## call atof
s.d $f0, d u store result in d

7
la $4, c u load address of c
jal atof II# call atof
cvt.s.d $f4 I SfO u convert double result to float

s.s $f4, f u store float result in f
lw $31, 20($sp)
addu $sp, 24
j $31
.end caller

Assembly Language Programmer's Guide 7-13

Clzapter 7

Calling an Assembly Language Routine

7-14

This section shows a technique to follow in writing an assembly language
routine that calls a routine written in a high-level language (Pascal is used
in this example).

1. Write a facsimile of the assembly language routine you wish to call. In
the body of the routine, write statements that use the same arguments
you intend to use in the final assembly language routine. Copy the ar
guments to global variables rather than local variables to make it easy
for you to read the resulting assembly language listing.

Below is the Pascal facsimile of the assembly language program.

type
str =packed array (1 .. 10] of char;
subr .. 2 .. 5;

var
global r:
global-c:
global-s:
global-b:

real;
subr;
str;
boolean; I

function callee(var r: real; c: subr; s: str):
begin

boolean; 1

global r := r;
global-c := c;
global-s := s;
callee-:• c = 3;
end;

2. Compile the program using the compiler options shown below:

cc -s -0 caller.c

The -S option causes the compiler to produce the assembly
language listing; the -0 option, though not required, reduces the
amount of code generated, making the listing easier to read.

3. After compilation, look at the file caller.s (shown below). The high
lighted section of t~e listing shows how the parameters are passed, the
execution of the call, and how the returned values are retrieved.

Assembly Language Programmer's Guide

ji

.!comm

.comm

.comm

.comm

.comm

.text

.glob!

$dat 0
global r 4
global-c 1
global-s 10
global::) 1

callee

Linkage Conventions

10 function
.ent

callee(var r: real; c: subr; s: str): boolean;
callee 2

callee:
.frame
SW

$sp, 0, $31
$5, 4($sp)
$6, 8($sp)

SW

lbu

and
11
12

s.s
13

sb
14

$32:

15

la
ad du
.set
ad du

lbu
ad du
sb
lbu
addu
sb

bne
.set

seq
and

16

j
.end

$3, $3, 255
begin
global_r := r;

$f4, global_r
global_c :$3~;9lobal_c

global_s := s;

31

$14, global s
$15, $sp, 8-
noat

$24, $15, 10

$1, 0($15)
$15, $15 f 2
$1, 0($14)
$1, -1($15)
$14, $14, 2

1 -1 14

$15, $24, $32
at

callee ·= c = 3;
$5, $3, 3
$5, $5, 255

end;

$31

Assembly Language Programmer's Guide

Get subran

##The ointer to "r" is in

For array "s", the caller gives you a
pointer at B(Ssp). If youwant to use
it as a call-by-value argument just as
Pascal does (that is, if you want to
be able to modify a local copy without
affecting the global copy) then you
must copy it into your stack frame as
shown here (the code enclosed in ".set
neat" is a tight byte-copying loop).
Otherwise, you may simply use the
ointer rovided to ou.

7-15

Chapter 7

Memory A·llocation

7-16

The machine's default memory allocation scheme gives every process two
storage areas, that can grow without bound. A process exceeds virtual
storage only when the sum of the two areas exceeds virtual storage space.
The link editor and assembler use the scheme shown in Figure 7.6. An
explanation of each area in the allocation scheme follows the figure.

Oxffffffff

OxBfffffff
Ox7fffffff

Ox7ffff000
Ox7fffefff

$sp __.

$gp_.

Ox10000000
Oxfffffff

Ox400000
Ox3fffff

OxO

I

I

Reserved for Kernel
(accessible from Kernel Mode}

(2GB)
·'

Not Accessible
(by convention, not a hardware

implementation)
(4KB)

Activation Stack
Jgrows toward zerol

Protected
(grows from either edge}

Heap
(grows up)

.bss

.sbss

.sdata I

.lit4 l

.lit8

.data

Reserved for
Shared Libraries

Not Used
Program .text

(including header)

Reserved
(4MB)

Figure 7.6: Layout of memory <User Program View)

Assembly Language Programmer's Guide

Linkage Conventions

1. Reserved for kernel operations.

2. Reserved for operating system use.

3. Used for local data in C programs.

4. Not allocated until a user requests it, as in System V shared memory
regions.

5. The heap is reserved for sbrk and break system calls, and it not always
present.

6. The machine divides all data into one of five sections:

• bss - Uninitialized data with a size greater than the value
specified by the -G command line option.

• sbss - Data less than or equal to the -G command line option.
(512 is the default value for the -G option.)

• sdata (small data) - Data initialized and specified for the sdata
section.

• data (data) - Data initialized and specified for the data section.

7. Reserved for any shared libraries.

8. Contains the .text section, .rdata section and all dynamic tables.

9. Reserved.

Assembly Language Progra111111er's Guide 7-17

Owpter 7

7-18 Assembly Language Programmer's Guide

I
I
I:

Pseudo Op-Codes

8

This chapter describes pseudo op-codes (directives). These pseudo
op-codes influence the assembler's later behavior. In the text,
boldface type specifies a keyword and italics represents an operand
that you define.

The assembler has these pseudo op-codes:

Pseudo-Op

.aent name, symno

.alias reg1, reg2

.align expression

Assembly l.Arrguage Programmer's Guide

Description

Sets an alternate entry point for the
current procedure. Use this
information when you want to
generate information for the
debugger. It must appear inside an
.enV.end pair.

Indicates that memory reference
through the two registers (reg1,
reg2) will overlap. The compiler
uses this form to improve instruction
scheduling.

Advance the location counter to
make the expression low order bits
of the counter zero.

8-1

Chapters

Pseudo-Op

.ascii string [. string} ...

.asciiz string [, string] ...

.asmO

8-2

Description

Normally, the .half, .word, .float. and
.double directives automatically align
their data appropriately. For
example, .word does an implicit .align
2 (.double does a .align 3). You
disable the automatic alignment
feature with .align o. The assembler
reinstates automatic alignment at the
next .text, .data, .rdata, or .sdata
directive.

Labels immediately preceding an
automatic or explicit alignment are
also realigned. For example, too:
.align 3; .word o is the same as .align
3; foo: .wordO.

Assembles each string from the list
into successive locations. The .ascii
directive does not null pad the string.
You MUST put quotation marks(")
around each string. You can use the
backslash escape characters. For a
list of the backslash characters, see
Chapter 4.

Assembles each string in the list into
successive locations and adds a null.
You can use the backslash escape
characters. For a list of the backslash
characters, ~ee Chapter 4.

Tells the assembler's second pass
that this assembly came from the first
pass. (For use by compilers.)

Assembly umguagc Programmer's Guide

Pseudo-Op

.bgnb symno

Pseudo Op-Codes

Description

(For use by qompilers.) Sets the
beginning of a language block. The
.bgnb and .endb directives delimit the
scope of a variable set. The scope
can be an entire procedure, or it can
be a nested scope (for example a "O"
block inthe C language). The symbol
number symno refers to a dense
number in a .T file. For an
explanation of .T files, see the
RISCompiler and C Programmer's
Guide. To set the end of a language
block, see .endb .

• byte expression1 l expression2] ... l expressionN]

.comm name, expression

.data

Assembly Language Programmer's Guide

Truncates the expressions from the
comma-separated list to 8-bit
values, and assembles the values in
successive locations. The
expressions must be absolute. The
operands can optionally have·the
form: expression1 [: expression2].
The expression2 replicates
expression 1 's value expression2
times.

Unless defined elsewhere, name
becomes a global common symbol at
the head of a block of expression
bytes of storage. The linker overlays
like-named common blocks, using
the maximum of the expressions.

Tells the assembler to add all
subsequent data to the data section.

8-3

OuzpterB

8-4

Pseudo-Op Description

.double expression [, expression2] ... [, expressionN]

.end [proc_name]

.endb symno

.endr

.ent proc_name

Initializes memory to 64-bit floating
point numbers. The operands can
optionally have the form: expressiont
[: expression2J. The expression1 is
the floating point value. The optional
expression2 is a non-negative
expression that specifies a repetition
count. The expression2 replicates
expression1's value expression2
times. This directive automatically
aligns its data and any preceding
labels to a double-word boundary.
You can disable this feature by using
.align o.
Sets the end of a procedure. Use this
directive when you want to generate
information for the debugger. To set
the beginning of a procedure, see
.ent.

Sets the end of a language block. To
setthe beginning of a language block,
see .bgnb.

Signals the end of a repeat block. To
start a repeat block, see .repeat.

Sets the beginning of the procedure
proc_name. Use this directive when
you want to generate infor'mation for
the debugger. To set the end of a
procedure, see . end.

Assembly l..Jmguage Programmer's Guide

I~
I

I

I~

Pseudo-Op

.extern name expression

.err

Pseudo Op--Codcs

Description

name is a global undefined symbol
whose size is assumed to be
expression bytes. The advantage of
using this directive, instead of
permitting an undefined symbol to
become global by default, is that the
assembler can decide whether to use
the economical $gp-relative
addressing mode, depending on the
value of the -G option. As a special
case, if expression is zero, the
assembler refrains from using $gp to
address this symbol regardless of the
size specified by -G.

Signals an error. Any compiler front
end that detects an error condition
puts this directive in the input stream.
When the assembler encounters a
.err, it quietly ceases to assemble the
source file. This prevents the
assembler from continuing to process
a program that is incorrect. (For use
by compilers.)

.file file_number file_name_string

Assembly umgua~c Programmer's Guide

Specifies the source file
corresponding to the assembly
instructions that follow. For use only
by compilers, not by programmers;
when the assembler sees this, it
refrains from generating line numbers
for dbx to use unless it also sees .Joe
directives.

8-5

Chapter 8

8-6

Pseudo-Op Description

.float expression1 [, expression2] ... [, expressionN]

,

.fmask mask offset

Initializes memory to single precision
32-bit floating point numbers. The
operands can optionally have the
form: expression1 [: expression2].
The optional expression2 is a non
negative expression that specifies a
repetition count. This optional form
replicates expression 1's value
expression2times. This directive
automatically aligns its data and
preceding labels to a word boundary.
You can disable this feature by using
.aligno.

Sets a mask with a bit turned on for
each floating point register that the
current routine saved. The least
significant bit corresponds to register
$10. The offset is the distance in bytes
from the virtual frame pointer at which
the floating point registers are saved.
The assembler saves higher register
numbers closer to the virtual frame
pointer. You must use .entbefore
.fmask and only one .fmask may be
used per .ent. Space should be
allocated for those registers specified
in the .fmask.

Assembly umguagc Programmer's Guide

: 'l
I

Pseudo Op-Codes

Pseudo-Op Description

.frame frc.me-register offset retum_pc_register

.globl name

• gjaldef int_bitmask fp_bitmask

• gjallive int_bitmask fp_bitmask

Describes a stack frame. The first
register is the frame-register, the
offset is the distance from the frame
register to the virtual frame pointer,
and the second register is the return
program counter (or, if the first
register is $0, this directive shows
that the return program counter is
saved four bytes from the virtual
frame pointer). You must use .ent
before .frame and only one .frame
may be used per .ent. No stack
traces can be done in the debugger
without .frame.

Makes the name external. If the
name is otherwise defined (by its
appearance as a label), the
assembler will export the symbol;
otherwise it will import the symbol. In
general, the assembler imports
undefined symbols (that is, it gives
them the UNIX storage class "global
undefined" and requires the linker to
resolve them) .

For use by compilers. Sets the
masks defining the registers whose
value is preserved during a
procedure call. See Table 1.1 and
Table 7 .1 for the default for integer
saved registers .

For use by compilers. Sets the
default masks for live registers before
a procedure call (A JAL instruction) .

• gjrlive int_bitmask fp_bitmask For use by compilers. Sets the default
masks for live registers before a
procedure's return (A JR instruction).

Assembly Language Programmer's Guide 8-7

Chapters

8-8

Pseudo-Op Description

.half expression] [, expression2] ... [, expressionN]

.lab label_name

.lcomm name, expression

Truncates the expressions in the
comma-separated list to 16-bit
values and assembles the values in
successive locations. The
expressions must be absolute. This
directive can optionally have the form:
expression1 [: expression2]. The
expression2 replicates expression 1's
value expression2 times. This
directive automatically aligns its data
appropriately. You can disable this
feature by using .align o.
Associates a named label with the
current location in the program text.
(For use by compilers).

Makes the namfls data type bss. The
assembler allocates the named
symbol to the bss area, and the
expression defines the named
symbol's length. If a .glob/ directive
also specifies the name, the
assembler allocates the named
symbol to external bss. The
assembler puts bss symbols in one of
two bss areas. If the defined size is
smaller than (or equal to) the size
specified by the assembler or
compiler's -G command line option,
the assembler puts the symbols in the
sbss area and uses $gp to address
the data.

Assembly Language Programmer's Guide

Pseudo Op-Codes

Pseudo-Op Description

.livereg intbitmask fp_bitmask

Assembly Language Programmer's Guide

For use by compilers. Affects the
next jump instruction even if it is not
the successive instruction. The
.livereg directive may come before
any of the following instructions: JAL,
JR, and SYSCALL. By default,
external J instructions and JR
instructions through a register other
than Sra, are treated as external calls;
that is; all registers are assumed live.
The directive .livereg cannot appear
-before an external J (it will affect the
next JR, JAL, or SYSCALL instead of
the J instruction). .livereg may
appear before a JR instruction
through a register other than Sra.
The directive can't be used before a
BREAK instruction. For BREAK
instructions, the assembler also
assumes all registers are live .

.livereg notes to the assembler which
registers are live before a jump, in
order to avoid unsafe optimizations
by the reorganizer. The directive
.livereg takes two arguments,
intbitmask, and fp_bitmask, which
are 32 bit bitmasks with a bit turned
on for each register that is live before
a jump. The most significant bit
corresponds to register $0 (which is
opposite to that used in other
assembly directives, .mask, .fmask).
The first bitmap indicates live integer
registers and the second indicates
live FPs.

8-9

Chapter 8

Pseudo-Op

.loc file_number llne_number

.mask mask, offset

8-10

Description

Specifies the source file and the line
within that file that corresponds to the
assembly instructions that follow.
The assembler ignores the file
number when this directive appears in
the assembly source file. Then, the
assembler assumes that the directive
refers to the most recent . file
directive. When a .loc directive
appears in the binary assembly
language .G file, the file number is a
dense number pointing at a file
symbol in the symbol table .T file. For
more information about .G and .T
files, see the RISCompilers and C
Programmer's Guide. (For use by
compilers).

Sets a mask with a bit turned on for
each general purpose register that
the current routine saved. Bit one
corresponds to register $1. The offset
is the distance in bytes from the
virtual frame pointer where the
registers are saved. The assembler
saves higher register numbers closer
to the the virtual frame pointer. Space
should be allocated for those
registers appearing in the mask. If bit
zero is set it is assumed that space is
allocated for all 31 registers
regardless of whether they appear in
the mask. (For use by compilers).

Assembly l.Anguagc Programmer's Guide

Pseudo-Op

.noalias reg1, reg2

nop

Assembly Language Programmer's Guide

Pseudo Op-Codes

Description

Register1 and register2, when used
as indexed registers to memory will
never point to the same 111emory. The
assembler will use this as a hint to
make more liberal assumptions about
resource dependency in the program.
To disable this assumption, see
.alias.

Tells the assembler to put in an
instruction that has no effect on the
machine state. While several
instructions cause no-operation, the
assembler only considers the ones
generated by the nop directive to be
wait instructions. This directive puts
an explicit delay in the instruction
stream.

Note: Unless you use ".set
noreordet', the reorganizer may
eliminate unnecessary "nop"
instructions.

8-11

Chapter 8

Pseudo-Op

.option options

.repeat expression

.rdata

.sdata

.set option

8-12

Description

Tells the assembler that certain
options were in effect during
compilation. (These options can, for
example, limit the assembler's
freedom to perform branch
optimizations.) This option is intended
for compiler-generated .s files rather
than for hand-coded ones.

Repeats all instructions or data
between the .repeat directive and the
.endr directive. The expression
defines how many times the data
repeats. With the .repeat directive,
you cannot use labels, branch
instructions, or values that require
relocation in the block. To end a
.repeat see .endr.

Tells the assembler to add
subsequent data into the rdata
section.

Tells the assembler to add
subsequent data to the sdata section.

Instructs the assembler to enable or
to disable certain options. Use .set
options only for hand-crafted
assembly routines. The assembler
has these default options: reorder,
macro, and at. You can specify only
one option for each .set directive.
You can specify these .set options:

The reorder option lets the assembler
reorder machine language
instructions to improve performance.

Assembly Language Programmer's Guide

It

Pseudo-Op

Assembly Language Programmer's Guide

Pseudo e>,rcodes

Description

The noreorder option prevents the
assembler from re9rdering machine
language instructions. If a machine
language instruction violates the
hardware pipeline constraints, the
assembler issues a warning
message.

The bopt/nobopt option lets the
assembler perform branch
optimization. This involves moving
an instruction that is the target of a
branch or jump instruction into the
delay slot; this is perofrmed only if no
unpredictable side effects can occur.

The macro option lets the assembler
generate multiple machine
instructions from a single assembler
instruction.

The nomacro option causes the
assembler to print a warning
whenever an assembler operation
generates more than one machine
language instruction. You must
select the noreorder option before
using the nomacrooption; otherwise,
an error results.

The at option lets the assembler use
the $at register for macros, but
generates warnings if the source
program uses $at.

When you use the noat option and an
assembler operation requires the $at
register, the assembler issues a
warning message; however, the noat
option does let source programs use
$at without issuing warnings.

8-13

Chapters

Pseudo-Op

• space expression

.struct expression

8-14

Description

The nomove options tells the
assembler to mark each subsequent
instruction so that it cannot be moved
during reorganization. Because the
assembler can still insert nop
instructions where necessary for
pipeline constraints, this option is less
stringent than noreorder. The
assembler can still move instructions
from below the nomove region to fill
delay slots above the region or vice
versa. The nomove option has part of
the effect of the "volatile" C
declaration; it prevents otherwise
independent loads or stores from
occurring in a different order than
intended.

The move option cancels the effect of
no move .

Advances th~ location counter by the
value of the specified expression
bytes. The assembler fills the space
with zeros.

This permits you to lay out a structure
using labels plus directives like .word,
.byte, and so forth. It ends atthe next
segment dirP.Ctivu (.data, .text, etc.).
It does not emit any code or data, but
defines the labels within it to have
values which are the sum of
expression plus their offsets from the
.struct itself.

Assembly Language Programmer's Guide

Pseudo-Op

(symbolic equate)

.text

.verstamp major minor

• vreg register offset symno

Pseudo Op-Codes

Description

Takes one of these forms: name -
expression or name - register. You
must define the name only once in
the assembly, and you CANNOT
redefine the name. The expression
must be computable when you
assemble the program, and the
expression must involve operators,
constants, and equated symbols.
You can use the name as a constant
in any later statement

Tells the assembler to add
subsequent code to the text section.
(This is the default.)

Specifies the major and minor version
numbers (for example, version o. 15
would be .verstampO 15) .

(For use by compilers). Describes a
register variable by giving the offset
from the virtual frame pointer and the
symbol number symno (the dense
number) of the surrounding
procedure .

• word expression1 [, expression2] ... [, expressionN]

Assenrbly Language Programmer's Guide

Truncates the expressions in the
comma-separated list to 32-bits and
assembles the values in successive
locations. The expressions must be
absolute. The operands can
optionally have the form: expression 1
[: expression2). The expression2
replicates expression1's value
expression2 times. This directive
automatically aligns its data and
preceding labels to a word boundary.
You can disable this feature by using
.align o.

8·15

OtapterB

8-16 Assembly Language Programmer's Guide

MIPS Object File Format

Overview

9

This chapter provides information on the object file format and has the
following major topics:

• An overview of the components that make up the object file, and
the differences between the MIPS object-file format and the UNIX
System V common object file format (COFF).

• A description of the headers and sections of the object file.
Detailed information is given on the logic followed by the
assembler and link editor in handling relocation entries.

• The format of object files (OMAGIC, NMAGlC, ZMAGlC, and
LIBMAGJC), and information used by the system loader in loading
object files at run-time.

• Archive files and link editor defined symbols.

The assembler and the link editor generate object files that have sections
ordered as shown in Figure 9.1. Any areas empty of data are omitted,
except that the File Header, Optional Header, and Section Header are
always present.

The sections of the Symbol table portion (indicated in Figure 9.1) that
appear in the final object file format vary, as follows:

• The Line Numbers, Optimization Symbols, and Auxiliary Symbols
tables appear only when debugging is on (when the user specifies
one of the compiler -gl, -g2 or -g3 options).

Assembly umguage Programmer's Guide 9-1

Chapter 9

9-2

• When the user specifies the -x option (strip non-globals) for the
link edit phase, the link editor strips the Line Number, Local
Symbols, Optimization Symbols, Auxiliary Symbols, Local Strings,
and Relative File Descriptor tables from the object file, and updates
the Procedure Descriptor table.

• The link editor strips the entire Symbol table from the object file
when the user specifies the -s option (strip) for the link edit phase.

Any new assembler or link editor designed to work with the compiler
system should lay out the object file sections in the order shown in Figure
9.1. The link editor can pr_ocess object files that are ordered differently, but
performance may be degraded.

Assembly l.a11>:uagc Pro~rammcr's Guide

I'

File Header

Optional Headers

Section Headers

Section Data

text small data
initialization text
read-only data
large data

small bss (O size)
large bss (O size)
shared library info.
ucode (ucode ob-8-byte literal pool

4-byte literal pool
•

jects only)

Section Relocation Information

text large data
read-only data small data

Symbolic Header

Comments

Line Numbers•

Dense Numbers
(ucode ob·ects onl

Procedure Descriptor Table

Local Symbols

Optimization Symbols*

Auxiliary Symbols*

Local Strings

External Strings

File Descriptor

Relative File Descriptor

External Symbols

Figure 9.1: Object File Format

Assembly Language Programmer's Guide

MIPS Object File Format

·Created only if debugging is ON.

g Symbol Table. Missing
R if fully stripped.

D Missing if stripped of
non-globals.

9-3

01Dpter9

Readers already familiar with standard UNIX System V COFF (common
object file format) may be interested in the differences between it and the
MIPS compiler system format, as described next.

The compiler system File Header definition is based on UNIX System V
header file filehdr.h with the following modifications.

• The symbol table file pointer and the number of symbol table
entries now specify the file pointer and the size of the Symbolic
Header respectively (described in Chapter 10).

• All tables that specify symbolic infonnation have their file pointers
and number of entries in this Symbolic Header.

The Optional Header definition has the same format as specified in the
UNIX System V header fileaouthdr.lz, except the following fields have been
added: bss_start,gprmask, cprmask, and gp_value. See Table 9.4.

The Section Header definition has the same fonnat as the UNIX System V's
header file sc111zdr.lz. except the line number fields are used for global
pointers. See Table 9.6.

The relocation information definition is similar to UNIX 4.3 BSD, which
has local relocation types; however, you should read the Section
Relocation Information section in this chapter for information on
differences.

The File Header

9-4

The format of the File Header, defined in filelzdr.lz, is shown in Table 9.1.

Table 9.1: File Header Format

Declaration Field Description

unsigned short f_magic; Magic number.
unsigned short f_nscns; Number of sections.
long f_timdat; Time and date stamp.
long f_symptr; File pointer to symbolic header.
long ·f_nsyms; Size of symbolic header.
unsigned short f_opthdr; Size of optional header.
unsigned short f_flags; Flags.

f _symptr points to the Symbolic Htader of the SymJol table, and f_nsyms
gives the size of the header. For a description of the Symbolic Header, see
Chapter 10.

Assembly Language Programmer's Guide

11

MIPS Object File Format

File Header Magic Field (f _magic)
The magic number in the [_magic entry in the File Header specifies the
target machine on which an object file can execute. Table 9.2 shows the
values and mnemonics for the magic numbers; the header file filehdr.h
contains the macro definitions.

Table 9.2: File Header Magic Numbers

Symbol Value Description

MIPSEBMAGIC Ox0160 Big-endian target (headers and tables have
MIPSEBMAGIC_2 Ox0163 same byte order as host machine).

MIPSELMAGIC Ox0162 Little-endian target (headers and
MIPSELMAGIC_2 Ox0166 tables have same byte order as host

machine).

SMIPSEBMAGIC Ox6001 Big-endian target (headers and tables
SMIPSEBMAGIC_2 Ox6301 have opposite byte order as host

machine).

SMIPSELMAGIC Ox6201 Little-endian target (headers and
SMIPSELMAGIC_2 Ox6601 tables have opposite byte order as host

machine).

MIPSEBUMAGIC Ox0180 MIPS big-endian ucode object file.
MIPSELUMAGIC Ox0182 MIPS little-endian ucode object file.

Note: The "_2" magic numbers are defined for mips2 object files. They
cannot be used on a MIPS I implementation.

Assembly Language Programmer's Guide 9-5

Owpter 9

Flags (f_flags)

9-6

The f Jlags field describes the object file characteristics. Table 9.3 describes
the flags and gives their hexadecimal values. The table notes those flags
that do not apply to compiler system object files.

Table 9.3: File Header Flags

Assembly L.angua~e Pro~rammcr's Guide

MIPS Object File Format

Optional Header

The link editor and the assembler fill in the Optional Header, and the
system (kernel) loader (or other program that loads the object module at
run-time) uses the information it contains, as described in the section
Loading Object Files in this chapter.

Table 9.4 shows the format of the Optional Header (defined in the header
file aoutlidr)1).

Table 9.4: Optio11al Header Definition

Declaration Field Description

short magic; See Table 9.5.
short vstamp; Version stamp.
long tsize; Text size in bytes, padded to 16-byte

boundary.
long dsize; Initialized data in bytes, padded to

16-byte boundary.
long bsize; Uninitialized data in bytes, padded to

16-byte boundary.
long entry; Entry point.
Jong text_ start; Base of text used for this file.
long data_start; Base of data used for this file.
long bss_start; Base of bss used for this file.
Jong gpnnask; General purpose register mask.
long cprmaskl4]; Co-processor register masks.
long gp_value; The gp value used for this object.

Assembly Language Programmer's Guide 9-7

Clzapter 9

Optional Header Magic Field (magic)

9-8

Table 9.5 shows the values of the magic field for the Optional Header; the
header file aouthdr.h contains the macro definitions.

Table 9.5: RISC/os Magic Numbers

Symbol Value Description

OMAGIC

NMAGIC

ZMAGIC

LIBMAGIC

0407 Impure Format. The text is not write-protected
or sharable; the data segment is contiguous with
the text segment.

0410 Shared Text. The data segment starts at the next
page following the text segment and the text
segment is write-protected.

0413 The object file is to be demand loaded and has a
special format; the text and data segments are
separated. Text segment is also write protected.
(The MIPS default). The object may be either
dynamic or static.

0443 The object file is a target shared library to be
demand loaded and file has a special format like
that of a ZMAGIC file.

See the Object Files section in this chapter for information on the format of
OMAGIC, NMAGIC, ZMAGIC, and LIBMAGIC files.

Assembly Language Programmer's Guide

MIPS Object File Format

Section Headers

Table 9.6 shows the fonnat of the Section Header (defined in the header
file scnlzdr.11).

Tabl~ 9.6: section Header Format

Declaration

char
long
long
long
long
long
long
unsigned short
unsigned short

long

Assembly Language Programmer's Guide

Field

s_name[8];
s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;

s_flags;

Description

Section name.
Physical address.
Virtual address.
Section size.
File pointer to raw data for section.
File pointer to relocation.
File pointer to gp (global pointer) tables.
Number of relocation entries.
Number of gp tables.

Flags.

9-9

Chapter 9

Section Name (s_name)

9-10

Table 9.7 shows the defined section names for the s_name field of the
Section Header; the header file sc11hdr.h contains the macro definitions.

Table 9.7: Section Header Constants for Section Names

Declaration Field Description

_TEXT ".text" Text section.
_INIT ".init" Initialization text section for shared

libraries.
_FINI ".fini" Cleanup text section.
_RDA TA ".rdata" Read only data section.

-DATA ".data" Large data section.

-LITS ".lit8" 8 byte literal pool section.

-LIT4 ".lit4" 4 byte literal pool section.
_SDATA ".sdata" Small data section.
_BSS ".bss" Large bss section.
_SBSS ".sbss" Small bss section.

-LIB ,, .lib" Shared library information section
UCODE ".ucode" ucode section. -

_GOT ".got" •Global offset table.

-DYNAMIC ".dynamic" • Dynamic linking information.
_DYNSYM ".dynsym" •Dynamic linking symbol table.
_REL_DYN ".rel.d yn" • Relocation information.

-DYNSTR ".dynstr" " Dynamic linking strings.
_HASH ".hash" " Symbol hash table.

-DSOUST ".dsolist" " Dynamic shared object list tabk-.
_CONFLICT ".conflict'' "Additional dynamic linking information.
_REGINFO ".regi nfo" " Register usage information.

.. these sections exist only in ZMAGIC type files and are used during
dynamic linking

Assembly Lan~ua~c Programmer's Guide

1'1

MIPS Object File Format

Flags (s_flags)
Table 9.8 sbows the defined values for s_flags; the header file scnhdr.h
contains the definitions (those flags that are not used by compiler system
object files are noted).

Table 9.8: Format of sJlags Section Header Entry

Symbol

STYP_REG
STYP_DSECT
STYP _NOLOAD
STYP_GROUP
STYP_PAD
STYP_COPY

STYP_TEXT
STYP_DATA
STYP_BSS
STYP_RDATA
STYP_SDATA
STYP_SBSS
STYP_UCODE
STYP_LIT4
S_NRELOC_OVFL

STYP_LIB
STYP_INIT
STYP_FINI
STYP _COMMENT
STYP_LITS
STYP _CONFLICT
STYP _DSOLIST
STYP_HASH
STYP _DYNSTR
STYP_GOT
STYP _DYNAMIC
STYP _DYNSYM
STYP _REL_DYN

Value

OxOO
OxOl
Ox02
Ox04
Ox08
OxlO

Ox20
Ox40
Ox80
OxlOO
Ox200
Ox400
Ox800
OxlOOOOOOO
Ox20000000

Ox40000000
Ox80000000
Ox01000000
Ox02100000
Ox08000000
OxOOlOOOOO
Ox00040000
Ox00020000
Ox00010000
Ox00001000
Ox00002000
Ox00004000
Ox0008000

Description

Regular section; allocated, relocated, loaded.
!Dummy; not allocated, relocated, not loaded.
!Noload; allocated, relocated, not loaded.
!Grouped; formed of input sections.
!Padding; not allocated, not relocated, loaded.
!Copy; for decision function used by field update;
not allocated, not relocated, loaded; relocated,
and line number entries processed normally.
Text only.
Data only.
Contains bss only.
Read only data only.
Small data only.
Contains small bss only.
Section contains ucode only.
Section 4 byte literals only.
s_nreloc overflowed, the value is in r_vaddr of
the first entry.
Section contains shared library information only.
Section initialization text only.
.fini section text.
Comment section.
Section 8 byte literals only.
Additional linking information.
Dynamic shared object list table.
Symbol has table.
Dynamic linking strings.
Global offset table.
Dynamic linking information section.
Dynamic linking symbol table.
Relocation information for runtime linker.

!Not used by compiler system object modules.

Assembly Language Programmer's Guide 9-11

Chapter 9

S_NRELOC_OVFL is used when the number of relocation entries in a
section overflows the s_nreloc field of the section header. In this case,
s_nreloc contains the value Oxffff and the s_Jlags field has the
S_NRELOC_OVFL flag set; the value true is in the r _vaddr field of the first
relocation entry for that section. That relocation entry has a type of R_ABS
and all other fields are zero, causing it to be ignored under normal
circumstances.

Note: For performance reasons, the link editor uses the s_Jlags entry in
stead of s_name to determine the type of section. However, the link editor
does correctly fill in the s_name entry.

Global Pointer Tables

9-12

The gp (global pointer) tables are part of the object file that is produced by
the assembler. These are used by the link editor in calculating the best -G
num to compile the objects are specified as recompilable by the -count
option. 'There is a gp table for the .sdata and .bss sections only.

The gp table gives the section size corresponding to each applicable value
specified by the -G 11um option (always including 0), sorted by smallest
size first. The s_l1111optr field in the section header points to this value and
the s_11l11110 field contains the number of entries (including the header). If
there is no small section, the related gp table is attached to the
corresponding large section to provide the link editor with this
information.

When an object does not contain a data and bss section, the-G num option
specified for the object at compil<ition is unknown. B<..>cause the size of the
literal pools cannot be known, this complicates the calculation of a best-G
num. However, a reliable calculation can be made when there is an &-byte
literal pool, which ensures that the object was compiled with a -G of at
least eight.

The global pointer table has the following format:

union gp_table I
struct I

long current_g_value;/* actual value */

J;

long unused;
header;

struct I
long g_value;
long bytes;

] entry;

/* hypothetical value */
/* section size corresponding */
/* to hypothetical value */

Assembly La11~uage Pro~rammer's Guide

MIPS Object File Format

Shared Library Information
The .lib section contains the shared libraries used by executable objects.
The absence of a .lib section header indicates that no shared libraries are
used. Shared libraries are a feature of System V Release 3; thus, only
objects compiled with-systype sysv should contain .lib sections. The field
s_nlib in the section header is defined to be the same as s_paddr and
contains the number of shared library entries in the .lib section. The shared
library information definition shown below defines a compiler system .lib
section entry. Note the size and offset are in sizeof<Iong)'s not bytes. The
size (in bytes) of each entry must be a multiple of SCNROUND. The name
the offset field refers to is a C.null-terminated string.

struct libscn I
long size; /* size of this entry (including */

/* target name)*/

} ;

long offset; /* offset from start of entry */
/* to target name*/

long tsize; /* text size in bytes*/
long dsize; /* initialized data size in bytes */
long bsize; /* uninitialized data size in bytes */
long text_start; /* base of text used for */

/* this library*/
long data_start; /* base of data used for */

/* this library */
long bss_start; /* base of bss used for */

/* this library */
/* pathname of target shared library */

Assembly l.tmguage Programmer's Guide 9-13

Chapter 9

Section Data

9-14

RISCompiler system files are represented by the following sections:
.dynamic, .liblist, .rel.dyn, .conflict, .dynstr, .dynsym, .hash, .rdata (read-only
data), .text, .init (shared library initialization text), .fini (process
termination text), .data (data), litB (8-byte literal pool), .lit4 (4-byte literal
pool), .sdata (small data), .sbss (small block started by storage), .bss (block
started by storage), .lib (shared library information), and .ucode
(intermediate code). Figure 92 shows the layout of the sections.

The .dynamic, .liblist, .rel.dyn, .conflict, .dynstr, .dynsym, and .hash sections
exist only in ZMAGIC files and are used during dynamic linking. These
sections are described in more detail in Chapter 11. Dynamic linking is
discussed in Chapter 12.

The .text section contains the machine instructions that are to be executed;
the .rdata, .data, .litB, .lit4, and .sdata contain initialized data, and the .sbss
and .bss sections reserve space for uninitialized data that is created by the
kernel loader for the program before execution and filled with zeros.

Assembly Language Pro~rammer's Guide

I

MIPS Object File Format

.dynamic

.liblist

.rel.dyn

.conflict

.dynstr

.dynsym
text segment

.hash

.rdata

.text

.init

.fini

.data

.lit8

.lit4 data segment

.sdata

I .got

.sbss

.bss
} bss segment

Figure 9.2: Orga11izatio11 of Section Data

As noted in Figure 92, the sections are grouped into the text segment
(containing the .text, .init, and .fini sections), the data segment (.rdata, .data,
.litS, .Iit4, and .sdata), and the bss segment (.sbss and .bss). A section is
described by and referenced through the Section Header; the Optional
Header provi~es the same information for segments.

Assembly Language Programmer's Guide 9-15

Chapter 9

The link editor references the data shown in Figure 9.2 both as sections and
segments, through the Section Header and Optional Header respectively.
However, the system (kernel) loader, when loading the object file at run
time, references the same data only by segment, through the Optional
Header.

Section Relocation Information

Relocation Table Entry

9-16

Table 9.9 shows the format of an entry in the Relocation Table (defined in
the header file reloc.h).

Table 9.1: Format of a Relocation Table Entry .

Declaration Field Description

long r_vaddr; (Virtual) address of an item to be relocated.
unsigned r_symndx:24, Index into external symbols or section

numbers;
see r_extern below.

r_rcserved:3,
r_type:4, Relocation type.
r_extern:l; = 1 for an external relocation entry;

r_symndx is an index into External Symbols.
= 0 for a local, relocation entry; r_symndx is the
number of the section containing the symbol.

Symbol Index (r_symndx) and Extern Field (r_extern)

For external relocation entries, r _extern is set to 1 and r _synmndx is the
index into External Symbols for this entry. In this case, the value of the
symbol is used as the value for relocation.

For local relocation entries, r _extern is set to 0, and r _symndx contains a
constant that refers to a section. In this case, the starting address of the
section to which the constant refers is used as the value for relocation.

Table 9.10 gives the section numbers for r _synmdx; the reloc.lr file contains
the macro definitions.

Assembly Larrguagc Programmer's Guide

MIPS Object File Format

Table 9.2: Section Numbers for Local Reloa1tion Entries

Symbol Value Description

R_SN_TEXT 1 .text section.
R_SN_INIT 7 .init section.
R_SN_RDATA 2 .rdata section.
R_SN_DATA 3 .data section.
R_SN_SDATA 4 .sdata section.
R_SN_SBSS 5 .sbss section.
R_SN_BSS 6 .bss section.
R_SN_LIT8 8 .lit8 section.
R_SN_LIT4 9 .lit4 section.
R_SN_FINI 12 .fini section.

Relocation Type (r_type)

Table 9.1 lshows valid symbolic entries for the relocation type Cr _type) field
(defined in the header file reloc.11)

Table 9.3: Relocation Types

Symbol Value Description

R_ABS OxO Relocation already performed.
R_REFHALF Oxl 16-bit rl'ference to the symbol's virtual address.
R_REFWORD Ox2 32-bit reference to the symbol's virtual address.
R_JMPADDR Ox3 26-bit jump reference to the symbol's virtual

address.
R_REFHI Ox4 Reference to the high 16-bits of symbol's virtual

address.
R_REFLO Ox5 Reference to the low 16-bits of symbol's virtual

address.
R_GPREL Ox6 Reference to the offset from the global pointer to

the symbol's virtual address.
R_LITERAL Ox7 Reference to a literal in a literal pool as an offset

from the global pointer.
R_REL32 OxS Reference to the distance from the offset to the

global pointer.

Assembly Language Programmer's Guide 9-17

01apter9

Assembler and Link Editor Processing

9-18

Compiler system executable object modules with all external references
defined have the same format as relocatable modules and are executable
without re-link editing.

Local relocation entries must be used for symbols that are defined.
Therefore, external relocations are used only for undefined symbols.
Figure 9.3 gives an overview of the Relocation Table entry for an undefined
external symbol.

Figure 9.3: Relocation Table Entry for Undefined External Symbols

Relocation Table Entry

..- r_vaddr E S xternal ymbols

r_symndx 1
value=O

r_extern•1

Section Data l)n-extended to 3

.... l constant

2 bits .

The assembler creates this entry as follows:

Sets r _vaddr to point to the item to be relocated.

Places a constant to be added to the value for relocation at the
address for the item to be relocated (r_vaddr).

Sets r_synmdx to the index of the External Symbols entry that
contains the symbol value.

Sets r_type to the constant for the type of relocation types. Table
9.11 shows the valid constants for the relocation type.

Sets r _extern to 1.

Note: The assembler always sets the value of the undefined entry in Exter
nal Symbols to 0. It may assign a constant value to be added to the relocat
ed value at the address where the location is to be done. If the width of the
constant is less than a full word, and an overflow occurs after relocation,
the link editor flags this as an error. ·

Assembly Language Programmer's Guid~

11

MIPS Object File Format

When the link editor determines that an external symbol is defined, it
changes the Relocation Table entry for the symbol to a local relocation
entry. Figure 9.4 gives an overview of the new entry.

Figure 9 .4: Relocation Table Entry for a Local Relocation Entn;

Relocation Table Entry Section n Optional
r---i r_vaddr _ Header

r_symndx 1----f -
r_type s_vaoor t---i

r_extern•O

Section Data ~Soction n Data

_,,,,.. - Jconstant

~
~mbol locatio n

Sign-extended to 32 bits.

To change this entry from an external relocation entry to a local relocation
entry, the link editor:

• Picks up the constant from the address to be relocated (r _vaddr).

• If the width of the constant is less than 32 bits, sign-extends the
constant to 32 bits.

• Adds the value for relocation (the value of the symbol) to the
constant and places it back in the address to be relocated.

• Sets r_symndx to the section number that contains the external
symbol.

• Sets r _extem to 0.

Assembly Language Programmer's Guide 9-19

Chapter 9

Examples

9-20

The examples that follow use external relocation entries.

Example 1: 32-Bit Reference-R_REFWORD. This example shows
assembly statements that set the value at location b to the global data value
y .

. globl y

.data
b: .wordy #R_REFWORD relocation type at address b for symbol y

In processing this statement, the assembler generates a relocation entry of
type R_REFWORD for the address band the symbol y. After determining
the address for the symbol y, the loader adds the 32-bit address of y to the
32-bit value at location b, and places the sum in location b. The loader
handles 16-bit addresses (R_REFHALF) in the same manner, except it
checks for overflow after determining the relocation value.

Example 2: 26-Bit Jump-RJMPADDR. This example shows assembly
statements that call routine x from location c .

. text
x: #routine x

c: jal x #R_JMPADDR relocation type at address c for symbol x

In processing these statements, the assembler generates a relocation entry
of type R_JMPADDR for the address and the symbol x. After determining
the address for the routine, the loader shifts the address right two bits,
adds the low 26 bits of the result to the low 26 bits of the instruction at
address c (after sign~xtending it), and places the results back into the low
26 bits at address c.

R_JMPADDR relocation entries are produced for the assembler's j (Jump)
and jal (Jump and Link) instructions. These instructions take the high four
bits of the target address from the address of the delay slot of their
instruction. The link editor makes sure that the same four bits are in the
target ad~ress after relocation; if not, it generates an error message.

If the entry is a local relocation type, the target of the Jump instruction is
assembled in the instruction at the address to be relocated. The high four
bits of the jump target are taken from the high 4 bits of the address of the
delay slot of the instruction to be relocated.

Assembly Language Programmer's Guide

MIPS Object File Format

Example 3: High/Low Reference-R_REFHI/R_REFLO. This example
shows an assembler macro that loads the absolute address y, plus a
constant, into Register 6:

In processing this statement, the assembler generates a 0 as the value y,
and the following machine language statements:

f: lui $at,constant>>l6 #R_REFHI relocation type at address
f

for symbol y
g: addiu $r6,constant&Oxffff($at) #R_REFLO relocation type at address

In this example, the assembler produces two relocation entries.

Note: When a R_REFHI relocation entry appears, the next relocation entry
must always be the corresponding R_REFLO entry. This is required in or
der to reconstruct the constant that is to be added to the value for reloca
tion.

In determining the final constant values for the two instructions, the link
editor must take into account that the addiu instruction of the R_REFLO
relocation entry sign~xtends the immediate value of the constant.

In determining the sum of the address for the symbol y and the constant,
the link editor does the following:

• It uses the low 16 bits of this sum for the immediate value of the
R_REFLO relocation address.

• Because all instructions that are marked with a R_REFLO perform a
signed operation, the assembler adjusts the high portion of the sum
if Bit 15 is set. Then it uses the high 16 bits of the sum for the
immediate value of the R_REFHI instruction at the relocation
address. For example:

lw $r6,0x10008000

lui $at,Ox1001
lw $r6,0x8000($at)

at ... ox10010000
+ OxFFFFBOOO

Ox10008000

Example 4: Offset Reference-R_GPREL. This example shows an
assembly macro that loads a global pointer relative value y into Register 6:

lw Sr6,y

Assembly umguage Programmer's Guide 9-21

Orapter 9

Object Files

9-22

In processing this statement, the assembler generates a 0 as the value y and
the following machine language statement:

h: lw $r6,0($gp) #R_GPREL relocation type at
address h for symbol y

and a R_GPREL relocation entry would be produced. The assembler then
uses the difference between the address for the symbol y and the address
of the global pointer, as the immediate value for the instruction The link
editor gets the value of the global pointer used by the assembler from
gp_value in the Optional Header (Table 9.4).

Example 4: Example of the R_LITERAL This example shows of an
R_LITERAL uses a floating-point literal. The assembler macro:

li.s $f0, l. 234

is translated into the following machine instruction:

h: lwcl $f0,-32752(gp) # R_LITERAL relocation
type at address h for the
literal 1. 234

and a R_LITERAL relocation entry is produced; the value of the literal is
put into the .lit4 section. The link editor places only one of all like literal
constants in the literal pool. The difference between the virtual address of
the literal and the address of the global pointer is used as the immediate
value for the instruction. The link editor handles 8-byte literal constants
similarly, except it places each unique constant in the .lit8 section. The
value of the-G num option used when compiling determines if the literal
pools are used.

This section describes the object-file formats created by the link editor,
namely the Impure (OMAGIC), Shared Text (NMAGIC), Demand Paged
(ZMAGIC), and target-shared libraries (LIBMAGIC) formats. Before
reading this section, you should be familiar in the format and contents of
the text, data, and bss segments as described in the Section Data section of
this chapter.

Note: This chapter discusses the creation of LIBMAGIC files (shared
libraries). These are not to be confused with dynamic shared objects that
have type ZMAGIC. Dynamic shared objects are discussed in Chapters 11

·and 12.

The following constraints are imposed on the address at which an object
can be loaded and the boundaries of its segments. The operating system
can dictate additional constraints.

Assembly umguagc Programmer's Guide

MIPS Object File Format

• Segnments must not overlap and all addresses must be less than
Ox80000000.

• Space should be reserved for the stack, which starts below
Ox80000000 and grows through lower addresses; that is, the value
of each subsequent address is less than that of the previous
address.

• The default text segment address for ZMAGIC and NMAGIC files
is Ox0n0400000 and the default data segment address is OxlOOOOOOO.

• The default text segment address for OMAGIC files is OxlOOOOOOO
with the data segment following the text segment.

• The -B num option (specifying a bss segment origin) cannot be
specified for OMAGIC files; the default, which specifies that the
bss segment follow the data segment, must be used.

• RISC/ os requires a 2-megabyt~ boundary for segments.

Impure Format (OMAGIC) Files

An OMAGIC file has the format shown in Figure 9.5.

.bss

.sbss
} bss segment

.sdata

.lit4

.lit8 data segment

.data

.rdata

.init

.text
} text segment

aligned on a 16-byte boundary

Figure 9.5: Layout of OMAGIC Files in Virtual Memory

Assembly Language Programmer's Guide 9-23

Chapter 9

The OMAGIC format hasb the following characteristics:

• Each section follows the other in virtual address space aligned on
an 16-byte boundary.

• No blocking of sections.

• Text, data and bss segments can be placed anywhere in the virtual
address space using the link editor's -T, -D and -B options.

• The addresses specified for the segments must be rounded to 16-
byte boundaries.

• The text segment contains the .text, and .init sections.

• The sections in the data segment are ordered as follows: .rdata, .data,
.litB, .lit4, and .sdata.

• The sections in the bss segment are ordered as follows: .sbss and
.bss.

Shared Text (NMAGIC) Files

9-24

An NMAGIC file has the format shown in Figure 9.6.

} bss segment
.bss I

.,... I
~

~
.sbss

.sdata
~

.lit4 -
..... .lit8

data segment

~

.data ...
.in it

.fini
text segment

..... ...
.text

~

.rdata

.___ aligned on a 16-byte b oundary

aligned on a page-size boundary --

Figure 9.6: Layout of NMAGIC Files in Virtual Mcmon1

Assembly Lo11gua~c Programmer's Guide

MIPS Object File Format

An NMAGIC file has the following characteristics:

• The virtual address of the data segment is on a pagesi:e boundary.

• No blocking of sections.

• Each section follows the other in virtual address space aligned on
an l~byte boundary.

• Only the start of the text and data segments, using the link editor's
-T and -D options, can be specified for a shared text format file; the
start of the text and data segments must be a multiple of the
pagesizc.

Demand Paged (ZMAGIC) Files
A ZMAGIC file is a demand paged file in the format shown in Figure 9.7.

A ZMAGIC file has the following characteristics:

• The text segment and the data segment are blocked, with pagcsi::.e
as the blocking factor. Blocking reduces the complexity of paging
in the files.

• The size of the sum of the of the File, Optional, and Sections
Headers (Tables 9.1, 9.4, and 9.6) rounded to 16 bytes is included
in blocking of the text segment.

• The text segment starts by default at Ox400000 (4 Mbyte) , plus the
size of the sum of the headers again rounded to 16 bytes. With the
standard software, the text segment starts at Ox400000 + header
size.

Note: This is required because the first 32K bytes of memory are reserved
for future use by the compiler system to allow data access relative to the
constant register 0.

• Only the start of the text and data segments, using the link editor's
-T and -D options can be specified for a demand paged format file
and must be a multiple of the pagesize.

Assembly Language Programmer's Guide 9-25

Ozapter 9

9-26

2G ~~~~~~--.l
2G-32K ! upage I I

o fill area

256M

4 Mbyte + header

4 Mbyte

0

I
I

I

Stack Area
""-......

sbrk arena

.bss } .sbss

o area fill

.sdata

.lit4

.lit8

.data

empty

fill area

11
.init

.text

.rdata I I

header

empty

32K (not accessible
by user).

bottom of stack
increases automatically
as required.

bss segment

data segment
(bl ocked by pagesize)

text segment
(bl ocked by pagesize)

Figure 9.7: Layout of ZMAGIC Files in Virtual Memory

Assembly La11guage Programmer's Guide

Ii
I

MIPS Object File Format

Figure 9.8 shows a ZMAGIC file as it appears in a disk file.

Symbol Table

O Fill Area
.,

.got

.sdata data segment

.lit4
~ (blocked by pagesize)

.lit8

.data

fill area '
.fini

.init

.text

.rdata
.hash

I .dynsym text segment
I

.dynstr (blocked by pagesize) I
.msym

I .corifhct

I
.rel.dyn I I

.liblist

.dynamic

headers

Figure 9.8: lAyout of a ZMAGIC File 011 Disk.

Target Shared Library (LIBMAGIC) Files
Typically, mks1ilib(1) creates target shared libraries. The link editor creates
such libraries when its -c option is specified (each shared library file name
is displayed during the link if the-v option is supplied).

Assembly Language Programmer's Guide 9-27

Chapter 9

LIBMAGIC files are demand paged and have the same format as ZMAGIC
file except as follows:

• Headers are put on their own page

• The text section starts on the next page from the value of the -T
num option. This prevents the number and size of headers from
affecting the start of the first real text. The first real text is the
branch table and must stay at the same address.

Both the-T and -D options should be specified, because the defaults
would cause the target shared library to overlay the ZMAGIC files and
cause an execution failure. The link editor-c option requires that the files
to be linked are compiled with the -G 0 option (which sets the link editor
-G 0 option).

Note: Shared library refers to System V Release 3 type shared libraries.
Elsewhere, we use "shared objects" or "dynamically linked executable" for
shared libraries in the sense similar to System V Release 4 type shared
libraries.

Objects Using Shared Libraries

9-28

Object files that use shared libraries contain a lib section following the data
segment Oncluding the zero fill area created by blocking it to a pagesize).
All object file contain an .init section used by shared library initialization
code. Shared library initialization instructions are generated by mksl1lib(l)
from the #i11it directive in the library specification file. This following code
from the shared library specification

#init
lib foci ext

bar.o
ext

generatt.>S these instructions generated in the .ilzit section:

la $2,ext
sw $2,_libfoo_ext

Initialization instructions are not bounded by any procedure; the
initialization instructions from each .init section are concatenated and the
runtime startup (crtl.o) branches to its label in its .init section. Then the
execution falls through all the concatenated .init sections until reaching
crt11.o (the last object with a .i11it section) which contains the RETURN
instruction.

Object files without shared libraries contain a small .init section that
executes, producing no significant results.

Assembly Language Programmer's Guide

i'

Ucode objects

MIPS Object File Format

Ucode objects contain only a file header, the ucode section header, the
ucode section and all of the symbolic infonnation. A ucode section never
appears in a machine code object file.

Loading Object Files
The link editor produces object files with their sections in a fixed order
similar to UNIX system object files that existed before COFF. See Figure
9.1 for the a description of the sections and how they are fonnatted.

The sections are grouped into segments, which are described in the
Optional Header. In loading the object module at run-time, the system
(kernel) loader needs only the magic number in the File Header and the
Optional Header to load an object file for execution.

The starting addresses and sizes of the segments for all types of object files
are specified similarly, and they are loaded in the same manner.

After reading in the File Header and the Optional Header, the system
(kernel) loader must examine the file magic number to determine if the
program can be loaded. Then, the system (kernel) loader loads the text and
data segments.

The starting offset in the file for the text segment is given by the macro

N_TXTOFF(f,a)

in the header file a.out.11, where f is the File Header structure and a is the
option header structure for the object file to be loaded. The tsi:e field in the
Optional Header (Table 9.4) contains the size of the text segment and
text_start contains the address at which it is to be loaded.

The starting offset of the data segment follows the text segment. The dsi:e
field in the Section Header (Table 9.6) contains the size of the data segment;
data_start contains the address at which it is to be loaded.

The system (kernel) loader must fill the .bss segment with zeros. The
bss_start field in the Optional Header specifies the starting address; bsiz.e
specifies the number of bytes to be filled with zeros. In ZMAGIC files, the
link editor adjusts bsize to account for the zero filled area it created in the
data segment that is part of of the .sbss or .bss sections.

If the object file itself does not load the global pointer register it must be set
to the gp_value field in the Optional Header (Table 9.4).

The other fields in the Optional Header are gprmask and cprmask/41, whose
bits show the registers used in the .text, .i11it , and .fi11i sections. They can
be used by the operating system, if desired, to avoid save register
relocations on context-switch.

Assenrbly La11~uagc Programmer's Guide 9-29

Gwpter 9

Archive files

The link editor can link object files in archives created by the archiver. The
archiver and the format of the archives are based on the UNIX System V
portable archive format. To improve performance, the format of the
archives symbol table was changed so that it is a hash table, not a linear list.

The archive hash table is accessed through the ranluzshinitO and ranlookup()
library routines in libmld.a, which are documented in the manual page
ranluzsh(3x). The archive format definition is in the header file ar.h.

Link Editor Defined Symbols

Certain symbols are reserved and their values are defined by the link
editor. A user program can reference these symbols, but can not define
one; an error is generated if a user program attempts to define one of these
symbols. Table 9.12 lists the names and values of these symbols; the
header file sym.11 contains their preprocessor macro definitions.

Table 9.12: Link Editor Defined Symbols

Symbol Value

_ETEXT "etext"
_EDAT A "edata"
_END "end"
_FTEXT "_ftext"
_FDA TA "_fdata"
_FBSS "_fbss"
_PROCEDURE_T ABLE

"_procedure_table11

_PROCEDURE_T ABLE_SIZE

Description

1st location after .text
1st location after .sdata (all initialized data)
-1st location after .bss (all data)
!1st location of .text
!1st location of .data
!1st location of the .bss

runtime procedure table

11 _procedure_table_size" runtime procedure table size

_PROCEDURE_SfRING_T ABLE
11 _procedure_strin&,_table11 string table for runtime proc.

_COBOL_MAIN
_GP
_UNWIND
_PC_NLC_GOTO
_FIND_RDP

9-30

11 _cobol_main11

II _gpll

"_unwind"
"_pc_nlc_goto"
"_find_rdp"

1st cobol main symbol
!the value of the global pointer
Unwinds the stack.
Handles Pascal non local goto commands.
Finds runtime procedure tables.

Assembly l.Jmguagc Programmer's Guide

MIPS Object File Format

!compiler system only.

The dynamic linker also reserves and defines certain symbols; see
Chapters 11 and 12 for more information.

The first three symbols come from the standard UNIX system link editors
and the rest are compiler system specific. The last symbol is used by the
start up routine to set the value of the global pointer, as shown in the
following assembly language statements:

GP
$gp,_GP

The assembler generates the following machine instructions for these
statements:

a: lui gp,O # R_REFHI relocation type at address a for symbol _GP
b: add gp,O # R_REFLO relocation type at address b for symbol _GP

which would cause the correct value of the global pointer to be loaded.

The link editor symbol _COBOL_MAIN is set to the symbol value of the
first external symbol with the cobol_main bit set. COBOL objects uses this
symbol to determine the the main routine.

Runtime Procedure Table Symbols
The five link editor defined symbols, _pROCEDURE_T ABLE,
_FIND_RDP _PC_NLC_GOTO,, _UNWIND,
_PROCEDURE_T ABLE_SIZE and _PROCEDURE_STRING_T ABLE,
relate to the runtime procedure table. The Runtime Procedure Table is
used by the exception systems in ADA, PL/I and COBOL. Its description
is found in the header file sym.11. The table is a subset of the Procedure
Descriptor Table portion of the Symbol Table with one additional field,
exception_info.

When the procedure table entry is for an external procedure, and an
External Symbol Table exists, the link editor fills in exceptio11_i11fo with the
address of the external table. Otherwise, its fill in exceptio11_i11fo with zeros.

The name of the External Symbol Table is the procedure name
concatenated with the string _exceptio11_i11fo (actually, the preprocessor
macro EXCEPTION_SUFFIX as defined in the header file exceptio11.11).

The Runtime Procedure Table provides enough information to allow a
program to unwind its stack. It is typically used by the routines in libcxc.a.

Assembly umguagc Programmer's Guide 9-31

Ouzpter 9

9-32

The comments in the header file exception.h describes the routines in that
library.

The Runtime Procedure Table is sorted by procedure address and always
has a dummy entry with a zero address and a Oxffffffff address. When
required, the table is padded with an extra zero entry to ensure that the
total number of entries is an uneven (odd) number.

The Runtime Procedure Table and String Table for the runtime procedure
table are placed at then end of the .data section in the object file.

Assembly Language Programmer's Guide

Symbol Table

10

This chapter describes the symbol table and symbol table routines used to
create and make entries in the table. The chapter contains the following
major sections:

• Overview, which gives the purpose of the Symbol table, a
summary of its components, and their relationship to each other.

• Format of Symbol Table Entries, which shows the structures of
Symbol table entries and the values you assign them through the
Symbol Table routines.

• Symbol Table Routine Reference, which lists the symbol table
routines supplied with the compiler and summarizes the function
of each.

Note: Third Eye Software, Inc. owns the copyright (dated 1984) to the for
mat and nomenclature of the Symbol Table used by the compiler system
as documented in this chapter.

Third Eye Software, Inc. grants reproduction and use rights to all parties,
PROVIDED that this comment is maintained in the copy.

Third Eye makes no claims about the applicability of this symbol table to
a particular use.

Assembly 1.Jmguage Programmer's Guide 10-1

Clzapter 10

Overview

10-2

The symbol table in created by the compiler front-end as a stand-alone
file. The purpose of the table is to provide information to the link editor
and the debugger in performing their respective functions. At the option
of the user, the link editor includes information from the Symbol table in
the final object file for use by the debugger. See Figure 9.1 in Chapter 9 for
details.

Created only if debugging
is ON.

0 1 table per compilation.

Symbolic Header

Comment Section"

Dense Numbers

Procedure Descriptor Table

Local Symbols

Optimization Symbols

Auxiliary Symbols

Local Strings

External Strings

File Descriptor

Relative File Descriptor

External Symbols

0 1 table per source file and
per include file.

" This section holds compacted form of relocation entries for Pixie.
·Currently only dynamically linked executables and shared objects
have this section.

Figure 10.1: Tlie Symbol Table- Overview

The elements that make up the Symbol table are shown in Figure 10.1. The
front-end creates one group of tables (the shaded areas in Figure 10.1) that

Assembly Language Programmer's Guide

Symbol Table

contain global information relative to the entire compilation. It also creates
a unique group of tables (the unshaded areas in the figure) for the source
file and each of its include files.

Compiler front-ends, the assembler, and the link editor interact with the
symbol table as summarized below:

• The front-end, using calls to routines supplied with the compiler
system, enters symbols and their descriptions in the table.

• The assembler fills in line numbers, optimization symbols, updates
Local Symbols and External Symbols, and updates the Procedure
Descriptor table.

• The link editor eliminates duplicate information in the External
Symbols and the External Strings tables, removes tables with
duplicate information, updates Local Symbols with relocation
information, and creates the Relative File Descriptor table.

The major elements of the table are summarized in the paragraphs that
follow. Some of these elements are explored in more detail later in the
chapter.

Symbolic Header. The Symbolic Header (HORR for HeadDeR Record)
contains the sizes and locations (as an offset from the beginning of the file)
of the subtables that make up the Symbol Table. Figure 10.2 shows the
symbolic relationship of the header to the other tables.

[symbolic Header} --.. Line Numbers -.. Dense Numbers ..
Procedure Descriptor Table ...

.. Local Symbols -

... Optimization Symbols ..

.. Auxliary Symbols ...
-- Local Strings ..
... External Strings ..
..

File Descriptor Table ...

Figure 10.2: Fu11ctio11al Overview of tlze Symbolic Header

Assembly Language Programmer's Guide 10-3

Chapter 10

10-4

Line Numbers. The assembler creates the Line Number table. It creates an
entry for every instruction. Internally, the information is stored in an
encoded form. The debugger uses the entries to map instruction to the
source lines and vice versa.

Dense Numbers. The Dense Number table is an array of pairs. An index
into this table is called a dense number. Each pair consists of a file table
index (ifd) and an index (isym) into Local Symbols. The table facilitates
symbol look-up for the assembler, optimizer, and code generator by
allowing direct table access rather than hashing.

Procedure Descriptor Table. The Procedure Descriptor table contains
register and frame information, and offsets into other tables that provide
detailed information on the procedure. The front-end creates the table and
links it to the Local Symbols table. The assembler enters information on
registers and frames. The debugger uses the entries in determining the line
numbers for procedures and frame information for stack traces.

Local Symbols. The Local Symbols table contains descriptions of program
variables, types, and structures, which the debugger uses to locate and
interpret runtime values. The table gives the symbol type, storage class,
and offsets into other tables that further define the symbol.

A unique Local Symbols table exists for every source and include file; the
compiler locates the table through an offset from the file descriptor entry
that exists for every file. The entries in Local Symbols can reference related
information in the Local Strings and Auxiliary Symbols subtables. This re-
lationship is shown in Figure 10.3.

Assembly l.a11guage Programmer's Guide

Symbol Table

[File Descriptor Table J
Entry for File o

l Entry for File 1
... Local Symbols -

Entry for File 2 t--- ...
Entry for File n - I Local Strings

--.. Auxiliaries

.. ..

~l: .

... 1

I Local Strings I i
Auxiliaries 1 !

._____;;;..___;;;.....,;;;..,;_--.11 !

... I

t: Local Strings

-..1 Auxiliaries

Figure 10.3: Logical Relatio11sl1ip between the File Descriptor Table aud Local Symbols

Optimization Symbols. To be defined at a future date.

Auxiliary Symbols. The Auxiliary Symbols tables contain data type
information specific to one language. Each entry is linked to an entry in
Local Symbols. The entry in Local Symbols can have multiple, contiguous
entries. The format of an auxiliary entry depends on the symbol type and
storage class. Table entries are required only when the compiler
debugging option is ON.

Local Strings. The Local Strings subtables contain the names of local
symbols.

Assembly Lauguage Programmer's Guide 10-5

Chapter 10

External Strings. The External Strings table contains the names of external
symbols.

File Descriptor. The File Descriptor table contains one entry each for each
source file and each of its include files. (The structure of an entry is given
in Table 10.12 later in this chapter.) The entry is composed of pointers to a
group of subtables related to the file. The physical layout of the subtables
is shown in Figure 10.4.

File Descriptor Table

l File ~escriptor Entry]--
Line Numbers ..

~ .. Procedure Descriptor Table

.. Local Symbols -.... Optimization Symbols

... Auxliary Symbols -.. Local Strings -- Relative File Descriptor ...

Figure 10.4: Plzysical Relatio11slzip of a File Descriptor E11tnJ to Otl1er Tables

10-6 Assembly Language Programmer's Guide

1,
I
I

[

Symbol Table

The file descriptor entry allows the compiler to access a group of subtables
unique to one file. The logical relationship between entries in this table
and in its subtables is shown in Figure 10.5.

File Descriptor Table

En!!:!'_ for File o
En!!:!'_ for File 1 t- -- Line Numbers ~

En!!:!'_ for File 2 t-- .. Procedure Descriptor Table -- -- Local Symbols - ..
-- Optimization Symbols ~-

... Auxliary Symbols ..
.. Local Strings -... Relative File Descriptor ...

-- Line Numbers

.. Procedure Descriptor Table ..
... Local Symbols ...
.... Optimization Symbols

'
..... Auxliary Symbols

... .. Local Strings .. Relative File Descriptor ..

Figure 105: Logical Relationship between the File Descriptor Table a11d Otl1er Tables

Relative File Descriptor. See the section Link Editor Processing later in
this chapter.

External Symbols. The External Symbols contains global symbols entered
by the ·front-end. The symbols are defined in one module and referenced
in one or more other modules. The assembler updates the entries, and the
link editor merges the symbols and resolves their addresses.

Assembly Language Programmer's Guide 10-7

Ozapter 10

Format of Symbol Table Entries

Symbolic Header

10-8

The structure of the Symbolic Header is shown below in Table 10.1; the
sym.h header file contains the header declaration.

Table 10.1: Format of the Symbolic Header

Declaration Name Description

short magic To verify validity of the table.
short vs tamp Version stamp.
long ilineMax · Number of line number entries.
long cbline Number of bytes for line number entries.
long cbLineOffset Index to start of line numbers.
long idnMax Max index into dense numbers.
long cbDnOffset Index to start dense numbers.
long ipdMax Number of procedures.
long cbPdOffset Index to procedure descriptors.
long isymMax Number of local symbols.
long cbSymOffset Index to start of local symbols.
long ioptMax Maximum index into optimization entries.
long cbOptOffset Index to start of optimization entries.
long iauxMax Number of auxiliary symbols.
long cbAuxOffset Index to the start of auxiliary symbols.
long issMax Max index into local strings.
long cbSsOffset Index to start of local strings.
long issExtMax Max index into external strings.
long cbSsExtOffset Index to the start of external strings.
long ifdMax Number of file descriptors.
long cbFdOffset Index to file descriptor.
long crfd Number of relative file descriptors.
long cbRfdOffset Index to relative file descriptors.
long iextMax Maximum index into external symbols.
long cbExtOffset Index to the start of external symbols.

The lower byte of the vstamp field contains LS_STAMP and the upper byte
MS_sr AMP (see the stamp.h header file). These values are defined in the
stamp.Ii file. The iMax fields and the cbOffset field must be set to 0 if one of
the tables shown in Table 10.1 isn't present. The magic field must contain
the co~tant nragicSym, also defined in longsymco11st.11.

Assembly Language Programmer's Guide

Line Numbers

Symbol Table

Table 10.2 shows the format of an entry in the Line Numbers table; the
sym.h header file contains its declaration.

Table 10.2: Format of a Line Number t.ntry

Declaration Name

typedef long LINER, •pLINER

The line number section in the Symbol table is rounded to the nearest four
byte boundary.

Line numbers map executable instructions to source lines; one line number
is stored for each instruction associated with a source line. It is stored as a
long integer in memory and in packed format on disk.

The layout on disk is as follows:

~ 7 4 0

l==c5Gl==c5GI
Delta Count

The compiler assigns a line number to only those lines of source code that
generate one or more executable instructions.

Delta is a four-bit value in the range-7 ... 7, defining the number of source
lines between the current source line, and the previous line generating
executable instructions. The Delta of the first line number entry is the
displacement from the lnLow field in the Procedure Descriptor Table.

Count is a four-bit field with a value in the range 0 ... 15 indicating the
number (1 ... 16) of executable instructions associated with a source line. If
more than 16 instructions (15+ l) are associated with a source line, new line
number entries are generated with Delta = 0.

An extended format of the line number entry is used when Delta is outside
the range of -7 ... 7.

Assen1bly LA11guagc Programmer's Guide 10-9

01apter 10

10-10

The layout of the extended field on disk is as follows:

Bit 7 4 0

l:i01J2:1=1
Constant 78 Count

Bit 7~o
!~I

Upper eight bits of Delta

Bit

Lower eight bits of Delta

Note: The compiler allows a maximum of 32,767 comment lines, blank
lines, continuation lines and other lines not producing executable instruc
tions, between two source lines that do produce executable instructions.

Line number example. This section gives an example of how the compiler
assigns line numbers. For the source listing shown below, the compiler
generates line numbers only for the highlighted lines (6, 7, 17, 18, and 19);
the other lines are either blank or contain comments.

Assembly Language Programmer's Guide

' '~

Symbol Table

l .. tinclude <stdio.h>
2 main ()
3 {

.. 4 char c;
5

6 printf ("this program just prints its input\n");
7 while J_ (c • __g_etc J_ stdin _l) , .. EOF) {

8 /* this is a greater than a seven line comment
9 * l ..

10 * 2
11 ·.: * 3
·12 * 4
13 * 5
14 * 6
15 * 7
16 *I
17 printf ("\c", c); i

18 } /* end while *I
19 } /* end main */

Figure 10.6: Source Usti11g for Line Number Example

Assembly l.Jmguagc Programmer's Guide 10-11

Guzpter 10

10-12

Figure 10.8 (on the next page) shows the instructions generated for lines 3,
7, 17, 18, and 19. Figure 10.7 (below) shows the compiler-generated liner
entries for each source line.

Source
Liner

Line Contents Meaning

3 02 delta o, count 2
6 31 delta 3, count 1
7 1f delta 1, count 15
7 03 delta o, count 3

171 82 00 Oa -81, count 2, delta 1 o
18 1f delta 1, count 15
1a2 03 delta ri2, count 3
19 15 delta 1, count 5

1 Extended format (count is greater than
seven lines).

2 Continuation.

Figure 10.7: Source Listing for Line Number Example

Assembly LA11guage Programmer's Guide

lo
I
i

Symbol Table

[main:3, Ox400la0] addiu sp,sp,·32

9 [main:3, Ox400la4] S'W r31,20{sp)
[main:3, Ox400la8] S'W rl6,16{sp)
[main:6, Ox400lac] jal printf
_lmain:6, Ox400lbOJ addiu r4,g~,-32752
[main:?, Ox400lb4] lw rl4,-32552{gp)
[main:?, Ox400lb8] nop
[main:?, Ox400lbc] addiu rl5,rl4,·l
[main:7, Ox400lc0] bltz r15,0x400le4
[main:7, Ox400lc4] S'W r15,·32552(gp)
[main:7, Ox4001c8) l'W r24,-32548(gp)
[main:7, Ox400lcc] nop

0 [main:?, Ox400ld0] lbu r25,0(r24)
[main:7, Ox400ld4] addiu r8,r24,l
[main:7, Ox400ld8] sb r25,31(sp)
[main:?, Ox400ldc] b Ox400lf4
[main:?, Ox400le0] S'W r8,-32548(gp)
[main:7, Ox400le4] jal filbuf
[main:7, Ox400le8] addiu r4,gp,-32ss2
[main:?, Ox400lec] move rl6,r2
[main:?, Ox400lf0] sb r16,31(sp)
[main:7, Ox400lf4] lbu r9,3l(sp)
[main:7, Ox4001f8] li rl,-1
[main:7, Ox400lfc] beq r9,rl,Ox400260
_l_main:7, Ox400200_l TIO_!)

[main:17, Ox400204) lbu r5,3l(sp) Q [main:l7, Ox400208] jal print!
_l_main:l7, Ox40020c.l addiu r4,gp~·32716
[main:lB, Ox400210] lw r10,·32552(gp)
[main:l8, Ox400214] nop
[main:18, Ox400218] addiu rll,rl0,-1
[main:lB, Ox4002lc) bltz rll,Ox400240
(main:18, Ox400220) S'W r11,·32552(gp)
(main:l8, Ox400224] l'W r12,-32548(gp)
(main:lB, Ox400228] nop

G (main:lB, Ox4 0022c) lbu r13,0(r12)
[main:lB, Ox400230] addiu r14,r12,l
(main:lB, Ox400234] sb r13,31(sp)
(main:18, Ox400238) b Ox400250
[main:18, Ox40023c] SW rl4, ·32548(gp)
[main:18, Ox400240) jal filbuf
[main:18, Ox400244] addiu r4,gp,-32ss2
[main:18, Ox400248) move r16,r2
(main:18, Ox40024c) sb r16,3l{sp)
(main:lB, Ox400250] lbu r15,31(sp)
(main:lB, .Ox400254) li rl, -1
[main:18, Ox400258) bne r15,rl,Ox400204

I main: 18..L Ox40025c_l no_1>.
(main:l9, Ox400260) b Ox400268
(main:19, Ox400264) nop

G (main:l9, Ox400268) l'W r31,20(sp)
[main:19, Ox40026c) lw rl6,16(sp)
(main:19, Ox400270] jr r31
(main:19, Ox400274) addiu sp,sp,32

Figure 10.8: Source Listing for Li11e Number Example

Assembly La11guage Programmer's Guide 10-13

01apter 10

Procedure Descriptor Table

Local Symbols

10-14

Table 10.3 shows the format of an entry in the Procedure Descriptor table;
the sym.h header file contains its declaration.

Table 10.1: Format of a Procedure Descriptor Table Entry

Declaration

unsigned, long
long
long
long
long
long
long
long
long
long
long
long
long
long

Name

adr
isym
iline
reg mask
reg offset
iopt
fregmask
fregoffset
frameoffset
framereg
pcreg
Inlow
In High
cblineOffset

Description

Memory address of start of procedure.
Start of local symbols.
Procedure's line numbers.•
Saved register mask.
Saved register offset.
Procedure's optimization symbol entries.
Save floating point register mask.
Save floating point register offset
Frame size.
Frame pointer register.
Index or reg of return program counter.
Lowest line in the procedure.
Highest line in the procedure.
Byte offset for this procedure from
the base of the file descriptor entry.

•If NULL, and cycrn field in file descriptor table = 0, then this field is
indexed to the actual table.

Table 10.4 shows the format of an entry in the Local Symbols table; the
sym.11 header file contains its declaration.

Assembly 1.Jmguage Programmer's Guide

I,

Ii
I
J

I

Symbol Table

Table 10.2: Format of a Local Symbols Ent1y.

Declaration

long
long
unsigned
unsigned
unsigned
unsigned

Name

iss
value
st: 6
sc:S
reserved: 1
index: 20

Description

Index into local strings of symbol name.
Value of symbol. See Table 10.5.
Symbol type. See Table 10.6.
Storage class. See Table 10.7.

Index into local or auxiliary symbols
See Table 3,5.

The meanings of the fields in a local symbol entry are explained in the
following paragraphs.

iss. Theiss (for index into string space) is an offset from the issBase field of
an entry in the file descriptor table, to the name of the symbol.

value. An integer representing an address, size, offset from a frame
pointer. The value is determined by the symbol type, as illustrated in
Tablel0.5.

st and sc. The symbol type (st) defines the symbol; the storage class (sc),
where applicable explains how to access the symbol type in memory. The
valid st and sc constants are given in Tables 10.6 and 10.7. These constants
are defined in symco11st .11.

index. The index is an offset into either Local Symbols orAuxiliary
Symbols, depending of the storage type (st) as shown in Tablel0.5. The
compiler uses isymBase in the file descriptor entry as the base for a Local
Symbol entry and iauxBase for an Auxiliary Symbols entry.

Assembly Language Programmer's Guide 10-15

Clzapter 10

10-16

Table 10.3: Index and Value as a Function of Symbol Type and Storage Class

Symbol Type Storage Class Index Value

stFile scText isymMac address
stlabel scText index Nil address
stGlobal sc0/81 iaux address
st Static scD/81 iaux address
stParam scAbs iaux frame offset 2

scRegister iaux register number
scVar iaux frame offset 2
scVarRegister iaux register number

stLocal scAbs iaux frame offset 2
scRegister iaux register number

stProc scText iaux address
scNil iaux address
scUndefined iaux address

stStaticProc scText iaux address
stMember
enumeration sclnfo index Nil ordinal
structure sclnfo iaux bit offset3
union sclnfo iaux bit offset

1 scD/B is the storage class determined by the assembler, either
large/small or data/bss.

2 frame offset is the offset from the virtual frame pointer.

3 bit offset is computed from the beginning of the procedure.

Assembly I.a11guage Programmer's Guide

I

!·1
I

Symbol Table

Table 10.4: (continued)

Symbol Type Storage Class Index Value

stBlock
enumeration sclnfo isymMac1 max enumeration
structure sclnfo isymMac size
text bock scText isymMac relative address2
common block scCommon isymMac size
variant scVariant isymMac isymTag3
variant arm sclnfo isymMac iauxRanges4

union sclnfo isymMac size
stEnd

isymStart5 enumeration sclnfo 0
file scText isymStart relative address 2
procedure scText isymStart relative address 2
structure sclnfo isymStart 0
text block scText isymStart relative address2
union sclnfo isymStart 0
common block scCommon isymStart 0
variant scVariant isymStart 0
variant arm sclnfo isymStart 0

stTypedef sclnfo iaux 0

1 isymMac is the isym of the corresponding stEnd symbol plus 1. I
2relative address is the relative displacement from the beginning of the
procedure.

I

3isymTab is the isym to the symbol that is the tag for the variant.
4iauxRanges is the iaux to ranges for the variant arm. I
5isymStart is the isym of the correspodning begin block (stBtock, stFile, I
stProc, etc.) J

The link editor ignores all symbols except the types st Proc, st Static, st Lobel,
stStaticProc, which it will relocate. Other symbols are used only by the
debugger, and need be entered in the table only when the compiler
debugger option is ON.

Symbol Type (st). Table 10.6 gives the allowable constants that can be
specified in the st field of Local Symbols entries; the symconst .11 header file
contains the declaration for the constants.

Assembly Language Programmer's Guide 10-17

01apter 10

10-18

Table 10.5: Symbol Type (st) Constants Supported by the Compiler

Constant Value Description

st Nil 0 Dummy entry.
stGlobal 1 External symbol.
st Static 2 Static.
stParam 3 Procedure argument.
st Local 4 Local variable.
st label 5 Label.
stProc 6 Procedure.
stBlock 7 Start of block.
st End 8 End block, file, or procedures.
stMember 9 Member of structure, union, or enumeration.
stTypedef 10 Type definition.
stFile 11 File name.
stStaticProc 14 Load time only static procs.
stConstant 15 Const.

Storage Class (st) Constants. Table 10.7 gives the allowable constants that
can be specified in the sc field of Local Symbols entries; the symconst.11
header file contains the declaration for the constants.

Assembly Language Programmer's Guide

'
! ~:',

Symbol Table

Table 10.6: Table 10.7 Storage Class Constants Supported by the Compiler

Constant Value Description

scNil 0 Dummy entry.
scText 1 Text symbol.
scData 2 Initialized data symbol.
scBss 3 Un-initialized data symbol.
scRegister 4 Value of symbol is register number.
scAbs 5 Symbol value is absolute; not to be relocated.
scUndefined 6 Used but undefined in the current module.

.reserved 7
scBits 8 This is a bit field.
scDbx 9 Dbx internal use.
scReglmage 10 Register value saved on stack.
sclnfo 11 Symbol contains debugger information.
scUserStruct 12 Address in struct user for current process.
scSData 13 (Load time only) small data.
scSBss 14 (Load time only) small common.
scRData 15 (Load time only) read only data.
scVar 16 Var parameter (Fortran or Pascal).
scCommon 17 Common variable.
scSCommon 18 Small common.
scVarRegister 19 Var parameter in a register.
scVariant 20 Variant records.
scUndefined 21 Small undefined.
sci nit 22 Init section symbol.

Optimization Symbols

Reserved for future use.

Assembly lA11guage Programmer's Guide 10-19

Clzapter 10

Auxiliary Symbols

10-20

Table 10.8 shows the format of an entry, which is a union, in Auxiliary
Symbols; the sym.h file contains its declaration.

Table 10.7: Storage Class Constants Supported l7y the C.Ompiler

Declaration Name Description

TIR ti Type information record.
RNDXR rndx Relative index into local symbols.
long dnLow Low dimension.
long dnHigh High dimension.
long isym Index into local symbols for stEnd.
long iss Index into local strings (not used).
long width Width of a structure field not declared with

the default value for size.
long count Count of ranges for variant ann.

All of the fields except the ti field are explained in the order they appear in
the above layout. The ti field is explained last

rndx. Relative File Index. The fronHmd fills this field in describing
structures, enumerations, and other complex types. The relative file index
is a pair of indexes. One index is an offset from the start of the File
Descriptor table to one of its entries. The second is an offset from the file
descriptor entry to an entry in the Local Symbols or Auxiliary Symbols
table.

d11Lozv. Low Dimension of Array.

d11High. High Dimension of Array.

isym. Index into Local Symbols. This index is always an offset to an st End
entry denoting the end of a procedure.

widtlr. Width of Structured Fields.

count. Range Count. Used in describing case variants. Gives how many
elements are separated by commas in a case variant

ti. Type 111/ormation Record. Table 10.9 shows the format of a ti entry; the
sym.h file contains its declaration.

Assembly Language Programmer's Guide

1,

Symbol Table

Table 10.8: Format of an Type Information Record Entry

Declaration

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Name

fBitfield : 1
continued : 1
bt :6
tq4 :4
tq5 :4
tqO :4
tql :4
tq2 :4
tq3 :4

Description

Setif bit width is spedfied
Next auxiliary entry has tq info
Basic type
Type qualifier.

All groups of auxiliary entries have a type information record with the
following entries:

• fbitfield - Set if the basic type (bt) is of non-standard width.

• bt (for basic type) specifies if the symbol is integer, real complex,
numbers , a structure, etc. The valid entries for this field are shown
in Table 10.10; the sym.11 file contains its declaration.

• tq (for type qualifier) defines whether the basic type (bt) has an
array of, function returning, or pointer to qualifier. The valid
entries for this field are shown in Tablel0.11; the sym.h file
contains its declaration.

Assembly Language Programmer's Guide 10-21

Chapter10

10-22

Table 10.9: Basic Type (bt) Constants

Default
Constant Value Size• Description

btNil 0 0 Undefined, void.
btAdr 1 32 Address - same size as pointer.
btChar 2 8 Symbol character.
btUChar 3 8 Unsigned character.
btShort 4 16 Short (16 bits).
btUShort 5 16 Unsigned short.
btlnt 6 32 Integer.
btUint 7 32 Unsigned integer.
btlong 8 32 Long (32 bits).
btULong 9 32 Unsigned long.
btFloat 10 32 floating point (real).
btDouble 11 64 Double-precision floating point real.
btStruct 12 n/a Structure (Record).
btUnion 13 N/ A union (variant).
btEnum 14 32 Enumerated.
btTypedef 15 n/a Defined via a typedef; mdx points at a

stTypedef symbol.
btRange 16 32 Subrange of integer.
btSet 17 32 Pascal sets.
btComplex 18 64 FORTRAN complex.
btOComplex 19 128 FORTRAN double complex.
btlndirect 20 Indirect definition;rndx points to TIR aux.
btMax 64

•size in bits.

Constant

tqNil
tqPtr
tqProc
tqArray
tqVol
tqMax

Table 10.10: Type Qualifier (tq) Consta11ts

Value Description

0 Place holder. No qualifier.
1 Pointer to.
2 Function returning.
3 Array of.
5 Volatile.
8

Assembly La11guagc Programmer's Guide

Symbol Table

File Descriptor Table

Table 10.12 shows the format of an entry in the File Descriptor table; the
sym .h file contains its declaration.

Table 10.11: Format of File.Descriptor Entry

Declaration Name Description

unsigned,long adr Memory address of start of file.
long rss Source file name.
long issBase Start of local strings.
long cbSs Number of bytes in local strings.
long isymBase Start of local symbol entries.
long csym Count of local symbol entries.
Jong ilineBase Start of line number entries.
long dine Count of line number entries.
long ioptBase Start of optimization symbol entries.
long co pt Count of optimization symbol entries.
short ipdFirsl Start of procedure descriptor table.
short cpd Count of procedures descriptors.
long iauxBase Start of auxiliary symbol entries.
long caux Count of auxiliary symbol entries.
long rfdBase Index into relative file descriptors.
long crfd Relative file descriptor count.
unsigned Jang: S Language for this file.
unsigned £Merge: 1 Whether this file can be merged.
unsigned fReadin: 1 True if it was read in (not just created).
unsigned fBigendian : 1 If set, was compiled on big endian machine

aux's is in compile host's sex.
unsigned reserved : 22 Reserved for future use.
long cbLineOffset Byte offset from header or file In's.
long cbLine

Assembly Language Programmer's Cuidc 10-23

0Japter 10

External Symbols

10-24

The External Symbols table has the same fonnat as Local Symbols, except
an offset (ifd) field into the File Descriptor table has been added. This field
is used to locate information associated with the symbol in an Auxiliary
Symbols table. Table 10.13 shows the format of an entry in External
Symbols; the sym.lz file contains its declaration.

Declaration

short
short
SYMR

Table 10.12: Format an Entry in External Symbols

Name

reserved
ifd
asym

Description

Reserved for future use.
Pointer to file descriptor entry.
Same as Local Symbols.

Assembly Language Programmer's Guide

Execution and Linking Format

11

This chapter describes the Execution and Linking Format (ELF) for object
files. The following topics are covered:

• The Components of an elf object file.

• Symbol Table Format.

• Global Data Area.

• Register Information.

• Relocation.

Program loading and dynamic linking are discussed in Chapter 12.

There are three types of object files:

• ·Relocatable files contain code and data and are linked with other
object files to create an executable file or shared object file.

• Executable files contain a program that can be executed.

• Shared object files contain code and data that can be linked. These
files may be linked with relocatable or shared object files to create
other object files. They may also be linked with an executable file
and other shared objects to create a process image.

Assembly lA11~uagc Prog1uni111cr 's Guide 11-1

Execution and Linking Format

Object File Format

An object file is organized as follows:

ELF header

optional Program Header Table .
Section 1

Section n

Section Header Table

Each object file begins with an ELF header that describes the file. Sections
contain information that is used when the file is linked with other objects
(e.g. code, data, relocation information). The Section Header Table
contains information describing +he sections of the file and has an entry for
each section. Files that will be linked with other objects must contain a
Section Header Table.

If the Program Header Table is present, it contains information that is used
to create a process image. Files used to build an executable program must
have a Program Header Table; relocatable files do not need one.

Assembly Language Programmer's Guide 11-2

Owpter 11

ELF Header

11-3

The ELF header has the following format:

Declaration

unsigned char
Elf32_Half
Elf32_Half
Elf32_Word
Elf32_Addr
Elf32_0ff
Elf32_0ff
Elf32_Word
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half

#define El_NIDENT

c_idmt

Field

e_ident[El_NIDENT];
e_type;
e_machine;
e_version;
e_entry;
e_phoff;
e_shoff;
e_flags;
e_ehsize;
e_phentsize;
e_phnum;
e_shentsize;
e_shnum;
e_shstrndx;

16

contains machine-independent data concerning the file contents.

The index values for the c_ident member are:

EI MAGO 0 File identification.
EI MAGl 1 File identification.
EI_MAG2 2 File identification.
EI_MAG3 3 File identification.
EI CLASS 4 File class.
EI DATA 5 Byte order.
EI VERSION 6 File version.
EI PAD 7 Start of padding bytes. -
EI NIDENT 16 Size of e_ident[].

Assembly Langua~c Programmer's Guide

Execution and Linking Format

e_ident[EI_MAGO •.• EI_MAG3]
contain a magic number identifying the file as an ELF object file

Position Value Name

e_ident[El_MAGOJ Ox7f ELFMAGO
e_ident[El_MAG 1] 'E' ELFMAG1
e_ident[El_MAG2] 'L' ELFMAG2
e_ident[El_MAG3] 'F' ELFMAG3

e_identf EI_CLASSJ
indicates the file class or capacity and must have the value
ELFCLA5532.

e_ide11tf EI_DATA]
indicates the byte ordering of processor specific data in the object
file and must be either ELFDATA2LSB (little endian byte order) or
ELFDATA2MSB (big endian byte order).

e_idc11tf EI_ VERSIONJ
indicates the version number of the ELF header and must be

EV _CURRENT.

e_ident[PADJ
marks the beginning of unused bytes in the ELF header. These
bytes are reserved and set to zero.

c_type
identifies the type of the object file and can have the following
values:
ET_NONE
ET_REL
ET_EXEC
ET_DYN
ET_CORE
ET_LOPROC
ET_HIPROC

e _111aclii11e

0

1
2
3

4
OxffOO
Oxffff

No file type.
Relocatable.
Executable.
Shared object.
Core file.
Processor specific.
Processor specific.

indicates the required architecture and must have the value
EM_MIPS.

e_versio11
indicates the object file version and must have the value
EV _CURRENT. The value of EV _CURRENT is 1; in the future, this
value will increase as extensions are added to the ELF header.

Assembly umguage Programmer's Guide 11-4

I~
I

I

1,

Owptcr 11

11-5

e_entry
contains the virtual address to which the system transfers control
when the process is started. If the file has no entry point, this value
is zero.

e_phoff
contains the offset in bytes of the Program Header Table and may
be zero if the table is not present.

e_shoff
contains the offset in bytes of the Section Header Table. If the file

has no Section Header Table, its value is zero.

eJlags
contains bit flags associated with the file. The following flags are
defined:

EF_MIPS_NOREORDER
EF_MIPS_PIC
EF_MIPS_CPIC
EF MIPS ARCH - -

OxOOOOOOOl
Ox00000002
Ox00000004
OxfOOOOOOO

This bit is asserted when at least one .noreorder directive in an
assembly source program contributes to the object module.

If EF _MlPS_PIC is set, the file contains position-independent code
that is relocatable.

If EF _MlPS_CPIC is set, the file contains code that conforms to the
standard calling sequence rules for calling position-independent
code. The code in this file is not necessarily position-independent.

The bits indicated by EF _MIPS_ARCH identify extensions to the
MIPSl architecture. AN ABI compliant file must have zero in these
four bits.

e_el1si:.e
contains the size in bytes of the ELF header.

e_pl1entsiu
contains the size in bytes of an entry in the file's Program Header
Table.

e_ph11um
indicates the number of entries in the Program Header Table. If a
file has no Program Header Table, this value is zero. The product
of e_phnum and e_pl1e11tsize gives the size in bytes of the Program
Header Table.

e_she11tsiu
contains the size in bytes of an entry in th<.> Section Header Table
(also referred to as a Section Header).

Assemlily Language Programmer's Guide

Sections ·

Execution and Linking Format

e_slmum
indicates the number of entries in the Section Header Table. If a file
has no Section Header Table, this value is zero. The product of
e_shnum and e_shentsize gives the size in bytes of the Section
Header Table.

e _slrstrndx
contains the Section Header Table index of the entry associated
with the Section Name String Table. If the table does not exist, this
value is SHN_UNDEF.

Each section has a section header (an entry in the Section Header Table).
There may be entries in the Section Header Table that have no associated
section. Each section occupies a contiguous, possibly empty, sequence of
bytes and may not overlap any other section.

Section Header Table

The Section Header Table is an array of structures that describe the sections
of the object file. A Section Header Table Index is a subscript into this array
of structures. Some of these indexes are reserved. An object file can not
have a section that corresponds to a reserved index.

The following Special Section Index<.>s are defined:

Name Value

SHN_UNDEF 0
SHN_LORESERVE Oxf fOO
SHN_LOPROC Oxf fOO
SHN_HIPROC Oxfflf
SHN_ABS Oxfffl
SHN_COMMON Oxfff2
SHN_HIRESERVE Oxffff
SHN_MIPS_ACCOMON OxffOO

The special section indexes have the following meanings:

SHN_UNDEF
marks an undefined, missing, or meaningless section reference. A
symbol defined relative to section number SHN_UNDEF is an
undefined symbol.

Assembly La11guogc Programmer's Guide 11-6

Chapter 11

Section Header

11-7

SHN_LORF5ERVE
specifies the lower bound of the reserved indexes.

SHN_LOPROC through SHN_HIPROC
are reserved for processor specific semantics.

SHN_ABS
specifies absolute values for the corresponding references. Symbols
defined relative to this section number have absolute values and
are not affected by relocation.

SHN_COMMON
indicates that the corresponding references are common symbols,
such as FORTRAN COMMON or unallocated C external variables.

SHN_HIRESERVE
specifies the upper bound of the reserved indexes. The Section
Header Table does not contain entries for the reserved indexes.

SHN_MIPS_ACOMMON
indicates that the corresponding references are common symbols.
The st_value member for a common symbol contains its virtual
address. If the section is relocated, the alignment indicated by the
virtual address is preserved, up to modulo 65536.

A section header (an entry in the Section Header Table) has the fo Jlowi ng
structure:

Declaration

Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Addr
Elf32_0ff
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word

sh_11amc

Field

sh_name;
sh_type;
sh_flags;
sh_addr;
sh_offset;
sh_size;
sh_link;
sh_info;
sh_addralign;
sh_entsize;

specifies the name of the section. Its value is an index into the
section header string table section and gives the location of a null
terminated string that is the name of the section.

Assembly Language Programmer's Guide

Execution and Linking Format

slz_type
indicates the type of the section and may have the following values

Name Value

SHT_NULL 0
SHT _PAOGBITS 1
SHT_SYMTAB 2
SHT_STRTAB 3
SHT_RELA 4
SHT_HASH 5
SHT_DYNAMIC 6
SHT_NOTE 7
SHT_NOBITS 8
SHT_REL 9
SHT_SHLIB 10
SHT_DYNSYM 11
SHT_LOPROC Ox70000000
SHT_HIPROC Ox7fffffff
SHT_LOUSER Ox80000000
SHT_HIUSER Oxffffffff
SHT _MIPS_LIBLIST Ox70000000
SHT _MIPS_CONFLICT Ox70000002
SHT_MIPS_GPTAB Ox70000003
SHT _MIPS_UCODE Ox70000004

SHT_NULL
marks the section header as inactive. There is no associated section.
Other members of the section header have undefined values.

SHT _PR(X;BITS
indicates that the section contains information defined by the
program. The format and meaning of the information are
determined by the program.

SHf _SYMT AB and SHT _DYNSYM
sections contain a symbol table. An object file may have only one
section of each type. SHf _SYMTAB contains symbols used in link
editing, but may also be used for dynamic linking. It may contain
many symbols unnecessary for dynamic linking. Consequently, an
object may also contain a SHT _DYNSYM section that contains a
minimal set of dynamic linking symbols.

Assr1J1bly Language Programmer's Guide 11-8

'*

Ouiptcr 11

11-9

SHT_STRTAB
indicates that the section holds a string table. An object file may
have multiple string table sections.

SITT_RELA
indicates that the section contains relocation entries with explicit
addends, such as type Elf32_Rela for the 32-bit class of object files.
An object file may have multiple relocation sections.

SITT_HASH
marks a section that holds a symbol hash table. An object file may
have only one hash table.

SITT_DYNAMIC
indicates that the section contains information used in dynamic
linking. An object file may have only one dynamic section.

SITT_NOTE
indicates that the section holds information that marks the file in
some way.

SHT_NOBITS
indicates that the section occupies no space but otherwise
resembles a section of type SHT _PROGBITS. Although this section
occupies no space in a file, its sh_offsct field contains the conceptual
file offset.

SITT_REL
indicates that the section contains relocation entries without
explicit addends. An object file may have multiple relocation
sections.

SHT_SHLJB
is a reserved type that has no semantics. A program that contains
a section of this type does not conform to the ABI.

SHT_LOPROC through SHT_HIPROC
are reserved for processor-specific semantics.

SHT_LOUSER
indicates the lower bound of the range of indexes reserved for
application programs.

SHT_HIUSER
indicates the upper bound of the range of indexes reserved for
application programs. Sections types between SHT _LOUSER and
SHT_HIUSER may be used by applications without conflicting
with current or future section types reserved for system use.

Assembly L.o11suagc Prosrammcr's Guide

Execution and Li11ki11g Format

SHT_MIPS_LIBLIST
indicates that the section contains information about the set of
dynamic shared object libraries, such as library name and version,
used when statically linking a program. See the Quickstart section
in Chapter 12 of this manual for details.

SHT _MIPS_CONFLICT
marks a section that contains a list of symbols in an executable
object whose definitions conflict with symbols defined in shared
objects.

SHT_MIPS_GPTAB
indicates that the section contains the global pointer table. The global
pointer table contains a list of possible global data area sizes which
allows the linker to provide the user with information on the
optimal size criteria to use for gp register relative addressing. See
the Global Data Area section of this chapter.

SHT_MIPS_UCODE
indicates that the section contains MIPS ucode instructions.

Assembly Language Programmer's Guide 11-10

i·,1

Oiapter 11

11-11

Other section type values are reserved. The section header for index 0
(SHN_UNDEF) marks undefined section references. This entry has the
following values:

Name Value Note

sh_ name
sh_type
sh_flags
sh_addr
sh_ offset
sh_size
sh_link
sh_ info
sh_addralign
sh_entsize

sh .. Jlag

o No name
SHT _NULL Inactive
o No flags
o No address
o No file offset
O No size
SHN_UNDEF No link information
o No auxiliary information
o No alignment
o No entries

contains bit flags describing attributes of the file. The following
flags are defined:

SHF_WRITE
SHF_ALLOC
SHF _EXECINSTR
SHF _MASKPROC
SHF _MIPS_GPREL

SHF_WRITE

Ox1
Ox2
Ox4
OxfOOOOOOO
OxlOOOOOOO

If this bit is set, the section contains data that must be writable
during process execution.

SHF_ALLOC
This bit indicates that the section occupies memory during process
execution.

SHF _EXECINSTR
If this bit is set, the section contains executable machi1ll'
instructions.

SHF _MASK_PROC
All the bits included in this mask are reserved for proccssor
specific semantics.

Assemlily Lan~uage Programmer's Guide

Execution and Link:ng Format

SHF _MIPS_GPREL
This bit indicates that the section contains data that must be made
part of the global data area during program execution. Data in this
section is addressable with a gp relative address. The sh_link field
of a section with this attribute must be a Section Header Index of a
section of type SHT_MIPS_GPTAB.

sh_addr
If the section appears in the memory image of a process, this
member contains the address of the first byte of the section.
Otherwise, its value is zero.

slz_offset
Contains the byte offset from the beginning of the file of this
section.

sl1_siu
Contains the size of the section in byt<..'S.

slz_li11k
Contains a Section Header Table index link. The interpretation of
this value depends on the section type (sec Table 11.1).

slz_i11fo
Contains miscellaneous information. The interpretation of the
value depends on the section type (see table 11.1).

Assembly Langua>:e Programmer's Guide 11-12

1~

Chapter 11

11-13

Table 11.1: sh_link and sh_info values

sh_type sh_link sh_info

$HT _DYNAMIC The section header index 0
of the string table used by
entries in the section.

SHT_HASH The section header index 0
of the symbol table to
which the hash table
applies.

SHT REL The section header index The section header index
SHT=DYNSYM of the associated symbol of the section to which the

table. relocation applies.

SHT_SYMTAB The section header index One greater than the symbol
SHT_DYNSYM of the associated string table index of the last local

table. symbol (bind STB_LOCAL).

SHT _MIPS_LIBLIST The section header index The number of entries in this
of the string table used section.
by entries in this section.

SHT_MIPS_GPTAB I not used The section header index of

other

I
the SHF _ALLOC +
SHF _WRITE section.

I SHN_UNDEF 0

slz_addralign
Indicates address alignment constraints for the section. For
example, if a section contains a doubleword value, the entire
section must be aligned on a doubleword boundary. The value of
this member may be 0 or a positive integral power of 2; 0 or 1
indicates that the section has no alignment constraints.

sh_entsize
If the section holds a table of fixed-size entries, such as a symbol
table, this member gives the size in bytes of each entry. A value of
zero indicates that the section does not contain a table of fixed-size
entries.

Asscml1Iy urngua~c Pro~ranrmcr 's Guide

Execution and Linking Format

Special Sections

An object file has the following special sections:

Table 11.2: Special. Sections

Name Type Attributes

.bss SHT_NOBITS SHF _ALLOC+SHF _WRITE

.comment SHT _PROGBITS none

.data SHT _PROGBITS SHF _ALLOC+SHF _WRITE

.data1 SHT _PROGBITS SHF _ALLOC+SHF _WRITE

.debug SHT _PROGBITS none

.dynamic SHT _DYNAMIC SHF_ALLOC

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF _ALLOC

.fini SHT _PROGBITS SHF _ALLOC+ SHF _EXECINSTR

.got SHT _PROGBITS see below

.hash SHT_HASH SHF _ALLOC

.init SHT _PROGBITS SHF _ALLOC+ SHF _EXECINSTR

.interp SHT _PROGBITS see below

.line SHT _PROGBITS none

.note SHT _PROGBITS none

.pit SHT _PROGBITS see below

.rel name SHT_REL see below

.relaname SHT_RELA see below

.rodata SHT _PROGBITS SHF_ALLOC

.rodata1 SHT _PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.text SHT _PROGBITS SHF _ALLOC+ SHF _EXECINSTR

.sdata SHT _PROGBITS SHF _ALLOC+SHF _WRITE+
SHF _MIPS_GPREL

.sbss SHT_NOBITS SHF _ALLOC+SHF _WRITE+
SHF _MIPS_GPREL

.lit4 SHT _PROGBITS SHF _ALLOC+SHF _MIPS_GPREL

.lit8 SHT _PROGBITS SHF _ALLOC+ SHF _MIPS_GPREL

.reginfo SHT _MIPS_REGINFO SHF_ALLOC

.liblist SHT_MIPS_LIBLIST SHF_ALLOC

.conflict ~HT _CONFLICT SHF_ALLOC

.gptab SHT _MIPS_GPTAB none

.got SHT _PROGBITS SHF _ALLOC+ SHF _WRITE+
SHF _MIPS_GPREL

.ucode SHT _MIPS_UCODE none

.mdebug SHT _MIPS_DEBUG none

Assembly Language Programmer's Guide 11-14

Chapter 11

11-15

Note: A MIPS ABI compliant system must support the .sdata, .sbss, .lit4,
.lit8, .reginfo, and .gptab sections. A MIPS ABI compliant system must rec
ognize, but may choose to ignore, the .liblist, .msym, and .co1iflict sections.
However, if any one of these sections is supported, all three must be suir
ported. A MIPS ABI compliant system is not required to support the
.ucode section, but if this section is present, it must conform to the descrii:r
tion in this manual.

.bss
This section holds uninitialized data. The system initializes the
data to zeros when the program is started. This section occupies no
file space .

. comment
This section holds version information .

. data
This section contains initialized data .

. debug
This section hold information used for symbolic debugging .

. dynamic
This section contains information used for dynamic linking. See
Chapter 12 for more details on dynamic linking .

. dynstr

. fini

. got

This section contains strings needed for dynamic linking, usually
strings representing the names associated with symbol table
entries .

This section uholds executable instructions that are executed when
the program terminates normally .

This section hold the Global Offset Table.

.liasli

. init

This section contains a hash table for symbols. See the Symbol
Table section of this chapter for a description of the symbol tabk .

This section holds executable instructions that are executed before
the system calls the main entry point for the program .

. interp
This section holds the path name of a program interpreter. If thr
file has a loadable segment that includes the section, the section
attributes include SHF _ALLOC.

Assem/Jly Language Programmer's Guide

Execution and Linking Format

.line
This section contains line number information describing the
correspondence between source code lines and machine code. This
information is· used for symbolic debugging .

. note

. plt

This section contains information that marks the file in some way.
See the Note Section section in Chapter 12 .

This section holds the Procedure Linkage Table .

. re Ina me
This section contains relocation information. name is supplied by
the section to which the relocation applies. If the file has a loadable
segment that includes the section, the section attributes include
SHF_ALLOC .

. relaname
This section contains relocation information. name is supplied by
the section to which the relocation applies. If the file has a loadable
segment that includes the section, the section attributes include
SHF_ALLOC .

. rodata
This section holds read-only data that is generally found in the
non-writable segmeunt of the process image. See Chapter 12 for
more information on segments .

. rodata1
This section holds read-only data that is generally found in the
non-writable segment of the process image. See Chapter 12 for
more information on segments .

. sltstrtab
This section contains strings representing section names .

.st rt ab
This section contains strings, including the strings representing the
names associated with symbol bble entries. If the file has a
loadable segment that includes the symbol string table, the section
attributes include SHF _ALLOC .

. .symtab
This section holds a symbol table. See the Symbol Table section of
this chapter for a description. If the file has a loadable segment that
includes the symbol table, the section attributes include
SHF_ALLOC.

Assembly IA11guage Programmer's Guide 11-16

Ouipter 11

11-17

.text
This section contains executable instructions .

.sdata
This section holds initialized short data .

.sbss

.lit4

.litB

This section ho1ds uninitialized short data. The system sets the
data to zeros when thue program is started. Unlike the .bss section,
this section occupies file space .

This section holds 4 byte read-only literals. The section is part of a
non-writable segment in the process image .

This section holds 8 byte read-only literals. The section is part of a
non-writable segment in the process image .

. reginfo
This section contains infonnation on the program's register usage.

· .liblist
This section contains information on the libraries used at static link
time .

. conflict
This section provides additional dynamic linking information for
symbols in an executable file that conflict with symbols defined in
the dynamic shared libraries .

. gptab
This section contains a Global Pointer Table. The sc.ction is named
.gptab.sbss, .gptab.sdata, .gptab.bss, or .81Jfab.data depending on the
data section to which the section refers .

. ucodc
This section holds U-code instructions generated by the compiler .

. mdebug

. got

This section contains MIPS specific symbol table infonnation. The
contents of this section are described in Chapter 10. The
information in this section is dependent on the location of other
sections in the file. If an object is relocated, this section must be
updated. This section must be discarded if an object file is
relocated and the ABJ compliant system chooses not to update the
section .

This section contains the Global Offset Table. The sli_info field
holds the Global Pointer valul' used for th.is Global Offset Table.

Assembly La11guagc Programmer's Guide

String Tables

Execution and Li11ki11g Format

.dynamic
This section is a MIPS-specific dynamic section. It is the same as
the previously mentiouned .dynamic section except that its
attributes do not include SHF _WRITE.

String table sections contain null-terminated character sequences (strings)
that represent symbol and section names. A string is referenced by an
index into the String Table Section.

The first byte of a string section, accessed by index zero, contains a null
character. The last byte also contains a null character, ensuring that all
strings are null terminated. A string whose index is zero specifies either no
name or a null name, depending on the context.

A String Table Section may be empty. In this case, the sh_si:e field for the
section would contain zero. Non-zero indexes are invalid for an empty
string table.

The following figure shows an example of a string table:

Index 0 1 2 3 4 5 6 7 8 9

l \0
T

b l \0 l I

I l a c d v a I r n
I

10 I I
e I i i ' i

I a m \0 f i
0 I 0 \0 b a

I '
:

r
I i

i r \0 I
I i I I

---~- -
20

A string table index may refer to any byte in the ~ection; references to
substrings are permitted. A single string may be referenced multiple times
and unreferenced strings may exist.

ELF Symbol Table

The ELF symbol table is found in the .symtab section of an object file. It is
an array of structures containing information needed to locate and relocate
the symbol definitions and references of a program.

Assembly umguage Programmer's Guide 11-18

Chapter 11

11-19

A symbol table index is a subscript into this array. Index zero is the first
entry in the table and is also the undefined symbol index. A symbol table
entry has the following format:

Declaration

Elf32_Word
Elf32_Addr
Elf32_Word
unsigned char
unsigned char
Elf32_Half

st_namc

Name

st_name;
st_ value;
st_size;
st_ info;
st_ other;
st_shndx;

Holds an index into the symbol string table. If its value is non
zero, it indicates a string that is the symbol name. Otherwise, the
symbol table entry has no associated name.

st_valuc
Contains the value of the associated symbol.

st_si:c
Contains the size (the number of bytes comprising the data object)
of the associated symbol. This value is zero if the symbol has no
size or the size is unknown.

st_info
Spl'cifies the type of the symbol and its binding attributes. The
following code fragment shows how to manipulate thl' binding and
type:

#define
#define
#define

ELF32_ST_BIND(i)
ELF32_ST_TYPE(i)
ELF32_ST_INFO(b,t)

((i)»4)

((i) & Ox f)

((b)<<4+((t)&Oxf))

A symbol's binding determines the linkage visibility. The valur of sf _info
may bl' one of the following:

STB_LOC1\L
STB_GLOBAL
STB_WEAK
STB_LOPROC
STB_HIPROC

0
1
2

13
15

Asscnr/1/y L.an~ua~c Propammrr's Guide•

Symbol Type

Execution and Linking Format

STB_LOCAL indicates local symbols. These symbols are not visible
outside of the object file containing the definition. Local symbols
with the same name may exist in multiple object files without
causing conflicts.

STB_GLOBAL indicates global symbols. Global symbols are visible to
all the object files being combined. A global symbol defined in one
file satisfies a reference to an undefined global symbol in another
file.

STB_ WEAK indicates weak symbols. Weak symbols are similar to
global symbols, but have lower precedence.

STB_LOPROC through STB_HIPROC values are reserved for
processor-specific semantics.

In each symbol table, all local symbols precede the global and weak
symbols. As indicated in the Section Header section of this chapter,
the sl1_i11fo field of the section header contains the symbol table
index for the first non-local symbol. Global and weak symbols
differ in two ways:

• When the link editor combines several relocatable object files, it
does not allow multiple definitions of STB_GLOBAL symbols
with the same name. If a defined global symbol exists, the
appearance of a weak symbol with the same name does not
cause an error. The link editor ignores the weak symbol and
uses the glob<il definition.

• When the link editor searches archive libraries, it extracts
members of the archive that contain definitions of undefined
global symbols. The definition in the extracted member may be
either a global or a weak symbol. The link editor does not
extract archive members to resolve undefined weak symbols;
unresolved weak symbols have a value of zero.

st_otlrer
Contains zero and is currently unused.

st_slmdx
Contains the Section Header Table index for the symbol table entry.

The following symbol types are defined:

Assembly Language Programmer's Guide 11-20

Oiapter 11

11-21

Table 11.3: Symbol Types

Name

STT_NOTYPE
STT_OBJECT
STT_FUNC
$TT _SECTION
STT_FILE
STT_LOPROC
STT_HIPROC

Value

0
1
2
3
4
13
15

STI_NOTYPE indicates that the symbol has no type.

SIT_ OBJECT indicates that the symbol is associated with a data object,
such as a variable.

STI_FUNC indicates that the symbol is associated with a function or
other executablc code.

SIT _SECTION indicates that the symbol is associated with a section.
Entries of this type are primarily for relocation and normally have
STB_LOCAL binding.

STI_FILE indicates that the symbol name is the name of the source file
associated with the object file. A file symbol has STB_LOCAL
binding, its section index is SHN_ABS, and, if present, it precedt>s
the other STB_LOCAL symbols.

STT_LOPROC through SIT_HIPROC are reserved for processor-
specific semantics.

Function symbols (type STI_FUNC) have special significance. When
another objL>ct file references a function that is part of a shared object, the
link editor creates a Procedure Linkage Table entry for the referenced
symbol. Symbols in shared objects that have types other than STI _FUNC
are not referenced automatically through the Procedure Linkage Table.

If the value of a symbol refers to a location within a section, the st_s1111dx
field for the symbol contains an index into the Section Header table. When
the section is relocated, the symbol's value is changed and references to the
symbol continue to point to the same location in the program. Some
special section index values have other semantics:

SHN_ABS indicates that the symbol has an absolute value that does not
change because of relocation.

Assembly Language Pro>:rammer's Guide

Symbol Values

Execution and Linking Format

SHN_COMMON indicates that the symbol is a label for a common
block that has not yet been allocated. The symbol's value gives
alignment constraints, similar to a section's sh_addralign field. The
link editor allocates the storage for the symbol at an address that is
a multiple of st_value. The symbol's size tells how many bytes are
required.

SHN_UNDEF indicates that the symbol is undefined. When the link
editor combines the object file with another that contains the
definition for the symbol, this file's references to the symbol are
linked to the actual definition.

The symbol table entry for index zero (STN_UNDEF) is reserved and holds
the following information:

Name Value Note

st_ name 0 No name
st_ value 0 Zero Value
st_ size 0 No size
st_ info 0 No type, local binding
st_ other 0
st_shndx SHN_UNDEF No section

Symbol tablt! entries for different object file types have slightly different
interpretation for the st_valuc field:

• In relocatable files, st_valuc contains the alignment constraints for a
symbol whose section index is SHN_COMMON.

• In relocatable files, st_valuc contains a section offset for a defined
symbol; st_value is an offset from the beginning of the section that
st_shndx indicates.

• In executable and shared object files, st_valuc contains a virtual
address. The section offset gives way to a virtual address for which
the section number is irrelevant.

If an executable file contains a reference to a function defined in a shared
object, the symbol table section for the file contains an entry for that
symbol. The st_slmdx field of the symbol table entry for the function
contains SHN_UNDEF. If there is a stub for the function in the executable
file, and the st_valuc field for the symbol table entry is non-zero, the field
contains the virtual address of the first instruction of the function's stub.

Assembly urnguage Programmer's Guide 11-22

Chapter 11

Otherwise, the st_value field contains zero. This stub is used to call the
dynamic linker at runtime for lazy text evaluation.

Global Data Area

11-23

The global data area is part of the data segment of an executable program.
It contains short data items which can be addressed by the gp register
relative addressing mode-. The global data area comprises all the sections
with the SHF _MIPS_GPREL attribute.

The compilers generate short-form (one machine instruction) gp relative
addressing for all data items in any of these sections with the
SHF _MIPS_GPREL attribute. The compilers must generate two machine
instructions to load or store data items outside the global data area. A
program executes faster if more data items are placed in the global data
area.

The size of the global data area is limited by the addressing constraints on
gp relative addressing, namely plus or minus 32 kilobytes relative to gp.
This limits the size of the global data area to 64 kilobytes.

The compilers decide whether or not a data item is placed in the global
data area based on its size. All data items less than or equal to a given size
are placed in the global data area. Initialized data items are placed in a
.sdata section, uninitialized data items are placed in a .sbss section, and
floating-point literals are placed in .lit4 and .litS sections. The .got section
is also combined into the global data area.

In order to provide the user with information on the optimal size criteria
for placement of data items in the .sdata and .sbss sections, the linker
maintains tables of possible global data area sizes for each of these
sections. These tables are maintained in .gptab sections. Each .gptab section
contains both the actual value used as the size criteria for an object file and
a sorted list of possible short data and bss area sizes based on different dat1
item size selections. The size criteria value is also known as the -G num.

The .gptab section is an array of structures that have the following format:

typedef union {
struct {

Elf32 Word gt_current_g_value;
Elf32_Word gt_unused;

} gt_header;
struct {

Elf32 Word gt_g_value;
Elf32 Word gt_bytes;

} gt_entry;
Elf32_gptab;

Asseml1/y Language Programmer's Guide

Execution and Linking Format

gt_header.gt_current_g_ value
Is the~ num used for this object file. Data items of this size or
smaller are referenced with gp relative addressing and reside in a
SHF _MIPS_GPREL section.

gt_header.gt_unused
Is not used in the first entry of the array.

gt _entry.gt _g_value
Is a hypothetical ~ num value.

gt_entry.gt _bytes
Is the length of the global data area if the corresponding
gt_e11tn1.gt_g_value were used.

Each of the gt_entnJ. gt_g_value fields is the size of a data item encountered
during compilation or assembly, including zero. Each separate size criteria
results in an overall size for the global data area. The various entries are
sorted and duplicates are removed. The resulting set of entries, including
the ~ num used, yields the .gptab section.

There are always at least two .gptab sections, ont? that corresponds to
initialized data and one which corresponds to uninitialized data. The
sli_info field of the section specifies the section index of the data section to
which this .gptab section applies. Normally the two .gptab sections would
apply to the .sdata and .sbss sections, but if one or both of these sections do
not exist, the .gptab applies to the .data and .bss sections.

The section to which the .gptab section applies is derived from its name.
The four possible name for this type of section are .gptab.sbss, .gptab.sdata,
.gptab.bss, and .gptab.data.

Register Information

The compilers and assembler collect information on the registers used by
the code in the object file. This information is communicated to the
operating system kernel in the .reginfo section. The operating system
kernel could use this information to decide what registers it might not need
to save or which coproc.essors the program uses. The section also contains
a field which specifies the initial value for the gp register, based on the final
location of the global data area in memory. The register information
structure has the following format:

typedef struct {
Elf32_Word ri_gprrnask;;
Elf32 Word ri_cprrnask[4];
Elf32 Word ri_gp_value;

ELF_Reginfo;

Assembly Lan~uage Programmer's Guide 11-24

I'

Cl1apter 11

Relocation

11-25

ri_gprmask
contains a bit-mask of general registers used by the program. Each
set bit indicates a general integer register used by the program.
Each clear bit indicates a general integer register not used by the
program. For instance, bit 31 set indicates register $31 is used by
the program; bit 27 clear indicates register $27 is not used by the
program.

ri_cprmask
contains the bit-mask of co-processor registers used by the
program. The MIPS RISC architecture can support up to four co
processors, each with 32 registers. Each array element corresponds
to one set of co-processor registers. Each of the bits within the
element corresponds to individual registers in the co-processor
register set. The 32 bits of the words correspond to the 32 registers,
with bit number 31 corresponding to register 31, bit number 30 to
register 30, etc. Set bits indicate the corresponding register is used
by the program; clear bits indicate the program does not use the
corresponding register.

ri_gp_value
contains the gp register value. In relocatable object files it is used
for relocation of the R_MIPS_GPREL and R_MIPS_LITERAL
relocation types.

Note: Only co-processor 1 may be used by ABI compliant programs. This
means that only the ri_cprmask[1] array element may have a non-zero val
ue. ri_cprmask(O), ri_cprmask(2), and ri_cprmask(3) must all be zero in an
ABI compliant program.

Relocation entries describe how to alter instruction and data fields for
relocation; bit numbers appear in the lower box corners.

Assrmbly 1A11guagr Programmrr's Guide

Execution and Linking Format

131 l1s half16 ol

131 word32 ol

131 targ26 ol

131 l1s hi16 ol

131 l1s 1016 ol

131 l1s rel16 ol

131 l1s lit16 ol

131 J1s p o)

Calculations below assume the actions are transforming a relocatable file
into either an executable or a shared object file. Conceptually, the linker
merges one or more relocatable files to form the output. It first decides
how to combine and locate the input files, then updates the symbol values,
and finally r~rforms the relocation.

Relocations applied to executable or shared object files are similar and
accomplish the same result. The descriptions in Table 11.4 use the
following notation:

A The addend used to compute the value of the relocatable field.

AHL Another type of addend used to compute the value of the
relocatable field. See the note below for more detail.

P The location (section offset or address) of the storage unit being
r~locatcd (computed using r_offset).

S The value of the symbol whose index resides in the relocation
entry, unless the symbol is STB_LOCAL and is of type
SIT _SECTION, in which case it means the original slz_addr minus
the final slz_addr.

Assembly Lanxuaxc Programmer's Guide 11-26

i ~f

Guzpter 11

11-27

G The offset into the global offset table at which the address of the
relocation entry's symbol resides during execution.

GP The final gp value that is used for the relocatable, executable, or
shared object file being produced.

GPO The gp value used to create the relocatable object.

EA The effective address of the symbol prior to relocation.

L The lit4 or .litB literal table offset. Prior to relocation, the addend
field of a literal reference contains the offset into the global data
area. During relocation, each literal section from each
contributing file is merged into one and sorted, after which
duplicate entries are removed and the section compressed,
leaving only unique entries.
The relocation factor L is the mapping from the old offset from the
original gp to the value of gp used in the final file.

A relocation entry's r _offset value designates the offset or virtual address
of the first byte of the affected storage unit. The relocation type specifies
which bits to change and how to calculate their values. Because MIPS uses
only Elf32_Rel relocation entries, the field to be relocated holds the addend.

The AHL addend is a composite computed from the addends of two
consecutive relocation entries. Each relocation type of R_MIPS _Hll 6 must
have an associated R_MIPS_L016 entry immediately following it in the list
of relocations. These relocation entries are always processed as a pair and
both addend fields contribute to the AHL addend. If AHi and ALO are the
addends from the paired R_MIPS_Hll6 and R_MIPS_L016 entries, then
the addend AHL is computed as ((AHI « 16) + (short)ALO).
R_MIPS_L016 cntril'S without an immediately preceding R_MIPS_Hl16
entry are orphaned and the previously defined R_MIPS_HI16 is used for
computing the addend.

Note: Field names in the following table tell whether the relocation type
checks for overflow. A calculated relocation value may be larger than the
intended field, and a relocation type may verify (V) that the value fits or
truncate(T) the result. As an example, V-Jialf16 means that the computed
value may not have significant non-zero bits outside the l1alf16 field.

Assembly La11g1Jage Programmer's Guide

Execution and Linking Format

Table 11.4: Relocation Calculations

Name Value Field Symbol Calculation

R_MIPS_NONE 0 none ·local none
R_MIPS_16 1 V-half16 external S + sign-extended(A)

1 V-half16 local S + sign-extended(A)
R_MIPS_32 2 T-word32 external S+A

2 T-word32 local S+A
R_MIPS_REL32 3 T-word32 external A-EA+S

3 T-word32 local A-EA+S
R_MIPS_26 4 T-arg26 local (((A<<2) I (P & OxfOOOOOOO) + S)>>2)

4 T-arg26 external (sign-extended(A<<2)+ S) >> 2
R_MIPS_Hl16 5 T-hi16 external ((AHL+ S) - (short)(AHL+ S)) >> 16

5 T-hi16 local ((AHL+$}- (short) (AHL+$))>> 16
R_MIPS_L016 6 T-lo16 external AHL+S

6 T-lo16 local AHL+S
R_MIPS_GPREL 7 V-rel16 external sign-extended (A)+ S +GP

7 V-rel16 local sign-extended(A) + S + GPO - GP
R_MIPS_LITERAL 8 V-lit16 local signed-extended(A) + L
R_MIPS_GOT16 9 V-rel16 external G

R_MIPS_PC16
9 V-rel16 local see below
10 V-pc16 external sign-extended(A) + S - P

In the Symbol column in table 11.4, if the symbol referenced by the symbol
table index in the relocation entry is STB_LOCAL/STT _SECTION, then it
is a local relocation. If it is not, the relocation is considered an external
relocation.

The R_MIPS_32 and R_MIPS_REL32 relocation types are the only
relocations performed by the dynamic linker.

If an R_MIPS_GOT16 refers to a locally defined symbol, the relocation is
done differently than if it refers to an external symbol. In the local case it
must be followed immediately by an R_MIPS_L016 relocation. The AHL
addend is extracted and the section in which the referenced data item
resides is determined (this requires all sections in an object module to have
unique addresses and no overlap). From this address the final address of
the data item is calculated. If necessary, a global offset table entry is

. created to hold the high 16 bits of this address (an existing entry is used
when possible). The rcl16 field is replaced by the offset of this entry in the
global offset table. The lo16 field in the following R_MIPS_L016 relocation
is replaced by the low 16 bits of the actual destination address. This is
meant for local data references in position-independent code so that only
one global offset table entry is necessary for every 64 kilobytes of local data.

Assembly language Programmer's Guide 11-28

I,

! t

I~

Ouiptcr 11

11-29

The first instance of R_MIPS_GOT16 causes the link editor to build a
global offset table if one has not already been built.

Asscm/1/y La11~uasc Prosrammrr'~ Guidr

Execution and Linking Format

Assembly Language Programmer's Guide 11-30

i

I

I•

Program Loading and Dynamic Linking

12

Executable files and object files are used to create a process image when a
program is started by the system. This chapter describes the object file
structures that relate to program execution and also describes how the
process image is created from these files. Topics in this chapter include:

• Program Header

• Object File Segments

• Program Loading

• Dynamic Linking

• Quicks tart

Program Header

The Program Header table is an array of structures, each of which
describes a segment or other data used to create a process image. A
Program Header is meaningful only for a shared object or executable file.

Assembly Language Pro~rammer's Guide 12-1

Cliaptcr 12

12-2

A description of the Program Header for MIPS COFF fonnat is in Chapter
9. The structure of a Program Header for ELF entry is as follows:

Declaration Field

Elf32_Word p_type;
Elf32_0ff p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

The size of the Program Header is specified by the ELF Header e_plzc11tsi:e
and e_plmum fields (see Chapter 11).

p_type indicates what kind of segment this entry describes or how to
interpret the array element's information. p_type may have the following
values:

Name

PT_NULL
PT_LOAD
PT_DYNAMIC
PT_INTERP
PT_NOTE
PT_SHLIB
PT_PHDR
PT_LOPROC
PT_HIPROC
PT _MIPS_RECSINFO

Value

0
1
2
3
4
5
6
Ox70000000
Ox7fffffff
Ox70000000

PT _NULL indicates that the Program Header entry is unused;
the values of the other fields of the entry are undefined.

PT_LOAD i)ldicates a loadable segment, described by p_files:
and p_memsz. The file bytes arc mapped into the beginning of
the memory segment. If the memory size is larger than the file
size, the extra bytes contain zeros and follows the segment's
initialized area. The file size may not be larger than the
memory size. Loadable segments appear in the Program
Header table in ascending order based on the p_tiaddr field.

Assembly Language Pro~rammcr's Guide

:
I

)•1

Program Loading and Dy1111mic Li11king

PT _DYNAMIC indicates that the entry contains dynamic
linking information. See the Dynamic Section section of this
chapter for more details.

PT _INTERP indicates that the entry specifies the location and
size of a null-terminated path hame to invoke as an interpreter.
This type is meaningful only for executable files (though it may
occur for shared objects) and may not occur more than once in
a file. If a segment of this type is present, it must precede any
loadable segment entry.

PT_NOTE indicates that the entry gives the location and size of
auxiliary information.

PT _SHUB is reserved and has unspecified semantics. A
program which contains a Program Header entry of this type
does not conform to the Abl. ·

PT_PHDR indicates that the entry specifies the location and
size of the Program Header table, both in the file and in the
memory image of the program. This type may not occur more
than once in a file and it may only occur if the Program Header
table is part of the memory image of the program. If present, it
must precede any loadable segment entries.

PT_LOPROC through PT_HIPROC values are reserved for
processor-specific semantics. ·

PT_MIPS_REGINFO indicates that this entry specifies register
usage information. This type may not occur more than once in
a file. Its presence is mandatory and it must precede any
loadable segment entry. See the Register Information section in
Chapter 11.

p_offsct gives the offset from the beginning of the file to the first byte of the
segment.

p_vaddr gives the virtual address in memory of the first byte of the
segment.

p_paddr is reserved for the segment's physical address (on systems for
which physical addressing is relevant).

pJilesz contains the number of bytes in the file image of the segment; the
value may be zero.

p_nrems: holds the number of bytes in the memory images of the segment;
the value may be zero.

Assembly Language Programmer's Guide 12-3

Chapter 12

Base Address

p_flags contains the flags associated with the segment. The following flags
are defined: ·

Name Value Meaning

PF_X Oxl Execute
PF_W Ox2 Write
PF_R Ox4 Read
PF _MASKPROC OxfOOOOOOO Unspecified

All bits in PF _MASKPROC are reserved for processor-specific semantics.

p_align indicates the alignment of segments in memory and in the file.
Values 0 and 1 mean no alignment is required. Otherwise, p _align should
be a positive, integral power of 2, and p_vaddr should equal p_offset
modulo p_align.

Executable file and shared object files have a base address, which is the
lowest virtual address associated with the process image of the program.
The base address is used to relocate the process image of the program
during dynamic linking.

During execution, the base address is calculated from the memory load
address, the maximum page size, and the lowest virtual address of the
program's loadable segment. The virtual addresses in the Program
Header might not represent actual virtual addresses (see the Program
Loading section of this chapter). The base address is computed by
determining·the memory address associated with the lowest p_vaddr for a
PT_LOAD segment, and then truncating this memory address to the
nearest multiple of the maximum pc1ge size. The memory address may or
may not match the p _addr values.

Segment Permissions

12-4

A program that is to be loaded by the system must have at least one
loadable segment, even though this is not required by the file format.
When the process image is created, it has access permissions as specified in
the p_flags field.

If a permission bit is zero, that type of access is denied. All flag
combinations are valid but the system may allow more access than
requested. However, a segment does not have write permission unless it
is specified explicitly. Table 12.1 shows the exact and allowable
interpretations for p_flags.

Assembly Language Programmer's Guide

Program Loading and Dynamic Linking

Table 12.1: pJlags Values and Interpretation:

Flags Value Exact Allowable

none (l All access denied All access denied
PF_X 1 Execute only Read, execute
PF_W 2 Write only Read, write, execute
PF_W+PF_X 3 Write, execute Read, write, execute
PF_R 4 Read only Read, execute
PF_R+PF_X 5 Read, execute Read, execute
PF_R+PF_W 6 Read, write Read, write, execute
PF _R+PF _ W+PF _X 7 Read, write, execute Read, write, execute

Segment Contents

An object file segment may contain one or more sections. The number of
sections in a segment is not important for program loading, but specific
information must be present for linking and execution. The figures below
illustrate typical segment contents for a MIPS executable or shared object.
The order of sections within a segment may vary.

Text segments contain read-only instructions and data, typically
including the following sections:

.reginfo

.dynamic

.liblist

.rel.dyn

.conflict
I

.dynstr

I .dynsym

.hash

.rodata

.text

Assembly 1.Jmguage Programmer's Guide 12-5

Chapter 12

Data segments contain writable data and instructions, typically including
the following sections:

.got

.lit4

.lit8

.sdata

.data

.sbss

.bss

Program Loading

12-6

As the system creates or augments a process image, it logically copies a
file's segment to a virtual memory segment. When, and if, the system
physically reads the file depends on the program's execution behavior,
system load, etc. A process does not require a physical page unless it
references the logical page during execution, and processes commonly
leave many pages unreferenced. Therefore, delaying physical reads
frequently obviates them, improving system performance. To obtain this
efficiency in practice, executable and shared object files must have segment
images whose virtual addresses are zero, modulo the file system block size.

Virtual addresses for MIPS text segments must be aligned on 4 K (0x1000)
or larger powers of 2 boundaries. MIPS text segments include ELF headers
and program headers. MIPS data segments must be aligned on 64 K
(Oxl 0000) or larger powers of 2 boundaries. File offsets for MIPS segments
must be aligned on 4 K (OxlOOO) or larger powers of 2 boundaries.
Regardless of the 4 K alignment, segments may not overlap in any given
256 K chunk of virtual memory; this helps prevent alias problems in
systems with virtual caches. Page size on MIPS systems may vary, but
does not exceed 64 K (0x10000).

Assembly Language Programmer's Guide

Program Loading and Dynamic Linking

Figure 12.1 shows an example of an executable file and Table 122 shows
the Program Header entries for the example text and data segments.

File Offset
0

Ox2c000

Ox31000

Member

File

Text Segment
ELF header
Pr~am header table
Other information
...
Ox2bf00 bytes
Data segment
. . .
Ox5000 bytes
!Other u1formation
...

Virtual Address

Ox42bfff
Ox440000

Ox444fff

Figure 12.1: Example Executable File

Table 12.1: Text and Data Segments

Text

PT_LOAD
0

Data

PT_LOAD
Ox2cOOO
Ox440000
unspecified
Ox5000
Ox7000

p_type
p_offset
p_vaddr
p_paddr
p_filesz
p_memsz
p_flags
p_align

Ox400000
unspecified
Ox2c000
Ox2c000
PF_R+PF_X
Ox10000

PF _R+PF _ W+PF _X
Ox10000

Because the page size can be larger than the alignment restriction of a
segment's file offset, up to four file pages hold impure text or data
(depending on page size and file system block size).

• The first text page contains the ELF header, the Program Header
table, and other information.

• The last text page may hold a copy of the beginning of data.

• The first data page may have a copy of the end of text.

• The last data page should be zero or else it will conflict with sbrk
call.

Assembly Lanxuagc Programmer's Guide 12-7

0111pter 12

12-8

Source

File

Logically, the system enforces the memory permissions as if each segment
were complete and separate; segments' addresses are adjusted to ensure
that each logical page in the address space has a single set of permissions.
In the example above, with 16KB pages, the region of the file holding the
end of text and the beginning of data is mapped twice, at one virtual
address for text and at another virtual address for data.

The end of the data segment requires special handling for uninitialized
data, which must be set to zeros. If a file's last data page includes
information not in the logical memory page, the extraneous data must be
set to zero, not the unknown contents of the executable file.

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code. To let
the process execute correctly, these segments must reside at the virtual
addresses used to build the executable file. Thus the system uses the
unchanged p_vaddr values as virtual addresses.

On the other hand, shared object segments typically contain position
independent code. This lets a segment's virtual address change from one
process to another, without invalidating execution behavior. Though the
system chooses virtual addresses for individual processes, it maintains the
segments' relative positions. Because position-:.independent code uses
relative addressing between segments, the difference between virtual
addresses in memory must match the difference between virtual addresses
in the fiJe. The folJowing table shows possible shared object virtual
address assignments for several processes, illustrating constant relative
positioning. The table also illustrates base address computations.

Table 12.2: Example Shared Object Segment Addresses

Text Data Base Address
Ox200 Ox2b000 OxO

Processl Ox50000200 x5002b000 OxSOOOOOOO
Process2 Ox50010200 Ox5003b000 Ox50010000
Process3 Ox60020200 Ox6004b000 Ox60020000
Process4 Ox60030200 Ox6005b000 Ox60030000

Assembly I..a11guagc Programmer's Guide

I~
I

Program Loading and Dynamic Linking

Dynamic Linking

Program Interpreter

An executable file can have only one PT_INTERP Program Header entry.
When the system calls exec(2) to start the process, the path name of the
interpreter is retrieved from the PT_INTERP segment and the initial
process image is created from the interpreter file's segments. It is then the
interpreter's responsibility to receive control from the system and create
the application program's environment.

The interpreter receives con~ol in one of two ways. First, it may receive
the file descriptor of the executable file, positioned at the beginning of the
file. The file descriptor can then be used to read or map the executable
file's segments into memory. Second, depending on the executable file
format, the system may load the executable file into memory before giving
control to the interpreter. With the possible exception of the file
descriptor, the interpreter's initial process state is the same as what the
executable file would have received. The interpreter cannot require a
second interpreter and may be either a shared object or an executable file.

Dynamic Linker

A shared object is loaded as position-independent with addresses that
may vary from one process to another; the system creates the segmenL<; in
the dynamic segment area used by mmap(2) and related services. As a
result, a shared object interpreter typically does not conflict with the
executable file's original segment addresses.

An executable file is loaded at fixed addresses; the system creates its
segments using the virtual addresses from the Program Header table.
Consequently, an executable file interpreter's virtual addresses may
conflict with those of the executable file. The interpreter is responsible for
resolving any conflicts.

When building an executable file that uses dynamic linking, the link editor
adds a Program Header entry of type PT _INTERP to the executable fill»
This entry tells the system to invoke the dynamic linker as the program
interpreter. Typically, the dynamic linker requested is libsys, the system
library. excc(2) and the dynamic linker cooperate to create the process
image, which involves the following:

• Adding the file segments to the process image.

• Adding shared object segments to the process image.

• Performing relocations for the executable file and its shared objects.

Assembly LAnguage Programmer's Guide 12-9

01apter 12

12-10

• Closing the file descriptor for the executable file, if a file descriptor
was passed to the dynamic linker.

• Transferring control to the program, making it appear that the
program received control directly from exec(2).

The link editor also constructs various data for shared objects and
executable file that assist the dynamic linker. These data are located in
loadable segments, are available during execution, and consist of the
following:

• A dynamic section of type SHT_DYNAMIC holds various data,
including a structure that resides at the beginning of the section
and hold the addresses of other dynamic linking information.

• The .hash section of type SHT_HASH contains a symbol hash table.

• The .got and .pit sections, of type SHT_PROGBITS, contain the
Global Offset Table and the Procedure Linkage Table, respectively.

Shared objects may be located at virtual addresses that are different from
the addresses in the Program Header table. The dynamic linker relocates
the memory image and updates absolute addresses before control is given
to the program.

If the environment variable LD_BIND_NOW has a non-null value, the
dynamic linker processes all relocations before transferring control to the
program. The dynamic linker may evaluate procedure linkage table
entries lazily, avoiding symbol resolution and relocation for functions that
are not called.

The dynamic linker performs linking of objects at run-time and is invoked
either through the operating system kernel or by start-up code in the
executable. In either case, the imtial entry point for the dynamic linker is
in entry zero of the Global Offset Table. Each entry should be considered
a subroutine:

void entnJ+O () ;
Normal entry point for the dynamic linker when invoked by
the operating system kernel. This entry takes no arguments
and returns no values.

void entry+B (Elf32_Addr base, char ••em'P) ;
This entry point is 8 bytes beyond the entry point given by
location zero in the GOT. This entry is called when the
dynamic linker is invoked by start-up code in the executable.
The argument base should be the value of the extern
_BASE_ADDRESS. It is a pointer to the first location in the text

Assembly La11guaJ.:e Programmer's Guide

Program Loading and Dynamic Linking

segment. The envp argument is a pointer to the environment.
This entry point returns a pointer to the dynamic linker's object
list.

Dynamic Section

An object file that is used in dynamic linking has an entry in its Program
Header Table of type PT _DYNAMIC. This segment contains the .dynamic
section, which is labeled _DYNAMIC and is an array with entries of the
following type:

~ypedef struct {
Elf32_Sword d_tag;
union {

Elf32 Word d_val;
Elf32 Addr d_ptr;

} d_un;
} Elf32_Dyn;

· dtag indicates how the d_un field is to be interpreted.

d_val represents integer values.

d_ptr represents program virtual address. A file's virtual addresses may
not match the memory virtual addresses during execution. The dynamic
linker computes actual addresses based on the virtual address from the file
and the memory base address. Object files do not contain relocation
entries to correct addresses in the dyn;imic structure.

The tag (d_tag) requiremenlc; for executable and shared object files are
summarized in the following table. If the executable entry indicates

Assembly Language Programmer's Guide 12-11

Ozapter 12

12·12

mandatory, the dynamic linking array must contain an entry of that type.
Optional indicates that an entry for the tag may exist but is not required.

Name Value d_un Executable Shared Object

DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
ST_STRTAB 5 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional ignored
OT _SYMBOLIC 16 ignored igmored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_LOPROC Ox70000000 unspecified unspecified unspecified
DT_HIPROC Ox7ffff fff unspecified unspecified unsepcified

DT_NULL
An entry of this type marks the end of the _DYNAMIC array.

DT_NEEDED
This element contains the string table offset of a null terminated
string that is the name of a library. The offset is an index into
the table indicated in the DT_STRTAB entry. The dynamic
array may contain multiple entries of this type. The order of
this entries is significant.

Assembly Lon~uage Programmer's Guide

i N
l'l

11

Program Loading a11d Dy11amic Linking

DT_PLTRELSZ
This element contains the total size in bytes of the relocation
entries associated with the Procedure Linkage Table. If an
entry of type DT JMPREL is present, it must have an associated
DT_PLTRELSZ entry.

DT_PLTGOT
Procedure Linkage Table and/or the Global Offset Table.

DT_HASH
This element contains the address of the symbol hash table.

DT_STRTAB
This entry contains the address of the string table.

DT_SYMTAB
This entry contains the address of the symbol table with
Elf32_Sym entries for the 32-bit class of files.

DT_RELA
This element contains the address of a relocation table. Entries
in the table have explicit addends, such as Elf32_Rela. An
object file may have multiple relocation sections. When the link
editor builds the relocation table for an executable or shared
object, these sections are concatenated to form a single table.
While the sections are independent in the object file, the
dynamic linker sees a single table. When the dynamic linker
creates a process image or adds a shared object to a process
image, it reads the relocation table and performs the associated
actions. If this element is present, the dynamic structure must
also contains DT_RELASZ and DT_RELAENT entries. When
relocation is mandatory for a file, either DT_RELA or DT_REL
may be present.

DT_RELASZ
This entry contains the size in bytes of the DT _RELA relocation
table.

DT _RELJ\ENT
This entry contains the size in bytes of the DT _RELA relocation
entry.

DT_STRSZ
This element contains the size in bytes of the string table.

DT_SYMENT
This entry contains the size in bytes of a symbol table entry.

DT_INIT
This element contains the address of the initialization function.

Assembly umguagc Programmer's Guide 12-13

Ozaptcr 12

12-14

DT_FINI
This element contains the address of the termination function.

DT_SONAME
This entry contains the string table offset of a null-terminated
string that gives the name of the shared object. The offset is an
index into the table indicated in the DT_STRTAB entry.

DT_RPATH
This element contains the string table offset of a null
terminated search library search path string. The offset is an
index into the table indicated in the DT_STRTAB entry.

DT_SYMBOLIC
If this element is present, the dynamic linker uses a different
symbol resolution algorithm for references within a library. The
symbol search starts from the shared object instead of the
executable file. If the shared object does not supply the
referenced symbol, the executable file and other shared objects
are searched.

DT_REL
This entry is similar to DT_RELA, except that its table has
implicit addends. If this element is present, the dynamic
structure must also contain DT _RELASZ and OT _RELENT
elements.

DT_RELSZ
This entry contains the size in bytes of the DT_REL relocation
table.

DT_RELENT
This entry contains the size in bytes of the OT _REL relocation
entry.

DT_PLTREL
This elemenl specifies the type of relocation entry referred to by
the Procedure Linkage Table. The d_ val member holds
OT _REL or DT _RELA, as appropriate. All relocations in a
Procedure Linkage Table must use the same relocation.

DT_DEBUG
This entry is us~d for debugging. Its contents are not specified.
Programs that access this entry do not conform to the ABI.

DT_TEXTREL
If this element is not present, then no relocation entry should
cause a modification to a non-writable segment. If this element
is present, one or more relocation entries might request
modifications to a non-writable segment.

Assembly Language Programmer's Guide

Program Loading and Dynamic Linking

DT_JMPREL
If this element is present, its d_ptr field contains the address of
relocation entries associated only with the Procedure Linkage
Table. The dynamic linker may ignore these entries during
process initialization if lazy bi1-1ding is enabled.

DT_LOPROC through DT~HIPROC
The values in this range are reserved for processor-specific
semantics.

Table 12.3 lists MIPS-specific tags:

Table 12.3: Dynamic Arrays Tags d_tag:

Name Value d_un Executable Shared Object

OT _MIPS_ ALO_ VERSION Ox70000001 d_val mandatory mandatory
OT _MIPS_ TIME_ STAMP Ox70000002 d_val optional optional
DT _MIPS_ICHECKSUM Ox70000003 d_val optional optional
DT _MIPS_IVERSION Ox70000004 d_val optional optional
DT _MIPS_FLAGS Ox70000005 d_val mandatory mandatory
DT _MIPS_BASE_ADDRESS Ox70000006 d_ptr mandatory mandatory
OT _MIPS_ CONFLICT Ox70000008 d_ptr optional optional
DT_MIPS_LIBLIST Ox70000009 d_ptr optional optional
DT_MIPS_LOCAL_GOTNO Ox7000000A d_val mandatory mandatory
DT _MIPS_CONFLICTNO Ox7000000B d_val optional optional
DT _MIPS_LIBLISTNO Ox70000010 d_val optional optional
DT_MIPS_SYMTABNO Ox70000011 d_val optional optional
DT _MIPS_UNREFEXTNO Ox70000012 d_val optional optional
DT_MIPS_GOTSYM Ox70000013 d_val mandatory mandatory
DT _MIPS_HIPAGENO Ox70000014 d_val mandatory mandatory
DT_MIPS_RLD_MAP Ox70000016 d_val optional optional

DT _MIPS_RLD _VERSION
This element holds an index into the object file's string table,
which holds the version of the Runtime Linker Interface. The
version is currently 1.

DT _MIPS_ TIME_SI' AMP
This entry contains a 32-bit time stamp.

OT _MIPS_ CHECKSUM
This elements's value is the sum of all external strings and
common sizes.

Assembly Language Programmer's Guide 12-15

Chapter 12

12-16

DT_MIPS_IVERSION
This element holds an index into the object file's string table.
The version string is a series of colon (:) separated version
strings. An index value of zero means no version string was
specified.

DT _MIPS_FLAGS
This entry contains a set of 1-bit flags. Flag definitions appear
below.

DT_MIPS_BASE_ADDRESS This element contains the base address
as defined in the generic AB!.

DT_MIPS_CONFLICT
This entry contains the address of the .conflict section.

DT _MIPS_LIBLISf
This element contains the address of the .liblist section.

DT_MIPS_LOCAL_GOTNO
This element contains the number of local GOT entries.

DT_MIPS_CONFLICTNO
This entry contains the number of entries in the .conflict section
and is mandatory if there is a .conflict section.

DT _MIPS_RLD _MAP
This entry contains the address of the word that contains a
pointer to the dynamic linker's object list.

DT_MIPS_SYMT ABNO
This entry indicates the number of entries in the .dynsym
secti"on.

DT _MIPS_LIBLISfNO
This element indicates the number of entries in the .Iiblist
section.

DT _MIPS_UNREFEXTNO
This field holds the indes into the dynamic symbol table which
is the entry of the first extemal symbol that is not referenced
within the same object.

DT_MIPS_GOTSYM
This field holds the index of the first dynamic symbol table
entry that corresponds to an entry in the global offset table.

DT _MIPS_HIPAGENO
This field holds the number of page table entries in the global
offset table. A page table entry here refers to a 64K byte chunk
of data space. This field is used by profiling tools and is
optional.

Assembly 1.a11~ua~c Pro~rammer's Guide

11

Program Loading and Dynamic Linking

Entries may appear in any order, except for the relative order of the
DT _NEEDED elements and the DT _NULL element at the end of the array.
All other tag values are reserved.

The following flags are defined for DT _MIPS_FLAGS:

RHF _NONE OxOOOOOOOO none
RHF _HARDWAY OxOOOOOOOl ignore shortcut pointers
RHF _NOTPOT Ox00000002 hash size not a power of two

Shared Object Dependencies

When the link editor processes an archive library, library members are
extracted and copied into the output object file. These statically linked
services are available during execution and do not involve the dynamic
linker. Shared objects also provide services which require the dynamic
linker to include the appropriate shared object files in the process image.
To accomplish this, executable and shared object files must describe their
dependencies.

The dependencies, indicated in the DT_NEEDED entries of the dynamic
structure, tell what shared objects are required for the program. The
dynamic linker builds a process image by connecting the referenced
shared objects and their dependencies. When resolving symbolic
references, the dynamic linker looks first at the symbol table of the
executable program, then at the symbol tables of the DT _NEEDED entries
(in order), then at the second level DT _NEEDED entries, and so on. Shared
object files must be readable by the process.

Note: Even if a shared object is referenced more than once in the depen
dency list, the dynamic linker only includes one instance of the object in
the process image.

Names in the dependency list are copies of either the DT _SONAME
strings or the path names of the shared objects used to build the object file.
If the link editor builds an executable file from a shared object with a
DT_SONAME entry of liba and another shared object with path name
/usr/lib/libz, the executable file contains liba and /usr/lib/libz in its

dependency list.

If a shabred object name has one or more slash characters in its name, such
as /usr/lib/libz, the dynamic linker uses the string as the path name. If the
name has no slashes, such as liba, the object is searched for as follows:

• First, the dynamic array tag DT_RPATH may give a string that
holds a list of directories separated by colons, such as /usr/new/lib:
/usr/local/lib. The dynamic linker searches these directories in order
and if a library is not located, also looks in the current dirC'ctory.

Assembly Language Programmer's Guide 12-17

Chapter 12

• Second, the environment variable LD_LIBRARY_pATH may hold a
list of colon separated directories, optionally followed by a
semicolon and another directory list. These directories are searched
after those specified by DT_RPATH.

• Finally, if the library was not located in any of the directories
specified by DT_PATH or LD_LIBRARY_pATH, the dynamic linker
searches /lib, then /usr/Iib, and then /usr/lib/cmplrs/cc.

MIPS defines the following environment variables:

_RLD_PATH
_RLD_ARGS
_RLD_ROOT

path to dynamic linker (rid)
argument list to dynamic linker
prefix dynamic linker prepends to all paths

Note: For security, the dynamic linker ignores environmental search spec
ifications, such as LD_LIBRARY_PATH, for set-user-ID and set-group
ID programs.

Global Offset Table (GOT)

12-18

Position-independent code cannot, in general, contain absolute virtual
addresses. Global Offset Tables (GOT) hold absolute addresses in private
data, thus making the addresses available without compromising the
position-independence and sharability of a program's text. A program
references its Global Offset Table using position-independent addressing
and extracts absolute values, thus redirecting position-independent
references to absolute locations.

The Global Offset Table is split into two logically separate subtables: locals
and externals. Local entries reside in the first part of the table; these are
entries for which there are standard local relocation entries. These entries
only require relocation if they occur in a shared object etnd the shared
object's memory load address differs from the virtual address of the shared
object's loadable segments. As with the defined external entries in the
Global Offset Table, these local entries contain actual addresses.

External entries reside in the second part of the section. Each entry in the
external part of the GOT corresponds to an entry in the .dynsym section.
The first symbol in the .dynsym section corresponds to the first word of the
table, the second symbol corresponds to the second word, and so on. Each
word in the external entry part of th~ GOT contains the actual address for its
corresponding symbol. The external entries for defined symbols must
contain actual addresses. If an entry corresponds to an undefined symbol
and the table entry contains a zero, the entry must be resolved by the
dynamic linker, even if the dynamic linker is performing a quickstart. See
the Quickstart section of this chapter for more information.

Assembly Language Programmer's Guide

Program Loading and Dynamic Linking

After the system creates memory segments for a loadable object file, the
dynamic linker may process the relocation entries. The only relocation
entries remaining are type R_MIPS_REL.32, referring to local entries in the
GOT and data containing addresses. The dynamic linker determines the
associated symbol (or section) values, calculates their absolute addresses,
and sets the proper values. Although th~ absolute addresses may be
unknown when the link editor builds an object file, the dynamic linker
knows the addresses of all memory segments and can find the correct
symbols and calculate the absolute addresses.

If a program requires direct access to the absolute address of a symbol, it
uses the appropriate GOT entry. Because the executable file and shared
objects have separate Global Offset Tables, a symbol's address may appear
in several tables. The dynamic linker processes all necessary relocations
before giving control to the process image, thus ensuring the absolute
addresses are available during execution.

The zero entry of the .dy11synr section is reserved and holds a null symbol
table entry. The corresponding zero entry in.the GOT is reserved to hold
the address of the entry point in the dynamic linker to call when lazy
resolving text symbols; see the Procedure Linkage Table section-in this
chapter. When a program begins execution, it must check this entry and if
it is zero, the program must invoke the dynamic linker; otherwise, the
system has done so for the program as part of program loading.

If the system has not invoked the dynamic linker and the program fails to
map in a dynamic linker, or the program fails to find a dynamic linker,
then the program must execute a BREAK instruction with a code of 10.
This allows the parent program to determine the reason for failure.

The system may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless,
memory segments do not change addresses once the process image is
established. As long as a process exists, its memory segments reside at
fixed virtual addresses.

Assembly l.Anguage Programmer's Guide 12-19

Ozaptcr 12

Calling Position Independent Functions

12-20

The GOT is used to hold addresses of position independent functions as
well as data addresses. It is not possible to resolve function calls from one
executable or shared object to another at static link time, so all of the
function address entries in the GOT would normally be resolved at
execution time. The dynamic linker would then resolve all of these
undefined relocation entries at run-time. Through the use of specially
constructed pieces of code known as stubs this run-time resolution can be
be deferred through a technique known as lazy binding.

Using this technique, the link editor (or a combination of the compiler,
assembler, and link editor) builds a stub for each called function, and
allocates a GOT entry that initially points to the stub. Because of the
normal calling sequence for position independent code, the call ends up
invoking the stub the first time the call is made.

stub_xyz: .
lw t9, O(gp)
move t7, ra
jal t9
li ts, .dynsym_index

The stub code loads register t9 with an entry from the GOT which contains
a well-known entry point in the dynamic linker; it also loads register tS
with the index into the .dynsym section of the referenced external. The code
saves register ra and transfers control to the dynamic linker. The dynamic
linker determines the correct address for the called function and replaces
the address of the stub in the GOT with the address of the function.

Most undefined text references can be handled by lazy text evaluation
except when ~he address of a function is used other than in a jump and link
instruction. In this case, rather than the actual address of the function you
would get the address of the stub.

The dynamic linker detects this usage in the following manner:

The link editor generates symbol table entries for all function references
with the st_slmdx field containing SHN_UNDEF and the st_typc field
containing SIT_FUNC. The dynamic linker examines each symbol table
entry when it starts execution. If the st_value field for one of these symbols
is non-zero then there were only jump and link references to the function
and nothing need be done to the GOT entry; if the field is zero, then there
was some other kind of reference to the function and the GOT entry must
be replaced with the actual address of the referenced function.

The LD_BIND_NOW environment variable can also change dynamic
linking behavior. If its value is non-null, the dynamic linker evaluates all

Assembly Language Pro~rammcr's Guide

Symbols

Relocations

Program Loading and Dynamic Linking

symbol table entries of type SIT _FUNC, replacing their stub addresses in
the GOT with the actual address of the referenced function.

Note: Lazy binding generally improves overall application performance,
because unused symbols do not incur the dynamic linking overhead. Nev
ertheless, two situations make lazy binding undesirable for some applica
tions. First, the initial reference to a shared object function takes longer
than subsequent calls, because the dynamic linker intercepts the call to re
solve the symbol. Some applications cannot tolerate this unpredictability.
Second, if an error occurs and the dynamic linker cannot resolve the sym
bol, the dynamic linker terminates the program. Under lazy binding, this
might occur at arbitrary times. Once again, some applications cannot tol
erate this unpredictability. By turning off lazy binding, the dynamic linker
forces the failure to occur during process initialization, before the applica
tion receives control.

All externally visible symbols, both defined and undefined, must be
hashed into the hash table.

Undefined symbols of type SIT _FUNC which have been referenced only
by jump and link instructions may contain non-zero values in the their
st_value field denoting the stub address used for lazy evaluation for this
symbol. The run-time linker uses this to reset the GOT entry for this
external to its stub address when unlinking a shared object. All other
undefined symbols must contain zero in their st_valuc fields.

Defined symbols in an executable may not be preempted. The symbol
table in the executable is always searched first to resolve any symbol
references. The executable may or may not contain position independent
code.

There may be only one dynamic relocation section to resolve addresses in
data and local entries in the GOT. It must be called .rcl.dyn . Executables
may contain normal relocation sections in addition to a dynamic relocation
section. The normal relocation sections may contain resolutions for any
absolute values in the main program. The dynamic linker does not resolve
these or relocate the main program.

As noted previously, only R_MIPS_REL32 relocation entries are
supported in the dynamic relocation section.

Assembly Longuagc Programmer's Guide 12-21

Ozapter 12

Hash table

A hash table of Elf32_ Word entries supplies symbol table access. The hash
table can be viewed as follows:

nbucket

nchain

bucket[OJ
bucket[nbucket - 1 J

chain[OJ
...
chain[nchain - 1)

nbucket indicates the number of entries in the bucket array and 11cl1ain
indicates the number of entries in the chain array. Both bucket and chain
hold symbol table indexes; the entries in chai11 parallel the symboltable.
The number of symbol table entries should be equal to 11cltai11; symbol
tables indexes also select cltai11 entries.

A hashing function accepts a symbol name and returns a value that may be
used to compute a bucket index. If the hashing function returns the value
X for a name, bucket(X 3 11bucket) gives an index, Y, into the symbol table
and dzai11 array. If the symbol table entry indicated is not the correct one,
clzai11[Y] indicates the next symbol table entry with the same hash value.
The clzain links can be followed until either the desired symbol table entry
is located, or the cltai11 entry contains the value STN_UNDEF.

Initialization and Termination Functions

12-22

After the dynamic linker has created the process image and performed
relocations, each shared object gets the opportunity to execute
initialization code. The initialization functions are called in no particular
order, but all shared object initialization occurs before the executable file
gains control.

Similarly, shared object may have termination functions that are executed
by the atexit(3) mechanism when the process is being terminated. The

· order in which the dynamic linker calls the termination functions is
unspecified.

Shared objects designate initialization and termination functions through
DT_INIT and DT_FINI entries in the dynamic structure. Typically, the
code for these functions resides in the .i11it and .fi1ti sections.

Assembly l.Jl11guage Programmer's Guide

I'

Quickstart

Program Loading and Dynamic Linking

Note: Although the atcxit(3) termination processing normally is done, it is
not guaranteed to have executed upon process death. In particular, the
process does not execute the termination processing if it calls _exit(2) or if
the process dies because it received a signal that it neither caught nor ig
nored.

MIPS supports several sections which are useful for faster startup of
programs that have been linked with shared objects. Some ordering
~onstraints are imposed on these sections. The group of structures defined
in these sections and the ordering constraints allow the dynamic linker to
operate more efficiently. These additional sections are also used for more
complete dynamic shared object version control.

Note: An ABI compliant system may ignore any of the three sections de
fined here, but if it supports one of these sections, it must support all three.
If an object file is relinked or relocated on secondary stoarage and these

. sections cannot be processed, they must be deleted.

Shared Object List

A shared object list section is an array of Elf32_Lib structures which
contains information about the various dynamic shared objects used to
statically link the object file. Each shared object used has an entry in the
array; each entry has the following format:

typedef struct {

Elf32 Word 1 name; - -
Elf32 Word 1 time _stamp;
Elf32 Word l_checksum;
Elf32 Word l_version;
Elf32 Word l_flags;

Elf32 Lib; -
I_namc

This member specifies the name of a shared object. Its value is
a string table index. This name may be a trailing component of
the path to be used with RPATH + LD_LIBPATH, a name
containing' /'s which is relative to'.', or it may be a full path
name.

l_time_stamp
This member's value is a 32-bit time stamp. The value can be
combined with the l_clzccksum value and the l_versio11 string to
form a unigue id for this shared object.

Assembly Language Programmer's Guide 12-23

O:apter 12

l_checksum
This member's value is the sum of all externally visible
symbols' string names and common sizes.

l_versio11
This member specifies the interface version. Its value is a string
table index. The interface version is a single string containing
no colons. It is compared to a colon separated string of
versions pointed to by a dynamic section entry of the shared
object. Shared objects with matching names may be considered
incompatible if the interface version strings are deemed
incompatible. An index value of zero means no version string
is specified.

l_jlags
This member is a set of 1-bit flags. The following flags are
defined:

LL_EXACT_MATCH
LL_IGNORE_INT _VER

LL_EXACT _MATCH

OxOOOOOOOl require exact match
Ox00000002 ignore interface version

At run-time use a unique id composed of the l_time_stamp,
l_cl:ecksum, and !_version fields to demand that the run-time
dynamic shared object match exactly the shared object used
at static link time.

LL_IGNORE_INT _VER

At run-time, ignore any version incompatibility between
the dynamic shared object and the object used at static link
time.

Normally, if neither LL_EXACT _MATCH nor LL_IGNORE_INT _VER bits
arc set, the dynamic linker requires that the version of the dynamic shared
library match at least one of the colon separated version strings indexed by
the I_ version string table index. ·

Conflict Section

12-24

E.ach .conflict section is an array of indexes into the .dynsym section. Each
index identifies a symbol whose attributes conflict with a shared object on
which it depends, either in type or size, such that this definition preempts
the shared object's definition. The dependent shared object is identified at
static link time. The .conflict section is an array of Elf32_Conflict elements.

typedef Elf32 Addr Elf32_Conflict;

Assembly umguage Programmer's Guide

I

'~

Ordering

Program Loading and Dt;namic Linking

In order to take advantage of Quickstart functionality, ordering
constraints are imposed on the .dynsym and .rel.dyn sections. The .dynsym
section must be ordered on increasing values of the st_value field. Note
that this requires the .got section to be ordered in the same way, since it
must correspond to the .dynsym section. ·

The .rel.dyn section must have all local entries first, followed by the
external entries. Within these sukections, the entries must be ordered by
symbol index. This groups each symbol's relocations together.

Assembly Language Programmer's Guide 12-25

Chapter 12

12-26 Assembly l...a11guage Programmer's Guide

Instruction Summary

A

The tables in this chapter summarize the assembly language instruction
set. Most of the assembly language instructions have direct machine
equivalents. Refer to Appendix A and Appendix B of the MIPS RISC
Architecture book published by Prentice-Hall for detailed instruction
descriptions. In the tables in this appendix, the operand terms have the
following meanings:

Operand

destination
address
source
expression
immediate
label
breakcode

Assembly Language Programmer's Guide

Description

Destination register.
Expression.
Source register.
Aboslute value.
Immediate value.
Symbol label.
Value that determines the break.

I
I
J

A-1

Chapter A

Table A.1: Main Processor Instruction Summary

Description Op-code Operand

Load Address la destination,address
Load Byte lb
Load Byte Unsigned lbu
Load Halfword lh
Load Halfword Unsigned lhu I·
Load Word lw
Load Coprocessor z lwcz
Load Word Left lwl
Load Word Right lwr

Store Byte Sb source.address
Store Halfword sh
Store Word

I

SW I
I

Store Word Coprocessor z swcz I Store Word Left swl
i I

Store Word Right swr
Unaligned Load Halfword ulh

I
I

Unaligned Load Halfword Unsigned ulhu
Unaligned Load Word ulw
Unaligned Store Halfword ush

I Unaligned Store Word usw I

Conditional Trap
src1, src2 I Trap if Equal teq src1, immediate I

Trap if not Equal tne I
! Trap if Less Than tit I

Trap if Less than, Unsigned tltu
Trap if Greater Than or Equal tge
Trap if Greater than or Equal, tgeu
Unsigned

A-2 Assembly l.Jmguage Programmer's Guide

Instruction Summary

Table A.1: Main Processor Instruction Summary (continued)

I
Description Op-code

Load Immediate Ii
Load Upper Immediate lui
Restore From Exception rf e
Sy sea II syscall

Absolute Value abs
Negate (with overflow) neg
Negate (without overflow) negu
NOT not

Add (with overflow) add
Add (without overflow) ad du
AND and
Divide (with overflow) div
Divide (without overflow) divu
EXCLUSIVE OR xor
Multiply mul
Multiply (with overflow) mulo
M It. I ("th rfl u 1p y w1 ove ow) mulou

Unsigned
NOT OR nor
OR m
Remainder rem
Remainder Unsigned remu
Rotate Left rol
Rotate Right ror
Set Equal seq
SEt Less Than sit
Set Less Than Unsigned situ
Set Less/Equal sle
Set Less/Equal Unsigned sleu
Set Greater Than sgt
Set Greater Than Unsigned sgut
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
S~NME~~ we
Shift Left Logical sll
Shift Right Arithmetic sra
Shift Right Logical srl
Subtract (with overflow) sub
Subtract (without overflow) subu

Multiply
Multiply Unsigned

Assembly umguage Programmer's Guide

mutt
multu

I Operand
J
I

destination.expression

destination,src1
destination/src1

destination,src1 ,src2
destination/src1 ,src2
destination,src1 ,immediate
destination/src1 ,immediate

src1,src2

A-3

Chapter A

Table A.1: Main Processor Instruction Summary (continued)

Description Op-code Operand

Branch b label
Branch Coprocessor z True bczt
Branch Coprocessor z False bczf

Branch on Equal beq src1 ,src2,label
Branch on Greater bgt src1 ,immediate.label
Branch on Greater/Equal bge
Branch on Greater/Equal Unsigned bgeu
Branch on Greater Than Unsigned bgtu
Branch on Less bit
Branch on Less/Equal ble
Branch on Less/Equal Unsigned bleu
Branch on Less Than Unsigned bltu
Branch on Not Equal bne

Branch and Link bal label

Branch on Equal Zero beqz src1 ,label
Branch on Greater/Equal Zero bgez
Branch on Greater or Equal to zero . bgezal
and Link
Branch on Greater Than Zero bgtz
Branch on Less/Equal Zero I blez
Branch on Less Than Zero bltz
Branch on Less Than Zero andlink bltzal
Branch on Not Equal Zero bnqz

! Jump j
I

address
Jump and Link jal src1

Break break breakcode

Coprocessor z Operation CZ expression

Move move destination,src1

Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register mflo
Move To LO Register mtlo

Move From Coprocessor z mfcz dest-gpr, source
Move To Coprocessor z mtcz src-gpr, destination

Control From Coprocessor z cfcz src-gpr, destination
Control to Coprocessor z ctcz dest-gpr, source

A-4 Assembly Language Programmer's Guide

J11structio11 Summary

Ti bl A 2 S a e .. ystem c I . s oprocessor 11struct1on UmmD..!1_

Description Op-code Operand

Trarislation Lookaside Buffer Probe tlbp
Translation Lookaside Buffer Read tlbr
Translation Lookaside Buffer Write Random · tlbwr
Translation Lookaside Write Index tlbwi

Table A.3: Floati11g Poi11t Instruction Summary

Description Op-code Operand J
Load Fp I
Double l.d desijnation,offset(base) J
Single l.s

Store FP I Double s.d source,offset(base)
Single s.s

Absolute Value Fp I Double abs.d destination,src1 I
Single abs.s I

I

Add Fp
I
I
I

Double add.d destination,src1 ,src2 I
Single add.s

I Divide Fp
Double div.d !
Single div.s

I Multiply
Double mul.d

i
Single mul.s

Subtract Fp
sub.d Double

Single sub.s

Assembly Language Programmer's Guide A·S

Ozaptcr A

Table A.3: Floating Point Instruction Summary (continued)

Description Op-code Operand

Convert Source to
Specified Precision Fp

destination,src2 Double to Single cvt.s.d
Fixed Point to Single cvt.s.w
Fixed Point to Double cvt.d.w
Single to Double . cvt.d.s
Double to Fixed Point cvt.w.d
Single to Fixed Point cvt.w.s

j
Negate Floating Point

Double neg.d

Single neg.s

A-6 Assembly Language Programmer's Guide

Instruction Summary

Table A.3: Floating Point Instruction Summary (continued)

Description Op-code Operand

Compare Fp
c.f.s src1 ,src2 F Single

F Double c.f.d

UN Single c.un.s
UN Double c.un.d

·ea Single ' c.eq.s
*EQ Double c.eq.d

UEQ Single c.ueq.s I
UEQ Double c.ueq.d

OLT Single c.olt.s
OLT Double c.olt.d

ULT Single c.ult.s
ULT Double c.ult.d

OLE Single c.ole.s I

OLE Double c.ole.d I
I

ULE Single c.ule.s I I
ULE Double c.ule.d

I
I
I

c.sf.s !
SF Single

c.sf.d I I SF Double I

NGLE Single c.ngle.s I NGLE Double c.ngle.d

SEQ Single c.deq.s
SEQ Double c.seq.d

NGL Single c.ngl.s
NGL Double c.ngl.d

Note: Starred items (")are the most common Compare instructions. The
other Compare instructions arc for IEEE compatibility.

Assembly Language Programmer's Guide A·7

Chapter A

A-8

Table A.3: Table Floating Point Instruction Summary (conti11ued)

Description Op-code Operand

Compare Fp
*LT Single c.lt.s src1 ,src2
*LT Double c.lt.d

NGE Single c.nge.s
NGE Double c.nge.d

*LE Single c.le.s
*LE Double c.le.d

NGT Single c.ngt.s

I NGT Double c.ngt.d
I
I

Move Fp l
Single mov.s destination,src1
Double mov.d

Note: Starred items (•) are the most common Compare instructions. The
other Compare instructions are for IEEE compatibility.

Assembly La11guage Programmer's Guide

Basic Machine Definition

B

The assembly language instructions described in this book are a superset
of the actual machine instructions. Generally, the assembly language

· instructions match the machine instructions; however, in some cases the
assembly language instruction are macros that generate more than one
machine instruction (the assembly language multiplication instructions
are examples).

You can, in most instances, consider the assembly instructions as machine
instructions; however, for routines that require tight coding for
performance reasons, you must be aware of the assembly instructions that
generate more than one machine language instruction, as described in this
appendix.

Load and Store Instructions

If you use an address as an operand in an assembler Load or Store
instruction and the address·references a data item that is not addressable
through register $gp or the data item does not have an absolute address in
the range -32768 ... 32767, the assembler instruction generates a lui (load
upper immediate) machine instruction and generates the appropriate
offset to $at. The assembler then uses $at as the index address for the
reference. This condition occurs when the address has a relocatable
external name offset (or index) from where the offset began.

The assembler's la (load address) instruction generates an addiu (add
unsigned immediate) machine instruction. If the address requires it, the
la instruction also generates a lui (load upper immediate) machine
instruction. The machine requires the la instruction because la couples
relocatable infonnation with the instruction for symbolic addresses.

AssemMy Language Programmer's Guide B-1

Ozapter B

Depending on the expression's value, the assembler's Ii (load immediate)
instruction can generate one or two machine instructions. For values in the
-32768 ... 65535 range or for values that have zeros as the 16 least significant
bits, the Ii instruction generates a single machine instruction; otherwise it
generates two machine instructions.

Computational Instructions

If a computational instruction immediate value falls outside the 0 ... 65535
range for Logical ANDs, Logical ORs, or Logical XORs (exclusive or), the
immediate field causes the machine to explicitly load a constant to a
temporary register. Other instructions generate a single machine
instruction when a value falls in the -32768 ... 32767 range.

The assembler's seq (set equal) and sne (set not equal) instructions generate
three machine instructions each.

If one operand is a literal outside the range-32768 ... 32767, the assembler's
sge (set greater than or equal to) and sle (set less/ equal) instructions
generate two machine instructions each.

The assembler's mulo and mulou (multiply) instructions generate machine
instructions to test for overflow and to move the result to a general register;
if the destination register is $0, the check and move are not generated.

The assembler's mul (multiply unsigned) instruction generates a machine
instruction to move the result to a general register; if the destination
register is $0, the move and divide-by-zero checking is not generated. The
assembler's divide instructions, div (divide with overflow) and ditiu
(divide without overflow), generate machine instructions to check for
division by zero and to move the quotient into a general register; if the
destination register is $0, the move is not generated.

The assembler's rem (signed) and remu (unsigned) instructions also
generate multiple instructions.

The rotate instructions ror (rotate right) and rol (rotate left) generate three
machine instructions each.

The abs (absolute value) instruction generates three machine instructions.

Branch Instructions

B-2

If the immediate value is not zero, the branch instructions beq (branch on
equal) and bne (branch on not equal), each generate a load literal machine
instruction. The relational instructions generate a slt (set less than) machine
instruction to determine whether one register is less than or greater than
another. Relational instructions can reorder the operands and branch on
either zero or not zero as required to do an operation.

Assembly Language Programmer's Guide

Basic Machine Definition

Coprocessor Instructions

For symbolic addresses, the coprocessor interface Load and Store
instructions, lcz. (load coprocessor z) and scz. (store coprocessor z) can
generate a lui (load upper immediate) machine inc;truction.

Special Instructions

The assembler's break instruction packs the breakcode operand in unused
register fields. An operating system convention determines the position.

Assembly umguage Programmer's Guide

Chapter B

I·

B-4 Assembly l.Jmguagc Programmer's Guide

Index

Symbols
.aent name, symno 8-1
.alias 8-1
.align 8-1
.ascii 8-2
.asciiz 8-2
.asmO 8-2
.bgnb 8-3
.byte 8-3
.comm 8-3
.data 8-3
.double 8-4
.end 8-4
.endb 8-4
.endr 8-4
.ent 8-4
.eIT 8-5
.extern name expression 8-5
.file 8-5
.float 8-6
.fmask 8-6
.frame 8-7
.galive 8-7
.gjaldef 8-7
.gjrlive 8-7
.globl 8-7
.half 8-8
.lab 8-8
.lcomm 8-8

Assembly l.A11guage Programmer's Guide

.livereg 8-9
Joe 8-10
.mask 8-10
.option 8-12
.rdata 8-12
.repeat 8-12
.sdata 8-12
.set 8-12
.space 8-14
.struct 8-14
.text 8-15
.verstamp 8-15
.vreg 8-15
.word 8-15
A
address

description 2-2
descriptions 2-2
format 2-2

addressing 2-1
alignment 2-1

aligned data
load and store instructions 2-1

alignment 2-1
addressing 2-1

allocation
memory 7-16

archive files 9-30
assembler 2-1

X-1

Index

tokens 4-1
assembler processing 9-18
auxiliary symbols 10-5

format 10-20
B
base address 12-4
basic machine definition B-1
branch instructions B-2

filling delay slots 5-1
c
COFF9-1
comments 4-2
computational instructions 5-1, 5-9, B-2

descriptions - table 5-11
format 5-9
formats - table 5-10

conflict section 12-24
constants 4-2

floating point 4-3
scalar 4-3
string 4-4

conventions
data types 4-8
expression operators 4-8
expressions 4-7
lexical 4-1
linkage 7-1
linkage and register use 7-2
precedence 4-7
statements 4-6

coprocessor instruction
notation 6-1

coprocessor instruction set 6-1
coprocessor instructions B-3
coprocessor interface instructions 5-25

description of 5-26
counters

sections and locations 4-5

X-2

cycles per instruction 5-2
D
data types

conventions 4-8
demad paged files 9-25
dense numbers

symbol table 10-4
description

address 2-2
descriptions

load instructions 5-4
division by zero 6-21
dynamic linking 12-1, 12-9
dynamic section 12-11
E
ELF header 11-3
ELF symbol table 11-18
endian

Big-endian (figure) 1-2
little-endian (figure) 1-2

endianness 1-1
exception

division by zero 6-21
inexact 6-22
invalid operation 6-20
overflow 6-21
trap processing 6-20
underflow 6-21
unimplemented operation 6-22

exception trap processing 6-20
exceptions 3-1

floating point 3-1
main processor 3-1

execution and linking
format 11-1

expression
type propagation 4-10

expression operators 4-8

Assembly Language Programmer's Guide

I ,,

expressions 4-7
precedence 4-7

external relocation entries 9-16
external strings 10-6
external symbols 10-7

format 10-24
F
f_magic 9-5
file descriptor 10-6
file descriptor table

format 10-23
file header

format 9-4
magic field 9-5

flags 9-11
flags (f_flags) 9-6
floating point

computational - description 6-7
computational - format 6-4
control register 6-18
exceptions 3-1
instruction format 6-2
instructions 6-2
load and store 6-3
move instruction - description of 6-15
move instructions - format 6-15
relational instruction - description 6-

12
relational instruction fo1mats 6-10
relational operations 6-8
rounding 6-22

floating point constant-; 4-3
floating point registers - table 7-3
format

address 2-2
formats

load and store 5-3

Assembly Language Programmer's Guide

G
-G value

link editor 4-6
general registers 1-3
global data area 11-23
global offset table 12-18
global pointer tables 9-12
H
hash table 12-22
I
identifiers 4-2
impure format files 9-23
inexact exception 6-22
initialization functions 12-22
instruction set 5-1

coprocessor 6-1
instruction summary A-1
insttuctions

classes of 5-1
computational 5-9
constraints and rules 5-2

Index

coprocessor inte1face 5-25
coprocessor inte1face - description 5-

25, 5-26
coprocessor interface fo1mat 5-25
floating point 6-2
insuuction notation 5-2
jump and branch 5-17
load and store 5-3
load and store - unaligned data 2-1
miscellaneous tasks 5-23
pipeline 5-2
reorganization rules 5-2
special 5-23

invalid operation exception 6-20
J
jump and branch instructions 5-1, 5-17

descriptions 5-19

X-3

Index

K

descriptions - table 5-20
fonnats 5-17
fonnats - table 5-18

keyword statements 4-7
L
label definitions

statements 4-6
leaf routines 7-3
lexical conventions 4-1
LIBMAGIC 9-1
LIBMAGIC Files 9-27
line numbers

format 10-9
symbol table 10-4

link editor
-G option 4-6

link editor defined symbols 9-30
link editor processing 9-18
linkage

conventions 7-1
program design 7-2
register use 7-2

load 2-1
load and store

floating point 6-3
load and store instructions 5-3, B-1

formats 5-3
load instructions

delayed 5-1
description 5-4
formats - table 5-3
lb (load byte) 2-2

X-4

lbu (load byte unsigned) 2-2
lh (load halfword) 2-1
lhu (load halfword unsigned) 2-1
lw (load word) 2-1
lwl (load word left) 2-1

lwr (load word right) 2-1
ulh (unaligned load halfword un

signed) 2-1
ulh (unaligned load halfword) 2-1
ulw (unaligned load word) 2-1

loading object Files 9-29
local strings 10-5
local symbols 10-4

fomat 10-14
M
memory allocation 7-16
move instructions

floating point 6-15
N
NMAGIC Files 9-24
NMAGIC, 9-1
noalias 8-11
non-leaf routines 7-3
nop 8-11
null statement<; 4-6
0
object file

format 9-1
object file format 11-2
object files 9-22
OMAGIC9-l
OMAGIC Files 9-23
optional header 9-7

magic field 9-8
ordering 12-25
overflow exception 6-21
p
performance 5-2

maximizing 5-2
pipeline

instruction 5-2
position independent functions 12-20
precedence in expressions 4-7

Assembly i.Jmguage Programmer's Guide

Ii

procedure descriptor table 10-4
format 10-14

program design
linkage 7-2

program header 12-1
program interpreter

dynamic linking 12-9
program loading 12-1, 12-6
pseudo op-codes 8-1
Q
quickstru112-23
R
Register 1-1
register 1-1

endianness 1-1
format 1-1

register information 11-24
registers

general 1-3
special 1-5

relational operations
floating point 6-8

relative file descriptor 10-7
relocation 11-25
relocation table 9-16
relocation type 9-17
relocations 12-21
runtime procedure table symbols 9-31
s
scalar constants 4-3
section data 9-14
section header 11-7
section header table 11-6
section headers 9-9
section name 9-10
section relocation 9-16
segment contents 12-5
segment permissions 12-4

Assembly IAnguage Programmer's Guide

Index

shape of data 7-8
shared libraries 9-13

objects using 9-28
shared object dependencies 12-17
shared object list 12-23
shared text files 9-24
special instructions 5-1, 5-23, B-3

description 5-23
format 5-23

special registers 1-5
special sections 11-14
stack frame 7-3
stack organization- figure 7-5
statements

keyword 4-7
label definitions 4-6
null 4-6

storage class (st) constants 10-18
store instructions

description 5-7
description - table 5-7
format 5-3
sb (store byte) 2-2
sh (store halfword) 2-2
sw (store word) 2-2
swl (store word left) 2-1
swr (store word right) 2-1
ush (unaligned store halfword) 2-1
usw (unaligned store word) 2-1

string constants 4-4
string tables 11-18
symbol table 10-1
symbol type 11-20
symbol type (st) 10-17
symbol values 11-22
symbolic header 10-3

format 10-8
symbols 12-21

X-5

Index

system control

T

insouction descriptions 6-16
insouction formats 6-16

target shared library files 9-27
termination functions 12-22
tokens

comments 4-2
constants 4-2
identifiers 4-2

type propagation in expression 4-10
u
ucode objects 9-29
unaligned data

load and store insouctions 2-1
underflow exception 6-21
unimplemented operation exception 6-22
v
value 4-6
z
ZMAGIC 9-1
ZMAGIC Files 9-25

X-6

'\

Assembly Language Programmer's Guide

•

Assembly Language Programmer's Guide

NEC
NEC Electronics Inc.
CORPORATE HEADQUARTERS
475 Ellis Street
P.O. Box 7241
Mountain View, CA 94039
TEL 415-96(}.6000

C1995 NEC Elee1ronics lncJPrinted in U.S.A.

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-366-9782
or FAX your request to: 1-800-729-9288

No pM of thos document may be copied or reproduced in any form or by any means without the prior consent of NEC Elec1ronics Inc. (NECEL).
The intormat1on in this document is subject to change without notice. Devices sold by NECEL are covered by the warranty and patent lndemntticaton
provisions appearing in NECEL Terms and Conditions of Sale only. NECEL makes no warranty, express, statutory. irrplied or by description.
regarding the information set forth herein or regarding the freedom of the described deVIC8S from patent infringement. NECEL mal<8s no warranty
of merchantabillty or fitness tor any purpose. NECEL assurT1115 no responsibillty for any errors that may appear m this document. NECEL mal<es
no commrtment to update or to keel! rurrent infOf!TlatlOn contained in this document. The devices listed 1n this document are not sultable for use
1n appl!cat1ons such as, but not limlted to. aircraft, aerospace equipment, submarine cables. nuclear reactor control systems and l~e support
systems. If rustomers intend to use NEC devices in these applications or they intend to use ·standard" qual!ly grade NEC devlC9S in applications
not intended by NECEL, please contact our sales people in advance. "Standard" quall!y grade d9V1ces are recommended for computers. office
equipment. comrrunication equipment. tesi and measurement equipment, mach1netools . 1ndusrna1 robots. audio and vosuar equipment, and other
consumer products. "Special" quallty grade devices are recommended for automotive and transportation equipment. traffic control systems. ant1-
disaster and anti-cnme systems. etc.

sons

