NATIONAL μ SPEC 4

IMP-16F/400 FLOATING POINT FIRMWARE

FEATURES

- INCREASES APPLICATION POTENTIAL - allows easy manipulation and utilization of double-precision and floating-point numbers.
- EXTENDS SYSTEM POWER - a complete set of 24 arithmetic subroutines.
- REDUCES PROGRAMMING TIME - the easily accessed, comprehensive set of subroutines frees the programmer to concentrate on application software.
- SAVES MONEY - reduced programming time means lower development costs.

INTRODUCTION

Many applications require arithmetic precision greater than possible with a 16 -bit word length, or demand the capability of manipulating numbers that vary widely in magnitude. However, development of the software to provide these expanded capabilities can be a very timeconsuming and costly process.

Now, with the option of the IMP -16F/400 Fioating Point Firmware, you can have the power of doubleprecision and floating-point arithmetic functions without the throes of writing your own routines.

GENERAL CHARACTERISTICS

The IMP-16F/400 Floating Point Firmware can be implemented on any IMP-16 Microprocessor that has the extended instruction set (CROM II). The arithmeticsubroutine set is contained on four ROMs and uses 512 words of memory located at addresses FC00 through FDFF (64,512 and 65,023 decimal).

Double Precision

Double-precision numbers use two consecutive locations in memory and provide a precision of one part in 2^{31} (approximately 4.6×10^{-10}). Fractional notation is used with the binary point implied to the right of bit 31.

SUBROUTINE	MNEMONIC	EXECUTION TIME	
		FORMULA	TYPICAL
Single Precision Multiply	MULT	$30 R+W+243 N$	356
Single Precision Divide	DIV	$49 \mathrm{R}+\mathrm{W}+343 \mathrm{~N}$	506
Double Precision Multiply	DPMUL	$200 \mathrm{R}+8 \mathrm{~W}+1125 \mathrm{~N}$	1683
Double Precision Divide	DPDIV	$510 R+97 W+2578 N$	4357
Double Precision Square	DPSQUARE	$202 R+8 W+1137 N$	1701
Double Precision Complement	DPCOMP	$16 R+53 N$	83
Double Precision Shift	DPSH	Left $5 R+20 N+[8 R+32 N] M$ Right $7 R+26 N+[4 R+21 N] M$	$\begin{aligned} & 22+35 \mathrm{M} \\ & 28.6+22.5 \mathrm{M} \end{aligned}$
Double Precision Shift Right	DPSHR	$5 R+20 N+[8 R+32 N] M$	$22+35 \mathrm{M}$
Double Precision Shift Left	DPSHL	$7 R+26 N+[4 R+21 N] M$	$22+22.5 \mathrm{M}$
Quadrant tests	QUAD	$47 R+W+175 N$	270
Sine	SIN	$1697 R+82 W+9300 N$	13.94 msec
Cosine	cos	$1677 R+82 W+9285 N$	13.91 msec
Arctangent	ARCTAN	$2985 R+231 W+15892 N$	23.9 msec
Floating Point Add	FPADD	$147 \mathrm{R}+7 \mathrm{~W}+613 \mathrm{~N}$	938
Floating Point Multiply	FPMUL	$1215 R+63 W+5077 N$	7768
Floating Point Divide	FPDIV	$1540 R+152 W+6584 N$	10.08 msec
Floating Point Complement	FPCOMP	$50 \mathrm{R}+2 \mathrm{~W}+183 \mathrm{~N}$	283
Check Zero Exponent	CZERO	$36 R+2 W+139 N$	214
Extract Exponent to Stack	EXTEXP	$13 R+W+51 N$	79
Add Exponent from Stack	ADDEXP	$13 R+W+51 N$	79
Left Normalize	LFNOR	$449 R+24 W+1745 N$	2687
Double Left Normalize	DLNORM	$947 \mathrm{R}+52 \mathrm{R}+3691 \mathrm{~N}$	5683
Fraction to Floating Point	FLOAT	$3 R+9 N$	14
Floating Point to Fraction	SFO	$207 \mathrm{R}+\mathrm{W}+822 \mathrm{~N}$	1260
		$R=$ number of main memory read cycles. $\mathrm{W}=$ number of main memory write cycles. $\mathrm{N}=$ number of microprogram cycles. $\mathbf{M}=$ shift count.	All times approximate and expressed in microseconds except where noted. Times are based on IMP-16P basic 1.4 microsecond machine cycle time without any external clock-hold logic.

