
~ 
NATIONAL JLSPEC 5 

MACRO EXPANDER 

BENEFITS - increases programmer productivity: 

• Provides a convenient "shorthand," which enables 
faster assembly language coding. 

• Reduces programmer errors because the macro can be 
checked out once and used successfully many times. 

• Enhances the readability of the source code, thus 
lessening the work of program documentation. 

FEATURES 

• LOCAL SYMBOLS - variables can be declared as 
local to a macro instruction to prevent conflicts of 
names within a program. 

• PARAMETER DRIVEN - optional parameters allow 
a macro to l1e defined with variable values that can 
be replaced when the macro is called or expanded: 

• CONDITIONAL EXPANSION - the lines of code 
generated by a single macro can be varied by simply 
changing the parameter values when the macro is 
called. 

• NESTED MACRO CALLS - a macro instruction can 
call other macros or even call itself. 

© 1~75 National Semiconductor Corp. 

JUNE 1975 

INTRODUCTION 

Programming in assembly language allows the program
mer to produce highly efficient, machine-language code, 
making the best use of the microprocessor resources. 
However, programming in assembly language can be very 
time consuming. 

The Macro Expander provides the programmer with 
many of the capabilities found in higher-level languages 
while maintaining the efficiency and control of assembly 
language code. Using the Macro Expander, the program
mer can define his own macro instructions and then use 
them throughout his assembly language source program. 
The Macro Expander then generates the expanded 
assembly language source statements for each macro and 
produces an expanded, complete, and annotated source 
program. 

The Macro Expander is available through timesharing 
service bureaus and is compatible with any of National 
Semiconductor's IMP series assembly languages. The 
following paragraphs illustrate the flexibility and power 
of the Macro Expander as utilized to speed and simplify 
assembly language programming and, thus, to reduce 
development time and costs. 

B15M65/Printed in U.S.A. 

s: 
m 
(') ... o 
m 
>< 

"C 
m 
:::l 
c. 
CD ... 



CAPABILITIES 

Input to the Macro Expander is an assembly language 
source program with interspersed macro directives and 
calls. Output is an assembly language source program 
with the macros expanded and the macro directives and 
calls echoed as comments. All macro directives and 
calls are identified by closing parenthesis ")" as the 
first non blank character in a line. 

Defining a Macro 

The following form is used to define a macro: 

)MACRO macname, param1, param2, ... param32 

macro body 

)ENDM 

where: 

• )MACRO is the directive that causes the Macro 
Expander to accept the ensuing information as a 
macro definition. 

• macname is the name assigned by the user to the 
macro being defined, and this name is used later 
to 'call' the macro. 

• param 1 - param32 are optional parameters that 
are used to further define elements within the 
macro. 

• macro body consists of assembly language state· 
ments that define the function of the macro. 

• )ENDM designates the end of the macro. 

Example #1: 
The following is a simple macro that uses no 
parameters. It loads RO, R1. and R2 with constants 
and calls a subroutine (ADE LAY) which then 
generates a delay based on the values of ACO, AC1, 
and AC2. 

)MACRO 
LI 
LI 
LI 
JSR 
)ENDM 

DELAY 
0,1 
1,4 
2,1 
ADELAY 

Calli ng a Macro 

Once a macro has been defined, it may then be 'called'. 
Calling consists of telling the Macro Expander to 
generate and insert the previously defined code into the 
user's source program. The following form is used for a 
macro call: 

)macname param 1, param2, ... param32 

where: 

macname is the name previously assigned in the 
macro definition. 

• param 1 - param32 are values that are to be 
assigned to the parameters declared in the macro 
definition. 

Example #2: 
The macro defined in Example #1 is called by 
)DELAY. 

Use of the )DELAY macro results in the following 
code being generated and inserted: 

Using Parameters 

)DELAY 
LI 
LI 
LI 
JSR 

0,1 
1,4 
2,1 
ADELAY 

The power of a macro can be increased tremendously 
through the use of the optional parameters. The 
parameters allow variable values to be declared when the 
macro is first defined. The variable values are then 
replaced with constant values when the macro is called. 

Example #3: 
The following macro performs the same function 
as the macro defined in Example #1, but instead 
of providing constants to be loaded into the three 
registers, three variables (D1, D2, D3) are 
designated. 

)MACRO 
LI 
LI 
LI 
JSR 
)ENDM 

DELAY2, D1, D2, D3 
0, D1 
1, D2 
2, D3 
ADELAY 

Now, a variable delay can be generated by varying 
the values of D1, D2, and D3 when the macro is 
called. The following call to DE LA Y2 generates 
the same delay (the same code) as Example #2. 

)DELAY2 1,4,1 



Local Variables 

The Macro Expander allows variables to be designated as 
'local' to a particular macro; so each time that a macro is 
used (that is, called and expanded), selected symbols 
may be assigned unique, nonconflicting meanings. This 
permits the programmer to use macros containing 
labels more than once without causing a name to be 
multiple-defined. 

Local variables are defined by inserting the ) LOCAL 
directive immediately following the )MACRO directive 
in a macro definition as shown below. 

)MACRO 
)LOCAL 

)ENDM 

macname 
varname 

macro body 

The usefulness of this capability is illustrated in the 
following examples. 

Example #4: 
The following macro generates a jump to para
meter A if RO < 0, or to parameter B if RO > O. 
If RO = 0, control passes to the next statement. 

LABEL: 

)MACRO 
BOC 
BOC 
JMP 

)ENDM 

BPN,A, B 
ZR,LABEL 
SIGNBIT, A 
B 

If this macro is called more than once, it generates 
duplicate labels each time it is called. (LABEL is 
defined with each call.) 

Example #5: 
The problem of duplicate labels may be solved by 
making LABEL a local variable. This is accom· 
plished by inserting the statement 

) LOCAL LABEL 

after the macro definition directive in Example #4. 

Now, each call to the macro BPN generates a 
unique label for each LABEL in the form 
MGLXXX, where XXX is a unique 3-digit decimal 
number assigned by the Macro Expander (MG L = 

Macro Generated Label). The following macro 
calls cause code to be generated: 

)BPN X, Y 
)BPN M, N 

The )BPN X, Y call generates the following code: 

)BPN X, Y 
BOC ZR, MGLOOl 
BOC SIGNBIT, X 
JMP Y 

MGL001: 

The )BPN M, N call generates the following code: 

MGL002: 

)BPN 
BOC 
BOC 
JMP 

Conditional Expansion 

M,N 
ZR, MGL002 
SIGNBIT, M 
N 

The versatility and power of the Macro Expander are 
further enhanced by a Conditional Expansion Capability. 
This feature allows the programmer to generate easily 
different lines of code from the same macro by simply 
varying the parameter values used in the macro calls. 
Two relational operators are provided, EO (equal) and 
NE (not equal); these operators cause comparisons to 
be made between input parameters when a macro is 
called. The following directives control conditional 
expansion: 

)IF 

)ELSE 
)ENDIF 

When the Macro Expander encounters the )IF directive, 
it evaluates the relational operation that follows. If the 
relational operation (EO or NE) is satisfied, the lines 
following the ) I F are expanded until the ) ELSE is 
encountered and the subsequent lines are ignored. If 
the relational operation is not satisfied, only the lines 
from )ELSE to )ENDIF are expanded. 

Example #6: 
The following macro generates a BOC instruction. 
The parameter COND is the condition to be 
tested, REG is the register to be tested, and DEST 
is the label to branch to if the condition is 
satisfied. If REG = 0, a simple BOC is generated. 
If REG =1= 0, a series of register exchanges is 
required to preserve register contents. 

)MACRO 80C, COND, REG, 
DEST 

)LOCAL LABELl, LABEL2 
)IF EO,REG,O 
BOC COND, DEST 
)ELSE 
RXCH 0, REG 
BOC COND, LABEll 
RXCH 0, REG 
JMP LABEL2 

LABELl: RXCH 0, REG 
JMP DEST 

LABEL2: 
)ENDIF 
)ENDM 



.. 
Q) 

~ 
s::: 
as 
Co 
>< 

W 
o .. 
(J 
as 
~ 

It) 

(J 
W 
Q. 

t/'J 
:i. 

Now, the macro call ")BOC ZR, 0, LABEL" 
causes the lines between ) I F and ) ELSE to be 
expanded, since the parameter provided for REG 
equals zero. If the macro is called as follows 

)BOC ZR, 1, LABEL 

the lines between )ELSE and )ENDIF are expanded 
since REG=FO. 

Nested Macro Calls 

The Macro Expander allows nested macro calls, so a 
macro definition may contain a call to other macros or 
even to itself. This capability may be used to even 
further reduce programming time because it provides a 
power similar to that of subroutines. A single macro 
definition can be called by several others, and it will be 
expanded and its code inserted within the calling 
macros. Up to 64 levels of macro nesting are allowed. 

Example #7: 
The following macros are written for the IMP-4 
and illustrate the value of the nesting capability. 

The first macro is named LDREG and loads regis
ters 1, 2, and 3 with the left, middle, and lower 
4:bit bytes of an address. 

)MACRO 
LI 
LI 
LI 
)ENDM 

LDREG, ADDRESS 
1, < ADDRESS 
2, #ADDRESS 
3, > ADDRESS 

The next macro is named WR ITE and uses the 
LDREG macro to load the registers with the 
address of a message; WRITE then causes a jump 
to an output routine to print the message. 

)MACRO 
)LDREG 
JSR 
)ENDM 

WRITE, MESSAGE 
MESSAGE 
PRINT 

Now, a simple call to the WRITE macro 

)WRITE 

generates the following code: 

)WRITE 
LI 
LI 
LI 
JMP 

ENDMSG 

ENDMSG 
1, <ENDMSG 
2, #ENDMSG 
3, > ENDMSG 
PRINT 

MI!nJfacluredlJn!:ieroneormoreofthe IoIowng u.s, patertm: 3083262, 3189758. 3231797,D)3356,3317671, 332J071,3381071,34Q8542,3421Q25. 3426423,344().t96,351875Q,3519897, 3557431.3560765,3566216,3571630, 3575609,3579059, 
l593069.3597NQ,3607469,3517859,3631312,3633052,3638131,l648071,3651565,3693248 

National Semiconductor Corporation . 
2900 Semiconductor Drive, Santa Clara. California 95051. (408) 732-SOOOfTWX (910) 339-9240 

National Semiconductor GmbH 
80S Fuerstenfeldbruck. Industriestrasse 10, West Germany, Tele. (08141) 1371ITelex 27649 

National Semiconductor (UK) Ltd 
Larkfield Industrial Estate, Greenock, Scotland, Tele. (0475) 332511Telex nS-632 

~ 
NATIONAL 

NallOl1al does not assume any responSIbility for use of any C"CUItry desCribed; no CirCUit palenillcenses are IInplled. and NatIOnal reserves the right. al any time Without nolice. to change said CirCUitry. 


