F100K ECL 300 Series Databook and Design Guide

F100K ECL DATABOOK

1992 Edition

Family Overview

F100K 200 and 300 Series Datasheets
F100K 100 Series Datasheets
11C Datasheets
F100K ECL Design Guide and Application Notes
Ordering Information and
Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTM	E-Z-LINKTM	MICROWIRETM	SERIES/800TM
AbuseableтM	FACTTM	MICROWIRE/PLUSTM	Series 32000®
AnadigTM	FACT Quiet Series ${ }^{\text {TM }}$	MOLETM	Simple SwitcherTM
APPSTM	FAIRCADTM	MPATM	SofChekTM
ASPECTTM	Fairtech ${ }^{\text {TM }}$	MSTTM	SONICTM
Auto-Chem Deflashertm	FAST ${ }^{(1)}$	Naked-87M	SPIRETM
BCPTM	FASTrTM	Nationa ${ }^{\text {® }}$	Staggered Refresh'M
BI-FETTM	Flashtm	National Semiconductor®	STARTM
BI-FET IITM	GENIXTM	National Semiconductor	Starlink ${ }^{\text {TM }}$
BI-LINETM	GNXTM	Corp. ${ }^{\text {(1) }}$	STARPLEXTM
BIPLANTM	GTOTM	NAX 800'm	ST-NICTM
BLCTM	HEX 3000'm	Nitride Plustm	SuperATtm
BLXTM	HPCTM	Nitride Plus Oxide ${ }^{\text {TM }}$	Super-Block ${ }^{\text {TM }}$
BMACTM	HyBaltm	NMLTM	SuperChip ${ }^{\text {TM }}$
Brite-LiteTM	${ }^{3} \mathrm{~L}{ }^{\text {® }}$	NOBUSTM	SuperScript ${ }^{\text {TM }}$
BSITm	ICMTM	NSC800 ${ }^{\text {TM }}$	SYS32TM
BSI-2TM	Integral ISETM	NSCISETM	TapePak®
CDD'м	Intelisplay ${ }^{\text {TM }}$	NSX-16TM	TDSTM
CIM ${ }^{\text {TM }}$	Inter-LERICTM	NS-XC-16TM	TeleGate ${ }^{\text {TM }}$
CIMBUSTM	Inter-RICTM	NTERCOM ${ }^{\text {TM }}$	The National Anthem ${ }^{\text {® }}$
CLASICTM	ISETM	NURAM ${ }^{\text {TM }}$	TLCTM
COMBO®	ISE/06TM	OPALTM	TrapezoidalTM
COMBO ITM	ISE/08TM	OXISSTM	TRI-CODETM
COMBO IITM	ISE/16TM	P2CMOSTM	TRI-POLYTM
COPSTM microcontrollers	ISE32TM	Perfect Watch ${ }^{\text {TM }}$	TRI-SAFETM
CRDTM	ISOPLANARTM	PLANTM	TRI-STATE®
DA4TM	ISOPLANAR-ZTM	PLANARTM	TROPICTM
DENSPAKTM	LERICTM	PLAYERTM	Tropic Pele' ${ }^{\text {TM }}$
DIBTM	LMCMOSTM	Plus-2TM	Tropic Reeftm
DISCERNTM	M ${ }^{2} \mathrm{CMOSTM}$	Polycraft ${ }^{\text {TM }}$	TURBOTRANSCEIVERTM
DISTILLTM	Macrobus ${ }^{\text {TM }}$	Power + ControlTM	VIPTM
DNR ${ }^{\text {® }}$	Macrocomponent ${ }^{\text {TM }}$	POWERplanarTM	VR32TM
DPVM ${ }^{\text {TM }}$	MAPLTM	QUAD3000TM	WATCHDOGTм
$E^{2} \mathrm{CMOSTM}$	MAXI-ROM ${ }^{\text {® }}$	QUIKLOOKTM	XMOSTM
ELSTARTM	MicrobusTM data bus	RATTM	XPUTM
Embedded System	MICRO-DACTM	RICTM	Z STARTM
ProcessortM	μ talkerTM	RTX16TM	883B/RETSTM
EPTM	Microtalker ${ }^{\text {TM }}$	SCXTM	883S/RETSTM

MECLTM is a trademark of Motorola, Inc.
Multiwire ${ }^{\circledR}$ is a registered trademark of Multiwire Corporation.
Mylar® ${ }^{\circledR}$ and Teflon ${ }^{\circledR}$ are registered trademarks of E.I. DuPont de Nemours Company.
Sentry ${ }^{\circledR}$ is a registered trademark of Schlumberger Limited.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NationalSemiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction

National Semiconductor's F100K 300 Series ECL Databook has been prepared to assist the experienced ECL designer as well as the first time ECL designer in everything from selecting the right logic function to using the proper termination technique in your design.
The 300 Series is designed to be an affordable highperformance logic family ideal for applications operating at frequencies above 50 MHz . F100K is still the favorite ECL technology for most high-end computer, telecommunication and test applications. The 300 Series is a much needed upgrade for these users. New users are also reaping the many benefits of the 300 Series. This family is designed to interface easily with other technologies as the types of systems mixing TTL, CMOS, and ECL expands. To assist designers with this multiple technology interface, the 300 Series offers a wide selection of translators, the ease and convenience of operation from +5 V , and the availability of smaller, inexpensive, plastic packaging.
This Databook is designed to be an easy to use reference guide. Included are complete DC and AC characteristics for all package types (PCC, SOIC, PDIP, CDIP and CERPAK) and temperature ranges (commercial, industrial and military) with $A C$ accuracy down to 10 ps . Device selection guides, circuit design basics, transmission line concepts, power distribution, thermal considerations and testing techniques are all discussed in detail to help in designing with ECL. A qualification guide is also included to aid in qualifying the 300 Series for use in your application.

A number of application notes, covering a wide range of subjects is included in this Handbook. These application notes cover such subjects as ECL backplanes and operating ECL from a positive +5 V power supply. For more specific application assistance, please contact our applications staff at 1-800-341-0392.

F100K Data Book

Product Index and Selection Guide

The Product Index is a numerical list of all device types contained in this book. The Selection Guide groups the products by function and by family.

Abstract

Section 1 Family Overview 1-1

Discusses F100K 300 Series design philosophy and actualization. Summarizes the key 300 Series family features and advantages in high speed systems. Highlights the recent enhancements made in plastic packaging (SOIC, PDIP), and an updated Military Applications section.

Section 2 F100K 200 and 300 Series Datasheets
 2-1

Contains individual datasheets for the F100K 300 Series family devices. Also included is a datasheet on the first single-gate 200 Series device, the 100201.

Section 3 F100K 100 Series Datasheets .. 3-1
The F100K 100 Series family of devices have been obsoleted. This section contains "reference only" individual data sheets for those F100K 100 Series devices that were not redesigned as part of the 300 Series family. For example, a 100101 was redesigned as a 100301; therefore the 100101 datasheet will not appear in this databook. On the other hand, the 100118 was not redesigned and has been obsoleted. It's datasheet is printed in this section to be referred to in the event the device is currently being used in a system. The devices in this section will be unavailable for future purchases.

Section 4 11C Datasheets 4-1

The 11C family of devices have been obsoleted. This section contains "reference only" individual datasheets to be referred to in the event the devices are currently being used in a system. The devices in this section will be unavailable for future purchases.

F100K Design Guide and Application Notes-Section 5

Chapter 1 Circuit Basics 5-3

Discusses internal circuitry and logic function formation. Also, a sample analysis of noise margins is outlined.

Chapter 2 Logic Design

Features brief applications of F100K logic arranged according to function.

Chapter 3 Transmission Line Concepts .5-19
Reviews the concepts of characteristic impedance and propagation delay and discusses termination, mismatch, reflections and associated waveforms.

Chapter 4 System Considerations5-32
Extends the transmission line approach to the specific configurations, signal levels and parameter values of ECL. Various methods of driving and terminating signal lines are discussed.

Chapter 5 Power Distribution and Thermal Considerations 5-45

Discusses power supply, decoupling and system cooling requirements.

Chapter 6 Testing Techniques 5-51

Discusses various methods and techniques used in testing ECL devices (intended for those concerned with customer incoming inspection). Also includes a section on Electrostatic Discharge, what is ESD and how we perform our ESD Classification testing.

Chapter $7 \mathbf{3 0 0}$ Series Package Qualification 5-58

Discusses the details of the 300 Series family package qualification. Describes the process used in qualifying the family along with supplying the summarized data.

Chapter 8 Quality Assurance and Reliability. 5-70

Reviews the quality and reliability programs currently in use.

Application Notes 5-75

Contains several application notes on designing high speed systems using ECL.

Section 6 Ordering Information and Package Outlines
 6-1

Functional description of the ordering codes. Package outlines of all the options available to the 300 Series family. Tape and reel dimensions and specifications for the plastic packages (PCC and SOIC).

Alpha-Numeric Index

11 C01 Dual Input OR/NOR Gate 4-3
$11 \mathrm{C05} 1 \mathrm{GHz}$ Divide-by-Four Counter 4-6
11 C06 750 MHz D-Type Flip-Flop 4-10
11 C70 Master-Slave D-Type Flip-Flop 4-14
11 C 90650 MHz Prescaler 4-20
11C91 650 MHz Prescaler 4-20
100117 Triple 2-Wide OA/OAI Gate 3-3
100118 5-Wide 5-4-4-4-2 OA/OAI Gate 3-6
100126 9-Bit Backplane Driver 3-10
100130 Triple D Latch 3-13
100135 Triple JK Flip-Flop 3-19
1001424×4 Content Addressable Memory 3-25
100156 Mask/Merge Latch 3-32
100158 8-Bit Shift Matrix 3-38
100165 Universal Priority Encoder 3-46
100166 9-Bit Comparator 3-52
100175 Quint 100K-to-10K Latch 3-57
100179 Carry Lookahead Generator 3-63
100180 High-Speed 6-Bit Adder 3-70
100181 4-Bit Binary/BCD ALU 3-75
100182 9-Bit Wallace Tree Adder 3-82
1001832×8-Bit Recode Multiplier 3-90
100201 Low Power 2-Input OR/NOR Gate/Inverter 2-3
100250 Quint Full Duplex Line Transceiver 3-102
100301 Low Power Triple 5-Input OR/NOR Gate 2-6
100302 Low Power Quint 2-Input OR/NOR Gate 2-11
100304 Low Power Quint AND/NAND Gate 2-16
100307 Low Power Quint Exclusive OR/NOR Gate 2-21
100310 Low Skew 2:8 Differential Clock Driver 2-26
100311 Low Skew 9-Bit Clock Driver 2-31
100313 Low Power Quad Driver 2-36
100314 Low Power Quint Differential Line Receiver 2-42
100315 Low Skew Quad Clock Driver 2-48
100316 Low Power Quad Differential Line Driver with Cut-Off 2-54
100319 Low Power Hex Line Driver with Cut-Off 2-61
100321 Low Power 9-Bit Inverter 2-68
100322 Low Power 9-Bit Buffer 2-73
100323 Low Power Hex Bus Driver 2-78
100324 Low Power Hex TTL-to-ECL Translator 2-85
100325 Low Power Hex ECL-to-TTL Translator 2-91
100328 Low Power Octal ECL/TTL Bidirectional Translator with Latch 2-98
100329 Low Power Octal ECL/TTL Bidirectional Translator with Register 2-114
100331 Low Power Triple D Flip-Flop 2-126
100336 Low Power 4-Stage Counter/Shift Register 2-136
100341 Low Power 8-Bit Shift Register 2-152
100343 Low Power Octal Register 2-161
100344 Low Power Octal Latch with Cutoff Drivers 2-169
100350 Low Power Hex D Latch 2-176
100351 Low Power Hex D Flip-Flop 2-184
100352 Low Power Octal Buffer with Cutoff Drivers 2-192
100353 Low Power Octal Latch 2-198
100354 Low Power Octal Register with Cutoff Drivers 2-207

Alpha-Numeric Index ${ }_{\text {(Continued) }}$

100355 Low Power Quad Multiplexer/Latch 2-216
100360 Low Power Dual Parity Checker/Generator 2-226
100363 Low Power Dual 8-Input Multiplexer 2-233
100364 Low Power 16-Input Multiplexer 2-241
100370 Low Power Universal Demultiplexer/Decoder 2-248
100371 Low Power Triple 4-Input Multiplexer 2-256
100389 Single Supply Hex CMOS-to-ECL Translator with Cutoff Drivers 2-264
100390 Low Power Single Supply Hex ECL-to-TTL Translator 2-265
100391 Single Supply Hex TTL-to-ECL Translator 2-271
100392 Single Supply Quint TTL-to-ECL Translator with Cutoff Drivers 2-278
100393 Low Power 9-Bit ECL-to-TTL Translator with Latch 2-279
100395 Low Power 9-Bit ECL-to-TTL Translator with Register 2-284
100397 Quad Differential ECL/TTL Translating Transceiver with Latch 2-289
100398 Quad Differential ECL/TTL Translating Transceiver with Latch 2-303
AN-682 Terminating F100K ECL Inputs 5-75
AN-683 300 MHz Dual Eight-Way Multiplexer/Demultiplexer 5-77
AN-684 F100336 Four Stage Counter/Shift Register 5-79
AN-768 ECL Backplane Design 5-86
AN-780 Operating ECL From a Single Positive Supply 5-94
AN-784 F100K ECL Dual Rail Translators 5-101
AN-817 ECL Clock Drivers 5-107

N National			
ECL Product Selection Guide			
Gates			
Function	Device	Inputs/ Gate	No. of Gates
OR/NOR Exclusive OR/NOR			
Low Power 2-Input OR/NOR Gate/Inverter	100201	$2 / 1$	2
Low Power Triple 5-Input OR/NOR	100301	5	3
Low Power Quint 2-Input OR/NOR	100302	2	5
Low Power Quint Exclusive OR/NORAND/NAND	100307	2	5
Low Power Quint 2-Input AND/NAND	100304	2	5

Flip-Flops

Function	Device	Clock Edge	Direct Set	Direct Clear	Outputs
Low Power Triple D Flip-Flop Low Power Hex D Flip-Flop	100331	-	Yes No	Yes Yes	Differential Differential

Latches

Function	Device	Enable Inputs	Inputs	Outputs	Direct Set	Direct Clear
Low Power Hex D Latch	100350	$2(L)$	Single-ended	Differential	Yes	Yes
Low Power Quad 2-Input Mux/Latch	100355	$2(L)$	Single-ended	Differential	Yes	Yes
Low Power 8-Bit Latch	100343	$2(L)$	Single-ended	Single-ended	No	No
Low Power 8-Bit Latch w/Cutoff	100344	$3(L)$	Single-ended	Single-ended	No	No
Drivers and 25 Ω Drive						

Multiplexers/Demultiplexers/Decoders

Function	Device	Enable Inputs	Inputs	Outputs
Multiplexers/Decoders/Demultiplexers				
Low Power Quad 2-Input Mux/Latch	100355	$2(L)$	Single-ended Low Power Dual 8-Input Low Power 16-Input 100363	
Single-ended	Differential Single-ended			
Low Power Triple 4-Input	100364		Single-ended	
Decoders/Demultiplexers	100371	(L)	Single-ended	Differential
Low Power Dual 1-of-4/Single 1-of-8	100370	$2(\mathrm{~L}) \& 2(\mathrm{~L})$	Single-ended	Single-ended

Registers/Shift Registers

Function	Device	Clock Inputs	Inputs	Outputs
Registers	100353			
Low Power 8-Bit Register	100354		Single-ended Low Power 8-Bit Register w/Cutoff Drivers and 25 Drive-ended	Single-ended Single-ended
Shift Registers				
Low Power 4-Bit Bidirectional Shift Register	100336			Single-ended
Low Power 8-Bit Shift Register				

Buffers/Drivers/Receivers

Function	Device	Inputs	Outputs	$\mathbf{2 5 \Omega}$ Drive	Output Cut-off
Buffers/Inverters					
Low Power 9-Bit Inverter	100321	Single-ended	Single-ended	No	No
Low Power 9-Bit Buffer	100322	Single-ended	Single-ended	No	No
Low Power 8-Bit Buffer	100352	Single-ended	Single-ended	Yes	Yes
Drivers/Bus Drivers	100313	Single-ended	Differential	No	No
Low Power Quad Line Driver	100323	Single-ended	Single-ended	Yes	Yes
Low Power Hex Bus Driver	100316	Single-ended	Differential	Yes	Yes
Low Power Quad Line Driver	100319	Differential	Differential	Yes	Yes
Low Power Hex Line Driver					
Receivers/Transceivers	100314	Differential	Differential	No	No
Low Power Quint Differential Line Receiver					

Counter

Function	Device	Parallel Entry	Reset	Up/Down
Low Power 4-Bit Binary Counter	100336	Sync	Sync/Async	Yes

Arithmetic Operator

Function	Device	Features
Low Power Dual 9-Bit Parity Checker/Generator	100360	Expandable

Clock Drivers

Function	Device	Clock Inputs	Single-ended Clock	Differential Clock
Low Power 2 to 8 Clock Driver	100310	2		2
Low Skew 1 to 9 Clock Driver	100311	1		1
Low Skew Quad Clock Driver	100315	2	1	1

Dual Supply Translators

Features	100324	100325	100328	100329	100393	100395	100397	100398
Data Bits	6	6	8	8	9	9	4	4
ECL-to-TTL		X	X	X	X	X	X	X
TTL-to-ECL	X		X	X			X	X
Flow-Thru	X	X						
Latched			X		X		X	X
Registered				X		X		
ECL Differential Input		X1					X	X
ECL Differential Output	X						X	X
ECL Output Drive (Ω)	50		50	50			25	25
ECL Cutoff (Hi Z)			X	X			X	X
TTL Output Drive (mA) ($\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$)		20/-2	23/-3	24/-3	64/-15	64/-15	64/-15	64/-15
TLL TRI-STATE ${ }^{\text {® }}$			X	X	X	X	X	X
ECL Control Pins			X	X	X	X	X	
TTL Control Pins	X				X			X
TPD E to T (ns Max)		4.8	5.9	7.7	5.3	6.4	5.8	5.8
TPD T to E (ns Max)	3.0		3.8	3.9			2.4	2.2
I_{EE} (mA Max)	-70	-37	-169	-199	-39	-67	-99	-99
${ }^{\text {E E }}$ (mA Max) (Cutoff)			-169	-199			-159	-159
ICC (mA Max)	38	65	74	74	65	65	36	45

${ }^{t} \mathrm{~V}_{\mathrm{BB}}$ provided for Single-ended Operation

Single Supply Translators

Features	100390	100391	100392	100389
Data Bits	6	6	5	6
ECL-to-TTL	X			
TTL-to-ECL		X		
CMOS-to-ECL			x	x
ECL Differential Input	X^{2}			
ECL Differential Output		X	X	X
ECL Output Drive (Ω)		50	25	50
ECL Cutoff (Hi Z)			X	
TTL Output Drive (mA) ($\mathrm{lOL}^{\prime} / \mathrm{l}_{\mathrm{OH}}$)	24/-3			
TTL TRI-STATE ${ }^{\text {® }}$	X			
TTL Control Pins	x	X		
CMOS Control Pins			X	X
TPD E to T (ns Max)	6.4			
TPD T to E (ns Max)		1.7		
TPD C to E (ns Max)			TBD	TBD
$I_{E E}$ (mA Max) (Cutoff)			TBD	
ICC (mA Max)	48	60	TBD	TBD

${ }^{2} V_{B B}$ provided for Single-ended Operation

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full Production Corporation reserves the right to make changes at any time without	
Obsolete	Not In Production	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products heroin to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Section 1

Family Overview

Section 1 Contents

Family Overview1-3Introduction 1-3
F100K Design Philosophy $1-3$
300 Series Design Philosophy 1-4
Process Technology 1-7
Compensation Network 1-7
Characteristics $1-8$
Features 1-9
System Benefits 1-10
Packaging 1-11
Industrial Applications 1-11
Military Applications 1-11
Definitions of Symbols and Terms 1-13
Definitions of Output Skew Specifications 1-15

Introduction

Precious few alternatives available offer the performance of ECL．Most designers recognize the advantages offered by ECL in high speed systems extend beyond just quick switch－ ing times．However，the use of ECL has been somewhat limited to those applications concerned with high speed and often little more．These applications usually had extravagant cooling systems and massive power sources to keep the signal moving．Rapid advancements in microprocessors and high resolution video equipment are now beginning to push preferred TTL and CMOS technologies to their limits．The need for functions with ECL－like speeds without ECL－like power for use in smaller but increasingly powerful systems is growing rapidly．
The problems with working with high speed systems are beginning to migrate downward from supercomputers to workstations as the performance of workstations moves up－ ward．The benefits of using ECL in high－end applications have long been recognized by those designers familiar with it．Low propagation delays with moderate edge rates，negli－ gible noise and ground bounce，constant power consump－ tion over frequency and the ability to drive low impedance transmission lines have combined to make ECL the pre－ ferred technology for designers who have had previous ex－ perience with it．However，the majority of designers never had to consider ECL，until now．The increasing availability of high speed microprocessors is driving the need for faster busses and more accurate clocking．
ECL still has its drawbacks，but recent technological ad－ vances have made ECL a much more appealing and usable technology．With the growing need for high speed signal distribution，ECL is beginning to move more into high per－ formance backplanes．Designers like and require the high speed，differential outputs，low impedance drive and trans－ mission line－like characteristics of ECL．ECL is also being used increasingly in clock distribution trees because of its speed and inherently low skew．High resolution video graph－ ics terminals with a display resolution of 1024×1024 pixels require a bandwidth of over 80 MHz ，not an easy task for CMOS or TTL but well within the range of ECL．Broadband communication systems are also using a great deal of ECL as fiber optic data transfer moves into greater utilization．
National Semiconductor introduced the F100K 300 Series to allow ECL to be more usable in today＇s high performance systems．In developing this new family，much emphasis was placed on power，space and cost reductions．The $300 \mathrm{Se}-$ ries was designed to interact with other technologies，not to replace them．Many new designs are attempting to optimize the most efficient mix of speed，power and price with ECL， CMOS and TTL all working together．ECL will handle the speed critical applications，CMOS functions would keep the overall system power low and TTL would be included to keep costs down．The performance，power，packaging
and functionality of the 300 Series make this family ideal for those applications operating above 50 MHz ．
Much of what the 300 Series has evolved into，is a compila－ tion of inputs received from designers who could not use the older F100K 100 Series for various reasons．This resulted in parts with lower operating power，significantly improved ESD protection，plastic surface mount packaging，additional $A C$ testing including skew，easy interface with other technol－ ogies and increased functionality．This section will go into much greater detail about ECL and the evolution of the 300 Series．

F100K Design Philosophy

F100K was designed to meet four key requirements：high speed at reduced power，high level of on－chip integration， flexible logic functions，and optimum I／O pin assignment．

Subnanosecond Gate Delays

The subnanosecond internal gate delays of F100K $100 \mathrm{Se}-$ ries were obtained by the use of ECL design techniques and the advanced Isoplanar－Z process．Many circuit approaches were carefully considered prior to selecting the optimum gate configuation for the F100K family．The emitter－follower current－switch（ $\mathrm{E}^{2} \mathrm{CL}$ ）and current－mode logic（CML）gates were eliminated mainly because of poor capacitive drive and lack of output wired－OR capability；the CML gate has low noise margins．The $2-1 / 2 \mathrm{D}, \mathrm{EFL}$, DCTTL and hysteresis gates were eliminated due to the lack of simultaneous com－ plementary outputs along with difficult temperature and volt－ age compensation characteristics that lead to the loss of system noise immunity．
The choice narrowed down to the current－switch emitter－fol－ lower ECL gate which offers the following characteristics：
－High fan－out capability
－Simultaneous complementary outputs
－Excellent AC characteristics
－Compatibility with existing ECL logic and memories
－Internal series gating capability
－Good noise immunity
－Amenable full compensation and extended temperature characteristics
－External wired－OR capability
In order to ease drive requirements all circuit inputs were designed to have similar loading characteristics；i．e．，buffers are incorporated where an input pin would normally drive more than one on－chip gate．The on－chip delay incurred by buffering is less than the system delay caused by an output which drives a capacitance of higher than three unit loads． Full compensation was selected for the F100K Family to provide improved switching characteristics．Full compensa－ tion results in relatively constant signal levels and thresh－
olds and in improved noise margins over temperature and voltage variations from chip to chip, and thus a tighter AC window in the system environment. A comparison of fully compensated ECL to conventional ECL shows a $2: 1 \mathrm{im}-$ provement in system AC performance due solely to full compensation (Figure 1-1). And, the improved speed has been achieved at reduced power. Power reduction is accomplished by the use of advanced process technology that reduces parasitic capacitances and improves tolerances, by optimum circuit designs using series gating and collector and emitter dotting, and by designing for the use of a -4.5 V $V_{E E}$ power supply. F100K 100 Series is specified at a $V_{E E}$ power supply of -4.2 V to -4.8 V , but a $-5.2 \mathrm{~V} \pm 10 \%$ power supply can be used to interface with 2 ns ECL families.

TL/F/9908-1
FIGURE 1-1. Comparison of Propagation Delays

High On-Chip Integration

Higher on-chip integration is made possible by using the 24pin package to increase the number of signal pins by 62% over the conventional 16-pin package. The emphasis in F100K is to minimize the number of SSI functions and maximize the use of MSI and LSI to reduce wiring delays and thus make more efficient use of the fast on-chip switching technology. Only 10 SSI functions are needed to serve the system needs presently requiring 25 functions in the ECL 10K family.

Flexibility and Pin Assignment

F100K was planned to minimize to total number of logic functions by increasing the flexibility of each function and by making use of more I/O pins. Since next-generation system performance and ease of system designs are major F100K goals, pin assignment is important and was planned to minimize crosstalk, noise coupling and feedthrough, to facilitate OR-ties and to ease power-bus routing. Some of the key considerations in selecting the F 100 K pin assignments were:

- Locate power pins in the center on opposite sides of the DIP package to ease system design and to provide lowinductance connections to the chip.
- Provide two V_{CC} pins, one for the internal circuit and one for the output buffers, to minimize noise coupling.
- Locate inverting outputs of logically independent gates adjacent to each other. This provides the ability to wire AND-OR-Invert functions with ease.
- When feasible, mode control pins are used to create multipurpose devices.

300 Series Design Philosophy

F100K 300 Series was designed to improve several performance parameters while still maintaining the speed and functionality requirements of the original F100K family. These new improvements enable 300 Series to be used in an even broader range of applications.
Most importantly, 300 Series products all meet F100K's optimized speeds and edge rates, while consuming up to 50% less power. These lower power designs, combined with the manufacturability of the FAST-LSI process (see Process Technology), enabled the 300 Series line to be reliably packaged in plastic leaded chip carrier (PCC) packages. A graph is shown comparing the power consumption of the F100124 and F100324 vs. supply voltage (Figure 1-2). In addition, 300 Series is designed with a more stable voltage reference network, providing a single set of DC specifications across a wider supply voltage range (-4.2 V to -5.7 V), easing the design of 300 Series into systems which use -5.2 V power supplies. Also, 300 Series products have been designed to comply with all MIL-STD-883C requirements, including operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Finally, electrostatic discharge (ESD) protection diodes have been added to both input and output circuitry, guaranteeing a minimum of 2000 V ESD protection for all 300 Series products.
Several new circuits were utilized to achieve the performance improvements. The stabilized DC characteristics across the -4.2 V to -5.7 V power supply range are achieved through use of an improved reference network (Figure 1-3). This network replaces a resistor with a PNP transistor $\left(Q_{3}\right)$. The collector-emitter voltage of Q_{3} varies with $V_{C C}$, allowing the voltage at the base of Q_{6} to remain constant as $V_{C C}$ varies. This, in turn, stabilizes both $V_{B B}$ and $V_{C S}$, so that as $V_{E E}$ varies from -4.2 V to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}$ varies no more than $15 \mathrm{mV}-20 \mathrm{mV}$. (Variation of V_{BB} in F100K 100 Series products over this same voltage range can be as much as $70 \mathrm{mV}-80 \mathrm{mV}$). The improved stability of 300 Series vs. V_{CC} is reflected in the single set of DC I/O specifications guaranteed across this wider voltage range. These specifications are identical to the F100K 100 Series specifications listed at -4.5 V . As shown in Figure 1-4, they increase minimum noise margins guaranteed by 300 Series to 140 mV .

FIGURE 1-2. 300 Series Power Reduction

TL/F/9908-18
FIGURE 1-3. 300 Series Reference Network

100 Series Logic
$V_{N H}=115 \mathrm{mV}$
$V_{N L}=115 \mathrm{mV}$
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V
$V_{N H}=V_{O H} M i n-V_{I H} M i n$
$V_{\text {NL }}=V_{\text {IL }} \operatorname{Max}-V_{\text {OL }} \operatorname{Max}$

FIGURE 1-4. 300 Serles Noise Margins

All 300 Series products are designed to operate over the full military temperature range. To achieve this, internal voltage swings were increased to guardband against transistor saturation at temperature extremes. The faster transistor speeds offered by the FAST-LSI process compensated for the increased delays introduced by the wider voltage swings. Some of the more complex products utilize multilevel series gating to achieve higher levels of logic complexity at while reducing gate delays and power consumption. These products employ a Widlar Current Sink (Figure 1-5) to compensate for V_{BE} shifts at $-55^{\circ} \mathrm{C}$. In this circuit, the emitter resistor is removed from the current source $\left(Q_{1}\right)$, providing more voltage headroom at lower temperatures, and avoiding saturation of the current source at $-55^{\circ} \mathrm{C}$. A second transistor $\left(Q_{2}\right)$, driven by a voltage biased at $\mathrm{V}_{\mathrm{CS}}+$ $V_{B E}$, provides $V_{C S}$ at its emitter to drive the current source. This minimizes power by reducing the loading on the reference generator. A temperature-compensated current mirror $\left(Q_{3}\right)$ is employed to control the base voltage of the current source so that it doesn't move regardless of V_{EE} or temperature changes.

Electrostatic discharge (ESD) protection diodes were added to all 300 Series designs (Figure 1-6) specifically in the circuit paths that were most prone to ESD damage on F100K 100 Series products: input-to- V_{CC}, input-to- V_{EE}, and output-to- $V_{C c}$. These diodes (D_{1}, D_{2}, and D_{3}) are utilized to shunt the current caused by an ESD voltage pulse away from either the input or output circuitry. Depending on the polarity of the ESD voltage, the diodes either become forward-biased, directing the current into the supply, or go into reverse breakdown, directing the current into the substrate. Either way, the ESD-caused current is shunted away from the input and output transistors, avoiding damage to the circuitry. The diodes are designed to be rugged enough to guarantee 2000 V of ESD protection on all 300 Series products (they typically withstand up to 4000V). Even in providing this protection level, these diodes have a negligible impact on input capacitance. Addition of these diodes typically adds only tenths of picofarads to each product's input capacitance.

FIGURE 1-5. 300 Series Widlar Current Sink

TL/F/9908-21
FIGURE 1-6. 300 Series ESD Protection Diodes

Process Technology

FAST-LSI Process

The 300 Series family is fabricated using an advanced isoplanar technology called FAST-LSI. The FAST-LSI process is similar to FAST-Z, but also includes many improvements which enhance performance, manufacturability, and reliability. Metal alignments have been tightened, shortening the distance between base and emitter contacts. This reduces the base capacitance, giving $F_{T} s$ of 8 GHz vs 5 GHz for FAST-Z. Parasitic capacitances are also reduced, allowing products to be designed with lower power consumption.
The FAST-LSI process implements wafer planarization techniques to smooth the interconnect metal transitions, significantly reducing thermal stresses on the die when encapsulated in molded plastic packaging. In addition, these planarization techniques increase metal step coverage to typically 65% for first level metal and 75% for second level metal. Increased metal thicknesses over a step improve current density performance and circuit reliability. First layer metal step coverage is improved by the addition of bird's head planarization after the oxide isolation process. Second layer metal step coverage improvements are provided by a technique known as spun-on-glass, an interlayer dielectric planarization.
FAST-LSI is a fully ion-implanted process, providing more precise control over doping profiles. This not only improves device performance, but also allows tighter manufacturing tolerances on transistor gains and resistor values. These tighter tolerances were exploited in the design of F100K 300 Series to meet the same-speed, half-power targets for the product line. The field oxide in FAST-LSI is doped (vs. undoped in FAST-Z). This lowers current leakage even further while still maintaining the walled emitter structures featured in FAST-Z.
The metal structure of FAST-LSI is also improved. Platinumsilicide is used to provide ohmic contacts to $\mathrm{N}+$ and $\mathrm{P}+$ regions, as well as Schottky diode contacts to N - regions. The Schottky diodes are used in the design of the high-performance TTL output stages in the 300 Series ECL-TTL level translators. A titanium-tungsten layer is utilized as a diffusion barrier against aluminum migration into the underlying silicon. Finally, both first and second layer metal use a cop-per-doped aluminum metalization which enhances reliability by providing a high resistance to electromigration.

Compensation Network

The heart of F100K is fully compensated ECL. ${ }^{1}$ The basic gate consists of three blocks-the current switch, the output emitter-followers, and the reference or bias network (Figure 1-7). The current switch allows both conjunctive and disjunctive logic. The output emitter-followers provide high drive capability through impedance transformation and allows for increased logic swing. The bias network sets DC thresholds and current-source bias voltages. Temperature compensation at the gate output is achieved by incorporating a cross-connect branch between the complementary collector nodes of the current switch and driving the current source with a temperature insensitive bias network ${ }^{2}$ (Figure 1-8).

TL/F/9908-8
FIGURE 1-8. Temperature Compensation
As junction temperature increases and the forward baseemitter voltage of the output emitter-follower decreases, the collector node of the current switch must become more negative. Since the current-source bias voltage, V_{CS}, is independent of temperature, the switch curent increases with temperature due to the temperature dependence of $\mathrm{V}_{\mathrm{BEC}}$. The combination of temperature controlled current, I_{E}, and the cross-connect branch current, I_{x}, forces the proper temperature coefficient at the collector node of the current switch to null out the $V_{B E O}$ tracking coefficient. ${ }^{3}$

TL/F/9908-7
FIGURE 1-7. ECL Gate

The schematic for the reference network displays a V_{BE} amplifier in the bottom left corner (Figure 1-9). Two baseemitter junctions are operated at different current densities, J 1 and J 2 . The resulting voltage difference, V_{BE} minus $\mathrm{V}_{\mathrm{BE} 2}$, appears across R1 and is amplified by the ratio R2/ R1. Note that R2 is used twice, once to generate $V_{C S}$ and once to generate V_{BB}. The different current densities, J1 and J2, result in a positive temperature tracking coefficient across R2, which cancels the negative diode-tracking coefficient of $V_{B E 3}$ and $V_{B E 4}$. The $V_{C S}$ and the $V_{B B}$ thus generated are temperature insensitive at the extrapolated bandgap voltage of silicon ${ }^{1,2}$ (approximately 1300 mV). ${ }^{4} R_{x}$ in the V_{BE} amplifier compensates for process variations of β and $\Delta \mathrm{V}_{\mathrm{BE}} .^{5}$ Voltage regulation is achieved through a shunt regulator shown at the right side of the schematic.

FIGURE 1-9. Reference Network

Characteristics

F100K compatibility with existing ECL logic families and memories permit direct interface with slower logic families and ensures immediate memory availability. The typical logic swing is 800 mV (Figure 1-10) and all voltage levels are

FIGURE 1-10. Transfer Characteristics
specified with a 50Ω load to -2 V at all outputs to provide transmission line drive capability. However, the inherently low output impedance (Figure 1-11) and maximum specified output current, 50 mA , make 25Ω drive possible at any or all outputs. Alternately, of course, higher termination impedances or other termination schemes are also useful.
F100K exhibits relatively constant output levels and thresholds over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ specified temperature range and -4.2 V to -4.8 V specified voltage range (Figure 1-12). $V_{E E}$ power supply current is also constant over the specified voltage range (Figure 1-13); therefore:

TL/F/9908-11
FIGURE 1-11. Output Characteristics vs Output Terminations

Fully Compensated ECL (over V_{EE} range)

TL/F/9908-14

Uncompensated ECL (over V_{EE} range)

TL/F/9908-12

Uncompensated ECL (over temperature)

TL/F/9908-13

Fully Compensated ECL (over temperature)

TL/F/9908-15
FIGURE 1-12. Transfer Characteristics

- Propagation delay is relatively constant versus power supply voltage variations thus tightening the AC window.
- Power dissipation is a linear function of the supply voltage, reducing worst-case power consumption.
The typical propagation delay of an SSI gate function driving a 50Ω transmission line is 0.75 ns , including package, with a power dissipation of 40 mW resulting in a speed-power product of 30 pJ . For optimized MSI functions, the internal gates can dissipate $<10 \mathrm{~mW}$ with average propagation delay of $<0.5 \mathrm{~ns}$, giving a power-speed product of $<5 \mathrm{pJ}$.

TL/F/9908-16
FIGURE 1-13. Change in \mathbf{I}_{EE} vs Change in V_{EE}
F100K has a tighter $A C$ window over the wide range of environmental conditions; thus, the system timing requirements are eased and maximum system clock rates are increased. At the sacrifice of AC performance, the small-signal input impedance was conservatively designed to be positive-real over the frequency range encountered by any circuit input. This provides adequate damping to insure $A C$ stability within the system.

Features

F100K ECL logic components are designed to be used in high-speed, low-noise systems and offer significant advantages over other logic families. Some of the important features and advantages are summarized below.

Low Propagation Delay

F100K ECL features gate delays that are typically 0.75 ns (750 picoseconds) with counters, registers and flip-flops operating in the $400-500 \mathrm{MHz}$ range. When compared to other logic families such as Schottky TTL or slower ECL families, system performance can be doubled or tripled. Tighter AC distribution helps system timing requirements and increases system clock rates.

Moderate Edge Rates

Because of the nature of current mode switching which uses differential comparison techniques and avoids transistor storage delays, rise times can be controlled by internal time constants without sacrificing throughout delays. Slower rise times minimize ringing and reflections on interconnection wiring and simplify physical design. The typical edge rate for F 100 K ECL is $1 \mathrm{~V} / \mathrm{ns}$, only about 80% of the edge rate of Schottky TTL. It can be shown that for ECL circuits, the natural rise and fall times are approximately equal to the propagation delay. This relationship is considered optimum for use in high-speed systems.

Wired-OR Capability

ECL outputs can be wired together where wiring rules permit, to form the positive logic-OR function, thus achieving an extra level of gating at no parts count expense. Data bussing and party line operations are facilitated by this features.

Complementary Outputs

A majority of F100K ECL logic elements have complementary outputs, providing numerous opportunities for reduction of package count and power consumption when mechanizing logic equations. Further, the system incurs no extra penalty in time delay since the complementary ECL outputs switch simultaneously.
A significant advantage to complementary outputs is that, since both the true and complement logic functions are available, I I imbalance can be minimized either by using both outputs in the design or merely terminating unused outputs. In this way, the constant current characteristic of ECL is not compromised and power supply noise is minimized.

Low Output Impedance, High Current Capacity

As operating speeds are increased to achieve the higher performance levels demanded of digital systems, ordinary wiring begins to exhibit distributed parameter characteristics, as opposed to a lumped capacitance nature at low speeds.
Characteristic impedances of normal wiring and printed circuit interconnections generally fall in the 50Ω to 250Ω range. With these low impedance lines and fast transitions, the signals are attenuated by the voltage divider action between the circuit output impedance and the characteristic impedance of the interconnection.
Voltage mode circuits have a HIGH state output impedance of from 50Ω to 150Ω and thus exhibit an output stepped characteristic, first reaching about 50% of final value and later reaching the final value in another step. F100K ECL output impedances under 10Ω insure a complete, full valued, signal into a transmission line. Also, F100K ECL outputs are specified to drive a 50Ω load (some devices are specified to drive a 25Ω load). Outputs are capable of supply 50 mA or more and can thus support the quiescent current required for passive terminations.

Convenient Data Transmission

The complementary high-current outputs of F100K ECL elements are well suited for driving twisted pair or other balanced lines in a differential mode, thereby enhancing field cancellation and minimizing crosstalk between subsystems.

High Common-Mode Noise Rejection

Differential line receivers provide common-mode noise rejection of 1 V or more for induced and ground noise. Differential receiving requires less signal swing than single ended and thus allows more reliable interpretation of low signal swings.

Constant Supply Current

The supply current drain of F100K ECL elements is governed by one or more internal constant current sources supplying operating current for differential switches and level shifting networks. Since the current drain is the same regardless of the state of the switches, F100K ECL circuits present constant currents loads to power supplies (see Complementary Outputs).

Low Power Loss in Stray Capacitance

Energy is consumed each time a capacitor is charged or discharged so the energy loss rate, or power, goes up with switching frequency. Since the energy stored in a capacitor is proportional to the square of the voltage and F100K ECL signal swings are four to five times less than those of TTL, power loss in stray capacitance may be an order of magnitude less than that of TTL.

Low Noise Generation

In ECL systems, power supply lines are not subjected to the large current spikes common with TTL designs. Inherently, ECL is a constant current family without the totem-pole structures found in TTL circuits which generate the large current spikes. Since ECL voltage swings are much smaller than TTL, the current spikes caused by charging and discharging stray capacitances are much smaller with ECL than with TTL of comparable edge rates.

Low Crosstalk

Induced noise signals are proportional to signal swings and edge rates. The lower swing and slower edge rate of F100K ECL results in low levels of crosstalk.

ESD Protection

The 300 Series is designed with Electrostatic Discharge (ESD) protection diodes. The diodes were designed to offer a minimum of 2000 V (4000 V typical) ESD protection on all devices. This protection is significantly higher than most other ECL families.

System Benefits

The National F100K ECL Family offers improvements over other ECL families such as voltage and temperature compensation, higher integration levels, improved packaging, planned pinouts, lower propagation delay and more complementary outputs. These improvements offer measurable advantages to the design(er) of high-performance systems.

Easier Engineering

Designers have increased confidence that designs realized in F100K will operate with good margins over voltage and temperature variations in prototypes, production models and field installations. Less effort need be expended doing detailed voltage and temperature calculations and testing. With noncompensated ECL, noise margins cannot be guaranteed unless both the receiving and transmitting circuit operate at the same temperature and V_{EE}. This can cause a problem when attempting to transfer a breadboard or prototype system to production.
Since output swings and input thresholds remain almost constant over temperature and V_{EE} variations, complex control systems for power supply levels and more-than-adquate cooling are not necessary with F100K. This results in a more economical and better operating system.

Circuit Design

F100K ECL benefits from sound, well-engineered circuit designs. All input pins exhibit positive/real input impedance to eliminate system oscillations. Input buffering is used to reduce loads on lines which drive multiple internal gates.

High Performance

The regulation and control of DC and AC parameters achieved by F100K ECL assures that signal timing and propagation delays in critical paths are relatively insensitive
to changes or gradients of temperature and supply voltage. Guardbands can be narrower, yet provide a higher degree of confidence due to the elimination of skew between output levels at one location and input threshold at another.
The consistency of response and security of noise margins permit operation at higher clock rates and thus increase system performance.

Easier Debugging

With F100K, debugging of systems can proceed more rapidly than with uncompensated ECL. When a cabinet or enclosure is opened for access in debugging, the resultant change in thermal conditions has almost no effect on F100K signal swings, propagation delays, edge rates or noise margins.

Flexibility

F100K is designed to operate at -4.5 V for reduced power dissipation. If compatibility with other ECL families is a requirement, F100K 300 Series guarantees specifications between -4.2 V and -5.7 V due to its improved voltage compensation features.

Fan-In/Fan-Out

All F100K ECL outputs are specified to drive 50Ω transmission lines; this makes them suitable for driving very-high fanout loads. In addition, some F100K outputs are specified to drive 25Ω lines, which would be the case if a 50Ω party-line bus terminated at both ends were being driven.

System Design

F100K ECL was designed to be the ultimate standard packaged IC logic family. System design constraints were considered and the F100K family was designed for overall ease of system design and use while making the maximum use of the very fast propagation delay available.

Packaging

The F100K 300 Series ECL devices are offered in a wide variety of package options. The family was initially introduced with the F100K traditional 24 -lead 400 mil wide, ceramic dual-in-line package (CDIP) and surface mount ceramic quad CERPAK (CQFP). These ceramic packages were needed for the now obsolete F100K 100 Series because of their excellent thermal performance.
The lower operating power of the 300 Series enabled plastic packaging to be used without the problem of exceeding the tower junction temperature required for those packages. The first plastic package to be introduced was the 28-lead plastic leaded chip carrier (PCC or PLCC). The four extra pins of this package were connected directly to the die paddie and used to improve the thermal performance.
A 24-lead plastic dual-in-line package (PDIP) was then introduced to offer a low cost alternative to the CDIP. The PDIP was designed to the same dimensions as the CDIP so that the same sockets could be utilized.
Finally, a 24 -lead small outline package (SOIC) was introduced to round out the package options for the 300 Series. This package occupies approximately the same amount of board space as the PCC package, however, the package is much lower in height and the gull winged leads allow for easy visual inspection of solder joints.

The thermal operation for each of these packages varies slightly, for more detailed information please refer to the Power Distribution and Thermal considerations and the Qualification sections of this book.

Industrial Applications

The growing need for high performance logic in increasingly harsh environments has been addressed with an industrial grade version of the 300 Series ECL family. The industrial grade products offer the same high performance as the commercial grade products with additional testing conducted at $-40^{\circ} \mathrm{C}$, for a guaranteed operating temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. These products are ideal for industrial, fiber optic and communication applications which would be subjected to an uncontrolled environment.
Operation over the industrial temperature range is guaranteed by additional AC and DC testing. The DC levels of this family have been adjusted to reflect actual operation at $-40^{\circ} \mathrm{C}$ (cold start) Figure $1-14$ shows the $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{BB}}$, and $V_{\text {OL }}$ Test Specification, the crosshatched area, and the actual data points taken on the 100301. These DC levels correspond to the entire family.

FIGURE 1-14. DC Level Shift Over Temperature
The industrial grade products are only offered in an industry standard 28 -lead PCC (PLCC) package. Additional AC and DC characteristic tables have been added to the individual device data sheets to specify extended temperature operation. Most of the 300 Series functions are available with industrial grade processing but check with your local National Semiconductor sales office for availability.

Military Applications

With the introduction of National's F100K ECL 300 Series comes the advent of F100K ECL in military applications. The special concerns addressed in the 300 Series design criteria enables this family to specify operation over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and to comply fully with the requirements of MIL-STD-883.
As in the commercial world, with military systems becoming more complex, speed becomes a major consideration. Speeds which are pushing Schottky and CMOS technologies to their maximum performance limits, forcing designers to look to faster logic technologies. But speed, of course, is not the only consideration military designers have to contend with. Power consumption, package/function size, price, ESD susceptibility, radiation tolerance and operation in any of a number of harsh environments must be addressed by a military system designer, and all have been addressed in the design of the F100K 300 Series Family.

The relatively high speed-to-power product of the F100K ECL 300 Series Family allows these products to be used in a wide variety of applications. As systems begin to strain under the $30 \mathrm{MHz}-40 \mathrm{MHz}$ limits of some of the more conventional logic families, the 300 Series with its data rates exceeding 100 MHz , becomes a viable solution. The reduced power operation offered by the 300 Series product line eliminates the last barriers inhibiting the extensive usage of ECL in battery powered systems. Mixing F100K ECL 300 Series products with other logic families is also made easier with a variety of level translators and a wide operating voltage range of -4.2 V to -5.7 V .
Among the many other benefits this family offers is full temperature compensation and high noise immunity. Both of these features are extremely important in the environments military systems are subjected to, or standards to which they must comply. The temperature compensation circuit of F100K ECL ensures stable DC performance over temperature changes in the external environment, as well as temperature fluctuations within a system, or even on one circuit board. The high noise immunity provides clean operation and few system hiccups due to noise, even when operating in a noisy environment.

Standard Process Flow

In order to meet the strict processing and test requirements imposed by MIL-STD-883 and MIL-M-38510, National Semiconductor has developed the process flow shown in Figure 1-15. National subjects 100% of the F100K 300 Series ECL military-compliant products to this flow. All electrical tests are performed in compliance with National's published Table I electrical specifications. Although we make every effort to maintain the databook military electrical specifications, please contact your local sales office or Distributor for the current specifications.

Level S Capabilities

The most demanding environment for system applications is in space. Space systems are exposed to harsh physical and environmental conditions which can degrade system performance or alter functionality. Worse yet, these systems must endure this environment for many years with little-if any-opportunity for repair. System components must be highly reliable in order to meet these lifetime requirements. National Semiconductor's facility in South Portland, Maine, has extensive experience in processing space-level prod-

FIGURE 1-15. MIL-STD-883 Process Flow
ucts. Years of designing, developing, and manufacturing space-level components has built an experienced team and facility dedicated to meeting the demands of space-level component processing.
DESC Level S-certified Fab, Assembly, and Test areas process JAN Level S-compliant devices as well as customer SCD space-level requirements. Flexible process flows for SCD requirements allow customers to tailor component processing to system requirements. Full SEM and WLA capabilities exist to ensure wafer-level compliancy to Level S requirements. PIND test, X-ray inspection, and radiation testing are performed in-house using dedicated laboratories. Read and record capability and delta calculations can be performed to provide data-to-document derating calculations for system life.
F100K 300 Series ECL is an excellent choice for space system designs with its low power operation, radiation tolerance, and suitability to harsh unregulated environments. To discuss your requirements for space system design, please contact your local sales office.

Radiation Capabilities and Test Results

Radiation survivability is a concern for many military, tactical, and space system designs. System exposure to manmade nuclear events and to naturally-occuring sources of radiation can result in transient and/or permanent changes to a device's material and electrical properties.
Starting at the conceptual stage is the most cost-effective approach to designing a radiation-hardened system. Utilizing product with inherent radiation tolerance eliminates the need for costly shielding.
National is an industry leader in radiation-resistant products. Its Mil/Aero logic Radiation Effects Laboratory (REL) in South Portland, Maine, certifies that products are resistant to defined levels of radiation. This lab is:

- Certified by NIST
- Licensed by the NRC to handle irradiated material
- Certified by DESC for Lab Suitability, which denotes that all testing and data generated is fully recognized and acceptable by all government agencies, their contractors, and sub-contractors.
Total dose testing is performed using a step-stressing methodology with National's AECL Gamma Cell 220 (Cobalt-60 source) in compliance with MIL-STD-883 Method 1019.3. Flexible process flows meet the needs of strategic, space, and tactical applications. Customer SCDs may specify either Level S or Level B process flows. Total dose radiation data and other data can be supplied with each order, certifying radiation resistance as specified in the applicable SCD.
National's F100K 300 Series ECL has undergone preliminary investigation to determine its minimum radiation hardness level. Total dose irradiation tests have been performed on the:
- 100355 Low Power Quad Multiplexer/Latch
- 100325 Low Power Hex ECL-to-TTL Translator

Preliminary radiation test results for both devices showed no functional failures and no parametric (AC and DC) failures up to the $1 \mathrm{Mrad}(\mathrm{Si})$ level. All parametric results were within National's published Table I limits with minimal deltas. Please note that these results are preliminary and based on limited testing of two device functions. We strongly recom-
mend that total dose radiation-hardened-assured F100K 300 Series product be purchased only on a wafer-by-wafer basis.
For more detail about National's solutions to radiation hardness assurance, request a copy of National's Radiation Resistance Guide from your Distributor or local sales office.

Definitions of Symbols and Terms

AC SWITCHING PARAMETERS

Note: Skew parameter definitions can be found at the end of this section.
fCount (Count Frequency/Toggle Frequency/Operating Frequency): The maximum repetition rate at which clock pulses may be applied to sequential circuit. Above this frequency the device may cease to function.
t_{h} (Hold Time): The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its continued recognition.
$\mathbf{t p L H}^{\text {(Propagation Delay Time): The time between the }}$ specified reference points on the input and output voltage waveforms with the output changing from the defined LOW level to the defined HIGH level.
$\mathbf{t P H L}$ (Propagation Delay Time): The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined HIGH level to the defined LOW level.
$\mathrm{t}_{\mathbf{S}}$ (Setup Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its recognition.
$\mathbf{t}_{\mathbf{S}}$ (Release Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the master set or reset must be released (inactive) to ensure valid data is recognized.
$t_{\text {TLH }}$ (Transition Time, LOW to HIGH): The time between two specified reference points on a waveform which is changing from LOW to HIGH.
$\mathbf{t}_{\text {THL }}$ (Transition Time, HIGH to LOW): The time between two specified reference points on a waveform which is changing from HIGH to LOW.
$t_{\text {pw }}$ (Pulse Width): The time between 50 percent amplitude points on the leading and trailing edges of a pulse.
$\mathrm{t}_{\text {PHz }}$ (Output Disable Time of a TRI-STATE ${ }^{\text {® }}$ Output from High Level): The time between the 1.5 V level on the input and a voltage 0.3 V below the steady state output HIGH level with the TRI-STATE output changing from the defined HIGH level to a high impedance (OFF) state.
$t_{\text {PLZ }}$ (Output Disable Time of a TRI-STATE Output from LOW Level): The time between the 1.5 V level on the input and a voltage 0.3 V above the steady state output LOW level with the TRI-STATE output changing from the defined LOW level to a high impedance (OFF) state.
tpzh (Output Enable Time of a TRI-STATE Output to a HIGH Level): The time between the 1.5 V levels of the input and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a HIGH level.
$t_{\text {PZL }}$ (Output Enable Time of a TRI-STATE Output to a LOW Level): The time between the 1.5 V levels of the input
and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a LOW level.

CURRENTS

Positive current is defined as conventional current flow into a device lead. Negative current is defined as conventional curent flow out of a device lead.
I_{EE} (Power Supply Current): The current required by each device from the V_{EE} supply. This value represents only the internal current required by the specified device, and does not include the current required for loads or terminations.
$I_{T T L}$ (Supply Current): The current flowing into the $V_{T T L}$ supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst-case operation.
$\mathbf{I}_{\mathbf{I H}}$ (Input Current HIGH): The current flowing into a device lead with the specified $V_{I H}$ applied to the input. This value represents the worst case DC input load that a device presents to a driving element.
IIL (Input Current LOW): The current flowing into a device lead with the specified $V_{I L}$ applied to the input.
I_{OH} (Output HIGH Current): The current flowing out of the output when it is in the HIGH state. For a turned-off opencollector output with a specified HIGH output voltage applied, the I_{OH} is the leakage current.
I_{OL} (Output LOW Current): The current flowing into an output when it is in the LOW state.
los (Output Short Circuit Current): The current flowing out of a HIGH-state output when that output is short circuited to ground (or other specified potential).
IOZH (Output OFF Current HIGH): The current flowing into a disable TRI-STATE output with a specified HIGH output voltage applied.
lozl (Output OFF Current LOW): The current flowing out of a disabled TRI-STATE output with a specified LOW output voltage applied.

VOLTAGES

All voltage values are referenced to V_{CC} (or ground) which is the most positive potential in an ECL system.
$V_{B B}$ (Bias Voltage): The internally generated reference voltage which is used to set the input and output threshold levels.
$V_{\text {CC }}$ (Circuit Ground): This is the most positive potential in the ECL system and it is used as the reference level for other voltages.
$V_{\text {CCA }}$ (Separate Circuit Ground): The circuit ground for the buffered current switch. Outside the package, the V_{CC} and $V_{C C A}$ leads should be connected to the common $V_{C C}$ distribution. Internally, the separation of $V_{C C}$ and $V_{C C A}$ insures that any change in load currents during switching does not cause a change in V_{CC} through the small but finite inductance of the $V_{\text {CCA }}$ bond wire and package lead.
$V_{\text {CS }}$ (Current Source VoItage): The internally generated potential used to control the level of the active current source.
V_{EE} (Power Supply Voltage): This potential is the system power supply voltage and it is the most negative potential in the system.
$\mathbf{V}_{\text {EES }}$ (Substrate V_{EE}): These pins (on the PCC package only) provide extra thermal conduction paths, therefore reducing θ_{JA}. These pins must be connected to the $\mathrm{V}_{\text {EE }}$ plane or not connected at all.
$V_{T T L}$ Supply Voltage: The range of the TTL power supply voltage over which the device is guaranteed to operate within the specified limits.
$\mathbf{V}_{\mathbf{I H}}$ (Input Voltage HIGH): The range of input voltages that represents a logic HIGH level in the system.
V_{IH} (Max): The most positive V_{IH}.
$\mathbf{V}_{\mathbf{I H}(\mathrm{Min})}$: The most negative V_{IH}. This value represents the guaranteed input HIGH threshold for the device.
$\mathbf{V}_{\text {IL }}$ (Input Voltage LOW): The range of input voltages that represents a logic LOW level in the system.
$V_{\text {IL }}$ (Max): The most positive $V_{\text {ILI }}$. This value represents the guaranteed input LOW threshold for the device.
$V_{\text {IL (Min): }}$ The most negative $V_{I L}$.
V_{OH} (Output Voltage HIGH): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a HIGH level at the output.
\mathbf{V}_{OH} (Max): The most positive V_{OH} under the specified input and loading conditions.
V_{OH} (Min): The most negative V_{OH} under the specified input and loading conditions.
$\mathbf{V}_{\text {OHC: }}$ The output HIGH corner point or guaranteed HIGH threshold voltage with the inputs set to their respective threshold levels.
$\mathrm{V}_{\text {OL }}$ (Output Voltage LOW): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a LOW level at the output.
$V_{\text {OL (Max) }}$: The most positive $V_{O L}$ under the specified input and loading conditions.
V_{OL} (Min): The most negative V_{OL} under the specified input and loading conditions.
Volc: The output LOW corner point or guaranteed LOW threshold voltage with the inputs set to their respective threshold levels.
$\mathbf{V}_{\text {NH }}$ (HIGH Level Noise Margin): Noise margin between the output HIGH level of a driving circuit and the input HIGH threshold level of its driven load. A conservative value for V_{NH} is the difference between $\mathrm{V}_{\mathrm{OHC}}$ and V_{H} (Min).
V_{NL} (LOW Level Noise Margin): Noise margin between the output LOW level of a driving circuit and the input LOW threshold level of its driven load. A conservative value for V_{NL} is the difference between V_{IL} (Max) and $\mathrm{V}_{\mathrm{OLC}}$.

References

1. H.H. Muller, W.K. Owens, and P.W.J. Verhofstadt, "Fully Compensated Emitter-Coupled Logic: Eliminating the Drawbacks of Conventional ECL", IEEE Journal of SolidState Circuits, October 1973, pp. 362-367.
2. R.R. Marley, "On-Chip Temperature Compensation for ECL", Electronic Products, March 1, 1971.
3. V.A. Dhaka, J.E. Muschinske, and W.K. Owens, "Subnanosecond Emitter-Coupled Logic Gate Circuit Using Isoplanar II', IEEE Journal of Solid-State Circuits, October 1973, pp. 368-372.
4. R.J. Widlar, "New Developments in IC Voltage Regulators", ISSCC Digital Technical Papers, February 1970, pp. 157-159.
5. W.K. Owens, "Temperature Compensated Voltage Regulator Having Beta Compensating Means", United States Patent, No. 3,731,648, December 25, 1973.

Definitions of Output Skew Specifications

Test Philosophy

Minimizing output skew is a key design criteria in today's high-speed clocking schemes. National has incorporated new skew specifications into the F100K family of devices. National's test philosophy is to fully guarantee all the available skew specifications in order to help clock designers optimize their clock budgets.

CLOCK SKEW

Skew is the variation of propagation delay differences between output clock signal(s).

Example:

If signal appears at out \#1 in 3 ns and in 4 ns at output \#5, the skew is 1 ns .

FIGURE 1-16. Clock Output Skew
Without skew specifications, a designer must approximate timing uncertainties. Skew specifications have been created to help clock designers define output propagation delay differences within a given device, duty cycle and device-to-device delay differences.

SOURCES OF CLOCK SKEW

Total system clock skew includes intrinsic and extrinsic skew. Intrinsic skew is defined as the differences in delays between the outputs of device(s). Extrinsic skew is defined as the differences in trace delays and loading conditions.

SKEW DUE TO
DEVICE AND TRACE/LOAD DELAYS

FIGURE 1-17. Sources of Clock Skew
Example: 50 MHz Clock signal distribution on a PC Board.

$$
\begin{aligned}
& 50 \mathrm{MHz} \text { signals produces } 20 \mathrm{~ns} \text { clock cycles } \\
& \text { Total system skew budget }=10 \% \text { of clock cycle }{ }^{*}=2 n s \rightarrow 2 \mathrm{~ns} \\
& \text { If extrinsic skew }=1 \mathrm{~ns} \rightarrow \quad-1 \mathrm{~ns} \\
& \text { Device skew (intrinsic skew) must be less than } 1 \text { ns! } \longleftarrow \quad 1 \text { ns } \\
& { }^{*} \text { Clock Design Rule of thumb. }
\end{aligned}
$$

CLOCK DUTY CYCLE

- Clock Duty Cycle is a measure of the amount of time a signal is High or Low in a given clock cycle.

TL/F/9908-26
Duty Cycle $=t / T * 100 \%$
FIGURE 1-18. Duty Cycle Calculation

Clock Signal

Example:

$\mathrm{t}_{\text {HIGH }}$ and $\mathrm{t}_{\text {LOW }}$ are each 50% of the clock cycle therefore the clock signal has a Duty Cycle of $50 / 50 \%$.

FIGURE 1-19. Clock Cycle

- Clock skew effects the Duty Cycle of a signal.

FIGURE 1-20. Clock Skew

TL/F/9908-28

TABLE 1-I

System Frequency	Skew	$\mathbf{t}_{\text {HIGH }}$	$\mathbf{t}_{\text {LOW }}$		Duty Cycle	
50 MHz	0 ns	10 ns	10 ns	$50 / 50 \%$	\leftarrow	Ideal Duty Cycle (50/50\%) occurs for zero skew.
50 MHz	2 ns	12 ns	8 ns	$60 / 40 \%$		
50 MHz	1 ns	11 ns	9 ns	$55 / 45 \%$	\leftarrow	Note that at lower frequencies, the skew budget is not as tight and skew does not affect the Duty Cycle as severely as seen at higher frequencies.
33 MHz	2 ns	17 ns	15 ns	$55 / 45 \%$		

Definition of Parameters

$\mathbf{t}_{\text {OSLH }}$, toShl (Common Edge Skew)

$t_{\text {OSHL }}$ and $\mathrm{t}_{\mathrm{OSLH}}$ are parameters which describe the delay from one driver to another on the same chip. This specification is the worst-case number of the delta between the fastest to the slowest path on the same chip. An example of where this parameter is critical is the case of the cache controller and the CPU, where both units use the same transition of the clock. In order for the CPU and the controiler to be synchronized, toSLH/HL needs to be minimized.

Definition

toshl $^{\text {, }}$ OSLH (Output Skew for High-to-Low Transitions):
$t_{\text {OSHL }}=\left|t_{\text {PHL }}{ }_{\text {MAX }}-t_{\text {PHLMIN }}\right|$
Output Skew for Low-to-High Transitions:
$t_{\text {OSLH }}=\mid t_{\text {PLH }}{ }_{\text {MAX }}-$ tpLHMIN \mid
Propagation delays are measured across the outputs of any given device.

Example

FIGURE 1-21. tosLh, toshl

Definition of Parameters (Continued)

tpS $^{\text {(Pin Skew or Transition Skew) }}$

$t_{\text {ps }}$, describes opposite edge skews, i.e., the difference between the delay of the low-to-high transition and the high-to-low transition on the same pin. This parameter is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. Ideally this number needs to be 0 ns . Effectively, 0 ns means that there is no degradation of the input signal's Duty Cycle.
Many of today's microprocessors require a minimum of a $45: 55$ percent Duty Cycle. System clock designers typically achieve this in one of two ways. The first method is with an expensive crystal oscillator which meets the $45: 55$ percent Duty Cycle requirement. An alternative approach is to use a less expensive crystal oscillator and implement a divide by two function. Some microprocessors have addressed this by internally performing the divide by two.
Since Duty Cycle is defined as a percentage, the room for error becomes tighter as the system clock frequency increases. For example in a 25 MHz system clock with a $45: 55$ percent Duty Cycle requirement, tps cannot exceed a maximum of 4 ns (tpLH of 18 ns and $\mathrm{t}_{\mathrm{pLH}}$ of 22 ns) and still meet the Duty Cycle requirement. However for a 50 MHz system clock with a $45: 55$ percent Duty Cycle requirement, $t_{p s}$ cannot exceed a maximum of 2 ns ($\mathrm{t}_{\mathrm{PLH}}$ of 9 ns and $\mathrm{t}_{\mathrm{PHL}}$ of 11 ns) and still meet the Duty Cycle requirement. This analysis assumes a perfect 50:50 percent Duty Cycle input signal.

Definition

$t_{\text {tS }}$ (Pin Skew or Transition Skew):
$t_{\mathrm{PS}}=\left|\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right|$
Both high-to-low and low-to-high propagation delays are measured at each output pin across the given device.

Example

TL/F/9908-30
FIGURE 1-22. tps

Example: A $33 \mathrm{MHz}, 50 / 50 \%$ duty cycle input signal would be degraded by 2.6% due to a $t_{\text {ps }}=0.8 \mathrm{~ns}$. (See Table and lliustration below.)
Note: Output symmetry degradation also depends on input duty cycle.
TABLE 1-III. Duty Cycle Degradation of 33 MHz

$\stackrel{f}{(\mathrm{MHz})}$	Input			Device	Output			$\% \triangle D C$ Input to Output
	DC Input	$\begin{gathered} \mathrm{t}_{\mathrm{IN}} \\ \mathrm{~ns}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{N}} \\ & (\mathrm{~ns}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { tpS }^{\text {(ns) }} \\ \hline \end{gathered}$	tout (ns)	Tout (ns)	DC Output	
33	50\%/50\%	15.15/15.15	30.3	0.8	14.35/15.95	30.3	47.4\%/52.6\%	2.6\%
	45\%/55\%	13.6/16.6	30.3	1.5	12.1/18.1	30.3	39.9\%/60.1\%	5.1\%

FIGURE 1-23. Pulse Width Degradation

Definition of Parameters (Continued)

tost (Opposite Edge Skew)

tost defines the difference between the fastest and the slowest of both transitions within a given chip. Given a specific system with two components, one being positive-edge triggered and one being negative-edge triggered, toST helps to calculate the required delay elements if synchronization of the positive- and negative-clock edges is required.

FIGURE 1-24. tost

Definition

tost (Opposite Edge Skew):
$t_{O S T}=\left|t_{P_{\varphi m}}-t_{P_{\varphi n}}\right|$
where φ is any edge transition (high-to-low or low-to-high) measured between any two outputs (m or n) within any given device.

Section 2
F100K 200 and 300 Series Datasheets

Section 2 Contents

100201 Low Power 2-Input OR/NOR Gate/Inverter 2-3
100301 Low Power Triple 5-Input OR/NOR Gate 2-6
100302 Low Power Quint 2-Input OR/NOR Gate 2-11
100304 Low Power Quint AND/NAND Gate 2-16
100307 Low Power Quint Exclusive OR/NOR Gate 2-21
100310 Low Skew 2:8 Differential Clock Driver 2-26
100311 Low Skew 9-Bit Clock Driver 2-31
100313 Low Power Quad Driver 2-36
100314 Low Power Quint Differential Line Receiver 2-42
100315 Low Skew Quad Clock Driver 2-48
100316 Low Power Quad Differential Line Driver with Cut-Off 2-54
100319 Low Power Hex Line Driver with Cut-Off 2-61
100321 Low Power 9-Bit Inverter 2-68
100322 Low Power 9-Bit Buffer 2-73
100323 Low Power Hex Bus Driver 2-78
100324 Low Power Hex TTL-to-ECL Translator 2-85
100325 Low Power Hex ECL-to-TTL Translator 2-91
100328 Low Power Octal ECL/TTL Bidirectional Translator with Latch 2-98
100329 Low Power Octal ECL/TTL Bidirectional Translator with Register 2-114
100331 Low Power Triple D Flip-Flop 2-126
100336 Low Power 4-Stage Counter/Shift Register 2-136
100341 Low Power 8-Bit Shift Register 2-152
100343 Low Power Octal Register 2-161
100344 Low Power Octal Latch with Cutoff Drivers 2-169
100350 Low Power Hex D Latch 2-176
100351 Low Power Hex D Flip-Flop 2-184
100352 Low Power Octal Buffer with Cutoff Drivers 2-192
100353 Low Power Octal Latch 2-198
100354 Low Power Octal Register with Cutoff Drivers 2-207
100355 Low Power Quad Multiplexer/Latch 2-216
100360 Low Power Dual Parity Checker/Generator 2-226
100363 Low Power Dual 8-Input Multiplexer 2-233
100364 Low Power 16-Input Multiplexer 2-241
100370 Low Power Universal Demultiplexer/Decoder 2-248
100371 Low Power Triple 4-Input Multiplexer 2-256
100389 Single Supply Hex CMOS-to-ECL Translator with Cutoff Drivers 2-264
100390 Low Power Single Supply Hex ECL-to-TTL Translator 2-265
100391 Single Supply Hex TTL-to-ECL Translator 2-271
100392 Single Supply Quint TTL-to-ECL Translator with Cutoff Drivers 2-278
100393 Low Power 9-Bit ECL-to-TTL Translator with Latch 2-279
100395 Low Power 9-Bit ECL-to-TTL Translator with Register 2-284
100397 Quad Differential ECL/TTL Translating Transceiver with Latch 2-289
100398 Quad Differential ECL/TTL Translating Transceiver with Latch 2-303

PRELIMINARY

100201

Low Power 2-Input OR/NOR Gate/Inverter

General Description

The 100201 is a 2-input OR/NOR Gate and a single Inverter Gate in an eight pin SOIC package. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered. The 100201 is ideal for single gate needs or for use as the feedback loop of a crystal oscillator circuit.

Features

- Small 8 lead 150 mil SOIC package
- 2000V ESD protection
- 300 MHz minimum F toggle
- Temperature compensated

Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$

Ordering Code: See Section 6

Logic Symbol

TL/F/11000-1

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{1 \mathrm{~b}}, \mathrm{D}_{2 \mathrm{~b}}$	Data Inputs
O_{b}	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}, \overline{\mathrm{O}}_{\mathrm{b}}$	Complementary Data Outputs

Absolute Maximum Ratings
 Above which the useful life may be impaired (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature (TSTG)
 Maximum Junction Temperature (T_{J})
 Ceramic
 $+175^{\circ} \mathrm{C}$
 $+150^{\circ} \mathrm{C}$
 $V_{E E}$ Pin Potential to Ground Pin
 $$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$
 V_{EE} to +0.5 V
 Output Current (DC Output HIGH)
 $$
-50 \mathrm{~mA}
$$
 $$
\geq 2000 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min }}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { (Max })}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{iH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	
${ }_{1 / \mathrm{H}}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$	
$I_{E E}$	Power Supply Current	-29	-17	-15	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

SOIC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.4	1.10	0.4	1.15	0.4	1.20	ns	Figures 1 and 2 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

100301

Low Power Triple 5-Input OR/NOR Gate

General Description

The 100301 is a monolithic triple 5 -input OR/NOR gate. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 23% power reduction of the 100101
- 2000 V ESD protection

■ Pin/function compatible with 100101

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}, \mathrm{D}_{\mathrm{nc}}$	Data Inputs
$\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}, \mathrm{O}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}, \overline{\mathrm{O}}_{\mathrm{b}}, \overline{\mathrm{O}}_{\mathrm{c}}$	Complementary Data Outputs

TL/F/10579-1

Connection Diagrams

TL/F/10579-4

TL/F/10579-3

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic

$$
+175^{\circ} \mathrm{C}
$$

Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to
Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

ESD (Note 2)

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\text {IL(Min) }}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Max })}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL.	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1 \mathrm{H}(\text { (Max })}$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-29	-17	-15	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.50	1.10	0.50	1.15	0.50	1.20	ns	Figures 1 and 2 (Note 1)
$\mathrm{t}_{\mathrm{TLH}}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Commercial Version (Continued)

SOIC, PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.50	1.00	0.50	1.05	0.50	1.10	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.40	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		240		240		240	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
$\mathrm{t}_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		230		230		230	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (LOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tOST). Parameters tost and t_{PS} guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
1 IL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
I_{EE}	Power Supply Current	-29	-15	-29	-15	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued) PCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.40	1.00	0.50	1.05	0.50	1.10	ns	Figures 1 and 2 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2

Military Version
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
V OLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1,2,3,4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
${ }_{1} \mathrm{H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-32	-12	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.25	1.70	0.30	1.50	0.30	1.80	ns	Figures 1 and 2	1, 2, 3, 5
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

100302

Low Power Quint 2-Input OR/NOR Gate

General Description

The 100302 is a monolithic quint 2 -input OR/NOR gate with common enable. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features
■ 43% power reduction of the 100102

- 2000V ESD protection

■ Pin/function compatible with 100102

- Voltage compensated operating range $=$ -4.2 V to -5.7 V
■ Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

Truth Table

$\mathrm{D}_{1 \times}$	$\mathrm{D}_{2 \mathrm{X}}$	E	O_{x}	$\bar{O}_{\mathbf{x}}$
L	L	L	L	H
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	L	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	H	L

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level

Connection Diagrams

TL/F/10580-4

TL/F/10580-3

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})
Ceramic
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Plastic
$+175^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to
Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V vice may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min }}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { (Max })}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-45	-36	-20	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.50	1.15	0.50	1.15	0.50	1.25	ns	es 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Enable to Output	0.70	1.90	0.70	1.90	0.80	2.00	ns	(Note 1)
$\mathrm{t}_{\mathrm{T} L \mathrm{H}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Commercial Version (Continued)

SOIC, PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.50	1.05	0.50	1.05	0.50	1.15	ns	Figures 1 and 2 (Note 2)
$\overline{t_{P L H}}$ t_{PHL}	Propagation Delay Enable to Output	0.70	1.80	0.70	1.80	0.80	1.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.40	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		250		250		250	ps	PCC Only (Note 1)
toshl	Maximum Skew Common Edge Output-to-Output Variation Enable to Output Path		310		310		310	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Enable to Output Path		330		330		330	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		250		250		250	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Enable to Output Path		330		330		330	ps	PCC Only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
${ }^{\text {tPS }}$	Maximum Skew Pin (Signal) Transition Variation Enable to Output Path		280		280		280	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and t_{PS} guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$T_{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610			
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for ALL Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for ALL Inputs	
ILL	Input LOW Current	0.05		0.05		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$	
lee	Power Supply Current	-45	-20	-45	-20	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under the "worst case" conditions.

Industrial Version (Continued)
PCC AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tphL	Propagation Delay Data to Output	0.40	1.05	0.50	1.05	0.50	1.15	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.70	1.80	0.70	1.80	0.80	1.90	ns	(Note 1)
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V OL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {IH }}$	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
ILL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2,3	
${ }_{\text {IH }}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-48	-17	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)										
AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.50	0.40	1.70	ns		1,2,3
tpLH $t_{\text {PHL }}$	Propagation Delay Enable to Output	0.60	2.60	0.80	2.30	0.80	2.80	ns	Figures 1 and 2	
$\begin{aligned} & t_{\text {TLH }} \\ & t_{\text {THL }} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ \hline \end{array}$	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

TL/F/10580-5

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10580-6
FIGURE 2. Propagation Delay and Transition Times

100304
 Low Power Quint AND/NAND Gate

General Description

The 100304 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low Power Operation
- 2000V ESD protection

■ Pin/function compatible with 100104

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Connection Diagrams

Logic Equation

Pin Names	Description
$\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {ne }}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

TL/F/10581-3

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating Conditions
Case Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
Supply Voltage (VEE)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input High Current $\begin{aligned} & \mathrm{D}_{2 \mathrm{a}}-D_{2 \mathrm{e}} \\ & \mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \\ & \hline \end{aligned}$			$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	-69	-43	-30	mA	Inputs open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.40	1.75	0.40	1.65	0.40	1.75	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to F	1.00	2.60	1.00	2.60	1.15	3.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n a}-D_{n e} \text { to } O, \bar{O}$	0.40	1.55	0.40	1.45	0.40	1.55	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.00	2.40	1.00	2.40	1.15	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.15	0.35	1.10	ns	

Industrial Version

PCC DC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {ILL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{\text {IN }}=V_{I H(\text { Min })} \\ & \text { or } V_{\mathrm{IL}}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage		-1565		-1610			
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
$1 / 12$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\begin{aligned} & \mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \\ & \mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ (Max)	
$\mathrm{IEE}^{\text {E }}$	Power Supply Current	-69	-30	-69	-30	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $D_{n a}-D_{n e}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.35	1.55	0.40	1.45	0.40	1.55	ns	Figures 1 and 2
${ }^{\text {tpLH}}$ ${ }^{\text {tphL }}$	Propagation Delay Data to F	1.00	2.40	1.00	2.40	1.15	3.00	ns	
t_{TLH} t_{THL}	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.15	0.35	1.10	ns	

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	$\begin{aligned} & \text { Loading with } \\ & 50 \Omega 0 \text { to }-2.0 \mathrm{~V} \end{aligned}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{I N}=V_{I H}(\operatorname{Min}) \\ \text { or } V_{I L}(\operatorname{Max}) \end{gathered}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1,2,3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$		1,2,3	
IH	Input High Current $\begin{aligned} & \mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \\ & \mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
	$\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \end{aligned}$		$\begin{aligned} & 350 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-75	-25	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, $1,23,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)
AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $D_{n a}-D_{n e} \text { to } O, \bar{O}$	0.30	1.90	0.40	1.80	0.30	2.30	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to F	0.80	2.90	0.90	2.80	0.90	3.40	ns		
$t_{\text {TLLH }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.80	0.30	1.60	0.20	2.00	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10581-6
FIGURE 2. Propagation Delay and Transition Times

FIGURE 1. AC Test Circuit

100307

Low Power Quint Exclusive OR/NOR Gate

General Description

The 100307 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low Power Operation
- 2000V ESD protection

■ Pin/function compatible with 100107

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$
■ Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Logic Equation

$F=\left(D_{1 a} \oplus D_{2 a}\right)+\left(D_{1 b} \oplus D_{2 b}\right)+\left(D_{1 c} \oplus D_{2 c}\right)+\left(D_{1 d} \oplus\right.$ $\left.D_{2 d}\right)+\left(D_{1 e} \oplus D_{2 e}\right)$.

Pin Names	Description
$\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {ne }}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

Connection Diagrams

TL/F/10582-4

TL/F/10582-3

Absolute Maximum Ratings
 Above which the useful life may be impaired. (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature (TSTG)
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature (T_{J})
 Ceramic
 Plastic
 $V_{\text {EE }}$ Pin Potential to Ground Pin
 Input Voltage (DC)
 Output Current (DC Output HIGH)
 ESD (Note 2)
 $$
\begin{array}{r} +175^{\circ} \mathrm{C} \\ +150^{\circ} \mathrm{C} \\ -7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\ -50 \mathrm{~mA} \\ \geq 2000 \mathrm{~V} \end{array}
$$

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
Supply Voltage (V_{EE})
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610	mV		
V_{H}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (} \mathrm{Min} \text {) }}$	
$\mathrm{I}_{1} \mathrm{H}$	$\begin{aligned} & \text { Input HIGH Current } \\ & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \\ & \hline \end{aligned}$			$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	-69	-43	-30	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.55	1.90	0.55	1.80	0.55	1.90	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{1 a}-D_{1 e} \text { to } O, \bar{O}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.15	2.75	1.15	2.75	1.15	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

Commercial Version (Continued)									
SOIC, PCC and Cerpak AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{2 a}-D_{2 e}$ to $0, \bar{O}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.55	1.50	0.55	1.40	0.55	1.50	ns	Figures 1 and 2
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay Data to F	1.15	2.55	1.15	2.55	1.15	2.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILI (Min) }}$	
I_{H}	Input HIGH Current $\begin{aligned} & D_{2 \mathrm{a}}-D_{2 e} \\ & D_{1 \mathrm{a}}-D_{1 e} \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-69	-30	-69	-30	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)
PCC AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.45	1.70	0.55	1.60	0.55	1.70	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.45	1.50	0.55	1.40	0.55	1.50	ns	
$\mathrm{t}_{\mathrm{PLH}}$ $t_{\text {PHL }}$	Propagation Delay Data to F	1.05	2.55	1.15	2.55	1.15	2.80	ns	
$t_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \quad \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V OL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{I N}=V_{I H}(\text { Min }) \\ \text { or } V_{I L}(\operatorname{Max}) \end{gathered}$	$\begin{aligned} & \text { Loading with } \\ & 50 \Omega 0 \text { to }-2.0 \mathrm{~V} \end{aligned}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1,2,3,4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
I_{IH}	Input High Current $\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2,3	
	$\begin{aligned} & \mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \\ & \mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \\ & \hline \end{aligned}$		$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
l_{EE}	Power Supply Current	-75	-25	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,23,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$

Military Version (Continued) AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 e}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.30	2.10	0.40	1.90	0.40	2.40	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ tpHL	Propagation Delay $D_{1 a}-D_{1 e}$ to O, \bar{O}	0.30	1.90	0.40	1.80	0.40	2.20	ns		
tpLH ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay Data to F	0.80	2.90	0.90	2.80	0.90	3.40	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.70	0.30	1.60	0.20	1.70	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10582-6
FIGURE 2. Propagation Delay and Transition Times

FIGURE 1. AC Test Circuit

100310

Low Skew 2:8 Differential Clock Driver

General Description

The 100310 is a low skew 8 -bit differential clock driver which is designed to select between two separate differential clock inputs. The low output to output skew ($<50 \mathrm{ps}$) is maintained for either clock input. A LOW on the select pin (SEL) selects CLKINA, CLKINA and a HIGH on the SEL pin selects the CLKINB, CLKINB inputs.
The 100310 is ideal for those applications that need the ability to freely select between two clocks, or to maintain the ability to switch to an alternate or backup clock should a problem arise with the primary clock source.
$A V_{B B}$ output is provided for single-ended operation.

Features

- Low output to output skew
- Differential inputs and outputs
- Allows multiplexing between two clock inputs

■ Voltage compensated operating range: -4.2 V to -5.7 V

Ordering Code: See Section 6

Logic Symbol

TL/F/10943-1

Connection Diagram

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Maximum Junction Temperture (T_{J}) Plastic
Pin Potential to Ground Pin (VEE) Input Voltage (DC)
Output Current (DC Output HIGH)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA}
\end{array}
$$

ESD (Note 2)

Recommended Operating Conditions

Case Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial
Supply Voltage (V_{EE})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing	
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{C C}-2.0$		$V_{C C}-0.5$	V		
V_{IH}	Input High Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
I_{H}	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ Max $)$	
ICBO	Input Leakage Current	-10			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EE }}$	
$\mathrm{IEE}^{\text {E }}$	Power Supply Current	-100		-40	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$f_{\text {MAX }}$	Max Toggle Frequency CLKIN A/B to Q_{n} SEL to Q_{n}	$\begin{array}{r} 750 \\ 575 \\ \hline \end{array}$			$\begin{array}{r} 750 \\ 575 \\ \hline \end{array}$			$\begin{array}{r} 750 \\ 575 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, CLKIN_{n} to CLK_{n} Differential Single-Ended	$\begin{aligned} & 0.80 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.90 \\ 0.96 \\ \hline \end{array}$	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$					$\begin{aligned} & 1.01 \\ & 1.06 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.09 \\ 1.29 \\ \hline \end{array}$	ns	Figure 3
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay, SEL to Output	0.75	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
$t_{\text {PS }}$ tosLh toshl tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	(Notes 1, 4) (Notes 2, 4) (Notes 2, 4) (Notes 3, 4)
ts	Setup Time SEL to CLKIN ${ }_{n}$	300			300			300			ps	
t_{H}	Setup Time SEL to CLKIN n	0			0			0			ps	
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4

Note 1: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.
Note 2: tOSLH describes in-phase gate-to-gate differential propagation skews with all differential outputs going low to high; toSHL describes the same conditions except with the outputs going high to low.
Note 3: $\mathrm{t}_{\mathrm{OST}}$ describes the maximum worst case difference in any of the $\mathrm{t}_{\mathrm{PS}}, \mathrm{t}_{\mathrm{OSLH}}$ or $\mathrm{t}_{\mathrm{OST}}$ delay paths combined.
Note 4: The skew specifications pertain to differential I/O paths.

Industrial Version

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(M i n) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{\text {IH }} \\ & \text { or } V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{l}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
VIIFF	Input Voltage Differential	150		150		mV	Required for Full Output Swing	
$V_{\text {CM }}$	Common Mode Voltage	$V_{C C}-2.0$	$V_{C C}-0.5$	$V_{C C}-2.0$	$V_{C C}-0.5$	V		
V_{IH}	Input High Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input Low Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
I_{IH}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
ICBO	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {EE }}$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-100	-40	-100	-40	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency CLKIN A/B to Q_{n} SEL to Q_{n}	$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & 750 \\ & 575 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, CLKIN $_{n}$, to CLK $_{n}$ Differential Single-Ended	$\begin{aligned} & 0.78 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.29 \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SEL to Output	0.70	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
tps tosth toshi tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	(Notes 1, 4) (Notes 2, 4) (Notes 2, 4) (Notes 3, 4)
t_{5}	Setup Time SEL to CLKIN n	300			300			300			ps	
t_{H}	Setup Time SEL to CLKIN n	0			0			0			ps	
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4

Note 1: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.
Note 2: $\mathrm{t}_{\mathrm{OSLH}}$ describes in-phase gate-to-gate differential propagation skews with all differential outputs going low to high; toshl describes the same conditions except with the outputs going high to low.
Note 3: tost describes the maximum worst case difference in any of the tpS, toSLH or tost delay paths combined.
Note 4: The skew specifications pertain to differential I/O paths.

Test Circuit

TL/F/10943-3
Note 1: Shown for testing CLKIN to CLK1 in the differential mode.
Note 2: L1, L2, L3 and L4 = equal length 50Ω impedance lines.
Note 3: All unused inputs and outputs are loaded with 50Ω in parallel with $\leq 3 \mathrm{pF}$ to GND.
Note 4: Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10943-5
FIGURE 3. Propagation Delay, CLKIN/CLKIN to Outputs

TL/F/10943-6
FIGURE 4. Transition Times

100311
 Low Skew 1:9 Differential Clock Driver

General Description

The 100311 contains nine low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input (CLKIN, $\overline{\text { CLKIN }}$). If a single-ended input is desired, the V_{BB} output pin may be used to drive the remaining input line. A HIGH on the enable pin ($\overline{E N}$) will force a LOW on all of the CLK K_{n} outputs and a HIGH on all of the $\overline{\text { CLK }}_{n}$ output pins. The 100311 is ideal for distributing a signal throughout a system without worrying about the original signal becoming too corrupted by undesirable delays and skew. The 100311 is pin-for-pin compatible with the Motorola 100E111.

Features

- Low output to output skew
- 2000V ESD protection
- 1:9 low skew clock driver
- Differential inputs and outputs

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
CLKIN, $\overline{\text { CLKIN }}$	Differential Clock Inputs
$\overline{\mathrm{EN}}$	Enable
CLK $_{0-8}, \overline{\text { CLK }}_{0-8}$	Differential Clock Outputs
$V_{B B}$	$V_{\text {BB Output }}$
NC	No Connect

Truth Table

CLKIN	CLKIN	EN	CLK $_{\boldsymbol{n}}$	$\overline{\text { CLK }}_{\boldsymbol{n}}$
L	H	L	L	H
H	L	L	H	L
X	X	H	L	H

Connection Diagram

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)	
If Military/Aerospace specified please contact the National Office/Distributors for availabilit	ces are required, iconductor Sales d specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperture (
Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$
Pin Potential to Ground Pin ($\mathrm{VEE}^{\text {) }}$	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
ESD (Note 2)	22000 V

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Storage Temperature (TSTG)
Maximum Junction Temperture (T_{J})
Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
-7.0 V to +0.5 V
$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

Recommended Operating

 ConditionsCase Temperature (T_{C})

Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
Supply Voltage (V_{EE})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610	mV		
V_{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{l}_{\mathrm{VBB}}=-300 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing	
$V_{C M}$	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$		$\mathrm{V}_{\mathrm{CC}}-0.5$	V		
V_{IH}	Input High Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
${ }_{1} \mathrm{H}$	Input HIGH Current CLKIN, $\overline{\text { CLKIN }}$ $\overline{E N}$			$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ Max $)$	
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EE }}$	
I_{EE}	Power Supply Current	-115		-57	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {max }}$	Max Toggle Frequency CLKIN to Q_{n}	750			750			750			MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, CLKIN_{n} to CLK_{n} Differential Single-Ended	$\begin{aligned} & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.24 \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SEL to Output	0.75	1.03	1.20	0.80	1.05	1.25	0.85	1.12	1.35	ns	Figure 2
tps tosth toshl tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	Notes 1, 4 Notes 2, 4 Notes 2, 4 Notes 3, 4
ts_{5}	Setup Time EN_{n} to CLKIN_{n}	250			250			300			ps	
t_{H}	Hold Time EN_{n} to $\mathrm{CLKIN}_{\mathrm{n}}$	0			0			0			ps	
t_{R}	Release Time $E N_{n}$ to CLKIN $_{n}$	300			300			300			ps	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	275	500	750	275	480	750	275	460	750	ps	Figuro 4

Note 1: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.
Note 2: toSLH describes in-phase gate-to-gate differential propagation skews with all differential outputs going low to high; toshl describes the same conditions except with the outputs going high to low.
Note 3: tost describes the maximum worst case difference in any of the tpS, tosLh or tost delay paths combined.
Note 4: The skew specifications pertain to differential I/O paths.
Note 5: $f_{\max }=$ the highest frequency at which output $V_{O L} / V_{O H}$ levels still meet $V_{I N}$ specifications. The F311 will function @ 1 GHz .

Industrial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}($ Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H} \\ & \text { or } V_{I L}(\mathrm{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage		-1565		-1610	mV		
V_{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-300 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing	
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{\text {CC }}-2.0$	$V_{C C}-0.5$	$\mathrm{V}_{C C}-2.0$	$V_{C C}-0.5$	V		
V_{IH}	Input High Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH All Inputs	Signal for

DC Electrical Characteristics (Continued)
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}($ Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max		
V_{IL}	Input Low Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current CLKIN, $\overline{\text { CLKIN }}$ EN		$\begin{aligned} & 100 \\ & 250 \end{aligned}$		$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$
IEE	Power Supply Current	-115	-57	-115	-57	mA	Inputs Open
V_{PP}	Minimum Input Swing	150		150		mV	
$\mathrm{V}_{\text {CMR }}$	Common Mode Range	$\mathrm{V}_{\mathrm{CC}}-2.0$	$\mathrm{V}_{C C}-0.5$	$\mathrm{V}_{C C}-2.0$	$\mathrm{V}_{C C}-0.5$	V	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$			Units	Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {max }}$	Max Toggle Frequency CLKIN to Q_{n}	750			750			750			MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, CLKIN_{n} to CLK_{n} Differential Single-Ended	$\begin{aligned} & 0.72 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.24 \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SEL to Output	0.70	0.97	1.20	0.80	1.05	1.25	0.85	1.12	1.35	ns	Figure 2
tps tosth toshl tost	LH-HL Skew Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		10 20 20 30	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$		10 20 20 30	30 50 50 60		10 20 20 30	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	ps	Notes 1, 4 Notes 2, 4 Notes 2, 4 Notes 3, 4
ts	Setup Time EN_{n} to $\mathrm{CLKIN}_{\mathrm{n}}$	250			250			300			ps	
${ }_{\text {th }}$	Hold Time EN_{n} to $\mathrm{CLKIN}_{\mathrm{n}}$	0			0			0			ps	
$t_{\text {R }}$	Release Time EN_{n} to $\mathrm{CLKIN}_{\mathrm{n}}$	300			300			300			ps	
$t_{\text {tith }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	275	500	750	275	480	750	275	460	750	ps	Figure 4

Note 1: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.
Note 2: t OSLH describes in-phase gate differential propagation skews with all differential outputs going low to high; toshl describes the same conditions except with the outputs going high to low.
Note 3: tOST describes the maximum worst case difference in any of the tps, tosLH or tost delay paths combined.
Note 4: The skew specifications pertain to differential I/O paths.

Test Circuit

TL/F/10648-3
Note 2: L1, L2, L3 and L4 $=$ equal length 50Ω impedance lines.
Note 3: All unused inputs and outputs are loaded with 50Ω in parallel with \leq 3 pF to GND.
Note 4: Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay, $\overline{E N}$ to Outputs

TL/F/10648-4

FIGURE 3. Propagation Delay, CLKIN/CLKIN to Outputs

FIGURE 4. Transition Times

100313
 Low Power Quad Driver

General Description

The 100313 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 50% power reduction of the 100113
- 2000 V ESD protection
- Pin/function compatible with 100113 and 100112

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
■ Available to MIL-STD-883

- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{n a}-\mathrm{O}_{n d}$	Data Outputs
$\overline{\mathrm{O}}_{n a}-\overline{\mathrm{O}}_{n d}$	Complementary Data Outputs

Connection Diagrams

24-Pin DIP/SOIC

TL/F/10249-1

28-Pin PCC
$0_{1 a} 0_{2 a} \bar{o}_{1 a} v_{E s S} \bar{o}_{2 a} \bar{o}_{2 b} \bar{o}_{1 b}$

TL/F/10249-4

24-Pin Flatpak

TL/F/10249-2

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)	
If Military/Aerospace specified d please contact the National S Office/Distributors for availability	ces are required, iconductor Sales d specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	
Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	- 50 mA
ESD (Note 2)	$\geq 2000 \mathrm{~V}$

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1) please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
aximum Junction Temperature (T_{J}) Plastic
-7.0 V to +0.5 V Input Voltage (DC)
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions
Case Temperature (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
Supply Voltage (VEE)

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
${ }_{1 / H}$	Input HIGH Current Data Enable			$\begin{aligned} & 350 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max) }}$	
$l_{\text {EE }}$	Power Supply Current	-59		-29	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.55	1.30	0.55	1.30	0.55	1.40	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.80	1.80	0.80	1.80	0.80	1.90	ns	(Note 1)
ttin ${ }^{\text {t }}$ THL	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Commercial Version (Continued)
SOIC, PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.55	1.20	0.55	1.20	0.55	1.30	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.80	1.70	0.80	1.70	0.80	1.80	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{~L}} \\ & \mathrm{t}_{\mathrm{TH}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	Figures 1 and 2
${ }^{\text {toSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		280		280		280	ps	PCC Only (Note 1).
$\mathrm{t}_{\text {OSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Enable to Output Path		290		290		290	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Enable to Output Path		360		360		360	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Enable to Output Path		360		360		360	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Enable to Output Path		200		200		200	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW ($\mathrm{t} O \mathrm{SHL}$), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H(\operatorname{Min})} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610			
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
I_{H}	Input HIGH Current Data Enable		$\begin{aligned} & 350 \\ & 240 \\ & \hline \end{aligned}$		$\begin{array}{r} 350 \\ 240 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
$\mathrm{l}_{\text {EE }}$	Power Supply Current	-59	-29	-59	-29	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
tplH $t_{\text {PHL }}$	Propagation Delay Data to Output	0.55	1.20	0.55	1.20	0.55	1.30	ns	Figures 1 and 2 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.80	1.70	0.80	1.70	0.80	1.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \quad \text { or } V_{\text {IL(Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Min) }} \\ \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{gathered}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current Data Enable Data Enable		$\begin{aligned} & 350 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1, 2, 3	
			$\begin{aligned} & 500 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
IEE	Power Supply Current	-65	-20	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1, 2, 3	

Note 1: F 100 K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.30	2.00	0.30	1.80	0.30	2.30	ns	Figures 1 and 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Enable to Output	0.50	2.40	0.60	2.30	0.60	2.70	ns		
${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{L}} \mathrm{H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	2.00	0.30	1.90	0.30	2.00	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Test Circuitry

FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

100314

Low Power Quint Differential Line Receiver

General Description

The 100314 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply $\left(V_{B B}\right)$ is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.
Active current sources provide common-mode rejection of 1.0 V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between V_{EE} and V_{CC}. The defined state is logic HIGH on the $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$ outputs.

Features

■ 35% power reduction of the 100114

- 2000V ESD protection
- Pin/function compatible with 100114
- Voltage compensated operating range $=$ -4.2 V to -5.7 V
- Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

TL/F/10260-1

Connection Diagrams

TL/F/10260-4

TL/F/10260-3

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperture (T_{J})

Ceramic
Plastic
Pin Potential to Ground Pin (V_{EE}) Input Voltage (DC)
Output Current (DC Output HIGH) ESD (Note 2)

Recommended Operating Conditions
Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Commercial Version (Continued)
DIP AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}{ }_{\text {FS }}$	Toggle Frequency (Full Swing)	250		250		250		MHz	(Note 2)
$\mathrm{f}_{\text {MAX }} \mathrm{K}_{\text {RS }}$	Toggle Frequency (Reduced Swing)	700		700		700		MHz	(Note 3)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.65	1.90	0.65	2.00	0.70	2.00	ns	Figures 1 and 2
${ }^{\text {t }}$ tLH $t_{\text {thL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

SOIC, PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}{ }_{\text {FS }}$	Toggle Frequency (Full Swing)	250		250		250		MHz	(Note 2)
$\mathrm{f}_{\text {MAX }} \mathrm{RSS}$	Toggle Frequency (Reduced Swing)	700		700		700		MHz	(Note 3)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.65	1.70	0.65	1.80	0.70	1.80	ns	Figures 1 and 2
${ }^{\text {tTLH }}$ $t_{\text {THL }}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.70	1.50	0.80	1.60	0.90	1.80	ns	PCC only
${ }^{\text {toshl }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		280		280		280	ps	PCC only (Notes 1 and 4)
${ }^{\text {tosLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC only (Notes 1 and 4)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC only (Notes 1 and 4)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		320		320		320	ps	PCC only (Notes 1 and 4)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHD, or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Note 2: Maximum toggle frequency at which $V_{O H}$ and $V_{O L} D C$ specifications are maintained.
Note 3: Maximum toggle frequency at which outputs maintain 150 mV swing.
Note 4: All skews calculated using input crossing point to output crossing point propagation delays.
Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		

Industrial Version (Continued)								
PCC DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1) (Continued)								
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{\mathrm{IH}} \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
$V_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing	
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{\text {CC }}-2.0$	$\mathrm{V}_{C C}-0.5$	$\mathrm{V}_{\mathrm{CC}}-2.0$	$\mathrm{V}_{C \mathrm{C}}-0.5$	V		
V_{HH}	Single-Ended Input High Voltage	-1115	-870	-1110	-870	mV	Guaranteed HIGH Signal for All Inputs (with one input tied to V_{BB}) $V_{\text {BB }}$ (Max) $+V_{\text {DIFF }}$	
v_{IL}	Single-Ended Input Low Voltage	-1830	-1535	-1830	-1530	mV	Guaranteed LOW Signal for All Inputs (with one input tied to V_{BB}) $V_{B B}(M i n)-V_{\text {DIFF }}$	
ILL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)}, D_{a}-D_{e}=V_{B B}, \\ & \bar{D}_{\mathrm{a}}-\bar{D}_{\mathrm{e}}=V_{\mathrm{IL}(\text { Min })} \end{aligned}$	
Icbo	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE},} \mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{BB}} \\ & \bar{D}_{\mathrm{a}}-\bar{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}(\text { Min })} \\ & \hline \end{aligned}$	
IEE	Power Supply Current	-60	-30	-60	-30	mA	$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{BB}}, \overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}(\text { Min })}$	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.
PCC AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}{ }_{\text {FS }}$	Toggle Frequency (Full Swing)	250		250		250		MHz	(Note 2)
$\mathrm{f}_{\text {MAX }}{ }_{\text {RS }}$	Toggle Frequency (Reduced Swing)	700		700		700		MHz	(Note 3)
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay Data to Output	0.65	1.70	0.65	1.80	0.70	1.80	ns	
$\begin{gathered} \mathrm{t}_{\mathrm{TLLH}} \\ t_{\mathrm{THL}} \\ \hline \end{gathered}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.40	0.35	1.10	0.35	1.10	ns	Figures 1 and 2

Military Version
 DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	TC	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025		-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830		-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830		-1555	mV	$-55^{\circ} \mathrm{C}$			

Military Version (Continued)

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Note 3) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	T_{C}	Conditions		Notes	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085			mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage			-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
				-1555	mV	$-55^{\circ} \mathrm{C}$				
$V_{B B}$	Output Reference Voltage			-1260	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{l}_{\mathrm{VBB}}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=4.2 \mathrm{~V}$		1,2,3	
		-1380		-1260	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$		1,2,3	
		-1396			mV	$-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{VBB}}=-350 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$			
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Required for Full Output Swing		1, 2, 3	
V_{CM}	Common Mode Voltage	$V_{C C}-2.0$		$V_{C C}-0.5$	V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			1, 2, 3	
$\mathrm{V}_{1 \mathrm{H}}$	Single-Ended Input High Voltage	-1165		-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs (with $\overline{D_{n}}$ tied to $V_{B B}$)		1, 2, 3, 4	
$V_{\text {IL }}$	Single-Ended Input Low Voltage	-1830		-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs (with $\overline{D_{n}}$ tied to $V_{B B}$)		1, 2, 3, 4	
I_{H}	Input HIGH Current			50	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{i N}=V_{I H}(\text { Max }), D_{a}-D_{e}=V_{B B}, \\ & \bar{D}_{a}-\bar{D}_{e}=V_{I L} \text { (Min) } \end{aligned}$		1,2,3	
				70	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
${ }^{\text {ICBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}, \mathrm{D}_{\mathrm{a}}- \\ & \overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Mii} \end{aligned}$	$e=V_{B B},$	1, 2, 3	
I_{EE}	Power Supply Current	-65		-25	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{BB}}, \\ & \left.\overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}} \text { (Min) }\right) \end{aligned}$		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.40	2.30	0.60	2.20	0.60	2.70	ns	Figures 1 and 2	1, 2, 3
${ }^{\mathbf{t}}{ }^{\text {TLH }}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.40	0.20	1.40	0.20	1.40	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuit

FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times
L1 and L2 = equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

100315

Low-Skew Quad Clock Driver

General Description

The 100315 contains four low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input. This device also has the capability to select a secondary single-ended clock source for use in lower frequency system level testing. The 100315 is a 300 Series redesign of the 100115 clock driver.

Features

■ Low output to output skew ($\leq 50 \mathrm{ps}$)

- Differential inputs and outputs
- Small outline package (SOIC)

■ Secondary clock available for system level testing

- 2000V ESD protection

■ Voltage compensated operating range: -4.2 V to -5.7 V

- Military and industrial grades available

Ordering Code: See Section 6

Logic Diagram

Connection Diagram

Pin Names	Description
CLKIN, $\overline{\text { CLKIN }}$	Differential Clock Inputs
CLK $_{1-4}, \overline{\text { CLK }}_{1-4}$	Differential Clock Outputs
TCLK	Test Clock Input \dagger
CLKSEL	Clock Input Select \dagger

\dagger TCLK and CLKSEL are single-ended inputs, with internal $50 \mathrm{k} \Omega$ pulldown resistors.

Truth Table

CLKSEL	CLKIN	CLKIN	TCLK $^{\text {CLK }_{\mathbf{N}}}$	CLK $_{\mathbf{N}}$	
L	L	H	X	L	H
L	H	L	X	H	L
H	X	X	L	L	H
H	X	X	H	H	L

[^0]| Absolute Maximum Ratings
 Above which the useful life may be impaired (Note 1) | |
| :---: | :---: |
| If Military/Aerospace specified please contact the National Office/Distributors for availability | ices are required, iconductor Sales d specifications. |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Maximum Junction Te | |
| Plastic | $+150^{\circ} \mathrm{C}$ |
| Ceramic | $+175^{\circ} \mathrm{C}$ |
| Case Temperature under Bias (T_{C}) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| $V_{E E}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | V_{CC} to +0.5 V |
| Output Current (DC Output HIGH) | - 50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |
| ESD (Note 2) | $\geq 2000 \mathrm{~V}$ |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions
Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL(Min }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			
V_{IH}	Single-Ended Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIMin) }}$	
$\mathrm{IIH}^{\text {H }}$	Input High Current CLKIN, CLKIN TCLK CLKSEL			$\begin{aligned} & 150 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing	
V_{CM}	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$		$\mathrm{V}_{C C}-0.5 \mathrm{~V}$	V		
ICBO	Input Leakage Current	-10			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$	
IEE	Power Supply Current	-67		-35	mA		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Commercial Version (Continued)

AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{v}$ to $-4.8 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	750		750		750		MHz	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CLKIN, $\overline{\mathrm{CLKIN}}$ to $\mathrm{CLK}_{(1-4)}, \mathrm{CLK}_{(1-4)}$ Differential Single-Ended	$\begin{array}{r} 0.59 \\ 0.59 \\ \hline \end{array}$	$\begin{array}{r} 0.79 \\ 0.99 \\ \hline \end{array}$	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 1.07 \end{aligned}$	ns	Figures 1, 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, TCLK $\text { to } \operatorname{CLK}_{(1-4)}, \overline{\operatorname{CLK}}_{(1-4)}$	0.50	1.20	0.50	1.20	0.50	1.20	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CLKSEL to CLK $_{(1-4)}, \overline{C L K K}_{(1-4)}$	0.80	1.60	0.80	1.60	0.80	1.60	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	0.80	0.30	0.80	0.30	0.80	ns	Figures 1, 4
$\begin{aligned} & \text { tost } \\ & \text { DIFF } \end{aligned}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		50		50		50	ps	(Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged devico. The specifications apply to any outputs switching in the same direction either HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$), or LOW to HIGH ($\mathrm{t}_{\mathrm{OLLH}}$), or in opposite directions both $H L$ and $L H$ (tost). Parameters tost and $t_{\text {PS }}$ guaranteed by design.

Industrial Version

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\operatorname{Max})} \end{aligned}$	$\begin{gathered} 50 \Omega \text { to } \\ -2.0 \mathrm{~V} \end{gathered}$
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{\text {IN }}=V_{I H(M a x)} \\ & \text { or } V_{\text {IL(Min }} \end{aligned}$	Loading with
V OLC	Output LOW Voltage		-1565		-1610	mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	$\begin{aligned} & 50 \Omega \text { to } \\ & -2.0 \mathrm{~V} \end{aligned}$
V_{IH}	Single-Ended Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Single-Ended Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL(Min }}$	

Industrial Version (Continued)

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Continued)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max		
I_{H}	Input HIGH Current CLKIN, CLKIN TCLK CLKSEL		$\begin{aligned} & 107 \\ & 300 \\ & 260 \end{aligned}$		$\begin{aligned} & 107 \\ & 300 \\ & 260 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing
$\mathrm{V}_{C M}$	Common Mode Voltage	$V_{C C}-2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$		V	
$\mathrm{I}_{\mathrm{CBO}}$	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$
I_{EE}	Power Supply Current	-70	-30	-70	-30	mA	

AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{v}$ to $-5.7 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}^{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	750		750		750		MHz	
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay CLKIN, $\overline{\operatorname{CLKIN}}$ to $\operatorname{CLK}_{(1-4)}, \mathrm{CLK}_{(1-4)}$ Differential Single-Ended	$\begin{array}{r} 0.59 \\ 0.59 \end{array}$	$\begin{aligned} & 0.99 \\ & 0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.87 \\ & 1.07 \end{aligned}$	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, TCLK $\text { to } \operatorname{CLK}_{(1-4)}, \overline{\operatorname{CLK}_{(1-4)}}$	0.50	1.20	0.50	1.20	0.50	1.20	ns	ures 12
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.30	0.80	0.30	0.80	0.30	0.80	ns	es 1,2
$\begin{aligned} & \text { tost } \\ & \text { DIFF } \end{aligned}$	Maximum Skew Opposite Edge Output-to-Output Variation to Output Path		50		50		50	ps	(Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same package device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (TOSHU), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.

Military Version-Preliminary

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	T_{C}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025		-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		-870	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830		-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830		-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { o } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	$\begin{aligned} & \text { Loading with } \\ & 50 \Omega \text { to }-2.0 \mathrm{l} \end{aligned}$	1,2,3
		-1085			mV	$-55^{\circ} \mathrm{C}$			
VoLC	Output LOW Voltage			-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
				-1555	mV	$-55^{\circ} \mathrm{C}$			

Military Version-Preliminary (Continued)
DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	TC	Conditions	Notes
V DIFF	Input Voltage Differential	150			mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Required for Full Output Swing	1, 2, 3
V_{CM}	Common Mode Voltage	$V_{C C}-2.0$		$V_{C C}-0.5$	V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		1, 2, 3
V_{IH}	Single-Ended Input High Voltage	-1165		-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Single-Ended Input Low Voltage	-1830		-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
I_{iH}	Input HIGH Current CLKIN, CLKIN			120	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	1, 2, 3
	TCLK			350	$\mu \mathrm{A}$			
	CLKSEL			300	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{\text {IN }}=V_{\text {EE }}$	1, 2, 3
$l_{\text {EE }}$	Power Supply Current, Normal	-90		-30	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

$$
\text { AC Electrical Characteristics } \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{v}_{\mathrm{CCA}}=\mathrm{GND}
$$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CLKIN, $\overline{\mathrm{CLKIN}}$ to $\mathrm{CLK}_{(1-4)}, \mathrm{CLK}_{(1-4)}$	0.61	0.81	0.61	0.81	0.60	0.83	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, TCLK $\text { to } \mathrm{CLK}_{(1-4)}, \overline{\operatorname{CLK}_{(1-4)}}$	0.50	1.20	0.50	1.20	0.50	1.20	ns		
$\mathrm{t}_{\text {SG-G }}$	Skew Gate to Gate (Note 5)		100		100		100	ps		4
$t_{T L H}$ t_{THL}	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	0.80	0.30	0.75	0.25	0.75	ns		

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$, then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: Maximum output skew for any one device.

Note 1: Shown for testing CLKIN to CLK1 in the differential mode.
Note 2: L1, L2, L3 and L4 = equal length 50Ω impedance lines.
Note 3: All unused inputs and outputs are loaded with 50Ω in parallel with $\leq 3 \mathrm{pF}$ to GND.
Note 4: Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

TL/F/10960-4
FIGURE 2. Propagation Delay, TCLK, CLKSEL to Outputs

FIGURE 3. Propagation Delay, CLKIN/CLKIN to Outputs

FIGURE 4. Transition Times
Note 1: The output to output skew, which is defined as the difference in the propagation delays between each of the four outputs on any one 100115 shall not exceed 75 ps.

100316

Low Power Quad Differential Line Driver with Cut-Off

General Description

The 100316 is a quad differential line driver with output cutoff capability. The outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω equivalent impedance) in an ECL backplane. The 100316 is ideal for driving low noise, differential ECL backplanes. A LOW on the output enable (OE) will set both the true and complementary outputs into a high impedance or cut-off state, isolating them from the backplane. The cut-off state is designed to be more negative than a normal ECL LOW state.
Unlike most 100K devices, the data inputs (D_{n}, \bar{D}_{n}) do not have input pull-down resistors. An internal reference supply $\left(V_{B B}\right)$ is available for single-ended operation.

Features

- Differential inputs and outputs

■ Output cut-off capability

- Drives 25Ω load
- $V_{B B}$ available for single-ended operation
- 2000V ESD protection
n Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

TL/F/10922-1

Connection Diagrams

TL/F/10922-3

Logic Diagram

Truth Table

Inputs			Outputs	
$\mathbf{D}_{\boldsymbol{n}}$	$\overline{\mathbf{D}}_{\boldsymbol{n}}$	OE	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
L	H	H	L	H
H	L	H	H	L
X	X	L	Cut-Off	Cut-Off

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Cut-Off $=$ Lower-than-Low State

Absolute Maximum Ratings
 Above which the useful life may be impaired (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature (TSTG)
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$
 Ceramic
 $+175^{\circ} \mathrm{C}$
 $+150^{\circ} \mathrm{C}$
 -7.0 V to 0.5 V
 V_{EE} to +0.5 V
 $-100 \mathrm{~mA}$
 $\geq 2000 \mathrm{~V}$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Function operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating

 Conditions| Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Commercial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Industrial | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Military | -5.7 V to -4.2 V |

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage			-1950	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Min) } \\ & \text { or } V_{\text {IL }}(\text { Max }) \end{aligned}$	$O E=L O W$
$V_{B B}$	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{l}_{\mathrm{VBB}}=-1 \mathrm{~mA}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing	
V_{CM}	Common Mode Voltage	$\mathrm{V}_{C C}-2.0$		$\mathrm{V}_{C C}-0.5$	V		
V_{IH}	Single-Ended Input High Voltage	-1110		-870	mV	Guaranteed HIGH Signal for All Inputs (with one input tied to V_{BB}) $\mathrm{V}_{\mathrm{BB} \text { (Max) }}+\mathrm{V}_{\text {DIFF }}$	
V_{IL}	Single-Ended Input Low Voltage	-1830		-1530	mV	Guaranteed LOW Signal for All Inputs (with one input tied to V_{BB}) $V_{B B}$ (Min) $-V_{\text {DIFF }}$	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current D_{N}			250	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}), D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{I L}(\text { Min }) \end{aligned}$	
$\mathrm{I}_{\mathrm{IHZ}}$	Input HIGH Current OE			360	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{I L}(\text { Min }) \end{aligned}$	
ICBO	Input Leakage Current	-10			$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{E E}, D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{\mathrm{IL}}(\text { Min }) \end{aligned}$	
I_{EE}	Power Supply Current, Normal	-85		-30	mA	$\mathrm{D}_{1}=\mathrm{V}_{\mathrm{BB}}, \overline{\mathrm{D}}_{1}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
$I_{\text {EEZ }}$	Power Supply Current, Cut-Off	-152		-75	mA	$\begin{aligned} & D_{1}-D_{4}=V_{B B}, \bar{D}_{1}-\bar{D}_{4}=V_{I L}(\text { Min }), \\ & O E=\text { LOW } \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.65	2.30	0.65	2.30	0.65	2.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{tpZH} \\ & \mathrm{t}_{\mathrm{pH}} \\ & \hline \end{aligned}$	Propagation Delay OE to Output	$\begin{aligned} & 1.80 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 3.10 \end{aligned}$	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathbf{t}_{\mathrm{THL}} \end{aligned}$	Transition Time, D_{N} to Q_{N} 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay Data to Output	0.65	2.10	0.65	2.10	0.65	2.10	ns	Figures 1 and 2
$\begin{aligned} & \text { tpZH } \\ & t_{\text {PHZ }} \\ & \hline \end{aligned}$	Propagation Delay OE to Output	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.90 \end{aligned}$	ns	
${ }^{\mathrm{t}} \mathrm{T}$ LH $t_{\text {THL }}$	Transition Time, D_{N} to Q_{N} 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max				
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	
V_{OL}	Output LOW Voltage	-1830	-1585	-1830	-1620	mV			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 25Ω to -2.0 V	
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1575		-1610	mV			
$V_{\text {OLZ }}$	Cut-Off LOW Voltage		-1900		-1950	mV	$\begin{aligned} & \mathrm{OE}=\mathrm{LOW}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathbb{I H}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$		
V_{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{l}_{\mathrm{VBB}}=-1 \mathrm{~mA}$		
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing		
$V_{C M}$	Common Mode Voltage	$V_{C C}-2.0$	$V_{C C}-0.5$	$\mathrm{V}_{C C}-2.0$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V			
V_{IH}	Single-Ended Input High Voltage	-1115	-870	-1110	-870	mV	Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$)$V_{\text {BB (Max) }}+V_{\text {DIFF }}$		
$\mathrm{V}_{\text {IL }}$	Single-Ended Input Low Voltage	-1830	-1535	-1830	-1530	mV	Guaranteed LOW Signal for All Inputs (with one input tied to $V_{B B}$)$V_{\mathrm{BB}(\text { Min })}-V_{\mathrm{DIFF}}$		
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$		
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current, D_{N}		240		240	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H(\text { Max })}, D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{I L}(\text { Min }) \end{aligned}$		
$\mathrm{I}_{\mathrm{IHZ}}$	Input HIGH Current, OE		360		360				
I'cbo	Input Leakage Current	-10		-10		$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{E E}, D_{1}=V_{B B}, \\ & D_{1}=V_{I L}(\text { Min }) \end{aligned}$		
${ }^{\text {EEE }}$	Power Supply Current, Normal	-85	-30	-85	-30	mA	$\mathrm{D}_{1}=\mathrm{V}_{\mathrm{BB}}, \overline{\mathrm{D}}_{1}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$		
Ieez	Power Supply Current, Cut-Off	-152	-75	-152	-75	mA	$\begin{aligned} & D_{1}-D_{4}=V_{B B}, \bar{D}_{1}-\bar{D}_{4}=V_{I L}(\text { Min }), \\ & O E=L O W \end{aligned}$		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.65	2.10	0.65	2.10	0.65	2.10	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation Delay OE to Output	$\begin{array}{r} 1.80 \\ 1.20 \\ \hline \end{array}$	$\begin{aligned} & 4.00 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.20 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.80 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.90 \\ \hline \end{array}$	ns	
$t_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	

Military Version—Preliminary
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025		-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830		-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830		-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085			mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
				-1555	mV	$-55^{\circ} \mathrm{C}$				
VoLZ	Cut-Off LOW Voltage			-1900	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & O E=L O W \\ & V_{I N}=V_{I H \text { (Min) }} \text { or } V_{I L} \text { (Max) } \end{aligned}$		1,2,3	
				-1950	mV	$-55^{\circ} \mathrm{C}$				
$V_{B B}$	Output Reference Voltage			-1260	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{VBB}}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=4.2 \mathrm{~V}$		1,2,3	
		-1380	-1320	-1260	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$		1,2,3	
		-1396			mV	$-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{VBB}}=-350 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$			
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Required for Full Output Swing		1, 2, 3	
V_{CM}	Common Mode Voltage	$V_{C C}-2.0$		$V_{C C}-0.5$	V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			1,2,3	
V_{IH}	Single-Ended Input High Voltage	-1165		-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed HIGH Signal for All Inputs (with $\overline{D_{n}}$ tied to $V_{B B}$)		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input Low Voltage	-1830		-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs (with $\overline{D_{n}}$ tied to $V_{B B}$)		1, 2, 3, 4	
IIH	Input HIGH Current, D_{N}			75	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)}, D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{\mathrm{IL}(\text { Min })} \end{aligned}$		1,2,3	
				95	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$\mathrm{I}_{1 H Z}$	Input HIGH Current, OE			360	$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{1}=V_{B B}, \\ & \bar{D}_{1}=V_{I L}(\text { Min }) \end{aligned}$		1, 2, 3	
$I_{\text {CBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{IN}}=V_{\mathrm{EE}}, \mathrm{D}_{1}=\mathrm{V}_{\mathrm{BB}}, \\ & \mathrm{D}_{1}=\mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$		1, 2, 3	
$\mathrm{I}_{\text {EE }}$	Power Supply Current, Normal	-90		-30	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\mathrm{D}_{1}=\mathrm{V}_{\mathrm{BB}}, \bar{D}_{1}=V_{\text {IL }}($ Min $)$		1, 2, 3	
$l_{\text {EEZ }}$	Power Supply Current, Cut-Off	-180		-75	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & D_{1}-D_{2}=V_{B B}, \bar{D}_{1}-\bar{D}_{2}=V_{I L}(\text { Min }), \\ & O E=L O W \end{aligned}$		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table ل) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay Data to Output	0.40	2.50	0.50	2.40	0.50	2.90	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OE to Output	$\begin{aligned} & 0.70 \\ & 0.70 \\ & \hline \end{aligned}$	4.20 3.20		4.20 3.20	$\begin{aligned} & 0.70 \\ & 0.70 \end{aligned}$	$\begin{array}{r} 4.20 \\ 3.20 \\ \hline \end{array}$	ns		
${ }^{\text {t }}$ TLH $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.70	0.20	1.70	0.20	1.50	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10922-7
FIGURE 2. Propagation Delay, Cut-Off and Transition Times

100319

Low Power Hex Line Driver with Cut-Off

General Description

The 100319 is a Hex Line Driver with output cut-off capability. The 100319 has single ended ECL inputs and differential ECL outputs, designed to drive a differential, doubly terminated 50Ω transmission line (25Ω equivalent impedance) in an ECL backplane. A LOW on the Output Enable (OE) will set both the true and complementary outputs, to a high impedance or cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW state.

Features

- Differential outputs
- Output cut-off capability
- Drives a 25Ω ECL load
- 2000V ESD protection

■ Voltage compensated range $=-4.2 \mathrm{~V}$ to -5.7 V

- Available to industrial grade temperature range

Ordering Code: See Section 6
Logic Symbol

Pin Names	Description
D_{n}	Data Inputs
Q_{n}	Data Outputs
\bar{Q}_{n}	Complementary Data Outputs
$O E$	Output Enable

Connection Diagrams

Logic Diagram

Truth Table

Inputs		Outputs	
$\mathbf{D}_{\boldsymbol{n}}$	OE	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}_{\boldsymbol{n}}}$
L	H	L	H
H	H	H	L
X	L	Cut-Off	Cut-Off

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Cut-off $=$ Lower-than-Low State

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperture (T_{J})

Ceramic

$$
+175^{\circ} \mathrm{C}
$$

$$
+150^{\circ} \mathrm{C}
$$

Pin Potential to Ground Pin (V_{EE}) Input Voltage (DC)
Output Current (DC Output HIGH) ESD (Note 2)

Recommended Operating Conditions

Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(\text { Min })} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with 25Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage			-1950	mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	OE = LOW
V_{IH}	Input HIGH Voltage	-1110		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1530	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			360	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$	
$\mathrm{IEE}^{\text {E }}$	Power Supply Current, Normal	-119		-30	mA		
Ieez	Power Supply Current, Cut-Off	-219		-75	mA	Inputs Open,$O E=L O W$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.65	2.30	0.65	2.30	0.65	2.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{tpZH}^{\mathrm{tpH} Z} \\ & \end{aligned}$	Propagation Delay OE to Output	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.1 \end{aligned}$	ns	
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.50	0.45	1.50	0.45	1.50	ns	

PCC AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.65	2.10	0.65	2.10	0.65	2.10	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OE to Output	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 2.9 \end{aligned}$	ns	
$t_{T L H}$ $t_{\mathrm{T} H L}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{i H(M i n)} \\ & \text { or } V_{\text {IL(Max }} \text { (Mis } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1115	-870	-1110	-870	mV	Guaranteed HIGH Signal for All Inputs	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to PCC AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Military Version-Preliminary

DC Electrical Characteristics

Military Version-Preliminary (Continued)
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	T_{C}	Conditions	Notes
V_{IH}	Input HIGH Voltage	-1165		-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			50	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$	1,2,3
				70	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
$l_{\text {EE }}$	Power Supply Current,	-70		-40	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		
Ieez	Power Supply Current, Cut-Off	-180		-130	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open, $\mathrm{OE}=$ LOW	1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{At}, 2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics-Preliminary

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.40	2.50	0.50	2.40	0.50	2.90	ns	Figures 1 and 2	1, 2, 3
${ }^{\text {t }}$ tLH $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.70	0.20	1.70	0.20	1.50	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

TL/F/10923-6
FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

NOTE: The output AC measurement point for cut-off propagation delay testing $=$ the 50% voltage point between active $V_{O L}$ and $V_{O H}$. FIGURE 2. Propagation Delay, Cut-Off and Transition Times

100321
Low Power 9-Bit Inverter

General Description

The 100321 is a monolithic 9 -bit inverter. The device contains nine inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ 30% power reduction of the 100121

- 2000V ESD protection
- Pin/function compatible with 100121
. Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{1}-D_{9}$	Data Inputs
$\bar{O}_{1}-\bar{O}_{9}$	Data Outputs

TL/F/10609-1

Connection Diagrams

TL/F/10609-4

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic
$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
Plastic
$V_{\text {EE }}$ Pin Potential to Ground Pin Input Voltage (DC)

Output Current (DC Output HIGH) ESD (Note 2)

Note 1: Absolute maximum ratings are those values beyond which the de vice may be damaged or have its useful life impaired. Functonal operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature $\left(T_{C}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\text {IL }} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ Max $)$	
I_{EE}	Power Supply Current	-65		-30	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | | $\mathbf{T}_{\mathbf{C}}=\mathbf{0}^{\circ} \mathbf{C}$ | | $\mathbf{T}_{\mathbf{C}}=+\mathbf{2 5}{ }^{\circ} \mathbf{C}$ | | $\mathbf{T}_{\mathbf{C}}=+85^{\circ} \mathbf{C}$ | | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Conditions

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 2)
$t_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
$\mathrm{t}_{\mathrm{OSHL}}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		220		220		220	ps	PCC only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		270		270		270	ps	PCC only (Note 1)
$\mathrm{t}_{\text {OST }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		320		320		320	ps	PCC only (Note 1)
tps	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		230		230		230	ps	PCC only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and $t_{\text {PS }}$ guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	-65	-30	-65	-30	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 1)
${ }^{\text {t T L L }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.35	1.10	0.35	1.10	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} \mathrm{O}^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
V OLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
${ }^{1}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-70	-25	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.60	0.40	1.80	ns	Figures 1 and 2	1,2,3,5
$t_{\text {TLH }}$ $\mathrm{t}_{\mathrm{TH}} \mathrm{L}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10609-6
FIGURE 2. Propagation Delay and Transition Times

100322

Low Power 9-Bit Buffer

General Description

The 100322 is a monolithic 9 -bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 30% power reduction of the 100122
- 2000V ESD protection
- Pin/function compatible with 100122

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

- Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Connection Diagrams

TL/F/10608-3

Pin Names	Description
$\mathrm{D}_{1}, \mathrm{D}_{9}$	Data Inputs
$\mathrm{O}_{1}, \mathrm{O}_{9}$	Data Outputs

Abstract

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature (TSTG) Maximum Junction Temperature (T_{J})

Ceramic Plastic $V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC) Output Current (DC Output HIGH) ESD (Note 2) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $$
\begin{array}{r} +175^{\circ} \mathrm{C} \\ +150^{\circ} \mathrm{C} \\ -7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\ -50 \mathrm{~mA} \\ \geq 2000 \mathrm{~V} \end{array}
$$

Recommended Operating

 ConditionsCase Temperature (T_{C}) Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
Supply Voltage (VEE)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{\mathbb{I H}(\text { Max })} \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610			
V_{iH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
I_{EE}	Power Supply Current	-65		-30	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | | $\mathbf{T}_{\mathbf{C}}=\mathbf{0}^{\circ} \mathbf{C}$ | | $\mathbf{T}_{\mathbf{C}}=+\mathbf{2 5}{ }^{\circ} \mathbf{C}$ | | $\mathbf{T}_{\mathbf{C}}=+\mathbf{8 5}{ }^{\circ} \mathbf{C}$ | | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Conditions

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
$\mathrm{t}_{\text {OST }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		260		260		260	ps	PCC Only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and t_{PS} guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
VOH	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage		-1565		-1610			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-65	-30	-65	-30	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 1)
${ }^{\mathrm{t} T \mathrm{~L}} \mathrm{H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.35	1.10	0.35	1.10	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input HIGH Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
${ }_{1} \mathrm{H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-70	-25	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.60	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
${ }^{\text {t }}$ tLH $\mathrm{t}_{\mathrm{THL}}$	$\begin{array}{\|l} \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equats $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, only Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Test Circuit

Notes:

$V_{C C} . V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/10608-5
FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

100323

Low Power Hex Bus Driver

General Description

The 100323 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as 25Ω. To reduce crosstalk, each output has its own respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input ($D_{1}-D_{6}$) and the OR of two select inputs (E and either $\mathrm{DE}_{1}, \mathrm{DE}_{2}$, or DE_{3}).
Enabling of data is possible in multiples of two, i.e., 2, 4 or all 6 paths. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an emitter-follower output transistor to turn off when the termi-
nation supply is -2.0 V and thus present a high impedance to the data bus.

Features

- 50% power reduction of the 100123
- 2000 V ESD protection

■ -4.2 V to -5.7 V operating range

- Drives 25Ω load

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{1}-D_{6}$	Data Inputs
$D E_{1}-D E_{3}$	Dual Enable Inputs
E	Common Enable Input
$O_{1}-O_{6}$	Data Outputs

TL/F/9877-7

Connection Diagrams

TL/F/9877-2

Logic Diagram

TL/F/9877-1

Truth Table

E	$D E_{n}$	D_{n}	D_{n+1}	O_{n}	\mathbf{O}_{n+1}
L	L	X	X	Cutoff	Cutoff
X	H	L	L	Cutoff	Cutoff
X	H	L	H	Cutoff	H
X	H	H	L	H	Cutoff
X	H	H	H	H	H
H	X	L	L	Cutoff	Cutoff
H	X	L	H	Cutoff	H
H	X	H	L	H	Cutoff
H	X	H	H	H	H

$H=H i g h$
Cutoff = Lower-than-LOW state
$\mathrm{L}=$ Low
$X=$ Don't Care

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed High Signal for ALL Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed Low Signal for ALL Inputs	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (max) }}$ or $\mathrm{V}_{\mathrm{IL}(\text { min })}$	Loading with 25Ω to -2.0V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { min })}$ or $\mathrm{V}_{\mathrm{IL} \text { (max) }}$	Loading with 25Ω to $-2.0 \mathrm{~V}$
$V_{\text {OLZ }}$	Cut-Off LOW Voltage			-1950	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (min) }}$ or V_{IL} (max)	Loading with 25Ω to $-2.0 \mathrm{~V}$
$\mathrm{I}_{1 /}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{I N}=V_{\text {IL }}($ min $)$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\max)$	
I_{EE}	Power Supply Current	-121	-91	-57	mA	Inputs Open	

Note 3: The specified limits represent "worst case" values for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {tpzH }}$	Propagation Delay	1.90	3.60	1.90	3.60	2.00	3.80	ns	Figures 1 and 2
tphz	Data to Output	1.30	2.70	1.30	2.70	1.50	2.70		
tpzH	Propagation Delay	1.90	3.60	1.90	3.60	2.00	3.90	ns	
tPHZ	Dual Enable to Output	1.60	3.00	1.60	3.00	1.70	3.40		
${ }_{\text {tPZH }}$	Propagation Delay	1.80	3.50	1.80	3.50	2.00	3.80	ns	
tPHZ	Common Enable to Output	1.50	2.90	1.50	2.90	1.60	3.00		
${ }_{\text {t }}^{\text {TZH }}$	Transition Time	0.50	1.80	0.50	1.80	0.50	1.80	ns	
$\mathrm{t}_{\text {THZ }}$	20\% to $80 \%, 80 \%$ to 20%	0.35	1.40	0.35	1.40	0.35	1.40		

Commercial Version (Continued)									
PCC and Cerpak AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PZH}} \\ & t_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 1.90 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 3.60 \\ & 2.70 \end{aligned}$	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation Delay Dual Enable to Output	$\begin{aligned} & 1.90 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.00 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay Common Enable to Output	$\begin{array}{r} 1.80 \\ 1.50 \\ \hline \end{array}$	$\begin{array}{r} 3.30 \\ 2.70 \\ \hline \end{array}$	$\begin{aligned} & 1.80 \\ & 1.50 \end{aligned}$	$\begin{array}{r} 3.30 \\ 2.70 \\ \hline \end{array}$	$\begin{array}{r} 2.00 \\ 1.60 \\ \hline \end{array}$	$\begin{array}{r} 3.60 \\ 2.80 \\ \hline \end{array}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TZH}} \\ & \mathrm{t}_{\mathrm{THZ}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50 0.35	1.70 1.30	0.50 0.35	1.70 1.20	0.50 0.35	$\begin{aligned} & 1.70 \\ & 1.30 \end{aligned}$	ns	

Note: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Military Version-Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { min })} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (min) } \\ & \text { or } V_{I L} \text { (max) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	MV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{EE}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (min)		1, 2, 3	
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$\mathrm{l}_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -145 \\ & -150 \end{aligned}$	-55	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1,2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)									
AC Electrical Characteristics-All Packages $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{tpZH} \\ & \mathrm{t}_{\mathrm{tPHz}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 1.70 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 3.10 \end{aligned}$	ns	Figures 1 and 2
tpz	Propagation Delay	1.70	4.00	1.70	4.00	1.80	4.30	ns	
$t_{\text {PHZ }}$	Data Enable to Output	1.40	3.40	1.40	3.40	1.50	3.80		
${ }_{\text {tpzH }}$	Propagation Delay	1.60	3.90	1.60	3.90	1.80	4.20	ns	
tphz	Common Enable to Output	1.30	3.30	1.30	3.30	1.40	3.40		
$\dagger_{\text {t }}^{\text {T }}$ H	Transition Time	0.40	2.20	0.40	2.20	0.40	2.20	ns	
$t_{\text {tinz }}$	20\% to 80\%, 80\% to 20%	0.25	1.80	0.25	1.80	0.25	1.80	ns	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Test Circuitry

TL/F/9877-5
FIGURE 1. AC Test Circuit

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 25Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$ Pin numbers shown are for flatpak; for DIP see logic symbol

Timing Waveform

FIGURE 2. Propagation Delay and Transition Times

100324

Low Power Hex TTL-to-ECL Translator

General Description

The 100324 is a hex translator, designed to convert TTL logic levels to 100 K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. The output levels are voltage compensated over the full -4.2 V to -5.7 V range.
When the circuit is used in the differential mode, the 100324, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The $V_{E E}$ and $V_{T T L}$ power may be applied in either order.
The 100324 is pin and function compatible with the 100124 with similar AC performance, but features power dissi-
pation roughly half of the 100124 to ease system cooling requirements.

Features

■ Pin/function compatible with 100124

- Meets 100124 AC specifications
- 50% power reduction of the 100124
- Differential outputs
- 2000V ESD protection
n -4.2 V to -5.7 V operating range
- Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6
Logic Diagram

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data Inputs
E	Enable Input
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary
	Data Outputs

TL./F/9878-3

TL/F/9878-2

Abstract

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature (TSTG) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Junction Temperature (T_{J})

Ceramic $$
+175^{\circ} \mathrm{C}
$$

Plastic $$
+150^{\circ} \mathrm{C}
$$ $V_{E E}$ Pin Potential to Ground Pin -7.0 V to +0.5 V -0.5 V to +6.0 V -0.5 V to +6.0 V $$
-50 \mathrm{~mA}
$$ $$
\geq 2000 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature (TC)	
Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (VEE)	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}($ Note 3$), \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Guaranteed LOW Signal for All Inputs	
$V_{C D}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current Data Enable			$\begin{gathered} 20 \\ 120 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	
	Input HIGH Current Breakdown Test, All Inputs			1.0	mA	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=+5.5 \mathrm{~V} \\ & \text { All Other Inputs }=\mathrm{GND} \end{aligned}$	
IIL	Input LOW Current Data Enable	$\begin{aligned} & -0.9 \\ & -5.4 \end{aligned}$			mA	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	
$\mathrm{IEE}^{\text {E }}$	VEE Power Supply Current	-70	-45	-22	mA	All Inputs $\mathrm{V}_{1 \mathrm{~N}}=+4.0 \mathrm{~V}$	
ITTL	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		25	38	mA	All Inputs $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{GND}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under 'worst case'" conditions.

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.50	3.00	ns	Figures 1 and 2
$t_{\text {tLH }}$ ${ }^{\text {t }}$ THL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.80	0.45	1.80	0.45	1.80	ns	

SOIC, PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tphL	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1 and 2
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	
${ }^{\text {toSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		0.95		0.95		0.95	ns	PCC Only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		0.70		0.70		0.70	ns	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		1.60		1.60		1.60	ns	PCC Only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		1.20		1.20		1.20	ns	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (toshl), or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tOST). Parameters tost and tps guaranteed by design.

Industrial Version

PCC DC Electrical Characteristics (Note)
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{\mathrm{IN}}=V_{\mathrm{IH}(\text { Min })} \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\mathrm{OLC}}$	Output LOW Voltage		-1565		-1610			
V_{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0	0.8	0	0.8	V	Guaranteed LOW Signal for All Inputs	
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage	-1.2		-1.2		V	$\mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$	
IH_{H}	Input HIGH Current Data Enable		$\begin{gathered} 20 \\ 120 \end{gathered}$		$\begin{gathered} 20 \\ 120 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=$ GND	
	Input HIGH Current Breakdown Test, All Inputs		1.0		1.0	mA	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$ All Other Inputs = GND	
IIL	Input LOW Current Data Enable	$\begin{aligned} & -0.9 \\ & -5.4 \end{aligned}$		$\begin{aligned} & -0.9 \\ & -5.4 \end{aligned}$		mA	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	
IEE	$\mathrm{V}_{\text {EE }}$ Power Supply Current	-70	-22	-70	-22	mA	All Inputs $V_{I N}=+4.0 \mathrm{~V}$	
$I_{\text {TTL }}$	$V_{\text {TTL }}$ Power Supply Current		38		38	mA	All Inputs $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{GND}$	

Note: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$T_{C}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1 and 2
t_{TLH} $\mathrm{t}_{\mathrm{THL}}$	Transition Times 20% to $80 \%, 80 \%$ to 20%	0.35	1.80	0.45	1.70	0.45	1.70	ns	Figures 1 and 2

Military Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes
V_{OH}	Output HIGH Voltage	－1025	－870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1，2， 3
		－1085	－870	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	－1830	－1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		－1830	－1555	mV	$-55^{\circ} \mathrm{C}$			
VOHC	Output HIGH Voltage	－1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} V_{I N}=V_{I H}(\operatorname{Max}) \\ \text { or } V_{I L}(\operatorname{Min}) \end{gathered}$	Loading with 50Ω to -2.0 V	1，2， 3
		－1085		mV	$-55^{\circ} \mathrm{C}$			
Volc	Output LOW Voltage		－1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			－1555	mV	$-55^{\circ} \mathrm{C}$			
$V_{1 H}$	Input HIGH Voltage	2.0	5.0	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{\text {EE }}, \mathrm{T}_{\text {C }}$ Range		1，2，3， 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0.0	0.8	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Over $V_{\text {TTL }}, V_{E E}$ ，T_{C} Range		1，2，3， 4
I_{H}	Input HIGH Current Breakdown Test		20	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{1 N}=+2.7 \mathrm{~V}$		1，2， 3
			100	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{I N}=+7.0 \mathrm{~V}$		
ILL	Input LOW Current Data Enable	$\begin{aligned} & -0.9 \\ & -5.4 \end{aligned}$		mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$		1，2， 3
$V_{\text {FCD }}$	Input Clamp Diode Voltage		－1．2	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		1，2， 3
lee	$V_{\text {EE }}$ Power Supply Current	－70	－22	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	All Inputs $\mathrm{V}_{\mathrm{IN}}=+4.0 \mathrm{~V}$		1，2， 3
ITIL	$V_{\text {TTL }}$ Power Supply Current		38	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	All Inputs $\mathrm{V}_{\text {IN }}=$ GND		1，2，3

Note 1：F100K 300 Series cold temperature testing is performed by temperature soaking（to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$ ），then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power－up．This provides＂cold start＂specs which can be considered a worst case condition at cold temperatures．
Note 2：Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ ，and $+125^{\circ} \mathrm{C}$ ，Subgroups $1,2,3,7$ ，and 8 ．
Note 3：Sample tested（Method 5005，Table り）on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ ，and $+125^{\circ} \mathrm{C}$ ，Subgroups A1，2，3，7，and 8 ．
Note 4：Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ ．

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.30	3.30	ns	Figures 1 and 2	1，2，3，
${ }^{t_{T}}$ LH ${ }^{\mathbf{t}}{ }^{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.80	0.45	1.80	0.45	1.80	ns		4

Note 1：F100K 300 Series cold temperature testing is performed by temperature soaking（to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$ ），then testing immediately after power－up．This provides＂cold start＂specs which can be considered a worst case condition at cold temperatures．
Note 2：Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only，Subgroup A9．
Note 3：Sample tested（Method 5005，Table I）on each manufactured lot at $+25^{\circ} \mathrm{C}$ ，Subgroup A9，and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures，Subgroups A10 and A11．
Note 4：Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ ，and $-55^{\circ} \mathrm{C}$ temperature（design characterization data）．

Switching Waveform

TL/F/9878-6
FIGURE 1. Propagation Delay and Transition Times

Test Circuit

TL/F/9878-5
FIGURE 2. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=0 \mathrm{~V}, V_{E E}=-4.5 \mathrm{~V}, V_{T T L}=+5.0 \mathrm{~V}, V_{I H}=+3.0 \mathrm{~V}$
$L 1, L 2$ and $L 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with 50Ω to -2 V or with equivalent ECL terminator network
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

100325

Low Power Hex ECL-to-TTL Translator

General Description

The 100325 is a hex translator for converting F100K logic levels to TTL logic levels. Differential inputs allow each circuit to be used as an inverting, non-inverting or differential receiver. An internal reference voltage generator provides V_{BB} for single-ended operation, or for use in Schmitt trigger applications. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors. When the inputs are either unconnected or at the same potential the outputs will go low.
When used in single-ended operation the apparent input threshold of the true inputs is 20 mV to 40 mV higher (positive) than the threshold of the complementary inputs. The $V_{E E}$ and $V_{T T L}$ power may be applied in either order.

Features

- Pin/function compatible with 100125
- Meets 100125 AC specifications
- 50% power reduction of the 100125
- Differential inputs with built in offset
- Standard FAST® outputs
- 2000V ESD protection
- -4.2 V to -5.7 V operating range
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Diagram

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
$\bar{D}_{0}-\bar{D}_{5}$	Inverting Data Inputs
$Q_{0}-Q_{5}$	Data Outputs

TL/F/9879-4

Connection Diagrams

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+175^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+6.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V}
\end{array}
$$

Ceramic
Plastic
V_{EE} Pin Potential to Ground Pin
$V_{T T L}$ Pin Potential to Ground Pin Input Voltage (DC)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) $\quad-0.5 \mathrm{~V}$ to V_{CC}
Current Applied to Output in LOW State (Max) twice the rated IOL (mA) ESD (Note 2)

22000 V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Truth Table

Inputs		Outputs
$\mathbf{D}_{\boldsymbol{n}}$	$\overline{\mathbf{D}}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	H	L
H	L	H
L	L	L
H	H	L
Open	Open	L
$V_{E E}$	$V_{E E}$	L
L	$V_{B B}$	L
H	$V_{B B}$	H
$V_{B B}$	L	H
$V_{B B}$	H	L

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level

Recommended Operating Conditions

Case Temperature (T_{C}) Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{l}_{\mathrm{VBB}}=-2.1 \mathrm{~mA}$
$\mathrm{V}_{1 \mathrm{H}}$	Single-Ended Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to V_{BB})
V_{OH}	Output HIGH Voltage	2.5			V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$
V_{OL}	Output LOW Voltage			0.5	V	OL $=20 \mathrm{~mA}$$\quad$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$		$V_{C C}-0.5$	V	

Commercial Version (Continued)
DC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input HIGH Current			350	μA	$V_{I N}=V_{I H}(M a x), D_{0}-D_{5}=V_{B B}$, $D_{0}-\bar{D}_{5}=V_{I L}(M i n)$
$I_{I L}$	Input LOW Current	0.5			μA	$V_{I N}=V_{I L(M i n)}, D_{0}-D_{5}=V_{B B}$
$I_{\text {OS }}$	Output Short-Circuit Current	-150		-60	mA	$V_{O U T}=G N D^{*}$
$I_{E E}$	$V_{E E}$ Power Supply Current	-37	-27	-17	mA	$D_{0}-D_{5}=V_{B B}$
$I_{T T L}$	$V_{T T L}$ Power Supply Current		45	65	mA	$D_{0}-D_{5}=V_{B B}$

*Test one output at a time.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{c}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tphL }^{2} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.80	3.50	0.90	3.70	1.00	4.00	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Figures } 1 \text { and } 2 \end{aligned}$
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	1.60	4.30	1.70	4.50	1.80	4.80	ns	$C_{L}=50 \mathrm{pF}$ Figures 1 and 3

SOIC, PCC and Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.80	3.30	0.90	3.50	1.00	3.80	ns	$C_{L}=15 \mathrm{pF}$ Figures 1 and 2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	1.60	4.10	1.70	4.30	1.80	4.60	ns	$C_{L}=50 \mathrm{pF}$ Figures 1 and 3
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		0.65		0.65		0.65	ns	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		0.65		0.65		0.65	ns	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		2.20		2.20		2.20	ns	PCC Only (Note 1)
tPS	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		2.10		2.10		2.10	ns	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHU), or LOW to HIGH (tosLH), or in opposite directions both HL and $\mathrm{LH}\left(\mathrm{t}_{\mathrm{OST}}\right)$. Parameters $\mathrm{t}_{\mathrm{OST}}$ and t_{PS} guaranteed by design.

Industrial Version

PCC DC Electrical Characteristics (Note)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$\mathrm{IVBB}=-2.1 \mathrm{~mA}$	
V_{IH}	Single-Ended Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to $V_{B B}$)	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to $V_{B B}$)	
V_{OH}	Output HIGH Voltage	2.5		2.5		V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	$\mathrm{N}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$
V_{OL}	Output LOW Voltage		0.5		0.5	V	$\mathrm{OL}=20 \mathrm{~mA}$	Min)
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		150		mV	Required for Full Output Swing	
V_{CM}	Common Mode Voltage	$V_{C C}-2.0$	$\mathrm{V}_{\mathrm{CC}}-0.5$	$\mathrm{V}_{\mathrm{CC}}-2.0$	$\mathrm{V}_{C C}-0.5$	V		
I_{H}	Input HIGH Current		450		350	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\bar{D}_{5}=V_{\text {IL (Min) }} \\ & \hline \end{aligned}$	
IIL	Input LOW Current	0.5		0.5		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}\left(\right.$ Min),$~ D_{0}-\mathrm{D}_{5}=\mathrm{V}_{\text {BB }}$	
los	Output Short-Circuit Current	-150	-60	-150	-60	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}^{*}$	
IEE	$\mathrm{V}_{\text {EE }}$ Power Supply Current	-37	-15	-37	-17	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=\mathrm{V}_{\mathrm{BB}}$	
$I_{T L L}$	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		65		65	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=\mathrm{V}_{\text {BB }}$	

*Test one output at a time.
Note: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.80	3.30	0.90	3.50	1.00	3.80	ns	$C_{L}=15 \mathrm{pF}$ Figures 1 and 2
$t_{\text {PLH }}$ tpHL	Propagation Delay Data to Output	1.60	4.10	1.70	4.30	1.80	4.60	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Figures 1 and 3

Military Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes
$V_{B B}$	Output Reference Voltage	-1380	-1260	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{l}_{\mathrm{VBB}}=-3 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$		1, 2, 3
						$\mathrm{IVBB}=-2.1 \mathrm{~mA}$	$V_{E E}=-5.7 \mathrm{~V}$	
		-1396	-1260		$-55^{\circ} \mathrm{C}$	$\mathrm{IVBB}=-3 \mathrm{~mA}$		
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})		1, 2, 3, 4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs (with One Input Tied to V_{BB})		1, 2, 3, 4
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	1, 2, 3
					$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.5	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{IOL}=20 \mathrm{~mA}$		
$V_{\text {DIFF }}$	Input Voltage Differential	150		mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Required for Full Output Swing		1, 2, 3
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage	-2000	-500	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			1, 2, 3, 4
I_{H}	Input HIGH Current		$\begin{aligned} & 350 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$	$\frac{0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}}{-55^{\circ} \mathrm{C}}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\bar{D}_{5}=V_{I L} \text { (Min) } \end{aligned}$		1, 2, 3
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {IN }}=V_{\text {IL }}(\mathrm{Min}), \mathrm{D}_{0}$	$\mathrm{D}_{5}=\mathrm{V}_{\mathrm{BB}}$	1, 2, 3
los	Output Short Circuit Current	-150	-60	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {OUT }}=G N D$ Test One Output	Time	1, 2, 3
${ }^{\text {C CEX }}$	Output HIGH Leakage Current		250	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {OUT }}=5.5 \mathrm{~V}$		1, 2, 3
IEE	VEE Power Supply Current	-35	-12	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{B B}$		1, 2, 3
ITTL	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		65	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$D_{0}-D_{5}=V_{B B}$		1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals - $55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TIL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \text { tpLL } \\ & \text { tph } \end{aligned}$	Propagation Delay Data to Output	1.50	5.00	1.60	4.70	1.70	5.70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Figures 1 and 3	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Switching Waveform

TL/F/9879-6
FIGURE 1. Propagation Delay

Test Circuits

$V_{C C}=0 V, V_{E E}=-4.5 V, V_{T T L}=+5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{C C}, \mathrm{~V}_{E E}$ and $\mathrm{V}_{\text {TL }}$
All unused outputs are loaded with 500Ω to GND
$C_{L}=$ Fixture and stray capacitance $=15 \mathrm{pF}$
FIGURE 2. AC Test Circuit for 15 pF Loading

Test Circuits (Continued)

Notes:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with 500Ω to GND
$C_{\mathrm{L}}=$ Fixture and stray capacitance $=50 \mathrm{pF}$
FIGURE 3. AC Test Circuit for 50 pF Loading

100328

Low Power Octal ECL/TTL
 Bi-Directional Translator with Latch

General Description

The 100328 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the 100328 transparent.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-fol lowers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100328 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Identical performance to the 100128 at 50% of the supply current
- Bi-directional translation
- 2000 V ESD protection
- Latched outputs
- FAST® TTL outputs
- TRI-STATE ${ }^{\circledR}$ outputs
- Voltage compensated operating range $=$ -4.2 V to -5.7 V
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

TL/F/10219-1

Pin Names	Description
$E_{0}-E_{7}$	ECL Data I/O
$T_{0}-T_{7}$	TTL Data I/O
OE	Output Enable Input
LE	Latch Enable Input
DIR	Direction Control Input

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams

24-Pin DIP/SOIC

TL/F/10219-2

Functional Diagram

TL/F/10219-5
Note: LE, DIR, and OE use ECL logic levels

Detail

Truth Table

OE	DIR	LE	ECL Port	TTL Port	Notes
L	X	L	LOW (Cut-Off)	Z	
L	L	H	Input	Z	1,3
L	H	H	LOW (Cut-Off)	Input	2,3
H	L	L	L	L	1,4
H	L	L	H	H	1,4
H	L	H	X	Latched	1,3
H	H	L	L	L	2,4
H	H	L	H	H	2,4
H	H	H	Latched	X	2,3

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$Z=$ High Impedance
Note 1: ECL input to TTL output mode
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$V_{\text {TTL }}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+6.0 \mathrm{~V}
$$

ECL Input Voltage (DC)
V_{EE} to +0.5 V
ECL Output Current (DC Output HIGH)
TTL Input Voltage (Note 3)
TTL Input Current (Note 3)
$-50 \mathrm{~mA}$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

Commercial Version

TTL-to-ECL DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$
VOL	Output LOW Voltage	-1830	-1705	-1620	mV	Loading with 50Ω to -2 V
	Cutoff Voltage		-2000	-1950	mV	OE or DIR Low, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$, Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	-1035			mV	$V_{I N}=V_{I H(\text { Min })} \text { or } V_{I L(M a x)}$ Loading with 50Ω to -2 V
$V_{\text {OLC }}$	Output LOW Voltage Corner Point Low			-1610	mV	
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $V_{T T L}, V_{E E}, T_{C}$ Range
l_{IH}	Input HIGH Current			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$
	Breakdown Test			1.0	mA	$\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$
ILL	Input LOW Current	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$
$V_{F C D}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
IeE	$V_{\text {EE }}$ Supply Current	$\begin{aligned} & -159 \\ & -169 \end{aligned}$		$\begin{aligned} & -75 \\ & -75 \end{aligned}$	mA	LE Low, OE and DIR High Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.3	0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			350	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)
lozht	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$V_{\text {OUT }}=+2.7 \mathrm{~V}$
lozlt	TRI-STATE Current Output Low	-700			$\mu \mathrm{A}$	$V_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-150		-60	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
${ }^{\text {ITTL }}$	$V_{\text {TTL }}$ Supply Current			$\begin{aligned} & 74 \\ & 49 \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

DIP TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	T_{N} to E_{n} (Transparent)	1.1	3.5	1.1	3.6	1.1	3.8	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1\&2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to E_{n}	1.7	3.6	1.7	3.7	1.9	3.9	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1\&2
${ }_{\text {tPZH }}$	OE to E_{n} (Cutoff to High)	1.3	4.2	1.5	4.4	1.7	4.8	ns	Figures 1\&2
$t_{\text {PHZ }}$	OE to E_{n} (High to Cutoff)	1.5	4.5	1.6	4.5	1.6	4.6	ns	Figures 1\&2
$\mathrm{t}_{\text {PHZ }}$	DIR to E_{n} (High to Cutoff)	1.6	4.3	1.6	4.3	1.7	4.5	ns	Figures 1\&2
$t_{\text {set }}$	T_{n} to LE	1.1		1.1		1.1		ns	Figures 1\&2
thold	T_{n} to LE	1.1		1.1		1.1		ns	Figures 1\&2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width LE	2.1		2.1		2.1		ns	Figures 1\&2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1\&2

Note: The specified limits represent the "worst" case value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	E_{n} to T_{n} (Transparent)	2.3	5.6	2.4	5.6	2.6	5.9	ns	Figures 3 \& 4
$t_{\text {PLH }}$ t_{PHL}	LE to T_{n}	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3 \& 4
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} 8.45 \\ 9.2 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.95 \\ 9.2 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} 9.7 \\ 9.95 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.95 \\ 7.7 \\ \hline \end{array}$	$\begin{aligned} & 3.3 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.95 \\ 8.7 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.2 \\ 9.95 \\ \hline \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} 8.2 \\ 7.45 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} 8.7 \\ 7.95 \\ \hline \end{gathered}$	$\begin{aligned} & 3.1 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.95 \\ 9.2 \end{gathered}$	ns	Figures 3 \& 6
$t_{\text {set }}$	E_{n} to LE	1.1		1.1		1.1		ns	Figures 3 \& 4
$t_{\text {hold }}$	E_{n} to LE	2.1		2.1		2.6		ns	Figures 3 \& 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width LE	4.1		4.1		4.1		ns	Figures 3 \& 4

SOIC, PCC and Cerpak TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	T_{n} to E_{n} (Transparent)	1.1	3.3	1.1	3.4	1.1	3.6	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1\&2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	LE to E_{n}	1.7	3.4	1.7	3.5	1.9	3.7	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 \& 2
${ }_{\text {tPZH }}$	$O E$ to E_{n} (Cutoff to High)	1.3	4.0	1.5	4.2	1.7	4.6	ns	Figures 1 \& 2
${ }^{\text {tPHZ }}$	OE to E_{n} (High to Cutoff)	1.5	4.3	1.6	4.3	1.6	4.4	ns	Figures 1\&2
${ }_{\text {tpHz }}$	DIR to E_{n} (High to Cutoff)	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1\&2
$t_{\text {set }}$	T_{n} to LE	1.0		1.0		1.0		ns	Figures 1\&2
thold	T_{n} to LE	1.0		1.0		1.0		ns	Figures 1\&2
$t_{\text {pw }}(\mathrm{H})$	Pulse Width LE	2.0		2.0		2.0		ns	Figures 1\&2
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1 \& 2
$\mathrm{t}_{\text {OSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
${ }^{\text {tosLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		650		650		650	ps	PCC Only (Note 1)
t_{ps}	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		650		650		650	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tOST). Parameters tost and t_{ps} guaranteed by design.

Commercial Version (Continued)
SOIC, PCC and Cerpak ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	E_{n} to T_{n} (Transparent)	2.3	5.4	2.4	5.4	2.6	5.7	ns	Figures 3 \& 4
tpLH $\mathrm{t}_{\mathrm{PHL}}$	$L E$ to T_{n}	3.1	7.0	3.1	7.0	3.3	7.5	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} 8.25 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} 9.5 \\ 9.75 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.75 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 3.3 \\ 3.4 \\ \hline \end{array}$	$\begin{gathered} 8.75 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 9.75 \\ \hline \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \mathrm{tpHZ}^{\mathrm{t}} \\ & \mathrm{tpLLZ} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} 8.0 \\ 7.25 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} 8.5 \\ 7.75 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \end{gathered}$	ns	Figures 3 \& 6
$t_{\text {set }}$	E_{n} to LE	1.0		1.0		1.0		ns	Figures 3\&4
thold	E_{n} to LE	2.0		2.0		2.5		ns	Figures 3 \& 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width LE	4.0		4.0		4.0		ns	Figures 3 \& 4
$\mathrm{t}_{\text {OSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		600		600		600	ps	PCC Only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		850		850		850	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		1350		1350		1350	ps	PCC Only (Note 1)
$t_{p s}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		950		950		950	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tosLH), or in opposite directions both HL and LH (tOST). Parameters tost and t_{ps} guaranteed by design.

Industrial Version							
PCC TTL-to-ECL DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note)							
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max		
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$ Loading with 50Ω to -2 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	
	Cutoff Voltage		-1900		-1950	mV	OE or DIR Low, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max) }}$ or $\mathrm{V}_{\text {IL(Min) }}$, Loading with 50Ω to $-2 V$
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage Corner Point High	-1095		-1035		mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Max })}$ Loading with 50Ω to -2 V
VoLC	Output LOW Voltage Corner Point Low		-1565		-1610	mV	
V_{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	v	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\text {EE }}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0	0.8	0	0.8	V	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{\text {EE }}, T_{C}$ Range
I_{H}	Input HIGH Current		70		70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$
	Breakdown Test		1.0		1.0	mA	$\mathrm{V}_{1 \mathrm{~N}}=+5.5 \mathrm{~V}$
ILL	Input LOW Current	-700		-700		$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{IN}}=+0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2		-1.2		V	$\mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$
IEE	V_{EE} Supply Current	$\begin{array}{r} -159 \\ -169 \\ \hline \end{array}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{array}{r} -159 \\ -169 \\ \hline \end{array}$	$\begin{aligned} & -75 \\ & -75 \\ & \hline \end{aligned}$	mA	LE Low, OE and DIR High Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \\ & \hline \end{aligned}$

PCC ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max		
V_{OH}	Output HIGH Voltage	$\begin{array}{r} 2.7 \\ 2.4 \\ \hline \end{array}$		$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TLL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{T \mathrm{LL}}=4.50 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.5		0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All inputs
I_{H}	Input HIGH Current		425		350	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$
$\mathrm{IH}^{\text {H }}$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Min)
Iozht	TRI-STATE Current Output High		70		70	$\mu \mathrm{A}$	$V_{\text {OUT }}=+2.7 \mathrm{~V}$
Iozlt	TRI-STATE Current Output Low	-700		-700		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-150	-60	-150	-60	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
${ }_{\text {ITTL }}$	$\mathrm{V}_{\text {TTL }}$ Supply Current		$\begin{aligned} & 74 \\ & 49 \\ & 67 \end{aligned}$		$\begin{aligned} & 74 \\ & 49 \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

Note: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} T \mathrm{~L}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	T_{n} to E_{n} (Transparent)	1.0	3.3	1.1	3.4	1.1	3.6	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1\&2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$L E$ to E_{n}	1.7	3.4	1.7	3.5	1.9	3.7	ns ns	Figures 1 \& 2
tpZH	$O E$ to E_{n} (Cutoff to High)	1.2	4.0	1.5	4.2	1.7	4.6	ns	Figures 1 \& 2
${ }^{\text {tPHZ }}$	OE to E_{n} (High to Cutoff)	1.5	4.5	1.6	4.3	1.6	4.4	ns	Figures 1\&2
${ }^{\text {tpHZ }}$	DIR to E_{n} (High to Cutoff)	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1 \& 2
$t_{\text {set }}$	T_{n} to LE	2.5		1.0		1.0		ns	Figures 1\&2
$t_{\text {hold }}$	T_{n} to LE	1.0		1.0		1.0		ns	Figures 1\&2
$t_{p w}(\mathrm{H})$	Pulse Width LE	2.5		2.0		2.0		ns	Figures 1\&2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.4	2.3	0.6	1.6	0.6	1.6	ns	Figures 1 \& 2

PCC ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{THL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	E_{n} to T_{n} (Transparent)	2.3	5.4	2.4	5.4	2.6	5.7	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	LE to T_{n}	3.1	7.4	3.1	7.0	3.3	7.5	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{array}{r} 3.4 \\ 3.7 \\ \hline \end{array}$	$\begin{aligned} & 8.3 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.7 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 9.75 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{gathered} 8.75 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 3.5 \\ 4.1 \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ 9.75 \\ \hline \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 7.75 \\ \hline \end{gathered}$	$\begin{aligned} & 3.1 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \\ \hline \end{gathered}$	ns	Figures 3 \& 6
$t_{\text {set }}$	E_{n} to LE	2.5		1.0		1.0		ns	Figures 3\& 4
$t_{\text {hold }}$	E_{n} to LE	2.3		2.0		2.5		ns	Figures 3 \& 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width LE	4.0		4.0		4.0		ns	Figures 3 \& 4

Military Version								
TTL-to-ECL DC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to								
Symbol	Parameter	Min	Max	Units	T_{c}	Cond	ions	Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
VoL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
	Cutoff Voltage		-1950	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	OE or DIR Low		
			-1850	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{\mathbb{I N}}=V_{\text {IH }}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with $50 \Omega 0$ to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
Volc	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	2.0		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, T_{C}$ Range		1, 2, 3, 4
V_{IL}	Input LOW Voltage		0.8	V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1,2,3,4
I_{H}	Input HIGH Current		70	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1,2,3
	Breakdown Test		1.0	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$		
IIL	Input LOW Current	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$		1,2,3
$V_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		1,2,3
I_{EE}	VEE Supply Current	$\begin{aligned} & -165 \\ & -175 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	LE Low, OE and Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to	$\begin{aligned} & \text { R High } \\ & -4.8 \mathrm{~V} \\ & -5.7 \mathrm{~V} \\ & \hline \end{aligned}$	1,2,3

Military Version (Continued)

ECL-to-TTL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	TC	Conditions	Notes
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \\ & \hline \end{aligned}$		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$	1,2,3
V_{OL}	Output LOW Voltage		0.5	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$	
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
I_{IH}	Input HIGH Current		$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{iH}}(\mathrm{Max}) \end{aligned}$	1, 2, 3
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$	1, 2, 3
lozht	TRI-STATE Current Output High		70	$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	1, 2, 3
IozLT	TRI-STATE Current Output Low	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$	1, 2, 3
los	Output Short-Circuit CURRENT	-150	-60	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$	1, 2, 3
$I_{T T L}$	$\mathrm{V}_{\text {TTL }}$ Supply Current		$\begin{aligned} & 75 \\ & 50 \\ & 70 \\ & \hline \end{aligned}$	mA mA mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	TTL Outputs Low TTL Output High TTL Output in TRI-STATE	1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, $1,23,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	T_{N} to E_{n} (Transparent)	0.8	3.4	1.1	3.6	0.8	3.7	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 \& 2	1,2,3
${ }_{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$L E$ to E_{n}	1.2	3.8	1.4	3.7	1.1	3.8	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1\&2	
tpZH	OE to E_{n} (Cutoff to HIGH)	0.8	3.6	1.5	4.0	2.0	5.2	ns	Figures 1\&2	
$t_{\text {PHZ }}$	OE to E_{n} (HIGH to Cutoff)	1.5	4.6	1.6	4.2	1.6	4.3	ns	Figures 1\& 2	
$t_{\text {PHZ }}$	DIR to E_{n} (HIGH to Cutoff)	1.6	4.7	1.6	4.3	1.7	4.3	ns	Figures 1 \& 2	1,2,3
$\mathrm{t}_{\text {set }}$	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1\&2	4
$\mathrm{t}_{\text {hold }}$	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1\&2	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width LE	2.5		2.0		2.5		ns	Figures 1\&2	4
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1 \& 2	4

Military Version (Continued)

ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	E_{n} to T_{n} (Transparent)	2.1	6.0	2.0	5.6	2.2	6.3	ns	Figures 3 \& 4	1, 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to T_{n}	3.1	7.0	3.1	6.5	3.3	7.5	ns	Figures 3 \& 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.2 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.6 \end{aligned}$	ns	Figures 3 \& 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.1 \end{aligned}$	$\begin{gathered} 8.4 \\ 10.0 \end{gathered}$	ns	Figures 3 \& 5	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{array}{r} 2.6 \\ 2.7 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	ns	Figures 3 \& 6	
$t_{\text {set }}$	E_{n} to LE	2.5		2.0		2.5		ns	Figures 3 \& 4	4
$t_{\text {hold }}$	E_{n} to LE	3.0		2.5		3.0		ns	Figures 3\& 4	
$t_{p w}(\mathrm{H})$	Pulse Width LE	2.5		2.0		5.0		ns	Figures 3 \& 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A 11 .
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry (TTL-to-ECL)

Note 1: $R_{t}=50 \Omega$ termination. When an input or output is being monitored by a scope, R_{t} is supplied by the scope's 50Ω resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_{t}.
Note 2: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 3: $V_{T T L}$ is decoupled to ground with $0.1 \mu \mathrm{~F}$ to ground, V_{EE} is decoupled to ground with $0.01 \mu \mathrm{~F}$ and V_{CC} is connected to ground.
Note 4: For ECL input pins, the equivelent force/sense circuitry is optional.
FIGURE 1. TTL-to-ECL AC Test Circuit

Switching Waveforms (TTL-to-ECL)

TL/F/10219-9
FIGURE 2. TTL to ECL Transition-Propagation Delay and Transition Times

Test Circuitry (ECL-to-TTL)

Note 1: $R_{t}=50 \Omega$ termination. When an input or output is being monitored by a scope, R_{t} is supplied by the scope's 50Ω resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_{t}.
Note 2: The TTL Tri-State pull up switch is connected to +7 V only for ZL and $L Z$ tests.
Note 3: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 4: $V_{T T L}$ is decoupled to ground with $0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{EE}}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and V_{CC} is connected to ground.
FIGURE 3. ECL-to-TTL AC Test Circuit

Switching Waveforms (ECL-to-TTL)

TL/F/10219-11
Note: DIR is LOW, and OE is HIGH
FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times

Note: DIR is LOW, LE is HIGH
TL/F/10219-14
FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

TL/F/10219-15
FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

Applications

FIGURE 7. Applications Diagram-MOS/TTL SRAM Interface Using 100328 ECL-TTL Latched Translator

100329

Low Power Octal ECL/TTL Bidirectional Translator with Register

General Description

The 100329 is an octal registered bidirectional translator designed to convert TTL logic levels to 100 K ECL logic levels and vice versa. The direction of the translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP) even though only one output is enabled at the time.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces the termination power and prevents loss of low state noise margin when several loads share the bus. The 100329 is designed with FAST ${ }^{\oplus}$ TTL output buffers, featuring optimal DC drive and capable of quickly charging
and discharging highly capacitive loads. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Bidirectional translation
- ECL high impedance outputs
- Registered outputs
- FAST TTL outputs
- TRI-STATE® outputs
\square Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
■ Available to MIL-STD-883

Ordering Code: See Section 6
Logic Symbol

TL/F/10583-1

Pin Names	Description
$E_{0}-E_{7}$	ECL Data I/O
$T_{0}-T_{7}$	TTL Data I/O
$O E$	Output Enable Input
$C P$	Clock Pulse Input
	(Active Rising Edge)
DIR	Direction Control Input

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams

TL/F/10583-3

24-Pin Quad Cerpak

TL/F/10583-4

Functional Diagram

Note: DIR and OE use ECL logic levels

Detail

TL/F/10583-6

Truth Table

OE	DIR	CP	ECL Port	TTL Port	Notes
L	L	X	Input	Z	1, 3
L	H	X	$\begin{aligned} & \text { LOW } \\ & \text { (Cut-Off) } \end{aligned}$	Input	2, 3
H	L	\sim	L	L	1
H	L	\sim	H	H	1
H	L	L	X	NC	1, 3
H	H	\sim	L	L	2
H	H	\checkmark	H	H	2
H	H	L	NC	X	2, 3

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
Z = High Impedance
$\Gamma=$ LOW-to-HIGH Clock Transition
$N C=$ No Change
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before CP.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (TSTG)
Maximum Junction Temperature (T_{j})

Ceramic

Plastic

$$
+150^{\circ} \mathrm{C}
$$

$V_{E E}$ Pin Potential to Ground Pin

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$V_{\text {TTL }}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+6.0 \mathrm{~V}
$$

ECL Input Voltage (DC)

$$
\mathrm{V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V}
$$

ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 3)
TTL Input Current (Note 3)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+175^{\circ} \mathrm{C}
\end{array}
$$

$-50 \mathrm{~mA}$ vice may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output in HIGH State
TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to TTL
Output in LOW State (Max)
Twice the Rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
ESD (Note 2)
$z 2000 \mathrm{~V}$

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ECL Supply Voltage (V_{EE})
-5.7 V to -4.2 V
TTL Supply Voltage ($\mathrm{V}_{\mathrm{TTL}}$)
+4.5 V to +5.5 V

Commercial Version

TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max) or V_{IL} (Min) Loading with 50Ω to $-2 V$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	
	Cutoff Voltage		-2000	-1950	mV	OE or DIR LOW, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}}$ (Max) or V_{IL} (Min) Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point HIGH	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Min) or V_{IL} (Max) Loading with 50Ω to -2 V
$V_{\text {OLC }}$	Output LOW Voltage Corner Point LOW			-1610	mV	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		5.0	V	Over $V_{\text {TTL }}, V_{E E}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
I_{H}	Input HIGH Current			70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
	Breakdown Test			1.0	mA	$\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$
IIL	Input LOW Current	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$
$\mathrm{V}_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$l_{\text {ee }}$	$\mathrm{V}_{\text {EE }}$ Supply Current	$\begin{aligned} & -189 \\ & -199 \end{aligned}$		$\begin{aligned} & -94 \\ & -94 \end{aligned}$	mA	LE LOW, OE and DIR HIGH Inputs Open $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.3	0.5	V	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			350	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$
$\mathrm{l}_{\text {OZHT }}$	TRI-STATE Current Output HIGH			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
${ }_{\text {IOZLT }}$	TRI-STATE Current Output LOW	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-150		-60	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
$I_{\text {TLL }}$	$\mathrm{V}_{\mathrm{TTL}}$ Supply Current			$\begin{aligned} & 74 \\ & 49 \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

DIP TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Max Toggle Frequency	350		350		350		MHz	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	CP to E_{n}	1.7	3.6	1.7	3.7	1.9	3.9	ns	Figures 1 \& 2
$t_{\text {PZH }}$	OE to E_{n} (Cutoff to HIGH)	1.3	4.2	1.5	4.4	1.7	4.8	ns	Figures 1\&2
${ }_{\text {tphz }}$	OE to E_{n} (HIGH to Cutoff)	1.5	4.5	1.6	4.5	1.6	4.6	ns	Figures 1\&2
${ }_{\text {tPHZ }}$	DIR to E_{n} (HIGH to Cutoff)	1.6	4.3	1.6	4.3	1.7	4.5	ns	Figures 1 \& 2
$t_{\text {set }}$	T_{n} to CP	1.1		1.1		1.1		ns	Figures 1\&2
$t_{\text {hold }}$	T_{n} to CP	1.7		1.7		1.9		ns	Figures 1\&2
$t_{\text {pw }}(H)$	Pulse Width CP	2.1		2.1		2.1		ns	Figures 1 \& 2
${ }^{t_{\text {TLH }}}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1 \& 2

Note: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Max Toggle Frequency	125		125		125		MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	CP to T_{n}	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3 \& 4
$t_{\text {PZH }}$ $t_{\text {PZL }}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} 8.45 \\ 9.2 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.95 \\ 9.2 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} 9.7 \\ 9.95 \end{gathered}$	ns	Figures 3 \& 5
$t_{\text {PHZ }}$ $t_{\text {PLZ }}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.95 \\ & 7.7 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{gathered} 8.95 \\ 8.7 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.1 \end{aligned}$	$\begin{gathered} 9.2 \\ 9.95 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} 8.2 \\ 7.45 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} 8.7 \\ 7.95 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.95 \\ 9.2 \end{gathered}$	ns	Figures 3 \& 6
$t_{\text {set }}$	E_{n} to CP	1.1		1.1		1.1		ns	Figures 3 \& 4
$t_{\text {hold }}$	E_{n} to CP	2.1		2.1		2.6		ns	Figures 3\&4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width CP	4.1		4.1		4.1		ns	Figures 3 \& 4

PCC and Cerpak TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TtL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Max Toggle Frequency	350		350		350		MHz	
$t_{\text {PLH }}$ ${ }_{\mathrm{t}}^{\mathrm{PHL}}$	CP to E_{n}	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1 \& 2
${ }_{\text {tPZH }}$	OE to E_{n} (Cutoff to HIGH)	1.3	4.0	1.5	4.2	1.7	4.6	ns	Figures 1\&2
tPHZ	OE to E_{n} (HIGH to Cutoff)	1.5	4.3	1.6	4.3	1.6	4.4	ns	Figures 1 \& 2
$t_{\text {PHZ }}$	DIR to E_{n} (HIGH to Cutoff)	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1\&2
$t_{\text {set }}$	T_{n} to CP	1.0		1.0		1.0		ns	Figures 1\&2
$t_{\text {hold }}$	T_{n} to CP	1.7		1.7		1.9		ns	Figures 1\&2
$t_{p w}(\mathrm{H})$	Pulse Width CP	2.0		2.0		2.0		ns	Figures 1\&2
${ }^{t}$ tiLh ${ }^{\text {t }}$ THL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1\&2
$\mathrm{t}_{\mathrm{OSHL}}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
$\mathrm{t}_{\mathrm{OSLH}}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
${ }_{\text {tost }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		650		650		650	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		650		650		650	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.

Commercial Version (Continued)

PCC and Cerpak ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Max Toggle Frequency	125		125		125		MHz	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$C P$ to T_{n}	3.1	7.0	3.1	7.0	3.3	7.5	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$	$\begin{gathered} 8.25 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{gathered} 9.5 \\ 9.75 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.75 \\ 7.5 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 3.4 \end{aligned}$	$\begin{gathered} 8.75 \\ 8.5 \end{gathered}$	3.5	$\begin{gathered} 9.0 \\ 9.75 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & \hline 2.7 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 7.25 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{gathered} 8.5 \\ 7.75 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.75 \\ 9.0 \end{gathered}$	ns	Figures 3 \& 6
$t_{\text {set }}$	E_{n} to CP	1.0		1.0		1.0		ns	Figures 3 \& 4
thold	E_{n} to CP	2.0		2.0		2.5		ns	Figures 3 \& 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width CP	4.0		4.0		4.0		ns	Figures 3 \& 4
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		600		600		600	ps	PCC Only (Note 1)
${ }^{\text {toSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		850		850		850	ps	PCC Only (Note 1)
${ }^{\text {tost }}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		1350		1350		1350	ps	PCC Only (Note 1)
tps	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		950		950		950	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tosLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.

Military Version
TTL-to-ECL DC Electrical Characteristics

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
	Cutoff Voltage		-1950	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	OE or DIR LOW		
			-1850	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	2.0		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
I_{H}	Input HIGH Current		70	$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1, 2, 3
	Breakdown Test		1.0	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$		
IIL	Input LOW Current	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$		1, 2, 3
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2		V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		1,2,3
$I_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Supply Current	$\begin{aligned} & -210 \\ & -220 \end{aligned}$	$\begin{array}{r} -70 \\ -70 \\ \hline \end{array}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	LE LOW, OE and DIR HIGH Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3

Military Version (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	Tc	Conditions	Notes
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$		mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TLL}}=4.50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TL}}=4.50 \mathrm{~V} \end{aligned}$	1,2,3
V_{OL}	Output LOW Voltage		0.5	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{IOL}^{\text {a }}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V}$	
V_{H}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All inputs	1, 2, 3, 4
${ }_{1}$	Input HIGH Current		350	$\mu \mathrm{A}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { o } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$	1, 2, 3
			500	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
IL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & \hline-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$	1,2,3
lozht	TRI-STATE Current Output HIGH		70	$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	1, 2, 3
lozlt	TRI-STATE Current Output LOW		-1.0	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$V_{\text {OUT }}=+0.5 \mathrm{~V}$	1, 2, 3
los	Output Short-Circuit Current	-150	-60	mA	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$	1,2,3
${ }^{1} \mathrm{TL}$	$\mathrm{V}_{\text {TrL }}$ Supply Current		$\begin{aligned} & 75 \\ & 50 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$

Military Version (Continued)
TTL-to-ECL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Max Toggle Frequency	250		250		250		MHz		4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	CP to E_{n}	1.3	3.8	1.6	3.7	1.9	4.3	ns	Figures 1 \& 2	
$\mathrm{t}_{\text {PZH }}$	OE to E_{n} (Cutoff to HIGH)	1.0	4.3	1.5	4.4	1.7	9.0	ns	Figures 1\&2	
$t_{\text {PHZ }}$	OE to E_{n} (HIGH to Cutoff)	1.5	5.0	1.6	4.5	1.6	5.0	ns	Figures 1\&2	
tpHz	DIR to E_{n} (HIGH to Cutoff)	1.6	4.7	1.6	4.3	1.7	4.7	ns	Figures 1\&2	
$\mathrm{t}_{\text {set }}$	T_{n} to CP	2.5		2.0		2.5		ns	Figures 1\&2	
$\mathrm{t}_{\text {hold }}$	T_{n} to CP	2.5		2.0		2.5		ns	Figures 1\&2	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width CP	2.5		2.0		2.5		ns	Figures 1\&2	4
$\begin{aligned} & t_{\top L H} \\ & t_{\top H L} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1\&2	

ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Max Toggle Frequency	200		200		100		MHz		4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	CP to T_{n}	3.1	8.0	3.1	7.3	3.3	8.0	ns	Figures 3 \& 4	1, 2, 3
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL }^{2} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.4 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 10.4 \end{aligned}$	ns	Figures 3 \& 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.1 \end{aligned}$	$\begin{gathered} 9.3 \\ 10.4 \end{gathered}$	ns	Figures 3 \& 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.6 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.6 \end{aligned}$	ns	Figures 3 \& 6	
$t_{\text {set }}$	E_{n} to CP	2.5		2.0		2.5		ns	Figures 3 \& 4	4
thold	E_{n} to CP	3.0		2.5		3.0		ns	Figures 3 \& 4	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width CP	2.5		2.5		5.0		ns	Figures 3 \& 4	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature latched only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry (TTL-to-ECL)

Note 1: $R_{T}=50 \Omega$ termination resistive load. When an input or output is being monitored by a scope, R_{T} is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_{T}.
Note 2: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 3: $V_{T T L}$ is decoupled to ground with $0.1 \mu \mathrm{~F}, \mathrm{~V}_{E E}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and $\mathrm{V}_{C C}$ is connected to ground.
FIGURE 1. TTL-to-ECL AC Test Circuit

TL/F/10583-9
FIGURE 2. TTL to ECL Transition-Propagation Delay and Transition Times

Test Circuitry (ECL-to-TTL)

Note 1: $R_{T}=50 \Omega$ termination resistive load. When an input or output is being monitored by a scope, R_{T} is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_{T}.
Note 2: The TTL TRI-STATE pull-up switch is connected to +7 V only for ZL and LZ tests.
Note 3: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 4; $V_{T T L}$ is decoupled to ground with $0.1 \mu \mathrm{~F}, \mathrm{~V}_{E E}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and $\mathrm{V}_{C C}$ is connected to ground
FIGURE 3. ECL-to-TTL AC Test Circuit

Note: DIR is LOW, OE is HIGH

FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times

FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

100331

Low Power Triple D Flip-Flop

General Description

The 100331 contains three D-type, edge-triggered master/ slave flip-flops with true and complement outputs, a Common Clock (CPC), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock (CP_{n}), Direct Set $\left(S D_{n}\right)$ and Direct Clear ($\left.C D_{n}\right)$ inputs. Data enters a master when both $C P_{n}$ and $C P_{C}$ are LOW and transfers to a slave when CP_{n} or CP_{C} (or both) go HIGH. The Master Set, Master Reset and individual CD_{n} and SD_{n} inputs override the Clock inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ $\mathbf{m} \%$ power reduction of the 100131

- 2000V ESD protection
- Pin/function compatible with 100131
. Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$C P_{0}-C P_{2}$	Individual Clock Inputs
$C P_{C}$	Common Clock Input
$\mathrm{D}_{0}-\mathrm{D}_{2}$	Data Inputs
$\mathrm{CD}_{0}-\mathrm{CD}_{2}$	Individual Direct Clear Inputs
SD_{n}	Individual Direct Set Inputs
MR	Master Reset Input
MS	Master Set Input
$\mathrm{Q}_{0}-\mathrm{Q}_{2}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{2}$	Complementary Data Outputs

TL/F/10262-1

Connection Diagrams

TL/F/10262-3

Logic Diagram

TL/F/10262-5
Truth Tables (Each Filip-Flop)

Inputs					Outputs
D_{n}	CP_{n}	CPc	$\begin{gathered} \mathrm{MS} \\ \mathbf{S D}_{\mathrm{n}} \end{gathered}$	$\begin{gathered} M R \\ C D_{\mathrm{n}} \end{gathered}$	$Q_{n}(t+1)$
L	\checkmark	L	L	L	L
H	\sim	L	L	L	H
L	L	\sim	L	L	L
H	L	Γ	L	L	H
X	L	L	L	L	Qn(t)
X	H	X	L	L	Qn(t)
X	X	H	L	L	Qn(t)

Asynchronous Operation

Inputs					
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P}_{\mathbf{n}}$	$\mathbf{C P} \mathbf{C}$	MS $\mathbf{S D}_{\mathbf{n}}$	MR $\mathbf{C D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}(\mathbf{t}+\mathbf{1})$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

H $=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$U=$ Undefined
$t=$ Time before CP Positive Transition
$t+1=$ Time after CP Positive Transition
$\Omega=$ LOW to HIGH Transition

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic

$$
+175^{\circ} \mathrm{C}
$$

Plastic

$$
+150^{\circ} \mathrm{C}
$$

Pin Potential to
Ground Pin (V_{EE}) $\quad-7.0 \mathrm{~V}$ to +0.5 V
Input Voltage (DC)
V_{EE} to +0.5 V
Output Current
(DC Output HIGH) $\quad-50 \mathrm{~mA}$
ESD (Note 2) $\leq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature (T_{C}) Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.5			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
1 IH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{IEE}^{\text {E }}$	Power Supply Current	-122		-65	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Continued)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions			
		Min	Max	Min	Max	Min	Max					
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3			
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{C} to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns	Figures 1 and 3			
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP_{n} to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns				
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.70	1.70	0.70	1.70	0.70	1.80	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	Figures 1 and 4		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$		0.70	2.00	0.70	2.00	0.70	2.00		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{H}$			
$t_{\text {PLH }}$ tpHL	Propagation Delay MS, MR to Output	1.10	2.60	1.10	2.60	1.10	2.60	ns	$\mathrm{CP}_{n}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$			
$t_{\text {PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$		1.10	2.80	1.10	2.80	1.10	2.80		$\mathrm{CP}_{n}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 3 and 4			
ts	Setup Time D_{n}	$\begin{aligned} & 0.40 \\ & 1.30 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.30 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.30 \\ & 2.30 \end{aligned}$		ns	Figure 5			
	$\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ (Release Time) MS, MR (Release Time)			Figure 4								
t_{H}	Hold Time D_{n}	0.5				0.5		0.7		ns	Figure 5	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}, \mathrm{CD}_{\mathrm{n}}$, $S D_{n}, M R, M S$	2.00		2.00		2.00		ns	Figures 3 and 4			

SOIC, PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Toggle Frequency	400		400		400		MHz	Figures 2 and 3	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP_{C} to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	Figures 1 and 3	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{n} to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ to Output	0.70	1.50	0.70	1.50	0.70	1.60	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	Figures 1 and 4
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$		0.80	1.80	0.70	1.80	0.70	1.80		$C P_{n}, C P_{C}=H$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.40	1.10	2.40	1.10	2.40	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$		1.10	2.60	1.10	2.60	1.10	2.60		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$	

Commercial Version (Continued)
SOIC, PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Continued)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions			
		Min	Max	Min	Max	Min	Max					
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1,3 3 and			
${ }^{\text {ts }}$	```Setup Time D CD MS, MR (Release Time)```	$\begin{aligned} & 0.30 \\ & 1.20 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.20 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.20 \\ & 2.20 \end{aligned}$		ns	Figure 5			
				Figure 4								
t_{H}	Hold Time D_{n}	0.5				0.5		0.7		ns	Figure 5	
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}, \mathrm{CD}_{\mathrm{n}}$, $S_{n}, M R, M S$	2.00		2.00		2.00		ns	Figures 3 and 4			
$\begin{aligned} & \hline \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{C} to Output	0.75	1.40	0.75	1.40	0.80	1.50	ns	Figures 1 and 3 PCC Only			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{n} to Output	0.70	1.40	0.75	1.40	0.80	1.50	ns				
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ to Output	0.70	1.50	0.70	1.50	0.80	1.60	ns	$\begin{aligned} & C P_{n}, C P_{C}=L \\ & P C C \text { Only } \end{aligned}$	Figures 1 and 4		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$		0.80	1.70	0.80	1.70	0.80	1.80		$\begin{aligned} & \mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H} \\ & \mathrm{PCC} \text { Only } \end{aligned}$			
$\overline{t P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MS, MR to Output	1.10	2.00	1.10	2.00	1.20	2.10	ns	$\begin{aligned} & \mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L} \\ & \mathrm{PCC} \text { Only } \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$		1.20	2.10	1.20	2.10	1.30	2.20		$\begin{aligned} & C P_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H} \\ & \mathrm{PCC} \text { Only } \end{aligned}$			
toshl	Maximum Skew Common Edge Output-to-Output Variation Common Clock to Output Path		100		100		100	ps	PCC Only (Note 1)			
toshl	Maximum Skew Common Edge Output-to-Output Variation CP_{n} to Output Path		235		235		235	ps	PCC Only (Note 1)			
tosth	Maximum Skew Common Edge Output-to-Output Variation Common Clock to Output Path		120		120		120	ps	PCC Only (Note 1)			
${ }^{\text {tosth }}$	Maximum Skew Common Edge Output-to-Output Variation $C P_{n}$ to Output Path		275		275		275	ps	PCC Only (Note 1)			
tost	Maximum Skew Opposite Edge Output-to-Output Variation Common Clock to Output Path		125		125		125	ps	PCC Only (Note 1)			
tost	Maximum Skew Opposite Edge Output-to-Output Variation $C P_{n}$ to Output Path		265		265		265	ps	PCC Only (Note 1)			
$t_{\text {ps }}$	Maximum Skew Pin (Signal) Transition Variation Common Clock to Output Path		90		90		90	ps	PCC Only (Note 1)			
t_{ps}	Maximum Skew Pin (Signal) Transition Variation $C P_{n}$ to Output Path		90		90		90	ps	PCC Only (Note 1)			

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OSt}}$). Parameters $\mathrm{t}_{\mathrm{OSt}}$ and t_{ps} guaranteed by design.

Industrial Version								
PCC DC Electrical Characteristics $V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note)								
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}}(\text { Max }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.5		0.5		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-122	-60	-122	-65	mA	Inputs Open	

. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		400		400		MHz	Figures 2 and 3	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CPC to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	Figures 1 and 3	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{n} to Output	0.70	1.80	0.75	1.80	0.75	1.80	ns		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.60	1.50	0.70	1.50	0.70	1.60	ns	$C P_{n}, C P_{C}=L$	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$		0.70	1.80	0.70	1.80	0.70	1.80		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{H}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.40	1.10	2.40	1.10	2.40	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$		1.10	2.60	1.10	2.60	1.10	2.60		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{H}$	
τ_{TLH} $\mathbf{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.40	0.35	1.10	0.35	1.10	ns	Figures 1, 3 and	
t_{5}	Setup Time D_{n}	1.00		0.30		0.30			Figure 5	
	$\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ (Release Time) MS, MR (Release Time)	1.50		$\begin{aligned} & 1.20 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.20 \\ & 2.20 \end{aligned}$		ns	Figure 4	
t_{H}	Hold Time D_{n}	0.7		0.5		0.7		ns	Figure 5	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}, \mathrm{CD}_{\mathrm{n}}$, $S D_{n}, M R, M S$	2.00		2.00		2.00		ns	Figures 3 and 4	

Military Version
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes
V_{OH}	Output HIGH Voitage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV -	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
VoLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for all Inputs		1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Guaranteed LOW Signal for all Inputs		1,2,3,4
$\mathrm{IfL}^{\text {L }}$	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3
${ }_{1} \mathrm{H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$			
$l_{\text {le }}$	Power Supply Current	-130	-50	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, 1, 2, 3, 7 and 8 .
Note 3: Sampled tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$. Temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuits

TL/F/10262-6
FIGURE 1. AC Test Circuit

FIGURE 2. Toggle Frequency Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and $\mathrm{L} 2=$ Equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 3. Propagation Delay (Clock) and Transition Times

TL/F/10262-9
FIGURE 4. Propagation Delay (Resets)

FIGURE 5. Data Setup and Hold Time
Note: t_{s} is the minimum time before the transition of the clock that information must be present at the data input
Note: t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

National
Semiconductor

100336

Low Power 4－Stage Counter／Shift Register

General Description

The 100336 operates as either a modulo－16 up／down coun－ ter or as a 4－bit bidirectional shift register．Three Select（ S_{n} ） inputs determine the mode of operation，as shown in the Function Select table．Two Count Enable（ $\overline{C E P}, \overline{C E T}$ ）inputs are provided for ease of cascading in multistage counters． One Count Enable（CET）input also doubles as a Serial Data $\left(D_{0}\right)$ input for shift－up operation．For shift－down operation， D_{3} is the Serial Data input．In counting operations the Termi－ nal Count（ $\overline{\mathrm{TC}}$ ）output goes LOW when the counter reaches 15 in the count／up mode or 0 （zero）in the count／down mode．In the shift modes，the TC output repeats the Q_{3} output．The dual nature of this $\overline{T C} / Q_{3}$ output and the $D_{0} /$ CET input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift－up operation．The individual Preset $\left(\mathrm{P}_{\mathrm{n}}\right)$ in－ puts are used to enter data in parallel or to preset the coun－
ter in programmable counter applications．A HIGH signal on the Master Reset（MR）input overrides all other inputs and asynchronously clears the flip－flops．In addition，a synchro－ nous clear is provided，as well as a complement function which synchronously inverts the contents of the flip－flops． All inputs have $50 \mathrm{k} \Omega$ pull－down resistors．

Features

－ 40% power reduction of the 100136
－2000V ESD protection
－Pin／function compatible with 100136
－Voltage compensated operating range $=$ -4.2 V to -5.7 V
－Available to industrial grade temperature range
Available to MIL－STD－883

Ordering Code：See Section 6

Logic Symbol

TL／F／10584－1

Pin Names	Description
CP	Clock Pulse Input
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input（Active LOW）
$\mathrm{D}_{0} / \overline{\mathrm{CET}}$	Serial Data Input／Count Enable Trickle Input（Active LOW）
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs
MR	Master Reset Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Preset Inputs
D_{3}	Serial Data Input
TC	Terminal Count Output
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{3}$	Complementary Data Outputs

Connection Diagrams

TL／F／10584－4

Logic Diagram

Function Select Table			
S_{2}	S_{1}	S_{0}	Function
L	L	L	Parallel Load
L	L	H	Complement
L	H	L	Shift Left
L	H	H	Shift Right
H	L	L	Count Down
H	L	H	Clear
H	H	L	Count Up
H	H	H	Hold

Truth Table

$Q_{0}=\mathrm{LSB}$

Inputs								Outputs					Mode
MR	S_{2}	S_{1}	S_{0}	CEP	$\mathrm{D}_{0} / \overline{\text { CET }}$	D_{3}	CP	\mathbf{Q}_{3}	\mathbf{Q}_{2}	Q_{1}	\mathbf{Q}_{0}	$\overline{T C}$	
L	L	L	L	X	X	x	\sim	P_{3}	P_{2}	P_{1}	P_{0}	L	Preset (Parallel Load)
L	L	L	H	X	X	X	\sim	\bar{Q}_{3}	\bar{Q}_{2}	\bar{Q}_{1}	\bar{Q}_{0}	L	Invert
L	L	H	L	X	X	X	\sim	D_{3}	Q_{3}	Q_{2}	Q_{1}	D_{3}	Shift to LSB
L	L	H	H	X	X	X	Γ	Q_{2}	Q_{1}	Q_{0}	D_{0}	$\mathrm{Q}_{3}{ }^{*}$	Shift to MSB
L	H	L	L	L	L	x	\checkmark		$\left.\mathrm{Q}_{0-3}\right)$	minus		(1)	Count Down
L	H	L	L	H	L	X	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	(1)	Count Down with $\overline{\mathrm{CEP}}$ not active
L	H	L.	L	X	H	X	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Count Down with CET not active
L	H	L	H	x	X	X	Γ	L	L	L	L	H	Clear
L	H	H	L	L	L	x	\checkmark		Q_{0-3}	plus 1		(2)	Count Up
L	H	H	L	H	L	x	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	(2)	Count Up with $\overline{C E P}$ not active
L	H	H	L	X	H	X	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Count Up with $\overline{\text { CET }}$ not active
L	H	H	H	X	X	X	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Hold
H	L	L	L	X	X	X	X	L	L	L	L	L	
H	L	L	H	X	X	X	x	L	L	L	L	L	
H	L	H	L	X	x	X	X	L	L	L	L	L	
H	L	H	H	X	X	X	X	L	L	L	L	L	
H	H	L	L	X	L	X	X	L	L	L	L	L	Asynchronous
H	H	L	L	X	H	X	X	L	L	L	L	H	
H	H	L	H	X	X	x	x	L	L	L	L	H	
H	H	H	L	X	X	X	X	L	L	L	L	H	
H	H	H	H	X	X	X	X	L	L	L	L	H	

(1) $=\mathrm{L}$ if $\mathrm{Q}_{0}-\mathrm{Q}_{3}=\mathrm{LLLL}$
*Before the clock, $\overline{T C}$ is Q_{3} H if $Q_{0}-Q_{3} \neq$ LLLL

After the clock, $\overline{T C}$ is Q_{2}
(2) $=\mathrm{L}$ if $\mathrm{Q}_{0}-\mathrm{Q}_{3}=\mathrm{HHHH}$ H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{HHHH}$
$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathcal{\sim}=$ LOW-to-HIGH Transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$

Ceramic

$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
VEE Pin Potential to Ground Pin

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

Input Voltage (DC)
Output Current (DC Output HIGH)
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
ESD (Note 2)
$\geq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functionat operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voitage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)	
$l_{\text {EE }}$	Power Supply Current	-165		-80		Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

DIP AC Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	300		300		300		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	1.00	2.00	1.00	2.00	1.00	2.00	ns	Figures 1 and 3 (Note 1)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to TC (Shift)	2.10	3.50	2.10	3.50	2.10	3.70	ns	Figures 1, 7, 8 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Count)	2.40	4.40	2.40	4.40	2.60	4.70	ns	Figures 1 and 9 (Note 1)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.40	2.50	1.40	2.50	1.50	2.60	ns	Figures 1 and 4 (Note 1)
tpLH t_{PHL}	Propagation Delay MR to $\overline{T C}$ (Count)	2.80	5.10	2.90	5.20	3.10	5.50	ns	Figures 1, 12 (Note 1)
${ }_{\text {tPHL }}$	Propagation Delay MR to TC (Shift)	2.40	4.00	2.40	4.00	2.50	4.10	ns	Figures 1, 10, 11 (Note 1)
${ }^{\text {tpLH}}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.80	3.10	1.80	3.10	1.90	3.30	ns	Figures 1 and 5
$t_{\text {PLH }}$ tphL	Propagation Delay S_{n} to $\overline{T C}$	1.90	4.10	1.90	4.10	2.10	4.40	ns	(Note 1)
${ }^{\mathrm{t}} \mathrm{t}$ LH $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3
ts	```Setup Time D P D}/\overline{CET CEP Sn MR (Release Time)```	$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \end{aligned}$		ns	Figures 6 and 4
${ }^{\text {H }} \mathrm{H}$	$\begin{aligned} & \text { Hold Time } \\ & \mathrm{D}_{3} \\ & \mathrm{P}_{\mathrm{n}} \\ & \mathrm{D}_{0} / \overline{\mathrm{CET}} \\ & \overline{\mathrm{CEP}} \\ & \mathrm{~S}_{\mathrm{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \end{aligned}$		ns	Figure 6
$t_{p w}(H)$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Commercial Version (Continued)

SOIC, PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	$\boldsymbol{M a x}$	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	350		350		350		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	1.00	1.80	1.00	1.80	1.00	1.80	ns	Figures 1 and 2 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to $\overline{T C}$ (Shift)	2.10	3.30	2.10	3.30	2.10	3.50	ns	Figures 1, 7, 8 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC (Count)	2.40	4.20	2.40	4.20	2.60	4.50	ns	Figures 1 and 9 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.40	2.30	1.40	2.30	1.50	2.40	ns	Figures 1 and 4 (Note 2)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay MR to TC (Count)	2.80	4.90	2.90	5.00	3.10	5.30	ns	Figures 1 and 12 (Note 2)
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	2.40	3.80	2.40	3.80	2.50	3.90	ns	Figures 1, 10, 11 (Note 2)
$t_{\text {PLH }}$ tphL	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.80	2.90	1.80	2.90	1.90	3.10	ns	Figures 1 and 5
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{T C}$	1.90	3.90	1.90	3.90	2.10	4.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 3
ts	Setup Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ CEP S_{n} MR (Release Time)	$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		ns	Figures 4 and 6
t_{H}	Hold Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ CEP S_{n}	$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \\ & \hline \end{aligned}$		ns	Figure 6
$t_{p w}(H)$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4
toshl	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		200		200		200	ps	PCC Only (Note 1)
${ }^{\text {toseh }}$	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		200		200		200	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		230		230		230	ps	PCC Only (Note 1)
$t_{\text {ps }}$	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		245		245		245	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tOST). Parameters $\mathrm{t}_{\mathrm{OSt}}$ and t_{ps} guaranteed by design
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Industrial Version
PCC DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
IH_{H}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-165	-75	-165	-80	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued) PCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	325		350		350		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	1.00	1.80	1.00	1.80	1.00	1.80	ns	Figures 1 and 3 (Note 1)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to TC (Shift)	2.00	3.30	2.10	3.30	2.10	3.50	ns	Figures 1, 7, 8 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{\mathrm{TC}}$ (Count)	2.40	4.20	2.40	4.20	2.60	4.50	ns	Figures 1 and 9 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.40	2.30	1.40	2.30	1.50	2.40	ns	Figures 1 and 4 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to TC (Count)	2.80	4.90	2.90	5.00	3.10	5.30	ns	Figures 1 and 12 (Note 1)
${ }_{\text {tphL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	2.40	3.80	2.40	3.80	2.50	3.90	ns	Figures 1, 10, 11 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.70	2.90	1.80	2.90	1.90	3.10	ns	Figures 1 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $S_{n} \text { to } \overline{T C}$	1.80	3.90	1.90	3.90	2.10	4.20	ns	Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.90	0.35	1.10	0.35	1.10	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\overline{C E P}$ S_{n} MR (Release Time)	$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \\ & \hline \end{aligned}$		ns	Figure 6
t_{h}	Hold Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\overline{C E P}$ S_{n}	$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \end{aligned}$		ns	Figure 6
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.20		2.00		2.00		ns	Figures 3 and 4

PCC AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1,2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
${ }_{1 / H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	$\begin{aligned} & -185 \\ & -195 \end{aligned}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } \end{aligned}$	$\begin{array}{r} -4.8 \mathrm{~V} \\ -5.7 \mathrm{~V} \end{array}$	1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stablize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input conditon and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued) AC Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {shift }}$	Shift Frequency	325		325		325		MHz	Figures 2 and 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.40	2.30	0.50	2.20	0.40	2.50	ns	Figures 1 and 3	1, 2, 3, 5
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to TC (Shift)	1.30	3.90	1.70	3.80	1.70	4.20	ns	Figures 1, 7, 8	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC (Count)	1.20	4.60	1.50	4.60	1.60	5.20	ns	Figures 1 and 9	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	0.60	2.90	0.80	2.80	0.90	3.20	ns	Figures 1 and 4	1,2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to TC (Count)	2.30	5.20	2.70	5.20	2.90	5.90	ns	Figures 1, 12	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to TC (Shift)	2.10	4.30	2.20	4.10	2.40	4.70	ns	Figures 1, 10, 11	1,2,3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	0.70	3.20	1.00	3.20	1.30	4.10	ns	Figures 1 and 5	1,2,3,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{TC}}$	1.30	4.10	1.50	4.20	1.70	4.90	ns		
${ }^{t} \boldsymbol{T}$ LH ${ }^{\text {t }}{ }_{\text {THL }}$	$\begin{array}{\|l\|} \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ \hline \end{array}$	0.20	1.90	0.20	1.80	0.20	2.00	ns	Figures 1 and 3	4
t_{s}	Setup Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\overline{C E P}$ S_{n} MR (Release Time)	$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \\ & \hline \end{aligned}$		ns	Figure 6	4
t_{h}	$\begin{array}{\|l} \text { Hold Time } \\ D_{3} \\ P_{n} \\ D_{0} / \overline{C E T} \\ \overline{C E P} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \end{aligned}$		ns	Figure 6	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\begin{array}{rr}\text { CP } \\ & \text { MR }\end{array}$	$\begin{aligned} & 1.60 \\ & 2.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 2.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 2.00 \end{aligned}$		ns	Figures 3 and 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold tempertures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroups A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroups A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circuit

FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Notes:

For shift right mode, +1.05 V is applied at S_{0}.
The feedback path from output to input should be as short as possible.

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Reset)

Switching Waveforms (Continued)

FIGURE 5. Propagation Delay (Serial Data, Selects)

Notes:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input. t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 6. Setup and Hold Time

Note: Shift Right Mode; $S_{0}=H, S_{1}=H, S_{2}=L$.
FIGURE 7. Propagation Delay, Clock to Terminal Count (Shift Right Mode)

Switching Waveforms (Continued)

TL/F/10584-17

Note:

*Decimal representation of binary outputs.
Count Up: $S_{0}=L, S_{1}=H, S_{2}=H$; Count Down: $S_{0}=L, S_{1}=L, S_{2}=H$.
Measurement taken at 50% point of waveform.
FIGURE 9. Propagation Delay, Clock to Terminal Count (Count Up and Count Down Modes)

TL/F/10584-18
Note: Shift Right Mode; $\mathrm{S}_{0}=\mathrm{H}, \mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{2}=\mathrm{L}$.
FIGURE 10. Propagation Delay, Master Reset to Terminal Count (Shift Right Mode)

Switching Waveforms (Continued)

Note: Shift Left Mode; $S_{0}=L, S_{1}=H, S_{2}=L$.
FIGURE 11. Propagation Delay, Master Reset to Terminal Count (Shift Left Mode)

Note:
*Decimal representation of binary outputs. Count Up Mode: $S_{0}=\mathrm{L}, \mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{2}=\mathrm{H}$.

TL/F/10584-21
Note:
*Decimal representation of binary outputs. Count Down Mode: $S_{0}=\mathrm{L}, \mathrm{S}_{1}=\mathrm{L}, \mathrm{S}_{2}=\mathrm{H}$.
FIGURE 12. Propagation Delay, Master Reset to Terminal Count (Count Up and Count Down Modes)

Applications

3-Stage Divider, Preset Count Down Mode

Note: If $S_{0}=S_{1}=S_{2}=$ LOW, then $T_{C}=$ LOW
TL/F/10584-12

TL/F/10584-13

Fast Expansion Scheme

100341

Low Power 8-Bit Shift Register

General Description

The 100341 contains eight edge-triggered, D-type flip-flops with individual inputs $\left(P_{n}\right)$ and outputs $\left(Q_{n}\right)$ for parallel operation, and with serial inputs $\left(D_{n}\right)$ and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.
The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ 35% power reduction of the 100141

- 2000 V ESD protection

■ Pin/function compatible with 100141
■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
■ Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$C P$	Clock Input
S_{0}, S_{1}	Select Inputs
D_{0}, D_{7}	Serial Inputs
$P_{0}-P_{7}$	Parallel Inputs
$Q_{0}-Q_{7}$	Data Outputs

TL/F/9880-1

Connection Diagrams

\author{
24-Pin DIP/SOIC

TL/F/9880-4

TL/F/9880-3

Logic Diagram

Truth Table

Function	Inputs					Outputs							
	D_{7}	D_{0}	S_{1}	S_{0}	CP	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	\mathbf{Q}_{2}	Q_{1}	Q_{0}
Load Register	X	X	L	L	Γ	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
Shift Left Shift Left	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\stackrel{J}{\Omega}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & Q_{4} \\ & Q_{4} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$
Shift Right Shift Right	$\begin{aligned} & \text { L } \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\widetilde{r}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{7} \\ & Q_{7} \end{aligned}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{4} \\ & \mathrm{Q}_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$
Hold Hold Hold	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	X X X	H X X	$\begin{aligned} & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	No Change							

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
$\Gamma=$ LOW-to-HIGH Transition

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximumi Junction Temperature (T_{J})	
Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	$-50 \mathrm{~mA}$
ESD (Note 2)	$\geq 2000 \mathrm{~V}$

ESD (Note 2)
$\geq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{VOL}^{\text {O}}$	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -157 \\ & -167 \end{aligned}$		$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Recommended Operating Conditions

Case Temperature (T_{C}) Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
Supply Voltage (VEE)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version (Continued)
DIP AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\max }$	Max Clock Frequency	400		400		400		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.90	1.90	1.00	2.00	1.00	2.10	ns	Figures 1 and 3 (Note 1)
$t_{T L H}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1 and 3
ts	Setup Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		ns	Figure 4
${ }^{\text {th }}$	Hold $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Note 1: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

SOIC, PCC and Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	425		425		425		MHz	Figures 2 and 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Output	0.90	1.70	1.00	1.80	1.00	1.90	ns	Figures 1 and 3 (Note 2)
${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{L}} \mathrm{H}$ $t_{\text {THL }}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3
ts_{5}	Setup Time D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.55 \\ & 1.50 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.55 \\ 1.50 \\ \hline \end{array}$		$\begin{aligned} & 0.55 \\ & 1.50 \\ & \hline \end{aligned}$		ns	Figure 4
${ }^{\text {th }}$	Hold Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3
$\mathrm{t}_{\text {OSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		200		200		200	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		200		200		200	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		250		250		250	ps	PCC Only (Note 1)
$t_{\text {ps }}$	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		250		250		250	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHD), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and t_{ps} guaranteed by design
Note 2: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Industrial Version

PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for all Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for all Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL. }}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$	
$l_{\text {IE }}$	Power Supply Current	$\begin{aligned} & -157 \\ & -167 \end{aligned}$	$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & -157 \\ & -167 \end{aligned}$	$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued) PCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	425		425		425		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{t}} \end{aligned}$	Propagation Delay CP to Output	0.90	1.80	1.00	1.80	1.00	1.90	ns	Figures 1 and 3 (Note 1)
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.90	0.35	1.20	0.35	1.20	ns	Figures 1 and 3
t_{s}	Setup Time $\begin{gathered} D_{n}, P_{n} \\ S_{n} \\ \hline \end{gathered}$	$\begin{aligned} & 0.60 \\ & 1.70 \end{aligned}$		$\begin{aligned} & 0.55 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.55 \\ & 1.50 \\ & \hline \end{aligned}$		ns	Figure 4
t_{n}	Hold Time $D_{n}, P_{n},$	$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH \quad CP	2.00		2.00		2.00		ns	Figure 3

Note 1: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Military Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input LOW Current	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1,2,3,4	
ILL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \\ & \hline \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H }}$	Input High Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
${ }^{\text {IEE }}$	Power Supply Current	$\begin{aligned} & -168 \\ & -178 \end{aligned}$	$\begin{aligned} & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3	

[^1]
Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	400		400		300		MHz	Figures 2 and 3	4
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Output	0.50	2.50	0.70	2.30	0.70	2.80	ns	Figures 1 and 3	1, 2, 3, 5
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.90	0.30	1.80	0.30	1.90	ns		4
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.60 \\ & 1.70 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.40 \end{aligned}$		ns	Figure 4	
t_{h}	Hold Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		ns		
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Test Circuitry

FIGURE 1. AC Test Circuit

TL/F/9880-7
For shift right mode pulse generator connected to S_{0} is moved to S_{1}.
Pulse generator connected to S_{1} has a LOW frequency 99% duty cycle, which allows occasional parallel load. The feedback path from output to input should be as short as possible.

FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Switching Waveforms

FIGURE 3. Propagation Delay and Transition Times

Notes:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

TL/F/9880-9
FIGURE 4. Setup and Hold Times

100343

Low Power 8-Bit Latch

General Description

The 100343 contains eight D-type latches, individual inputs, $\left(D_{n}\right)$, outputs $\left(Q_{n}\right)$, a common enable pin (\bar{E}), and a latch enable pin ($\overline{L E}$). A Q output follows its D input when both \bar{E} and $\overline{\mathrm{LE}}$ are LOW. When either $\overline{\mathrm{E}}$ or $\overline{\mathrm{LE}}$ (or both) are HIGH, a latch stores the last valid data present on its D input prior to \bar{E} or $\overline{\text { LE }}$ going HIGH.
The 100343 outputs are designed to drive a 50Ω termination resistor to -2.0 V . All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low power operation
- 2000 V ESD protection

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
\bar{E}	Enable Input
$\overline{L E}$	Latch Enable Input
$Q_{0}-Q_{7}$	Data Inputs
$N C$	No Connect

TL/F/10250-1

Connection Diagrams

Logic Diagram

TL/F/10250-5
Truth Table

Inputs			Outputs
D_{n}	$\overline{\mathrm{E}}$	LE	Q_{n}
L	L	L	L
H	L	L	H
X	H	X	Latched*
X	X	H	Latched*

*Retains data present before either $\overline{L E}$ or \bar{E} went HIGH
$H=$ HIGH voltage level
$L=$ LOW voltage level
X = Dont's care

Absolute Maximum Ratings
Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic
Plastic
$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature $\left(T_{C}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
lee	Power Supply Current	$\begin{aligned} & -95 \\ & -97 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	0.80	2.00	0.80	2.00	0.80	2.20	ns	Figures 1, 2, 3 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{LE}}, \overline{\mathrm{E}}$ to Output	1.40	2.90	1.40	2.90	1.60	3.10	ns	Figures 1, 2, 3 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1,3
t_{5}	Setup Time $D_{0}-D_{7}$	1.0		1.0		1.1		ns	Figures 1, 4
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.1		0.1		0.1		ns	Figures 1, 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 1,4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)
PCC and Cerpack AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay D_{n} to Output	0.80	1.80	0.80	1.80	0.80	2.00	ns	Figures 1, 2, 3 (Note 2)
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{LE}}, \overline{\mathrm{E}}$ to Output	1.40	2.70	1.40	2.70	1.60	2.90	ns	Figures 1, 2, 3 (Note 2)
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 3
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.90		0.90		1.00		ns	Figures 1, 4
$t_{\text {h }}$	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.0		0.0		0.0		ns	Figures 1, 4
$t_{p w}(H)$	Pulse Width HIGH $\overline{\text { LE, E }}$	2.00		2.00		2.00		ns	Figures 1, 4
${ }^{\text {toshl }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		340		340		340	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		440		440		440	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		480		480		480	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		300		300		300	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (OOSHD, or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tOST). Parameters tost and tps guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
I_{H}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$l_{\text {E }}$	Power Supply Current	$\begin{aligned} & -95 \\ & -97 \end{aligned}$	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & -95 \\ & -97 \end{aligned}$	$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	$\mathrm{T}_{\mathbf{C}}$	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
I_{EE}	Power Supply Current	$\begin{array}{r} -100 \\ -105 \\ \hline \end{array}$	$\begin{aligned} & -35 \\ & -35 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -55 \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3	
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$\mathrm{I}_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -100 \\ & -105 \end{aligned}$	$\begin{array}{r} -35 \\ -35 \\ \hline \end{array}$	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } \end{aligned}$		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)											
AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$											
Symbol	Parameter		$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
			Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation D_{n} to Output		0.50	2.70	0.50	2.30	0.50	2.80	ns	Figures 1, 2, 3	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation $\overline{L E}, \bar{E}$ to Ou		0.90	3.40	1.0	3.10	1.10	3.90	ns	Figures 1, 2, 3	1, 2, 3, 5
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Transition } \mathrm{Ti} \\ \text { 20\% to } 80 \% \\ \hline \end{array}$	b to 20\%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
$\mathrm{t}_{\text {s }}$	Setup Time	$\mathrm{D}_{0}-\mathrm{D}_{7}$	0.60		0.60		0.60		ns	Figures 1,4	4
t_{n}	Hold Time	$\mathrm{D}_{0}-\mathrm{D}_{7}$	1.50		1.50		1.70		ns	Figures 1, 4	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width	[E, E	2.40		2.40		2.40		ns	Figures 1,4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 2. Propagation Delays

FIGURE 3. Propagation and Transition Times

FIGURE 4. Setup, Hold and Pulse Width Times

100344

Low Power 8-Bit Latch with Cut-Off Drivers

General Description

The 100344 contains eight D-type latches, individual inputs $\left(D_{n}\right)$, outputs $\left(Q_{n}\right)$, a common enable pin (\bar{E}), latch enable ($\overline{L E}$), and output enable pin ($\overline{\mathrm{OEN}}$). A Q output follows its D input when both \bar{E} and $\overline{L E}$ are LOW. When either \bar{E} or $\overline{L E}$ (or both) are HIGH, a latch stores the last valid data present on its D input prior to \bar{E} or $\overline{L E}$ going HIGH.
A HIGH on $\overline{O E N}$ holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100344 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ Cut-off drivers

- Drives 25Ω load
- Low power operation
- 2000 V ESD protection
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
\bar{E}	Enable Input
$\overline{L E}$	Latch Enable Input
$\overline{O E N}$	Output Enable Input
$Q_{0}-Q_{7}$	Data Outputs

Connection Diagrams

Logic Diagram

TL/F/9883-5
Truth Table

Inputs				Outputs
$\mathbf{D}_{\mathbf{n}}$	$\overline{\mathbf{E}}$	$\overline{\mathrm{LE}}$	$\overline{\mathbf{O E N}}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	L	L	L
H	L	L	L	H
X	H	X	L	Latched *
X	X	H	L	Latched *
X	X	X	H	Cutoff 2

*Retains data present before either $\overline{E E}$ or \bar{E} go HIGH.
H = HIGH Voltage level
L = LOW Voltage level
Cutoff = lower-than-LOW state
X = Don't Care

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature ($T_{\text {STG }}$)
Maximum Junction Temperature (T_{J})

Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
\begin{array}{r}
+175^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\
-100 \mathrm{~mA}
\end{array}
$$

Note 1: Absolute maximum ratings are those values beyond which vice may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
Industrial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ}$
Military
Supply Voltage (V_{EE})
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage			-1950	mV	$\begin{aligned} & V_{I N}=V_{I H}(M i n) \\ & \text { or } V_{\text {IL }}(\operatorname{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
lee	Power Supply Current	$\begin{aligned} & -178 \\ & -185 \end{aligned}$		$\begin{array}{r} -85 \\ -85 \\ \hline \end{array}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay D_{n} to Output	0.90	2.10	0.90	2.10	1.00	2.30	ns	Figures 1, 2 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	1.60	3.10	1.60	3.10	1.80	3.40	ns	Figures 1, 4 (Note 1)
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{\text { OEN }}$ to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	4.20 2.70	1.60 1.00	4.20 2.70	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 1, 2 (Note 1)
${ }^{\text {t }}$ tLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1,3

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)
DIP AC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
ts	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	1.00		1.00		1.10		ns	Figures 1,3
t_{H}	Hold Time $D_{0}-D_{7}$	0.10		0.10		0.10		ns	Figures 1, 3
$t_{p w}(H)$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.00		2.00		2.00		ns	Figures 1, 3

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	0.90	1.90	0.90	1.90	1.00	2.10	ns	Figures 1, 2 (Note 2)
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	1.60	2.90	1.60	2.90	1.80	3.20	ns	Figures 1, 4 (Note 2)
$\begin{aligned} & \mathrm{tpZH}^{\prime} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.50 \\ \hline \end{array}$	ns	Figures 1, 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 3
ts	Setup Time $D_{0}-D_{7}$	0.90		0.90		1.00		ns	Figures 1, 3
${ }_{\text {th }}$	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.00		0.00		0.00		ns	Figures 1, 3
$t_{p w}(\mathrm{H})$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.00		2.00		2.00		ns	Figures 1, 3
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
${ }_{\text {tps }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		230		230		230	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged
device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OST}}$ and t_{ps} guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}}(\text { Min }) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }} \text { (Max) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage		-1950	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(M I N) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$	1,2, 3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & \hline-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1,2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
${ }_{\mathrm{I}}^{\mathrm{H}}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -195 \\ & -205 \end{aligned}$	$\begin{array}{r} -65 \\ -65 \\ \hline \end{array}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to	$\begin{aligned} & 4.8 \mathrm{~V} \\ & 5.7 \mathrm{~V} \end{aligned}$	1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	0.50	2.60	0.70	2.60	0.70	3.10	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	0.80	3.30	1.00	3.30	1.10	3.80	ns	Figures 1, 4	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{array}{r} 1.00 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.60 \\ 3.00 \\ \hline \end{array}$	$\begin{array}{r} 1.10 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.20 \\ 2.80 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.20 \\ & \hline \end{aligned}$	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
$\mathrm{t}_{\text {s }}$	Setup Time $D_{0}-D_{7}$	1.50		1.50		1.70		ns	Figures 1, 3	4
t_{n}	Hold Time $D_{0}-D_{7}$	0.60		0.60		0.60		ns	Figures 1, 3	4
$t_{p w}(H)$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.40		2.40		2.40		ns	Figures 1, 3	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data)
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching
Test Circuitry

TL/F/9883-6

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Propagation Delay and Cutoff Times

FIGURE 3. Setup, Hold and Pulse Width Times

FIGURE 4. Propagation Delay $\overline{L E}, \bar{E}$ to \mathbf{Q}

100350
 Low Power Hex D-Latch

General Description

The 100350 contains six D-type latches with true and complement outputs, a pair of common Enables (\bar{E}_{a} and \bar{E}_{b}), and a common Master Reset (MR). A Q output follows its D input when both \bar{E}_{a} and \bar{E}_{b} are LOW. When either \bar{E}_{a} or \bar{E}_{b} (or both) are HIGH, a latch stores the last valid data present on its D input before \bar{E}_{a} or \bar{E}_{b} went HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ 20\% power reduction of the 100150

- 2000V ESD protection
- Pin/function compatible with 100150
- Voltage compensated operating range $=$ -4.2 V to -5.7 V

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
\bar{E}_{a}, \bar{E}_{b}	Common Enable Inputs (Active LOW)
$M R$	Asynchronous Master Reset Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary Data Outputs

Connection Diagrams

Logic Diagram

TL/F/9884-4
Truth Tables (Each Latch)

Inputs				Outputs
D_{n}	$\bar{E}_{\mathbf{a}}$	\bar{E}_{b}	MR	$\mathbf{Q}_{\boldsymbol{n}}$
L	L	L	L	L
H	L	L	L	H
X	H	X	L	Latched*
X	X	H	L	Latched*

Asynchronous Operation

Inputs				Outputs
$D_{\mathbf{n}}$	$\overline{\mathbf{E}}_{\mathbf{a}}$	$\overline{\mathbf{E}}_{\mathbf{b}}$	MR	$\mathbf{Q}_{\boldsymbol{n}}$
X	X	X	H	L

*Retains data present before \bar{E} positive transition
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
Military
Supply Voltage (VE)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
${ }_{\mathrm{ILH}}$	Input HIGH Current $\begin{array}{r} M R \\ \bar{E}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}} \\ \hline \end{array}$			$\begin{aligned} & 240 \\ & 240 \\ & 240 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -89 \\ & -93 \end{aligned}$		$\begin{aligned} & -44 \\ & -44 \end{aligned}$	mA	Inputs Open $V_{E E}=-4.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$	4.8V 5.7V

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathbf{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.40	0.50	1.40	0.50	1.50	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{E}_{\mathrm{a}}, \bar{E}_{\mathrm{b}}$ to Output	0.75	1.85	0.75	1.85	0.75	2.05	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.90	2.10	0.90	2.10	0.90	2.10	ns	Figures 1 and 3
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1 and 2
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 1.00 \\ & 1.60 \\ & \hline \end{aligned}$		$\begin{array}{r} 1.00 \\ 1.60 \\ \hline \end{array}$		$\begin{array}{r} 1.00 \\ 1.60 \\ \hline \end{array}$		ns	Figures 3 and 4
t_{n}	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.40		0.40		0.40		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	$\begin{aligned} & \text { Pulse Width LOW } \\ & \bar{E}_{a}, \bar{E}_{b} \\ & \hline \end{aligned}$	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

PCC and Cerpak AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.20	0.50	1.20	0.50	1.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	1.65	0.75	1.65	0.75	1.85	ns	
tPLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	0.90	1.90	0.90	1.90	0.90	1.90	ns	Figures 1 and 3
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		ns	Figures 3 and 4
t_{n}	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.30		0.30		0.30		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	$\begin{aligned} & \text { Pulse Width LOW } \\ & \overline{\mathrm{E}}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}} \\ & \hline \end{aligned}$	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

Military Version—Preliminary
DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
V OLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
I_{H}	Input HIGH Current $\begin{array}{r} M R \\ \bar{E}_{a}, \bar{E}_{\mathrm{b}} \\ \hline \end{array}$		$\begin{aligned} & 300 \\ & 250 \\ & 520 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2,3	
			$\begin{aligned} & 450 \\ & 350 \\ & 750 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-138	-64	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ tpHL	Propagation Delay D_{n} to Output (Transparent Mode)	0.45	1.50	0.50	1.40	0.50	1.50	ns	Figures 1 and 2	1,2,3
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	2.05	0.75	1.85	0.75	2.05	ns		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	0.80	2.40	0.90	2.40	0.90	2.60	ns	Figures 1 and 3	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.60	ns	Figures 1 and 2	
ts	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.70 \\ & 2.10 \end{aligned}$		$\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$		$\begin{aligned} & 0.70 \\ & 2.10 \end{aligned}$		ns	Figures 1 and 2	4
t_{H}	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.70		0.70		0.70		ns	Figure 4	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW \bar{E}_{a}, \bar{E}_{b}	2.00		2.00		2.00		ns	Figure 2	
$t_{\text {pw }}(\mathrm{L})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temp., Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuit

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/9884-6
FIGURE 2. Enable Timing

Switching Waveforms (Continued)

FIGURE 3. Reset Timing

Notes:
t_{s} is the minimum time before the transition of the enable that information must be present at the data input. th is the minimum time after the transition of the enable that information must remain unchanged at the data input.

> FIGURE 4. Data Setup and Hold Time

100351

Low Power Hex D Flip-Flop

General Description

The 100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs $\left(\mathrm{CP}_{\mathrm{a}}\right.$ and $\left.\mathrm{CP}_{\mathrm{b}}\right)$ and common Master Reset (MR) input. Data enters a master when both CP_{a} and CP_{b} are LOW and transfers to the slave when CP_{a} and CP_{b} (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pull-

Features

- 40% power reduction of the 100151
- 2000 V ESD protection

E Pin/function compatible with 100151

- Voltage compensated operating range:
-4.2 V to -5.7 V
■ Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
$C P_{a}, C P_{b}$	Common Clock Inputs
$M R$	Asynchronous Master Reset Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-Q_{5}$	Complementary Data Outputs

Connection Diagrams

TL/F/9885-3

24-Pin Quad Cerpak

TL/F/9885-2

Logic Diagram

TL/F/9885-4

Truth Tables (Each Flip-flop)

Synchronous Operation				
Inputs				Outputs
D_{n}	$\mathrm{CPa}_{\mathrm{a}}$	$\mathrm{CP}_{\text {b }}$	MR	$\mathbf{Q}_{\mathbf{n}}(\mathbf{t}+1)$
L	\sim	L	L	L
H	\sim	L	L	H
L	L	$\widetilde{\sim}$	L	L
H	L	Γ	L	H
X	H	$\widetilde{ }$	L.	$Q_{n}(t)$
X	\sim	H	L	$Q_{n}(t)$
X	L	L	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$

Asynchronous Operation

Inputs				Outputs
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P}$	$\mathbf{C P}_{\mathbf{b}}$	$\mathbf{M R}$	$\mathbf{Q}_{\mathbf{n}}(\mathbf{t}+\mathbf{1})$
X	X	X	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$t=$ Time before CP positive transition
$\mathbf{t + 1}=$ Time after CP positive transition
$\Omega=$ LOW-to-HIGH transition

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)
$$
-50 \mathrm{~mA}
$$
ESD (Note 2)
$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$
$\geq 2000 \mathrm{~V}$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Cond	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
${ }_{1 / \mathrm{H}}$	Input HIGH Current MR $D_{0}-D_{5}$ $C P_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$			$\begin{aligned} & 350 \\ & 240 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
lee	Power Supply Current	-129		-62	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1 and 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1 and 4
${ }^{\mathrm{t}} \mathrm{t} \mathrm{LH}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3

Commercial Version (Continued) DIP AC Electrical Characteristics (Continued) $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
ts	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		ns	Figure 5
									Figure 4
t_{H}	Hold Time $D_{0}-D_{5}$	0.80		0.80		0.80		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH $C P_{a}, C P_{b}, M R$	2.00		2.00		2.00		ns	Figures 3 and 4

SOIC, PCC and Cerpak AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1 and 4
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		ns	Figure 5 Figure 4
t_{H}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.80		0.80		0.80		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}, \mathrm{MR}$	2.00		2.00		2.00		ns	Figures 3 and 4
toshl	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		220		220		220	ps	PCC only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		210		210		210	ps	PCC only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		240		240		240	ps	PCC only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		230		230		230	ps	PCC only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OSt}}$ and t_{PS} guaranteed by design.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610			
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\begin{array}{r} \mathrm{MR} \\ \mathrm{D}_{0}-\mathrm{D}_{5} \\ \mathrm{CP}_{\mathrm{a}}, \mathrm{CP} \end{array}$		$\begin{aligned} & 350 \\ & 240 \\ & 350 \end{aligned}$		$\begin{aligned} & 350 \\ & 240 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-129	-62	-129	-62	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
ts	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		ns	Figure 5 Figure 4
t_{H}	Hold Time $D_{0}-D_{5}$	0.60		0.90		0.90		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$	2.00		2.00		2.00		ns	Figures 3 and 4

Military Version-Preliminary

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }}(\text { Min }) \end{aligned}$	L.oading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1,2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-4.2 V \\ & V_{I N}=V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
I_{H}	$\begin{array}{r} \text { Input HIGH Current } \\ \text { CP, MR } \\ \mathrm{D}_{0}-\mathrm{D}_{5} \\ \hline \end{array}$		$\begin{array}{r} 350 \\ 240 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(M a x) \end{aligned}$		1,2,3	
	$\begin{gathered} C P, M R \\ D_{0}-D_{5} \end{gathered}$		$\begin{aligned} & 500 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-135	-50	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3	4
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.50	2.40	0.60	2.20	0.60	2.60	ns	Figures 1 and 3	1, 2, 3
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.70	2.70	0.80	2.60	0.80	2.90	ns	Figures 1 and 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.60	0.20	1.60	0.20	1.60	ns	Figures 1 and 3	
$\mathrm{t}_{\text {s }}$	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.90 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.80 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.60 \end{aligned}$		ns	Figure 5 Figure 4	4
t_{h}	Hold Time $D_{0}-D_{5}$	1.50		1.40		1.60		ns	Figure 5	
$t_{p w}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$	2.00		2.00		2.00		ns	Figures 3 and 4	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temperature, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuitry

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{\boldsymbol{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9885-5
FIGURE 1. AC Test Circuit

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=\mathrm{Jig}$ and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Toggle Frequency Test Circuit

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Reset)

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.
FIGURE 5. Setup and Hold Time

100352

Low Power 8-Bit Buffer with Cut-Off Drivers

General Description

The 100352 contains an 8 -bit buffer, individual inputs (Dn), outputs (Qn), and a data output enable pin ($\overline{O E N}$). A Q output follows its D input when the OEN pin is LOW. A HIGH on OEN holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100352 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to - 5.7 V

- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$O E N$	Output Enable Input
$Q_{0}-Q_{7}$	Data Outputs
$N C$	No Connect

TL/F/10248-1

Connection Diagrams

TL/F/10248-4

TL/F/10248-3

Logic Diagram

Truth Table

Inputs		Outputs
Dn	$\overline{\text { OEN }}$	Qn
L	L	L
H	L	H
X	H	Cutoff

H = HIGH Voltage Level
L = LOW Voltage Level
Cutoff = Lower-than-LOW State
X = Don't Care

Recommended Operating

 ConditionsCase Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035				$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Min) }}$	Loading with
$V_{\text {OLC }}$	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL (}}$ (Max)	25Ω to -2.0V
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage			-1950	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) or } \\ & V_{I L(M a x)} \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {(Min) }}$)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$l_{\text {EE }}$	Power Supply Current	$\begin{array}{r} -138 \\ -143 \\ \hline \end{array}$		$\begin{array}{r} -70 \\ -70 \\ \hline \end{array}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \\ & \hline \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Dn to Output	0.70	2.00	0.70	2.00	0.70	2.20	ns	Figures 1, 2 (Note 4)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 1, 2 (Note 4)
${ }^{\text {tTLH }}$ ${ }^{\mathrm{t}} \mathrm{THL}^{\mathrm{H}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	0.70	1.80	0.70	1.80	0.70	2.00	ns	Figures 1,2 (Note 2)
$\begin{aligned} & \mathrm{tpZH}_{\mathrm{tpH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 1, 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1,2
${ }^{\text {toSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		230		230		230	ps	PCC only (Note 1)
${ }^{\text {tosLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		240		240		240	ps	PCC only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		350		350		350	ps	PCC only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		350		350		350	ps	PCC only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and t_{PS} guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with 25Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with 25Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610			
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage		-1950		-1950	mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \text { or } \\ & V_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	$\overline{O E N}=\mathrm{HIGH}$
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	
IH_{H}	Input HIGH Current		340		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	
I_{EE}	Power Supply Current	$\begin{aligned} & -138 \\ & -143 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & -138 \\ & -143 \end{aligned}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)
PCC AC Electrical Characteristics
$V_{E E}=4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	0.60	1.80	0.70	1.80	0.70	2.00	ns	Figures 1, 2 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{\mathrm{OEN}}$ to Output	$\begin{aligned} & 1.40 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 1, 2 (Note 1)
${ }^{\text {tTLH}}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Max})}$ or $\mathrm{V}_{\text {IL(Min) }}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{I N}=V_{I H(M i n)}$ or $\mathrm{V}_{\text {IL(Max) }}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \text {,or } \\ & V_{I L(M a x)} \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$	1,2,3
			-1850		$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH signal for All inputs		1, 2, 3, 4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW signal for All inputs		1, 2, 3, 4
I_{IL}	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\text { Min })} \end{aligned}$		1, 2, 3
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1, 2, 3
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$			
I_{EE}	Power Supply Current	$\begin{aligned} & -145 \\ & -150 \end{aligned}$	-55	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)
AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Dn to Output	0.30	2.60	0.50	2.40	0.50	2.70	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{tpZH}^{\text {tPHZ }} \\ & \mathrm{t}_{\mathrm{t}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.20 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.20 \end{aligned}$	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 2	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

TL/F/10248-6
FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

Note: The output AC measurement point for cut-off propagation delay testing $=$ the 50% voltage point between active V_{OL} and V_{OH}.

FIGURE 2. Propagation Delay, Cut-Off and Transition Times

100353

Low Power 8-Bit Register

General Description

The 100353 contains eight D-type edge triggered, master/ slave flip-flops with individual inputs (D_{n}), true outputs $\left(\mathrm{Q}_{\mathrm{n}}\right)$, a clock input (CP), and a common clock enable pin ($\overline{\mathrm{CEN}}$). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.
The 100353 output drivers are designed to drive 50Ω termination to -2.0 V . All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low power operation

■ 2000V ESD protection
\square Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C E N$	Clock Enable Input
$C P$	Clock Input (Active Rising Edge)
$Q_{0}-Q_{7}$	Data Outputs
$N C$	No Connect

TL/F/9882-4

Connection Diagrams

TL/F/9882-3

TL/F/9882-2

Logic Diagram

Inputs			Outputs
D_{n}	CEN	CP	\mathbf{Q}_{n}
L	L	Γ	L
H	L	Ω	H
X	X	L	NC
X	X	H	NC
X	H	X	NC

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care
NC = No Change
$\Gamma=$ LOW to HIGH Transition

```
Absolute Maximum Ratings
Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG) \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Maximum Junction Temperature ( \(\mathrm{T}_{\mathrm{J}}\) )
```


Ceramic

```
\(+175^{\circ} \mathrm{C}\)
Plastic
\(+150^{\circ} \mathrm{C}\)
\(V_{\text {EE }}\) Pin Potential to Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
```

, No (No
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
1 lH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ Max $)$	
IEE	Power Supply Current	$\begin{aligned} & -119 \\ & -122 \end{aligned}$		$\begin{aligned} & -61 \\ & -61 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.
DIP AC Electrical Characteristics $\mathrm{v}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{v}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	425		425		425		MHz	Figures 1,2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 2 (Note 4)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\text { CEN (Disable Time) }} \\ & \overline{\mathrm{CEN}} \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		ns	Figures 1, 3
t_{h}	Hold Time D_{n}	0.10		0.10		0.10		ns	Figures 1, 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)

PCC and Cerpack AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Toggle Frequency	425		425		425		MHz	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1,2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t_{s}	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\text { CEN (Disable Time) }} \\ & \overline{\mathrm{CEN}} \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		ns	Figures 1, 3
t_{n}	Hold Time D_{n}	0		0		0		ns	Figures 1, 4
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
${ }^{\text {tosLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		260		260		260	ps	PCC Only (Note 1)
$t_{P S}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		280		280		280	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for all Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for all Inputs	
I/L	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
I_{H}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$	
lee	Power Supply Current	$\begin{aligned} & -119 \\ & -122 \end{aligned}$	$\begin{aligned} & -61 \\ & -61 \end{aligned}$	$\begin{aligned} & -119 \\ & -122 \end{aligned}$	$\begin{aligned} & -61 \\ & -61 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Toggle Frequency	425		425		425		MHz	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2 (Note 2)
$\mathbf{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\text { CEN (Disable Time) }} \\ & \text { CEN (Release Time) } \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.90 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		ns	Figures 1, 3
t_{n}	Hold Time $\quad D_{n}$	0.30		0		0		ns	Figures 1, 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version—Preliminary

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions	Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I N}=V_{I H}($ Max $)$ Loading with or $V_{I L}(\operatorname{Min})$ 50Ω to -2.0 V	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$		
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I N}=V_{I H}($ Min $)$ Loading with or $V_{I L}(\operatorname{Max})$ 50Ω to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$		
VOLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		
			-1555	mV	$-55^{\circ} \mathrm{C}$		
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for all Inputs	1,2,3, 4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for all Inputs	1,2,3, 4
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	1,2,3
IIH	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$	1,2,3
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
$I_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -125 \\ & -130 \end{aligned}$	-50	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Toggle Frequency	400		400		400		MHz	Figures 1,2	4
$t_{\text {PLH }}$ tpHL	Propagation Delay CP to Output	0.70	3.30	0.80	3.10	0.80	3.80	ns	Figures 1, 2	1, 2, 3, 5
${ }^{t_{T L H}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns		4
t_{s}	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) $\overline{C E N}$ (Release Time)	$\begin{aligned} & 0.60 \\ & 0.90 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.70 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.90 \\ & 2.10 \\ & \hline \end{aligned}$		ns	Figures 1, 3	4
t_{n}	Hold Time $\quad D_{n}$	0.30		0.30		0.30		ns	Figures 1, 4	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, temperatures, Subgroups A 10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching

Test Circuitry

Notes:
FIGURE 1. AC, Toggle Frequency Test Circuit
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 2. Propagation Delay (Clock) and Transition Times

Switching Waveforms (Continued)

FIGURE 3. Setup and Pulse Width Times

FIGURE 4. Data Setup and Hold Time
Note $1: t_{s}$ is the minimum time before the transition of the clock that information must be present at the data input.
Note 2: t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

100354

Low Power 8-Bit Register with Cut-Off Drivers

General Description

The 100354 contains eight D-Type edge triggered, master/ slave flip-flops with individual inputs (D_{n}), true outputs $\left(Q_{n}\right)$, a clock input (CP), an output enable pin ($\overline{\mathrm{OEN}}$), and a common clock enable pin (CEN). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.
A Q output follows its D input when the $\overline{O E N}$ pin is LOW. A HIGH on $\overline{\text { OEN }}$ holds the outputs in a cut-off state. The cutoff state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces
termination power and prevents loss of low state noise margin when several loads share the bus.
The 100354 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
$\overline{\mathrm{CEN}}$	Clock Enable Input
CP	Clock Input
	(Active Rising Edge)
$\overline{\mathrm{OEN}}$	Output Enable Input
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data Outputs

TL/F/10610-1

Connection Diagrams

TL/F/10610-3

28-Pin PCC

TL/F/10610-4
Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Plastic	$+175^{\circ} \mathrm{C}$
VEE Pin Potential to Ground Pin	$+150^{\circ} \mathrm{C}$
Input Voltage (DC)	-7.0 V to +0.5 V
Output Current (DC Output HIGH)	$V_{E E}$ to +0.5 V
ESD (Note 2)	-100 mA

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			V	$V_{I N}=V_{\mathrm{IH}}(\mathrm{Min})$	Loading with
Volc	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL }}$ (Max)	25Ω to -2.0V
Volz	Cutoff LOW Voltage			-1950	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\text {IL }}(\operatorname{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	
$l_{E E}$	Power Supply Current	$\begin{aligned} & -202 \\ & -209 \end{aligned}$		$\begin{aligned} & -105 \\ & -105 \end{aligned}$	mA	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	250		250		250		MHz	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1 and 4 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{\text { OEN }}$ to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.20 \\ 2.70 \\ \hline \end{array}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 3 and 7 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1 and 4
t_{s}	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{CEN}} \text { (Disable Time) } \\ & \text { CEN (Release Time) } \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \\ & \hline \end{aligned}$		ns	Figures 2 and 5
t_{H}	Hold Time D_{n}	0.10		0.10		0.10		ns	Figures 1 and 6
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width High \quad CP	2.00		2.00		2.00		ns	Figures 1 and 4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to $\mathbf{3 0 0} \mathrm{ps}$ with multiple outputs switching.

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	250		250		250		MHz	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1 and 4 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.50 \\ \hline \end{array}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.50 \\ \hline \end{array}$	ns	Figures 3 and 7 (Note 2)
${ }^{\boldsymbol{t}}{ }^{\text {TLH }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1 and 4
ts_{5}	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{CEN}} \text { (Disable Time) } \\ & \overline{\mathrm{CEN}} \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		ns	Figures 2 and 5
t_{H}	Hold Time D_{n}	0.00		0.00		0.00		ns	Figures 1 and 6
$t_{p w}(\mathrm{H})$	Pulse Width High CP	2.00		2.00		2.00		ns	Figures 1 and 4
${ }^{\text {toshl }}$	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		280		280		280	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		340		340		340	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		340		340		340	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		250		250		250	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHD , or LOW to HIGH (tosLh), or in oppostie directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$T_{C}=0^{\circ}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage		-1565		-1610			
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage		-1900		-1950	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	$\overline{\text { OEN }}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$l_{\text {EE }}$	Power Supply Current	$\begin{array}{r} -202 \\ -209 \\ \hline \end{array}$	$\begin{aligned} & -105 \\ & -105 \end{aligned}$	$\begin{aligned} & -202 \\ & -209 \end{aligned}$	$\begin{aligned} & -105 \\ & -105 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	250		250		250		MHz	Figures 1 and 4
$t_{\text {PLH }}$ tpHL	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1 and 4 (Note 2)
$\begin{aligned} & \mathrm{tpZH} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.50 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 3 and 7 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1 and 4
ts	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{n}}}{\text { CEN (Disable Time) }} \\ & \overline{\mathrm{CEN}} \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		ns	Figures 2 and 5
t_{H}	Hold Time D_{n}	0.00		0.00		0.00		ns	Figures 1 and 6
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width High CP	2.00		2.00		2.00		ns	Figures 1 and 4

Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version—Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	$\mathrm{T}_{\mathbf{C}}$	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
Volz	Cutoff LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$	1, 2, 3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIG for All Inputs	Signal	1,2,3,4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW for All Inputs	Signal	1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -215 \\ & -225 \end{aligned}$	$\begin{aligned} & -85 \\ & -85 \end{aligned}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \mathrm{tc} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\begin{aligned} & -4.8 \mathrm{~V} \\ & -5.7 \mathrm{~V} \\ & \hline \end{aligned}$	1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued) AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$											
Symbol	Parameter		$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
			Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {Max }}$	Toggle Freq		200		250		200		MHz	Figures 1 and 4	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation CP to Outpu		0.9	3.70	1.0	3.20	1.20	3.90	ns	Figures 1 and 4	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation $\overline{\text { OEN }}$ to Out		$\begin{aligned} & 1.20 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.40 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.30 \\ & 3.20 \end{aligned}$	ns	Figures 3 and 7	1, 2, 3, 5
$\begin{array}{r} \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ \mathrm{t}_{\mathrm{THL}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Transition Ti } \\ 20 \% \text { to } 80 \% \\ \hline \end{array}$	o 20\%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1 and 4	4
t_{S}	Setup Time $\begin{aligned} & \frac{D_{n}}{\text { CEN }} \text { (Dis } \\ & \overline{\text { CEN }} \text { (Rel } \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \\ & \hline \end{aligned}$		ns	Figures 2 and 5	4
t_{H}	Hold Time	D_{n}	0.30		0.30		0.30		ns	Figures 1 and 6	4
$t_{p w}(\mathrm{H})$	Pulse Width	CP	2.4		2.4		2.4		ns	Figures 1 and 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 25Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. Toggle Frequency Test Circuit

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 25Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. AC Test Circuit

TL/F/10610-7
FIGURE 3. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 25Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10610-8
FIGURE 4. Propagation Delay (Clock) and Transition Times

TL/F/10610-9
FIGURE 5. Setup and Pulse Width Times

FIGURE 6. Data Setup and Hold Time

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

Note: The output AC measurement point for cut-off propagation delay testing $=$ the 50% voltage point between active V_{OL} and V_{OH}.

FIGURE 7. Cutoff Times

100355

Low Power Quad Multiplexer/Latch

General Description

The 100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\bar{E}_{n}) inputs are LOW, the data that appears at an output is controlled by the Select $\left(S_{n}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}. A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- Greater than 40% power reduction of the 100155
- - 2000V ESD protection

■ Pin/function compatible with 100155

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to MIL-STD-883

■ Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	Enable Inputs (Active LOW)
$\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$	Select Inputs
MR	Master Reset
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{n d}$	Data Inputs
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Data Outputs
$\overline{\mathrm{Q}}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Complementary Data Outputs

Connection Diagrams

TL/F/10147-2

Logic Diagram

TL/F/10147-5

Operating Mode Table

Controls				Outputs
$\bar{E}_{\mathbf{1}}$	$\bar{E}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{n}}$
H	X	X	X	Latched *
X	H	X	X	Latched* *
L	L	L	L	$\mathrm{D}_{0 \mathrm{x}}$
L	L	H	L	$\mathrm{D}_{0 \mathrm{x}}+\mathrm{D}_{1 \mathrm{x}}$
L	L	L	H	L
L	L	H	H	$\mathrm{D}_{1 \mathrm{x}}$

-Stores data present before E went HIGH
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Truth Table

Inputs							Outputs	
MR	E_{1}	E_{2}	S_{1}	\bar{S}_{0}	$\mathrm{D}_{1 \mathrm{x}}$	$\mathrm{D}_{0 \mathrm{x}}$	$\overline{\mathbf{Q}}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$
H	X	X	X	X	X	X	H	L
L	L	L	H	H	H	X	L	H
L	L	L	H	H	L	X	H	L
L	L	L	L	L	X	H	L	H
L	L	L	L	L	X	L	H	L
L	L	L	L	H	X	X	H	L
L	L	L	H	L	H	X	L	H
L	L	L	H	L	X	H	L	H
L	L	L	H	L	L	L	H	L
L	H	X	X	X	X	X		
L	X	H	X	X	X	X		

Absolute Maximum Ratings
 Above which the useful life may be impaired. (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature (TSTG)
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature (T_{J})
 Ceramic
 Plastic
 V_{EE} Pin Potential to Ground Pin
 Input Voltage (DC)
 Output Current (DC Output HIGH)
 ESD (Note 2)
 $\geq 2000 \mathrm{~V}$
 $$
+175^{\circ} \mathrm{C}
$$
 Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
 Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating

 Conditions| Case Temperature (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| \quad Commercial | $-40^{\circ} \mathrm{C}$ to $+85^{\mathrm{C}}$ |
| Industrial | $-50^{\circ} \mathrm{C}$ ($+125^{\circ} \mathrm{C}$ |
| Military | -5.7 V to -4.2 V |

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for ALL Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for ALL Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \bar{S}_{0}, \mathrm{~S}_{1} \\ & \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2} \\ & \mathrm{D}_{\text {na }}-\mathrm{D}_{\mathrm{nd}} \\ & \text { MR } \end{aligned}$			$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
IEE	Power Supply Current	-87		-40	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

DIP AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ to Output (Transparent Mode)	0.60	1.90	0.60	1.90	0.70	2.00	ns	Figures 1 and 2
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.00	2.60	1.00	2.60	1.20	2.70	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.80	2.00	0.80	2.00	0.80	2.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.80	2.30	0.80	2.30	0.80	2.30	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.60	1.40	0.60	1.40	0.60	1.40	ns	Figures 1 and 2
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		ns	Figure 4
	MR (Release Time)								Figure 3
t_{H}	Hold Time $\begin{aligned} & D_{n a}-D_{n d} \\ & \bar{S}_{0}, S_{1} \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Commercial Version (Continued)
PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$ to Output (Transparent Mode)	0.60	1.70	0.60	1.70	0.70	1.80	ns	
tple $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{S}_{0}, S_{1} to Output (Transparent Mode)	1.00	2.40	1.00	2.40	1.20	2.50	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.80	1.80	0.80	1.80	0.80	1.90	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay MR to Output	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.60	1.30	0.60	1.30	0.60	1.30	ns	Figures 1 and 2
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \bar{S}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		ns	Figure 4 Figure 3
t_{H}	Hold Time $\begin{aligned} & D_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		ns	Figure 4
t_{pw} (L)	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3
$\mathrm{t}_{\text {OSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC only (Note 1)
$\mathrm{t}_{\text {OSLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		370		370		370	ps	PCC only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		370		370		370	ps	PCC only (Note 1)
tps	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		270		270		270	ps	PCC only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.

PCC DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions			
		Min	Max		Max					
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$		Loading with 50Ω to -2.0 V	
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$		Loading with 50Ω to -2.0 V	
Volc	Output LOW Voltage		-1565		-1610	mV				
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Gua for A	eed HIG Inputs	Signal	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	1830	1475	mV		eed LO Inputs	Signal	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	V_{IN}	IL (Min)		
$\mathrm{IIH}^{\text {H }}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \bar{S}_{0}, S_{1} \\ & \bar{E}_{1}, \bar{E}_{2} \\ & D_{n a}-D_{\text {nd }} \\ & \text { MR } \end{aligned}$		$\begin{aligned} & 300 \\ & 350 \\ & 340 \\ & 430 \\ & \hline \end{aligned}$		$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$			
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-87	-40	-87	-40	mA	Inputs Open			
Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions. PCC AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions	
			Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$ to Output (Transparent Mode)	0.60	1.70	0.60	1.70	0.70	1.80	ns	Figures 1 and 2	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \end{aligned}$	Propagation Delay $\bar{S}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.00	2.40	1.00	2.40	1.20	2.50	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.80	1.80	0.80	1.80	0.80	1.90	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1 and 3	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	\% 0.40	1.90	0.60	1.30	0.60	1.30	ns	Figures 1 and 2	
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{~S}_{0}, \mathrm{~S}_{1} \end{aligned}$ MR (Release Time)	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		ns	Figure 4	
	MR (Release Time)						Figure 3			
${ }_{\text {th }}$	Hold Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$			$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.10 \\ \hline \end{gathered}$		ns	Figure 4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW $\overline{\mathrm{E}}_{1}, \mathrm{E}_{2}$	2.00		2.00		2.00		ns	Figure 2	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

Military Version
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed HIGH Signal for ALL Inputs		1,2,3,4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Guaranteed LOW Signal for ALL Inputs		1,2,3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\text { Min })} \\ & \hline \end{aligned}$		1,2,3	
I_{H}	Input HIGH Current $\begin{aligned} & \bar{S}_{0}, \mathrm{~S}_{1} \\ & \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2} \\ & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{MR} \end{aligned}$		$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1,2,3	
	$\begin{aligned} & \bar{S}_{0}, S_{1} \\ & \bar{E}_{1}, \bar{E}_{2} \\ & D_{n a}-D_{n d} \\ & M R \end{aligned}$		$\begin{aligned} & 320 \\ & 500 \\ & 490 \\ & 630 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-95	-32	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$ Temp., Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups 1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tpLH $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ to Output (Transparent Mode)	0.40	2.30	0.50	2.20	0.50	2.60	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{S}_{0}, S_{1} to Output (Transparent Mode)	0.60	3.00	0.80	2.70	0.80	3.20	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.50	2.60	0.60	2.30	0.70	2.70	ns		
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.60	2.80	0.70	2.60	0.70	2.90	ns	Figures 1 and 3	1,2,3
${ }^{\text {t }}$ TLH ${ }^{t_{T H L}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.90	0.40	1.90	0.40	1.90	ns	Figures 1 and 2	4
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\text {na }}-\mathrm{D}_{\mathrm{nd}} \\ & \bar{S}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		ns	Figure 4 Figure 3	4
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		ns	Figure 4	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW $\mathrm{E}_{1}, \mathrm{E}_{2}$	2.00		2.00		2.00		ns	Figure 2	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 \& A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuit

TL/F/10147-6
FIGURE 1. AC Test Circuit
(Using Quad Cerpak)

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Switching Waveforms

TL/F/10147-7
FIGURE 2. Enable Timing

Switching Waveforms (Continued)

TL/F/10147-8
FIGURE 3. Reset Timing

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

National
Semiconductor

100360

Low Power Dual Parity Checker/Generator

General Description

The 100360 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs (l_{a} or I_{b}) has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits. The 100360 also has a Compare ($\overline{\mathrm{C}}$) output which allows the circuit to compare two 8 -bit words. The $\overline{\mathrm{C}}$ output is LOW when the two words match, bit for bit. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- Lower power than 100160
- 2000V ESD protection
- Pin/function compatible with 100160
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Min to Max propagation delay 35\% tighter than 100160
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{na}}, \mathrm{I}_{\mathrm{nb}}$	Data Inputs
$\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	Parity Odd Outputs
$\overline{\mathrm{C}}$	Compare Output

Connection Diagrams

24-Pin DIP

TL/F/10611-4

24-Pin Quad Cerpak

TL/F/10611-3

Logic Diagram

Truth Table (Each Half)

Sum of HIGH Inputs	Output \mathbf{Z}
Even	HIGH
Odd	LOW

Comparator Function

$\bar{C}=\left(l_{0 a} \oplus I_{1 a}\right)+\left(l_{2 a} \oplus I_{3 a}\right)+\left(I_{4 a} \oplus I_{5 a}\right)+\left(I_{6 a} \oplus I_{7 a}\right)+\left(l_{0 b} \oplus I_{1 b}\right)+\left(l_{2 b} \oplus I_{3 b}\right)+\left(I_{4 b} \oplus I_{5 b}\right)+\left(I_{6 b} \oplus I_{7 b}\right)$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature $(\mathrm{T} \mathrm{C})$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or VIL (Max)	50Ω to -2.0V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
I_{IL}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current l_{a}, I_{b} $I_{n a}, I_{n b}$			$\begin{aligned} & 340 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
l_{EE}	Power Supply Current	-100		-50	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.10	2.75	1.10	2.75	1.10	2.75	ns	Figures 1 \& 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.10	2.80	1.10	2.80	1.10	2.80	ns	
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{a}, I_{b} to Z_{a}, Z_{b}	0.50	1.20	0.60	1.30	0.60	1.30	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{\text {na }}, I_{\text {nb }}$ to Z_{a}, Z_{b}	1.10	2.75	1.10	2.75	1.10	2.75	ns	Figures 1 \& 2
$t_{p L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.10	2.80	1.10	2.80	1.10	2.80	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay I_{a}, I_{b} to Z_{a}, Z_{b}	0.50	1.20	0.60	1.30	0.60	1.30	ns	
${ }^{\text {t T L H }}$ ${ }^{\text {t }}$ thL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Industrial Version

PCC DC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current la, lb Ina, Inb		$\begin{aligned} & 340 \\ & 240 \end{aligned}$		$\begin{aligned} & 340 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-100	-50	-100	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tphL	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.00	2.75	1.10	2.75	1.10	2.75	ns	Figures 1 \& 2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{\text {na }}, I_{\text {nb }}$ to \bar{C}	1.00	2.80	1.10	2.80	1.10	2.80	ns	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay I_{a}, I_{b} to Z_{a}, Z_{b}	0.50	1.20	0.60	1.30	0.60	1.30	ns	
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Military Version — Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{\text {IH }}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
V OLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signa! for All Inputs		1,2,3,4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
${ }_{\mathrm{IH}}$	```Input HIGH Current \(I_{a}, I_{b}\) \(I_{n a}, I_{n b}\)```		$\begin{array}{r} 340 \\ 240 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
	$\begin{array}{r} I_{a}, I_{b} \\ I_{\text {na }}, I_{n b} \\ \hline \end{array}$		$\begin{aligned} & 490 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-110	-50	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version — Preliminary (Continued)

AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tpLH tpHL.	Propagation Delay $I_{\text {na }} I_{\text {nb }}$ to Z_{a}, Z_{b}	1.00	2.95	1.00	2.95	1.00	2.95	ns	Figures 1 \& 2	1,2,3
tpLH tpHL	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.00	3.00	1.00	3.00	1.00	3.00	ns		
$t_{\text {PLH }}$ tphL	Propagation Delay l_{a}, I_{b} to Z_{a}, Z_{b}	0.40	1.40	0.50	1.50	0.50	1.50	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11. Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

FIGURE 1. AC Test Circuit

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Switching Waveforms

TL/F/10611-7
FIGURE 2. Propagation Delay and Transition Times

100363

Low Power Dual 8-Input Multiplexer

General Description

The 100363 is a dual 8 -input multiplexer. The Data Select $\left(S_{n}\right)$ inputs determine which bit $\left(A_{n}\right.$ and $\left.B_{n}\right)$ will be presented at the outputs (Z_{a} and Z_{b} respectively). The same bit $(0-7)$ will be selected for both the Z_{a} and Z_{b} output. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- 50% power reduction of the 100163
- 2000V ESD protection
- Pin/function compatible with 100163
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
■ Available to MIL-STD-883
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$S_{0}-S_{2}$	Data Select Inputs
$A_{0}-A_{7}$	A Data Inputs
$B_{0}-B_{7}$	B Data Inputs
Z_{a}, Z_{b}	Data Outputs

TL/F/10612-1

Connection Diagrams

TL/F/10612-4

TL/F/10612-3

Logic Diagram

Truth Table

Inputs											Outputs
Select			Data								
S_{2}	\mathbf{S}_{1}	S_{0}	$\begin{aligned} & A_{7} \\ & B_{7} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{6} \\ & \mathbf{B}_{6} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{5} \\ & \mathbf{B}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{\mathbf{4}} \\ & \mathbf{B}_{\mathbf{4}} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{3} \\ & B_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{2} \\ & \mathbf{B}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & \mathbf{B}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{0} \\ & B_{0} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{a} \\ & \mathbf{z}_{\mathrm{b}} \end{aligned}$
L	L	L								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	L	H H							$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	H H	L						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L L	H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
H H	L	L				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$			L						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$		L							$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

H = HIGH Voltage Level
L = LOW Voltage Level
Blank $=X=$ Don't Care

Absolute Maximum Ratings

Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic

Plastic
$\begin{aligned} &-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \\ &+175^{\circ} \mathrm{C} \\ &+150^{\circ} \mathrm{C}\end{aligned}$
$V_{\text {EE }}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2) under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
\geq 2000 \mathrm{~V}
$$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
I_{H}	Input HIGH Current $\begin{array}{r} S_{n} \\ A_{n}, B_{n} \\ \hline \end{array}$			$\begin{aligned} & 265 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$V_{I N}=V_{\text {IH }}($ Max $)$	
I_{EE}	Power Supply Current	-80		-40	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.70	1.65	0.80	1.70	0.80	1.80	ns	Figures 1 and 2
$t_{\text {PLH }}$ tpHL	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.30	2.60	1.40	2.70	1.40	2.70	ns	
${ }^{\text {tTLH }}$ ${ }^{\text {tTHL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	

Commercial Version (Continued)
PCC and Cerpak AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay $A_{0}-A_{7}, B_{0}-B_{7}$ to Output	0.70	1.65	0.80	1.70	0.80	1.80	ns	Figures 1 and 2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.30	2.60	1.40	2.70	1.40	2.70	ns	
${ }^{\text {tTLH }}$ ${ }^{\mathrm{I}_{\text {THL }}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	

Industrial Version										
DC Electrical Characteristics$V_{E E}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (Note 1) }$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$T_{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions		
		Min	Max	Min		Max				
V_{OH}	Output HIGH Voltage	-1085	-870	-1025		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$		Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575		30	-1620	mV			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{\mathrm{IL}}(\max) \end{aligned}$		Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage	-1565		-1610			mV			
V_{IH}	Input HIGH Voltage	-1170	-870	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs		
V_{IL}	Input LOW Voltage	-1830	-1480		30	-1475	mV	Guaran	ed LOW	nal for All Inputs
IIL	Input LOW Current	0.50		0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=$	(min)	
I_{H}	$\begin{array}{r} \text { Input HIGH Current } \\ \qquad S_{n} \\ A_{n}, B_{n} \\ \hline \end{array}$	 265 380		$\begin{array}{r} 265 \\ 340 \\ \hline \end{array}$			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$		
I_{EE}	Power Supply Current	-80	-35	-80		-40	mA	Inputs Open		
Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions. AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter		$\mathrm{T}_{\mathbf{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PH}} \end{aligned}$	Propagation Delay$A_{0}-A_{7}, B_{0}-B_{7} \text { to Output }$		0.60	1.65	0.80	1.70	0.80	1.80	ns	Figures 1 and 2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output		1.20	2.60	1.40	2.70	1.40	2.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%		0.30	1.90	0.45	1.30	0.45	1.30	ns	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to

AC Electrical Characteristics

Military Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Note	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 V \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$		1,2,3	
I_{H}	Input HIGH Current $\begin{array}{r} S_{n} \\ A_{n}, B_{n} \\ \hline \end{array}$		$\begin{aligned} & 265 \\ & 340 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2,3	
	$\begin{array}{r} S_{n} \\ A_{n}, B_{n} \\ \hline \end{array}$		$\begin{array}{r} 385 \\ 490 \\ \hline \end{array}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
${ }^{\text {IEE }}$	Power Supply Current	-87	-30	mA	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{0}-A_{7}, B_{0}-B_{7}$ to Output	0.50	2.40	0.60	2.30	0.70	3.00	ns	Figures 1 and 2	1, 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	0.80	3.00	0.90	2.80	0.80	3.40	ns		
${ }^{\text {t }}$ TLH $t_{\text {THL }}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.90	0.40	1.80	0.30	2.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

100364

Low Power 16-Input Multiplexer

General Description

The 100364 is a 16 -input multiplexer. Data paths are controlled by four Select lines $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. Their decoding is shown in the truth table. Output data polarity is the same as the seleted input data. All inputs have $50 \mathrm{k} \Omega$ puldown resistors.

Features
■ 35\% power reduction of the 100164
■ 2000V ESD protection
■ Pin/function compatible with 100164

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Available to industrial grade temperature range
- Available to MIL-STD-883

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Data Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Select Inputs
Z	Data Output

Connection Diagrams

TL/F/10265-4

24-Pin Quad Cerpak

TL/F/10265-3

TL/F/10265-5

Truth Table

Select Inputs				Output
S_{0}	S_{1}	S_{2}	S_{3}	Z
$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & l_{0} \\ & I_{1} \\ & I_{2} \\ & l_{3} \end{aligned}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & I_{4} \\ & I_{5} \\ & I_{6} \\ & I_{7} \end{aligned}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{8} \\ & \mathrm{I}_{9} \\ & \mathrm{I}_{10} \\ & \mathrm{I}_{11} \end{aligned}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & l_{12} \\ & l_{13} \\ & I_{14} \\ & I_{15} \\ & \hline \end{aligned}$

H $=$ HIGH Voltage Level
L = LOW Voltage Level

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availabllity and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic

$$
+175^{\circ} \mathrm{C}
$$

Plastic
$+150^{\circ} \mathrm{C}$
Pin Potential to
Ground Pin (V_{EE})
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current
(DC Output HIGH)
$-50 \mathrm{~mA}$
ESD (Note 2)
$\geq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
I_{LL}	Input LOW Current	0.5			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL. }}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)	
$\mathrm{IEE}^{\text {E }}$	Power Supply Current	-89		-45	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operate under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{0}-I_{15}$ to Output	0.90	2.00	0.90	2.00	0.90	2.10	ns	Figures 1, 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.00	2.20	1.00	2.20	1.10	2.40	ns	
$\begin{aligned} & t_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.90	1.80	0.90	1.80	0.90	1.90	ns	Figures 1, 2
$t_{\text {PLH }}$ ${ }^{\text {tphL }}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	1.40	2.60	1.40	2.60	1.50	2.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.00	2.00	1.00	2.00	1.10	2.20	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathbf{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Industrial Version

PCC DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All inputs	
ILL	Input LOW Current	0.5		0.5		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IH	Input HIGH Current		325		325	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)	
lee	Power Supply Current	-89	-45	-89	-45	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life imparied. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.90	1.80	0.90	1.80	0.90	1.90	ns	Figures 1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	1.20	2.60	1.40	2.60	1.50	2.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	0.80	2.10	1.00	2.00	1.10	2.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.20	0.35	1.10	0.35	1.10	ns	

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		300	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			450	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-95	-35	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, 1, 2, 3, 7 and 8 .
Note 3: Sampled tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.50	2.60	0.60	2.40	0.60	2.80	ns	Figures 1, 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.70	3.30	0.90	3.10	1.00	3.50	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	0.50	2.90	0.70	2.60	0.60	3.00	ns		
${ }^{\mathrm{t}} \mathrm{t}$ LH $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.20	1.20	0.20	1.20	0.20	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temp., Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuit

FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10265-7
FIGURE 2. Propagation Delay and Transition Times

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and $\mathrm{L} 2=$ Equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

100370

Low Power Universal Demultiplexer/Decoder

General Description

The 100370 universal demultiplexer/decoder functions as either a dual 1 -of-4 decoder or as a single 1-of-8 decoder, depending on the signal applied to the Mode Control (M) input. In the dual mode, each half has a pair of active-LOW Enable ($\overline{\mathrm{E}}$) inputs. Pin assignments for the $\overline{\mathrm{E}}$ inputs are such that in the 1-of-8 mode they can easily be tied together in pairs to provide two active-LOW enables ($\bar{E}_{1 a}$ to $\bar{E}_{1 b}, \bar{E}_{2 a}$ to $\bar{E}_{2 b}$). Signals applied to auxiliary inputs H_{a}, H_{b} and H_{c} determine whether the outputs are active HIGH or active LOW. In the dual 1-of-4 mode the Address inputs are $A_{0 a}, A_{1 a}$ and $A_{0 b}, A_{1 b}$ with $A_{2 a}$ unused (i.e., left open, tied to $V_{E E}$ or with

LOW signal applied). In the 1-of-8 mode, the Address inputs are $A_{0 a}, A_{1 a}, A_{2 a}$ with $A_{0 b}$ and $A_{1 b}$ LOW or open. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- 35\% power reduction of the 100170
- 2000V ESD protection
- Pin/function compatible with 100170

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 6

Logic Symbols

TL/F/10649-1

Dual 1-of-4 Application

Pin Names	Description
$\mathrm{A}_{\text {na }}, \mathrm{A}_{\mathrm{nb}}$	Address Inputs
$\overline{\mathrm{E}}_{\text {na }}, \overline{\mathrm{E}}_{\mathrm{nb}}$	Enable Inputs
M	Mode Control Input
H_{a}	$\mathrm{Z}_{0}-\mathrm{Z}_{3}\left(\bar{Z}_{0 \mathrm{a}}-\bar{Z}_{3 a}\right)$
	Polarity Select Input
H_{b}	$\mathrm{Z}_{4}-\mathrm{Z}_{7}\left(\bar{Z}_{0 b}-\bar{Z}_{3 b}\right)$
	Polarity Select Input
H_{c}	Common Polarity
	Select Input
$\mathrm{Z}_{0}-\mathrm{Z}_{7}$	Single 1-of-8
	Data Outputs
$\mathrm{Z}_{\mathrm{na}}, \mathrm{Z}_{\mathrm{nb}}$	Dual 1-of-4
	Data Outputs

Connection Diagrams

$$
\begin{aligned}
& \text { 24-Pin DIP }
\end{aligned}
$$

24-Pin Quad Cerpak

Logic Diagram

Truth Tables

Inputs				Actlve HIGH Outputs (H_{a} and H_{b} Inputs HIGH)				Active LOW Outputs (H_{a} and H_{b} Inputs LOW)			
$\begin{aligned} & \bar{E}_{1 a} \\ & \bar{E}_{1 b} \end{aligned}$	$\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1 \mathrm{a}} \\ & \mathbf{A}_{\mathbf{1 b}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{\mathbf{0 a}} \\ & \mathbf{A}_{\mathbf{0 b}} \\ & \hline \end{aligned}$	$\begin{aligned} & Z_{0 a} \\ & z_{0 b} \end{aligned}$	$\begin{aligned} & z_{1 a} \\ & z_{1 b} \end{aligned}$	$\begin{aligned} & \mathrm{z}_{2 \mathrm{a}} \\ & \mathrm{z}_{2 \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{3 \mathrm{a}} \\ & \mathbf{z}_{3 \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{oa}} \\ & \mathrm{Z}_{\mathrm{Ob}} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{1 \mathrm{a}} \\ & \mathbf{z}_{1 \mathrm{~b}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{z}_{2 a} \mathrm{ab} \\ & \mathrm{z}_{2 \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{3 \mathrm{a}} \\ & \mathbf{z}_{\mathrm{b}} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline X \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$			
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H L H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$

Single 1-of-8 Mode ($M=$ HIGH; $A_{0 b}=A_{1 b}=H_{a}=H_{b}=$ LOW $)$

Inputs					Active HIGH Outputs* (H_{c} Input HIGH)							
\bar{E}_{1}	\bar{E}_{2}	$\mathrm{A}_{\mathbf{2}}$	$A_{1 a}$	A_{0}	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	1	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
"for $\mathrm{H}_{\mathrm{c}}=$ LOW, output states are complemented
$\mathrm{E}_{1}=\mathrm{E}_{1 \mathrm{a}}$ and $\mathrm{E}_{1 \mathrm{~b}}$ wired; $\mathrm{E}_{2}=\mathrm{E}_{2 \mathrm{a}}$ and $\mathrm{E}_{2 \mathrm{~b}}$ wired

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\\
+175^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C}
\end{array}
$$

Maximum Junction Temperature (T_{J})

Ceramic

Plastic
V_{EE} Pin Potential to Ground Pin
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
Output Current (DC Output HIGH)
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{VEE}_{\mathrm{EE}}\right)$	-5.7 V to -4.2 V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{VOL}^{\text {l }}$	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ Max $)$	
$I_{\text {EE }}$	Power Supply Current	-95		-50	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)									
Ceramic Dual-In-Line Package AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.75	1.85	0.75	1.85	0.85	2.05	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n a}, A_{n b}$ to Output	0.75	2.20	0.75	2.20	0.75	2.30	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.75	2.20	0.75	2.20	0.75	2.20	ns	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.10	2.70	1.10	2.70	1.10	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{~L}} \\ & \mathrm{t}_{\mathrm{TH} \mathrm{~L}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.30	0.40	1.30	0.40	1.30	ns	

PCC and Cerpak AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\bar{E}_{\text {na }}, \bar{E}_{\text {nb }}$ to Output	0.75	1.65	0.75	1.65	0.85	1.85	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{\text {na }}, A_{\text {nb }}$ to Output	0.75	2.00	0.75	2.00	0.75	2.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay M to Output	1.10	2.50	1.10	2.50	1.10	2.80	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	

Industrial Version

PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Typ	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-95	-50	-95	-50	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.75	1.65	0.75	1.65	0.85	1.85	ns	Figures 1 and 2
$t_{\text {PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay $A_{n a}, A_{n b}$ to Output	0.65	2.00	0.75	2.00	0.75	2.10	ns	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.70	2.00	0.75	2.00	0.75	2.00	ns	
$t_{\text {PLH }}$ tphL	Propagation Delay M to Output	1.10	2.50	1.10	2.50	1.10	2.80	ns	
${ }^{\text {t }}$ TLH $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.30	0.40	1.20	0.40	1.20	ns	

Military Version—Preliminary

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
Vol	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
I_{H}	Input HIGH Current $\mathrm{H}_{\mathrm{c}}, \mathrm{A}_{0 \mathrm{a}}, \mathrm{A}_{1 \mathrm{a}}, \mathrm{A}_{2 \mathrm{a}}$ All Others		$\begin{aligned} & 310 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3	
	$H_{c}, A_{0 a}, A_{1 a}, A_{2 a}$ All Others		$\begin{aligned} & 465 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-110	-70	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$, then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures:
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specific input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.90	2.30	0.90	2.20	0.90	2.30	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{\text {na }}, A_{n b}$ to Output	1.00	2.80	1.00	2.70	1.00	2.90	ns		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	1.00	3.00	1.00	2.90	1.00	3.00	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay M to Output	1.50	3.90	1.60	3.80	1.60	3.90	ns		
$\mathrm{t}_{\mathrm{TLH}}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.80	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuit

TL/F/10649-7
FIGURE 1. AC Test Circult

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L_{1} and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

100371

Low Power Triple 4-Input Multiplexer with Enable

General Description

The 100371 contains three 4 -input multiplexers which share a common decoder (inputs S_{0} and S_{1}). Output buffer gates provide true and complement outputs. A HIGH on the Enable input ($\overline{\mathrm{E}}$) forces all true outputs LOW (see Truth Table). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- 35% power reduction of the 100171
- 2000V ESD protection
- Pin/function compatible with 100171
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Available to industrial grade temperature range

Ordering Code: See Section 6

Logic Symbol

TL/F/10048-1

Pin Names	Description
$I_{0 x}-I_{3 x}$	Data Inputs
S_{0}, S_{1}	Select Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{c}}$	Data Outputs
$\mathrm{Z}_{\mathrm{a}}-\overline{\mathrm{Z}}_{\mathrm{c}}$	Complementary Data Outputs

Connection Diagrams

Logic Diagram

Truth Table

Inputs			
E	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{Z}_{\mathbf{n}}$
L	L	L	$\mathrm{I}_{0 \mathrm{x}}$
L	H	L	$\mathrm{I}_{1 \mathrm{x}}$
L	L	H	$\mathrm{I}_{2 \mathrm{x}}$
L	H	H	$\mathrm{I}_{3 \mathrm{x}}$
H	X	X	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care

Absolute Maximum Ratings
 Above which the useful life may be impaired. (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature (TSTG)
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature (T_{J})
 Ceramic
 $V_{E E}$ Pin Potential to Ground Pin
 Input Voltage (DC)
 Output current (DC Output HIGH)
 ESD (Note 2)
 $$
+175^{\circ} \mathrm{C}
$$
 $$
+150^{\circ} \mathrm{C}
$$
 $$
\begin{array}{r} -7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\ -50 \mathrm{~mA} \end{array}
$$
 Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
 Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature (T_{C}) Commercial Industrial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (VE)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
l_{H}	Input HIGH Current $\begin{array}{r} l_{0 x}-l_{3 x} \\ \mathrm{~s}_{0}, \mathrm{~s}_{1}, \overline{\mathrm{E}} \end{array}$			$\begin{array}{r} 340 \\ 300 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	-75		-39	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version- (Continued) DIP AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $1_{0 x}-I_{3 x}$ to Output	0.45	1.50	0.45	1.50	0.45	1.60	ns	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.90	2.40	0.90	2.40	1.00	2.60	ns	Figures 1 and 2 (Note 1)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{tPH}}$	Propagation Delay \bar{E} to Output	0.65	2.30	0.65	2.30	0.75	2.40	ns	
$t_{T L H}$ $t_{T H L}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with muttiple outputs switching.

SOIC, PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{I}_{0 \mathrm{x}}-\mathrm{I}_{3 \mathrm{x}}$ to Output	0.45	1.30	0.45	1.30	0.45	1.40	ns	Figures 1 and 2 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{0}, S_{1} to Output	0.90	2.20	0.90	2.20	1.00	2.40	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E} to Output	0.65	2.10	0.65	2.10	0.75	2.20	ns	
$\mathrm{t}_{\mathrm{TLH}}$ ${ }^{t_{\text {THL }}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
${ }^{\text {toSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		400		400		400	ps	PCC only (Note 1)
${ }^{\text {tosLH }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		490		490		490	ps	PCC only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		490		490		490	ps	PCC only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		430		430		430	ps	PCC only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (toshD), or LOW to HIGH (tosLh), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Industrial Version
PCC DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(M i n) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current $l_{0 x-1}{ }_{3 x}$ $\mathrm{~S}_{0}, \mathrm{~S}_{1}, \bar{E}$		$\begin{array}{r} 340 \\ 300 \\ \hline \end{array}$		$\begin{array}{r} 340 \\ 300 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-75	-35	-75	-39	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
tple $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{I}_{0 x}-\mathrm{I}_{3 \mathrm{x}}$ to Output	0.40	1.30	0.45	1.30	0.45	1.40	ns	
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.70	2.20	0.90	2.20	1.00	2.40	ns	Figures 1 and 2 (Note 2)
tpLH tphL	Propagation Delay \bar{E} to Output	0.65	2.10	0.65	2.10	0.75	2.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.20	1.60	0.35	1.10	0.35	1.10	ns	Figures 1 and 2

Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version—Preliminary
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	$\mathrm{T}_{\mathbf{C}}$	Conditions		Notes	
V OH	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
V OLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$		1,2,3	
IIH	Input HIGH Current $\begin{array}{r} \mathrm{I}_{0 x}-\mathrm{I}_{3 x} \\ \mathrm{~s}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{E}} \\ \hline \end{array}$		$\begin{array}{r} 340 \\ 300 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1,2, 3	
	$\begin{array}{r} I_{0 x}-I_{3 X} \\ S_{0}, S_{1}, \bar{E} \\ \hline \end{array}$		$\begin{array}{r} 490 \\ 450 \\ \hline \end{array}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-80	-30	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissapation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups 1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $1_{0 x-1}{ }_{3 x}$ to Output	0.30	1.90	0.40	1.70	0.30	2.00	ns	Figures 1 and 2	1,2,3,5
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{0}, S_{1} to Output	0.40	2.70	0.60	2.40	0.50	2.90	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Output	0.50	2.70	0.60	2.40	0.50	2.90	ns		
${ }^{t_{\text {TLH }}}$ ${ }^{\text {t }}$ HL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.60	0.30	1.50	0.20	1.60	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested $\mathbf{1 0 0 \%}$ on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11. Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{\top}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/10148-6
FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

100389

Single Supply Hex CMOS-to-ECL Translator with Cutoff Drivers

General Description

The 100389 is a hex translator for converting CMOS logic levels to positive referenced F100K ECL logic levels (or PECL). This translator is designed to operrate from a single +5 V supply, eliminating the need for a separate -5 V supply. The differential outputs of the 100389 due to its high common mode rejection, overcomes voltages gradients between the CMOS and ECL ground systems.
A LOW on the input enable pin (E) sets the true outputs to a LOW state and the inverting outputs to a HIGH state.

Features

- Operates from a single +5 V supply
- Differential ECL outputs
- 2000V ESD protection

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs (CMOS)
$Q_{0}-Q_{5}$	Data Outputs (PECL)
$\bar{Q}_{0}-\bar{Q}_{5}$	Inverting Data Outputs (PECL)
E	Enable Input (CMOS)

Connection Diagrams

TL/F/10999-3

100390

Low Power Single Supply Hex ECL-to-TTL Translator

General Description

The 100390 is a hex translator for converting F100K logic levels to TTL logic levels. Unlike other level translators, the 100390 operates using only one +5 V supply. Differential inputs allow each circuit to be used as an inverting, noninverting, or differential receiver. An internal reference generator provides V_{BB} for single-ended operation. The standard FAST® TRI-STATE ${ }^{\circledR}$ outputs are enabled by a common active low TTL compatible $\overline{O E}$ input. Partitioned $V_{C C S}$ on chip are brought out on separate power pins, allowing the noisy TTL $V_{C C}$ power plane to be isolated from the relatively quiet ECL VCC. The 100390 is ideal for applications limited to a single +5 V supply, allowing for easy ECL to TTL Interfacing.

Features

- Operates from a single +5 V supply
- TRI-STATE outputs
- 2000V ESD protection

■ $V_{B B}$ supplied for single-ended operation

Ordering Code: See Section 6
Logic Symbols

TL/F/10897-1

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data Inputs (PECL)
$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{5}$	Inverting Data Inputs (PECL)
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Data Outputs (TTL)
$\overline{\mathrm{OE}}$	Output Enable (TTL)
V_{BB}	Reference Voltage (PECL)

Connection Diagrams

Logic Diagram

Detail

TL/F/10897-11

TL/F/10897-5

Truth Table

Data Inputs (PECL)		Control Input (TTL)	TTL Outputs	Comments
D_{n}	$\overline{D_{n}}$	$\overline{\mathrm{OE}}$	\mathbf{Q}_{n}	
X	X	H	Z	Outputs Disable
L	H	L	L	Differential Operation
H	L	L	H	Differential Operation
L	L	L	U	Invalid Input States
H	H	L	U	Invalid Input States
OPEN	OPEN	L	U	Invalid Input States
L	$V_{B B}$	L	L	Single Ended Operation
H	$V_{B B}$	L	H	Single Ended Operation
$V_{B B}$	L	L	H	Single Ended Operation
$V_{B B}$	H	L	L	Single Ended Operation
$V_{B B}$	OPEN	L	H	Single Ended Operation
OPEN	$V_{B B}$	L	L	Single Ended Operation

[^2]

Voltage Applied to Output in High State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in Low State (Max) Twice the Rated IOL (mA) ESD Last Passing Voltage (Min) 2000V

Recommended Operating

 ConditionsCase Temperature
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage
+4.75 V to +5.25 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics $E C L V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T \mathrm{TL} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter		Min	Max	Units	Conditions
V_{IH}	Input HIGH Voltage	Data	ECLV $\mathrm{V}_{\text {CC }}-1.165$	ECL $V_{C C}-0.870$	V	Guaranteed HIGH Signal for ALL Inputs (with One Input Tied to $V_{B B}$)
		$\overline{\mathrm{OE}}$	2.0		V	Guaranteed HIGH Signal (TTL)
$V_{\text {IL }}$	Input LOW Voltage	Data	ECLV ${ }_{C C}-1.830$	$E C L V_{C C}-1.475$	V	Guaranteed LOW Signal for ALL Inputs (with One Input Tied to V_{BB})
		$\overline{\mathrm{OE}}$		0.8	V	Guaranteed LOW Signal (TTL)
V_{BB}	Output Reference Voltage		ECL $V_{\text {CC }}-1.38$	ECL $V_{C C}-1.26$	V	$\mathrm{l}_{\mathrm{BB}}=0.0 \mathrm{~mA}$ or -1.0 mA
V_{OH}	Output HIGH Voltage (TTL)		2.7		V	$\mathrm{IOH}=-3 \mathrm{~mA}$
V_{OL}	Output LOW Voltage (TTL)			0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
I_{H}	Input HIGH Current	Data		50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}), \mathrm{D}_{0}-\mathrm{D}_{5}=\mathrm{V}_{\mathrm{BB}}, \\ & \overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{5}=\mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$
		$\overline{O E}$		20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ (TTL)
I/L	Input LOW Current	$\overline{O E}$		-200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (TTL)
$\mathrm{I}_{\mathrm{BVI}}$	Input Breakdown Current	$\overline{O E}$		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (TTL)
Icbo	Input Leakage Current		-10		$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=G N D, D_{0}-D_{5}=V_{B B} \\ & \bar{D}_{0}-\bar{D}_{5}=V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$
IOZH	TRI-STATE Current Output HIGH			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
IozL	TRI-STATE Current Output LOW			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
I_{CC}	ECL Supply Current		13	30	mA	
ICCz	TTL Supply Current		10	20	mA	TRI-STATE
$\mathrm{I}_{\text {CCL }}$	TTL Supply Current		8	17	mA	Low State
$\mathrm{I}_{\mathrm{CCH}}$	TTL Supply Current HIGH		0.4	2.0	mA	HIGH State
los	Output Short-Circuit Current		-150	-60	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=+5.25$
$V_{\text {Diff }}$	Differential Input Voltage		150		mV	Required for Full Output Swing
$V_{C M}$	Common Mode Voltage		ECL V ${ }_{\text {CC }}-2.0$	ECL V ${ }_{\text {CC }}-0.5$	V	
V_{CD}	Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$

DIP AC Electrical Characteristics

$V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Fig. No.
		Min	Max	Min	Max	Min	Max		
$\mathrm{F}_{\text {MAX }}$	Maximum Clock Frequency	100		100		100		MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	3.3	6.4	3.3	6.1	3.3	6.1	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{array}{r} 2.7 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 4.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.3 \end{aligned}$	ns	2
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{array}{r} 2.3 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 4.6 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.3 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 4.6 \\ & 3.6 \\ & \hline \end{aligned}$	ns	2

SOIC, Cerpak and PCC Package AC Electrical Characteristics
$V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Fig. No.
		Min	Max	Min	Max	Min	Max		
$\mathrm{F}_{\text {MAX }}$	Maximum Clock Frequency	100		100		100		MHz	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	3.3	6.2	3.3	5.9	3.3	5.9	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{array}{r} 2.7 \\ 2.3 \\ \hline \end{array}$	$\begin{array}{r} 4.6 \\ 3.7 \\ \hline \end{array}$	$\begin{array}{r} 2.7 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 4.6 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.1 \\ & \hline \end{aligned}$	ns	2
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{array}{r} 2.3 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 4.4 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.4 \end{aligned}$	ns	2

Switching Waveforms

FIGURE t. Data to Output Propagation Delay

FIGURE 2. Enable/Disable Propagation Delay

TL/F/10897-7
FIGURE 3. AC Test Circuit
Notes:
$\mathrm{GND}=\mathrm{OV}, \mathrm{ECL} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{TTL} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines 50Ω terminators are internal to S / H measurement unit Decoupling $0.1 \mu \mathrm{~F}$ from GND to ECL V_{CC} and $T \mathrm{LL} \mathrm{V}_{\mathrm{CC}}$ All unused outputs are loaded with 500Ω to GND
$C_{L}=$ Fixture and stray capacitance $=50 \mathrm{pF}$
Switch S1 is open for $t_{\text {PLH }}, t_{P H L}, t_{P H Z}$ and $t_{P Z H}$ tests
Switch S1 is closed only for $\mathrm{t}_{\mathrm{PLZ}}$ and $\mathrm{t}_{\mathrm{PZL}}$ tests

Application Notes

1. Device performance will be enhanced by the use of dual $V_{\text {Cc }}$ power planes as illustrated in the Application Figures 4 and 5 . This will minimize the coupling of TTL switching noise into the primary reference to the ECL circuitry and take full advantage of the 100390's on chip $V_{C C}$ partitioning.
2. The device's partitioned $V_{C C}$ may be operated from two $5 \mathrm{~V}, 5 \%$ tolerance, supplies provided that they are ramped up/down together so that the max differential is 1V. This is to prevent overstress to internal ESD diodes. If the ECL driver to the F390 is powered from a separate supply, it must obey this sequence rule also.
3. Glitch-free power up, independent of Data input levels, is achieved if TTL logic HIGH is held on the Output Enable pin during ramping up/down of the $V_{C C}$ supply.
4. Undefined output states can occur for some invalid combinations. See Truth Table. This should be avoided to prevent possible oscillation or increased power consumption due to TTL outputs biased into a quasi state with both pullup and pulldown stages partially on. TRISTATEing the outputs will counteract the effects of invalid input states.
5. Pins 8,15 , and 22 on the 28 -pin PCC package are tied to the chip's substrate and are named GNDs. These pins are electrically common to the ground pins 1,2 , and 28. For best thermal performance, tie the GND pins to the circuit ground plane. They may be tied to an electrically isolated thermal dissipation plane or may float.
6. Figure 4 illustrates typical differential input operation.
7. Figure 5 illustrates typical single-ended input operation.

Application Notes (Continued)

TL/F/10897-8
FIGURE 4

FIGURE 5

100391

Low Power Single Supply Hex TTL-to-ECL Translator

General Description

The 100391 is a hex translator for converting TTL logic levels to F100K ECL logic levels. The unique feature of this translator, is the ability to do this translation using only one +5 V supply. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. A common enable (E), when low, holds all inverting outputs HIGH and all non-inverting inputs LOW.
The 100391 is ideal for those mixed ECL/TTL applications which only have a +5 V supply available. When used in the differential mode, the 100391, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems.

Features

- Operates from a single +5 V supply

■ Differential ECL outputs

- 2000V ESD protection
- Companion chip to 100390 hex ECL-to-TTL translator

Ordering Code: See Section 6
Logic Symbol

TL/F/10939-1

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs (TTL)
$Q_{0}-Q_{5}$	Data Outputs (PECL)
$\bar{Q}_{0}-\bar{Q}_{5}$	Inverting Data Outputs (PECL)
E	Enable Input (TTL)

Connection Diagrams

TL/F/10939-2

TL/F/10939-3

Truth Table

Inputs		Outputs	
$\mathbf{D}_{\boldsymbol{n}}$	\mathbf{E}	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
H	H	H	L
L	H	L	H
H	L	L	H
L	L	L	H

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$

$V_{C C}$ Pin Potential to Ground Pin
ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 3)
TTL Input Current (Note 3)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

ESD (Last Passing Voltage) (Min) (Note 2) 2000V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Case Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
Supply Voltage ($V_{C C}$) Commercial

Commercial Version

TTL-to-ECL DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$V_{C C}-1025$	$V_{C C}-955$	$\mathrm{V}_{C C}-870$	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max })}$ or $\mathrm{V}_{\mathrm{IL}(\text { min })}$ Loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}-1890$	$V_{C C}-1705$	$\mathrm{V}_{\mathrm{CC}}-1620$	mV	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	$V_{C C}-1035$			mV	$V_{I N}=V_{I H(\text { min })} \text { or } V_{I L}(\text { max })$ Loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage Corner Point Low			$V_{C C}-1610$	mV	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		5.0	V	Over $V_{T T L}, V_{E E}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{E E}, T_{C}$ Range
I_{H}	Input HIGH Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
	Breakdown Test			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$
IIL	Input LOW Current \underline{D}_{n} E	$\begin{aligned} & -0.8 \\ & -4.2 \end{aligned}$			mA	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$
$V_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current	32		69	mA	Inputs Open

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to

DIP Package AC Electrical Characteristics

$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.30	1.40	0.35	1.30	0.40	1.30	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Enable to Output	0.40	1.50	0.45	1.40	0.50	1.40	ns	Figures 1, 2
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.70	0.35	1.70	0.35	1.70	ns	Figures 1, 2

SOIC and PCC Package AC Electrical Characteristics
 $V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.30	1.40	0.35	1.30	0.40	1.30	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.40	1.50	0.45	1.40	0.50	1.40	ns	
$\mathbf{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.70	0.35	1.70	0.35	1.70	ns	
${ }^{\text {toSHL }}$	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		750		750		750	ps	PCC Only (Note 1)
tosth	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		700		700		700	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		450		450		450	ps	PCC Only (Note 1)
$t_{\text {PS }}$	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		525		525		525	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHU), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.

Industrial Version

DC Electrical Characteristics

$V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$ (Note 1)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max		
V_{OH}	Output HIGH Voltage	$V_{C C}-1085$	$V_{C C}-870$	$\mathrm{V}_{\text {CC }}-1025$	$V_{\text {CC }}-870$	mV	$\begin{aligned} & V_{I N}=V_{I H(\max)} \text { or } V_{I L}(\min) \\ & \text { Loading with } 50 \Omega \text { to } V_{C C}-2 V \end{aligned}$
V_{OL}	Output LOW Voltage	$V_{C C}-1890$	$V_{C C}-1575$	$V_{C C}-1890$	$V_{C C}-1620$	mV	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	$V_{C C}-1095$		$V_{C C}-1035$		mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (min) }}$ or $\mathrm{V}_{\mathrm{IL} \text { (max) }}$ Loading with 50Ω to $V_{C C}-2 V$
Volc	Output LOW Voltage Corner Point High		$V_{C C}-1565$		$V_{C C}-1610$	mV	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	
V_{IL}	Input LOW Voltage	0	0.8	0	0.8	V	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$
	Breakdown Test		20		20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$
ILL	Input LOW Current D_{n} E	$\begin{aligned} & -0.8 \\ & -4.2 \end{aligned}$		$\begin{aligned} & -0.8 \\ & -4.2 \end{aligned}$		mA	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$
$V_{F C D}$	Input Clamp Diode Voltage	-1.2		-1.2		V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current	29	69	29	69	mA	Inputs Open

PCC AC Electrical Characteristics

$V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.20	1.50	0.35	1.30	0.40	1.30	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathbf{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.35	1.60	0.45	1.40	0.50	1.40	ns	
$\mathbf{t}_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.70	0.35	1.70	0.35	1.70	ns	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Military Version-Preliminary

TTL-to-ECL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	$\mathrm{T}_{\mathbf{C}}$	Conditions		Notes
V_{OH}	Output HIGH Voltage	$V_{C C}-1025$	$V_{C C}-870$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max })} \\ & \quad \text { or } \mathrm{V}_{\mathrm{IL}} \text { (min) } \end{aligned}$	Loading with$50 \Omega \text { to } V_{C C}-2.0 \mathrm{~V}$	1, 2, 3
		$V_{C C}-1085$	$V_{C C}-870$	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	$V_{C C}-1830$	$V_{C C}-1620$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		$V_{C C}-1830$	$V_{C C}-1555$	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$V_{C C}-1035$		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(\min)} \\ & \text { or } V_{\mathrm{IL}(\max)} \end{aligned}$	Loading with$50 \Omega \text { to } V_{C C}-2.0 \mathrm{~V}$	1,2,3
		$V_{C C}-1085$		mV	$-55^{\circ} \mathrm{C}$			
VOLC	Output LOW Voltage		$V_{C C}-1610$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			$V_{C C}-1555$	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	2.0		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			1,2, 3, 4
V_{IL}	Input LOW Voltage		0.8	V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			1, 2, 3, 4
I_{IH}	Input HIGH Current		70	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{1 \mathrm{~N}}=+2.7 \mathrm{~V}$		1, 2, 3
ILL	Input LOW Current	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$		1, 2, 3
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2		V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$		1, 2, 3
Icc	V_{CC} Supply Current	20	70	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1, 2, 3

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=+5.0 \pm 10 \%$, $\mathrm{GND}=\mathrm{OV}$

Symbol	Parameter	$\mathrm{T}=-55^{\circ} \mathrm{C}$		$\mathrm{T}=+25^{\circ} \mathrm{C}$		$\mathrm{T}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay Data and Enable to Output	0.40	2.50	0.50	2.10	0.50	2.10	ns	Figures 1, 2	1, 2, 3
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	2.00	0.30	2.00	0.30	2.00	ns	Figures 1, 2	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold termperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$ and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Switching Waveforms

FIGURE 1. Propagation Delay and Transition Times

Test Circuit

FIGURE 2. AC Test Circuit
Notes:
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{GNDECL}=\mathrm{GNDTTL}=3.0 \mathrm{~V}$
$V_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-3 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{E E}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

National Semiconductor

100392

Single Supply Quint CMOS-to-ECL Translator

 with Cutoff Drivers
General Description

The 100392 is a quint translator for converting CMOS logic levels to positive referenced F100K ECL logic levels (or PECL). This translator is designed to operate from a single +5 V supply, eliminating the need for a separate -5 V supply. The differential outputs of the 100392, due to its high common mode rejection, overcomes voltage gradients between the CMOS and ECL ground systems.
A LOW on the input enable pin (E) sets the true outputs to a LOW state and the inverting outputs to a HIGH state. A HIGH on the output enable pin (OE) sets both true and inverting outputs to a cutoff or high impedance state.

The outputs of the 100392 are designed to drive a double terminated 50Ω differential transmission line (25Ω load impedance).

Features

- Drives 25Ω load with cutoff capability
- Operates from a single +5 V supply
- Differential ECL outputs
- 2000 V ESD protection

Logic Symbol

Pin Names	Description
$D_{0}-D_{4}$	Data Inputs (CMOS)
$Q_{0}-Q_{4}$	Data Outputs (PECL)
$\bar{Q}_{0}-\bar{Q}_{4}$	Inverting Data Outputs (PECL)
E	Enable Input (CMOS)
$O E$	Output Enable Input (CMOS)

Connection Diagrams

28-Pin PCC

TL/F/10951-3

100393
Low Power 9-Bit ECL-to-TTL Translator with Latches

General Description

The 100393 is a 9 -bit translator for converting F100K logic levels to FAST® TTL logic levels. A LOW on the latch enable (LE) latches the data at the input state. A HIGH on the LE makes the latches transparent. A HIGH on either the ECL or TTL output enable ($\overline{O E ~ E C L}$ or $\overline{O E ~ T T L}$), holds the outputs in a high impedance state.
The 100393 is designed with FAST® TTL, 64 mA outputs for Bus Driving capability. All ECL inputs have $50 \mathrm{k} \Omega$ pull down resistors. When the inputs are either unconnected or at the same potential, the outputs will go LOW.

Features
■ $64 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ drive capability
■ 2000V ESD protection
■ -4.2 V to -5.7 V operating range

- Latched outputs
- FAST® TTL outputs

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{8}$	Data Inputs (ECL)
$Q_{0}-Q_{8}$	Data Outputs (TTL)
LE	Latch Enable Input (ECL)
$\overline{O E T T L}$	Output Enable (TTL)
$\overline{O E E C L}$	Output Enable (ECL)

Connection Diagram

Logic Diagram

TL/F/10650-3

Truth Table

Inputs				Outputs
OETTL	OE ECL	LE	D_{N}	$\mathbf{Q}_{\mathbf{N}}$
L	L	H	L	L
L	L	H	H	H
L	L	L	X	Latched
H	X	X	X	Z
X	H	X	X	Z

$H=$ High Vottage Level
$L=$ Low Voltage Level
X = Don't Care
$\mathbf{Z}=$ High Impedance

```
Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availablility and specifications.
```

Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J}) $+150^{\circ} \mathrm{C}$
Case Temperature under Bias (T_{C})
$V_{E E}$ Pin Potential to Ground Pin
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{T T L}$ Pin Potential to Ground Pin
ECL Input Voltage (DC)
TTL Input Voltage
Output Current (DC Output HIGH)
ESD (Note 2) vice may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2. ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	
V_{EE}	-5.7 V to -4.2 V
$\mathrm{~V}_{\mathrm{TIL}}$	+4.5 V to +5.5 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter		Min	Typ Max	Units	Conditions	
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$		V	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) or V_{IH} (Max)
V_{OL}	Output LOW Voltage			$\begin{aligned} & 0.55 \\ & 0.50 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{IOL}=64 \mathrm{~mA} \\ & \mathrm{IOL}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{\mathbb{I N}}=V_{I L} \text { (Min) or } \\ & V_{\mathbb{H}}(\operatorname{Max}) \end{aligned}$
V_{IH}	Input HIGH Voltage	ECL Inputs	-1165	-870	mV	Guaranteed HIGH Signal for All inputs	
		OE TTL	2.0		V		
$V_{\text {IL }}$	Input LOW Voltage	ECL Inputs	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
		OETTL		0.8	V		
$\mathrm{I}_{\mathrm{BVI}}$	Input Breakdown Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{BI}}=7.0 \mathrm{~V}$	
I_{IH}	ECL Input HIGH Current	ECL Inputs		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$	
		OEECL		350			
	TTL Input HIGH Current	OETTL		5.0	$\mu \mathrm{A}$	$V_{\text {IN }}=2.7 \mathrm{~V}$	
IIL	ECL Input LOW Current	ECL Inputs	0.5		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
	TL Input LOW Current	OETTL		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			250	$\mu \mathrm{A}$		
los	Output Short-Circuit Current		-100	-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$	
IOZH	TRI-STATE Current Output HIGH			+50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	
IozL	TRI-STATE Current Output LOW			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	
$\mathrm{V}_{\text {FCD }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{l}_{\mathbb{N}}=-18 \mathrm{~mA}$	
$\mathrm{I}_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Power Supply Current		-39	-18	mA	Inputs Open	
ICCH	$V_{\text {TTL }}$ Power Supply Current HIGH			29	mA		
ICCL	$V_{\text {TTL }}$ Power Supply Current LOW			65	mA		
ICCZ	$V_{\text {TTL }}$ Power Supply Current TRI-STATE			49	mA		

Note 3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	2.3	4.8	2.3	4.8	2.3	5.3	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LE to Output	2.3	5.6	2.3	5.6	2.3	6.4	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{P} \mathrm{LL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E T T L} \downarrow$ to Q_{N}	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\text { OE TTL } \uparrow \text { to } Q_{N}}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 6.0 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	ns	Figure 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E E C L} \uparrow$ to Q_{N}	$\begin{array}{r} 2.4 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & 5.6 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 3.2 \\ \hline \end{array}$	$\begin{array}{r} 5.6 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 2.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 8.5 \\ & \hline \end{aligned}$	ns	Figure 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{O E E C L} \downarrow$ to Q_{N}	$\begin{aligned} & 2.4 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 3.2 \\ \hline \end{array}$	$\begin{array}{r} 6.0 \\ 7.6 \\ \hline \end{array}$	$\begin{array}{r} 2.4 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 7.6 \\ & \hline \end{aligned}$	ns	Figure 4
t_{5}	Setup Time, D_{N} to LE	0.7		0.7		0.7		ns	Figures 1, 2
$t_{\text {h }}$	Hold Time, D_{N} to LE	1.3		1.3		1.3		ns	Figures 1,2
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW, LE	2.0		2.0		2.0		ns	Figures 1, 2

FIGURE 1. AC Test Setup

Switching Waveforms

TL/F/10650-5
FIGURE 2. Propagation Delays, Setup and Hold Times, and Pulse Width

FIGURE 3. Enable and Disable Waveforms, $\overline{O E}$ TTL

FIGURE 4. Enable and Disable Waveforms, OE ECL

National
Semiconductor

100395

Low Power 9-Bit ECL-to-TTL Translator with Registers

General Description

The 100395 is a 9 -bit translator for converting F100K logic levels to FAST® TTL logic levels. A high on the output enable ($\overline{\mathrm{OE}}$) holds the TTL outputs in a high impedance state. Two separate clock inputs are available for multiplexing and system level testing.
The 100395 is designed with FAST TTL 64 mA outputs for bus driving capability. All inputs have $50 \mathrm{k} \Omega$ pull down resistors. When the inputs are either unconnected or at the same potential, the outputs will go LOW.

Features

- $64 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ drive capability
- 2000V ESD protection

■ -4.2 V to -5.7 V operating range

- Registered outputs
- FAST TTL outputs

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{8}$	Data Inputs (ECL)
$\mathrm{Q}_{0}-\mathrm{Q}_{8}$	Data Outputs (TTL)
OE	Output Enable
$C P_{1}, C P_{2}$	Clock Inputs

TL/F/10651-1

Connection Diagram

Logic Diagram

TL/F/10651-3

Truth Table

Inputs				
$\mathrm{CP}_{\mathbf{1}}$	$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}$	\mathbf{D}_{N}	\mathbf{Q}_{N}
\boldsymbol{r}	L	L	L	L
L	Γ	L	L	L
Γ	L	L	H	H
L	Ω	L	H	H
H	X	X	X	NC
X	H	X	X	NC
L	L	X	X	NC
X	X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
Z = High Impedance
NC = No Change

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)	
If Military/Aerospace specified please contact the National Office/Distributors for availabilit	ices are required, iconductor Sales d specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	$+150^{\circ} \mathrm{C}$
Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
$V_{T T L}$ Pin Potential to Ground Pin	-0.5 V to +6.0 V
ECL Input Voltage (DC)	V_{EE} to +0.5 V
TTL Input Voltage	-0.5 V to +7.0 V
Output Current (DC Output HIGH)	+ 130 mA
ESD (Note 2)	$\geq 2000 \mathrm{~V}$

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions
Case Temperature (T_{C})
Supply Voltage
$V_{\text {EE }}$
-5.7 V to -4.2 V
$V_{T T L}$

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$
V_{OL}	Output LOW Voltage			0.55	V	$\mathrm{lOL}=64 \mathrm{~mA}$	
V_{1}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
${ }_{1}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$	
Iozl	TRI-STATE® Current Output High			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.4 \mathrm{~V}$	
l OZH	TRI-STATE Current Output Low			+50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	
ICEX	Output High Leakage Current			250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	
los	Output Short-Circuit Current	-100		-225	mA		
leE	V_{EE} Power Supply Current	-67		-29	mA	Inputs Open	
ICCH	$V_{\text {TTL }}$ Power Supply Current High			29	mA		
$\mathrm{I}_{\text {CCL }}$	$V_{\text {TTL }}$ Power Supply Current Low			65	mA		
ICCZ	$V_{\text {TTL }}$ Power Supply Current TRI-STATE			49	mA		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC, AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Clock to Output	$\begin{aligned} & 2.30 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 6.40 \end{aligned}$	ns	Figures 1, 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E} \downarrow$ to Q_{N}	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{array}{r} 7.60 \\ 5.60 \\ \hline \end{array}$	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{array}{r} 7.60 \\ 5.60 \\ \hline \end{array}$	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{array}{r} 7.60 \\ 5.60 \\ \hline \end{array}$	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time $\overline{O E} \uparrow$ to Q_{N}	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{array}{r} 7.60 \\ 5.60 \\ \hline \end{array}$	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{aligned} & 7.60 \\ & 5.60 \end{aligned}$	$\begin{array}{r} 3.20 \\ 2.40 \\ \hline \end{array}$	$\begin{aligned} & 7.60 \\ & 5.60 \\ & \hline \end{aligned}$	ns	Figures 1, 3
${ }_{\text {t }}^{\mathrm{H}}$	Data to CP, $\overline{E N}$ Hold Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns	Figures 1, 2
ts	Data to CP EN Setup Time	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		ns	Figures 1, 2
$t_{\text {pw }}(\mathrm{H})$	Clock Pulse Width	2.0		2.0		2.0		ns	Figures 1, 2

Test Circuit

Switch Positions for Parameter Testing

Parameter	S-Position
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PZH }}$	Open
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	Closed

Notes:

$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5 \mathrm{~V}$.
All unused outputs are loaded with 500Ω to GND. Decoupling capacitors are necessary in the test and end application environment. When $\mathrm{V}_{C C}$ and $\mathrm{V}_{C C A}$ are common to a single power plane, typically 0.0 V , decouple $V_{T T L}$ to that plane with one $0.01 \mu \mathrm{~F}$ capacitor.

FIGURE 1. AC Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay and Transition TImes

FIGURE 3. Enable and Disable Waveforms, $\overline{\mathrm{OE}}$ to $\mathbf{Q}_{\mathbf{N}}$

100397

Quad Differential ECL／TTL Translating Transceiver with Latch

General Description

The 100397 is a quad latched transceiver designed to con－ vert TTL logic levels to differential F100K ECL logic levels and vice versa．This device was designed with the capability of driving a differential 25Ω ECL load with cutoff capability， and will sink a 64 mA TTL load．The 100397 is ideal for mixed technology applications utilizing either an ECL or TTL backplane．
The direction of translation is set by the direction control pin （DIR）．The DIR pin on the 100397 accepts F100K ECL logic levels．An ECL LOW on DIR sets up the ECL pins as inputs and TTL pins as outputs．An ECL HIGH on DIR sets up the TTL pins as inputs and ECL pins as outputs．
A LOW on the output enable input pin（OE）holds the ECL output in a cut－off state and the TTL outputs at a high im－ pedance level．A HIGH on the latch enable input（LE）latch－ es the data at both inputs even though only one output is enabled at the time．A LOW on LE makes the latch transpar－ ent．
The cut－off state is designed to be more negative than a normal ECL LOW level．This allows the output emitter－
followers to turn off when the termination supply is -2.0 V ， presenting a high impedance to the data bus．This high im－ pedance reduces termination power and prevents loss of low state noise margin when several loads share the bus．
The 100397 is designed with FAST® TTL output buffers， featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads．All inputs have $50 \mathrm{~K} \Omega$ pull－down resistors．

Features

－Differential ECL input／output structure
－ 64 mA FAST TTL outputs
■ 25Ω differential ECL outputs with cut－off
－Bi－directional translation
－2000V ESD protection
－Latched outputs
－TRI－STATE ${ }^{@}$ outputs
－Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V

Ordering Code：See Section 6

Logic Symbol

Connection Diagrams

Functional Diagram

Pin Names	Description
$E_{0}-E_{3}$	ECL Data I/O
$\bar{E}_{0}-\mathrm{E}_{3}$	Complementary ECL Data I/O
$T_{0}-T_{3}$	TTL Data I/O
OE	Output Enable Input (ECL Levels)
LE	Latch Enable Input (ECL Levels)
DIR	Direction Control Input (ECL levels)
GNDECL	ECL Ground
GNDECLO	ECL Output Ground
GNDS	ECL Ground-to-Substrate
$V_{E E}$	ECL Quiescent Power Supply
$V_{\text {EED }}$	ECL Dynamic Power Supply
GNDTTL	TTL Quiescent Ground
GNDTTLD	TTL Dynamic Ground
$V_{T T L}$	TTL Quiescent Power Supply
$V_{T T L}$	TTL Dynamic Power Supply

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{3}$.

TL/F/10971-5
Note: LE, DIR, and OE use ECL logic levels

Detail

TL/F/10971-6

Truth Table

LE	DIR	OE	ECL Port	TTL Port	Notes
0	0	0	LOW (Cut-Off)	Z	
0	0	1	Input	Output	1,4
0	1	0	LOW (Cut-Off)	Z	
0	1	1	Output	Input	2,4
1	0	0	Input	Z	1,3
1	0	1	Latched	X	1,3
1	1	0	LOW (Cut-Off)	Input	2,3
1	1	1	Latched	X	2,3

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$Z=$ High impedance
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$V_{E E}$ Pin Potential to Ground Pin
$V_{\text {TTL }}$ Pin Potential to Ground Pin
ECL Input Voltage (DC)
ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 3)
TTL Input Current (Note 3)
-30 mA to +5.0 mA are vice may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MLL-STD-883, Method 3015.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output in HIGH State
TRI-STATE Output
-0.5 V to +5.5 V
Current Applied to TTL
Output in LOW State (Max) Twice the Rated IOL (mA)
ESD (Note 2) $\quad \geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
ECL Supply Voltage ($V_{E E}$)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V
+4.5 V to +5.5 V

Commercial Version

TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{\mathbb{I N}}=V_{I H(M a x)} \text { or } V_{I L(M i n)}$ Loading with 50Ω to -2 V
VOL	Output LOW Voltage	-1830	-1705	-1620	mV	
	Cutoff Voltage		-2000	-1950	mV	OE and LE Low, DIR High $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$, Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { (Max) }}$ Loading with 50Ω to -2 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage Corner Point Low			-1610	mV	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0		5.0	V	Over $\mathrm{V}_{T T L}, \mathrm{~V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
IBVIT	Input HIGH Current Breakdown (I/O)			0.5	mA	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IIL	Input LOW Current	-1.0			mA	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
lee	VEE Supply Current	-99		-50		LE Low, OE and DIR High Inputs Open
leez	$V_{\text {EE }}$ Supply Current	-159		-90		LE and OE Low, Dir High Inputs Open

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TtL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
V_{OL}	Output LOW Voltage		0.3	0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
V_{CM}	Common Mode Voltage	GNDECL - 2.0		GNDECL - 0.5	V	
I_{IH}	Input HIGH Current $E_{0}-E_{3}, \bar{E}_{0}-\bar{E}_{3}$ OE, LE, DIR			$\begin{gathered} 240 \\ 35 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
$I_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {TTL }}$
$\mathrm{l} z \mathrm{z}$	Bus Drainage Test			500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TTL}}=0.0 \mathrm{~V} \end{aligned}$
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$
lozht	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
Iozlt	TRI-STATE Current Output Low	-650			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-100		-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
$I_{\text {TTL }}$	$V_{\text {TTL }}$ Supply Current			$\begin{aligned} & 39 \\ & 27 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
DIP and PCC TTL-to-ECL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{F}_{\text {Max }}$	Maximum Clock Frequency	180		180		180		MHz	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	T_{n} to E_{n}, E_{n} (Transparent)	0.9	2.1	0.8	2.2	0.7	2.5	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to $\mathrm{E}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}$	1.2	2.3	1.3	2.4	1.4	2.5	ns	Figures 1,3
tpZH	$O E$ to E_{n}, E_{n} (Cutoff to High)	2.5	4.5	2.5	4.5	2.5	4.6	ns	Figures 1, 3
$t_{\text {PHZ }}$	$O E$ to E_{n}, \bar{E}_{n} (High to Cutoff)	2.1	3.8	2.3	4.0	2.5	4.5	ns	Figures 1,3
$t_{\text {PHZ }}$	DIR to E_{n}, \bar{E}_{n} (High to Cutoff)	2.0	3.5	2.1	3.7	2.3	4.2	ns	Figures 1, 3
ts	T_{n} to LE	0.8		0.8		0.8		ns	Figure 1, 3
t_{H}	T_{n} to LE	0.6		0.6		0.6		ns	Figures 1, 3
${ }^{t_{T} \text { LH }}$ $\mathbf{t}_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.8	2.8	0.8	2.8	0.8	2.8	ns	Figures 1, 3

DIP and PCC ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{F}_{\text {Max }}$	Maximum Clock Frequency	75		75		75		MHz	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	E_{n}, E_{n} to T_{n} (Transparent)	1.7	4.9	1.7	5.1	1.8	5.8	ns	Figures 2, 4
$t_{\text {PLH }}$ $t_{\text {PHL }}$	LE to T_{n}	$\begin{aligned} & 2.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 6.1 \end{aligned}$	ns	Figures 2, 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{array}{r} 3.2 \\ 4.9 \\ \hline \end{array}$	$\begin{aligned} & 5.6 \\ & 8.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.7 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 3.6 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.3 \\ 9.2 \\ \hline \end{array}$	ns	Figures 2, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 6.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 6.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 6.7 \\ & \hline \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 3.5 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & 6.7 \end{aligned}$	ns	Figures 2, 6
ts	E_{n}, \bar{E}_{n} to LE	0.6		0.6		0.6		ns	Figures 2, 4
t_{H}	E_{n}, E_{n} to LE	0.7		0.7		0.7		ns	Figures 2, 4
$\mathrm{t}_{\mathrm{PW}}(\mathrm{L})$	Pulse Width LE	2.0		2.0		2.0		ns	Figures 2, 4

Industrial Version
TTL-to-ECL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 1)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1085	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$ Loading with 50Ω to -2 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1575	mV	
	Cutoff Voltage		-2000	-1900	mV	OE and LE Low, DIR High $V_{I N}=V_{I H(\text { Max })}$ or $V_{I L(M i n)}$, Loading with 50Ω to -2 V
VOHC	Output HIGH Voltage Corner Point High	-1095			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Max })}$ Loading with 50Ω to -2 V
$V_{\text {OLC }}$	Output LOW Voltage Corner Point Low			-1565	mV	
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Over $V_{T L L}, V_{E E}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{E E}, T_{C}$ Range
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IIL	Input LOW Current	-1.0			mA	$\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$
$V_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$l_{\text {EE }}$	VEE Supply Current	-99		-40		LE Low, OE and DIR High Inputs Open
$l_{\text {eez }}$	VEE Supply Current	-159		-90		LE and OE Low, Dir High Inputs Open

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)
ECL-to-TTL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 1)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \\ & \hline \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{T T \mathrm{~L}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{T T \mathrm{~L}}=4.50 \mathrm{~V} \end{aligned}$
V_{OL}	Output LOW Voltage		0.3	0.5	\checkmark	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1170		-870	mV	Guaranteed HIGH Signal for All Inputs
V_{IL}	Input LOW Voltage	-1830		-1480	mV	Guaranteed LOW Signal for All Inputs
V DIFF	Input Voltage Differential	150			mV	Required for Full Output Swing
$V_{C M}$	Common Mode Voltage	GNDECL - 2.0		GNDECL - 0.5	V	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\begin{aligned} & \mathrm{E}_{0}-\mathrm{E}_{3}, \bar{E}_{0}-\mathrm{E}_{3} \\ & \text { OE, LE, DIR } \end{aligned}$			$\begin{gathered} 300 \\ 35 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
${ }^{\text {I CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {TTL }}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{OUT}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TTL}}=0.0 \mathrm{~V} \end{aligned}$
1 LL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$
lozht	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
IOZLT	TRI-STATE Current Output Low	-650			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-100		-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5.5 \mathrm{~V}$
$I_{\text {TTL }}$	$\mathrm{V}_{\text {TTL }}$ Supply Current			$\begin{aligned} & 39 \\ & 27 \\ & 39 \\ & \hline \end{aligned}$	mA mA mA	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)
PCC TTL-to-ECL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$F_{\text {Max }}$	Maximum Clock Frequency	180		180		180		MHz	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	T_{n} to E_{n}, E_{n} (Transparent)	0.9	2.4	0.8	2.2	0.7	2.5	ns	Figures 1, 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$L E$ to E_{n}, E_{n}	1.2	2.3	1.3	2.4	1.4	2.5	ns	Figures 1, 3
${ }_{\text {tPZH }}$	$O E$ to E_{n}, \bar{E}_{n} (Cutoff to High)	1.9	3.8	2.5	4.5	2.5	4.6	ns	Figures 1, 3
$t_{\text {tPHZ }}$	$O E$ to E_{n}, E_{n} (High to Cutoff)	2.5	4.7	2.3	4.0	2.5	4.5	ns	Figures 1, 3
${ }^{\text {tPHZ }}$	DIR to E_{n}, \bar{E}_{n} (High to Cutoff)	1.8	3.5	2.1	3.7	2.3	4.2	ns	Figures 1, 3
ts	T_{n} to LE	0.8		0.8		0.8		ns	Figures 1, 3
t_{H}	T_{n} to LE	0.6		0.6		0.6		ns	Figures 1, 3
${ }^{\text {tTLH }}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.8	2.8	0.8	2.8	0.8	2.8	ns	Figures 1, 3

PCC ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} \mathrm{L}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{F}_{\text {Max }}$	Maximum Clock Frequency	75		75		75		MHz	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	E_{n}, E_{n} to T_{n} (Transparent)	1.7	4.9	1.7	5.1	1.8	5.8	ns	Figures 2, 4
tple tphL	LE to T_{n}	$\begin{aligned} & 2.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 6.1 \end{aligned}$	ns	Figures 2, 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	$O E$ to T_{n} (Enable Time)	$\begin{aligned} & 3.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 9.2 \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLz } \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.3 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.7 \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 6.7 \end{aligned}$	ns	Figures 2, 6
ts_{5}	E_{n}, E_{n} to LE	0.6		0.6		0.6		ns	Figures 2, 4
t_{H}	E_{n}, \bar{E}_{n} to LE	0.7		0.7		0.7		ns	Figures 2, 4
$t_{\text {PW }}(\mathrm{L})$	Pulse Width LE	2.0		2.0		2.0		ns	Figures 2, 4

Military Version—Preliminary

TTL-to-ECL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \quad \text { or } V_{\text {IL }}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
VoL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
	Cutoff Voltage		-1950	mV	$\begin{array}{r} \\ 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	OE or DIR Low		
			-1850	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} V_{\mathbb{I N}}=V_{\text {IH }}(\text { Min }) \\ \text { or } V_{I L}(\text { Max }) \end{gathered}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
Volc	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{tH}	Input HIGH Voltage	2.0		v	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Over $\mathrm{V}_{\text {TLL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
I_{H}	Input HIGH Current		70	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1,2,3
	Breakdown Test		1.0	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$		
I/L	Input LOW Current	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$		1,2,3
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		1, 2, 3
leE	V_{EE} Supply Current	$\begin{aligned} & -165 \\ & -175 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	LE Low, OE and Inputs Open $V_{E E}=-4.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to	$\begin{aligned} & \mathrm{RHigh} \\ & -4.8 \mathrm{~V} \\ & -5.7 \mathrm{~V} \end{aligned}$	1,2,3

Military Version—Preliminary (Continued)
ECL-to-TTL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions	Notes
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$	1, 2, 3
V_{OL}	Output LOW Voltage		0.5	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$	
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
I_{H}	Input HIGH Current		$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$	1, 2, 3
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$	1, 2, 3
lozht	TRI-STATE Current Output High		70	$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	1, 2, 3
lozlt	TRI-STATE Current Output Low	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$	1, 2, 3
los	Output Short-Circuit CURRENT	-150	-60	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5.5 \mathrm{~V}$	1, 2, 3
$\mathrm{I}_{\text {TL }}$	$\mathrm{V}_{\text {TTL }}$ Supply Current		$\begin{aligned} & 75 \\ & 50 \\ & 70 \\ & \hline \end{aligned}$	mA mA mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	TTL Outputs Low TTL Output High TTL Output in TRI-STATE	1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	T_{n} to E_{n}, E_{n} (Transparent)	1.0	3.9	1.1	3.6	1.1	4.0	ns	Figures 1,2	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	LE to E_{n}, \bar{E}_{n}	1.2	3.8	1.4	3.7	1.6	4.2	ns	Figures 1, 2	
${ }_{\text {tPZH }}$	OE to E_{n}, \bar{E}_{n} (Cutoff to HIGH)	1.0	4.3	1.5	4.4	1.7	5.2	ns	Figures 1, 2	
tPHZ	$O E$ to E_{n}, \bar{E}_{n} (HIGH to Cutoff)	1.5	5.1	1.6	4.5	1.6	5.1	ns	Figures 1,2	
$t_{\text {PHZ }}$	DIR to E_{n}, \bar{E}_{n} (HIGH to Cutoff)	1.6	4.7	1.6	4.3	1.7	4.9	ns	Figures 1, 2	1,2,3
$\mathrm{t}_{\text {set }}$	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1, 2	4
$t_{\text {hold }}$	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1,2	
$t_{\text {pw }}(\mathrm{H})$	Pulse Width LE	2.5		2.0		2.5		ns	Figures 1, 2	4
$t_{\text {TLH }}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1, 2	4

Military Version-Preliminary (Continued) ECL-to-TTL AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	E_{n}, \bar{E}_{n} to T_{n} (Transparent)	2.3	6.4	2.4	5.6	2.6	6.3	ns	Figures 3, 4	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	LE to T_{n}	3.1	8.0	3.1	7.3	3.3	8.0	ns	Figures 3, 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.2 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.9 \\ & 9.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.2 \\ & 10.4 \\ & \hline \end{aligned}$	ns	Figures 3, 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.9 \\ & 9.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{gathered} 9.4 \\ 10.6 \\ \hline \end{gathered}$	ns	Figures 3, 5	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.6 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1 \\ & 9.7 \end{aligned}$	ns	Figures 3, 6	
$\mathrm{t}_{\text {set }}$	E_{n}, E_{n} to LE	2.5		2.0		2.5		ns	Figures 3, 4	4
$t_{\text {hold }}$	E_{n}, \bar{E}_{n} to LE	3.0		2.5		3.0		ns	Figures 3, 4	
$t_{p w}(\mathrm{H})$	Pulse Width LE	2.5		2.0		5.0		ns	Figures 3, 4	4

Test Circuitry (TTL-to-ECL)

TL/F/10971-15
Note 1: $R_{t}=50 \Omega$ termination. When an input or output is being monitored by a scope, R_{t} is supplied by the scope's 50Ω resistance. When an input or output is not being moinitored, and external 50Ω resistance must be applied to serve as R_{t}.
Note 2: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 3: $\mathrm{V}_{T T L}$ is decoupled to grouond with $0.1 \mu \mathrm{~F}$ to ground, $\mathrm{V}_{E E}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and GND is connected to ground.
Note 4: For ECL input pins, the equivelent force/sense circuitry is optional.
FIGURE 1. TTL-to-ECL AC Test Circuit

Switching Waveforms (TTL-to-ECL)

FIGURE 2. TTL to ECL Transition-Propagation Delay and Transition Times

Test Circuitry (ECL-to-TTL)

TL/F/10971-17
Note 1: $R_{t}=50 \Omega$ termination. When an input or output is being monitored by a scope, R_{t} is supplied by the scope's 50Ω resistance. When an input or output is not being moinitored, and external 50Ω resistance must be applied to serve as R_{t}.

Note 2: The TTL Tri-State pull up switch is connected to +7 V only for ZL and LZ tests
Note 3: TTL and ECL force signals are brought to the DUT via 50Ω coax lines.
Note 4: $V_{T T L}$ is decoupled to grouond with $0.1 \mu \mathrm{~F}$ to ground, $V_{E E}$ is decoupled to ground with $0.01 \mu \mathrm{~F}$ and GND is connected to ground
FIGURE 3. ECL-to-TTL AC Test Circuit

Switching Waveforms (Continued)

Note: DIR is LOW, and OE is HIGH
FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times

Note: DIR is LOW, LE is HIGH
FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

Note: OE is HIGH, LE is HIGH
FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

FIGURE 7. Applications Diagram—MOS/TTL SRAM Interface Using 100397 ECL-TTL Latched Translator

100398

Quad Differential ECL/TTL Translating Transceiver with Latch

General Description

The 100398 is a quad latched transceiver designed to convert TTL logic levels to differential F100K ECL logic levels and vice versa. This device was designed with the capability of driving a differential 25Ω ECL load with cutoff capability, and will sink a 64 mA TTL load. The 100398 is ideal for mixed technology applications utilizing either an ECL or TTL backplane.
The direction of translation is set by the direction control pin (DIR). The DIR pin on the 100398 accepts TTL logic levels. A TTL LOW on DIR sets up the ECL pins as inputs and TTL pins as outputs. A TTL HIGH on DIR sets up the TTL pins as inputs and ECL pins as outputs.
A LOW on the output enable input pin (OE) holds the ECL output in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the latch transparent.

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-fol-
lowers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.
The 100398 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All Inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Differential ECL input/output structure
- 64 mA FAST TTL outputs
- 25Ω differential ECL outputs with cut-off
- Bi-directional translation
- 2000V ESD protection
- Latched outputs
- TRI-STATE ${ }^{\circledR}$ outputs
- Voltage compensated
operating range $=-4.2 \mathrm{~V}$ to -5.7 V

Ordering Code: See Section 6

Logic Symbol

TL./F/10970-1

Connection Diagrams

TL/F/10970-3

Functional Diagram

TL/F/10970-5
Note: LE, and OE use TTL logic levels

Pin Names	Description
$\mathrm{E}_{0}-\mathrm{E}_{3}$	ECL Data I/O
$\mathrm{E}_{0}-\mathrm{E}_{3}$	Complementary ECL
	Data I/O
$\mathrm{T}_{0}-\mathrm{T}_{3}$	TTL Data I/O
OE	Output Enable Input Levels
LE	Latch Enable Input Levels
DIR	Direction Control
	Input (TTL levels)
GNDECL	ECL Ground
GNDECLO	ECL Output Ground
GNDS	ECL Ground-to-Substrate
$V_{\text {EE }}$	ECL Quiescent Power Supply
$V_{\text {EED }}$	ECL Dynamic Power Supply
GNDTTL	TTL Quiescent Ground
GNDTTLD	TTL Dynamic Ground
VTTL	TTL Quiescent Power Supply
VTTLD	TTL Dynamic Power Supply

Detail

Truth Table

LE	DIR	OE	ECL Port	TTL Port	Notes
0	0	0	LOW (Cut-Off)	Z	
0	0	1	Input	Output	1,4
0	1	0	LOW (Cut-Off)	Z	
0	1	1	Output	Input	2,4
1	0	0	Input	Z	1,3
1	0	1	Latched	X	1,3
1	1	0	Low (Cut-Off)	Input	2,3
1	1	1	Latched	X	2,3

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
$Z=$ High Impedance
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J}) Ceramic
$+175^{\circ} \mathrm{C}$
Plastic $+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
$V_{T T L}$ Pin Potential to Ground Pin

ECL Input Voltage (DC)
ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 4)
TTL Input Current (Note 4) $\quad-30 \mathrm{~mA}$ to +5.0 mA
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Voltage Applied to Output in HIGH State TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to TTL Output in LOW State (Max)

Twice the Rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$ ESD (Note 2)
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})
Commercial
Industrial
Military
EL Supply Voltage (V_{EE})
TL Supply Voltage $\left(\mathrm{V}_{\mathrm{TTL}}\right)$

$$
\begin{array}{r}
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Commercial Version

TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$ Loading with 50Ω to -2 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1705	-1620	mV	
	Cutoff Voltage		-2000	-1950	mV	OE and LE Low, DIR High $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max) or $\mathrm{V}_{\text {IL }}(\mathrm{Min})$, Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Max })}$ Loading with 50Ω to $-2 V$
VoLC	Output LOW Voltage Corner Point Low			-1610	mV	
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Over $V_{T T L}, V_{E E}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$
	Breakdown Test			0.5	mA	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$
IIL	Input LOW Current	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$
$V_{F C D}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$l_{\text {E }}$	$\mathrm{V}_{\text {EE }}$ Supply Current	-99		-50	mA	LE Low, OE and DIR High Inputs Open
$l_{\text {eEz }}$	V_{EE} Supply Current	-159		-90	mA	LE and OE Low, DIR High Inputs Open

Note 3: Either voltage limit or current limit is sufficient to protect inputs.
Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 4)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{T \mathrm{LL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
V_{OL}	Output LOW Voltage		0.3	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs
V DIFF	Input Voltage Differential	150			mV	Required for Full Output Swing
$V_{\text {CM }}$	Common Mode Voltage	GNDECL - 2.0		GNDECL - 0.5	V	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)
${ }^{\text {OZHT }}$	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
lozlt	TRI-STATE Current Output Low	-650			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-100		-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
${ }^{\text {I CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$
lzz	Bus Drainage Test			500	$\mu \mathrm{A}$	$V_{\text {OUT }}=5.25 \mathrm{~V}$
${ }^{\text {ITTL }}$	$\mathrm{V}_{\text {TTL }}$ Supply Current			$\begin{aligned} & 39 \\ & 27 \\ & 39 \end{aligned}$	mA mA mA	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP and PCC TTL-to-ECL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$F_{\text {max }}$	Toggle Frequency	180		180		180		MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	T_{n} to E_{n}, E_{n} (Transparent)	0.90	2.10	0.80	2.20	0.70	2.50	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to E_{n}, E_{n}	1.40	2.70	1.50	2.70	1.80	3.10	ns	Figures 1, 3
${ }_{\text {tPZH }}$	OE to E_{n}, \bar{E}_{n} (Cutoff to High)	2.90	8.00	2.80	6.90	2.80	5.80	ns	Figures 1, 3
${ }_{\text {tPHZ }}$	OE to E_{n}, E_{n} (High to Cutoff)	1.30	2.70	1.40	2.90	1.70	3.40	ns	Figures 1, 3
${ }_{\text {tPHZ }}$	DIR to E_{n}, \bar{E}_{n} (High to Cutoff)	1.30	2.70	1.40	2.90	1.80	3.50	ns	Figures 1, 3
t_{s}	T_{n} to LE	0.70		0.70		0.70		ns	Figures 1, 3
t_{H}	T_{n} to LE	0.90		0.80		0.70		ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	Figures 1, 3

Commercial Version (Continued)
DIP and PCC ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$F_{\text {max }}$	Toggle Frequency	75		75		75		MHz	
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	E_{n}, \bar{E}_{n} to T_{n} (Transparent)	1.70	4.90	1.70	5.10	1.80	5.80	ns	Figures 2, 4
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	LE to T_{n}	$\begin{aligned} & 2.30 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 3.50 \end{aligned}$	$\begin{array}{r} 4.70 \\ 5.70 \\ \hline \end{array}$	$\begin{aligned} & 2.60 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 6.70 \end{aligned}$	ns	Figures 2, 4
$\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{array}{r} 2.30 \\ 4.10 \\ \hline \end{array}$	$\begin{aligned} & 4.90 \\ & 7.90 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.10 \\ 4.10 \\ \hline \end{array}$	$\begin{aligned} & 4.70 \\ & 7.80 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.00 \\ 4.20 \\ \hline \end{array}$	$\begin{aligned} & 4.30 \\ & 7.80 \\ & \hline \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{array}{r} 3.30 \\ 4.10 \\ \hline \end{array}$	$\begin{aligned} & 7.90 \\ & 7.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.30 \\ & 4.30 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.50 \\ 7.80 \\ \hline \end{array}$	$\begin{array}{r} 3.70 \\ 5.30 \\ \hline \end{array}$	$\begin{aligned} & 7.90 \\ & 9.40 \\ & \hline \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.00 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.00 \\ & 4.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.70 \\ & 3.70 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.70 \\ 1.90 \\ \hline \end{array}$	$\begin{array}{r} 5.20 \\ 3.70 \\ \hline \end{array}$	ns	Figures 2, 6
t_{5}	E_{n}, E_{n} to LE	0.50		0.50		0.50		ns	Figures 2, 4
t_{H}	$\mathrm{E}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}$ to LE	1.00		1.00		1.00		ns	Figures 2, 4

Industrial Version

TTL-to-ECL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 1)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	-1085	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$ Loading with 50Ω to -2 V
VOL	Output LOW Voltage	-1830	-1705	-1575	mV	
	Cutoff Voltage		-2000	-1900	mV	OE and LE Low, DIR High $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max) }}$ or $\mathrm{V}_{\text {IL(Min) }}$, Loading with 50Ω to -2 V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage Corner Point High	-1095			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \text { or } \mathrm{V}_{\mathrm{IL}(\text { Max })}$ Loading with 50Ω to -2 V
Volc	Output LOW Voltage Corner Point Low			-1565	mV	
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Over $\mathrm{V}_{T T L}, \mathrm{~V}_{\mathrm{EE}}, T_{C}$ Range
V_{IL}	Input LOW Voltage	0		0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
	Breakdown Test			0.5	mA	$\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$
IIL	Input LOW Current	-700			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$
$V_{\text {FCD }}$	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
${ }^{\text {I E E }}$	V_{EE} Supply Current	-99	-40		mA	LE Low, OE and DIR High Inputs Open

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V (Note 1)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
V_{OL}	Output LOW Voltage		0.3	0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1170		-870	mV	Guaranteed HIGH Signal for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1480	mV	Guaranteed LOW Signal for All Inputs
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
V_{CM}	Common Mode Voltage	GNDECL - 2.0		GNDECL - 0.5	V	
IH	Input HIGH Current			35	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Min) }}$
lozht	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
IozLT	TRI-STATE Current Output Low	-650			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-100		-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5.5 \mathrm{~V}$
${ }^{\text {I CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
1 T L	$V_{\text {TTL }}$ Supply Current	-		$\begin{aligned} & 39 \\ & 27 \\ & 39 \\ & \hline \end{aligned}$	mA mA mA	TTL Outputs LOW TTL Outputs HIGH TTL Outputs in TRI-STATE

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the ternperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$F_{\text {max }}$	Toggle Frequency	180		180		180		MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	T_{n} to E_{n}, E_{n} (Transparent)	0.90	2.40	0.80	2.20	0.70	2.50	ns	Figures 1, 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	LE to $\mathrm{E}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}$	1.30	2.70	1.50	2.70	1.80	3.10	ns	Figures 1,3
${ }_{\text {tPZH }}$	OE to E_{n}, \bar{E}_{n} (Cutoff to High)	2.90	9.00	2.80	6.90	2.80	5.80	ns	Figures 1, 3
${ }_{\text {tPHZ }}$	OE to E_{n}, \bar{E}_{n} (High to Cutoff)	1.10	2.70	1.40	2.90	1.70	3.40	ns	Figures 1, 3
${ }^{\text {tPHZ }}$	DIR to E_{n}, \bar{E}_{n} (High to Cutoff)	1.10	2.70	1.40	2.90	1.80	3.50	ns	Figures 1, 3
t_{5}	T_{n} to LE	0.70		0.70		0.70		ns	Figures 1, 3
t_{H}	T_{n} to LE	0.90		0.90		0.90		ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.20	0.45	1.50	0.45	1.50	ns	Figures 1, 3

Industrial Version (Continued)									
PCC ECL-to-TTL AC Electrical Characteristics$V_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$F_{\text {max }}$	Toggle Frequency	75		75		75		MHz	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	E_{n}, \bar{E}_{n} to T_{n} (Transparent)	1.70	4.90	1.70	5.10	1.80	5.80	ns	Figures 2, 4
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	LE to T_{n}	$\begin{aligned} & 2.30 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 3.50 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 5.70 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 6.70 \end{aligned}$	ns	Figures 2, 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{array}{r} 2.30 \\ 4.10 \\ \hline \end{array}$	$\begin{aligned} & 5.50 \\ & 8.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.10 \\ & 4.10 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 4.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.30 \\ & 7.80 \\ & \hline \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.20 \\ & 4.00 \end{aligned}$	$\begin{array}{r} 7.90 \\ 7.40 \\ \hline \end{array}$	$\begin{aligned} & 3.30 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 7.50 \\ & 7.80 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.70 \\ 5.30 \end{array}$	$\begin{aligned} & 7.90 \\ & 9.40 \end{aligned}$	ns	Figures 2, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.00 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 6.60 \\ & 4.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 1.90 \end{aligned}$	$\begin{aligned} & 5.20 \\ & 3.70 \end{aligned}$	ns	Figures 2, 6
ts	E_{n}, \bar{E}_{n} to LE	0.50		0.50		0.50		ns	Figures 2, 4
${ }_{H}$	E_{n}, E_{n} to LE	1.00		1.00		1.00		ns	Figures 2, 4

Military Version-Preliminary

TTL-to-ECL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \quad \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
	Cutoff Voltage		-1950	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	OE or DIR Low		
			-1850	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Min}) \\ \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{gathered}$	$\begin{aligned} & \text { Loading with } \\ & 50 \Omega 0 \text { to }-2.0 \mathrm{~V} \end{aligned}$	1, 2, 3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Over $\mathrm{V}_{\mathrm{T} T \mathrm{~L}}, \mathrm{~V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Over $\mathrm{V}_{\mathrm{TTL}}, \mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
IIH	Input HIGH Current		70	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1,2,3
	Breakdown Test		1.0	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$		
I/L	Input LOW Current	-1.0		mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$		1, 2, 3
$\mathrm{V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage	-1.2		V	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		1, 2, 3
I_{EE}	V_{EE} Supply Current	$\begin{aligned} & -165 \\ & -175 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	LE Low, OE and DIR High Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3

Military Version-Preliminary (Continued)

ECL-to-TTL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions	Notes
V OH	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TH}}=4.50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$	1,2,3
V_{OL}	Output LOW Voltage		0.5	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V}$	
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$	1, 2, 3
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 V \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$	1,2,3
${ }^{\text {IOZHT }}$	TRI-STATE Current Output High		70	$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$	1, 2, 3
lozLT	TRI-STATE Current Output Low	-1.0		mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$	1,2,3
los	Output Short-Circuit Current	-150	-60	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$	1, 2, 3
${ }^{1} \mathrm{TTL}$	$\mathrm{V}_{\text {TTL }}$ Supply Current		$\begin{aligned} & 75 \\ & 50 \\ & 70 \\ & \hline \end{aligned}$	mA mA mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	TTL Outputs Low TTL Output High TTL Output in TRI-STATE	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	T_{n} to E_{n}, E_{n} (Transparent)	1.0	3.9	1.1	3.6	1.1	4.0	ns	Figures 1, 2	1, 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to E_{n}, \bar{E}_{n}	1.2	3.8	1.4	3.7	1.6	4.2	ns	Figures 1, 2	
$t_{\text {PZH }}$	OE to E_{n}, \bar{E}_{n} (Cutoff to HIGH)	1.0	4.3	1.5	4.4	1.7	5.2	ns	Figures 1, 2	
$t_{\text {PHZ }}$	OE to E_{n}, \bar{E}_{n} (HIGH to Cutoff)	1.5	5.1	1.6	4.5	1.6	5.1	ns	Figures 1, 2	1,2,3
$t_{\text {PHZ }}$	DIR to E_{n}, \bar{E}_{n} (HIGH to Cutoff)	1.6	4.7	1.6	4.3	1.7	4.9	ns	Figures 1, 2	
ts	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1, 2	4
t_{H}	T_{n} to LE	2.5		2.0		2.5		ns	Figures 1, 2	
$\mathrm{tpw}^{(H)}$	Pulse Width LE	2.5		2.0		2.5		ns	Figures 1, 2	4
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1, 2	4

Military Version-Preliminary (Continued)
ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ t_{PHL}	E_{n}, E_{n} to T_{n} (Transparent)	2.3	6.4	2.4	5.6	2.6	6.3	ns	Figures 3, 4	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	LE to T_{n}	3.1	8.0	3.1	7.3	3.3	8.0	ns	Figures 3, 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	$O E$ to T_{n} (Enable Time)	$\begin{aligned} & 3.2 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.9 \\ & 9.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.2 \\ & 10.4 \\ & \hline \end{aligned}$	ns	Figures 3, 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 9.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{gathered} 9.4 \\ 10.6 \\ \hline \end{gathered}$	ns	Figures 3, 5	1,2,3
$\begin{aligned} & \mathrm{tpHz}^{2} \\ & \mathrm{t}_{\mathrm{PL}} \\ & \hline \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.6 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.8 \\ 3.1 \\ \hline \end{array}$	$\begin{aligned} & 8.8 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1 \\ & 9.7 \\ & \hline \end{aligned}$	ns	Figures 3, 6	
t_{5}	E_{n}, E_{n} to LE	2.5		2.0		2.5		ns	Figures 3, 4	4
t_{H}	E_{n}, \bar{E}_{n} to LE	3.0		2.5		3.0		ns	Figures 3, 4	
tpw (H)	Pulse Width LE	2.5		2.0		5.0		ns	Figures 3, 4	4

Test Circuitry

${ }_{\mathrm{F}_{\text {ECL }}}$ - ETLL FORCING FUNCTION
TL/F/10970-7
FIGURE 1. TTL-to-ECL AC Test CIrcuit

Test Circuitry (Continued)

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ including stray and jig capacitance.
Note: 50Ω to ground termination must be included on ECL I/O pins not monitored by a 50Ω scope to prevent oscillatory feedback.
FIGURE 2. ECL-to-TTL AC Test Circuit

Switching Waveforms

TL/F/10970-9
FIGURE 3. TTL-to-ECL Transition-Propagation Delay and Transition Times

Switching Waveforms (Continued)

Note: DIR is LOW, and OE is HIGH
FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times

Note: DIR is LOW, LE is HIGH
FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times

FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time

Applications

FIGURE 7. Applications Diagram—MOS/TTL SRAM Interface Using 100398 ECL-TTL Latched Translator

Section 3
F100K 100 Series
Datasheets

Section 3 Contents

100117 Triple 2-Wide OA/OAI Gate 3-3
100118 5-Wide 5-4-4-4-2 OA/OAI Gate 3-6
100126 9-Bit Backplane Driver 3-10
100130 Triple D Latch 3-13
100135 Triple JK Flip-Flop 3-19
1001424×4 Content Addressable Memory 3-25
100156 Mask/Merge Latch 3-32
100158 8-Bit Shift Matrix 3-38
100165 Universal Priority Encoder 3-46
100166 9-Bit Comparator 3-52
100175 Quint 100K-to-10K Latch 3-57
100179 Carry Lookahead Generator 3-63
100180 High-Speed 6-Bit Adder 3-70
100181 4-Bit Binary/BCD ALU 3-75
100182 9-Bit Wallace Tree Adder 3-82
1001832×8-Bit Recode Multiplier 3-90
100250 Quint Full Duplex Line Transceiver 3-102

100117

Triple 2-Wide OA/OAI Gate

General Description

The 100117 is a monolithic triple 2-wide OR/AND gate with true and complement outputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors and all outputs are buffered.

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{\text {na }}-D_{\text {nc }}$	Data Inputs
$\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{c}}$	Enable Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\bar{O}_{\mathrm{c}}$	Complementary Data Outputs

Connection Diagrams

TL/F/9843-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to $=4.2 \mathrm{~V}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voitage	-1165		-880	(mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		- -870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$V_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output Low Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			260	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
I_{EE}	Power Supply Current	-79	-54	-37	mA	Inputs Open

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.90	2.60	0.90	2.50	0.90	2.60	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Enable to Output	0.45	1.40	0.45	1.30	0.45	1.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns	

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.90	2.40	0.90	2.30	0.90	2.40	ns	
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay Enable to Output	0.45	1.20	0.45	1.10	0.45	1.20	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.20	0.45	1.10	0.45	1.20	ns	

FIGURE 2. Propagation Delay and Transition Times

100118

5-Wide 5, 4, 4, 4, 2 OA/OAI Gate

General Description

The 100118 is a monolithic 5 -wide $5,4,4,4,2$ OR/AND gate with true complementary outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6
Logic Symbol

TL/F/9844-3

Connection Diagrams

TL/F/9844-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			350	μA	$V_{\mathrm{IN}}=V_{\mathbb{I H}}(M a x)$
I_{EE}	Power Supply Current	-92	-69	-42	mA	Inputs Open

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.85	2.50	0.95	2.50	0.95	2.70	ns	Figures 1 and 2
${ }^{\text {t TLH }}$ ${ }^{\text {tTHL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.85	2.30	0.95	2.30	0.95	2.50	ns	Figures 1 and 2
$t_{\text {TLH }}$ ${ }^{\text {t }}$ HL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.4	1.50	0.45	1.40	0.45	1.50	ns	

FIGURE 1. AC Test Circuit

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$\mathrm{A}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Propagation Delay and Transition Times

General Description

The 100126 contains nine independent, high-speed, buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus-oriented systems where minimal output loading or bus isola-
tion is desired. The output transition times are longer to minimize noise when used as a backplane driver. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6
Logic Symbol

TL/F/9850-3

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9850-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
VEE Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810	-1705	-1620			
V OHC	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL.	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{\mathbb{H}}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	\square		mV	$\begin{aligned} & V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	\%	-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{\mathbb{N}}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current			350	μA	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
I_{EE}	Power Supply Current	-96	-70	-46	mA	Inputs Open

DIP AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	1.05	2.75	1.05	2.75	1.05	2.75	*. ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.15	3.40	1.15	3.40	${ }^{1.05}$	3.40	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	1.05	2.55	1.05	2.55	1.05	2.55	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	1.15	3.30	1.15	3.30	1.05	3.30	ns	

TL/F/9850-5
FIGURE 1. AC Test Circuit

TL/F/9850-6
FIGURE 2. Propagation Delay and Transition Times

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

National

100130

Triple D Latch

General Description

The 100130 contains three D-type latches with true and complement outputs and with Common Enable ($\overline{\mathrm{E}}_{\mathrm{C}}$), Master Set (MS) and Master Reset (MR) inputs. Each latch has its own Enable (E_{n}), Direct Set (SD_{n}) and Direct Clear (CD_{n}) inputs. The Q output follows its Data (D) input when both E_{n} and \bar{E}_{C} are LOW (transparent mode). When either \bar{E}_{n} or $\overline{\mathrm{E}}_{\mathrm{C}}$
(or both) are HIGH, a latch stores the last valid data present on its D_{n} input before \bar{E}_{n} or \bar{E}_{C} goes HIGH.
Both Master Reset (MR) and Master Set (MS) inputs override the Enable inputs. The individual $C D_{n}$ and $S D_{n}$ also override the Enable inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol

TL/F/9852-3

Connection Diagrams

Logic Diagram

TL/F/9852-5

Truth Tables (Each Latch)

Latch Operation

Inputs					Outputs
D_{n}	\bar{E}_{n}	\bar{E}_{C}	$\begin{gathered} \mathrm{MS} \\ \mathrm{SD}_{\mathrm{n}} \end{gathered}$	$\begin{gathered} M R \\ C D_{n} \end{gathered}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	L	L	L	L
H	L	L	L	L	$\mathrm{H}^{\text {a }}$
X	H	X	L	L	Latched*
X	X	H	L	L	Latched*

*Retains data presented before E positive transition
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\mathrm{U}=$ Undefined

Asynchronous Operation

Inputs					
$\mathrm{D}_{\mathbf{n}}$	$\bar{E}_{\mathbf{n}}$	$\overline{\mathbf{E}}_{\mathbf{C}}$	MS $\mathbf{S D}_{\mathbf{n}}$	MR $\mathbf{C D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

$$
\begin{aligned}
& \text { Absolute Maximum Ratings } \\
& \text { Above which the useful life may be impaired. (Note 1) } \\
& \text { If Military/Aerospace specified devices are required, } \\
& \text { please contact the National Semiconductor Sales } \\
& \text { Office/Distributors for availability and specifications. } \\
& \text { Storage Temperature } \\
& \text { Maximum Junction Temperature (} \mathrm{T}_{\mathrm{J}} \text {) } \quad-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \hline 150^{\circ} \mathrm{C}
\end{aligned}
$$

Case Temperature under Bias (T_{C})
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(M a x) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL.	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\mathrm{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V OH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {(}}$ (in)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	D_{n}			350		
	$\mathrm{CD}_{n}, \mathrm{SD}_{\mathrm{n}}$		530	$\mu \mathrm{~A}$	$V_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
	\bar{E}_{n}			240		
	E_{C}, MR, MS			450		
I_{EE}	Power Supply Current	-149	-106	-74	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.80	0.50	1.70	0.50		ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay \bar{E}_{C} to Output	0.65	2.10	0.75	2.00	0.75		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}, \bar{E}_{n}$ to Output	0.50	2.00	0.60		0.60	2.00	ns	Figures 1, 2 and 3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.50	1.10	2.40	1.10	2.60	ns	Figures 1 and 2
$\begin{aligned} & \mathbf{t}_{\mathrm{t} \mathrm{LH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2
t_{s}	Setup Time $\begin{aligned} & \mathrm{D}_{0}-\mathrm{D}_{2} \\ & C D_{n}, S D_{n} \text { (Release Time) } \\ & \text { MR, MS (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.90 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.10 \\ & 1.90 \end{aligned}$		$\begin{array}{r} 0.90 \\ 1.40 \\ 2.00 \\ \hline \end{array}$		ns	Figures 3 and 4
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$	0.60		0.60		0.80		ns	Figure 4
${ }^{t_{p w}(L)}$	Pulse Width LOW \bar{E}_{n}, E_{C}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $C D_{n}, S D_{n}, M R, M S$	2.00		2.00		2.00		ns	Figure 3

FIGURE 3. Reset Timing

Notes:
t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

FIGURE 4. Data Setup and Hold Time

National

100135

Triple J-K Flip-Flop

General Description

The 100135 contains three J-K, edge-triggered masterslave flip-flops with true and complement outputs. All have individual Clock (CP_{n}), Clear (C_{n}), and Set (S_{n}) inputs. Clocking occurs on the rising edge of $C P_{n}$. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9854-2

Logic Diagram

TL/F/9854-5

Truth Tables (Each Flip-Flop)

Synchronous Operation

Inputs					Outputs
J_{n}	K_{n}	CP_{n}	S_{n}	C_{n}	$Q_{n}(t+1)$
L	L	\checkmark	L	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$
L	H	\checkmark	L	L	L
H	L	\checkmark	L	L	H
H	H	\checkmark	L	L	$\overline{Q_{n}(t)}$
X	X	H	L	L	$Q_{n}(t)$
X	X	L	L	L	$Q_{n}(t)$

Asynchronous Operation

Inputs					
Outputs					
$J_{\mathbf{n}}$	$\mathbf{K}_{\mathbf{n}}$	$\mathbf{C P} \mathbf{n}_{\mathbf{n}}$	$\mathbf{S}_{\mathbf{n}}$	$\mathbf{C}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\mathrm{U}=$ Undefined
$t=$ Time before CP Positive Transition
$t+1=$ Time after CP Positive Transition
$\Gamma=$ LOW-to-HIGH Transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I_{LL}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {(Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes,
additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{I H}$	Input HIGH Current All Inputs		350	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{I H}(\operatorname{Max})$	
I_{EE}	Power Supply Current	-195	-150	-90	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Toggle Frequency	600		600		600		MHz	Figure 1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP_{n} to Output	0.70	2.20	0.70	2.00	0.70	2.20	ns	Figures 2 and 3
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ to Output	0.90	1.80	0.90	2.00	0.90	2.40	ns	$\mathrm{CP}_{\mathrm{n}}=\mathrm{L}, \mathrm{CP}_{\mathrm{n}}=\mathrm{H}$
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.40	0.30	1.40	0.30	1.40	ns	Figures 2 and 3
t_{s}	Setup Time J_{n}, K_{n} to $C P_{n}$ $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time)	$\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.30 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		ns	
t_{H}	Hold Time $J_{n}, K_{n} \text { to } C P_{n}$	0.80		0.80		0.80		ns	
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$	2.00	c)	2.00		2.00		ns	

Cerpak AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	650	650		650		MHz	Figure 1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{n} to Output	$0.70 \quad 2.00$	0.70	1.80	0.70	2.00	ns	Figures 2 and 3 .
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ to Output	$0.90 \quad 1.60$	0.90	1.80	0.90	2.20	ns	$C P_{n}=L, C P_{n}=H$
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	$0.30 \quad 1.30$	0.30	1.30	0.30	1.30	ns	
${ }^{\text {ts }}$	Setup Time J_{n}, K_{n} to CP_{n} $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time)	$\begin{aligned} & 0.80 \\ & 1.40 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.60 \\ 1.20 \\ \hline \end{array}$		$\begin{array}{r} 0.80 \\ 1.40 \\ \hline \end{array}$		ns	Figures 2 and 3
$t_{\text {H }}$	Hold Time $\mathrm{J}_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}$ to $\mathrm{CP} P_{\mathrm{n}}$	0.70	0.70		0.70		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$	2.00	2.00		2.00		ns	

TL/F/9854-6
FIGURE 1. Toggle Frequency Test Circuit

TL/F/9854-7
FIGURE 2. AC Test Circuit

Notes:

$V_{C C}=V_{C C A}=+2 V$
$V_{E E}=-2.5 \mathrm{~V}$

* $=$ equal electrical length 50Ω lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ termination
Decouple power supplies with $0.1 \mu \mathrm{~F}$ from V_{CC} and $V_{E E}$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$ Load all unused outputs with 50Ω to GND Set pulse generator output level for 740 mV p-p at a frequency of 10 MHz as measured at the clock input pin of the device under test. Do not readjust this voltage for frequencies up to $f_{\text {max }}$. The pad isolates the generator output for D.U.T. input impedance variations. Signal voltage measured at the D.U.T. input will vary as input impedance varies with frequency.

Notes:

$V_{C C}=V_{C C A}=+2 V$
$V_{E E}=-2.5 \mathrm{~V}$
Decouple power supplies with $0.1 \mu \mathrm{~F}$ from V_{CC} and $V_{E E}$ to GND
$R_{T}=50 \Omega$ termination
Load all unused outputs with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

* = equal electrical length 50Ω lines
\# = Connect Scope CHAN A to pulse generator as required
$\dagger=$ Connect pulse generator to input under test; else connect input to voltage source set to +1.05 volts for logic HIGH or +0.31 volts for logic LOW
Consult truth table for appropriate logical condition

FIGURE 3. Propagation Delays and Setup and Hold Time

100142

4 x 4-Bit Content Addressable Memory

General Description

The 100142 is a 4 word by 4 -bit Content Addressable Memory (CAM). Reading is accomplished when an address select input $\left(A_{0}, A_{7}, A_{2}, A_{3}\right)$ is LOW and the write strobe input (WS) is HIGH. The corresponding stored word appears on the data outputs $\left(Q_{0}-Q_{3}\right)$. Writing can be performed to individual bits of a word or to the whole word. (A LOW on an address select input enables a 4-bit word.) A LOW on a bit mask input ($\mathrm{MK}_{0}, \mathrm{MK}_{1}, \mathrm{MK}_{2}, \mathrm{MK}_{3}$) enables a bit within all four 4-bit words. Write data is presented on the data inputs ($\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$) and is latched into the addressed bit latch when the write strobe input ($\overline{\mathrm{WS}}$) is LOW. Hence, the bit
mask inputs are used to selectively store data bit-wise within an addressed word. During writing, the data input word is simultaneously compared to each of the stored memory words. A search/compare is performed by placing a LOW on the bit mask inputs and presenting a data pattern to the data inputs. Corresponding to the bit mask inputs, the match outputs $\left(M_{0}-M_{3}\right)$ go LOW if a data bit of the pattern matches the respective stored bit. A HIGH on any bit mask input forces a LOW on the respective match output. Each input has a $50 \mathrm{k} \Omega$ (typical) pull-down resistor to V_{EE}.

Ordering Code: See Section 6

Logic Symbol

D_{3}		
D_{2}		
D_{1}		a_{3}
D_{0} (Q_{2}		
A_{3}		
$A_{2} \quad O_{0}$		
A_{1} (M_{3}		
A_{0} (\mathbf{M}_{2}		
MK_{3} (M_{1}		
MK_{2} M M_{0}		
MK1		
MKO	ws	

Pin Names	Description
$M K_{0}-M K_{3}$	Data Mask Inputs
$A_{0}-A_{3}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$W S$	Write Strobe Input
$M_{0}-M_{3}$	Match Outputs
$Q_{0}-Q_{3}$	Data Outputs

Connection Diagrams

TL/F/9857-2

Truth Table							
Operation	Inputs				Flip-Flop	Outputs	
	WS	A_{I}	D_{j}	MK ${ }_{\text {j }}$	$\mathbf{Q}_{\text {ij }}$	M_{1}	Q_{j}
	$\overline{\text { WS }}$	A_{0}	D_{0}	MK0		M_{0}	Q_{0}
		A_{1}	D_{1}	MK ${ }_{1}$		M_{1}	Q_{1}
		A_{2}	D_{2}	MK2		M_{2}	Q_{2}
		A_{3}	D_{3}	MK_{3}		M_{3}	Q_{3}
Write	X	H	X	X	NC	X	L
Disabled	X	L	X	H	NC	L	$Q_{i j} \mathrm{n}-1$
Write	L	L	H	L	H	L	H
	L	L	L	L	L	L	L
Read	H	L	x	X	H	X	H
	H	L	X	X	L	X	L
Match	H	X	X	H	NC	L	X
Masked		x	x	H	NC	L	x
Match Not Satisfied	H	L	H	L	L	H	L
	H	H	H	L	L	H	L
	H	H	L	L	H	H	L
	H	L			H	H	H
Match Satisfied	H	L	H	L	H	L	H
	H	H	H	L	H	L	L
	H	H	L	L	$\cdots \quad \mathrm{L}$	L	L
	H	L	L	L	\% L	L	L
H $=$ HIGH Voltage Level L = LOW Voltage Level X = Don't Care NC $=$ No Change from Previous State $\overline{\mathrm{WS}}=$ Write Strobe $A_{i}=$ Address for ith Word $D_{i}=$ Data for jth Bit		$\begin{aligned} M K_{j}= & \text { Data Mask for jth Bit } \\ & H=\text { Mask } \end{aligned}$					
		$Q_{\mathrm{ij}}=\text { Cell State for ith Word, jth Bi }$					
		$M_{i}=$ Match Output of ith Word $L=$ True					
		$\mathrm{Q}_{\mathrm{j}}=$ Data Output of jth Bit					

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	4 Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & \left.V_{I N}=V_{I H(M i n)}\right) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}$ (in)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	$4 \times$	5	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\text { Min }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	+	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
1 LL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I H}}$ (Max)
I_{EE}	Power Supply Current	-288	-190	-114	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {AD }}$	Address to Data Out	1.20	4.40	1.20	4.30	1.20	4.50	ns	Figures 2 and 3
t_{DM}	Data In to Match Out Time	1.60	3.70	1.60	3.60	1.60	3.80	ns	Figure 5
$\mathrm{t}_{\text {MM }}$	Mask In to "Enable Partial" Match Out Time	1.20	3.90	1.20	3.90	1.20	4.00	ns	
t_{DD}	Data In to New Data Out	1.70	4.40	1.70	4.40	1.70	4.60	ns	Figure 2
two	Write to New Data Out	2.50	5.40	2.50	5.20	2.30	5.10	ns	
$t_{\text {AM }}$	Address to Match	2.50	4.60	2.50	4.60	2.50	4.90	ns	
$t_{\text {MD }}$	Mask to Data	2.20	4.90	2.20	4.80	2.20	5.00	ns	
$t_{\text {WSM }}$	$\overline{\text { WS }}$ to Match	2.80	4.90	2.80	4.80	2.80	5.10	ns	
t_{W}	Write Pulse Width	1.30		1.30		1.30		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.40		1.40		1.40		ns	
$t_{\text {AH }}$	Address Hold after Write Time	1.40		1.40		1.40		ns	
$t_{D S}$	Data In Setup before Write Time	0.60		0.60		0.60		ns	
$t_{\text {DH }}$	Data In Hold after Write Time	1.10		1.10		1.10		ns	
t_{MH}	Mask In Hold Write Time	2.50		2.50		2.50		ns	
$\mathrm{t}_{\text {MS }}$	Mask In Setup Write Time	1.10		1.10		1.10		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.50	2.30	0.50	2.30	0.50	2.30	ns	Figure 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {AD }}$	Address to Data Out	1.20	4.20	1.20	4.10	1.20	4.30	ns	Figures 2 and 3
t_{DM}	Data In to Match Out Time	1.60	3.50	1.60	3.40	1.60	3.60	ns	Figure 5
$\mathrm{t}_{\text {MM }}$	Mask in to "Enable Partial" Match Out Time	1.20	3.70	1.20	3.70	1.20	3.80	ns	
tDD	Data In to New Data Out	1.70	4.20	1.70	4.20	1.70	4.40	ns	Figure 2
twD	Write to New Data Out	2.50	5.20	2.50	5.00	2.30	4.90	ns	
$\mathrm{t}_{\text {AM }}$	Address to Match	2.50	4.40	2.50	4.40	2.50	4.70	ns	
$\mathrm{t}_{\text {MD }}$	Mask to Data	2.20	4.70	2.20	4.60	2.20	4.80	ns	
$t_{\text {WSM }}$	WS to Match	2.80	4.70	2.80	4.60	2.80	4.90	ns	
$t_{\text {w }}$	Write Pulse Width	1.20		1.20		1.20		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.30		1.30		1.30		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold after Write Time	1.30		1.30		1.30		ns	
$t_{\text {DS }}$	Data In Setup before Write Time	0.50		0.50		0.50		ns	
${ }_{\text {t }}$	Data In Hold after Write Time	1.00		1.00		1.00		ns	
$\mathrm{t}_{\text {MH }}$	Mask In Hold Write Time	2.40		2.40		2.40		ns	
$\mathrm{t}_{\text {MS }}$	Mask In Setup Write Time	1.00		1.00		1.00		ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.50	2.20	0.50	2.20	0.50	2.20	ns	Figure 2

FIGURE 1. AC Test Circuit

Note:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Output Rise and Fall Times and Waveforms

FIGURE 3. Write Mode and Read/Write Mode Waveforms

Switching Waveforms (Continued)

FIGURE 4. Read Mode Waveforms

Application

The 100142 is an ideal choice for the register file unit of a bit-slice processor. Figure 5 shows the configuration of four 100145 s into a 16×16 register file. The write enbles $\left(W_{1}{ }_{1}\right.$, $W E_{2}$) and output enables $\left(\mathrm{OE}_{1}, \mathrm{OE}_{2}\right)$ are configured to allow access to one array of sixteen 16-bit registers or two arrays of sixteen 8 -bit registers. Simultaneous read and write addressing is made possible with separate buses. Also, reading and then writing to the same address is easily and efficiently done by tying one write enable to an output enable.

TL/F/9857-10
FIGURE 5. Search Mode Waveforms

FIGURE 5. 16×16 Register File (Two 16×8 Register Files)

100156

Mask-Merge/Latch

General Description

The 100156 merges two 4-bit words to form a 4-bit output word. The $A M_{n}$ enable allows the merge of A into B by one, two or three places (per the $A S_{n}$ value) from the left. The $B M_{n}$ enable similarly allows the merge of B into A from the left (per the $B S_{n}$ value). The B merge overrides the A merge when both are enabled. This means A first merges into B and B then merges into the A merge. If the B address is
equal to or greater than the A address, then outputs are forced to B.
The merge outputs feed four latches, which have a common enable ($\overline{\mathrm{E}}$) input. All inputs have a $50 \mathrm{k} \Omega$ (typical) pull-down resistor tied to V_{EE}.

Ordering Code: See Section 6

Logic Symbol

Note:
When \bar{E} is HIGH, Q_{n} outputs do not change.
When \bar{E} is LOW, $Q_{n}=A$ or B depending on which is selected.

Connection Diagrams

TL/F/986†-2

Logic Diagram

TL/F/9861-5

Truth Table													
Inputs									Outputs				Remarks
Merge Enables				Addresses				E					
BM ${ }_{1}$	BM0	AM_{1}	AM_{0}	BS_{1}	BS_{0}	AS_{1}	AS_{0}		Q_{0}	a_{1}	Q_{2}	Q_{3}	
$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & B_{3} \\ & B_{3} \end{aligned}$	Select B
L	L	L	L	X	X	X	X	L	A_{0}	A_{1}	A_{2}	A_{3}	Select A
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & B_{0} \\ & A_{0} \\ & A_{0} \\ & A_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~A}_{1} \\ & \mathrm{~A}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{aligned} & B_{3} \\ & B_{3} \\ & B_{3} \\ & B_{3} \\ & \hline \end{aligned}$	\pm Merge $A \rightarrow B$
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & A_{0} \\ & B_{0} \\ & B_{0} \\ & B_{0} \end{aligned}$	$\begin{aligned} & A_{1} \\ & A_{1} \\ & B_{1} \\ & B_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{2} \\ & A_{2} \\ & A_{2} \\ & B_{2} \end{aligned}$	$\begin{aligned} & A_{3} \\ & A_{3} \\ & A_{3} \\ & A_{3} \end{aligned}$	Merge B \rightarrow A
$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\left[\begin{array}{l} L \\ L \\ L \end{array}\right.$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & A_{0} \\ & A_{0} \\ & A_{0} \end{aligned}$	$\begin{aligned} & B_{1} \\ & A_{1} \\ & A_{1} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	Merge A \rightarrow B
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	$\begin{aligned} & A_{1} \\ & A_{1} \\ & B_{1} \end{aligned}$	$\begin{aligned} & B_{2} \\ & A_{2} \\ & A_{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	$\begin{gathered} \underset{\substack{\text { Merge } A \\ \text { then }}}{ } \rightarrow B \\ \text { Merge } B \rightarrow A \end{gathered}$
$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	H H L L H	$\begin{array}{r} H \\ L \\ H \\ L \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \hline \end{aligned}$	B Address \geq A Address
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \\ \hline \end{array}$	L L L H H L	L L L L L	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \hline \end{aligned}$	
X	X	X	X	X	x	X	X	H	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Latch
Before Start	$\begin{gathered} \text { At } \\ \text { Start } \end{gathered}$	After End	$\begin{gathered} \text { At } \\ \text { End } \end{gathered}$		\%								
$\begin{aligned} & \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\ & \mathrm{L}=\text { LOW Voltage Level } \\ & \mathrm{X}=\text { Don't Care } \end{aligned}$													

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input $H I G H$ Current $A_{n}, B_{n}, B_{n}, A M_{n}, B S_{n}, A S_{n}, \bar{E}$			265	μA	$V_{I N}=V_{I H}(M a x)$
$I_{E E}$	Power Supply Current	-235	-161	-107	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode)	0.45	1.90	0.50		0.50	2.00	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Outputs	1.00	2.50	1.00	2.40	1.00	2.50	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode)	1.20	3.70			1.20	3.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.80	0.45	1.90	ns	
${ }^{\text {ts }}$	Setup Time A_{n}, B_{n} $A M_{n}, B M_{n}, A S_{n}, B S_{n}$	$\begin{array}{r} 0.80 \\ 2.90 \\ \hline \end{array}$		$\begin{aligned} & 0.80 \\ & 2.90 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.90 \\ & \hline \end{aligned}$		ns	Figure 3
${ }^{\text {th }}$	Hold Time $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ $A M_{n}, B M_{n}, A S_{n}, B S_{n}$	$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode)	0.45	1.70	0.50	1.60	0.50	1.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Outputs	1.00	2.30	1.00	2.20	1.00	2.30	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode)	1.20	3.50	1.20	3.50	1.20	3.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	
t_{5}	Setup Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$	$\begin{array}{r} 0.70 \\ 2.80 \\ \hline \end{array}$		$\begin{array}{r} 0.70 \\ 2.80 \\ \hline \end{array}$		$\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$		ns	Figure 3
t_{H}	Hold Time $\begin{aligned} & A A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 2

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$ All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
FIGURE 1. AC Test Circuit

FIGURE 2. Enable Timing

Notes:
t_{s} is the minimum time before the transition of the enable that information must be present at the designated input. t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the designated input.

FIGURE 3. Data Setup and Hold Times

National Semiconductor

100158

8-Bit Shift Matrix

General Description

The 100158 contains a combinatorial network which performs the function of an 8 -bit shift matrix. Three control lines $\left(S_{n}\right)$ are internally decoded and define the number of places which an 8-bit word present at the inputs $\left(D_{n}\right)$ is shifted to the left and presented at the outputs $\left(Z_{n}\right)$. A Mode Control input (M) is provided which, if LOW, forces LOW all out-
puts to the right of the one that contains D_{7}. This operation is sometimes referred to as LOW backfill. If M is HIGH, an end-around shift is performed such that D_{0} appears at the output to the right of the one that contains D_{7}. This operation is commonly referred to as barrel shifting. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6
 Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$S_{0}-S_{2}$	Select Inputs
M	Mode Control Input
$Z_{0}-Z_{7}$	Data Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9862-2

Logic Diagram

TL/F/9862-5

Truth Table

Inputs				Outputs							
M	S_{0}	S_{1}	S_{2}	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
X	L	L	L	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
L	H	L	L	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L
L	L	H	L	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L	L
L	H	H	L	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L	L	L
L	L	L	H	D_{4}	D_{5}	D_{6}	D_{7}	L	L	L	L
L	H	L	H	D_{5}	D_{6}	D_{7}	L	L	L	L	L
L	L	H	H	D_{6}	D_{7}	L	L	L	L	L	L
L	H	H	H	D_{7}	L	L	L	L	L	L	L
H	H	L	L	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}
H	L	H	L	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}
H	H	H	L	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}
H	L	L	H	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}
H	H	L	H	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}
H	L	H	H	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
H	H	H	H	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and speclfications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	$1=$ Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	fil mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	I.		mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	$\begin{array}{r}-1810 \\ \hline\end{array}$.	-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	- 0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (}{ }_{\text {Min }} \text {) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{\mathbb{N}}=V_{\mathbb{I H}}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}} 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-205	-140	-95	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	1.10	2.80	1.10	2.70	1.10		ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.15	4.20	1.25	4.20	1.15	4.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.20	1.70	4.20	1.70	4.20	ns	
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50		ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{Tc}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay D_{n} to Output	1.10	2.60	1.10	2.50	1.10	2.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.15	4.00	1.25	4.00	1.15	4.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.00	1.70	4.00	1.70	4.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	

Applications

The following technique uses two ranks of 100158s to shift a 64-bit word from 0 to 63 places. Although two stage delays are required (one for each rank), the total shift takes only about 4 ns . This technique performs a bit shift on each 8 -bit byte in the first rank and then a modulo- 8 byte shift on the 64-bit word in the second rank.

Basic 16-Bit 0-7 Place Shifter
Figure 3 shows the basic 0-7 place shift technique which can be expanded to accommodate any word length.

Each 8-bit byte requires a pair of 100158 s operating in the LOW backfill mode. The address lines for each pair of ICs are driven out of phase by three OR gates. Inputs for the two ICs are taken from two bytes transposed in order; outputs are transposed and emitter-OR tied. One device shifts right from location 0 and the other shifts left from location 7. The bits shifted off one pair are picked up by the next pair of 100158s or-in the case of the last one in the rank-returned to the first device. The net result is a $0-7$ place shift of the entire word.

FIGURE 3. Basic 16-Bit 0-7 Place Shifter

Applications (Continued)

Expanding to 64-Bit Word and 64-Place Shift

The basic $0-7$ place shift technique can be expanded to accommodate a 64 -bit word shifted from 0 to 63 places, however, two ranks of 100158s are required (Figure 4). The first rank is identical to the one illustrated in Figure 3 except it contains a total of 16 devices. The second rank consists of eight additional 100158s connected in the modulo- 8 configuration shown in Figure 5.
The modulo-8 rank is used to simulate an 8-bit simultaneous shift since the 100158 cannot shift in 8 -bit jumps. The mod-ulo- 8 configuration is achieved by wiring the first rank and the output device to the second rank as illustrated in Figure 5. The LSB of each output byte in the first rank is wired to one of the eight inputs of the first 100158 in the
second rank. The next least significant bit of each first-rank 100158 pair, however, is connected to the inputs of the second 100158 in the second rank. The other first-ranked outputs are connected in a similar fashion to the remainder of the second-rank inputs. Ultimately, the outputs of the second rank must then be connected to reform the final usable 64-bit word so that the bits are again ordered from 0-63.
The effect is that each single-location shift in the second rank appears to be an eight place shift in the final word due to the way the inputs and outputs of the second rank are connected. The combination of the two ranks produces the 64 -place shift of the entire word.

FIGURE 4. 64-Bit 0-63 Place Barrel Shifter

Applications (Continued)

FIGURE 5. Modulo-8 Shift

100165
 Universal Priority Encoder

General Description

The 100165 contains eight input latches with a common Enable ($\overline{\mathrm{E}}$) followed by encoding logic which generates the binary address of the highest priority input having a HIGH signal. The circuit operates as a dual 4 -input encoder when the Mode Control (M) input is LOW, and as a single 8 -input encoder when M is HIGH . In the 8 -input mode, $\mathrm{Q}_{0}, \mathrm{Q}_{1}$ and Q_{2} are the relevant outputs, I_{0} is the highest priority input and $G S_{1}$ is the relevant Group Signal output. In the dual mode, Q_{0}, Q_{1} and GS_{1} operate with $\mathrm{I}_{0}-\mathrm{I}_{3} . \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and GS_{2}
operate with $\mathrm{I}_{4}-1_{7}$. A GS output goes LOW when its pertinent inputs are all LOW.
Inputs are latched when E goes HIGH. A HIGH signal on the Output Enable ($\overline{\mathrm{OE}}$) input forces all Q outputs LOW and GS outputs HIGH. Expansion to accommodate more inputs can be done by connecting the GS output of a higher priority group to the $\overline{\mathrm{OE}}$ input of the next lower priority group. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

Logic Symbol

TL/F/9866-2

Truth Table

Inputs											Outputs					
E	$\overline{\mathrm{OE}}$	M	I_{0}	l_{1}	I_{2}	1_{3}	14	I_{5}	I_{6}	I_{7}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	GS_{1}	GS_{2}
	L	L									L	L			H	
L	L	L	L	H	X	X					H	L			H	
L	L	L	L	L	H	X		-			L	H			H	
L	L	L	L	L	L	H					H	H			H	
L	L	L	L	L		L					L	L			L	
L	L	L					H	X	X	x			L	L		H
L	L	L					4	H	X	x			H	L		H
L	L	L					L	L	H	X			L	H		H
L	L	L				-	L	L	L	H			H	H		H
L	L	L					L	L	L	L			L	L		L
L	L	H	H	X	x	X	X	X	X	X	L	L	L	L	H	H
L	L	H	L	H	X	X	X	X	x	X	H	L	L	L	H	H
L	L	H	L	L	H	X	X	X	X	x	L	H	L	L	H	H
L	L	H	L	L	L	H	X	x	X	X	H	H	L	L	H	H
L	L	H	L	L	L	L	H	X	X	X	L	L	H	L	H	H
L	L	H	L	L	L	L	L	H	X	X	H	L	H	L	H	H
L	L	H	L	L	L	L	L	L	H	X	L	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	H	H	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H
X	H	\times	X	X	X	X	X	x	X	X	L	L	L	L	H	H
H	L	L	X	X	X	X	X	X	X	X	Given by $I_{0}-I_{7}$ when \bar{E} was LOW and $M=L$ Given by $I_{0}-l_{7}$ when \bar{E} was LOW and $M=H$					
H	L	H	X	X	X	X	X	X	X	X						

[^3]
Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	\% Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OL	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	*	3	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		2. -870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810	4.	-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	- 0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGHVoltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{I L}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {L }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is noi tmplied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			230	$\mu \mathrm{~A}$	$V_{\mathrm{IN}}=V_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-200	-140	-77	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{0}-I_{7} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3} \\ & \text { (Transparent Mode) } \\ & \hline \end{aligned}$	1.10	4.10	1.10	4.10	$\begin{gathered} 1.10 \\ \hline \\ \hline \end{gathered}$	4.60	ns	Figures 1 and 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $I_{0}-I_{7}$ to $G S_{1}-G S_{2}$ (Transparent Mode)	1.30	3.90	1.30	3.90	1.30		ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	1.00	3.00	1.00	3.00	1.10		ns	Figures 1 and 2
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay $\overline{O E}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$	1.10	2.60	1.10	2.60	1.20	2.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	0.90	3.60	1.00 - 3.60		1.00	3.80	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E} to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	1.50	4.70	1.50	4.60	1.50	5.00	ns	Figures 1 and 3
$\begin{aligned} & \mathbf{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	Figures 1, 2 and 3
ts	Setup Time $1_{0}-1_{7}$	1.00		0.90		1.00		ns	Figure 4
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time $I_{0}-1_{7}$	1.20		1.20		1.20		ns	
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 3

FIGURE 2. Propagation Delay ($M, \overline{O E}$) and Transition Times

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9866-8
FIGURE 3. Enable Timing

FIGURE 4. Setup and Hold Times

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

National Semiconductor

100166

9-Bit Comparator

General Description

The 100166 is a 9 -bit magnitude comparator which compares the arithmetic value of two 9 -bit words and indicates whether one word is greater than, or equal to, the other.

Other functions can be generated by the wire-OR of the outputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

Logic Symbol

TL/F/9867-3

Pin Names	Description
$A_{0}-A_{8}$	A Data Inputs
$B_{0}-B_{8}$	B Data Inputs
$A>B$	A Greater than B Output
$B>A$	B Greater than A Output
$A=B$	Complement A Equal to B Output
	(Active LOW)

Connection Diagrams

TL/F/9867-2

Logic Diagram

TL/F/9867-5
Truth Table

Inputs									Outputs		
$\mathrm{A}_{8} \mathrm{~B}_{8}$	$\mathrm{A}_{7} \mathrm{~B}_{7}$	$\mathrm{A}_{6} \mathrm{~B}_{6}$	$\mathrm{A}_{5} \mathrm{~B}_{5}$	$\mathrm{A}_{4} \mathrm{~B}_{4}$	$\mathrm{A}_{3} \mathrm{~B}_{3}$	$\mathrm{A}_{2} \mathrm{~B}_{2}$	$\mathrm{A}_{1} \mathrm{~B}_{1}$	$\mathrm{A}_{0} \mathrm{~B}_{0}$	A>B	B $>$ A	$\overline{A=B}$
$\begin{gathered} H \quad L \\ L \quad H \\ A_{8}=B_{8} \\ A_{8}=B_{8} \end{gathered}$	$\begin{array}{ll} H & L \\ L & H \end{array}$								$\begin{gathered} H \\ L \\ H \\ L \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{6}= & B_{6} \\ A_{6}= & B_{6} \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$	4					$\begin{gathered} H \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} A_{8} & =B_{8} \\ A_{8} & =B_{8} \\ A_{8} & =B_{8} \\ A_{8} & =B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{gathered} H \quad L \\ L H \\ A_{4}=B_{4} \\ A_{4}=B_{4} \end{gathered}$	$\begin{array}{ll} H & L \\ L & H \end{array}$				$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} A_{8} & =B_{8} \\ A_{8} & =B_{8} \\ A_{8} & =B_{8} \\ A_{8} & =B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{aligned} A_{4} & =B_{4} \\ A_{4} & =B_{4} \\ A_{4} & =B_{4} \\ A_{4} & =B_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{gathered} H \quad L \\ L \quad H \\ A_{2}=B_{2} \\ A_{2}=B_{2} \end{gathered}$	$\begin{array}{ll} H & L \\ L & H \end{array}$		$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
$\begin{aligned} \mathrm{A}_{8} & =\mathrm{B}_{8} \\ \mathrm{~A}_{8} & =\mathrm{B}_{8} \\ \mathrm{~A}_{8} & =\mathrm{B}_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & \hline \end{aligned}$	$\begin{gathered} H \quad L \\ L \quad H \\ A_{0}=B_{0} \end{gathered}$	H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$

H = HIGH Voltage Level
L = LOW Voltage Level
Blank = Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.0 V to -4.2 V

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL. }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	3	-	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		/ $=-870$	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	+	-1475	mV	Guaranteed LOW Signal for All Inputs	
$1 / 1$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage.	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{I L}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I_{LL}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			250	$\mu \mathrm{~A}$	$V_{I N}=V_{I H}(\mathrm{Max})$
I_{EE}	Power Supply Current	-238	-170	-119	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	1.40	3.50	1.40	3.50	1.40		ns	Figures 1 and 2
$t_{T L H}$ $\mathbf{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.55	0.45	1.50	0,45	1.50	ns	

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathbf{T C}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	1.40	3.30	1.40	3.30	1.40	3.70	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.45	0.45	1.40	0.45	1.40	ns	

TL/F/9867-6

Notes:

$V_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

100175

Quint Latch 100K In/10K Out

General Description

The 100175 is a 5 -bit latch with temperature and voltage compensated 100 K compatible inputs and voltage compensated 10 K compatible outputs. Each latch has one data input and one output. All five latches share a common clear input and two enable inputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

■ Outputs specified to drive a 50Ω load

- Available in 16 -pin ceramic DIP

■ 100K compatible inputs/10K compatible outputs

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$D_{0}-D_{4}$	100K Data Inputs
E_{1}, E_{2}	100K Enable Inputs
C	100K Common Clear Input
$Q_{0}-Q_{4}$	10K Data Outputs

Logic Diagram

Connection Diagram

TL/F/9870-1

Truth Table

Inputs				
D_{n}	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{2}}$	\mathbf{C}	$\mathbf{Q}_{\mathbf{n}}$
H	L	L	X	H
L	L	L	X	L
X	H	X	L	$\mathrm{Q}_{\mathrm{n}-1}$
X	X	H	L	$\mathrm{Q}_{\mathrm{n}-1}$
X	H	X	H	L
X	X	H	H	L

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$x=$ Don't Care
$\mathrm{Q}_{\mathrm{n}-1}=$ Previous State

Absolute Maximum Ratings	
Above which the useful life may be impaired	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Storage Temperature	-65° to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias (T_{A})	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	$+150^{\circ} \mathrm{C}$
Supply Voltage	-8 V
Input Voltage (DC)	-5.2 V to +0 V
Output Current (DC Output HIGH$)$	-55 mA
Operating Range	-5.72 V to -4.68 V
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max
Supply Voltage $\left(V_{E E}\right)$	-5.72 V	-5.2 V	-4.68 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$0^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840 ,	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {H }} \text { (Max) } \\ & \text { or } V_{\mathrm{KL}} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
V_{OL}	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-	-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	4	- 1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020		4	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980		,	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920	\%		mV		
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	U	-	-1645	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	\cdots		-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV		
V_{IH}	Input HIGH Voltage		-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		-		290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
ILL	Input LOW Current		0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	
I_{EE}	V_{EE} Supply Current		-125	-90	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.68 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
V_{OL}	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}(\text { Min })} \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV	$\begin{aligned} & V_{I N}=V_{\mathrm{IH}}(\operatorname{Min}) \\ & \text { or } V_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			mV		
Volc	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV		
V_{IH}	Input HIGH Voltage		-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage		-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIH	Input HIGH Current				290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	
ILL	Input LOW Current		0.50	产		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
IEE	$\mathrm{V}_{\text {EE }}$ Supply Current		-125	-90	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ (500 linear feet $/ \mathrm{min}$) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.72 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
		$T_{A}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$T_{A}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
V_{OL}	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV	$\begin{aligned} & V_{I N}=V_{\mathbb{I H}(\operatorname{Min})} \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			mV		
$V_{\text {OLC }}$	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV -		
V_{IH}	Input HIGH Voltage		-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max) }}$	
IIL	Input LOW Current		0.50	4		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	
$\mathrm{IEE}^{\text {en }}$	$\mathrm{V}_{\text {EE }}$ Supply Current		-125	-90	-50	/mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable systern operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ (500 linear feet $/ \mathrm{min}$) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V} \pm 10 \%, V_{C C}=V_{C C A}=G N D$

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
tpDLH tpDHL	Propagation Delay Data to Output	1.10	2.60	1.10	2.75	1.10	3.00	ns	Figures 1 \& 2
$t_{\text {PDLL }}$ tpDHL	Propagation Delay Enable to Output	1.20	3.40	1.20	3.50	1.20	3.75	ns	Figures 1\&3
$t_{\text {PDHL }}$	Propagation Delay Clear to Output	1.30	3.20	1.30	3.20	1.30	3.20	ns	Figures 1, 3 \& 4
ts	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{4}$		2.50		2.50		2.50	ns	Figures 1 \& 5
t_{H}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{4}$,		0.50		0.50		0.50	ns	Figures 185
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.10	3.25	1.20	3.25	1.20	3.50	ns	Figures 1, 2, 3 \& 4

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-3.2 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu f$ from GND to $V_{C C}$ and $V_{E E}$ All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

FIGURE 2. Data Propagation Delay $@_{A}=+25^{\circ} \mathrm{C}$

TL/F/9870-6

FIGURE 4. Clear Propagation Delay @ $T_{A}=+25^{\circ} \mathrm{C}$

100179

Carry Lookahead Generator

General Description

The 100179 is a high-speed Carry Lookahead Generator intended for use with the 1001806 -bit fast Adder and the 100181 4-bit ALU. All inputs have $50 \mathrm{k} \Omega$ puldown resistors.

Ordering Code: See Section 6

Logic Symbol

Pin Names	
$\overline{\mathrm{C}}_{n}$	Description
$\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$	Carry Input (Active LOW)
$\overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$	Carry Propogate Inputs (Active LOW)
$\overline{\mathrm{C}}_{n}+2, \overline{\mathrm{C}}_{n}+4$	Carry Generate Inputs (Active LOW)
$\overline{\mathrm{C}}_{\mathrm{n}}+6, \overline{\mathrm{C}}_{\mathrm{n}}+8$	Carry Outputs

TL/F/9871-3

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9871-2

Logic Diagram

Truth Tables

$\overline{\mathbf{C}}_{n+2}$ Output					
Inputs					
\bar{C}_{n}	$\overline{\mathbf{G}}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{0}$	$\overline{\mathbf{G}}_{\mathbf{1}}$	$\overline{\mathbf{P}}_{\mathbf{1}}$	$\overline{\mathbf{C}}_{\mathrm{n}}+\mathbf{2}$
X	X	X	L	X	L
X	L	X	X	L	L
L	X	L	X	L	L
All other combinations					H

$\bar{C}_{\mathrm{n}}+2=\overline{\mathrm{G}}_{1} \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right)$
$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level X $=$ Don't Care

				put					Output
\bar{C}_{n}	$\overline{\mathbf{G}}_{0}$	\bar{P}_{0}	\bar{G}_{1}	\bar{P}_{1}	\bar{G}_{2}	\bar{P}_{2}	\bar{G}_{3}	\bar{P}_{3}	\bar{C}_{n+4}
X	X	X		X		X		X	L
X	X	X		X		X	X	L	L
X	X	X		X	X	L	X	L	L
X	L	X		L	X	L	X	L	L
L	X	L	X	L	X	L	X	L	L
All other combinations									H

$\overline{\mathrm{C}}_{\mathrm{n}+4}=\overline{\mathrm{G}}_{3} \cdot\left(\bar{P}_{3}+\overline{\mathrm{G}}_{2}\right) \cdot\left(\bar{P}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right) \cdot\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right)$ - $\left(\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)$

Truth Tables (Continued)																	
$\overline{\mathbf{C}}_{\mathrm{n}+6}$ Output																	
Inputs																	$\begin{aligned} & \text { Output } \\ & \overline{\mathbf{c}}_{\mathrm{n}+6} \end{aligned}$
$\overline{\mathrm{C}}_{\mathrm{n}}$			$\stackrel{\rightharpoonup}{0}_{0}$	$\overline{\mathrm{G}}_{1}$	\bar{P}_{1}	$\overline{\mathbf{G}}_{2}$		$\overline{\mathrm{G}}_{2}$	\bar{G}_{3}	\bar{P}_{3}		$\overline{\mathbf{G}}_{4}$	\bar{P}_{4}	$\overline{\mathrm{G}}_{5}$			
\times			x	x	x	XXXL		X	x	$\begin{aligned} & x \\ & x \\ & x \\ & L \\ & \hline \end{aligned}$		x	X	L X X	$\begin{aligned} & X \\ & L \\ & L \end{aligned}$		$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$
X			X	X	x			X	X			L	X				
x			x	x	x			X	L			x	L				
x			x	x	x			X	x			x	L				
X			X	L	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		L	x	$\begin{aligned} & L \\ & L \\ & L \\ & \hline \end{aligned}$		X	L	X X X X	L		LLL
x			X	x	L			L	x			x	L				
L			L	x	L			L	x			x	L				
All other combinations																	H
$\begin{aligned} \bar{C}_{n+6}= & \bar{G}_{5} \cdot\left(\bar{P}_{5}+\bar{G}_{4}\right) \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \bullet\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right) \\ & \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \cdot\left(\bar{P}_{5}+\mathrm{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\ & \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right) \end{aligned}$																	
$\overline{\mathbf{C}}_{\mathrm{n}+8}$ Output																	
Inputs																	$\frac{\text { Output }}{\overline{\mathbf{c}}_{\mathrm{n}+8}}$
$\overline{\mathrm{C}}_{\mathrm{n}}$	$\overline{\mathrm{G}}_{0}$	\bar{P}_{0}	$\overline{\mathrm{G}}_{1}$	\bar{P}_{1}	$\overline{\mathrm{G}}_{2}$	\bar{P}_{2}	$\overline{\mathrm{G}}_{3}$	\bar{P}_{3}	$\overline{\mathrm{G}}_{4}$	\bar{P}_{4}	$\overline{\mathbf{G}}_{5}$	\bar{P}_{5}	\bar{G}_{6}	$\overline{\mathrm{P}}_{6}$	$\overline{\mathrm{G}}_{7}$	\bar{P}_{7}	
x	x	x	X	x	X	X	X	X	x	X	x	X	X	X	L	x	L
x	X	x	x	x	X	x	X	X	x	x	X	x	L	x	X	L	L
x	x	x	x	x	X	x	x	x	x	x	L.	, X	x	L	x	L	L
x	X	X	X	X	X	x	X	X	L	X	x	L	x	L	X	L	L
x	x	X	x	X	X	X	L	X	X	L	x	L	X	L	X	L	L
x	X	X	X	x	L	X	X	L		L	X	L	x	L	X	L	L
x	x	x	L	x	x	L	x	L		L	x	L	x	L	X	L	L
x	L	x	x	L	X	L	x	L	x	L	x	L	x	L	x	L	L
L	X	L	X	L	X	L	X	L	x	L	x	L	x	L	x	L	L
All other combinations																	H

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specificatlons.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J}) $\quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (T_{C}) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: | ---: |
| V EE Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | V_{EE} to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	4 Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{VOL}^{\text {O}}$	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			$\begin{aligned} & \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	$m v$	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	$m v$	Guaranteed LOW Signal for All Inputs	
1 ll	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030		.	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage	$\stackrel{1}{2}$		- -1595			
V_{IH}	Input HIGH Voltage	-1150		\% $)^{-870}$	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}.	Input LOW Voltage	-1810	-	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	- 0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OLC}}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IfL}^{\text {L }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not tmplled.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4; Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics						
Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\overline{\mathrm{C}}_{\mathrm{N}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$ $\bar{P}_{0}-\bar{P}_{7}$			$\begin{aligned} & 250 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$V_{I N}=V_{I H}(\operatorname{Max})$
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-220	-150	-100	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{n}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7} \text { to } \overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$	1.10	2.90	1.10	2.90	1.10	3.00	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7} \text { to } \overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$	1.10	2.70		2.70	1.10	2.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.70	0.45	1.70	0.45	1.70	ns	

FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

Applications

Fast Adder and Carry Lookahead

TL/F/9871-8

100180
 High-Speed 6-Bit Adder

General Description

The 100180 is a high-speed 6 -bit adder capable of performing a full 6-bit addition of two operands. Inputs for the adder are active-LOW Carry, Operand A, and Operand B; outputs are Function, active-LOW Carry Generate, and ac-
tive-LOW Carry Propagate. When used with the 100179 Full Carry Lookahead as a second order lookahead block, the 100180 provides high-speed addition of very long words. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6
Logic Symbol

TL/F/9872-3

Pin Names	\quad Description
$\mathrm{A}_{0}-\mathrm{A}_{5}$	Operand A Inputs
$\mathrm{B}_{0}-\mathrm{B}_{5}$	Operand B Inputs
$\overline{\mathrm{C}}_{n}$	Carry Input (Active LOW)
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)
$\overline{\mathrm{P}}$	Carry Propagate Output (Active LOW)
$\mathrm{F}_{0}-\mathrm{F}_{5}$	Function Outputs

Connection Diagrams

TL/F/9872-2

Logic Diagram

Logic Equations

$P_{i}=A_{i} \oplus B_{i}$
$\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}$
$\mathrm{i}=0,1,2,3,4,5$
$F_{0}=P_{0} \oplus C_{n}$
$F_{1}=P_{1} \oplus\left(G_{0}+P_{0} C_{n}\right)$
$F_{2}=P_{2} \oplus\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}\right)$
$F_{3}=P_{3} \oplus\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}\right)$
$F_{4}=P_{4} \oplus\left(G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}\right)$
$F_{5}=P_{5} \oplus\left(G_{4}+P_{4} G_{3}+P_{4} P_{3} G_{2}+P_{4} P_{3} P_{2} G_{1}+P_{4} P_{3} P_{2} P_{1} G_{0}+P_{4} P_{3} P_{2} P_{1} P_{0} G_{n}\right)$
$\overline{\mathrm{P}}=\overline{\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}}$
$\bar{G}=\overline{G_{5}}+\mathrm{P}_{5} \mathrm{G}_{4}+\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{G}_{3}+\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{G}_{3} \mathrm{G}_{2}+\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}$

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $V_{\text {EE }}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	4) Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\mathbb{I N}}=V_{I H}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Mini }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	\% mv	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mv	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			- -1595			
V_{IH}	Input HIGH Voltage	-1150) - -870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	ote 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I_{L}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Alusolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not impled.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input HIGH Current All Inputs			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-290	-195	-135	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.70	1.10	4.60	1.10	4.70	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	3.00	1.00	3.00	1.00	3.30	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.90	1.40	3.80	1.40	3.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to F_{n}	1.10	4.00	1.10	3.90	1.10	4.00	ns	
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.40	0.45	2.30	0.45	2.40	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.50	1.10	4.40	1.10	4.50	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	2.80	1.00	2.80	1.00	3.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.70	1.40	3.60	1.40	3.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to F_{n}	1.10	3.80	1.10	3.70	1.10	3.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45		0.45	2.20	0.45	2.30	ns	

FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$. .
L 1 and $\mathrm{L} 2=$ equal length 50 n impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$.
Pin numbers shown are for flatpak; for DIP see logic symbol

National Semiconductor

100181

4-Bit Binary/BCD Arithmetic Logic Unit

General Description

The 100181 performs eight logic operations and eight arithmetic operations on a pair of 4 -bit words. The operating mode is determined by signals applied to the Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs, as shown in the Function Select table. In addition to performing binary arithmetic, the circuit contains the necessary correction logic to perform BCD addition and subtraction. Output latches are provided to reduce overall package count and increase system operating speed. When the latches are not required, leaving the Enable (\bar{E}) input LOW makes the latches transparent.

The circuit uses internal lookahead carry to minimize delay to the F_{n} outputs and to the ripple Carry output, \bar{C}_{n+4}. Group Carry Lookahead Propagate ($\overline{\mathrm{P}}$) and Generate ($\overline{\mathrm{G}}$) outputs are also provided, which are independent of the Carry input $\overline{\mathrm{C}}_{n}$. The $\overline{\mathrm{P}}$ output goes LOW when a plus operation produces fifteen (nine for $B C D$) or when a minus operation produces zero. Similarly, \bar{G} goes LOW when the sum of A and B is greater than fifteen (nine for $B C D$) in a plus mode, or when their difference is greater than zero in a minus mode. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol

Logic Diagram

TL/F/9873-5
Block Diagram

TL/F/9873-6

Functional Description

There are two modes of operation: Arithmetic and Logic. The S_{3} input controls these two modes:
$\mathrm{S}_{3}=$ LOW for Arithmetic mode
$\mathrm{S}_{3}=$ HIGH for Logic mode
The arithmetic mode includes decimal and binary arithmetic operations. S_{2} is the control input: with $\mathrm{S}_{3}=$ LOW,
$\mathrm{S}_{2}=$ LOW for Decimal Arithmetic (BCD)
$\mathrm{S}_{2}=$ HIGH for Binary Arithmetic

DECIMAL ARITHMETIC OPERATION

Addition

$F=A$ plus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically performs the " +6 " and " -6 " logic correction internally.

Subtraction

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the nines complement of B and adds " +6 ". A " -6 " adjustment is made if the subtraction algorithm calls for it. If there is a carry out, the result is a positive number. With no carry out, the result is a negative number expressed in its nines complement form. Therefore, to perform a subtraction with
results in the tens complement form, an initial carry should be forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
(tens complement of B) $=$ (nines complement of B) +1
$F=B$ minus A plus C_{n}. Operation is similar to and results are the same as $F=A$ minus B plus C_{n}.

BINARY ARITHMETIC OPERATION

Addition

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs.

Subtraction

$\mathrm{F}=\mathrm{A}$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the ones complement of B (by inverting B internally). If there is a carry out the result is a positive number. With no carry out, the result is a negative number expressed in its ones complement form. Therefore, to perform a subtraction with results in the twos complement form, an initial carry should forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
(twos complement of B) $=$ (ones complement of B) +1
$F=B$ minus A plus C_{n}. Operation is similar and results are the same as $F=A$ minus B plus C_{n}.

Function Table

\mathbf{S}_{3}	\mathbf{S}_{2}	S_{1}	$\mathbf{S}_{\mathbf{0}}$	F_{n} Function	$\begin{gathered} \mathbf{G}_{\boldsymbol{n}} \\ (\mathbf{n}=0 \boldsymbol{t} \end{gathered}$	$\begin{gathered} P_{\mathbf{n}} \\ (\mathrm{n}=0 \text { to } 3) \end{gathered}$	Outputs		
					Internal Signals		\bar{C}_{n+4}	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
L	L	L	L	$\mathrm{F}_{\mathrm{n}}=$ A plus B plus C_{n} (BCD)	$\mathrm{A}_{n} \mathrm{D}_{n}$	$A_{n}+D_{n}$	$\overline{\mathrm{C}}_{\mathrm{n}+4}$	$\overline{\mathrm{G}}$	\bar{P}
L	L	L	H	$F_{n}=A$ minus B plus C_{n} (BCD)	$\mathrm{A}_{n} \bar{B}_{n}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{p}
L	L	H	L	$\mathrm{F}_{\mathrm{n}}=\mathrm{B}$ minus A plus $\mathrm{C}_{\mathrm{n}}(\mathrm{BCD})$	$\bar{A}_{n} B_{n}$	$\bar{A}_{n}+B_{n}$	$\overline{\mathrm{C}}_{n+4}$	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
L	L	H	H	$F_{n}=0$ minus B plus $C_{n}(B C D)$,	\bar{B}_{n}	\bar{C}_{n+4}	H	\bar{P}
L	H	L	L	$\mathrm{F}_{\mathrm{n}}=A$ plus B plus C_{n} (Binary)	$\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}$	$A_{n}+B_{n}$	$\overline{\mathrm{C}}_{n+4}$	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
L	H	L	H	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}$ minus B plus C_{n} (Binary)	$\mathrm{A}_{\mathrm{n}} \overline{\mathrm{B}}_{\mathrm{n}}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
L	H	H	L	$\mathrm{F}_{\mathrm{n}}=\mathrm{B}$ minus A plus C_{n} (Binary)	$\bar{A}_{n} \mathrm{~B}_{n}$	$\bar{A}_{n}+B_{n}$	$\overline{\mathrm{C}}_{n+4}$	$\overline{\mathrm{G}}$	\bar{P}
L	H	H	H	$F_{n}=0$ minus B plus C_{n} (Binary)	${ }^{\prime}$	\bar{B}_{n}	\bar{C}_{n+4}	H	$\overline{\mathrm{P}}$
H	L	L	L	$F_{n}=A_{n} B_{n}+\bar{A}_{n} \bar{B}_{n}$	$\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}$	$A_{n}+B_{n}$	$\overline{\mathrm{C}}_{n+4}$	$\overline{\mathrm{G}}$	$\overline{\bar{P}}$
H	L	L	H	$F_{n}=A_{n} \bar{B}_{n}+\bar{A}_{n} B_{n}$	$\mathrm{A}_{n} \overline{\mathrm{~B}}_{n}$	$A_{n}+\bar{B}_{n}$	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	\bar{P}
H	L	H	L	$F_{n}=A_{n}+B_{n}$.	A_{n}	\bar{B}_{n}	\bar{C}_{n+4}	$\overline{\mathrm{G}}_{\mathrm{x}}$	\bar{P}
H	L	H	H	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}}$	A_{n}	H	\bar{C}_{n+4}	$\overline{\mathrm{G}}$	L
H	H	L	L	$\mathrm{F}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}$	L	B_{n}	$\overline{\mathrm{C}}_{\mathrm{n}+4}$	H	$\overline{\mathrm{P}}$
H	H	L	H	$F_{n}=B_{n}$	L	\bar{B}_{n}	\bar{C}_{n+4}	H	\bar{P}
H	H	H	L	$F_{n}=A_{n} B_{n}$	L	$\bar{A}_{n}+\bar{B}_{n}$	$\overline{\mathrm{C}}_{n+4}$	H	$\overline{\mathrm{P}}$
H	H	H	H	$\mathrm{F}_{\mathrm{n}}=$ LOW	L	H	\bar{C}_{n}	H	L

$\mathrm{H}=$ HIGH Voltage Level
L = Low Voltage Level
$\overline{\mathrm{P}}=\overline{\mathrm{P}}_{0}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{3}$
Internal Equations for Carry Lookahead
$\bar{G}=\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}}$
($i=0,1,2,3$)
$\overline{\mathrm{C}}_{\mathrm{n}+4}=\overline{\mathrm{G}} \cdot\left(\overline{\mathrm{P}}+\overline{\mathrm{C}}_{\mathrm{n}}\right)$
Arithmetic Operations
$F_{n}=\overline{G_{n}+\bar{P}_{n}} \oplus C_{i} i=0$ to 3
$\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$\mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}+S_{3}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}+S_{3}$
Logic Operations
$\mathrm{F}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n}}+\mathrm{P}_{\mathrm{n}}$

Internal Equations for +6 Logic
$D_{0}=B_{0}$
$\mathrm{D}_{1}=\overline{\mathrm{B}}_{1}$
$D_{2}=B_{1} B_{2}+\bar{B}_{1} \bar{B}_{2}$
$D_{3}=B_{1}+B_{2}+B_{3}$
$\bar{G}_{\mathrm{x}}=\overline{\mathrm{G}_{3} \mathrm{P}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} P_{2} P_{1} \mathrm{G}_{0}}$

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	\% Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mv	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	=		mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL. }}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		I $=-870$	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810	4	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	= 0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{1 H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage:			-1610			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All inputs	
$V_{I L}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not limplied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes,
additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	$\mathrm{S}_{\mathrm{n}}, \overline{\mathrm{E}}$			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}}($ Max $)$
	All Others			250		
I_{EE}	Power Supply Current	-300	-210	-130	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	2.00	6.90	2.10	6.80	2.30	7.40	ns	Figures 1 and 2
${ }^{\text {tpLH}}$ $t_{\text {PHL }}$	Propagation Delay A_{n}, B_{n} to \bar{P}, \bar{G}	1.40	4.70	1.40	4.40	7.40	4.70	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{C}_{n+4}	2.00	6.50	2.00	6.50	2.10		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{C}_{n} to F_{n}	1.60	5.10	1.60	5.20	1.60	5.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}+4}$	1.30	3.00	1.40	3.00	- 1.40	3.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to F_{n}	1.40	8.80	1.50	8.60	1.50	9.00	ns	Figures 1 and 2
tpLH ${ }^{\text {t }}$ PHL	Propagation Delay S_{n} to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$	1.70	7.40	2.00	5.90	2.00	6.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay S_{n} to \bar{C}_{n+4}	2.70	10.10	2.80	8.50	2.90	8.70	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E} to F_{n}	1.00	3.40	0.90	3.60	1.10	3.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.70	0.45	2.60	0.45	2.70	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{aligned} & A_{n}, B_{n} \\ & S_{n} \\ & \bar{C}_{n} \\ & \hline \end{aligned}$	7.60 8.70 4.80		$\begin{aligned} & 7.60 \\ & 8.50 \\ & 5.00 \end{aligned}$		$\begin{aligned} & 8.10 \\ & 9.60 \\ & 5.30 \end{aligned}$		ns	Figure 3
t_{n}	Hold Time A_{n}, B_{n} S_{n} $\overline{\mathrm{C}}_{\mathrm{n}}$	$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \\ & \hline \end{aligned}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW E	2.00		2.00		2.00		ns	Figure 2

TL/F/9873-7
FIGURE 1. AC Test Circuit

TL/F/9873-8

TL/F/9873-9
FIGURE 3. Setup and Hold Times

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

National Semiconductor

100182

9-Bit Wallace Tree Adder

General Description

The 100182 is a 9-bit Wallace tree adder. It is designed to assist in performing high-speed hardware multiplication. The device is designed to add 9 bits of data 1 -bit-slice wide and handle the carry-ins from the previous slices. The 100182 is easily expanded and still maintains four levels of delay regardless of input string length. In conjunction with the

100183 Recode Multiplier, the 100179 Carry Lookahead, and the 100180 High-speed Adder, the 100182 assists in performing parallel multiplication of two signed numbers to produce a signed twos complement product. See 100183 data sheet for additional information. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6 Logic Symbol

Connection Diagrams

TL/F/9874-3

TL/F/9874-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	\pm Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			$\begin{aligned} & \mathrm{mV} \\ & \sim \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	.	,	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		3 -870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810	,	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	. 0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\mathrm{OLC}}$	Output LOW Voltage			-1610			
V_{H}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	\qquad	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\mathrm{L}} \mathrm{B}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{\text {IH }}$	Input HIGH Current $\begin{aligned} & \mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{Cl}_{\mathrm{n}-2} \\ & \mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{8} \\ & \hline \end{aligned}$			300	$\mu \mathrm{A}$	$V_{I N}=V_{I H(M a x)}$
	$\mathrm{D}_{0}, \mathrm{D}_{2}, \mathrm{D}_{7}$			250		
IEE	Power Supply Current	-260	-180	-125	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$	1.40	4.50	1.40	4.50	1.50	4.70	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$	1.30	4.80	1.30	4.70	1.50	5.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{2}$	2.20	6.20	2.20	6.10	2.30	6.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$	1.30	4.70	1.40	4.70	1.50	5.00	ns	
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay D_{n} to PS, PC	2.50	7.20	2.50	7.20	2.70	7.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{n-2}, \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.50	1.00	3.40	1.10	3.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1} \text { to } \mathrm{PS}, \mathrm{PC}$	1.50	4.50	1.50	4.45	1.60	4.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.30	0.80	3.20	0.90	3.60	ns	
$\begin{array}{r} \mathbf{t}_{\mathrm{T} \mathrm{LH}} \\ \mathbf{t}_{\mathrm{THL}} \\ \hline \end{array}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$	1.40	4.30	1.40	4.30	1.50	4.50	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$	1.30	4.60	1.30	4.50	1.50	4.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{2}$	2.20	6.00	2.20	5.90	2.30	6.20	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$	1.30	4.50	1.40	4.50	1.50	4.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to $P S, P C$	2.50	7.00	2.50	7.00	2.70 \times	7.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.30	1.00	3.20	1.10	3.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1} \text { to } \mathrm{PS}, \mathrm{PC}$	1.50	4.30	1.50	4.25	1.60	4.40	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.10	0.80	3.00	0.90	3.40	ns	
$t_{T L H}$ ${ }^{\mathrm{t}_{\mathrm{T}} \mathrm{HL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	* 0.45	1.50	ns	Figures 1 and 2

FIGURE 2. Propagation Delay and Transition Times
4

Application
Typical Horizontal Interconnection of 9-Bit Wallace Tree Adders F100182

TL/F/9874-9

TL/F/9874-10

National Semiconductor

100183

2×8-Bit Recode Multiplier

General Description

The 100183 is a 2×8-bit recode multiplier designed to perform high-speed hardware multiplication. In conjunction with the 100182 Wallace Tree Adder, the 100179 Carry Lookahead, and the 100180 High-speed Adder, the

100183 performs parallel multiplication of two signed numbers in twos complement form to produce a signed twos complement product. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
$A_{0}-A_{2}$	Multiplier (Recode) Inputs
$B_{0}-B_{8}$	Multiplicand Inputs
$F_{0}-F_{7}$	Partial Product Outputs
F_{8}	Sign Extension Output

TL/F/9875-3

Connection Diagrams

24-Pin DIP

TL/F/9875-2
TL/F/9875-5

Truth Table

Inputs			Recode Mode	Outputs								
A_{2}	A_{1}	A_{0}		\bar{F}_{8}	F_{7}	F_{6}	F5	F_{4}	F_{3}	F_{2}	F_{1}	F_{0}
L	L	L	0	H	L	L	L	L	L	L	L	L
L	L	H	+1	\bar{B}_{8}	B_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}
L	\% H	L	+1	B_{8}	B_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}
L	H	H	+2	B_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}	B_{0}
H	\% L	L	-2	B_{8}	\bar{B}_{7}	$\overline{\mathrm{B}}_{6}$	\bar{B}_{5}	\bar{B}_{4}	\bar{B}_{3}	\bar{B}_{2}	$\overline{\mathrm{B}}_{1}$	\bar{B}_{0}
H	L	H	-1	B_{8}	\bar{B}_{8}	\bar{B}_{7}	\bar{B}_{6}	\bar{B}_{5}	\bar{B}_{4}	\bar{B}_{3}	\bar{B}_{2}	\bar{B}_{1}
H	H		-1	B_{8}	\bar{B}_{8}	\bar{B}_{7}	\bar{B}_{6}	\bar{B}_{5}	\bar{B}_{4}	\bar{B}_{3}	\bar{B}_{2}	\bar{B}_{1}
H	H	H	0	H	L	L	L	L	L	L	L	L

[^4]
Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	$)^{\prime}$ Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IIL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL_(Min }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030	cked	,	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810	c	-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Condit	ote 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output Low Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voitage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IL}_{\mathrm{LL}}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{H}	Input HIGH Current $\mathrm{B}_{0}-\mathrm{B}_{8}$ A_{0} A_{1} A_{2}			$\begin{aligned} & 215 \\ & 215 \\ & 285 \\ & 310 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{I N}=V_{I H(M a x)}$
IEE	Power Supply Current	-250	-170	-115	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	1.10	3.90	1.10	3.80	1.10	4.20	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{0}-A_{2} \text { to } F_{8}$	0.90	3.20	1.00	3.10	1.00	3.60	ns	Figures 1 and 2
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	0.80	2.20	0.90	2.15	0.90	2.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B_{8} to F_{8}	0.80	2.00	0.90	2.00	0.90	2.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.50	0.45	2.40	${ }_{0} 0.45$	2.60	ns	Figures 1 and 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{0}-A_{2} \text { to } F_{0}-F_{7}$	${ }^{1.10}$	3.70	1.10	3.60	1.10	4.00	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to F_{8}	0.90		1.00	2.90	1.00	3.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8} \text { to } \mathrm{F}_{0}-\mathrm{F}_{7}$	0.80		0.90	1.95	0.90	2.30	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay B_{8} to F_{8}	0.80	1.80	0.90	1.80	0.90	2.30	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.40	0.45	2.30	0.45	2.50	ns	Figures 1 and 2

Notes:

Pin numbers shown are for flatpak; for DIP see logic symbol
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

Application

100183 is a 2×8-bit recode multiplier that performs parallel multiplication using twos complement arithmetic. In multiplying, the multiplier is partitioned into recode groups, then each recode group operates on the multiplicand to provide a partial product at the same time. The 100183, 2×8-bit recode multiplier provides partial products in 3.6 ns .
The 100182, 9-Bit Wallace Tree Adder combines the partial products to obtain the partial sum and partial carries in an additional 10.7 ns. Then the Carry Lookahead generator and 6-bit adder combine the results of a 16×16-bit multiply
for a total of 24.3 ns . The propagation delays and package count for implementing various size multipliers are listed in Tables I and II.

Multiplication of twos complement binary numbers is accomplished by first obtaining all the partial products. Then the weighted partial products are added together to yield the final result. In the Wallace Tree method of multiplication the sign bit is treated the same as the rest of the bits to obtain a signed result.

TABLE I. Propagation Delay Summation*

Array Size	Recode Multiplier 100183	Wallace Tree Adder $\mathbf{1 0 0 1 8 2}$	High-speed Adder 100180	Carry Lookahead 100179	Total (Max) Delay
16×16	3.6	10.7	7.3	2.7	24.3 ns
17×17 thru 24×24	3.6	21.4			

[^5]Application (Continued)
TABLE II. Package Count

	100102 100117	100183	100182	100180	100179	Total	
16×16	6	16	32	6	2	$=$	62
18×18	7	27	38	6	2	$=$	70
24×24	9	36	60	8	2	$=$	115
32×32	11	64	96	11	4	$=$	186
36×36	13	80	116	12	4	$=$	225
64×64	24	256	328	22	6	$=$	634

For a quick review of the twos complement number format see Table III. Note that subtraction is accomplished by adding the negative number. An example of changing from a positive number to a negative number is shown.

1011 negative number-5
0100 bits inverted
+0001 add one
0101 Results 5

TABLE III. Twos Complement Format

| Sign
 Bit | $\mathbf{2}^{\mathbf{2}}$ | Magnitude
 $\mathbf{2 1}^{\mathbf{1}}$ | $\mathbf{2 0}^{\mathbf{0}}$ | Decimal
 Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | +7 |
| 0 | 1 | 1 | 0 | +6 |
| 0 | 1 | 0 | 1 | +5 |
| 0 | 1 | 0 | 0 | +4 |
| 0 | 0 | 1 | 1 | +3 |
| 0 | 0 | 1 | 0 | +2 |
| 0 | 0 | 0 | 1 | +1 |
| 0 | 0 | 0 | 0 | +0 |
| 1 | 1 | 1 | 1 | -1 |
| 1 | 1 | 1 | 0 | -2 |
| 1 | 1 | 0 | 1 | -3 |
| 1 | 1 | 0 | 0 | -4 |
| 1 | 0 | 1 | 1 | -5 |
| 1 | 0 | 1 | 0 | -6 |
| 1 | 0 | 0 | 1 | -7 |
| 1 | 0 | 0 | 0 | -8 |

Multiplication Algorithm

In the multiplication algorithm used, the multiplier $\left(Y_{n} \ldots Y_{0}\right)$ is partitioned into recode groups and each recode group operates on the multiplicand $\left(X_{n} \ldots X_{0}\right)$ as in Figure 4. The 100183, 2×8-bit recode multiplier partitions the multiplier ($X_{n} \ldots X_{0}$) into groups of eight and the multiplicand ($Y_{n} \ldots$ Y_{0}) into groups of two. Each recode group is two bits wide but requires three bits to determine the partial products. Table IV lists the significance of the various recode groups. The partial product is ± 0, \pm multiplicand, or \pm two times the multiplicand. A forced zero is required to establish the least significant bit of the first recode group. By connecting recode multipliers in parallel the partial products are available at the same time. The weighted partial products $\left(A_{n} \ldots A_{0}\right.$, $B_{n} \ldots B_{0}$) \ldots are added together using 100182, 9-bit Wallace Tree Adders. The results of the partial sum and partial

TABLE IV. Recode Product

Recode Group			Recode	Partial Product
$\mathbf{Y}_{\mathbf{I}+\mathbf{1}}$	$\mathbf{Y}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{I}-\mathbf{1}}$	Value	
0	0	0	+0	Add zero
0	0	1	+1	Add multiplicand
0	1	0	+1	Add multiplicand
0	1	1	+2	Add twice the multiplicand Subtract twice the multiplicand 1
0	0	-2	Subtract the multiplicand	
1	0	1	-1	Subtract the multiplicand Subtract zero
1	1	0	-1	-0

carry are combined together using Carry Lookahead generators and 6 -bit adders. An example of using recode multiplication is shown in Figure 3: multiplier (117_{10}) 01110101 times multiplicand $\left(105_{10}\right)$ 01101001. The first recode group 010 requires adding the multiplicand; the second recode group 010 also requires adding the multiplicand; the third group 110 requires subtracting the multiplicand (the same as inverting each digit and adding 1); the fourth group 011 requires adding twice the multiplicand. Combining the results of four groups, $\mathbf{1 2 2 8 5}_{10}$, we have the correct answer.

FIGURE 3. Recode Multiplication Example

Hardware Implementation

For the hardware implementation of the 100183 recode multiplier the sign bit is connected to the B_{8} input, and B_{7} through B_{0} are the magnitude bits. Two extend the word length greater than eight bits, the B_{0} and B_{8} inputs of adjacent devices are connected together (see Figure 7). The device outputs F_{0} through F_{7} are used as the partial products; these correspond to A_{0} through A_{7}, or A_{8} through A_{15}, or B_{0} through B_{7}, etc. To reduce the hardware, the F_{8} bit (A_{16} in Figure 7) is used as the sign bit of the partial product. The sign bits are extended by using hardware wired logic " 1 s ". The ones are located in front of each partial product with an extra " 1 " at the sign bit of the first partial product as in Figure 4. The logic "1s" are wired as inputs into the Wallace Tree Adders as shown in Figure 6. If the recode group requires the multiplicand to be added, then the 100183 outputs the correct partial products to be added. But when the recode group requires that the multiplicand be subtracted, then the 100183 outputs the ones complement. External gates are required to generate a " 1 " to be added to the ones complement to complete the twos complement for the partial product (Figure 7). These external gates generate the rounding bits, $\mathrm{K}_{0} \ldots \mathrm{~K}_{\mathrm{n}}$, which are input to the Wallace Tree Adder. Figures 4, 6 and 7 show the location. An example of multiplication which has the rounding bits and the hardware wired logic " 1 s " is shown in Figure 5.
The weighted partial products are added together using 100182, 9-bit Wallace Tree Adders as shown in Figure 6. The output is a partial sum and partial carry which can be reduced to the final product using Carry Lookahead and 6bit adders. See Figure 8.

FIGURE 5. Example of Multiplication Using Rounding Bits

Hardware Implementation (Continued)

TL/F/9875-11
FIGURE 6. 100182 Hook-up for 16×16 Multiplier

Hardware Implementation (Continued)

FIGURE 7. 100183 Hook-Up for 16×16 Multiplier

Hardware Implementation (Continued)

TL/F/9875-13
FIGURE 8. Final Summation for 16×16 Multiplier

National
Semiconductor

100250

Quint Full Duplex Line Transceiver

General Description

The 100250 is a quint line transceiver capable of simultaneously transmitting and receiving differential mode signals on a twisted pair line. Each transceiver has a signal input S_{IN}, a signal output S_{O} at and two differential line inputs/ outputs L and \bar{L}. Signals received from the lines L and \bar{L} can be stored in an internal latch. The line outputs are designed to drive twisted pair lines. The ENABLE input is common to all five transceivers.

Features

- Full duplex operation
- Common mode noise immunity of $\pm 1 \mathrm{~V}$

Ordering Code: See Section 6

Logic Symbol

Pin Names	Description
	\bar{E}
$\mathrm{~S}_{\mathrm{in}}$	Common Enable
S_{On}	100K Signal Inputs
$\mathrm{L}_{\mathrm{n}}, \bar{L}_{\mathrm{n}}$	100K Signal Outputs
	Differential Line
	Inputs/Outputs

Connection Diagrams

TL/F/9876-2

Logic Diagram

FIGURE 1. Interconnection of Two 100250 Circuits, Duplex Mode Operation

Truth Table

\bar{E}	$S_{\text {IA }}$	$S_{\text {IB }}$	$\mathrm{S}_{\text {OA }}$	S_{OB}	L	L
H	X	X	$S^{\text {OA }}$ ($n-1$)	$\mathrm{SoB}^{(n-1)}$	- *	*
L	L	L	L	L	U_{L}	U_{H}
L	L	H	H	L	$\left(U_{L}+U_{H}\right) / 2$	$\left(U_{L}+U_{H}\right) / 2$
L	H	L	L	H	$\left(U_{L}+U_{H}\right) / 2$	$\left(U_{L}+U_{H}\right) / 2$
L	H	H	H	H	U_{H}	U_{L}

H = HIGH Voltage Level
$U_{L} \approx-1.27 \mathrm{~V}$
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$U_{H} \approx-0.27 \mathrm{~V}$
$n-1=$ Previous State

* $=$ Dependent on S_{IA} and S_{IB}

Functional Waveform

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
$$

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
$I_{I H}$	Input HIGH Current	S_{In}			200	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
		\bar{E}			250	$\mu \mathrm{~A}$	
					-180	mA	Inputs Open

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\mathrm{Max}) \\ & \text { or } V_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L(M a x)} \end{aligned}$	
V OLC	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {KH }}$	Line Output HIGH Voltage	-370		-220	mV	No Load	
V_{KL}	Line Output LOW Voltage	-1400		-1090	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165	-	-880	mV	Guaranteed HIGH Signal for All inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50)	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	- Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595	mV		
$\mathrm{V}_{\text {KH }}$	Line Output HIGH Voltage	-350		-200	mV	No Load	
V_{KL}	Line Output LOW Voltage	-1300		-990	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL (Min) }}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$V_{I N}=V_{\text {IH(Max }}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620	mV	or $\mathrm{V}_{\text {IL (Min) }}$	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H(\operatorname{Min})} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{KH}	Line Output HIGH Voltage	-400		-250	mV	No Load	
V_{KL}	Line Output LOW Voltage	-1500		-1190	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$	
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

Note 1: Unless specified otherwise on individual data sheet.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $S_{\text {I }}$ to L, \bar{L}	1.1	2.4	1.1	2.4	1.2	2.6	ns	Figures 2 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay L, \bar{L} to S_{O}	1.2	2.8	1.2	2.9	1.3	3.0	ns	Figures 3 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to S_{O}	1.2	2.6	1.2	2.7	1.3	2.9	ns	Figures 3 and 5
$\begin{aligned} & \mathbf{t}_{\mathrm{THL}} \\ & \mathbf{t}_{\mathrm{TLLH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.5	2.0	0.5	2.0	0.5	2.0	ns	
ts	Setup Time L, \bar{L}	1.3		1.3		1.5		ns	Figure 3
${ }_{\text {t }}$	Hold Time L, L	1.3		1.3		1.5		ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation Delay Sit to L, L	1.1	2.2	1.1	2.2	1.2	2.4	ns	Figures 2 and 4
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{L}, \overline{\mathrm{~L}} \text { to } \mathrm{S}_{\mathrm{O}}$	1.2	2.6	1.2	2.7	1.3	2.8	ns	Figures 3 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to S_{O}	1.2	2.4	1.2	2.5	1.3	2.7	ns	Figures 3 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \mathrm{t}_{\mathrm{TLL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.5	1.9	0.5	1.9	0.5	1.9	ns	
t_{S}	Setup Time L, $\overline{\text { L }}$	1.3		1.3		1.5		ns	Figure 3
t_{H}	Hold Time L, [1.3		1.3		1.5		ns	

Switching Waveforms

TL/F/9876-8
Notes: $\left.\begin{array}{rl}S_{I B} & =L \text { then } P=\left(U_{L}+U_{H}\right) / 2, Q=U_{L}, R=U_{H}, S=\left(U_{L}+U_{H}\right) / 2 \\ S_{I B} & =H \text { then } P=U_{H}, Q=\left(U_{L}+U_{H}\right) / 2, R=\left(U_{L}+U_{H}\right) / 2, S=U_{L}\end{array}\right\} L, L$ loaded with another $F 100250$
FIGURE 2. S_{I} to Differential Line

TL/F/9876-9

$$
\text { Notes: } \left.\begin{array}{rl}
S_{I A} & =L \text { then } P=\left(U_{L}+U_{H}\right) / 2, Q=U_{L}, R=U_{H}, S=\left(U_{L}+U_{H}\right) / 2 \\
S_{I A} & =H \text { then } P=U_{H}, Q=\left(U_{L}+U_{H}\right) / 2, R=\left(U_{L}+U_{H}\right) / 2, S=U_{L}
\end{array}\right\} L, L \text { loaded with another } F 100250
$$

t_{s} is the minimum time before the transition of the enable that information must be present at the data input. t_{H} is the minimum time before the transition of the enable that information must remain unchanged at the data input.

FIGURE 3. Differential Line to S_{0}

Test Circuitry

FIGURE 4. AC Test Circuit SI to Differential Line

Section 4

11C Datasheets

Section 4 Contents

11C01 Dual Input OR/NOR Gate 4-3
11C05 1 GHz Divide-by-Four Counter 4-6
11 C06 750 MHz D-Type Flip-Flop 4-10
11C70 Master-Slave D-Type Flip-Flop 4-14
11C90/11C91 650 MHz Prescalers 4-20

$11 \mathrm{C01}$

Dual 5-4 Input OR/NOR Gate

General Description

The 11 C 01 is a voltage-compensated ECL dual 5-4 input OR/NOR gate. The circuit has standard internal voltage compensation with DC parameters identical to 10 K ECL devices.

Ordering Code: See Section 6

Logic Symbol

TL/F/9888-2

Pin Names	Description
$D_{1 a}-D_{1 \mathrm{e}}, D_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{~d}}$	Data Inputs
$\mathrm{Q}_{1}, \bar{Q}_{1}, \mathrm{Q}_{2}, \bar{Q}_{2}$	Outputs

Connection Diagrams

TL/F/9888-1
16-Pin Flatpak

TL/F/9888-3

Truth Tables

In						Out	
$\mathbf{D}_{\mathbf{1 a}}$	$\mathbf{D}_{\mathbf{1 b}}$	$\mathbf{D}_{\mathbf{1 c}}$	$\mathbf{D}_{\mathbf{1 d}}$	$\mathbf{D}_{\mathbf{1 e}}$	$\mathbf{Q}_{\mathbf{1}}$	$\overline{\mathbf{Q}}_{\mathbf{1}}$	
L	L	L	L	L	L	H	
H	X	X	X	X	H	L	
X	H	X	X	X	H	L	
X	X	H	X	X	H	L	
X	X	X	H	X	H	L	
X	X	X	X	H	H	L	

In					Out	
$D_{\mathbf{2 a}}$	$D_{\mathbf{2 b}}$	$D_{\mathbf{2 c}}$	$D_{\mathbf{2 d}}$	$\mathbf{Q}_{\mathbf{2}}$	$\overline{\mathbf{Q}}_{\mathbf{2}}$	
L	L	L	L	L	H	
H	X	X	X	H	L	
X	H	X	X	H	L	
X	X	H	X	H	L	
X	X	X	H	H	L	

[^6]
Absolute Maximum Ratings
 Above which the useful life may be impaired
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature (T_{J})
 Supply Voltage Range
 Input Voltage (DC)
 Output Current (DC Output HIGH)
 -7.0 V to GND
 $V_{E E}$ to $G N D$
 $-50 \mathrm{~mA}$
 Operating Range
 -5.5 V to -4.75 V
 Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.5	-5.2	-4.75	V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0		+75	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	/ T_{A}	Conditions
V_{OH}	Output Voltage HIGH	$\begin{aligned} & -1000 \\ & -960 \\ & -900 \\ & \hline \end{aligned}$		$\begin{array}{r} -840 \\ -810 \\ -720 \\ \hline \end{array}$	mV ¢	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{\text {ILL (Min) }} \\ & \text { per Truth Table } \end{aligned}$
V_{OL}	Output Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-1665 \\ & -1650 \\ & -1625 \\ & \hline \end{aligned}$	mV	$\begin{array}{r} 00^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	Loading is
$\mathrm{V}_{\text {OHC }}$	Output Voltage HIGH	$\begin{gathered} -1020 \\ -980 \\ -920 \\ \hline \end{gathered}$. mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	 $V_{I N}=V_{I H(M i n)}$ or $V_{I L(M a x)}$ per Truth Table
Volc	Output Voltage LOW			$\left\lvert\, \begin{array}{r} -1645 \\ -1630 \\ -1605 \end{array}\right.$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		-840 -810 -720	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage HIGH for All Inputs
$V_{\text {IL }}$	Input Voltage LOW	$\begin{array}{r} -1870 \\ -1850 \\ -1830 \end{array}$	-	$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voitage LOW for All Inputs
I_{H}	Input Current HIGH		+	350	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$
IIL	Input Current LOW	0.5	K		$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$
IEE	Power Supply Current	-30	-24		mA	$+25^{\circ} \mathrm{C}$	Inputs and Outputs Open

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Flatpak			DIP			Units	Conditions
		Min	Typ	Max	Min	Typ	Max		
${ }_{\text {tPLH }}$	Propagation Delay LOW to HIGH	0.45	0.7	0.95	0.60	0.90	1.15	ns	See Figure 1
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay HIGH to LOW	0.45	0.7	0.95	0.60	0.90	1.15	ns	
${ }_{\text {t }}^{\text {the }}$	Output Transition Time LOW to HIGH (20% to 80%)		0.7	0.95		0.90	1.15	ns	
${ }^{\text {t }}$ HL	Output Transition Time HIGH to LOW (80% to 20%)		0.7	0.95		0.90	1.15	ns	

Nes:

Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{EE} and V_{CC}
$\mathrm{C}_{\mathrm{L}} \leq 3 \mathrm{pF}$

Notes:

Jig setup with no circuit under test
$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$V_{E E}=-3.2 \mathrm{~V}$

FIGURE 1. Switching Circuit and Waveforms

11C05

1 GHz Divide-By-Four Counter

General Description

The 11 C05 is an ECL Divide-By-Four Counter with a maximum operating frequency above 1 GHz over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. The input may be DC or AC (capacitively) coupled to the signal source. The emitter follower
outputs (Q and $\overline{\mathrm{Q}}$) are capable of driving 50Ω lines. The outputs are voltage-compensated and provide standard ECL output levels.

Ordering Code: See Section 6
Logic Symbol

TL/F/9889-1

Pin Names	Description
$C P$	Clock Input
$V_{\text {REF }}$	Reference Input
Q, \bar{Q}	Counter Outputs

Connection Diagram

14-Pin DIP

TL/F/9889-2

Logic Diagram

Absolute Maximum Ratings

Above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	$+150^{\circ} \mathrm{C}$
Supply Voltage Range	-7.0 V to GND
Input Voltage (DC)	V_{EE} to GND
Output Current (DC Output HIGH)	-50 mA
Operating Range	-5.5 V to -4.75 V
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max
Supply Voltage (VEE)			
\quad Commercial	-5.25 V	-5.0 V	-4.75 V
Military	-5.5 V	-5.0 V	-4.75 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
Commercial	$0^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$

Commercial DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ GND

Symbol	Parameter	Min	Typ	Max	Units	T_{A}	Conditions
V_{OH}	Output Voltage HIGH	$\begin{aligned} & -1060 \\ & -1025 \\ & -980 \end{aligned}$	$\begin{array}{r} -995 \\ -960 \\ -910 \\ \hline \end{array}$	$\begin{aligned} & -910 \\ & -880 \\ & -830 \\ & \hline \end{aligned}$	mV mV mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$V_{I N}=V_{I H} \text { or } V_{I L} .$ Loading 50Ω to -2 V
V_{OL}	Output Voltage LOW	-1810	-1705	-1620	mV	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -2.45 \\ & -2.50 \\ & -2.60 \end{aligned}$			v V V	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input HIGH
$V_{\text {IL }}$	Input Voltage LOW			$\begin{array}{r} -3.25 \\ -3.30 \\ -3.40 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ + & 25^{\circ} \mathrm{C} \\ + & 75^{\circ} \mathrm{C} \end{aligned}$	Guaranteed Input LOW
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-90	-65		mA	$+25^{\circ} \mathrm{C}$	Input Open
$V_{\text {EE }}$	Supply Voltage Range	-5.25	-5.0	-4.75	V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
$V_{\text {REF }}$	Input Reference Voltage		-2.9		V	$+25^{\circ} \mathrm{C}$	

Military DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{T}_{\text {A }}$	Conditions
V_{OH}	Output Voltage HIGH	$\begin{aligned} & -1100 \\ & -980 \\ & -910 \end{aligned}$	$\begin{gathered} -1030 \\ -910 \\ -820 \end{gathered}$	$\begin{aligned} & -950 \\ & -820 \\ & -720 \end{aligned}$	mV mV mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$V_{I N}=V_{I H} \text { or } V_{I L},$ Loading 100Ω to -2 V
V_{OL}	Output Voltage LOW	-1810	-1705	-1620	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -2.35 \\ & -2.50 \\ & -2.70 \\ & \hline \end{aligned}$	4		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input HIGH
VIL	Input Voltage LOW	\%		$\begin{aligned} & -3.15 \\ & -3.30 \\ & -3.50 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{gathered} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input LOW
IEE	Power Supply Current	-90	-65		mA	$+25^{\circ} \mathrm{C}$	Input Open
$V_{\text {EE }}$	Supply Voltage Range	-5.5	-5.0	-4.75	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {REF }}$	Input Reference Voltage		-2.9		V	- $+25^{\circ} \mathrm{C}$	

Commercial and Military AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
${ }^{\text {f COUNT }}$	Maximum Sinusoidal Input Frequency	1000			MHz	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AC Coupled 800 mV Peak-to-Peak Input (Note 2)
		950				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {COUNT }}$	Minimum Sinusoidal Input Frequency		25		MHz		
$\mathrm{SR}_{\text {MIN }}$	Slew Rate of Squareware		50		$\mathrm{V} / \mu \mathrm{s}$	- (Note	

Note 1: Very low frequency operation is possible as long as sufficient slew rate of the input pulse edges is maintained.
Note 2: input drive shall not exceed 1.5 V peak-to-peak max.

FIGURE 1. AC Test Circuit

25 MHz Operation

Horizontal Scale = 1 ns/div Vertical Scale $=\mathbf{2 0 0} \mathbf{~ m V} / \mathrm{div}$

TL/F/9889-6
1.2 GHz Operation

Note: Trigger amplitudes refer to the circuit end of the input cable as opposed to the signal generator end:

A DC coupled input should be designed to provide specified V_{IH} and V_{IL} levels. For AC coupling, an external resistor may or may not be necessary depending on the application. If an input signal is always present, only the capacitor is required because an internal 400Ω resistor connected between CP and VREF centers the AC signal about midthreshold. For applications in which an input signal is not
always present, $A C$ coupling requires that an external 10 $\mathrm{K} \Omega$ resistor be connected between CP and V_{EE}. This offsets the input sufficiently to avoid extreme sensitivity to noise when no signal is present. Otherwise, noise triggering can lead to oscillation at about 450 MHz . For best operation, both outputs should be equally loaded.

11C06

750 MHz D-Type Flip-Flop

General Description

The 11C06 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 750 MHz . Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and
output levels insensitive to VEE variations. Complementary Q and \bar{Q} outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replacement.

Ordering Code: See Section 6

Logic Symbol

Truth Table

Pin Names	Description
D_{n}	Data Input
CP	Clock Input
$\overline{C E}$	Clock Enable (Active LOW)
$\mathrm{Q}, \overline{\mathrm{Q}}$	Outputs

$\overline{C E}$	$\mathbf{C P}$	\mathbf{D}	$\mathbf{Q}_{\mathbf{n}}$
L	L	X	$\mathrm{Q}_{\mathrm{n}-1}$
L	H	X	$\mathrm{Q}_{\mathrm{n}-1}$
L	-	L	L
L	-	H	H
H	X	X	Q_{n-1}

Connection Diagrams

[^7]Above which the useful life may be impaired

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})
Supply Voltage Range
Input Voltage (DC)
Output Current (DC Output HIGH)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to } \mathrm{GND} \\
\mathrm{~V}_{\mathrm{EE}} \text { to } \mathrm{GND} \\
-50 \mathrm{~mA}
\end{array}
$$

Operating Range	-5.7 V to -4.7 V
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.7 V	-5.2 V	-4.7 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$0^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{T}_{\text {A }}$	Conditions
V_{OH}	Output Voltage HIGH	$\begin{aligned} & -1000 \\ & -960 \\ & -900 \\ & \hline \end{aligned}$		$\begin{array}{r} -840 \\ -810 \\ -720 \\ \hline \end{array}$	mV mV mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min) }}$ per Truth Table Loading 50Ω to -2 V $V_{I N}=V_{I H(\text { Min })}$ or $V_{I L}($ Max $)$ for D_{n} Inputs Loading 50Ω to -2 V
V_{OL}	Output Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1635 \\ & -1620 \\ & -1595 \end{aligned}$	mV mV mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\begin{gathered} -1020 \\ -980 \\ -920 \end{gathered}$			mV mV mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\text {OLC }}$	Output Voltage LOW			$\begin{aligned} & -1615 \\ & -1600 \\ & -1575 \\ & \hline \end{aligned}$	mV mV mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage HIGH for All Inputs
$V_{\text {IL }}$	Input Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{array}{r} -1500 \\ -1485 \\ -1460 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage LOW for All Inputs
IIH	Input Current HIGH Clock Input Data Input	$\%$		$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$
IIL	Input Current LOW	0.5			$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$
lee	Power Supply Current	-59	-40		mA	$+25^{\circ} \mathrm{C}$	All Inputs Open

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$t_{\text {PHL }}$ tplH	Propagation Delay (CP-Q) Propagation Delay (CP-Q)	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.2 \\ 1.2 \\ \hline \end{array}$	ns	See Figure 1
tTLH $t_{T H L}$	Transition Time 20\% to 80\% Transition Time 80\% to 20\%	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	ns ns	
ts	Set-up Time		0.2		ns	
t_{H}	Hold Time		0.2		ns	
$\mathrm{f}_{\text {TOG (}}$ MAX)	Toggle Frequency (CP)	650	750		MHz	See Figure 2, Note

Note: The device is guaranteed for $\mathrm{f}_{\mathrm{TOG}}(\mathrm{CP}) \geq 600 \mathrm{MHz}, \mathrm{f}_{\mathrm{TOG}}(\mathrm{CE}) \geq 550 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

Functional Description

While the clock is LOW, the slave is held steady and the information on the D input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous
master-slave changes when the clock has slow rise or fall times.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\mathrm{CE}}$ should go HIGH while CP is still HIGH.

$R_{T}=50 \Omega$ termination of scope
$\mathrm{L}_{1}=50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 1. Propagation Delay (CP to Q)

TL/F/9890-5
$R_{T}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
Adjust $V_{\text {BIAS }}$ for +0.7 V baseline of
800 mV peak-to-peak sinewave input.
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 2. Toggle Frequency Test Circuit

TL/F/9890-6
Horizontal Scale $=1.0 \mathrm{~ns} /$ div
Vertical Scale $=200 \mathrm{mV} /$ div

$11 \mathrm{C70}$

Master-Slave D-Type Flip-Flop

General Description

The 11C70 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 650 MHz . Designed primarily for communications and instrumentation, it can also be used in other digital applications and is fully compatible with 10K ECL. Asynchronous Direct Set and Direct Clear inputs are provided which override the clock.
The circuit is voltage-compensated, which makes output levels and input thresholds insensitive to $V_{E E}$ variations.

This also allows operation with ECL supply voltage V_{EE} of -5.2 V or with TTL supply V_{CC} of +5.0 V . Each input has an internal $50 \mathrm{k} \Omega$ pull-down resistor, which allows unused inputs to be left open. Open emitter-follower outputs accommodate a variety of loading and terminating schemes. The 11 C70 is pin-compatible with the Motorola MC1670 but is a higher-frequency replacement.

Ordering Code: See Section 6

Logic Symbol

Connection Diagram

TL/F/9891-1

TL/F/9891-2
Truth Table

Pin Names	Description
$\overline{C E}$	Clock Enable (Active LOW)
CP	Clock Pulse
D	Data Input
$Q_{,} \overline{\mathrm{Q}}$	Outputs
S_{D}	Direct Set
C_{D}	Direct Clear

Inputs					Q_{t+1}	Operation
S_{D}	C_{D}	D	$\overline{C E}$	CP		
H	L	X	X	X	H	Direct Set
L	H	X	X	X	L.	Direct Clear
H	H	X	X	X	-	Intermediate
L	L	X	H	\checkmark	Q_{t}	Disable Clock
L	L	H	L	\checkmark	H	Clocked Set
L	L	L	L	\bigcirc	L	Clocked Clear

[^8]```
Absolute Maximum Ratings
Above which the useful life may be impaired
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(+150^{\circ} \mathrm{C}\)
Maximum Junction Temperature (\(\mathrm{T}_{\mathrm{J}}\)) -7.0 V to GND
\(V_{E E}\) to GND
\(-50 \mathrm{~mA}\)
-5.7 V to -4.7 V
\(300^{\circ} \mathrm{C}\)
```


## Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ | -5.7 V | -5.2 V | -4.7 V |
| Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $T_{A}$ | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $V_{\text {OH }}$ | Output Voltage HIGH | -1000 |  | -840 | mV | $0^{\circ} \mathrm{C}$ | $V_{\text {IN }}=V_{\text {IHA }}$ or $V_{\text {ILB }}$ per Truth |
|  |  | -960 |  | -810 | mV | $+25^{\circ} \mathrm{C}$ |  |
| Table Loading $50 \Omega$ to -2 V |  |  |  |  |  |  |  |$)$

## AC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tPLH, $^{\text {P }}$ PHL | Propagation Delay (CP-Q) |  | 1.1 | 1.4 | ns | See Figures 3 and 4 |
| $\mathrm{tPLH}^{\text {tPHL }}$ | Propagation Delay ( $\mathrm{S}_{\mathrm{D}}-\overline{\mathrm{Q}}, \mathrm{C}_{\mathrm{D}}-\mathrm{Q}$ ) |  | 1.3 | 1.7 | ns |  |
| tTLH | Transition Time 20\% to 80\% |  | 0.9 | 1.3 | ns |  |
| $t_{\text {THL }}$ | Transition Time 80\% to 20\% |  | 0.9 | 1.3 | ns |  |
| $\mathrm{f}_{\text {TOG ( }}^{\text {MAX }}$ ) | Toggle Frequency (CP) | 550 | 650 |  | MHz | See Figure 2 |

Note: This device is guaranteed for $f_{T O G(m a x)} \geq 500 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

## Functional Description

Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master-slave changes when the clock has slow rise or fall times. While the clock is LOW, the slave is in a HOLD condition and information present on the D input is gated into the master. When the clock goes HIGH, it locks the master into its present state, making it insensitive to the D input, causing the new information to appear on the outputs.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual In-Line package make the $\overline{C E}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\mathrm{CE}}$ should be HIGH while CP is still HIGH.
A HIGH signal on $S_{D}$ or $C_{D}$ will override the clocked inputs and force $Q$ or $\bar{Q}$, respectively, to go HIGH. If both $C_{D}$ and $S_{D}$ are HIGH, the two output voltages will be somewhere between the HIGH and LOW levels and thus, cannot be usefully defined.
When the input signals for the 11 C 70 come from other ECL circuits, either 11CXX series or 10K types, these circuits will automatically provide appropriate signal swings, provided, of course, that these circuits are operated within their ratings and that due consideration is given to terminations appropriate to the particular application, as discussed in the F100K ECL Design Guide (Section 5 of Databook).
For applications where the clock signal comes from a circuit type other than ECL (in high frequency prescaling, for example) it is generally necessary to use external components to shift the signal levels and center them about the 11C70 input threshold region. A typical biasing scheme is shown in Figure 1. Resistors R1 and R2 are chosen such that the
quiescent voltage at the $C P$ input is -1.3 V with respect to the $V_{C C}$ terminal of the 11C70. Also indicated is the coupling from $\bar{Q}$ back to the $D$ input to make a simple toggle. The clock source should be designed to provide a signal swing in the range of 400 mV to 1200 mV , peak-to-peak, over the specified frequency and temperature range. To avoid saturating the input transistor, and thus limiting the frequency capability, the positive peak of the clock should not be more positive than -0.4 V with respect to Vcc.
The 11070 outputs have no internal pull-down resistors. When driving a microstrip line terminated at the far end by a resistor returned to -2 V (w.r.t. $\mathrm{V}_{\mathrm{CC}}$ ), the quiescent $\mathrm{I}_{\mathrm{OH}}$ current in the line performs the pull-down function when the output starts to go LOW. For series termination or for short unterminated lines, a $270 \Omega$ resistor to $V_{E E}$ will provide adequate pull-down current. The outputs switch slightly faster when both outputs are equally loaded than if only one output is loaded. Equal and opposite changes in Q and $\overline{\mathrm{Q}}$ load currents tend to cancel the effects of the small inductance of the $V_{C C}$ pin.
The test arrangements illustrate the use of split power supplies, with a $2 V V_{C C}$ and $-3.2 \mathrm{~V} V_{E E}$. This is done as a matter of instrumentation convenience, since it allows the outputs to be connected via $50 \Omega$ cables directly to the sampling scope inputs, which have $50 \Omega$ internal terminations. By thus avoiding the use of probes, test correlation problems between supplier and user are minimized. In actual applications, only a single power supply is needed, and ground can be assigned to $V_{C C}$, as in ECL systems or to $V_{E E}$ side as in TTL systems. RF bypass capacitors are recommended in either case.


TL/F/9891-3
FIGURE 1. Input Biasing for AC Coupled Triggering


$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$V_{E E}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


TL/F/9891-7
FIGURE 3. Propagation Delay and $C_{D}$ Test Circuit

$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$\mathrm{VEE}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


FIGURE 4. Propagation Delay and $S_{D}$ Test Circuit

11C90/11C91
650 MHz Prescalers

## General Description

The 11C90 and 11C91 are high-speed prescalers designed specifically for communication and instrumentation applications. All discussions and examples in this data sheet are applicable to the 11C91 as well as the 11C90.
The 11C90 will divide by 10 or 11 and the 11 C 91 by 5 or 6 , both over a frequency range from DC to typically 650 MHz . The division ratio is controlled by the Mode Control. The divide-by-10 or -11 capability allows the use of pulse swallowing techniques to control high-speed counting modulos by lower-speed circuits. The 11C90 may be used with either ECL or TTL power supplies.
In addition to the ECL outputs $Q$ and $\bar{Q}$, the 11C90 contains an ECL-to-TTL converter and a TTL output. The TTL output operates from the same $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ levels as the counter, but a separate pin is used for the TTL circuit $V_{E E}$. This minimizes noise coupling when the TTL output switches and
also allows power consumption to be reduced by leaving the separate $V_{E E}$ pin open if the TTL output is not used. To facilitate capacitive coupling of the clock signal, a $400 \Omega$ resistor $\left(\mathrm{V}_{\mathrm{REF}}\right)$ is connected internally to the $\mathrm{V}_{\mathrm{BB}}$ reference. Connecting this resistor to the Clock Pulse input (CP) automatically centers the input about the switching threshold. Maximum frequency operation is achieved with a $50 \%$ duty cycle.
Each of the Mode Control inputs is connected to an internal $2 \mathrm{k} \Omega$ resistor with the other end uncommitted ( $\mathrm{RM}_{1}$ and $R M_{2}$ ). An $M$ input can be driven from a TTL circuit operating from the same $\mathrm{V}_{\mathrm{CC}}$ by connecting the free end of the associated $2 \mathrm{k} \Omega$ resistor to $V_{C C A}$. When an $M$ input is driven from the ECL circuit, the $2 \mathrm{k} \Omega$ resistor can be left open or, if required, can be connected to $\mathrm{V}_{\mathrm{EE}}$ to act as a pull-down resistor.

## Ordering Code: See Section 6

## Logic Symbol

| Pin Names | * Description |
| :---: | :---: |
| $\overline{\mathrm{CE}}$ | Count Enable Input (Active LOW) |
| CP | Clock Pulse Input |
| $\mathrm{Mn}_{n}$ | Count Modulus Control Input |
| MS | Asynchronous Master Set Input |
| Q, $\overline{\mathrm{Q}}$ | ECL Outputs |
| QTTL | TTL Output |
| $\mathrm{RM}_{\mathrm{n}}$ | $2 \mathrm{k} \Omega$ Resistor to $\mathrm{Mn}_{\mathrm{n}}$ |
| $\mathrm{V}_{\text {REF }}$ | $400 \Omega$ Resistor to $\mathrm{V}_{\mathrm{BB}}$ |

## Connection Diagram



```
Absolute Maximum Ratings
Above which the useful life may be impaired
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```

Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
Supply Voltage Range
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range
Lead Temperature
(Soldering, 10 sec.)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

$$
-7.0 \mathrm{~V} \text { to GND }
$$

$$
V_{E E} \text { to } G N D
$$

$$
-50 \mathrm{~mA}
$$

$$
-5.7 \mathrm{~V} \text { to }-4.7 \mathrm{~V}
$$

Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Ambient Temperature $\left(T_{A}\right)$ |  |  | $+75^{\circ} \mathrm{C}$ |
| $\quad$ Commercial | $0^{\circ} \mathrm{C}$ |  | $+125^{\circ} \mathrm{C}$ |
| $\quad$ Military | $-55^{\circ} \mathrm{C}$ |  |  |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ |  |  | -4.7 V |
| $\quad$ Commercial | -5.7 V | -5.2 V | -4.7 V |
| Military | -5.7 V | -5.2 V | -4. |

## TTL Input/Output Operation

## DC Electrical Characteristics

Over Operating Temperature and Voltage Range unless otherwise noted, Pins 12 and $13=$ GND

| Symbol | Parameter | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ Inputs |  | 4.1 |  | V | Guaranteed Input HIGH Threshold Voltage (Note 4), $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V}$ |
| VIL | Input LOW Voltage $M_{1}$ and $M_{2}$ Inputs |  | 3.3 |  | V | Guaranteed Input LOW Threshold Voltage (Note 4), $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage QTTL Output | 2.3 | 3.3 |  | V | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OH}}=-640 \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage QTTL Output |  | 0.2 | 0.5 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{Min}, \\ & \mathrm{l}_{\mathrm{OL}}=20.0 \mathrm{~mA} \end{aligned}$ |
| IIL | Input LOW Current $M_{1}$ and $M_{2}$ Inputs |  | -2.3 | $-5.0$ | mA | $\begin{aligned} & V_{C C}=V_{C C A}=M a x, \\ & V_{I N}=0.4 \mathrm{~V}, \text { Pins } 6,7=V_{C C} \end{aligned}$ |
| Isc | Output Short Circuit Current | -20 | -35 | -80 | mA | $\begin{aligned} & V_{C C}=V_{C C A}=M a x, \\ & V_{O U T}=0.0 \mathrm{~V}, \operatorname{Pin} 14=V_{C C} \end{aligned}$ |

## AC Electrical Characteristics

$V_{C C}=V_{C C A}=5.0 \mathrm{~V}$ Nominal, $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$ | Propagation Delay, (50\% to 50\%) CP to QTTL | 6 | 10 | 14 | ns | See Figure 1 |
| $t_{\text {PLH }}$ | Propagation Delay, (50\% to 50\%) MS to QTTL |  | 12 | 17 | ns |  |
| $\mathrm{t}_{\text {s }}$ | Mode Control Setup Time | 4 | 2 |  | ns |  |
| $t_{h}$ | Mode Control Hold Time | 0 | -2 |  | ns |  |
| ${ }^{\text {t }}$ LLH | Output Rise Time ( $20 \%$ to $80 \%$ ) |  | 10 |  | ns |  |
| $\mathrm{t}_{\text {THL }}$ | Output Fall Time ( $80 \%$ to $20 \%$ ) |  | 2 |  | ns |  |
| $f_{\text {MAX }}$ | Count Frequency | $\begin{aligned} & 550 \\ & 600 \end{aligned}$ | $\begin{aligned} & 650 \\ & 650 \end{aligned}$ |  | MHz | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \text { Clock Input AC Coupled } \\ & 350 \mathrm{mV} \text { Peak-to-Peak } \\ & \text { Sinewave (Note 5) } \\ & \hline \end{aligned}$ |

## ECL Operation-Commercial Version

## DC Electrical Characteristics

## $V_{C C}=V_{C C A}=G N D, V_{E E}=-5.2 \mathrm{~V}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage $Q$ and $\bar{Q}$ | $\begin{gathered} -1060 \\ -1025 \\ -980 \end{gathered}$ | $\begin{aligned} & -995 \\ & -960 \\ & -910 \end{aligned}$ | $\begin{aligned} & -905 \\ & -880 \\ & -805 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | $\text { Load }=50 \Omega \text { to }=2 V$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage $Q$ and $\bar{Q}$ | -1820 | -1705 | -1620 | mV | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | $\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | $\mathrm{mV}$ | $\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ | Guaranteed input HIGH Signal (Note 6) |
| VIL | Input LOW Voltage | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input LOW Signal |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current <br> CP Input (Note 1) <br> MS Input <br> $M_{1}$ and $M_{2}$ Input |  |  | $\begin{array}{r} 400 \\ 400 \\ 250 \\ \hline \end{array}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $V_{\text {IN }}=V_{\text {IHA }}$ |
| $1 / 2$ | Input LOW Current | 0.5 |  | 4 | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| $I_{\text {E }}$ | Power Supply Current | $\begin{array}{r} -110 \\ -119 \end{array}$ | $-75$ |  | mA | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ | Pins 6, 7, 13 not connected |
| $V_{\text {EE }}$ | Operating Supply Voltage Range | -5.7 | $-5.2$ | $-4.7$ | V | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ |  |
| $V_{\text {REF }}$ | Reference Voltage | -1550 |  | $1150$ | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{RM}_{1}}=\mathrm{V}_{\mathrm{RM}_{2}}=-5.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | $0^{\circ} \mathrm{C}$ <br> Typ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +75^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $t_{\text {PLH }}$ <br> ${ }^{\text {tpHL }}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) CP to Q | $1.8$ | 1.3 | 2.0 | 3.0 | 2.5 | ns | Output: $R_{L}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input: $\mathrm{t}_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ <br> ( $20 \%$ to $80 \%$ ) <br> See Figure 1 |
| $\mathrm{t}_{\mathrm{PLH}}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) MS to Q | 3.7 |  | 4.0 | 6.0 | 4.5 | ns |  |
| $\mathrm{t}_{\text {s }}$ | Setup Time, M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{h}$ | Hold Time, M to CP | -2.0 | 0.0 | -2.0 |  | -2.0 | ns |  |
| ${ }_{\text {t }}^{\text {tin }}$ | Output Rise Time $\text { ( } 20 \% \text { to } 80 \% \text { ) }$ | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }^{\text {t }}$ HL | Output Fall Time ( $80 \%$ to $20 \%$ ) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }_{\text {f MAX }}$ | Maximum Clock Frequency | 650 | 600 | 650 |  | 625 | MHz | AC Coupled Input 350 mV Peak-to-Peak. $\mathrm{f}_{\text {MAX }}$ is Guaranteed to be 575 MHz Min at $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. |

ECL Operation-Military Version
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage Q and $\overline{\mathrm{Q}}$ | $\begin{aligned} & -1100 \\ & -980 \\ & -910 \end{aligned}$ | $\begin{gathered} -1030 \\ -910 \\ -820 \end{gathered}$ | $\begin{aligned} & -900 \\ & -820 \\ & -670 \end{aligned}$ | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Load $=100 \Omega$ to -2V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage $Q$ and $\bar{Q}$ | -1820 | -1705 | -1620 | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | $\begin{gathered} -1190 \\ -1095 \\ -975 \end{gathered}$ |  | $\begin{aligned} & -905 \\ & -810 \\ & -690 \end{aligned}$ | mV | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | Guaranteed Input HIGH Signal (Note 6) |
| $V_{\text {IL }}$ | Input LOW Voltage | $\begin{aligned} & -1890 \\ & -1850 \\ & -1800 \end{aligned}$ |  | $\begin{aligned} & -1525 \\ & -1485 \\ & -1435 \end{aligned}$ | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Guaranteed Input LOW Signal |
| $\mathrm{I}_{\mathbf{I H}}$ | Input HIGH Current <br> CP Input (Note 1) <br> MS Input <br> $M_{1}$ and $M_{2}$ Input |  |  | $\begin{aligned} & 400 \\ & 400 \\ & 250 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$ |
| $1 / 2$ | Input LOW Current | 0.5 |  | - | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| ${ }^{\text {I E E }}$ | Power Supply Current | -110 | -75 | + | mA | $+25^{\circ} \mathrm{C}$ | Pins 6, 7, 13 not connected |
|  |  |  | -119 | $4$ | mA | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |
| $V_{E E}$ | Operating Supply Voltage Range | -5.7 | $-5.2$ | -4.7 | V | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$ |  |
| $V_{\text {REF }}$ | Reference Voltage | -1550 |  | $-1150$ | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & V_{\mathrm{RM}_{1}}=\mathrm{V}_{\mathrm{RM}_{2}}=-5.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & \text { Tyр } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +125^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) CP to Q | 1.5 | 1.3 | 2.0 | 3.0 | 3.0 | ns | Output: $R_{L}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input: $t_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ <br> ( $20 \%$ to $80 \%$ ) <br> See Figure 1 |
| $t_{\text {PLH }}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) MS to Q | 3.5 |  | 4.0 | 6.0 | 5.0 | ns |  |
| $t_{s}$ | Setup Time, M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{h}$ | Hold Time, M to CP | -2.0 | 0.0 | -2.0 |  | -2.0 | ns |  |
| ${ }_{\text {t }}^{\text {TLH }}$ | Output Rise Time (20\% to 80\%) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }^{\text {t }}$ HLL | Output Fall Time ( $80 \%$ to $20 \%$ ) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency | 700 | 600 | 650 |  | 600 | MHz | AC Coupled Input 350 mV Peak-to-Peak. $f_{M A X}$ is Guaranteed to be 550 MHz Min at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. |

Note 1: Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
Note 2: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 3: Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 4: The $M_{1}$ and $M_{2}$ threshold specifications are normally referenced to the $V_{C C}$ potential, as shown in the ECL operation tables. Using $V_{E E}$ (GND) as the reference, as in normal $T$ L practice, effectively makes the threshold vary directly with $V_{C C}$. Threshold is typically 1.3 V below $V_{C C}$ (e.g., +3.7 V at $V_{C C}=+5 \mathrm{~V}$ ). A signal swing about threshold of $\pm 0.4 \mathrm{~V}$ is adequate, which gives the state $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ values. The internal $2 \mathrm{k} \Omega$ resistors are intended to pull TTL outputs up to the required $\mathrm{V}_{1 H}$ range, as discussed in the Functional Description and shown in Figure 5.
Note 5: TTL Output Signal swing is guaranteed at $f_{\text {MAX }}$ over temperature range.
Note 6: $M_{1}$ or $M_{2}$ can be tied to $V_{C C}$ for fixed divide-by-ten operation.

## Functional Description

The 11C90 contains four ECL Flip－Flops，an ECL to TTL converter and a Schottky TTL output buffer with an active pull－up．Three of the Flip－Flops operate as a synchronous shift counter driving the fourth Flip－Flop operating as an asynchronous toggle．The internal feedback logic is such that the TTL output and the Q ECL output are HIGH for six clock periods and LOW for five clock periods．The Mode Control（M）inputs can modify the feedback to make the output HIGH for five clock periods and LOW for five clock periods，as indicated in the Count Sequence Table．
The feedback logic is such that the instant the output goes HIGH，the circuit is already committed as to whether the output period will be 10 or 11 clock periods long．This means that subsequent changes in an $M$ input signal，in－ cluding decoding spikes，will have no effect on the current output period．The only timing restriction for an M input sig－ nal is that it be in the desired state at least a setup time before the clock that follows the HHLL state shown in the table．The allowable propagation delay through external log－ ic to an $M$ input is maximized by designing it to use the positive transition of the 11C90 output as its active edge． This gives an allowable delay of ten clock periods，minus the CP to $Q$ delay of the 11 C 90 and the $M$ to CP setup time． If the external logic uses the negative output transition as its active edge，the allowable delay is reduced to five clock periods minus the previously mentioned delay and setup time．

Capacitively coupled triggering is simplified by the $400 \Omega$ re－ sistor which connects pin 15 to the internal $\mathrm{V}_{\mathrm{BB}}$ reference． By connecting this to the CP input，as shown in Figure 3，the clock is automatically centered about the input threshold．A clock duty cycle of $50 \%$ provides the fastest operation， since the Flip－Flops are Master－Slave types with offset clock thresholds between master and slave．This feature ensures that the circuit will operate with clock waveforms having very slow rise and fall times，and thus，there is no maximum frequency restriction．Recommended minimum and maxi－ mum clock amplitude as a function of a frequency and tem－ perature are shown in the graph labeled Figure 2，When the CP or any other input is driven from another ECL circuit， normal ECL termination methods are recommended．One method is indicated in Figure 4．Other ECL termination methods are discussed in the F100K ECL Design Guide （Section 5 of Databook）．


TL／F／9892－5
FIGURE 2．AC Coupled Triggering Characteristics


FIGURE 3．Capacitively Coupled Clocking


TL／F／9892－11

| $Z_{0} \Omega$ | 50 | 75 | 100 |
| :---: | :---: | :---: | :---: |
| $R_{1} \Omega$ | 80.6 | 121 | 162 |
| $R_{2} \Omega$ | 130 | 196 | 261 |

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=-2.0 \mathrm{~V}$
FIGURE 4．Clocking by ECL Source via Terminated Line
When an $M$ input is to be driven from a TTL output operating from the same $V_{C C}$ and ground（ $V_{E E}$ ），the internal $2 \mathrm{k} \Omega$ resistor can be used to pull the TTL output up as shown in Figure 5．Some types of TTL outputs will only pull up to within two diode drops of $V_{C C}$ ，which is not high enough for 11 C 90 inputs．The resistor will pull the signal up through the threshold region，although this final rise may be somewhat slow，depending on wiring capacitance．A resistor network that gives faster rise and also lower impedance is shown in Figure 6.


TL／F／9892－12
FIGURE 5．Using Internal Pull－Up with TTL Source


TL／F／9892－13
FIGURE 6．Faster Low Impedance TTL to ECL Interface

## Functional Description（Continued）

The ECL outputs have no pull－down resistors and can drive series or parallel terminated transmission lines．For short interconnections that do not require impedance matching，a $270 \Omega$ to $510 \Omega$ resistor to $V_{\text {EE }}$ can be used to establish the $V_{O L}$ level．Both $V_{C C}$ pins must always be used and should

## Logic Diagram 11C90



TL／F／9892－6
Note：This diagram is provided for understanding of logic operation only．It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than shown．

Count Sequence Table 11C90


Note：A HIGH on MS forces all Qs HIGH．

## Logic Diagram 11C91



Count Sequence Table 11C91

|  | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{3}($ QTTL） |
| :---: | :---: | :---: | :---: |
| $\div 5$ | H | H | $\mathrm{H} \sim \div 6$ |
|  | L | H | H |
|  | L | L | H |
|  | L | L | L |
|  | H | L | $L$ |
|  | H | H | $\mathrm{L}-$ |

TL／F／9892－9
Note：A HIGH on MS forces all Qs HIGH．

| Inputs |  |  |  | Output Response |
| :---: | :---: | :---: | :---: | :---: |
| MS | CE | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ |  |
| H | X | X | X | Set High |
| L | H | X | X | Hold |
| L | L | L | L | $\div 6$ |
| L | L | X | H | $\div 5$ |
| $L$ | L | H | X | $\div 5$ |

$H=$ HIGH Voltage Level
L＝LOW Voltage Level
X＝Don＇t Care

Section 5
F100K ECL Design Guide and Application Notes

## Section 5 Contents

Chapter One-Circuit Basics ..... 5-3
Chapter Two-Logic Design ..... 5-9
Chapter Three-Transmission Line Concepts ..... 5-19
Chapter Four-System Considerations ..... 5-32
Chapter Five-Power Distribution and Thermal Considerations ..... 5-45
Chapter Six-Testing Techniques ..... 5-51
Chapter Seven-300 Series Package Qualification ..... 5-58
Chapter Eight—Quality Assurance and Reliability ..... 5-70
AN-682 Terminating F100K ECL Inputs ..... 5-75
AN-683 300 MHz Dual Eight-Way Multiplexer/Demultiplexer ..... 5-77
AN-684 F100336 Four Stage Counter/Shift Register ..... 5.79
AN-768 ECL Backplane Design ..... 5-86
AN-780 Operating ECL From a Single Positive Supply ..... 5-94
AN-784 F100K ECL Dual Rail Translators ..... 5-101
AN-817 ECL Clock Drivers ..... 5-107

# Chapter 1 Circuit Basics 

## Introduction

ECL circuits, except for the simplest elements, are schematically formidable and many of the specified parameters are relatively unfamiliar to system designers. The relationships between external parameters and internal circuitry are best determined by individually examining the fundamental subcircuits of a simple element.

## Basic ECL Switch

At the bottom of every ECL circuit, literally and figuratively, is a current source. In the basic ECL switch (Figure 1-1), a logic operation consists of steering the current through either of two return paths to $\mathrm{V}_{\mathrm{CC}}$; the state of the switch can be detected from the resultant voltage drop across R1 or R2. The net voltage swing is determined by the value of the resistors and the magnitude of the current. Further, these two values are chosen to accomplish the charging and discharging of all of the parasitic capacitances at the desired switching rate.

## Required Input Signal

The voltage swing required to control the state of the switch is relatively small due to the exponential change of emitter current with base-emitter voltage and to the differential mode of operation. For example, starting from a condition where the two base voltages are equal, which causes the current to divide equally between Q1 and Q2, an increase of $V_{I N}$ by 125 mV causes essentially all of the current to flow through Q1. Conversely, decreasing $\mathrm{V}_{\mathrm{IN}}$ by 125 mV causes essentially all of the current to flow through Q2. Thus the minimum signal swing required to accomplish switching is 250 mV centered about $\mathrm{V}_{\mathrm{BB}}$. The signal swing is made larger (approximately 750 mV ) to provide noise immunity and to allow for differences between the $\mathrm{V}_{\mathrm{BB}}$ of one circuit and the output voltage levels of another circuit driving it.


TL/F/9905-1

## Transition Region

If the voltage at the collector of Q1 is monitored while varying $V_{I N}$ above and below the value of $V_{B B}$, the relationship between $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathbb{I}}$ appears as shown in Figure 1-2. Note that the horizontal axis of the graph is centered on $V_{B B}$; this emphasizes the importance of $V_{B B}$ in fixing the location of the transition region. The shape of the transition (or threshold) region is governed by the transistor characteristics and the value of current to be switched. Both of these factors are determined by the circuit designer. The shape of the transition region is essentially invariant over a broad range of conditions, due to the matching of transistor characteristics inherent with IC technology and because the transistors are at the same temperature. The inherent matching of IC resistors assures equal voltage swings at the two collectors.

## Emitter-Follower Buffers

In Figure 1-2, $\mathrm{V}_{\mathrm{C} 1}$ ranges from $\mathrm{V}_{\mathrm{CC}}$ (ground) when Q 1 is off to approximately -0.90 V when Q1 is conducting all of the source current. To make these voltage levels compatible with the voltages required to drive the input of another current switch, emitter followers are added as shown in the buffered current switch (Figure 1-3). In addition to translating $V_{C 1}$ and $V_{C 2}$ downward, the emitter followers also isolate the collector nodes from load capacitance and provide current gain. Since the output impedance of the emitter followers is low (approximately $7 \Omega$ ), ECL circuits can drive transmission lines-coaxial cables, twisted pairs, and etched circuits-having characteristic impedances of $50 \Omega$ or more.


TL/F/9905-2
FIGURE 1-2. $\mathrm{V}_{\mathbf{C 1}}-\mathrm{V}_{\mathrm{IN}}$ Transition Region

## Emitter-Follower Buffers (Continued)



TL/F/9905-3
FIGURE 1-3. Buffered Current Switch
In this buffered current switch, the collectors of Q3 and Q4 return to a separate ground lead, $\mathrm{V}_{\text {CCA }}$. This separation insures that any changes in load currents during switching do not cause a change in $\mathrm{V}_{\mathrm{CC}}$ through the small but finite inductance of the $V_{C C A}$ bond wire. $V_{C C}$ and $V_{C C A}$ are joined together on the leadframe of the package. Outside the package, the $V_{C C}$ and $V_{C C A}$ leads should be connected to the common $V_{C C}$ distribution.
For internal functions of complex circuits where loading is minimal, the buffer transistors are scaled down to maintain high switching speeds with modest source currents. For service as output buffers, the emitter followers are designed for a maximum rated output current of 50 mA . For standardization of testing, detailed specifications on guaranteed $\mathrm{min} / \mathrm{max}$ output levels apply when an output is loaded with $50 \Omega$ returned to -2 V . The emitter followers have no internal pull-down resistors; consequently, there is maximum design flexibility when optimizing line terminations and using wired-OR techniques for combinatorial logic or data bussing.

## Multiple Inputs

The buffered switch of Figure $1-3$ is essentially an ECL line receiver circuit with the bases of both Q1 and Q2 available for receiving differential signals. With one input connected to the $\mathrm{V}_{\mathrm{BB}}$ terminal, the switch can receive a signal transmitted in a single-ended mode or it can act as a buffer or logic inverter. To perform the OR and NOR of two or more functions, additional transistors are connected in parallel with Q1 as indicated in Figure 1-4. When any input is HIGH, its associated transistor conducts the source current and Q2 is turned off; this causes the collector of Q1 to go LOW and the collector of Q2 to go HIGH, with the emitters of Q3 and Q4 following the collectors of Q1 and Q2 respectively. When two or more inputs are HIGH, the results are the same. Thus, with a HIGH level defined as a True or logic " 1 " signal, Q3 provides the NOR of the inputs while Q4 simultaneously provides the OR. In addition to the logic design flexibility afforded by the availability of both the assertion and negation, the Q3 and Q4 outputs can drive both conductors of a differential pair for data transmission. Also shown in Figure 1-4 are the pull-down resistors, nominally $50 \mathrm{k} \Omega$, connected between ECL inputs and the negative supply. These resistors serve the purpose of holding unused inputs in the LOW state by sinking $\mathrm{I}_{\mathrm{CBO}}$ current and preventing the build-up of charge on input capacitances. Accordingly, most non-essential ECL inputs are designed to be active HIGH. When such inputs are not used, the pull-down resistors eliminate the need for external wiring to hold them LOW.


TL/F/9905-4
FIGURE 1-4. Input Expansion by Parallel Transistors

## Power Conservation, Complementary Functions

Power dissipation in an ECL circuit is due in part to the output load currents and in part to the internal operating currents. Load currents depend on system design factors and are discussed in Chapter 5. In the basic switch (Figure $1-1$ ), power dissipation is fixed by the source current and the supply voltage, whether the circuit is in a quiescent or transient state. There is no mechanism for causing a current spike such as occurs in TTL circuits, and thus the power dissipation is not a function of switching frequency.
A distinct advantage of the ECL switch is the ease of forming both the assertion and negation of a function without additional time delay or complexity. This is very significant in complex MSI functions, since it helps to maximize the efficiency of the internal logic while minimizing chip area and power consumption. Since most 100K ECL devices have complementary outputs, the system designer has similar opportunities to reduce package count and power consumption while enhancing logic efficiency and reducing throughput times.

## Series Gating, Wired-AND

Quite often in ECL elements, the circuitry required to generate functions is much simpler than the detailed logic diagrams suggest. In addition to readily available complementary functions and the wired-OR option, other techniques providing high performance with low part count are series gating and wired collectors. These are illustrated in principle by the simplified schematics of Figures 1-5 and 1-6.

## Series Gating, Wired-AND (Continued) <br> 

TL/F/9905-5
FIGURE 1-5. Series/Parallel Gating


TL/F/9905-6

## FIGURE 1-6. Exclusive-OR/NOR

In Figure 1-5, if both A and B are HIGH, then Q1 and Q3 conduct and Is flows through R1, making the collector of Q1 go LOW, thereby achieving the NAND of A and B. Connecting the collectors of Q2 and Q4 to the same load resistor provides the AND of A and B. If the collectors of Q3 and Q4 were interchanged, a different pair of functions of $A$ and $B$ would be produced. Similarly, a third functional pair is achieved by interchanging the collectors of Q1 and Q2. For Q3 and Q4 to operate at a lower voltage level than Q1 and Q2, the voltage level of $B$ is translated downward from the normal ECL levels and $\mathrm{V}^{\prime}$ BB is similarly translated downward from the $\mathrm{V}_{\mathrm{BB}}$ voltage. In the slightly more complex circuit in Figure 1-6, another pair of transistors is added to obtain the Exclusive-OR and Exclusive-NOR functions.
Connecting transistors in series is not limited to two levels of decision making; three levels are shown in the simplified schematic of an octal decoding tree (Figure 1-7). If the three input signals are all HIGH, Q1 conducts through Q9 and Q13 to make the collector of Q1 LOW. In all, there are eight possible paths through which the source current can return to the positive supply. A LOW signal at the collector of any one of the transistors in the top row represents a unique combination of the three input signals. This $1-\mathrm{of}-8$ decoding circuit illustrates very clearly how ECL design techniques make the most efficient use of components and power to generate complex functions. This same set of switches, with the upper collectors wired in two sets of four collectors each, generates the binary sum and its complement of the three input signals.

## The Current Source, Output Regulation

All elements of the F100K circuits use a transistor current source illustrated in Figure 1-8. Source current is determined by an internally generated reference voltage $\mathrm{V}_{\mathrm{CS}}$, the emitter resistor RS and the base-emitter voltage of Q5. The reference voltage is designed to remain fixed with respect to the negative supply $\mathrm{V}_{\mathrm{EE}}$, which makes Is independent of supply voltage.


FIGURE 1-7. Octal Decoding Tree


TL/F/9905-8
FIGURE 1-8. Constant Current Source for a Switch
Regulating the current source ( $\mathrm{I}_{\mathrm{S}}$ ) simplifies system design because output voltage and switching parameters are not sensitive to $\mathrm{V}_{\mathrm{EE}}$ changes. Output voltage levels are determined primarily by the voltage drops across R1 and R2 resulting from the collector currents of Q1 and Q2. Since the collector current of the conducting transistor (Q1 or Q2) is determined by Is and the transistor $\alpha$, the voltage drop across the collector load resistor is not sensitive to $\mathrm{V}_{\mathrm{EE}}$ variations. For example, a 1 V change in $\mathrm{V}_{\mathrm{EE}}$ changes the output level $\mathrm{V}_{\text {OL }}$ by only 10 mV .
Switching parameters are affected by transistor characteristics, the collector resistor (R1 or R2), stray capacitances, and the amount of current being switched. In other forms of ECL where source currents change with $\mathrm{V}_{\mathrm{EE}}$, switching parameters are directly affected. This sensitivity is essentially eliminated in F100K circuits by regulating Is against $\mathrm{V}_{\mathrm{EE}}$ changes.
Power dissipation in an ECL switch is the product of IS and $\mathrm{V}_{\mathrm{EE}}$. By holding Is constant with $\mathrm{V}_{\mathrm{EE}}$, incremental changes in dissipation are linear with $V_{E E}$ changes. In non-regulated ECL, Is increases with $V_{E E}$ causing switch dissipation to change more rapidly with $\mathrm{V}_{\mathrm{EE}}$.

## Threshold Regulation

As previously discussed, the input threshold region of an ECL switch is centered on the internal reference $V_{B B}$. In F100K circuits, the on-chip bias driver holds $\mathrm{V}_{\mathrm{BB}}$ constant with respect to $V_{C C}$, thus minimizing changes in input thresholds with $V_{E E}$. For a $V_{E E}$ change of 1 V , for example, $\mathrm{V}_{\mathrm{BB}}$ changes by approximately 25 mV .
With output voltage levels and input thresholds regulated, F100K circuits tolerate large differences in $\mathrm{V}_{\mathrm{EE}}$ between a driving and a receiving circuit and still maintain good noise margins. For example, a driving circuit operated with -4.2 V and receiving circuit operated with -5.7 V experience no LOW state noise margin loss compared to a driver and receiver both with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. This insensitivity to $\mathrm{V}_{\mathrm{EE}}$ simplifies the design of system power distribution and regulation.

## Temperature Compensation

In F100K circuits, input thresholds are made insensitive to temperature by regulating $\mathrm{V}_{\mathrm{BB}}$. Output voltage levels are made insensitive to temperature by a correction factor designed into the current source and by a simple network connected between the bases of the output transistors as shown in Figure 1-9.


TL/F/9905-9
FIGURE 1-9. Temperature Compensation
With Q1 conducting and Q2 off, most of the source current flows through R1, while a small amount flows through R2, D1 and R3. If the chip temperature increases, the source current is made to increase, causing an increase in the voltage drop of sufficient magnitude across R1 to offset the decrease in base-emitter voltage of Q3. The voltage drop across R1 increases with temperature at the rate of approximately $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, while the voltage drop across D 1 decreases at the same rate. This means that there is a net voltage increase of $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ across the series combination of R2 and R3. This increase is equally divided between the two resistors since R3 is equal to R2 (and R1); thus the voltage at the base of Q4 goes negative by $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, offsetting the decrease in the base-emitter voltage of Q4. When Q2 is on and Q1 is off, the same relationships apply except that most of the current flows through R2, and D2 conducts instead of D1. F100K 300 series change rates for $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{BB}}$, and $\mathrm{V}_{\mathrm{OL}}$ are approximately $0.06,0.08$ and 0.1 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$, respectively.

The stabilization of output levels against changes in temperature provides significant advantages to both the user and manufacturer. In testing, an extended thermal stabilization period is not required, nor is an elaborate air cooling arrangement necessary to obtain correlation of test results between user and supplier. In a system, the output signal swing of a circuit does not depend on its temperature, therefore temperature differences do not cause a mismatch in signal levels between various locations. With temperature gradients thus eliminated as a system constraint, the design of the cooling system is greatly simplified.

## Noise Margins

The most conservative values of ECL noise margins are based on the DC test conditions and limits listed on the data sheets. Acceptance limits on $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ are identified on a symbolic waveform in Figure 1-10, with the boundaries of the input threshold region also identified. The HIGH-state noise margin is usually defined as the difference between $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$ and $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$, with the LOW-state margin defined as the difference between $\mathrm{V}_{\mathrm{OL}(\mathrm{Max})}$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{Max})$. These two differences are identified as $V_{N H}$ and $V_{N L}$ respectively. The worst case input and output test points are also identified on the OR gate transfer function shown in Figure 1-11. The transition region indicated by the solid line is applicable when the internal reference $V_{B B}$ has the design center value of -1.32 V for F 100 K circuits. The transition regions indicated by the dashed lines represent the lot-to-lot displacement resulting from the normal production tolerances on $\mathrm{V}_{\mathrm{BB}}$, which amount to $\pm 40 \mathrm{mV}$ for F100K circuits. Using F100K circuit values as an example, the dashed curve on the right correlates with a $\mathrm{V}_{\mathrm{BB}}$ value of -1.280 V , and the input test voltage $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ is -1.165 V , for a net difference of 115 mV . Similarly, the dashed curve on the left applies when $V_{B B}$ is -1.360 V with $\mathrm{V}_{\mathrm{IL}(\mathrm{Max})}$ specified as -1.475 V , which also gives a net difference of 115 mV . The points $\mathrm{V}_{\mathrm{OHC}}$ and $\mathrm{V}_{\mathrm{OLC}}$ are commonly referred to as the corner points because of their location on the transfer function of worst case circuits.


TL/F/9905-10
FIGURE 1-10. Identifying Specification Limits on Input and Output Voltage Levels
In actual system operation, the noise margins $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ are quite conservative because of the way $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ and $\mathrm{V}_{\text {IL(Max) }}$ are defined. From the transfer function of Figure 1-11, for example, $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ is defined as a value of input voltage which causes a worst-case output to decrease from $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$ to $\mathrm{V}_{\mathrm{OHC}}$ This change in $\mathrm{V}_{\mathrm{OH}}$ amounts to only 10 mV for F100K circuits. Thus, if a worst case OR gate has a quiescent input of $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$, a superimposed negative-going disturbance of amplitude $\mathrm{V}_{\mathrm{NH}}$ causes an output change of only 10 mV , assuming that the time duration of the disturbance is sufficient for the OR gate to respond fully. In

## Noise Margins (Continued)

contrast, a system fault does not occur unless the superimposed noise at the OR input is of sufficient amplitude to cause the output response to extend into the threshold region(s) of the load(s) driven by the OR gate. In general, noise becomes intolerable when it propagates through a string of gates and arrives at the input of a regenerative circuit (flip-flop, counter, shift register, etc.) with sufficient amplitude to reach the $V_{B B}$ level.
The critical requirement for propagating either a signal or noise through a string of gates is that each output must exhibit an excursion to the $V_{B B}$ level of the next gate in the string, assuming, of course, that the time duration is sufficient to allow full response. If the excursion at the input of a particular gate either falls short or exceeds $V_{B B}$, the effect on its output response is magnified by the voltage gain of the gate. On the voltage transfer function of a gate, the slope in the transition region is not, strictly speaking, constant. However, for input signal excursions of about $\pm 50 \mathrm{mV}$ on either side of $\mathrm{V}_{\mathrm{BB}}$, a value of 5.5 may be used for the voltage gain. For example, if the noise (or signal) excursion at the input of a gate falls short of $V_{B B}$ by 20 mV , the gate output response is 110 mV less. Another useful relationship is that if the input voltage of a gate is equal to $V_{B B}$, the output voltage is also equal to $V_{B B}$, within perhaps 30 mV .
To determine the combined effects of circuit and system parameters on noise propagation through a string of gates, refer to Figure 1-12. The voltages $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ represent differences in ground potential, while $V_{3}$ and $V_{4}$ are $V_{E E}$ differences. The output of gate $A$ is in the quiescent LOW state and $V_{P L}$ is a positive-going disturbance voltage. Now, how large can $V_{P L}$ be without causing propagation through gate C ? For a starting point, assume all three gates are identical with typical parameters; $\mathrm{V}_{E E}$ is -4.5 V , the ground drops are zero, and there are no temperature gradients. Voltage parameters of F100K circuits are used. With typical circuits and the idealized environment, the maximum tolerable value of $V_{P L}$ for propagation is the difference between the nominal $\mathrm{V}_{\mathrm{BB}}$ of -1.320 V and nominal $\mathrm{V}_{\mathrm{OL}}$ of -1.705 V , or 385 mV . The following steps treat each non-ideal factor separately and the required reduction in $V_{P L}$ is calculated.


TL/F/9905-11
FIGURE 1-11. Location of Test Points and Threshold on a Transfer Function


## FIGURE 1-12. Arrangement for Noise Propagation Analysis

Non-Typical $\mathrm{V}_{\mathrm{BB}}$ of Gate B: Specifications provide for $\mathrm{V}_{\mathrm{BB}}$ variations of $\pm 40 \mathrm{mV}$. If the $V_{B B}$ of gate $B$ is 40 mV more negative than nominal, $\mathrm{V}_{\mathrm{PL}}$ must be reduced by the same amount.
$\Delta V_{P L}=-40 \mathrm{mV}$
$V_{P L}=385-40=345 \mathrm{mV}$
Non-Typical $V_{O L}$ of Gate $A: V_{O L}$ limits are -1.620 V to -1.830 V corresponding to the $\pm 3 \sigma$ points on the distribution. Statistically, this means that $98 \%$ of the circuits have $V_{\text {OL }}$ values of -1.650 V or lower. Since this value differs from the nominal $\mathrm{V}_{\mathrm{OL}}$ by $55 \mathrm{mV}, \mathrm{V}_{\mathrm{PL}}$ must be reduced accordingly.
$\Delta V_{P L}=-55 \mathrm{mV}$
$V_{P L}=345-55=290 \mathrm{mV}$
Difference in Ground ( $\mathbf{V}_{\mathbf{C c}}$ ) Potential between Gates A and $B$ : Since the $V_{C C}$ lead of Gate $B$ is the reference potential for input voltages, $\mathrm{V}_{1}$ in the polarity shown effectively makes the $\mathrm{V}_{\mathrm{OL}}$ of Gate A more positive. Minimizing ground drops is one of the system designer's tasks (Chapter 5) and its effect on noise margins emphasizes its importance. For this analysis, a value of 30 mV is assumed.
$\Delta \mathrm{V}_{\mathrm{PL}}=30 \mathrm{mV}$
$V_{P L}=290-30=260 \mathrm{mV}$
Difference in $\mathrm{V}_{\mathrm{EE}}$ between Gates A and B : In the polarity shown, $V_{3}$ reduces the supply voltage for Gate $A$ since it is assumed that Gate B has $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V . The indicated polarities of $V_{1}$ and $V_{3}$ seem to be in conflict if it is assumed that $V_{3}$ represents only ohmic drops along the $V_{E E}$ bus. Since $V_{3}$ may, however, be caused by the use of different power supplies or regulators as well as by ohmic drops, the polarities may exist as indicated. In any actual situation, the designer can usually predict the directions of supply current flow by observation of the physical arrangement. As mentioned earlier, a 1 V change in $\mathrm{V}_{E E}$ causes a $\mathrm{V}_{\mathrm{OL}}$ change 30 mV , or $3 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{3}$ and adding the 30 mV of $\mathrm{V}_{1}$, the net reduction in supply voltage for Gate A is 0.53 V . Using $3 \%$ of this reduction as the change in $\mathrm{V}_{\mathrm{OL}}$ gives a positive $V_{O L}$ shift of 16 mV , which is a reduction of noise margin.
$\Delta V_{P L}=-16 \mathrm{mV}$
$V_{P L}=260-16=244 \mathrm{mV}$
If the net supply voltage of Gate A is assumed to be -4.5 V , then $V_{1}$ and $V_{3}$ cause Gate $B$ to have a greater supply voltage. This, in turn, causes the $V_{B B}$ of Gate $B$ to go more negative at the rate of $25 \mathrm{mV} / \mathrm{V}$ of $\mathrm{V}_{\mathrm{EE}}$ change, or $2.5 \%$.

Noise Margins (Continued)
Thus, for the same values of $V_{1}$ and $V_{3}$, the required reduction of $\mathrm{V}_{\mathrm{PL}}$ is only 13 mV instead of the 16 mV computed above.
Non-Typical $\mathrm{V}_{\mathrm{BB}}$ of Gate B: This was considered earlier for its effect at the input of Gate B. It must also be considered for its effect on the excursions of the output voltage of Gate $B$. Since the net input voltage of Gate $B\left(V_{O L}+V_{P L}\right)$ reaches the $V_{B B}$ level of Gate $B$, the output excursion also extends to the $V_{B B}$ level and perhaps 30 mV beyond (more negative). This means that the output excursion of Gate B could be 90 mV more negative than the nominal $\mathrm{V}_{\mathrm{BB}}$ of Gate $C$. This excess excursion must be divided by the voltage gain of Gate B to determine exactly how much $V_{P L}$ must be reduced as compensation.
$\Delta V_{\mathrm{PL}}=-90 / 5.5=-16 \mathrm{mV}$
$V_{P L}=244-16=228 \mathrm{mV}$
Non-Typical $V_{B B}$ of Gate $C$ : The $V_{B B}$ of Gate $C$ could be 40 mV more positive than the nominal value of -1.320 V . Dividing by the voltage gain of Gate B gives the necessary reduction of $\mathrm{V}_{\mathrm{PL}}$.
$\Delta V_{\mathrm{PL}}=-40 / 5.5=-7 \mathrm{mV}$
$V_{\mathrm{PL}}=228-7=221 \mathrm{mV}$
Difference in $\mathbf{V}_{\mathbf{C C}}$ Potential between Gates B and C: For the polarity shown, $\mathrm{V}_{2}$ makes the net voltage at the C input more negative with respect to the $\mathrm{V}_{\mathrm{CC}}$ lead of Gate C . Assume 30 mV for $V_{2}$ as was done for $V_{1}$.
$\Delta V_{P L}=-30 / 5.5=-5.0 \mathrm{mV}$
$V_{P L}=217-5=212 \mathrm{mV}$
Difference in $\mathbf{V}_{\text {EE }}$ between Gates $\mathbf{B}$ and $\mathbf{C}$ : In the polarity shown, $V_{4}$ reduces the supply voltage for Gate $C$, as does $\mathrm{V}_{2}$. As previously mentioned, $\mathrm{V}_{\mathrm{BB}}$ changes with $\mathrm{V}_{\mathrm{EE}}$ at a rate of $25 \mathrm{mV} / \mathrm{V}$, or $2.5 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{4}$,
as was done for $V_{2}$, adding $V_{2}$ gives a net $V_{E E}$ reduction of 0.53 V . This makes the $\mathrm{V}_{\mathrm{BB}}$ of Gate C about 13 mV more positive, with respect to its own $V_{C C}$ lead. This must be divided by the gain of Gate B to determine the effect on the permissible value of $V_{P L}$.
$\Delta V_{P L}=-13 / 5.5 \cong-2 \mathrm{mV}$
$V_{P L}=212-2=210 \mathrm{mV}$
At this point the more conservatively defined $\mathrm{V}_{\mathrm{NL}}$ (Figure 1-10) should be evaluated and compared with $V_{P L}$. Subtracting the values of $\mathrm{V}_{\mathrm{OL}(\text { Max })}$ and $\mathrm{V}_{\mathrm{IL}(\text { Max })}$, a value of 145 mV for $\mathrm{V}_{\mathrm{NL}}$ is obtained.
The primary advantage of using $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ as the limits of tolerable noise is that they provide for simultaneous appearance of noise on inputs and outputs. Whatever the system designer's preference regarding noise margin definitions, the important factor is to recognize that the $\Delta V_{C C}$ and $\Delta V_{E E}$ between devices decrease the noise margins and therefore should be minimized.

## References

1. Marley, R.R., "On-Chip Temperature Compensation for ECL", Electronic Products, (March 1, 1971).
2. Marley, R.R., "Design Considerations of Temperature Compensated ECL," IEEE International Convention, (March, 1971).
3. Widlar, R.J., "Local IC Regulator for Logic Circuits," Computer Design, (May, 1971).
4. Widlar, R.J., "New Developments in IC Voltage Regulators," ISSCC Digest of Technical Papers, (February, 1970).
5. Muller, H.H., Owens, W.K., Verhofstadt, P.W.J., "Fully Compensated ECL," ISSCC Digest of Technical Papers, (February, 1973).

# Chapter 2 <br> Logic Design 

## Introduction

The F100K family is comprised of SSI, MSI, LSI, logic functions, gate arrays, BiCMOS SRAMs, and PALs. The latest addition to the F100K family is the 300 Series. 300 Series devices are functionally equivalent redesigns of existing F100K devices, but with added enhancements such as: lower power, PCC packaging, extended operating voltage range, military versions and ESD protection of 2000 V (minimum).
This chapter covers basic gates and flip-flops, as well as applications using MSI functions. In most cases a $300 \mathrm{Se}-$ ries redesign is available in place of the referenced 100 Series part. Refer to the Applications section of this databook for the latest publications using ECL logic. Gate Arrays, PALs, and MSI are covered in separate publications. All BiCMOS SRAM applications are included in the Memory Databook.
National F100K ECL logic symbols use the positive logic or "active-HIGH" option of MIL-STD-806B. Logic '1' or "ac-tive-High" is the more positive voltage, nearest ground (typically -0.955 V ). Logic ' 0 ' or "active-LOW" is the more negative level, nearest $\mathrm{V}_{\mathrm{EE}}$ (typically $\mathbf{- 1 . 7 0 5 \mathrm { V } \text { ). }}$

## OR/NOR Gates

The most basic F100K ECL circuit is the OR/NOR gate (Figure 2-1). If the input ( A or B ) voltages are more negative than the reference voltage $\mathrm{V}_{\mathrm{BB}}$, Q1 and Q2 are cut off (nonconducting) and Q3 conducts, holding the collector of Q3


LOW. Since the base of Q4 is LOW, the pull-down resistor or terminator connected to its emitter makes the OR output LOW. The base of Q5 is HIGH (near ground) and its emitter pulls the NOR output HIGH. If either input is more positive than $\mathrm{V}_{\mathrm{BB}}$, Q1 or Q2 conducts and Q3 is cut off. This makes the base of Q4 HIGH, resulting in a HIGH at the OR output. At the same time, the base of Q5 is LOW and the pull-down resistors or terminator pulls the NOR output LOW. Detailed information concerning F100K ECL circuit basics may be found in Chapter 1.
The F100K family includes two OR/NOR-gate devices. The 100301 is a triple 5 -input OR/NOR and the 100302 is a quint 2 -input OR/NOR with common enable. One element of the 100302 is shown in Figure 2-2, the corresponding truth table is Table 2-1.


TL/F/9899-2
FIGURE 2-2. 100302 OR/NOR Gate

TABLE 2-1. 100302 Truth Table

| $\mathbf{D}_{\mathbf{1 x}}$ | $\mathbf{D}_{\mathbf{2 x}}$ | $\mathbf{E}$ | $\mathbf{O}_{\mathbf{x}}$ | $\overline{\mathbf{O}}_{\mathbf{x}}$ |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | $H$ |
| L | L | $H$ | $H$ | L |
| L | $H$ | L | $H$ | L |
| L | $H$ | $H$ | $H$ | L |
| $H$ | L | L | $H$ | L |
| $H$ | L | $H$ | $H$ | L |
| $H$ | $H$ | L | $H$ | L |
| $H$ | $H$ | $H$ | $H$ | L |

H $=$ HIGH Voltage Level
L = LOW Voltage Level

## Wired-OR Function

A wired-OR function can be implemented simply by connecting the appropriate outputs external to the package (see Figure 2-3). Each output is buffered so that the internal logic is not affected by the wire-OR. This is a positive logic OR, not to be confused with a DTL wired-AND or the internal series gating used for some ECL functions. This wiredOR is especially useful in implementing data busses. For further information see Chapter 4.

Wired-OR Function (Continued)

$F=(A+B)+(C+D)$
$=A+B+C+D$

TL/F/9899-3

$F=\overline{\bar{A}+\bar{B}}^{+} \overline{\bar{C}+\bar{D}}$
$=A B+C D$

TL/F/9899-4


TL/F/9899-5
FIGURE 2-3. Wired-OR Function

## AND Function

The positive logic AND function is directly available in F100K ECL (100304). There are two other approaches which can be taken to solve the problem of implementing an AND.
The first solution is indicated in Figure 2-4. A positive logic OR gate can be redrawn as a negative logic AND gate. To take advantage of this requires active-LOW input terms; but, since practically every F100K circuit provides complementary outputs, this should not be a problem.


TL/F/9899-6
FIGURE 2-4. 100301 Redrawn as AND/NAND Gate

## Exclusive-OR/Exclusive-NOR Gate

The 100307 is a quint exclusive OR/NOR gate. In addition to providing the exclusive-OR/exclusive-NOR of the five input pairs, a comparison output is available. If the five pairs of inputs are identical, bit by bit, then the common output will be LOW.

## Flip-Flops and Latches

Flip-flops and latches are treated together due to their similarity. The only difference is that latch outputs follow the inputs whenever the enable is LOW, whereas a flip-flop changes output states only on the LOW-to-HIGH clock transition.
The advantage of an edge-triggered flip-flop is that the outputs are stable except while the clock is rising; a latch has better data-to-output propagation delay while the enable is kept active.

Both latches and flip-flops are available three to a package with individual as well as common controls and six to a package with only common controls. There are a total of three parts as indicated below.

|  | Triple w/Individual <br> Controls | Hex w/Common <br> Controls |
| :--- | :---: | :---: |
| Flip-Flops | 100331 | 100351 |
| Latches |  | 100350 |

Figure 2-5 shows the equivalent logic diagram of $1 / 3$ of an 100331. The internal clock is the OR of two clock inputs, one common to the other two flip-flops. The OR clock input permits common or individual control of the three flip-flops. In addition, one input may be used as a clock input and the other as an active-LOW enable.
When the clock is LOW, the slave is held steady and the information on the $D$ input is permitted to enter the master. The transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master, causing the new information to appear at the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master/slave changes when the clock has slow rise or fall times.
The Clear and Set Direct for each flip-flop are the OR of two inputs, one common to the other two flip-flops. The output levels of a flip-flop are unpredictable if both the Set and Clear Direct inputs are active.
The outputs of all F100K flip-flops and latches are buffered. This means that they can be OR-wired; noise appearing on the outputs cannot affect the state of the internal latches.
Table 2-2 is the truth table for the 100331 flip-flop.
TABLE 2-2. 100331 Truth Table

| $\mathrm{D}_{\mathrm{n}}$ | $\mathrm{CP}_{\mathrm{n}}$ | $\mathrm{CP}_{\mathrm{c}}$ | $\begin{gathered} \mathrm{MS} \\ \mathrm{SD}_{\mathrm{n}} \end{gathered}$ | $\begin{aligned} & \text { MR } \\ & C D_{n} \end{aligned}$ | $Q_{n(t+1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\widetilde{I}$ | $\mathrm{L}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | L | $\begin{aligned} & L \\ & H \end{aligned}$ |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\sqrt{\Omega}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \hline \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & Q_{n}(t) \\ & Q_{n}(t) \end{aligned}$ |
| $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & x \\ & X \\ & X \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & H \\ & L \\ & H \end{aligned}$ | $\begin{aligned} & \text { L } \\ & H \\ & H \end{aligned}$ | $\begin{aligned} & H \\ & L \\ & U \end{aligned}$ |

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$U=$ Undefined
$\mathrm{t}, \mathrm{t}+1=$ Time before and after CP positive transition
If eight flip-flops are desired, such as for pipeline register applications, the 100341 Shift Register can be used. Neither reset nor complementary outputs are available. The Select inputs may be used to mechanize a clock enable as shown in Figure 2-6.

Flip-Flops and Latches (Continued)


TL/F/9899-8
FIGURE 2-5. 100331 D Flip-Flop


FIGURE 2-6. 100341 as Octal D Flip-Flop

## Counters

The 100336 operates either as a modulo-16 up/down counter or as a 4-bit bidirectional shift register. It has three Select inputs which determine the mode of operation as shown in Table 2-3. In addition, a Terminal Count output, and two Count Enables are provided for easy expansion to longer counters. A detailed truth table for the 100336 is included in the specification sheet. To achieve the highest possible speed, complementary outputs should be equally terminated, i.e., if $Q_{2}$ is used, $\bar{Q}_{2}$ should be equally terminated even if not used. If neither output of a particular stage is used, then both outputs can be left open.

TABLE 2-3. 100336 Function Select Table

| $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Function |
| :--- | :--- | :--- | :--- |
| L | L | L | Parallel Load |
| L | L | H | Complement |
| L | H | L | Shift to LSB |
| L | H | H | Shift to MSB |
| H | L | L | Count Down |
| H | L | H | Clear |
| H | H | L | Count Up |
| H | H | H | Hold |

[^9]
## VARIABLE MODULUS COUNTERS

A 100336 can act as a programmable divider by presetting it via the parallel inputs, counting down to minimum and then presetting it again to start the next cycle. Figure $2-7$ shows a one-stage counter capable of dividing by 2 to $15 . S_{0}$ and $S_{1}$ are unconnected (therefore LOW) and the counter thus is in either the Count Down or Parallel Load mode, depending on whether $\mathrm{S}_{2}$ is HIGH or LOW, respectively. $\overline{\mathrm{CEP}}$ and CET are also LOW, enabling counting when $\mathrm{S}_{2}$ is HIGH. Immediately after the counter is preset to N , which must be greater than one, the LOAD signal goes HIGH and the 100336 starts counting down on the next clock. When it counts down to one, the LOAD signal goes LOW and presetting will occur on the next clock rising edge. Generating the LOAD signal on the count of one, rather than zero, makes up for the clock pulse used in presetting.


FIGURE 2-7. 1-Stage Counter

## Counters (Continued)

A 3-stage programmable divider is shown in Figure 2-8. The $\overline{T C}$ output of the first stage enables counting in the upper stages, while the TC output of the second stage also enables counting in the third stage. The D-input signal to the flip-flop is normally HIGH and thus $\bar{Q}$ is normally LOW. When both the second and third stage counters have counted down to zero, the $\overline{\mathrm{TC}}$ output of the third stage goes LOW. When the first stage subsequently counts down to one, the D signal goes LOW, as does LOAD. Presetting thus occurs on the next clock and $\overline{\mathrm{Q}}$ goes HIGH to end the $\overline{\text { LOAD }}$ signal and permit counting to resume on the next clock.
In Figure 2-7, the maximum clock frequency is determined by the sum of the propagation delays from $C P$ to $Q$ and the OR gate, plus the setup time from S to CP . The maximum frequency is approximately 220 MHz for typical units or 170 MHz for worst-case units. In Figure 2-8 the critical path is CP to Q of the first stage plus both OR gates, plus
the S to CP set-up time of the counters. Typical and worstcase maximum frequencies are 190 MHz and 140 MHz respectively.

## INTERCONNECTING COUNTERS

The terminal count and count enable connections provide an easy method of interconnecting the 100336 counter to achieve longer counts. Figure $2-9$ shows a method that uses few connections but has a drawback. The counters are fully synchronous, since the clock arrives at all devices at the same time; the only drawback is that the count enables have to "trickle" down the chain. This results in a lower maximum counting rate since it drastically increases the setup time from enable to clock.
Figure $2-10$ shows a method for partially overcoming these drawbacks. The enable to clock set-up is now one $\overline{C E T}$ to


TL/F/9899-11
FIGURE 2-8. 3-Stage Programmable Divider


TL/F/9899-12
FIGURE 2-9. Slow Expansion Scheme


TL/F/9899-29
FIGURE 2-10. Fast Expansion Scheme

## Counters (Continued)

$\overline{T C}$ propagation delay plus one $\overline{C E P}$ to $C P$ set-up. The count speed is thus increased. This is best seen by assuming that all stages except the second are at terminal count. At the next clock pulse, the second counter reaches terminal count and the first stage exits terminal count. The command to suppress counting in the third and fourth (and subsequent) stages arrives very quickly (via CEP). The terminal count from the second stage propagates via $\overline{T C}$ and $\overline{C E P}$ to the high order stages, but has a full 15 counts to do so.

## DECODING OUTPUTS

Since the complementary outputs from each stage are available, it is an easy matter to decode any value. (Clearly, if many values needed to be decoded one would choose a decoder chip.) Figure $2-11$ shows a 100336 and $1 / 3100301$ interconnected to decode 1001 (NINE). Both complementary outputs of NINE are available and there is a spare input on the decoding gate.


TL/F/9899-13
FIGURE 2-11. Decoding States of 100336

## Shift Registers

The 100341 is an 8 -bit universal shift register. It can be used for parallel-to-serial or serial-to-parallel conversion and it will shift left or right. The truth table is shown in Table 2-4.

TABLE 2-4. 100341 Truth Table

| $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | CP | Mode |
| :---: | :---: | :---: | :---: |
| L | L | $\sim$ | Parallel Load |
| L | H | $\sim$ | Shift to MSB ( $Q_{0} \rightarrow \mathrm{Q}_{7}$ ) |
| H | L | $\checkmark$ | Shift to LSB ( $\left.\mathrm{Q}_{7} \rightarrow \mathrm{Q}_{0}\right)$ |
| H | H | X | Hold |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
$\mathrm{x}=$ Don't Care
Figure 2 - 12 shows the 100341 used as a 7-bit serial-to-parallel converter. When Initialize (INIT) becomes active, the
next clock pulse presets the register to '10000000', and Register-Full (REG-FULL) becomes inactive. Each time a data bit becomes available, Data-Available (DATA-AVAIL) must be made active during one clock LOW-to-HIGH transition. This clocks the bit into the register moves the flag bit closer to $Q_{0}$. When the seventh data bit is entered, the flag bit reaches $Q_{0}$ and REG-FULL becomes active. The seven data bits may be removed at this time $\left(Q_{1}\right.$ to $\left.Q_{7}\right)$ and the conversion is complete.


FIGURE 2-12. Serial-to-Parallel Conversion
Table 2-5 summarizes the control inputs and corresponding 100341 modes for this circuit.

TABLE 2-5. Select Inputs Truth Table

| INIT | DATA-AVAIL | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Mode |
| :---: | :---: | :--- | :--- | :--- |
| L | L | $H$ | $H$ | Hold |
| L | $H$ | $H$ | L | Shift to LSB |
| $H$ | L | L | L | Preset |
| H | $H$ | L | L | (Illegal) |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
Figure $2-14$ shows a parallel-to-serial converter using the 100336 counter. Figure $2-13$ shows the associated timing diagram. Each time the external device has taken a bit of data, it makes the signal Serial-Data-Accept (SERIAL-DATA-ACPT) HIGH. The shift register shifts right which makes the next bit available and the counter counts up. The Serial-Data-Accept term must be synchronized with the clock. The counter counts to eight after the eighth data bit has been accepted and Parallel-Data-Request (PARALLEL-DATA-RQST) becomes active HIGH. When the device supplying data makes the next byte available, Parallel-DataReady (PARALLEL-DATA-RDY) goes HIGH. On the next clock pulse the shift register loads the new data byte and the counter clears to zero. Table 2-6 shows the operating mode as a function of the control inputs.

## Shift Registers (Continued)

TABLE 2-6. Parallel-to-Serial Converter Truth Table

| PARALLEL-DATA-RDY | SERIAL-DATA-ACPT | Shift Register |  |  | Counter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Mode | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mode |
| L | L | H | H | Hold | H | H | H | Hold |
| L | H | H | L | Shift to LSB | L | H | H | Count Up |
| H | L | L | L | Load | H | L | H | Clear |

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level


TL/F/9899-16
FIGURE 2-14. Parallel-to-Serial Converter

## Multiplexers

Multiplexers send one of several inputs to a single output. The function can be implemented with standard gates or bus drivers and the wired-OR connection. Figure 2-15 shows the 100323 Hex Bus Driver used as a wired-OR multiplexer. The 100323 devices could be in physically different parts of the system, since they can drive double-terminated busses.
The 100355 is a quad 2 -input multiplexer with transparent latches. The device has two select terms and can accept data from either, neither, or both (OR) sources.
The 100363 is a dual 8 -input multiplexer with common selects. The 100364 is a single 16 -input multiplexer.


TL/F/9899-17
FIGURE 2-15. Wired-OR Multiplexer
The 100363 and 100364 do not feature complementary outputs or an enable for wired-ORing. The 100371 is a triple 4input multiplexer with enable and complementary outputs.
Figure 2-16 shows an 100364 multiplexer and 100336 connected to convert 16 -bit parallel data to single-bit serial data. A gate is added to provide complementary serial data. If the input data is stable, then the output data is stable from 6.4 ns after a clock until 2.5 ns after the next clock. This would insure valid data $50 \%$ of the time at a clock rate of 100 MHz . Terminal Count on the counter can be used as a term to indicate the last bit is being transmitted. This can be used as a clock enable to the register containing the parallel data. The propagation delay through the register is masked by the propagation delay through the counter.

## Multiplexers (Continued)



TL/F/9899-18
FIGURE 2-16. Parallel-to-Serial Data Transmission

## Decoder

The 100370 is a universal demultiplexer/decoder. It can function as either a dual 1-of-4 decoder or as a single 1-of-8 decoder. The outputs can be either active HIGH or active LOW.

If the M input is LOW, then the 100370 is configured as a dual 1-of-4 decoder. Both $A_{2 a}$ and $H_{c}$ must be LOW. Table 2-7 is a truth table for each half of the 100370; the two halves are completely independent. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{x}}$ is made LOW.

TABLE 2-7 Dual 1-of-4 Mode Truth Table

| Inputs |  |  |  | Active-HIGH Outputs ( $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{b}}$ Inputs HIGH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \bar{E}_{1 a} \\ \bar{E}_{\mathbf{b}} \\ \hline \end{array}$ | $\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$ | $\begin{aligned} & A_{1 a} \\ & A_{1 b} \end{aligned}$ | $A_{0 a}$ <br> $A_{0 b}$ | $\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{1 a} \\ & \mathbf{z}_{1 \mathrm{~b}} \end{aligned}$ | $\begin{aligned} & \mathbf{Z}_{2 a} \\ & \mathbf{Z}_{2 b} \\ & \hline \end{aligned}$ | $\begin{aligned} & z_{3 a} \\ & z_{3 b} \end{aligned}$ |
| H X | X | $x$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | L | L | L |
| L | L | L | L | H | L | L | L |
| L | L | L | H | L | H | L | L |
| L | L | H | L | L | L | H | L |
| L | L | H | H | L | L | L | H |

[^10]TABLE 2-8. Single 1-of-8 Mode Truth Table

| Inputs |  |  |  | Active-HIGH Outputs <br> ( $\mathrm{H}_{\mathrm{c}}$ Input HIGH) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1} \bar{E}_{2}$ | $\mathrm{A}_{2 \mathrm{a}}$ | $\mathrm{A}_{19}$ | $\mathrm{A}_{0}$ | $\mathrm{Z}_{0}$ | $\mathrm{Z}_{1}$ | $\mathrm{Z}_{2}$ | $\mathrm{Z}_{3}$ | $\mathrm{Z}_{4}$ | $\mathrm{Z}_{5}$ | $\mathrm{Z}_{6}$ | $\mathrm{Z}_{7}$ |
| H X | X | X | X | L | L | L | L | L | L | L | L |
| X H | X | X | X | L | L | L | L | L | L | L | L |
| L L | L | L | L | H | L | L | L | L | L | L | L |
| L L | L | L | H | L | H | L | L | L | L | L | L |
| L L | L | H | L | L | L | H | L | L | L | L | L |
| L L | L | H | H | L | L | L | H | L | L | L | L |
| L L | H | L | L | L | L | L | L | H | L | L | L |
| L L | H | L | H | L | L | L | L | L | H | L | L |
| L L | H | H | L | L | L | L | L | L | L | H | L |
| L L | H | H | H | L | L | L | L | L | L | L | H |

$\mathrm{M}=\mathrm{HIGH} ;$
$A_{0 b}=A_{1 b}=H_{a}=H_{b}=L O W$
$E_{1}=E_{1 a}$ and $E_{1 b}$ Wired; $E_{2}=E_{2 a}$ and $E_{2 b}$ Wired
$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care
If the M input is HIGH, then the 100370 is configured as a single 1 -of- 8 decoder. $A_{0 b}, A_{1 b}, H_{a}$, and $H_{b}$ must all be LOW. Table $2-8$ is a truth table for the 100370 in single 1-of-8 mode. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{C}}$ is mode LOW.

## Decoder (Continued)

Figure 2-17 and Table 2-9 show a universal decimal decoder and the decode table, respectively. The sense of the outputs can be easily modified. The entire decoder may be enabled with a LOW at the Function input.
Figure 2-18 shows a scheme to decode five lines with a 1 -of-32 decoder. Inputs $A_{0}, A_{1}$, and $A_{2}$ are connected to the address select inputs of all four decoders in parallel. Both the true and complement of the two high order addresses are formed and then ANDed together at the decoder enable inputs.
Figure $2-19$ shows a 1 -of- 64 decoder which uses the LOW outputs of one 100370 to enable one-of-eight 100370 devices whose address inputs are connected together. The unused enable inputs may be used to enable all 64 outputs. The 64 outputs may be either active HIGH or LOW. The propagation delay from address to any output is 4.5 ns maximum.

TABLE 2-9. Output Selection

| $\mathbf{A}_{\mathbf{O}}-A_{\mathbf{3}}$ <br> Weighted <br> Input | Selected Output per Input Code |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{8 4 2 1}$ | $\mathbf{5 4 2 1}$ | Excess <br> $\mathbf{3}$ | Excess <br> $\mathbf{3}$ Gray | $\mathbf{2 4 2 1}$ |
| 0 | 0 | 0 | 3 | 2 | 0 |
| 1 | 1 | 1 | 4 | 6 | 1 |
| 2 | 2 | 2 | 5 | 7 | 2 |
| 3 | 3 | 3 | 6 | 5 | 3 |
| 4 | 4 | 4 | 7 | 4 | 4 |
| 5 | 5 | 8 | 8 | 12 | 11 |
| 6 | 6 | 9 | 9 | 13 | 12 |
| 7 | 7 | 10 | 10 | 15 | 13 |
| 8 | 8 | 11 | 11 | 14 | 14 |
| 9 | 9 | 12 | 12 | 10 | 15 |



FIGURE 2-17. Universal Decimal Decoder


TL/F/9899-20
FIGURE 2-18. 1-of-32 Decoder

Decoder (Continued)


## Parity Generator/Checker

The 100360 is a dual 9 -bit parity checker/generator. The output (of each section) is HIGH when an even number of inputs are HIGH. Thus, to generate odd parity on eight bits, the ninth input would be held HIGH. One of the nine inputs on each half has a shorter propagation $\left(l_{a}, l_{b}\right)$ delay and is thus preferred for expansion.
Figure $2-20$ shows how to build a 16 -bit parity checker using a single 100360. The typical propagation delay from the longest input is 4.05 ns . This circuit can be turned into a parity generator by replacing " $P$ " at input $\mathrm{l}_{b}$ with a LOW or HIGH for even or odd parity, respectively.


TL./F/9899-25
FIGURE 2-20. 16-Bit Parity Checker/Generator

## TTL/F100K InterfacingTranslators

The problem of mixing F100K ECL logic levels with TTL logic levels can be easily overcome with the use of level translators. Level translators are designed to convert the input level of one logic family to a level which is consistent with that of another logic family. This enables designers to take advantage of the high speeds offered by F100K ECL in critical system paths and to use other logic families in areas where speed is not as essential. National's wide range of level translators offer designers a solution for most level translation applications.
For more information on translators, see Application Note 784 "F100K ECL Dual Rail Translators" and Application Note 780 "Operating ECL from a Single Positive Supply".

## 10K/F100K Interfacing

The problem caused by mixing 10K ECL and F100K ECL is illustrated in Figures 2-21 and 2-22. 10K output levels and input thresholds vary with temperature whereas F100K levels and thresholds remain essentially constant. This means that the noise margins vary with temperature, even if the temperatures of the driving and receiving circuits track. Perhaps the worst case is shown in Figure 2-22, which illustrates F 100 K driving 10 K .


TL/F/9899-26
FIGURE 2-21. 10K ECL Driving 100K ECL

At $+75^{\circ} \mathrm{C}$, the high margins are seen to be less than 100 mV . Clearly this would not represent acceptable DC margins in any real system.
If the use of 10 K ECL in an F100K system is unavoidable, it is recommended that all interfacing be done differentially. This is illustrated in Figure 2-23 which is applicable for either direction.


TL/F/9899-27
FIGURE 2-22. 100K ECL Driving 10K ECL


TL/F/9899-28
FIGURE 2-23. Interfacing 10K and F100K

## Chapter 3 Transmission Line Concepts

## Introduction

The interactions between wiring and circuitry in high-speed systems are more easily determined by treating the interconnections as transmission lines. A brief review of basic concepts is presented and simplified methods of analysis are used to examine situations commonly encountered in digital systems. Since the principles and methods apply to any type of logic circuit, normalized pulse amplitudes are used in sample waveforms and calculations.

## Simplifying Assumptions

For the great majority of interconnections in digital systems, the resistance of the conductors is much less than the input and output resistance of the circuits. Similarly, the insulating materials have very good dielectric properties. These circumstances allow such factors as attenuation, phase distortion, and bandwidth limitations to be ignored. With these simplifications, interconnections can be dealt with in terms of characteristic impedance and propagation delay.

## Characteristic Impedance

The two conductors that interconnect a pair of circuits have distributed series inductance and distributed capacitance between them, and thus constitute a transmission line. For any length in which these distributed parameters are constant, the pair of conductors have a characteristic impedance $Z_{0}$. Whereas quiescent conditions on the line are determined by the circuits and terminations, $Z_{0}$ is the ratio of transient voltage to transient current passing by a point on the line when a signal charge or other electrical disturbance occurs. The relationship between transient voltage, transient current, characteristic impedance, and the distributed parameters is expressed as follows:
$\frac{V}{I}=Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}$
where $\mathrm{L}_{0}=$ inductance per unit length, $\mathrm{C}_{0}=$ capacitance per unit length. $Z_{0}$ is in ohms, $L_{0}$ in Henries, $C_{0}$ in Farads.

## Propagation Velocity

Propagation velocity $v$ and its reciprocal, delay per unit length $\delta$, can also be expressed in terms of $L_{0}$ and $C_{0}$. $A$ consistent set of units is nanoseconds, microhenries and picofarads, with a common unit of length.

$$
\begin{equation*}
\nu=\frac{1}{\sqrt{L_{0} C_{0}}} \quad \delta=\sqrt{L_{0} C_{0}} \tag{3-2}
\end{equation*}
$$

Equations 3-1 and 3-2 provide a convenient means of determining the $L_{0}$ and $C_{0}$, of a line when delay, length and impedance are known. For a length / and delay T, $\delta$ is the ratio $\mathrm{T} /$. To determine $L_{0}$ and $C_{0}$, combine Equations $3-1$ and 3-2.

$$
\begin{align*}
\mathrm{L}_{0} & =\delta \mathrm{Z}_{0}  \tag{3-3}\\
\mathrm{C}_{0} & =\frac{\delta}{\mathrm{Z}_{0}} \tag{3-4}
\end{align*}
$$

More formal treatments of transmission line characteristics, including loss effects, are available from many sources.1-3

## Termination and Reflection

A transmission line with a terminating resistor is shown in Figure 3-1. As indicated, a positive step function voltage travels from left to right. To keep track of reflection polarities, it is convenient to consider the lower conductor as the voltage reference and to think in terms of current flow in the top conductor only. The generator is assumed to have zero internal impedance. The initial current $l_{1}$ is determined by $V_{1}$ and $Z_{0}$.


TL/F/9900-1
FIGURE 3-1. Assigned Polarities and Directions for Determining Reflections
If the terminating resistor matches the line impedance, the ratio of voltage to current traveling along the line is matched by the ratio of voltage to current which must, by Ohm's law, always prevail at $\mathrm{R}_{\mathrm{T}}$. From the viewpoint of the voltage step generator, no adjustment of output current is ever required; the situation is as though the transmission line never existed and $\mathrm{R}_{\mathrm{T}}$ had been connected directly across the terminals of the generator. From the $R_{T}$ viewpoint, the only thing the line did was delay the arrival of the voltage step by the amount of time T .
When $R_{T}$ is not equal to $Z_{0}$, the initial current starting down the line is still determined by $V_{1}$ and $Z_{0}$ but the final steady state current, after all reflections have died out, is determined by $V_{1}$ and $R_{T}$ (ohmic resistance of the line is assumed to be negligible). The ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current demanded by $R_{T}$. Therefore, at the instant the initial wave arrives at $\mathrm{R}_{\mathrm{T}}$, another voltage and current wave must be generated so that Ohm's law is satisfied at the lineload interface. This reflected wave, indicated by $\mathrm{V}_{\mathrm{r}}$ and $\mathrm{I}_{\mathrm{r}}$ in Figure 3-1, starts to return toward the generator. Applying

Termination and Reflection (Continued)
Kirchoff's laws to the end of the line at the instant the initial wave arrives, results in the following.
$I_{1}+I_{r}=I_{T}=$ current into $R_{T}$
Since only one voltage can exist at the end of the line at this instant of time, the following is true:
thus

$$
V_{1}+V_{r}=V_{T}
$$

$$
\begin{equation*}
I_{T}=\frac{V_{T}}{R_{T}}=\frac{V_{1}+V_{r}}{R_{T}} \tag{3-6}
\end{equation*}
$$

also

$$
I_{1}=\frac{V_{1}}{Z_{0}} \text { and } I_{r}=-\frac{V_{r}}{Z_{0}}
$$

$$
\frac{1}{0}
$$


with the minus sign indicating that $V_{\mathrm{r}}$ is moving toward the generator.
Combining the foregoing relationships algebraically and solving for $\mathrm{V}_{\mathrm{r}}$ yields a simplified expression in terms of $\mathrm{V}_{1}$, $Z_{0}$ and $\mathrm{R}_{\mathrm{T}}$.
$\frac{V_{1}}{Z_{0}}-\frac{V_{r}}{Z_{0}}=\frac{V_{1}+V_{r}}{R_{T}}=\frac{V_{1}}{R_{T}}+\frac{V_{r}}{R_{T}}$
$\mathrm{V}_{1}\left(\frac{1}{\mathrm{Z}_{0}}-\frac{1}{\mathrm{R}_{\mathrm{T}}}\right)=\mathrm{V}_{\mathrm{r}}\left(\frac{1}{\mathrm{R}_{\mathrm{T}}}+\frac{1}{\mathrm{Z}_{0}}\right)$
$V_{\mathrm{r}}=\mathrm{V}_{1}\left(\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}}\right)=\rho_{L} V_{1}$
The term in parenthesis is called the coefficient of reflection $\rho$. With $R_{T}$ ranging between zero (shorted line) and infinity (open line), the coefficient ranges between -1 and +1 respectively. The subscript $L$ indicates that $\rho$ refers to the coefficient at the load end of the line.
Equation 3-7 expresses the amount of voltage sent back down the line, and since

$$
\begin{array}{ll} 
& V_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{r}}  \tag{3-8}\\
\text { then } \quad & \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}\left(1+\rho_{\mathrm{L}}\right) .
\end{array}
$$

$\mathrm{V}_{\mathrm{T}}$ can also be determined from an expression which does not require the preliminary step of calculating $\rho_{\mathrm{L}}$. Manipulating $\left(1+p_{L}\right)$ results in
$1+\rho_{L}=1+\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}}=2\left(\frac{R_{T}}{R_{T}+Z_{0}}\right)$
Substituting in Equation 3-8 gives
$V_{T}=2\left(\frac{R_{T}}{R_{T}+Z_{0}}\right) V_{1}$
The foregoing has the same form as a simple voltage divider involving a generator $V_{1}$ with internal impedance $Z_{0}$ driving a load $R_{T}$, except that the amplitude of $V_{T}$ is doubled.
The arrow indicating the direction of $\mathrm{V}_{\mathrm{r}}$ in Figure 3-1 correctly indicates the $V_{r}$ direction of travel, but the direction of $I_{r}$ flow depends on the $V_{r}$ polarity. If $V_{r}$ is positive, $I_{r}$ flows toward the generator, opposing $l_{1}$. This relationship between the polarity of $\mathrm{V}_{\mathrm{r}}$ and the direction of $\mathrm{I}_{\mathrm{r}}$ can be deduced by noting in Equation 3-7 that if $\mathrm{V}_{\mathrm{r}}$ is positive it is because $R_{T}$ is greater than $Z_{0}$. In turn, this means that the initial current $I_{r}$ is larger than the final quiescent current, dictated by $V_{1}$ and $R_{T}$. Hence, $I_{r}$ must oppose $I_{1}$ to reduce the line current to the final quiescent value. Similar reasoning shows that if $\mathrm{V}_{\mathrm{r}}$ is negative, $\mathrm{I}_{\mathrm{r}}$ flows in the same direction as $I_{1}$.

It is sometimes easier to determine the effect of $V_{r}$ on line conditions by thinking of it as an independent voltage generator in series with $R_{T}$. With this concept, the direction of $I_{r}$ is immediately apparent; its magnitude, however, is the ratio of $V_{r}$ to $Z_{0}$, i.e., $R_{T}$ is already accounted for in the magnitude of $\mathrm{V}_{\mathrm{r}}$. The relationships between incident and reflected signals are represented in Figure 3-2 for both cases of mismatch between $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{Z}_{0}$.
The incident wave is shown in Figure 3-2a, before it has reached the end of the line. In Figure 3-2b, a positive $V_{r}$ is returning to the generator. To the left of $V_{r}$ the current is still $I_{1}$, flowing to the right, while to the right of $V_{r}$ the net current in the line is the difference between $I_{1}$ and $I_{r}$. In Figure 3-2c, the reflection coefficient is negative, producing a negative $V_{r}$. This, in turn, causes an increase in the amount of current flowing to the right behind the $V_{r}$ wave.

a. Incident Wave

c. Reflected Wave for $\mathbf{R}_{\mathbf{T}}<\mathbf{Z}_{\mathbf{0}}$
FIGURE 3-2. Reflections for $\mathbf{R}_{\mathbf{T}} \neq \mathbf{Z}_{\mathbf{0}}$

## Source Impedance, Multiple Reflections

When a reflected voltage arrives back at the source (generator), the reflection coefficient at the source determines the response to $V_{r}$. The coefficient of reflection at the source is governed by $Z_{0}$ and the source resistance $R_{S}$.
$\rho_{\mathrm{s}}=\frac{R_{\mathrm{S}}-Z_{0}}{R_{\mathrm{S}}+Z_{0}}$
If the source impedance matches the line impedance, a reflected voltage arriving at the source is not reflected back toward the load end. Voltage and current on the line are stable with the following values.
$V_{T}=V_{1}+V_{r}$ and $I_{T}=I_{1}-I_{r}$
If neither source impedance nor terminating impedance matches $Z_{0}$, multiple reflections occur; the voltage at each end of the line comes closer to the final steady state value with each succeeding reflection. An example of a line mismatched on both ends is shown in Figure 3-3. The source is a step function of 1 V amplitude occurring at time $\mathrm{t}_{0}$. The initial value of $V_{1}$ starting down the line is 0.75 V due to the voltage divider action of $Z_{0}$ and $R_{S}$. The time scale in the photograph shows that the line delay is approximately 6 ns . Since neither end of the line is terminated in its characteristic impedance, multiple reflections occur.
The amplitude and persistence of the ringing shown in Figure $3-3$ become greater with increasing mismatch between the line impedance and source and load impedances. Re-


TL/F/9900-5
$\rho_{S}=\frac{31-93}{31+93}=-0.5$
$P_{L}=\frac{\infty-93}{\infty+93}=+1$
Initially: $V_{1}=\frac{Z_{0}}{Z_{0}+R_{S}} \cdot V_{0}=\frac{93}{124} \bullet 1=0.75 \mathrm{~V}$


FIGURE 3-3. Multiple Reflections Due to Mismatch at Load and Source
ducing $\mathrm{R}_{\mathrm{S}}$ (Figure 3-3) to $13 \Omega$ increases $\rho_{\mathrm{S}}$ to -0.75 V , and the effects are illustrated in Figure 3-4. The initial value of $V_{T}$ is 1.8 V with a reflection of 0.9 V from the open end. When this reflection reaches the source, a reflection of $0.9 \mathrm{~V} \times$ -0.75 V starts back toward the open end. Thus, the second increment of voltage arriving at the open end is negative going. In turn, a negative-going reflection of $0.9 \mathrm{~V} \times-0.75 \mathrm{~V}$ starts back toward the source. This negative increment is again multiplied by -0.75 at the source and returned toward the open end. It can be deduced that the difference in amplitude between the first two positive peaks observed at the open end is

$$
\begin{align*}
V_{T}-V^{\prime} T & =\left(1+\rho_{L}\right) V_{1}-\left(1+\rho_{L}\right) V_{1} \rho^{2} L \rho^{2} S  \tag{3-12}\\
& =\left(1+\rho_{L}\right) V_{1}\left(1-\rho^{2} L \rho^{2} S\right) .
\end{align*}
$$

The factor ( $1-\rho^{2} \mathrm{~L} \rho^{2} \mathrm{~S}$ ) is similar to the damping factor associated with lumped constant circuitry. It expresses the attenuation of successive positive or negative peaks of ringing.


TL/F/9900-7
FIGURE 3-4. Extended Ringing when $\mathbf{R}_{\mathbf{S}}$ of Figure 3-3 is Reduced to $13 \Omega$

## Lattice Diagram

In the presence of multiple reflections, keeping track of the incremental waves on the line and the net voltage at the ends becomes a bookkeeping chore. A convenient and systematic method of indicating the conditions which combines magnitude, polarity and time utilizes a graphic construction called a lattice diagram. ${ }^{4}$ A lattice diagram for the line conditions of Figure 3-3 is shown in Figure 3-5.
The vertical lines symbolize discontinuity points, in this case the ends of the line. A time scale is marked off on each line in increments of 2 T , starting at $\mathrm{t}_{0}$ for $\mathrm{V}_{1}$ and T for $\mathrm{V}_{\mathrm{T}}$. The diagonal lines indicate the incremental voltages traveling between the ends of the line; solid lines are used for positive voltages and dashed lines for negative. It is helpful to write the reflection and transmission multipliers $\rho$ and $(1+\rho)$ at each vertical line, and to tabulate the incremental and net voltages in columns alongside the vertical lines. Both the lattice diagram and the waveform photograph show that $\mathrm{V}_{1}$ and $\mathrm{V}_{\mathrm{T}}$ asymptotically approach 1 V , as they must with a $1 V$ source driving an open-ended line.

Lattice Diagram (Continued)


TL/F/9900-8
FIGURE 3-5. Lattice Diagram for the Circuit of Figure 3-3

## Shorted Line

The open-ended line in Figure 3 -3 has a reflection coefficient of +1 and the successive reflections tend toward the steady state conditions of zero line current and a line voltage equal to the source voltage. In contrast, a shorted line has a reflection coefficient of -1 and successive reflections must cause the line conditions to approach the steady state conditions of zero voltage and a line current determined by the source voltage and resistance.
Shorted line conditions are shown in Figure 3-6a with the reflection coefficient at the source end of the line also negative. A negative coefficient at both ends of the line means that any voltage approaching either end of the line is reflected in the opposite polarity. Figure $3-6 b$ shows the response to an input step-function with a duration much longer than the line delay. The initial voltage starting down the line is about +0.75 V , which is inverted at the shorted end and returned toward the source as -0.75 V . Arriving back at the source end of the line, this voltage is multiplied by $\left(1+\rho_{S}\right)$, causing a -0.37 V net change in $\mathrm{V}_{1}$. Concurrently, a reflected voltage of $+0.37 \mathrm{~V}\left(-0.75 \mathrm{~V}\right.$ times $\rho_{S}$ of -0.5$)$ starts back toward the shorted end of the line. The voltage at $\mathrm{V}_{1}$ is reduced by $50 \%$ with each successive round trip of reflections, thus leading to the final condition of zero volts on the line.
When the duration of the input pulse is less than the delay of the line, the reflections observed at the source end of the line constitute a train of negative pulses, as shown in Figure $3-6 c$. The amplitude decreases by $50 \%$ with each successive occurrence as it did in Figure 3-6b.

b. Input Pulse Duration $\gg$ Line Delay


TL/F/9900-11
c. Input Pulse Duration < Line Delay

$$
\rho_{\mathrm{S}}=-0.5
$$

TL/F/9900-9
a. Reflection Coefficients for Shorted Line

FIGURE 3-6. Reflections of Long and Short Pulses on a Shorted Line

## Series Termination

Driving an open-ended line through a source resistance equal to the line impedance is called series termination. It is particularly useful when transmitting signals which originate on a PC board and travel through the backplane to another board, with the attendant discontinuities, since reflections coming back to the source are absorbed and ringing thereby controlled. Figure $3-7$ shows a $93 \Omega$ line driven from a 1 V generator through a source impedance of $93 \Omega$. The photograph illustrates that the amplitude of the initial signal sent down the line is only half of the generator voltage, while the voltage at the open end of the line is doubled to full amplitude $\left(1+\rho_{\mathrm{L}}=2\right)$. The reflected voltage arriving back at the source raises $V_{1}$ to the full amplitude of the generator signal. Since the reflection coefficient at the source is zero, no further changes occur and the line voltage is equal to the generator voltage. Because the initial signal on the line is only half the normal signal swing, the loads must be connected at or near the end of the line to avoid receiving a 2 step input signal.

An ECL output driving a series terminated line requires a pull-down resistor to $V_{E E}$, as indicated in Figure 3-8. The resistor $\mathrm{R}_{0}$ shown in Figure 3-8 symbolizes the output resistance of the ECL gate. The relationships between $R_{0}, R_{S}, R_{E}$ and $Z_{0}$ are discussed in Chapter 4.


TL/F/9900-12

$\mathrm{H}=10 \mathrm{~ns} / \mathrm{div}$
$\mathrm{V}=0.4 \mathrm{~V} / \mathrm{div}$
TL/F/9900-13
FIGURE 3-7. Series Terminated Line and Waveforms


TL/F/9900-14
FIGURE 3-8. ECL Element Driving a Series Terminated Line

## Extra Delay with Termination Capacitance

Designers should consider the effect of the load capacitance at the end of the line when using series termination. Figure $3-9$ shows how the output waveform changes with increasing load capacitance. Figure $3-9 b$ shows the effect of load capacitances of $0,12,24,48 \mathrm{pF}$. With no load, the delay between the $50 \%$ points of the input and output is just the line delay T . A capacitive load at the end of the line causes an extra delay $\Delta T$ due to the increase in rise time of the output signal. The midpoint of the output is used as a criterion because the propagation delay of an ECL circuit is measured between the $50 \%$ points of the input and output signals.


TL/F/9900-15
a. Series Terminated Line with Load Capacitance


TL/F/9900-16
b. Output Rise Time Increase with Increasing Load Capacitance


TL/F/9900-17
c. Extra Delay $\Delta T$ Due to Rise Time Increase

FIGURE 3-9. Extra Delay with Termination Capacitance

Extra Delay with Termination Capacitance (Continued)


FIGURE 3-10. Determining the Effect of End-of-Line Capacitance

The increase in propagation delay can be calculated by using a ramp approximation for the incident voltage and characterizing the circuit as a fixed impedance in series with the load capacitance, as shown in Figure 3-10. One general solution serves both series and parallel termination cases by using an impedance $Z^{\prime}$ and a time constant $\tau$, defined in Figure 3-10a and 3-10b. Calculated and observed increases in delay time to the $50 \%$ point show close agreement when $\tau$ is less than half the ramp time. At large ratios of $\tau / \mathrm{a}$ (where a = ramp time), measured delays exceed calculated values by approximately $7 \%$. Figure 3-11, based on measured values, shows the increase in delay to the $50 \%$ point as a function of the $Z^{\prime} \mathrm{C}$ time constant, both normalized to the $10 \%$ to $90 \%$ rise time of the input signal. As an example of using the graph, consider a $100 \Omega$ series terminated line with 30 pF load capacitance at the end of the line and a noload rise time of 3 ns for the input signal. From Figure 3-10a, $Z^{\prime}$ is equal to $100 \Omega$; the ratio $Z^{\prime} C / t_{r}$ is 1 . From the graph, the ratio $\Delta T / t_{r}$ is 0.8 . Thus the increase in the delay to the $50 \%$ point of the output waveform is $0.8 \mathrm{t}_{\mathrm{r}}$, or 2.4 ns , which is then added to the no-load line delay T to determine the total delay.
Had the $100 \Omega$ line in the foregoing example been parallel rather than series terminated at the end of the line, $Z^{\prime}$ would be $50 \Omega$. The added delay would be only 1.35 ns with the same 30 pF loading at the end. The added delay would be only 0.75 ns if the line were $50 \Omega$ and parallel terminated. The various trade-offs involving type of termination, line impedance, and loading are important considerations for critical delay paths.


FIGURE 3-11. Increase in 50\% Point Delay Due to Capacitive Loading at the End of the Line, Normalized to $T_{r}$

## Distributed Loading Effects on Line Characteristics

When capacitive loads such as ECL inputs are connected along a transmission line, each one causes a reflection with a polarity opposite to that of the incident wave. Reflections from two adjacent loads tend to overlap if the time required for the incident wave to travel from one load to the next is equal to or less than the signal rise time. 5 Figure 3-12a illustrates an arrangement for observing the effects of capacitive loading, while Figure $3-12 b$ shows an incident wave followed by reflections from two capacitive loads. The two capacitors causing the reflections are separated by a distance requiring a travel time of 1 ns . The two reflections return to the source 2 ns apart, since it takes 1 ns longer for the incident wave to reach the second capacitor and an additional 1 ns for the second reflection to travel back to the source. In the upper trace of Figure 3 -12b, the input signal rise time is 1 ns and there are two distinct reflections, although the trailing edge of the first overlaps the leading edge of the second. The input rise time is longer in the middle trace, causing a greater overlap. In the lower trace, the 2 ns input rise time causes the two reflections to merge and appear as a single reflection which is relatively constant (at $\approx-10 \%$ ) for half its duration. This is about the same reflection that would occur if the $93 \Omega$ line had a middle section with an impedance reduced to $75 \Omega$.
With a number of capacitors distributed all along the line of Figure 3-12a, the combined reflections modify the observed input waveform as shown in the top trace of Figure 3-12c. The reflections persist for a time equal to the 2 -way line delay ( 15 ns ), after which the line voltage attains its final value. The waveform suggests a line terminated with a resistance greater than its characteristic impedance ( $R_{T}>$
$Z_{0}$ ). This analogy is strengthened by observing the effect of reducing $R_{\mathrm{T}}$ from $93 \Omega$ to $75 \Omega$, which leads to the middle waveform of Figure 3-12c. Note that the final (steady state) value of the line voltage is reduced by about the same amount as that caused by the capacitive reflections. In the lower trace of Figure 3-12c the source resistance $R_{S}$ is reduced from $93 \Omega$ to $75 \Omega$, restoring both the initial and final line voltage values to the same amplitude as the final value in the upper trace. From the standpoint of providing a desired signal voltage on the line and impedance matching at either end, the effect of distributed capacitive loading can be treated as a reduction in line impedance.
The reduced line impedance can be calculated by considering the load capacitance $C_{L}$ as an increase in the intrinsic line capacitance $\mathrm{C}_{0}$ along that portion of the line where the loads are connected. 6 Denoting this length of line as $I$, the distributed value $C_{D}$ of the load capacitance is as follows.
$C_{D}=\frac{C_{L}}{l}$
$C_{D}$ is then added to $C_{0}$ in Equation 3-1 to determine the reduced line impedance $Z_{0}$.
$Z^{\prime}{ }_{0}=\sqrt{\frac{L_{0}}{C_{0}+C_{D}}}=\sqrt{\frac{L_{0}}{C_{0}\left(1+\frac{C_{D}}{C_{0}}\right)}}$
$Z_{0}^{\prime}+\frac{\sqrt{\frac{L_{0}}{C_{0}}}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}=\frac{Z_{0}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}$

a. Arrangement for Observing Capacitive Loading Effects


FIGURE 3-12. Capacitive Reflections and Effects on Line Characteristics

## Distributed Loading Effects on Line Characteristics (Continued)

In the example of Figure 3-12c, the total load capacitance is 33 pF while the total intrinsic line capacitance $/ \mathrm{C}_{0}$ is 60 pF . (Note that the ratio $\mathrm{C}_{\mathrm{D}} / \mathrm{C}_{0}$ is the same as $\mathrm{C}_{\mathrm{L}} / / \mathrm{C}_{0}$.) The calculated value of the reduced impedance is thus
$Z_{0}=\frac{93}{\sqrt{1+\frac{33}{60}}}=\frac{93}{\sqrt{1.55}}=75 \Omega$
This correlates with the results observed in Figure 3-12c when $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{R}_{\mathrm{S}}$ are reduced to $75 \Omega$.
The distributed load capacitance also increases the line delay, which can be calculated from Equation 3-2.

$$
\begin{align*}
\delta^{\prime} & =\sqrt{L_{0}\left(C_{0}+C_{D}\right)}=\sqrt{L_{0} C_{0}} \sqrt{1+\frac{C_{D}}{C_{0}}}  \tag{3-15}\\
& =\delta \sqrt{1+\frac{C_{D}}{C_{0}}}
\end{align*}
$$

The line used in the example of Figure $3-12 \mathrm{c}$ has an intrinsic delay of 6 ns and a loaded delay of 7.5 ns which checks with Equation 3-15.
$1 \delta^{\prime}=18 \sqrt{1.55}=6 \sqrt{1.55}=7.5 \mathrm{~ns}$
Equation 3-15 can be used to predict the delay for a given line and load. The ratio $C_{D} / C_{0}$ (hence the loading effect) can be minimized for a given loading by using a line with a high intrinsic capacitance $\mathrm{C}_{0}$.
A plot of $Z^{\prime}$ and $\delta^{\prime}$ for a $50 \Omega$ line as a function of $C_{D}$ is shown in Figure 3-13. This figure illustrates that relatively modest amounts of load capacitance will add appreciably to the propagation delay of a line. In addition, the characteristic impedance is reduced significantly.


TL/F/9900-25
FIGURE 3-13. Capacitive Loading Effects on Line Delay and Impedance
Worst case reflections from a capacitively loaded section of transmission line can be accurately predicted by using the modified impedance of Equation 3-9.6 When a signal originates on an unloaded section of line, the effective reflection coefficient is as follows.
$\rho=\frac{Z^{\prime}{ }_{0}-Z_{0}}{Z_{0}{ }_{0}+Z_{0}}$

## Mismatched Lines

Reflections occur not only from mismatched load and source impedances but also from changes in line impedance. These changes could be caused by bends in coaxial cable, unshielded twisted-pair in contact with metal, or mismatch between PC board traces and backplane wiring. With the coax or twisted-pair, line impedance changes run about $5 \%$ to $10 \%$ and reflections are usually no problem since the percent reflection is roughly half the percent change in impedance. However, between PC board and backplane wiring, the mismatch can be 2 or 3 to 1 . This is illustrated in Figure 3-14 and analyzed in the lattice diagram of Figure $3-15$. Line 1 is driven in the series terminated mode so that reflections coming back to the source are absorbed.
The reflection and transmission at the point where impedances differ are determined by treating the downstream line as though it were a terminating resistor. For the example of Figure 3-14, the reflection coefficient at the intersection of lines 1 and 2 for a signal traveling to the right is as follows.
$\rho_{12}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{93-50}{143}=+0.3$
Thus the signal reflected back toward the source and the signal continuing along line 2 are, respectively, as follows.
$\mathrm{V}_{1 \mathrm{r}}=\rho_{12} \mathrm{~V}_{1}=+0.3 \mathrm{~V}_{1}$
$V_{2}=\left(1+\rho_{12}\right) V_{1}=+1.3 V_{1}$
At the intersection of lines 2 and 3 , the reflection coefficient for signals traveling to the right is determined by treating $Z_{3}$ as a terminating resistor.
$\rho_{23}=\frac{Z_{3}-Z_{2}}{Z_{3}+Z_{2}}=\frac{39-93}{132}=-0.41$
When $V_{2}$ arrives at this point, the reflected and transmitted signals are as follows.
$V_{2 r}=\rho_{23} V_{2}=-0.41 V_{2}$
$=(-0.41)(1.3) V_{1}$
$=-0.53 \mathrm{~V}_{1}$
$\mathrm{V}_{3}=\left(1+\rho_{23}\right) \mathrm{V}_{2}=0.59 \mathrm{~V}_{2}$

$$
\begin{equation*}
=(0.59)(1.3) V_{1} \tag{3-21b}
\end{equation*}
$$

$$
=0.77 \mathrm{~V}_{1}
$$

Voltage $V_{3}$ is doubled in magnitude when it arrives at the open-ended output, since $\rho_{\mathrm{L}}$ is +1 . This effectively cancels the voltage divider action between $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{Z}_{1}$.
$V_{4}=\left(1+\rho_{\mathrm{L}}\right) \mathrm{V}_{3}=\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right) \mathrm{V}_{2}$
$=\left(1+\rho_{L}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) V_{1}$
$=\left(1+\rho_{L}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \frac{V_{0}}{2}$
$\mathrm{V}_{4}=\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \mathrm{V}_{\mathrm{O}}$
Thus, Equation 3-22 is the general expression for the initial step of output voltage for three lines when the input is series terminated and the output is open-ended.

Mismatched Lines (Continued)
Note that the reflection coefficients at the intersections of lines 1 and 2 and lines 2 and 3 in Figure 3-15 have reversed signs for signals traveling to the left. Thus the voltage reflected from the open output and the signal reflecting back and forth on line 2 both contribute additional increments of output voltage in the same polarity as $\mathrm{V}_{\mathrm{O}}$. Lines 2 and 3 have the same delay time; therefore, the two aforementioned increments arrive at the output simultaneously at time 5T on the lattice diagram (Figure 3-15).
In the general case of series lines with different delay times, the vertical lines on the lattice diagram should be spaced apart in the ratio of the respective delays. Figure 3-16 shows this for a hypothetical case with delay ratios 1:2:3. For a sequence of transmission lines with the highest im-
pedance line in the middle, at least three output voltage increments with the same polarity as $V_{0}$ occur before one can occur of opposite polarity. On the other hand, if the middle line has the lowest impedance, the polarity of the second increment of output voltage is the opposite of $\mathrm{V}_{\mathrm{O}}$. The third increment of output voltage has the opposite polarity, for the time delay ratios of Figure 3-16.
When transmitting logic signals, it is important that the initial step of line output voltage pass through the threshold region of the receiving circuit, and that the next two increments of output voltage augment the initial step. Thus in a series terminated sequence of three mismatched lines, the middle line should have the highest impedance.



TL/F/9900-27
FIGURE 3-14. Reflections from Mismatched Lines


FIGURE 3-15. Lattice Diagram for the Circuit of Figure 3-14

Mismatched Lines (Continued)


TL/F/9900-29
FIGURE 3-16. Lattice Diagram for Three Lines with Delay Ratios 1:2:3

## Rise Time versus Line Delay

When the 2-way line delay is less than the rise time of the input wave, any reflections generated at the end of the line are returned to the source before the input transition is completed. Assuming that the generator has a finite source resistance, the reflected wave adds algebraically to the input wave while it is still in transition, thereby changing the shape of the input. This effect is illustrated in Figure 3-17, which shows input and output voltages for several comparative values of rise time and line delay.
In Figure 3-17b where the rise time is much shorter than the line delay, $\mathrm{V}_{1}$ rises to an initial value of 1 V . At time T later, $V_{T}$ rises to 0.5 V , i.e., $1+\rho_{\mathrm{L}}=0.5$. The negative reflection arrives back at the source at time 2 T , causing a net change of -0.4 V , i.e., $\left(1+\rho_{\mathrm{S}}\right)(-0.5)=-0.4$.
The negative coefficient at the source changes the polarity of the other 0.1 V of the reflection and returns it to the end of the line, causing $\mathrm{V}_{\mathrm{T}}$ to go positive by another 50 mV at time 3T. The remaining 50 mV is inverted and reflected back to the source, where its effect is barely distinguishable as a small negative change at time 4 T .
In Figure $3-17 c$, the input rise time ( $0 \%$ to $100 \%$ ) is increased to such an extent that the input ramp ends just as the negative reflection arrives back at the source end. Thus the input rise time is equal to 2 T .
The input rise time is increased to 4T in Figure 3-17d, with the negative reflection causing a noticeable change in input slope at about its midpoint. This change in slope is more visible in the double exposure photo of Figure 3-17e, which shows $\mathrm{V}_{1}$ ( $\mathrm{t}_{\mathrm{r}}$ still set for 4 T ) with and without the negative reflection. The reflection was eliminated by terminating the line in its characteristic impedance.

The net input voltage at any particular time is determined by adding the reflection to the otherwise unaffected input. It must be remembered that the reflection arriving back at the input at a given time is proportional to the input voltage at a time 2T earlier. The value of $\mathrm{V}_{1}$ in Figure $3-17 d$ can be calculated by starting with the 1 V input ramp.
$V_{1}=\frac{1}{t_{r}} \bullet t$ for $0 \leq t \leq 4 T$
$=1 \mathrm{~V}$ for $\mathrm{t} \geq 4 \mathrm{~T}$
The reflection from the end of the line is
$V_{r}=\frac{\rho_{L}(t-2 T)}{t_{r}}$;
the portion of the reflection that appears at the input is
$V_{r}{ }_{r}=\frac{\left(1+\rho_{S}\right) \rho_{L}(t-2 T)}{t_{r}} ;$
the net value of the input voltage is the sum.
$\mathrm{V}^{\prime}{ }_{1}=\frac{\mathrm{t}}{\mathrm{t}_{\mathrm{r}}}+\frac{\left(1+\rho_{\mathrm{S}}\right)+\rho_{\mathrm{L}}(\mathrm{t}-2 \mathrm{~T})}{\mathrm{t}_{\mathrm{r}}}$
The peak value of the input voltage in Figure $3-17 d$ is determined by substituting values and letting $t$ equal 4 T .

$$
\begin{align*}
\mathrm{V}_{1}^{\prime} & =1+\frac{(0.8)(-0.5)(4 \mathrm{~T}-2 \mathrm{~T})}{\mathrm{t}_{\mathrm{r}}}  \tag{3-27}\\
& =1-0.4(0.5)=0.8 \mathrm{~V}
\end{align*}
$$

After this peak point, the input ramp is no longer increasing but the reflection is still arriving. Hence the net value of the input voltage decreases. In this example, the later reflections are too small to be detected and the input voltage is thus stable after time 6 T . For the general case of repeated reflections, the net voltage $V_{1(t)}$ seen at the driven end of the line can be expressed as follows, where the signal caused by the generator is $V_{1(t)}$.

Rise Time versus Line Delay (Continued)

| $V^{\prime}{ }_{1(t)}=$ | $V_{1(t)}$ |
| ---: | :--- |
|  | for $0<t<2 T$ |
| $V^{\prime}{ }_{1(t)}=$ | $V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)}$ |
|  | for $2 T<t<4 T$ |
| $V^{\prime}{ }_{1(t)}=$ | $V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)}$ |
|  | $+\left(1+\rho_{S}\right) \rho_{S} \rho_{L}^{2} V_{1(t-4 T)}$ |
|  | for $4 T<t<6 T$ |
| $V^{\prime}{ }_{1(t)}=$ | $V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)}$ |
|  | $+\left(1+\rho_{S}\right) \rho_{S \rho_{2}}{ }^{2} V_{1(t-4 T)}$ |
|  | $+\left(1+\rho_{S}\right) \rho_{S} \rho_{L_{L}}{ }^{3} V_{1(t-6 T)}$ |
|  | for $6 T<t<8 T$, etc. |

The voltage at the output end of the line is expressed in a similar manner.
$V_{T(t)}=0$
for $0<t<T$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
for $T<t<3 T$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
for $3 \mathrm{~T}<\mathrm{t}<5 \mathrm{~T}$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
$+\left(1+\rho_{\mathrm{L}}\right) \rho_{\mathrm{S}} \rho_{\mathrm{L}} \mathrm{V}_{1(\mathrm{t}-3 \mathrm{~T})}$
$+\left(1+\rho_{\mathrm{L}}\right) \rho_{\mathrm{S}^{2}} \rho_{\mathrm{L}}{ }^{2} \mathrm{~V}_{1(\mathrm{t}-5 \mathrm{~T})}$
for $5 \mathrm{~T}<\mathrm{t}<7 \mathrm{~T}$, etc.


TL/F/9900-30
a. Test Arrangement for Rise Time Analysis


## Ringing

Multiple reflections occur on a transmission line when neither the signal source impedance nor the termination (load) impedance matches the line impedance. When the source reflection coefficient $\rho_{S}$ and the load reflection coefficient $\rho_{\mathrm{L}}$ are of opposite polarity, the reflections alternate in polarity. This causes the signal voltage to oscillate about the final steady state value, commonly recognized as ringing.
When the signal rise time is long compared to the line delay, the signal shape is distorted because the individual reflections overlap in time. The basic relationships among rise time, line delay, overshoot and undershoot are shown in a simplified diagram, Figure 3-18. The incident wave is a ramp of amplitude $B$ and rise duration $A$. The reflection coefficient at the open-ended line output is +1 and the source reflection coefficient is assumed to be -0.8 , i.e., $R_{0}=Z_{0} / 9$.

Figure $3-18 b$ shows the individual reflections treated separately. Rise time $A$ is assumed to be three times the line delay T . The time scale reference is the line output and the first increment of output voltage $V_{O}$ rises to $2 B$ in the time interval $A$. Simultaneously, a positive reflection (not shown) of amplitude $B$ is generated and travels to the source, whereupon it is multiplied by -0.8 and returns toward the end of the line. This negative-going ramp starts at time $2 T$ (twice the line delay) and doubles to -1.6 B at time $2 \mathrm{~T}+\mathrm{A}$. The negative-going increment also generates a reflection of amplitude -0.8 B which makes the round trip to the source and back, appearing at time 4 T as a positive ramp rising to +1.28 B at time $4 \mathrm{~T}+\mathrm{A}$. The process of reflection and rereflection continues, and each successive increment changes in polarity and has an amplitude of $80 \%$ of the preceding increment.


## Ringing (Continued)

In Figure 3-18c, the output increments are added algebraically by superposition. The starting point of each increment is shifted upward to a voltage value equal to the algebraic sum of the quiescent levels of all the preceding increments (i.e., $0,2 \mathrm{~B}, 0.4 \mathrm{~B}, 1.68 \mathrm{~B}$, etc.). For time intervals when two ramps occur simultaneously, the two linear functions add to produce a third ramp that prevails during the overlap time of the two increments.
It is apparent from the geometric relationships, that if the ramp time $A$ is less than twice the line delay, the first output increment has time to rise to the full 2 B amplitude and the second increment reduces the net output voltage to 0.4 B . Conversely, if the line delay is very short compared to the ramp time, the excursions about the final value $V_{G}$ are small.
Figure 3-18c shows that the peak of each excursion is reached when the earlier of the two constituent ramps reaches its maximum value, with the result that the first peak occurs at time A. This is because the earlier ramp has a greater slope (absolute value) than the one that follows.
Actual waveforms such as produced by ECL or TTL do not have a constant slope and do not start and stop as abruptly as the ramp used in the example of Figure 3-18. Predicting the time at which the peaks of overshoot and undershoot occur is not as simple as with ramp excitation. A more rigorous treatment is required, including an expression for the driving waveform which closely simulates its actual shape. In the general case, a peak occurs when the sum of the slopes of the individual signal increment is zero.

## Summary

The foregoing discussions are by no means an exhaustive treatment of transmission line characteristics. Rather, they
are intended to focus attention on the general methods used to determine the interactions between high-speed logic circuits and their interconnections. Considering an interconnection in terms of distributed rather than lumped inductance and capacitance leads to the line impedance concept, i.e., mismatch between this characteristic impedance and the terminations causes reflections and ringing.
Series termination provides a means of absorbing reflections when it is likely that discontinuities and/or line impedance changes will be encountered. A disadvantage is that the incident wave is only one-half the signal swing, which limits load placement to the end of the line. ECL input capacitance increases the rise time at the end of the line, thus increasing the effective delay. With parallel termination, i.e., at the end of the line, loads can be distributed along the line. ECL input capacitance modifies the line characteristics and should be taken into account when determining line delay.

## References

1. Metzger, G. and Vabre, J., Transmission Lines with Pulse Excitation, Academic Press, (1969).
2. Skilling, H., Electric Transmission Lines, McGraw-Hill, (1951).
3. Matick, R., Transmission Lines for Digital and Communication Networks, McGraw-Hill, (1969).
4. Millman, J. and Taub, H., Pulse Digital and Switching Waveforms, McGraw-Hill, (1965).
5. "Time Domain Reflectometry", Hewlett-Packard Journal, Vol. 15, No. 6, (February 1964).
6. Feller, A., Kaupp H., and Digiacoma, J., "Crosstalk and Reflections in High-Speed Digital Systems", Proceedings, Fall Joint Computer Conference, (1965).

# Chapter 4 System Considerations 

## Introduction

All of National's ECL input and output impedances are designed to accommodate various methods of driving and terminating interconnections. Controlled wiring impedance makes it possible to use simplified equivalent circuits to determine limiting conditions. Specific guidelines and recommendations are based on assumed worst-case combinations. Many of the recommendations may seem conservative, compared to typical observations, but the intent is to help the designer achieve a reliable system in a reasonable length of time with a minimum amount of redesign.

## PC Board Transmission Lines

Strictly speaking, transmission lines are not always required for F100K ECL but, when used, they provide the advantages of predictable interconnect delays as well as reflection and ringing control through impedance matching. Two common types of PC board transmission lines are microstrip and stripline, Figure 4-1. Stripline requires multilayer construction techniques; microstrip uses ordinary double-clad boards. Other board construction techniques are wire wrap, stitch weld and discrete wired.


TL/F/9901-1

Stripline, Figure 4-1b, is used where packing density is a high priority because increasing the interconnect layers provides short signal paths. Boards with as many as 22 layers have been used in ECL systems.
Microstrip offers easier fabrication and higher propagation velocity than stripline, but the routing for a complex system may require more design effort. In Figure 4-1a, the ground plane can be a part of the $V_{E E}$ distribution as long as adequate bypassing from $V_{E E}$ to $V_{C C}$ (ground) is provided. Also, signal routing is simplified and an extra voltage plane is obtained by bonding two microstrip structures back to back, Figure 4-1c.

## Microstrip

Equation 4-1 relates microstrip characteristic impedance to the dielectric constant and dimensions. ${ }^{1}$ Electric field fringing requires that the ground extend beyond each edge of the signal trace by a distance no less than the trace width.

$$
\begin{align*}
Z_{0} & =\left(\frac{60}{\sqrt{0.475 \epsilon_{\mathrm{r}}+0.67}}\right) \ln \left(\frac{4 \mathrm{~h}}{0.67(0.8 \mathrm{w}+\mathrm{t})}\right)  \tag{4-1}\\
& =\left(\frac{87}{\sqrt{\epsilon_{\mathrm{r}}+1.41}}\right) \ln \left(\frac{5.98 \mathrm{~h}}{0.8 \mathrm{w}+\mathrm{t}}\right)
\end{align*}
$$

where $\mathrm{h}=$ dielectric thickness, $\mathrm{w}=$ trace width, $\mathrm{t}=$ trace thickness, $\epsilon_{\mathrm{r}}=$ board material dielectric constant relative to air.


TL/F/9901-2
b. Stripline
c. Composite Microstrip


FIGURE 4-1. Transmission Lines on Circuit Boards

## PC Board Transmission Lines (Continued)

Equation 4-1 was developed from the impedance formula for a wire over ground plane transmission line, Equation 4-2.

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon_{\mathrm{r}}}}\right) \ln \left(\frac{4 \mathrm{~h}}{\mathrm{~d}}\right) \tag{4-2}
\end{equation*}
$$

where $\mathrm{d}=$ wire diameter, $\mathrm{h}=$ distance from ground to wire center.
Comparing Equation 4-1 and 4-2, the term $0.67(0.8 w+t)$ shows the equivalence between a round wire and a rectangular conductor. The term $0.475 \epsilon_{\mathrm{r}}+0.67$ is the effective dielectric constant for microstrip $\epsilon_{\mathrm{e}}$, considering that a microstrip line has a compound dielectric consisting of the board material and air. The effective dielectric constant is determined by measuring propagation delay per unit of line length and using the following relationship.

$$
\begin{equation*}
\delta=1.0167 \cdot \sqrt{\epsilon_{\mathrm{e}}} \mathrm{~ns} / \mathrm{ft} \tag{4-3}
\end{equation*}
$$

where $\delta=$ propagation delay, $\mathrm{ns} / \mathrm{ft}$.
Propagation delay is a property of the dielectric material rather than line width or spacing. The coefficient 1.0167 is the reciprocal of the velocity of light in free space. Propagation delay for microstrip lines on glass-filled G-10 epoxy boards is typically $1.77 \mathrm{~ns} / \mathrm{ft}$, yielding an effective dielectric constant of 3.03 .


TL/F/9901-4
FIGURE 4-2. Microstrip Impedance Versus Trace Width, G-10 Epoxy
Using $\epsilon_{\mathrm{r}}=5.0$ in Equation 4-1, Figure $4-2$ provides microstrip line impedance as a function of width for several G-10 epoxy board thicknesses. Figure $4-3$ shows the related $\mathrm{C}_{0}$ values, useful for determining capacitive loading effects on line characteristics, (Equation 3-15).
System designers should ascertain tolerances on board dimensions, dielectric constant and trace width etching in order to determine impedance variations. If conformal coating is used the effective dielectric constant of microstrip is increased, depending on the coating material and thickness.


TL/F/9901-5
FIGURE 4-3. Microstrip Distributed Capacitance Versus Impedance, G-10 Epoxy

## Stripline

Stripline conductors are totally embedded. As a result, the board material determines the dielectric constant. G-10 epoxy boards have a typical propagation delay of $2.26 \mathrm{~ns} / \mathrm{ft}$. Equation $4-4$ is used to calculate stripline impedances. ${ }^{1,2}$

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon}}\right) \ln \left(\frac{4 b}{0.67 \pi(0.8 w+t)}\right) \tag{4-4}
\end{equation*}
$$

where $\mathrm{b}=$ distance between ground planes, $\mathrm{w}=$ trace width, $\mathrm{t}=$ trace thickness, $\mathrm{w} /(\mathrm{b}-\mathrm{t})<0.35$ and $\mathrm{t} / \mathrm{b}<0.25$. Figure 4-4 shows stripline impedance as a function of trace width, using Equation 4-4 and various ground plane separations for G-10 glass-filled epoxy boards. Related values of $\mathrm{C}_{0}$ are plotted in Figure 4-5.


FIGURE 4-4. Stripline Impedance Versus Trace Width, G-10 Epoxy

PC Board Transmission Lines (Continued)


TL/F/9901-7
FIGURE 4-5. Stripline Distributed Capacitance Versus Impedance, G-10 Epoxy

## Wire Wrap

Wire-wrap boards are commercially available with five voltage planes, positions for several 24 -pin Dual-In-Line Packages (DIP), terminating resistors, and decoupling capacitors. The devices are mounted on socket pins and interconnected with twisted pair wiring. One wire at each end of the twisted pair is wrapped around a signal pin, the other around a ground pin. The \#30 insulated wire is uniformly twisted to provide a nominal $93 \Omega$ impedance line. Positions for Single-In-Line Package (SIP) terminating resistors are close to the inputs to provide good termination characteristics.

## Discrete Wired

Custom Multiwire* boards are available with integral power and ground planes. Wire is placed on a controlled thickness above the ground plane to obtain a nominal impedance line of $55 \Omega$. Then holes are drilled through the wire and board. Copper is deposited in the drilled holes by an additive-electrolysis process which bonds each wire to the wall of the holes. Devices are soldered on the board to make connection to the wires.
*Multiwire is a registered trademark of the Multiwire Corporation.

## Parallel Termination

Terminating a line at the receiving end with a resistance equal to the characteristic line impedance is called parallel termination, Figure 4-6a. F100K circuits do not have internal pull-down resistors on outputs, so the terminating resistor must be returned to a voltage more negative than $\mathrm{V}_{\mathrm{OL}}$ to establish the LOW-state output voltage from the emitter follower. A -2 V termination return supply is commonly used. This minimizes power consumption and correlates with standard test specifications for ECL circuits. A pair of resistors connected in series between ground ( $\mathrm{V}_{\mathrm{CC}}$ ) and the $\mathrm{V}_{\mathrm{EE}}$ supply can provide the Thevenin equivalent of a single resistor to -2 V if a separate termination supply is not available, Figure 4-6b. The average power dissipation in the Thevenin equivalent resistors is about 10 times the power dissipation in the single resistor returned to -2 V , as shown in Figures $5-10$ and 5-13. For either parallel termination method, decoupling capacitors are required between the supply and ground (Chapter 6).

## a. Parallel Termination



TL/F/9901-8
b. Thevenin Equivalent of $R_{T}$ and $V_{T T}$

c. Equivalent Circuit for Determining Approximate $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ Levels


TL/F/9901-10
d. F100K Output Characteristic with Terminating Resistor $\mathrm{R}_{\mathrm{T}}$ Returned to $\mathrm{V}_{\mathrm{Tr}}=-2.0 \mathrm{~V}$


TL/F/9901-11
FIGURE 4-6. Parallel Termination

## PC Board Transmission Lines (Continued)

F100K output transistors are designed to drive low-impedance loads and have a maximum output current rating of 50 mA . The circuits are specified and tested with a $50 \Omega$ load returned to -2 V . This gives nominal output levels of -0.955 V at 20.9 mA and -1.705 V at 5.9 mA . Output levels will be different with other load currents because of the transistor output resistance. This resistance is nonlinear with load current since it is due, in part, to the base-emitter voltage of the emitter follower, which is logarithmic with output current. With the standard $50 \Omega$ load, the effective source resistance is approximately $6 \Omega$ in the HIGH state and $8 \Omega$ in the LOW state.
The foregoing values of output voltage, output current, and output resistance are used to estimate quiescent output levels with different loads. An equivalent circuit is shown in Figure 4-6c. The ECL circuit is assumed to contain two internal voltage sources $\mathrm{E}_{\mathrm{OH}}$ and $\mathrm{E}_{\mathrm{OL}}$ with series resistances of $6 \Omega$ and $8 \Omega$ respectively. The values shown for $E_{O H}$ and $\mathrm{E}_{\mathrm{OL}}$ are -0.85 V and -1.67 V respectively.
The linearized portion of the F100K output characteristic can be represented by two equations:
For $V_{\text {OH: }}$ : $V_{\text {OUT }}=-850-6$ IOUT
For $V_{\text {OL }}: V_{\text {OUT }}=-1670-8 I_{\text {OUT }}$
where lout is in mA, VOUT is in mV .
If the range of IOUT is confined between 8 mA to 40 mA for $\mathrm{V}_{\mathrm{OH}}$, and 2 mA to 16 mA for $\mathrm{V}_{\mathrm{OL}}$, the output voltage can be estimated within $\pm 10 \mathrm{mV}$ (Figure 4-6d).
An ECL output can drive two or more lines in parallel, provided the maximum rated current is not exceeded. Another consideration is the effect of various loads on noise margins. For example, two parallel $75 \Omega$ terminations to -2 V (Figure 4-6d) give output levels of approximately -1.000 V and -1.716 V . Noise margins are thus 35 mV less in the HIGH state and 11 mV more in the LOW state, compared to $50 \Omega$ load conditions. Conversely, a single $75 \Omega$ load to -2 V causes noise margins 38 mV greater in the HIGH state and 11 mV less in the Low state, compared to a $50 \Omega$ load.
The magnitude of reflections from the terminated end of the line depends on how well the termination resistance $R_{T}$ matches the line impedance $\mathrm{Z}_{\mathrm{O}}$. The ratio of the reflected voltage to the incident voltage $V_{i}$ is the reflection coefficient $\rho$.

$$
\begin{equation*}
\frac{V_{r}}{V_{i}}=\rho=\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}} \tag{4-5}
\end{equation*}
$$

The initial signal swing at the termination is the sum of the incident and reflected voltages. The ratio of termination signal to incident signal is thus:

$$
\begin{equation*}
\frac{V_{T}}{V_{i}}=1+\rho=\frac{2 R_{T}}{R_{T}+Z_{0}} \tag{4-6}
\end{equation*}
$$

The degree of reflections which can be tolerated varies in different situations, but to allow for worst-case circuits, a good rule of thumb is to limit reflections to $15 \%$ to prevent excursions into the threshold region of the ECL inputs connected along the line. The range of permissible values of $R_{T}$ as a function of $Z_{0}$ and the reflection coefficient limitations can be determined by rearranging Equation 4-5.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{0} \frac{1+\rho}{1-\rho} \tag{4-7}
\end{equation*}
$$

Using $15 \%$ reflection limits as examples, the range of the $R_{T} / Z_{0}$ ratio is as follows.

$$
\begin{equation*}
\frac{1.15}{0.85}>\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{Z}_{0}}>\frac{0.85}{1.15} \quad 1.35>\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{Z}_{0}}>0.74 \tag{4-8}
\end{equation*}
$$

The permissible range of the $R_{T} / Z_{0}$ ratio determines the tolerance ranges for $R_{T}$ and $Z_{0}$. For example, using the foregoing ratio limits, $R_{T}$ tolerances of $\pm 10 \%$ allow $Z_{0}$ tolerance limits of $+22 \%$ and $-19 \%$; $R_{T}$ tolerances of $\pm 5 \%$ allow $Z_{0}$ tolerance limits of $+28 \%$ and $-23 \%$.
An additional requirement on the maximum value of $R_{T}$ is related to the value of quiescent $\mathrm{I}_{\mathrm{OH}}$ current needed to insure sufficient negative-going signal swing when the ECL driver switches from the HIGH state to the LOW state. The npn emitter-follower output of the ECL circuit cannot act as a voltage source driver for negative-going transitions. When the voltage at the base of the emitter follower starts going negative as a result of an internal state change, the output current of the emitter follower starts to decrease. The transmission line responds to the decrease in current by producing a negative-going change in voltage. The ratio of the voltage change to the current change is, of course, the characteristic impedance $\mathrm{Z}_{0}$. Since the maximum decrease in current that the line can experience is from $\mathrm{l}_{\mathrm{OH}}$ to zero, the maximum negative-going transition which can be produced is the product $\mathrm{I}_{\mathrm{OH}} \mathrm{Z}_{0}$.
If the $\mathrm{I}_{\mathrm{OH}} \mathrm{Z}_{0}$ product is greater than the normal negative-going signal swing, the emitter follower responds by limiting the current change, thereby controlling the signal swing. If, however, the $\mathrm{I}_{\mathrm{OH}} \mathrm{Z}_{0}$ product is too small, the emitter follower is momentarily turned off due to insufficient forward bias of its base-emitter junctions, causing a discontinuous nega-tive-going edge such as the one shown in Figure 4-14. In the output-LOW state the emitter follower is essentially nonconducting for $\mathrm{V}_{\mathrm{OL}}$ values more positive than about -1.55 V . Using this value as a criterion and expressing $\mathrm{I}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OH}}$ in terms of the equivalent circuit of Figure 4-6c, an upper limit on the value of $R_{T}$ can be developed.

$$
\begin{align*}
& \Delta V=I_{O H} Z_{0}>1.55-\left|V_{\mathrm{OH}}\right| \\
& \left(\frac{E_{\mathrm{OH}}-V_{T T}}{R_{0}+R_{T}}\right) Z_{0}>1.55-\left|\frac{V_{T T} R_{0}=E_{O H} R_{T}}{R_{0}+R_{T}}\right| \\
& R_{T}<\frac{\left(E_{O H}-V_{T T}\right) Z_{0}-\left(1.55-\left|V_{T T}\right|\right) R_{0}}{1.55-\left|E_{O H}\right|} \tag{4-9}
\end{align*}
$$

For a $V_{T T}$ of $-2 \mathrm{~V}, \mathrm{R}_{0}$ of $6 \Omega$ and $\mathrm{E}_{\mathrm{OH}}$ of -0.85 V , Equation 4-9 reduces to
$\mathrm{R}_{\mathrm{T}}<1.64 \mathrm{Z}_{0}+3.86 \Omega$
For $Z_{0}=50 \Omega$, the emitter follower cuts off during a nega-tive-going transition if $\mathrm{R}_{\mathrm{T}}$ exceeds $86 \Omega$. Changing the voltage level criteria to -1.60 V to insure continuous conduction in the emitter follower gives an upper limit of $77 \Omega$ for a $50 \Omega$ line. For a line terminated at the receiving end with a resistance to -2 V , a rough rule-of-thumb is that termination resistance should not exceed line impedance by more than $50 \%$. This insures a satisfactory negatve-going signal swing to ECL inputs connected along the line. The quiescent $\mathrm{V}_{\mathrm{OL}}$ level, after all reflections have damped out, is determined by $\mathrm{R}_{\mathrm{T}}$ and the ECL output characteristic.

## Input Impedance

The input impedance of ECL circuits is predominately capacitive. A single-function input has an effective value of about 2.5 pF for F100K flatpak, as determined by its effect on reflected and transmitted signals on transmission lines.

## Input Impedance (Continued)

In practical calculations, a value of 3 pF should be used. Approximately one third of this capacitance is attributed to the internal circuitry and two thirds to the flatpak pin and internal bonding.
For F100K flatpak circuits, multiple input lines may appear to have up to 4 pF to 5 pF but never more. For example, in the 100302, an input is connected internally to all five gates, but because of the philosophy of buffering these types of inputs in the F100K family this input appears as a unit load with a capacitance of approximately 2.5 pF . For applications such as a data bus, with two or more outputs connected to the same line, the capacitance of a passive-LOW output can be taken as 3 pF .
Capacitive loads connected along a transmission line increase the propagation delay of a signal along the line. The modified delay can be determined by treating the load capacitance as an increase in the intrinsic distributed capacitance of the line, discussed in Chapter 3. The intrinsic capacitance of any stubs which connect the inputs to the line should be included in the load capacitance. The intrinsic capacitance per unit length for G-10 epoxy boards is shown in Figure 4-3 and 4-5 for microstrip and stripline respectively. For other dielectric materials, the intrinsic capacitance $\mathrm{C}_{0}$ can be determined by dividing the intrinsic delay $\delta$ (Equation $4-3$ ) by the line impedance $Z_{0}$.
The length of a stub branching off the line to connect an input should be limited to insure that the signal continuing along the line past the stub has a continuous rise, as opposed to a rise (or fall) with several partial steps. The point where a stub branches off the line is a low impedance point. This creates a negative coefficient of reflection, which in turn reduces the amplitude of the incident wave as it continues beyond the branch point. If the stub length is short enough, however, the first reflection returning from the end of the stub adds to the attenuated incident wave while it is still rising. The sum of the attenuated incident wave and the first stub reflection provides a step-free signal, although its rise time will be longer than that of the original signal. Satisfactory signal transitions can be assured by restricting stub lengths according to the recommendations for unterminated lines (Figure 4-10). The same considerations apply when the termination resistance is not connected at the end of the line; a section of line continuing beyond the termination resistance should be treated as an unterminated line and its length restricted accordingly.

## Series Termination

Series termination requires a resistor between the driver and transmission line, Figure 4-7. The receiving end of the line has no termination resistance. The series resistor value should be selected so that when added to the driver source resistance, the total resistance equals the line impedance. The voltage divider action between the net series resistance and the line impedance causes an incident wave of half amplitude to start down the line. When the signal arrives at the unterminated end of the line, it doubles and is thus restored to a full amplitude. Any reflections returning to the source are absorbed without further reflection since the line and source impedance match. This feature, source absorption, makes series termination attractive for interconnection paths involving impedance discontinuities, such as occur in backplane wiring.
A disadvantage of series termination is that driven inputs must be near the end of the line to avoid receiving a 2-step
signal. The initial signal at the driver end is half amplitude, rising to full amplitude only after the reflection returns from the open end of the line. In Figure 4-7, one load is shown connected at point $D$, aways from the line end. This input receives a full amplitude signal with a continuous edge if the distance $I$ to the open end of the line is within recommended lengths for unterminated line (Figure 4-10).


FIGURE 4-7. Series Termination
The signal at the end has a slower rise time that the incident wave because of capacitive loading. The increase in rise time to the $50 \%$ point effectively increases the line propagation delay, since the $50 \%$ point of the signal swing is the input signal timing reference point. This added delay as a function of the product line impedance and load capacitance is discussed in Chapter 3.
Quiescent $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ levels are established by resistor $R_{E}$ (Figure 4-7), which also acts with $V_{E E}$ to provide the negative-going drive into $R_{S}$ and $Z_{0}$ when the driver output goes to the LOW state. To determine the appropriate $R_{E}$ value, the driver output can be treated as a simple mechanical switch which opens to initiate the negative-going swing. At this instant, $Z_{O}$ acts as a linear resistor returned to $\mathrm{V}_{\mathrm{OH}}$. Thus the components form a simple circuit of $R_{E}, R_{S}$ and $Z_{0}$ in a series, connected between $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{OH}}$. The initial current in this series circuit must be sufficient to introduce a 0.38 V transient into the line, which then doubles at the load end to give 0.75 V swing.

$$
\begin{equation*}
I_{R E}=\frac{V_{O H}-V_{E E}}{R_{E}+P_{S}+Z_{0}} \geq \frac{0.38}{Z_{0}} \tag{4-10}
\end{equation*}
$$

Any $l_{\mathrm{OH}}$ current flowing in the line before the switch opens helps to generate the negative swing. This current may be quite small, however, and should be ignored when calculating $R_{E}$.
Increasing the minimum signal swing into the line by $30 \%$ to 0.49 V insures sufficient pull-down current to handle reflection currents caused by impedance discontinuities and load capacitance. The appropriate $R_{E}$ value is determined from the following relationship.

$$
\begin{equation*}
\frac{V_{O H}-V_{E E}}{R_{E}+R_{S}+Z_{0}} \geq \frac{0.49}{Z_{0}} \tag{4-11}
\end{equation*}
$$

For the $R_{E}$ range normally used, quiescent $\mathrm{V}_{\mathrm{OH}}$ averages approximately 0.955 V and $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. The value of $\mathrm{R}_{\mathrm{S}}$ is equal to $Z_{0}$ minus $R_{0}$ ( $R_{0}$ averages $7 \Omega$ ). Inserting these values and rearranging Equation 4-11 gives the following.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{E}} \leq 5.23 \mathrm{Z}_{0}+7 \Omega \tag{4-12}
\end{equation*}
$$

Power dissipation in $R_{E}$ is listed in Figure 5-14. The power dissipation in $R_{E}$ is greater than in $R_{T}$ of a parallel termination to -2 V , but still less than the two resistors of the Thevenin equivalent parallel termination, see Figure 5.10 , 5-13 and 5-14.
The number of driven inputs on a series terminated line is limited by the voltage drop across $R_{S}$ in the quiescent HIGH state, caused by the finite input currents of the ECL loads. $I_{1 H}$ values are specified on data sheets for various types of

## Series Termination (Continued)

inputs, with a worst-case value of $265 \mu \mathrm{~A}$ for simple gate inputs. The voltage drop subtracts from the HIGH-state noise margin as outlined in Figure 4-8a.
However, there is more HIGH-state noise margin initially, because there is less $\mathrm{I}_{\mathrm{OH}}$ with the $\mathrm{R}_{\mathrm{E}}$ load than with the standard $50 \Omega$ load to -2 V . This makes $\mathrm{V}_{\mathrm{OH}}$ more positive; the increase ranges from 43 mV for a $50 \Omega$ line to 82 mV for a $100 \Omega$ line. Using this $\mathrm{V}_{\mathrm{OH}}$ increase as a limit on the voltage drop across $\mathrm{R}_{\mathrm{S}}$ assures that the HIGH-state noise margin is as good as in the parallel terminated case. Dividing the $\mathrm{V}_{\mathrm{OH}}$ increase by $\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{0}\left(=\mathrm{Z}_{0}\right)$ gives the allowed load input current ( 1 x in Figure 4-8a). This works out to 0.86 mA for a $50 \Omega$ line, 0.92 mA for a $75 \Omega$ line and 0.82 mA for a $100 \Omega$ line. Load input current greater than these values can be tolerated at some sacrifice in noise margin. If, for example, an additional 50 mV loss is feasible, the maximum values of current become $1.86 \mathrm{~mA}, 1.59 \mathrm{~mA}$ and 1.32 mA for $50 \Omega, 75 \Omega$ and $100 \Omega$ lines respectively.
An ECL output can drive more than one series terminated line, as suggested in Figure $4-8 b$, if the maximum rated output current of 50 mA is not exceeded. Also, driving two or more lines requires a lower $R_{E}$ value. This makes the quiescent $\mathrm{I}_{\mathrm{OH}}$ higher and consequently $\mathrm{V}_{\mathrm{OH}}$ lower, due to the voltage drop across $R_{0}$. This voltage drop decreases the HIGH-state noise margin, which may become the limiting factor (rather than the maximum rated current), depending on the particular application.

The appropriate $\mathrm{R}_{\mathrm{E}}$ value can be determined using Equation $4-13$ for $V_{E E}=-4.5 \mathrm{~V}$.

$$
\begin{equation*}
\frac{1}{R_{E}} \geq \frac{1}{6.23 Z_{1}-R_{S 1}}+\frac{1}{6.23 Z_{2}-R_{S 2}}+\frac{1}{6.23 Z_{3}-R_{S 3}} \tag{4-13}
\end{equation*}
$$

Circuits with multiple outputs (such as the 100313) provide an alternate means of driving several lines simultaneous (Figure 4-8c). Note, each output should be treated individually when assiging load distribution, line impedance, and $R_{E}$ value.

## Unterminated Lines

Lines can be used without series or parallel termination if the line delay is short compared to the signal rise time. Ringing occurs because the reflection coefficient at the open (receiving) end of the line is positive (nominally +1 ) while the reflection coefficient at the driving end is negative (approximately -0.8 ). These opposite polarity reflection coefficients cause any change in signal voltage to be reflected back and forth, with a polarity change each time the signal is reflected from the driver. Net voltage change on the line is thus a succession of increments with alternating polarity and decreasing magnitude. The algebraic sum of these increments if the observed ringing. The general relationships among rise time, line delay, overshoot and undershoot are discussed in Chapter 3, using simple waveforms for clarity. Excessive overshoot on the positive-going edge of the signal drives input transistors into saturation. Although this does not damage an ECL input, it does cause excessive recovery times and makes propagation delays unpredict-


TL/F/9901-13
a. Noise Margin Loss Due to Load Input Current

b. Driving Several Lines from one Output


TL/F/9901-15
c. Using Multiple Output Element for Load Sharing

FIGURE 4-8. Loading Considerations for Series Termination
able. Undershoot (following the overshoot) must also be limited to prevent signal excursions into the threshold region of the loads. Such excursions could cause exaggerated transition times at the driven circuit outputs, and could also cause multiple triggering of sequential circuits. Signal swing, exclusive of ringing, is slightly greater on unterminated lines than on parallel terminated lines; $\mathrm{I}_{\mathrm{OH}}$ is less and $\mathrm{I}_{\mathrm{OL}}$ is greater with the $\mathrm{R}_{\mathrm{E}}$ load, (Figure 4-9a) making $\mathrm{V}_{\mathrm{OH}}$ higher and $\mathrm{V}_{\mathrm{OL}}$ lower.
For worst case combinations of driver output and load input characteristics, a 35\% overshoot limit insures that system speed is not compromised either by saturating an input on overshoot or extending into the threshold region on the following undershoot.
For distributed loading, ringing is satisfactorily controlled if the 2 -way modified line delay does not exceed the $20 \%$ to $80 \%$ rise time of the driver output. This relationship can be expressed as follows, using the symbols from Chapter 3 and incorporating the effects of load capacitance on line delay.

$$
\mathrm{t}_{\mathrm{r}}=2 \mathrm{~T}^{\prime}=2 \ell \delta^{\prime}=2 \ell \delta \sqrt{1+\frac{\mathrm{C}_{\mathrm{L}}}{\ell \mathrm{C}_{0}}}
$$

Rearranging terms yields the quadratic equation:

$$
\begin{equation*}
\ell^{2} \max +\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{0}} \ell_{\max }+\frac{\mathrm{t}_{\mathrm{r}}^{2}}{4 \delta^{2}}=0 \tag{4-14}
\end{equation*}
$$

Unterminated Lines (Continued)


TL/F/9901-16
a. Unterminated Line

$H=10 \mathrm{~ns} / \mathrm{div}$
$V=0.3 \mathrm{~V} / \mathrm{div}$
TL/F/9901-17
b. Line Voltages Showing Stair-step Trailing Edges

c. Load Gate Output Showing Net Propagation Increase for Increasing

Values of $\mathrm{R}_{\mathrm{E}}: 330 \Omega, 510 \Omega, 1 \mathrm{k} \Omega$
FIGURE 4-9. Effect on $R_{E}$ Value on Trailing-Edge Propagation

The shorter the rise time, the shorter the permissible line length. For F100K ECL, the minimum rise time from $20 \%$ to $80 \%$ is specified as 0.4 ns . Using this rise time and 3 pF per fan-out load, calculated maximum line lengths for G-10 epoxy microstrip are listed in Figure 4-10. The length $(\ell)$ in the table is the distance from the terminating resistor to the input of the device(s). For other combinations of rise time, impedance, fan-out or line characteristics ( $\delta$ and $\mathrm{C}_{0}$ ), maximum lengths are also calculated using Equation 4-14.

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| 50 | $0.94^{*}$ | 0.68 | 0.52 | 0.41 |
| 62 | 0.87 | 0.59 | 0.44 | 0.34 |
| 75 | 0.79 | 0.52 | 0.37 | 0.29 |
| 90 | 0.72 | 0.45 | 0.32 | 0.25 |
| 100 | 0.68 | 0.41 | 0.29 | 0.22 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.148 \mathrm{~ns} /$ inch
FIGURE 4-10. F100K Maximum Worst-Case Line Lengths for Unterminated Microstrip, Distributed Loading
Resistor $R_{E}$ must provide the current for the negative-going signal at the driver output. Line input and output waveforms are noticeably affected if $R_{E}$ is too large, as shown in Figure $4-9 b$. The negative-going edge of the signal falls in stairstep fashion, with three distinct steps visible at point $A$. The waveform at point $B$ shows a step in the middle of the nega-tive-going swing. The effect of different $\mathrm{R}_{\mathrm{E}}$ values on the net propagation time through the line and the driven loads is evident in Figure 4-9c which shows the output signal of one driven gate in a multiple exposure photograph. The horizontal sweep (time axis) was held constant with respect to the input signal of the driver. The earliest of the three output signals occurs with an $R_{E}$ value of $330 \Omega$. Changing $R_{E}$ to $510 \Omega$ increases the net propagation delay by 0.3 ns , the horizontal offset between the first and second signals. Changing $R_{E}$ to $1 \mathrm{k} \Omega$ produces a much greater increase in net propagation delay, indicating that the negative-going signal at $B$ contains several steps. In practice, a satisfactory negative-going signal results when the $R_{E}$ value is chosen to give an initial negative-going step of 0.6 V at the driving end of the line. This gives an upper limit on the value of $R_{E}$, as shown in Equation 4-15.

$$
\text { initial step }=\Delta l \cdot Z_{0}=\frac{\left(V_{O H}-V_{E E}\right) Z_{0}}{R_{E}+Z_{0}} \geq 0.6
$$

$$
\begin{equation*}
R_{E}=\leq 5 Z_{0}\left(\text { at } V_{E E}=4.5 \mathrm{~V}\right) \tag{4-15}
\end{equation*}
$$

## Unterminated Lines (Continued)

An ECL output can drive two or more unterminated lines, provided each line length and loading combination is within the recommended constraints. The appropriate $R_{E}$ value is determined from Equation $4-15$, using the parallel impedance of the two or more lines for $\mathrm{Z}_{0}$.
An ECL output can simultaneously drive terminated and unterminated lines, although the negative-going edge of the signal shows two or more distinct steps when the stubs are long unless some extra pull-down current is provided. Figure 4-11a shows an ECL circuit driving a parallel terminated line, with provision for connecting two worst-case unterminated lines to the driver output. Waveforms at the termination resistor (point $A$ ) are shown in the multiple exposure

photograph of Figure 4-11b. The upper trace shows a normal signal without stubs connected to the driver. The middle trace shows the effect of connecting one stub to the driver. The step in the negative-going edge indicates that the quiescent $\mathrm{I}_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ is not sufficient to cause a full signal for both lines. The relationship between the quiescent $I_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ and the negative-going signal swing was discussed earlier in connection with parallel termination.
The bottom trace in Figure 4-11 shows the effect of connecting two stubs to the driver output. The steps in trailing edge are smaller and more pronounced. The deteriorated trailing edge of either the middle or lower waveform increas-

## b. Waveforms at Termination Point $\mathbf{A}$


c. Equivalent Circuit for Determining Initial Negative Voltage Step at the Driver Output


FIGURE 4-11. Driving Terminated and Unterminated Lines in Parallel

## Unterminated Lines (Continued)

es the switching time of the cirucit connected to point $A$. If this extra delay cannot be tolerated, additional pull-down current must be provided. One method uses a resistor to $\mathrm{V}_{\mathrm{EE}}$ as suggested in Figure 4-11a. The initial negative-going step at point A should be about 0.7 V to insure a good fall rate through the threshold region of the driven gate. The initial step at the driver output should also be 0.7 V . If the driver output is treated as a switch that opens to initiate the negative-going signal, the equivalent circuit of Figure 4-11c can be used to determine the initial voltage step at the driver output (point $X$ ). The value of the current source $\mathrm{I}_{\mathrm{RT}}$ is the quiescent $I_{O H}$ current through $R_{T}$. Using $Z$ ' to denote the parallel impedance of the transmission lines and $\Delta V$ for the desired voltage step at $X$, the appropriate value of $R_{E}$ can be determined from the following equation, using absolute values to avoid polarity confusion.

$$
R_{E}=\left(\left|V_{E E}\right|-\left|V_{O H}\right|-\Delta V \mid\right) \cdot\left(\frac{Z^{\prime}}{|\Delta V|-\left|I_{\mathrm{RT}}\right| Z^{\prime}}\right)
$$

For a sample calculation, assume that $R_{T}$ and the line impedances are each $100 \Omega, \mathrm{~V}_{\mathrm{OH}}$ is $-0.955 \mathrm{~V}, \Delta \mathrm{~V}$ is 0.750 V , $V_{E E}$ is -4.5 V and $\mathrm{V}_{T T}$ is -2 V . $\mathrm{I}_{R T}$ is thus 10.45 mA and the calculated value of $R_{E}$ is $232 \Omega$. In practice, this value is on the conservative side and can be increased to the next larger ( $10 \%$ ) standard value with no appreciable sacrifice in propagation through the gate at point $A$.
Again, the foregoing example is based on worst-case stub lengths (the longest permissible). With shorter stubs, the effects are less pronounced and a point is reached where extra pull-down current is not required because the reflection from the end of the stub arrives back at the driver while the original signal is still falling. Since the reflection is also negative going, it combines with and reinforces the falling signal at the driver, eliminating the steps. The net result is a smoothly falling signal but with increased fall time compared to the stubless condition.
The many combinations of line impedance and load make it practically impossible to define just with stub length begins to cause noticeable steps in the falling signal. A rough rule-of-thumb would be to limit the stub length to one-third of the values given in Figure 4-10.

## Data Bussing

Data bussing involves connecting two or more outputs and one or more inputs to the same signal line, (Figure 4-12). Any one of the several drivers can be enabled and can apply data to the line. Load inputs connected to the line thus receive data from the selected source. This method of steering data from place to place simplifies wiring and tends to minimize package count. Only one of the drivers can be enabled at a given time; all other driver outputs must be in the LOW or CUT-OFF state. Termination resistors matching the line impedance are connected to both ends of the line to prevent reflections. For calculating the modified delay of the line (Chapter 3) the capacitance of a LOW (unselected) driver output should be taken as 3 pF .
An output driving the line sees an impedance equal to half the line impedance. Similarly, the quiescent $\mathrm{I}_{\mathrm{OH}}$ current is higher than with a single termination. For line impedance less than $100 \Omega$, the $\mathrm{I}_{\mathrm{OH}}$ current is greater than the data sheet test value, with a consequent reduction of HIGH -state noise margin. This loss can be eliminated if necessary by using multiple output gates (100313) and paralleling two


TL/F/9901-22
FIGURE 4-12. Data Bus or Party Line
outputs for each driver. In the quiescent LOW state, termination current is shared among all the output transistors on the line. This sharing makes $\mathrm{V}_{\mathrm{OL}}$ more positive than if only one output were conducting all of the current. For example, a $100 \Omega$ line terminated at both ends represents a net $50 \Omega$ DC load, which is the same as the data sheet condition for $V_{O L}$. If one worst-case output were conducting all the current, the $\mathrm{V}_{\mathrm{OL}}$ would be -1.705 V . If another output with identical DC characteristics shares the load current equally, the $V_{O L}$ level shifts upward by about 25 mV . Connecting two additional outputs for a total of four with the same characteristics shifts $\mathrm{V}_{\mathrm{OL}}$ upward another 22 mV . Connecting four more identical outputs shifts $\mathrm{V}_{\mathrm{OL}}$ upward another 20 mV . Thus the $\mathrm{V}_{\mathrm{OL}}$ shift for eight outputs having identical worstcase $\mathrm{V}_{\mathrm{OL}}$ characteristics is approximately 67 mV . In practice, the probability of having eight circuits with worst-case $V_{\text {OL }}$ characteristics is quite low. The output with the highest $\mathrm{V}_{\mathrm{OL}}$ tends to conduct most of the current. This limits the upward shift to much less than the theoretical worst-case value. In addition, the LOW-state noise margin is specified greater than the HIGH-state margin to allow for $\mathrm{V}_{\mathrm{OL}}$ shift when outputs are paralleled. Exclusive use of devices with CUT-OFF DRIVERS on the bus (i.e., 100352) will eliminate low state current sharing and preserve the low state noise margins.
In some instances a single termination is satisfactory for a data bus, provided certain conditions are fulfilled. The single termination is connected in the middle of the line. This requires that for each half of the line, from the termination to the end, the line length and loading must comply with the same restrictions as unterminated lines to limit overshoot and undershoot to acceptable levels. The termination should be connected as near as possible to the electrical mid-point of the line, in terms of the modified line delay from the termination to either end. Another restriction is that the time between successive transitions, i.e., the nominal bit time, should not be less than 15 ns . This allows time for the major reflections to damp out and limits additive reflections to a minor level.

## Wired-OR

In general-purpose wired-OR logic connections, where two or more driver outputs are expected to be in the HIGH state simultaneously, it is important to minimize the line length between the participating driver outputs, and to place the termination as close as possible to the mid-point between the two most widely separated sources. This minimizes the negative-going disturbances which occur when one HIGH output turns off while other outputs remain HIGH. The driver output going off represents a sudden decrease in line current, which in turn generates a negative-going voltage on the line. A finite time is required for the other driver outputs (quiescently HIGH) to supply the extra current. The net re-

## Wired-OR (Continued)

sult is a " $V$ " shaped negative glitch whose amplitude and duration depend on three factors: current that the off-going output was conducting, the line impedance, and the line length between outputs. If the separation between outputs is kept within about $1 / 2$ inch, the transient will not propagate through the driven load circuits.
If a wired-OR connection cannot be short, it may be necessary to design the logic so that the signal on the line is not sampled for some time after the normal propagation delay (output going negative) of the element being switched. Normal propagation delay is defined as the case where the element being switched is the only one on the line in the HIGH state, resulting in the line going LOW when the element switches. In this case, the propagation delay is measured from the $50 \%$ point on the input signal of the off-going element to the $50 \%$ point of the signal at the input farthest away from the output being switched. The extra wiring time required in the case of a severe negative glitch is, in a worst-case physical arrangement, twice the line delay between the off-going output and the nearest quiescently HIGH output, plus 2 ns .
An idea of how the extra waiting time varies with physical arrangement can be obtained by qualitatively comparing the signal paths in Figure 4-13. With the outputs at A and B quiescently HIGH, the duration of the transient observed at $C$ is longer if $B$ is the off-going output than if $A$ is the off-going element. This is because the negative-going voltage generated at B must travel to A, whereupon the corrective signal is generated, which subsequently propagates back toward C . Thus the corrective signal lags behind the initial transient, as observed at C, by twice the line delay between $A$ and $B$. On the other hand, if the output at $A$ generates the negative-going transient, the corrective response starts
when the transient reaches point B . Consequently, the transient duration observed at $C$ is shorter by twice the line delay from A to B .


FIGURE 4-13. Relative to Wired-OR Propagation

## Backplane Interconnections

Several types of interconnections can be used to transmit a signal between logic boards. The factors to be considered when selecting a particular interconnection for a given application are cost, impedance discontinuities, predictability of propagation delay, noise environment, and bandwidth. Sin-gle-ended transmission over an ordinary wire is the most economical but has the least predictable impedance and propagation delay. At the opposite end of the scale, coaxial cable is the most costly but has the best electrical characteristics. Twisted pair and similar parallel wire interconnection cost and quality fall in between.
For single-wire transmission through the backplane, a ground plane or ground screen (Chapter 5) should be provided to establish a controlled impedance. A wire over a ground plane or screen has a typical impedance of $150 \Omega$ with variations on the order of $\pm 33 \%$, depending primarily on the distance from ground and the configuration of the ground. Figure 4 -14 illustrates the effects of impedance variations with a 15 -inch wire parallel terminated with $150 \Omega$ to $-2 V$. Figure $4-14 b$ shows source and receiver waveforms when the wire is in contact with a continuous ground plane.


TL/F/9901-24
a. Wire over Ground Plane or Screen


FIGURE 4-14. Parallel Terminated Backplane Wire

## Backplane Interconnections (Continued)

The negative-going signal at the source shows an initial step of only $80 \%$ of a full signal swing. This occurs because the quiescent HIGH -state current $\mathrm{I}_{\mathrm{OH}}$ (about 7 mA ) multiplied by the impedance of the wire (approximately $90 \Omega$ ) is less than the normal signal swing, and this condition allows the driver emitter follower to turn off. The negative-going signal at the receiving end is greater by $25 \%(1+\rho=1.25)$. The receiving end mismatch causes a negative-going reflection which returns to the source and establishes the $\mathrm{V}_{\mathrm{OL}}$ level. The positive-going signal at the source shows a normal signal swing, with the receiving end exhibiting approximately $25 \%$ overshoot.
Figure $4-14 \mathrm{C}$ shows waveforms for a similar arrangement, but with the wire about $1 / 8$ inch from a ground screen. The impedance of the wire is greater than $150 \Omega$ termination, but small variations in impedance along the wire cause intermediate reflections which tend to lengthen the rise and fall times of the signal. As a result, the received signal does not exhibit pronounced changes in slope as would be expected if a $200 \Omega$ constant impedance line were terminated with $150 \Omega$.
Series source resistance can also be used with single wire interconnections to absorb reflection. Figure 4-15a shows a 16 -inch wire with a ground screen driven through a source resistance of $100 \Omega$. The waveforms (Figure 4-15b) show that although reflections are generated, they are largely absorbed by the series resistor, and the signal received at the load exhibits only slight changes and overshoot. Series termination techniques can also be used when the signal into the wire comes from the PC board transmission line. Figure 4 -16a illustrates a 12 -inch wire over a ground screen, with 12 -inch microstrip lines at either end of the wire. The output is heavily loaded (fan-out of 8 ) and the combination of impedances produces a variety of reflections at the input to the first microstrip line, shown in the upper trace of Figure $4-16 b$. The lower trace shows the final output; a comparison between the two traces shows the effectiveness of damping in maintaining an acceptable signal at the output. Figure $4-16 c$ shows the signals at the input to the driving gate and at the output of the load gate, with a net through-put time of 8.5 ns . The circuit in Figure $4-16 a$ is a case of mismatched transmission lines, discussed in Chapter 3.

Signal propagation along a single wire tends to be fast because the dielectric medium is mostly air. However, impedance variations along a wire cause intermediate reflections which tend to increase rise and fall times, effectively increasing propagation delay. Effective propagation delays are in the range of 1.5 to 2.0 ns per foot of wire. Load capacitance at the receiving end also increases rise and fall time (Chapter 3), further increasing the effective propagation delay.


FIGURE 4-15. Series Terminated Backplane Wire

Backplane Interconnections (Continued)


TL/F/9901-29
a. Backplane Wire Interconnecting PC Board Lines


TL/F/9901-30
b. Signals into the First Microstrip and at the Loads


TL/F/9901-31
c. Input to Driving Gate and Output of Load Gate

FIGURE 4-16. Signal Path with Sequence of Microstrip, Wire, Microstrip
Better control of line impedance and faster propagation can be achieved with a twisted pair. A twisted pair of AWG 26 Teflon* insulated wires, two twists per inch, exhibits a propagation delay of $1.33 \mathrm{~ns} / \mathrm{ft}$ and an impedance of $115 \Omega$. Twisted pair lines are available in a variety of sizes, impedances and multiple-pair cables. Figure 4-17a illustrates sin*Teflon is a registered trademark of E.I. du Pont de Nemours Conpany.

a. Single-ended Twisted Pair


TL/F/9901-33
b. Differential Transmission Reception

c. Backplane Data Bus

FIGURE 4-17. Twisted Pair Connections
gle-ended driving and receiving. In addition to improved propagation velocity, the magnetic fields of the two conductors tend to cancel, minimizing noise coupled into adjacent wiring.
Differential line driving and receiving complementary gates as the driver and a 100314 line receiver is illustrated in Figure 4-17b. Differential operation provides high noise immunity, since common mode input voltages between -0.5 V and -2.0 V are rejected. The differential mode is recommended for communication between different parts of a system, because it effectively nullifies ground voltage differences. For long runs between cabinets or near high power transients, interconnections using shielded twisted pair are recommended.

Twisted pair lines can be used to implement party line type data transfer in the backplane, as indicated in Figure 4-17c. Only one driver should be enabled at a given time; the other outputs must be in the $\mathrm{V}_{\mathrm{OL}}$ state. The $\mathrm{V}_{\mathrm{BB}}$ reference voltage is available on pin 22 of the flatpak and pin 19 of the dual-in-line package for the 100314.
In the differential mode, a twisted pair can send high-frequency symmetrical signals, such as clock pulses, of 100 MHz over distances of 50 to 100 feet. For random data, however, bit rate capability is reduced by a factor of four or five due to line rise effects on time jitter. ${ }^{3}$

## Backplane Interconnections (Continued)

Coaxial cable offers the highest frequency capability. In addition, the outer conductor acts as a shield against noise, while the uniformity of characteristics simplifies the task of matching time delays between different parts of the system. In the single-ended mode, Figure 4-18a, 50 MHz signals can be transferred over distances of 100 feet. For 100 MHz operation, lengths should be 50 feet or less. In the differential mode, Figures 4-18b, $c$, the line receiver can recover smaller signals, allowing 100 MHz signals to be transferred up to 100 feet. The dual cable arrangement of Figure 4-18c provides maximum noise immunity. The delay of coaxial cables depends on the type of dielectric material, with typical delays of $1.52 \mathrm{~ns} / \mathrm{ft}$ for polyethylene and $1.36 \mathrm{~ns} / \mathrm{ft}$ for cellular polyethylene.


TL/F/9901-35
a. Single-Ended Coaxial Transmission


TL/F/9901-36
b. Differential Coaxial Transmission

TL/F/9901-37
c. Differential Transmission with Grounded Shields

FIGURE 4-18. Coaxial Cable Connections

$$
\mathrm{L} 1=\mathrm{L} 2
$$

## References

1. Kaupp, H. R., "Characteristics of Microstrip Transmission Lines," IEEE Transaction on Electronic Computers, Vol. EC-16 (April, 1967).
2. Harper, C. A., Handbook of Wiring, Cabling and Interconnections for Electronics. New York: McGraw-Hill, 1972.
3. True, K. M., "Transmission Line Interface Elements," The TTL Applications Handbook, Chapter 14 (August 1973), pp. 14-1-14-14.

## Introduction

High-speed circuits generally consume more power than similar low-speed circuits. At the system level, this means that the power supply distribution system must handle the larger current flow; the larger power dissipation places a greater demand on the cooling system. The direct current (DC) voltage drop along ground busses affects noise margins for all types of ECL circuits. Voltage drops along $V_{E E}$ busses have only a slight effect on F100K circuits, but they require consideration to obtain the performance available from the family.

## Logic Circuit Ground, VCC

The positive potential $V_{C C}$ and $V_{C C A}$ in ECL circuits is the reference voltage for output voltages and input thresholds and should therefore be the ground potential. When two circuits are connected in a single-ended mode, any difference in ground potentials decreases the noise margins, as discussed in Chapter 1. This effect for TTL/DTL circuits, as well as for ECL circuits, is illustrated in Figure 5-1. The following analysis assumes some average value of current flowing through the distributed resistance along the ground path between two circuits. For the indicated direction of $\mathrm{I}_{\mathrm{G}}$, the shift in ground potential decreases the LOW-state noise margin of the TTL/DTL circuits and the HIGH-state noise margin of the ECL circuits. If $\mathrm{I}_{\mathrm{G}}$ is flowing in the opposite direction, it increases these noise margins, but decreases the noise margins when the drivers are in the opposite state. For tabulation of ground currents in ECL, the designs must include termination currents as well as $I_{\text {EE }}$ operating currents. ECL logic boards which use microstrip or stripline techniques generally have large areas of ground metal. This causes the ground resistance to be quite low and thus minimizes noise margin loss between pairs of circuits on the same board.


TTL/DTL
$V^{\prime} \mathrm{OL}=V_{\mathrm{OL}}=+\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}$ ECL


FIGURE 5-1. Effect of Ground Resistance on Noise Margins

In practice, two communicating circuits might be located on widely separated PC cards with other PC cards in between. The net resistance then includes the incremental resistance of the ground distribution bus from card to card, while the ground current is successively increased by the contribution from each card. Figure 5-2 illustrates a distribution bus for a row of cards with incremental resistances along the bus.


TL/F/9902-2
$r=$ Incremental Bus Resistance between Positions
$i=$ Average Ground Current per Card
FIGURE 5-2. Ground Shift Along a Row of PC Cards
The ground shift can be estimated by first determining an average value of current per card based on the number of packages, the mix of SSI and MSI, and the number and types of terminations. With $n$ cards in the row, an average ground current (i) per card, and an incremental bus resistance ( $r$ ) between card positions, the bus voltage drops between the various positions can be determined as follows:
between positions 1 and 2: $\mathrm{v}_{1-2}=(n-1)$ ir
between positions 1 and $3: v_{1-3}=(n-1)$ ir +
$(n-2)$ ir
between positions 1 and 4: $\mathrm{v}_{1-4}=(\mathrm{n}-1)$ ir +
$(n-2)$ ir +
$(n-3)$ ir
between 1 and n :

$$
\begin{aligned}
v_{1-n}= & \operatorname{ir}\{(n-1)+ \\
& (n-2)+(n-3) \\
& +\ldots+[n-(n-1)]\} \\
& =\operatorname{ir}[1+2+3 \\
& +\ldots+(n-1)] \\
v_{1-n}= & \operatorname{ir} \sum_{1}^{n-1} n
\end{aligned}
$$

For a row of 15 cards, for example, the total ground shift between positions 1 and 15 is expressed as in Equation 5-1.

$$
\begin{equation*}
v_{1-15}=\operatorname{ir} \sum_{1}^{14} n=\operatorname{ir}(1+2+3+\ldots+13+14) \tag{5-1}
\end{equation*}
$$

$$
=105 \mathrm{ir}
$$

## Logic Circuit Ground, VCC (Continued)

The ground shift between any two card positions j and $k$ can be determined as follows for the general case.

$$
\begin{align*}
v_{i-k}= & (n-j) \text { ir }+[n-(j+1)] \text { ir }+ \\
& {[n-(j+2)] \text { ir } } \\
& +\ldots+\{n-[j+(k-j-1)]\} \text { ir } \\
= & (k-j) n \operatorname{nir}-\operatorname{ir}\{j+(j+1)+(j+2)  \tag{5-2}\\
& +\ldots+[j+(k-j-1)]\}
\end{align*}
$$

$$
v_{j-k}=(k-j) n i r-i r \sum_{j}^{k-1} n=\operatorname{ir}\left[(k-j) n-\sum_{j}^{k-1} n\right]
$$

In a row of 15 cards, the ground shift between positions four and nine, for example, is determined as follows.

$$
\begin{align*}
\mathrm{v}_{\mathrm{j}-\mathrm{k}} & =\operatorname{ir}[(9-4) 15-(4+5+6+7+8)]  \tag{5-3}\\
& =\operatorname{ir}(75-30)=45 \mathrm{ir}
\end{align*}
$$

The ground shift between the same number of positions further down the row is less because of the decreasing current along the row. Consider the ground shift between card positions 10 and 15.

$$
\begin{align*}
v_{10-15}= & \operatorname{ir}[(15-10) 15- \\
& (10+11+12+13+14)]  \tag{5-4}\\
= & \operatorname{ir}(75-60)=15 \mathrm{ir}
\end{align*}
$$

These examples illustrate several principles the designer should consider regarding the ground distribution bus and assignment of card positions. The bus resistance should be kept as low as possible by making the cross-sectional areas as large as practical. Logic cards which represent the heaviest current drain should be located nearest the end where ground comes into the row of cards. Cards with single-ended logic wiring between them should be assigned to positions as close together as possible. Conversely, if the ground shift between two card positions represents an unacceptable loss of noise margin, then the differential transmission and reception method i.e., twisted pair, should be used for logic wiring between them, thereby eliminating ground shift as a noise margin factor.

## Conductor Resistances

Conductors with large cross-sectional areas are required to maintain low voltage drops along power busses. For convenience, Figure $5-3$ lists the resistance per foot and the cross-sectional area for more common sizes of annealed copper wire. Other characteristics and a complete list of sizes can be found in standard wire tables. A useful rule-ofthumb regarding resistances and, hence, areas is: as gauge numbers increase, resistance doubles with every third gauge number; e.g., the resistance per foot of \#10 wire is $1 \mathrm{~m} \Omega$, for \#13 wire it is $2 \mathrm{~m} \Omega$. Similarly, the resistance per foot of \#0 wire is $0.078 \mathrm{~m} \Omega$, which is half that of \#2 wire. For calculations involving conductors having rectangular cross sections, it is often convenient to work with sheet resistance, particularly for power distribution on PC cards. Copper resistivity is usually given in ohm-centimeters, indicating the resistance between opposing faces of a 1 cm cube. The sheet resistance of a conductor is obtained by dividing the resistivity by the conductor thickness. These relationships follow.

| AWG <br> B \& S <br> Gauge | Resistance <br> m $\Omega$ Per Foot | Cross-Sectional <br> Area <br> Square Inches |
| :---: | :---: | :---: |
| \#2 | 0.156 | $5.213 \times 10^{-2}$ |
| \#6 | 0.395 | $2.062 \times 10^{-2}$ |
| $\# 10$ | 0.999 | $8.155 \times 10^{-3}$ |
| $\# 12$ | 1.588 | $5.129 \times 10^{-3}$ |
| $\# 18$ | 6.385 | $1.276 \times 10^{-3}$ |
| $\# 22$ | 16.14 | $5.046 \times 10^{-4}$ |
| $\# 26$ | 40.81 | $1.996 \times 10^{-4}$ |
| $\# 30$ | 103.2 | $7.894 \times 10^{-5}$ |

FIGURE 5-3. Resistance and Cross-Sectional Area of Several Sizes of Annealed Copper Wire
Copper resistivity $=\rho=1.724 \times 10^{-6} \Omega \mathrm{~cm} @ 20^{\circ} \mathrm{C}$
Resistance of a conductor $=\rho \frac{1}{\mathrm{~A}}=\rho \frac{\mathrm{l}}{\mathrm{tw}}$
where: $I=$ length $\quad t=$ thickness $\quad w=$ width
Sheet resistance $\rho_{S}=\frac{\rho}{t} \Omega$ per $\frac{1}{w}$
The length/width ratio ( $1 / w$ ) is dimensionless; therefore, the resistance of a length of conductor of uniform thickness can be calculated by first determining the number of "squares," then multiplying by the sheet resistance. For example, a conductor one-eighth inch wide and three inches long has 24 squares; its resistance is 24 times the sheet resistance. Since many thickness dimensions are given in inches, it is convenient to express the resistivity in ohm-inch, as follows. $\rho(\Omega \mathrm{in})=.\rho(\Omega \mathrm{cm}) \div 2.54=6.788 \times 10^{-7} \Omega$ in.
The use of sheet resistance and the "squares" concept is illustrated by calculating the resistance of the conductor shown in Figure 5-4. Assume the conductor is a 1 oz . copper cladding with a 0.0012 inch minimum thickness on a PC card.


TL/F/9902-3

## FIGURE 5-4. Conductor of Uniform Thickness

 but Non-Uniform Cross Section$$
\begin{aligned}
\text { Sheet resistance } & =\rho_{\mathrm{S}}=\frac{\rho}{\mathrm{t}} \\
& =5.657 \times 10^{-4} \Omega \text { per square }
\end{aligned}
$$

The number of squares $S$ for the rectangular sections are as follows.
$\mathrm{S} 1=\frac{\mathrm{l}_{1}}{\mathrm{w}_{1}}=8 \quad \mathrm{~S}_{3}=\frac{\mathrm{l}_{3}}{\mathrm{w}_{2}}=3$
The middle average segment of the conductor has a trapeziodal shape. The average of $w_{1}$ and $w_{2}$ can be used as the effective width, within $1 \%$ accuracy, if the $w_{2} / w_{1}$ ratio is 1.5 or less. Otherwise, a more exact result is obtained as follows.
$\mathrm{S}_{2}=\frac{\mathrm{l}_{2}}{\mathrm{w}_{2}-\mathrm{w}_{1}} \ln \left(\frac{w_{2}}{w_{1}}\right)=4 \ln 2=2.77$ squares
Total $R=R_{1}+R_{2}+R_{3}=\rho_{s}\left(S_{1}+S_{2}+S_{3}\right)$

$$
=7.51 \mathrm{~m} \Omega
$$

## Conductor Resistances (Continued)

As another example, assume that a 1 oz . trace must carry a 200 mA current six inches with a voltage drop less than 10 mV .
$R_{\max }=\frac{V_{\max }}{1}=\frac{0.01}{0.2}=0.05 \Omega$
$0.05=\rho_{\mathrm{s}} \frac{\mathrm{l}}{\mathrm{w}}$
$\frac{\mathrm{w}}{\mathrm{l}}=20 \rho_{\mathrm{s}}$
$\mathrm{w}=120 \rho_{\mathrm{S}}=(120) 5.657 \times 10^{-4}=67.9 \times 10^{-3}$
$\therefore$ minimum trace width, $\mathrm{w}=68 \mathrm{mils}$
At a higher current level, consider the voltage drop in a conductor 20 mils thick, 1.25 inches wide and 3 feet long carrying a 50A current.
$\rho_{\mathrm{s}}=\frac{6.788 \times 10^{-7}}{2 \times 10^{-2}}=3.364 \times 10^{-5} \Omega$ per square

$$
\begin{align*}
V & =I R-(50)\left(3.364 \times 10^{-5}\right) \frac{36}{1.25}  \tag{5-7}\\
& =0.0484=48.4 \mathrm{mV}
\end{align*}
$$

Sheet resistances for various copper thicknesses are listed in Figure 5-5. Standard thicknesses and tolerances for copper cladding are tabulated in Figure 5-6 and resistance per foot as a function of width is shown in Figure 5-7.

| Weight <br> or <br> Thickness | Sheet <br> Resistance <br> $\Omega$ per <br> Square | Thickness | Sheet <br> Resistance <br> $\Omega$ per Square |
| :---: | :---: | :---: | :---: |
| 2 oz. | $2.715 \times 10^{-4}$ | 0.02 in. | $3.364 \times 10^{-5}$ |
| 3 oz. | $1.886 \times 10^{-4}$ | 0.05 in. | $1.358 \times 10^{-5}$ |
| 5 oz. | $1.077 \times 10^{-4}$ | $1 / 16 \mathrm{in}$. | $1.086 \times 10^{-5}$ |
| 0.01 in. | $6.788 \times 10^{-5}$ | $1 / 4 \mathrm{in}$. | $2.715 \times 10^{-6}$ |

FIGURE 5-5. Sheet Resistance for Various Thicknesses of Copper

| Nominal Thickness |  | Nominal <br> Weight | Tolerances <br> By |  |
| :---: | :---: | :---: | :---: | :---: |
| in. | $\mathbf{m m}$ | oz/ft ${ }^{2}$ | Weight, \% | in. |
| 0.0007 | 0.0178 | $1 / 2$ | +10 | +0.0002 |
| 0.0014 | 0.0355 | 1 | +10 | +0.0004 |
|  |  |  |  | -0.0002 |
| 0.0028 | 0.0715 | 2 | +10 | +0.0007 |
|  |  |  |  | -0.0003 |
| 0.0042 | 0.1065 | 3 | +10 | +0.0006 |
| 0.0056 | 0.1432 | 4 | +10 | +0.0006 |
| 0.0070 | 0.1780 | 5 | +10 | +0.0007 |
| 0.0084 | 0.2130 | 6 | +10 | +0.0008 |
| 0.0098 | 0.2460 | 7 | +10 | +0.001 |
| 0.014 | 0.3530 | 10 | +10 | +0.0014 |
| 0.0196 | 0.4920 | 14 | +10 | +0.002 |

FIGURE 5-6. Thickness and Tolerances for Copper Cladding


TL/F/9902-4
FIGURE 5-7. Conductor Resistance vs Thickness and Width

## Temperature Coefficient

The resistances in Figures 5-3, 5-5, and 5-7, as well as those used in the sample calculations, are $20^{\circ} \mathrm{C}$ values. Since copper resistivity has a temperature coefficient of approximately $0.4 \% /{ }^{\circ} \mathrm{C}$, the resistance at a temperature ( T ) can be determined as follows.
$R_{T}=R_{20^{\circ} \mathrm{C}}\left[1+0.004\left(\mathrm{~T}+20^{\circ} \mathrm{C}\right)\right]$
At $55^{\circ} \mathrm{C}$ :
$R=R_{20^{\circ} \mathrm{C}}\left[1+0.004\left(55^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right]=1.14 \mathrm{R}_{20^{\circ} \mathrm{C}}$
When specifying power bus dimensions for PC cards containing many IC packages, designers should bear in mind that excessive current densities can cause the copper temperature to rise appreciably. Figure 5-8 illustrates the ohmic heating effect of various current densities. ${ }^{1}$


TL/F/9902-5
FIGURE 5-8. Temperature Rise with Current Density in PC Board Traces

## Distribution Impedance

Power busses should have low AC impedance, as well as low DC resistance, to prevent propagation of extraneous disturbances along the distribution system. As far as current or voltage changes are concerned, power and ground busses appear as transmission lines; thus their impedances can be affected by shape, spacing and dielectric. The effect of geometry on impedance is illustrated in the two arrangements of Figure 5-9. The same cross-sectional area of copper is used, but the two round wires have an impedance of about $75 \Omega$ while the flat conductors have an impedance determined as follows.
$Z_{0}=\frac{377 d}{\sqrt{\epsilon} h}$ for $\frac{d}{h}<0.1$
With a Mylar ${ }^{\circledR *}$ or Teflon ${ }^{\text {®* }}$ dielectric $(\epsilon=2.3)$ two mils thick, impedance of the flat conductor pair is only $0.5 \Omega$. Power line impedance can be reduced by periodically connecting RF-type capacitors across the line.


FIGURE 5-9. Effect of Geometry on Power Bus Impedance
*Mylar and Teflon are registered trademarks of E.I. du Pont de Nemours Company.

## Ground on PC Cards

It is essential to assign one layer of copper cladding almost exclusively to ground. This provides low-impedance, non-interfering return paths for the current changes which travel along signal traces when the IC outputs change state. These currents flow from the $\mathrm{V}_{\text {CCA }}$ pins of the IC packages, through the output transistors, then into the loads and the stray capacitances. These stray capacitances exist from an output to $V_{E E}$, output to ground, and to other signal lines. Thus, displacement currents through stray capacitances flow in many paths, but must ultimately return through ground to the output transistor where they originated. To reduce the length and impedance of the return path, the ground metal should cover as large an area as possible and one decoupling capacitor should be provided for every one to two IC packages. Additional capacitors may be needed for multiple output devices. These capacitors should be ceramic, monolithic or other RF types in the $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ range.
The load current returning to an IC package through ground metal is predictable, both in magnitude and in the return path. Since the magnetic and capacitive coupling between a signal trace and the underlying ground provides the transmission line characteristic, it follows that the load current flowing through the signal trace is accompanied by a ground return current equal in magnitude but opposite in direction. For example, in a $50 \Omega$ terminator $\mathrm{IOL}_{\mathrm{OL}}$ is $5.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}$ is 20.9 mA . Then signal change will cause about 15 mA current change and, as this current change propagates along the signal trace, a current of -15 mA advances along the
ground directly underneath the signal trace. Therefore, if there is an interruption in the ground, the return current is forced to go around it. The 15 mA current change can be reduced by terminating the complementary output of the signal. Then a signal change will direct the current from true output to the complement output reducing the $\Delta$ currents in the ground plane. When it is necessary to interrupt the ground plane, the interruptions should be kept as short as possible; every effort should be made to locate them away from overlying signal lines. When the ground plane is interrupted for short signal lines between packages, these lines should be at right angles to signal lines on the other side to minimize coupling. $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TT}}$ distribution lines can also act as the return side of transmission lines, as long as decoupling capacitors to ground are placed in the immediate areas where the signal return current must continue through ground.
Several connections along the edge of a PC card should be assigned to ground to accommodate backplane signal ground. These should be spaced at one-half to one inch intervals to minimize the average path length for signal return currents and to simulate a distributed connection to the backplane signal ground.
Not enough emphasis can be placed on the requirement for a good ground. All input signals are referenced to internal $V_{B B}$ and the $V_{B B}$ is referenced to $V_{C C}$ (ground). Any variation from one side of the board to the other affects the noise margins. To help eliminate some of the variations a separate $\mathrm{V}_{\mathrm{CCA}}$ is provided on F100K ECL circuits to power the output drivers and leave the $\mathrm{V}_{\mathrm{CC}}$ going to internal circuitry unaffected.

## Backplane Construction

In order to take complete advantage of the speeds inherent in F100K ECL it is desirable to construct the backplane as a multilayer printed circuit board. Generally, two internal layers are devoted to ground and $\mathrm{V}_{\mathrm{EE}}$ and the signals occupy the outside layers. Where power densities are very high, it may be necessary to supplement the power layers with external busses (see Backplane Interconnections, Chapter 4 ).
If it is necessary to use wires to augment the interconnection provided by the traces, less critical signals should use the wires. The wires will exhibit an impedance which can be calculated with the wire-over-ground formula
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{d}$
where $d$ is diameter, $h$ is distance to ground, and $\epsilon$ is dielectric constant.
Bear in mind that if the ground plane is buried inside the board, then both h and $\epsilon$ are made up of multiple components.

## Termination Supply, $\mathrm{V}_{\mathrm{TT}}$

A separate return voltage for the termination resistors offers a way to minimize power dissipation in systems extensively using parallel termination techniques. $A-2 V V_{T T}$ value represents an optimum speed/power trade-off, allowing sufficient termination current to discharge load capacitances while minimizing the average power consumption. Figure $5-10$ shows the average values of current, IC power dissipation and resistor power dissipation for various values of the termination resistor $R_{T}$ returned to $-2 V$. Average values are determined by calculating the output HIGH and output LOW values, then taking the average. These $50 \%$ duty cy-

## Termination Supply, $\mathrm{V}_{\mathrm{TT}}$ (Continued)

cle values are useful in determining the current drain on the -2 V supply and the contribution to dissipation on the logic boards. Peak values of termination current are approximately $60 \%$ greater than the average values listed.
$D C$ regulation of the -2 V supply is not critical; a variation of $\pm 5 \%$ causes a change in output levels of $\pm 12 \mathrm{mV}$ for $50 \Omega$ terminations or $\pm 7 \mathrm{mV}$ for $100 \Omega$ terminations.
The high frequency characteristics of the $\mathrm{V}_{T T}$ distribution are extremely important. Ideally, a solid voltage plane should be devoted to $V_{T T}$. If this is not feasible, the $V_{T T}$ distribution should form a grid using orthogonal traces. In any case, decoupling capacitors to ground should be used to reduce the high frequency impedance.

$V_{T T}=-2.0 \mathrm{~V}$
TL/F/9902-7

| $\mathbf{R}_{\mathbf{T}}$ | $\mathbf{l}_{\text {avg }}$ | $\mathbf{P D}_{\text {(avg) }} \mathbf{m W}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | IC Output | Resistor |
| 50 | 13.6 | 17.9 | 9.3 |
| 62 | 11.0 | 14.6 | 7.9 |
| 75 | 9.1 | 12.2 | 6.8 |
| 90 | 7.6 | 10.3 | 5.8 |
| 100 | 6.8 | 9.2 | 5.3 |
| 150 | 4.5 | 6.2 | 3.7 |

FIGURE 5-10. Average Current and Power Dissipation for Parallel Termination to -2V

If the terminators used are in Single In-line Packages (SIP) or Dual-In-line Packages (DIP) as opposed to discrete resistors, particular attention must be given to decoupling in order to maintain a solid $\mathrm{V}_{\mathrm{TT}}$ voltage inside the package. This is necessary to avoid crosstalk due to mutual inductance to $V_{T T}$. SIPs have been developed which have multiple $V_{T T}$ connections and on-board decoupling capacitors.

## $V_{\text {EE }}$ Supply

The value of $V_{E E}$ is not critical for F 100 K since all circuits in the family operate over the range of -4.2 V to -5.7 V . Decoupling capacitors to ground should be used on each card, as previously discussed in connection with the ground on PC cards. In addition, each card should used $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ decoupling capacitors near the points where $\mathrm{V}_{\mathrm{EE}}$ enters the card.

The current drain for the $V_{E E}$ supply for each circuit type can be determined from the data sheet specifications. For $V_{E E}$ values other than -4.5 V , the current drain varies as shown in Figure 5-11. This graph is made from data from the 100301.


TL/F/9902-8

## FIGURE 5-11. Supply Current vs Supply Voltage for 100301

Series dividers used to obtain Thevenin equivalent parallel terminations increase the current load on the $V_{E E}$ supply, as do the pull-down resistors to $V_{E E}$ used with series termination. Average $\mathrm{V}_{\mathrm{EE}}$ current and resistor dissipation for Thevenin equivalent terminations are listed in Figure 5-13 for several representative values of equivalent resistance. The average values apply for $50 \%$ duty cycle. Peak current values are approximately $11 \%$ greater. Dissipation in the IC output transistor is the same as in Figure 5-10. Average dissipation and $\mathrm{I}_{\mathrm{EE}}$ current for several values of pull-down resistance to $V_{E E}$ are listed in Figure 5-14. The $R_{E}$ values are appropriate for series termination of transmission lines with impedances listed in the $Z_{0}$ column, determined from Equation 4-12. Peak current values are approximately $12 \%$ greater than average values.
Figures 5-10, 13 and 14 show that the Thevenin equivalent parallel termination method leads to ten times as much dissipation in the resistors as in the single resistor returned to $-2 V$. Similarly, the dissipation in $R_{E}$ for series termination is three times the dissipation in the parallel termination resistor to -2 V .


FIGURE 5-13. Series Divider for Thevenin Equivalent Terminations


TL/F/9902-11

| $\mathbf{Z}_{\mathbf{0}}$ | $\mathbf{R}_{\mathbf{E}}$ | $\mathbf{I}_{\mathbf{E E} \text { (avg) }}$ | $\mathbf{P}_{\mathrm{D} \text { (avg) } \mathbf{m W}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | IC Output | $\mathbf{R}_{\mathbf{E}}$ |
| 50 | 267 | 9.8 | 12.9 | 25.8 |
| 62 | 332 | 7.9 | 10.4 | 20.6 |
| 75 | 402 | 6.5 | 8.6 | 16.8 |
| 90 | 475 | 5.4 | 7.1 | 13.9 |
| 100 | 536 | 4.9 | 6.5 | 12.7 |
| 120 | 634 | 4.1 | 5.4 | 10.6 |
| 150 | 787 | 3.2 | 4.2 | 8.1 |

FIGURE 5-14. Average Current and Power Dissipation Using Pull-Down Resistor to $\mathbf{V E E}^{\text {E }}$

## Reference

1. Harper, C.A., Editor, Handbook of Wiring, Cabling and Interconnecting for Electronics, McGraw-Hill, 1972.

## Introduction

The purpose of this chapter is to assist personnel involved with incoming inspection and qualification testing, by discussing the various methods and techniques used in testing ECL devices.
Testing includes verifying functionality, checking DC parametric limits and measuring AC performance. These tasks are particularly difficult for ECL devices in light of the broad range of products: RAMs, PROMs, gate arrays, and logic circuits. Correlation between supplier and user is extremely important. Recognizing the differences between high-volume instantaneous testing, as performed by the supplier, and the user's concern for long term performance in a given operating environment, National guarantees the data sheet limits as specified, although testing may be performed by alternate methods.

## Tester Selection

Although many makes and types of automatic test systems are available and in use today, not all are capable of testing ECL RAMs, PROMs, logic and gate arrays.
Logic and gate array testers require DC Accuracy, subnanosecond AC test capability, and the ability to change software for each device. Software capability and the number of test pins available are major considerations in choosing a gate array tester. Functional, DC and threshold tests are successfully performed on automatic test equipment, but subnanosecond propagation delays are difficult to measure accurately.
The use of dedicated testers to perform high-volume memory testing is very common. Testers containing hardware addressing capability are usually the most efficient. Although basic DC testing is similar for any device type, RAM and PROM functional testing usually require special addressing capabilities to test for pattern sensitivity. The pattern generators and output comparators must have minimum skew to obtain maximum tester accuracy. Functional and AC tests are performed simultaneously; then, DC and threshold tests are performed.
The following considerations must be taken into account when selecting a tester.

## Noise

Since the voltage swing on ECL input and output levels is only about 800 mV , it is very important that the power supplies and voltage drivers be extremely clean and free of spikes, hum, or any other type of noise.

## DC Resolution

The threshold measurements $\left(\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}), \mathrm{V}_{\mathrm{IL}}\left(\mathrm{Max}^{\prime}\right)\right.$ ) require that input voltage be extremely accurate and repeatable,
i.e., if the $\mathrm{V}_{\mathrm{IL}}$ (Max) is specified as -1.475 V , a voltage source of $-1.475 \pm 5 \mathrm{mV}$ is not adequate to accurately test the part. Ideally, the driver and the output comparators should have an accuracy of $\pm 1 \mathrm{mV}$.

## Current Capability

Since ECL is noted for high current requirements, power supplies for $V_{E E}$ should be capable of supplying current with a $25 \%$ reserve over the highest powered parts. This reserve should be included because power supplies tend to get noisy when approaching the current clamp. Some ECL LSI parts dissipate over 4.5 W ; therefore, with a $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V , the power supply must provide well over 1 A .

## Edge Rates

When testing edge-triggered sequential logic parts such as flip-flops and shift registers, it is important that the rise and fall times of the clock pulses be fast, clean and free from overshoot. If the clock edges are not adequate, the deficiency can be overcome using a Schmitt trigger as shown in Figure 6-1.


FIGURE 6-1. Typical Schmitt Trigger Circuit
The $68 \Omega$ resistor provides hysteresis by positive feedback, thus improving the edge rates. When energized, the relay provides a path to bypass the Schmitt trigger, so the input currents of the device under test can be measured.

## Functional Testing

The functional operation and truth table for all device types are checked using automatic test equipment. For memory devices, pattern sensitivity and AC characteristics are also tested automatically. Functional testing is usually performed before DC testing. Logic parts are functionally tested in all modes of operation. The inputs are driven using typical $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ values. The outputs are compared against relaxed $V_{O H}$ and $V_{O L}$ limits. The $V_{I H}, V_{I L}, V_{O H}$ and $V_{O L}$ limits are tested during DC testing.

## DC Testing

An automatic tester is used to test all DC parameters listed on the individual data sheet for each input and output. The device may have to be preconditioned to obtain the correct output logic state. The cable length should be kept to a minimum to insure signal integrity.

## Threshold Measurements

Threshold measurement on an automatic tester is probably the most difficult DC test and the test most prone to oscillation. When testing, take one input at a time to threshold; all other inputs remain at full $\mathrm{V}_{I H}$ or $\mathrm{V}_{\text {IL }}$ levels. For example, to test a flip-flop, make sure the output is LOW before test, take the data pin to HIGH threshold, and apply the clock pulse. Verify that the HIGH has been transferred to the output. Next, apply LOW threshold to the data input and clock it through; use hard levels on the clock (full $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ ). Check that the output pin goes LOW.

## Bench Testiny

Occasionally, it is necessary to obtain data not easily available from an automatic tester. This is accomplished by testing devices in a universal test board. The typical test circuit board is double-clad copper. All input/output pins go to sin-gle-pole, triple-throw switches so that $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ or a $50 \Omega$ terminating resistor can be connected. Leadless $0.05 \mu \mathrm{~F}$ capacitors decouple all pins to $\mathrm{V}_{\mathrm{CC}}(+2 \mathrm{~V})$ at the socket pins. Access to the device under test is made via banana sockets to the X-Y plotter.
$\mathrm{V}_{\text {IH }} / \mathrm{V}_{\text {OUT }}$ Plot—The input ramp supply is 0 V to -2 V varied by a multi-turn potentiometer. The input voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) versus output voltage ( $V_{\text {OUT }}$ ) is plotted on an $\mathrm{X}-\mathrm{Y}$ recorder using the test setup shown in Figure 6-2.
$\mathrm{V}_{\text {Out }} / \mathrm{I}_{\text {Out }}$ Plot—The output voltage ( $\mathrm{V}_{\text {OUT }}$ ) versus output current (lout) can be plotted using the test setup shown in Figure 6-3.


TL/F/9903-2
FIGURE 6-2. VIN $/$ V $_{\text {OUT }}$ Transfer Characteristics


FIGURE 6-3. V OUT $^{\text {/ }}$ IOUT Characteristics

## AC Testing

Because few automatic measurements systems have suffi－ cient accuracy to perform subnanosecond testing，AC test－ ing of ECL is one of the most difficult tests to accomplish． To obtain subnanosecond accuracy usually requires special test fixtures and equipment．The physical location of the test fixture，the input driver and the output comparator is very important．
Depending upon the accuracy and repeatability of the auto－ matic tester，a bench setup may be required for correlation． Comparing an air line with known propagation delay to the test setup is recommended．

## AC Test Fixtures

Test fixture design plays a pivotal role in insuring that undis－ torted waveforms are applied to the Device Under Test （D．U．T．）and that the device output can be monitored cor－ rectly．

## Board Construction and Layout

ECL AC bench test fixtures are built on a double－clad print－ ed circuit board or on a multilayer printed circuit board with semi－rigid coax．The power planes are shorted at the device and brought out to banana sockets with the decoupling ca－ pacitors at the device．Transmission lines of $50 \Omega$ are main－ tained from soldered－on BNC or SMA connectors to the D．U．T．Sense lines from the D．U．T．output and input pins to the connectors must be of electrically equal length．For in－ put pins，care must be taken to insure that the force and sense lines are brought directly to the point that makes con－ tact with the D．U．T．For output pins，only the output sense lines are used to monitor the signals．The force lines are disconnected at the device to minimize signal distortion． Special care must be taken to minimize crosstalk and stray capacitance in the area of the D．U．T．For correlation，flat－ paks are not tested in sockets but are clamped to the traces of a multilayer PC board．Dual in－line devices are plugged into individual pin sockets instead of normal test sockets． Due to equipment limitations and for correlation，the ampli－ tude，offset，rise and fall time are set up with no device in the test socket．
The bench test fixture to measure toggle frequency utilizes the principles described in the preceding paragraph except that the feedback path between the output and data input is as short as possible．

## Output Termination

All outputs should be terminated with $50 \Omega \pm 1 \%$ resistors． This is especially important for complementary outputs．

When bench testing，the device is offset by $+2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}$ is $-2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}, V_{C C A}$ is +2 V ．Then the $50 \Omega$ input impedance of the sampling oscilloscope acts as the termination resistor to 0 V ．The input and output coaxial cable to the oscillo－ scope should be cut to exactly the same electrical length．

## Decoupling

Not enough emphasis can be put on the importance of good decoupling on the D．U．T．because oscillations can give erro－ neous test results．A sampling scope should be used to make sure that oscillation is not occurring．
The value of capacitors used depends on the type of tester used and the frequency of test．Some testers use pulse test； in other words，for each individual test in a program， $\mathrm{V}_{\mathrm{EE}}$ is powered up and down．On this type of tester，electrolytic－ type（i．e．，large value）capacitors cannot be used because of the time constant needed to charge the capacitor．
Always start with the minimum decoupling needed to achieve good results，perhaps merely a capacitor between $V_{C C}$ and $V_{E E}$ ．Capacitors should be placed as close as pos－ sible to the D．U．T．to eliminate as much inductance as pos－ sible．Only low－inductance capacitors should be used；lead－ less monolithic ceramic capacitors are very effective．
There are no rigid decoupling rules，and each device type may have its own decoupling requirements．A typical decou－ pling technique that works well on most F100K devices is to place $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors in the following locations．
－If no offset is used： between $V_{E E}(-4.5 \mathrm{~V})$ and $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}(0 \mathrm{~V})$ between $\mathrm{V}_{\mathrm{TT}}(-2 \mathrm{~V})$ and ground（ 0 V ）
－If $+2 V$ offset is used： between $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}(+2 \mathrm{~V})$ and ground（ 0 V ） between $\mathrm{V}_{\mathrm{EE}}(-2.5 \mathrm{~V})$ and ground（ 0 V ）
－In most cases， $\mathrm{V}_{C C A}$ and $\mathrm{V}_{C C}$ should be shorted as close to the D．U．T．as possible．However，if the $V_{C C A}$ and $V_{C C}$ pins are physically separated，individual decoupling ca－ pacitors may be necessary．
－For DC test only place a $0.001 \mu \mathrm{~F}$ capacitor： between an input pin and $\mathrm{V}_{\mathrm{EE}}$ between an output pin and $\mathrm{V}_{\mathrm{CCA}}$
Decoupling problems will appear mainly at threshold test．If certain outputs fail，try the decoupling technique，described in the preceding paragraph，on those outputs and the asso－ ciated inputs．With testers that use the power－hold method， such as the Sentry ${ }^{\oplus}$ ，large electrolytics can be used in par－ allel with smaller（ $0.01 \mu \mathrm{~F}$ ）disk capacitors for the high－fre－ quency bypass．

## ELECTROSTATIC DISCHARGE

## Introduction

The study of ESD failures began in earnest back when system designers, faced with very expensive assembly and post-assembly rework, began investigating system failures in great detail. In the course of their study, they checked all the records to determine which devices has passed earlier testing, but had failed once in the system. The data clearly indicated that something in the handling process resulted in higher attrition rates among the devices. Reliability physicists examined the failed devices in minute detail, in some cases subjecting them to examination under high powered scanning electron microscopes.
The problem was found to be one of electrical overstress, and further investigation determined that the cause of the overstress was a phenomenon called electrostatic discharge (or ESD).

## Explanation of How ESD Occurs

The concept of electrostatic discharge is easily understood. Electrostatic energy is static electricity, a stationary charge which can build up in either a nonconductive material or in an ungrounded conductive material. This charge can occur in one of two ways, either through polarization, which occurs when a conductive material is exposed to a magnetic field, or triboelectric effects, which occur when two surfaces contact and then separate, leaving one positively charged and one negatively charged. Friction between two materials increases triboelectric charge by increasing the surface area that comes in contact. A good example of this phenomenon would be the charge one accumulates walking across a nylon carpet. The discharge occurs when one reaches for a doorknob or other conductive surface. The types of ESD with which we will be concerned fall into the category of triboelectric effects. Within this category, various materials have differing potentials for charge. Asbestos, nylon, human and animal hair and wool have a high positive triboelectric potential. Silicon has one of the highest negative triboelectric potentials, followed by such materials as polyurethane, polyester and rayon. Cotton, wood, steel and paper all tend to be relatively neutral, which makes cotton clothing and steel table tops excellent ESD protective materials in environments where ESD problems can be anticipated.
The intensity of the charge is inversely proportional to the relative humidity. As humidity decreases, ESD problems increase. For example, walking across a carpet will generate a 1.5 kV charge at $90 \% \mathrm{RH}$, but will generate 35 kV at $10 \%$ RH. When an object storing a static charge comes in
contact with another object, the charge will attempt to find a path to ground, discharging into the contacted object. Although the current level is extremely low (typically less than 0.1 nanoamp), the voltage can be as high as $35-50 \mathrm{kV}$.

The degree of damage caused by electrostatic discharge is a function of the size of the charge (which is determined by the capacitance of the charged object) and the rate at which it is discharged (determined by the resistance into which it is discharged). This relationship can be shown with a waveform (Figure 6-4) that utilizes what is termed a double exponential decay pulse. With such a pulse, $99 \%$ of the energy will be dissipated in five time constants, with each time constant established by the resistance and capacitance mentioned above. Where both are low, the discharge rate will be rapid enough to cause damage if the object into which discharge occurs is a semiconductor. As resistance and capacitance increase, both the discharge rate and the risk of damage decrease.


FIGURE 6-4. Ideal RC Waveform
It is estimated that the value of devices lost to ESD could run as high as $\$ 1$ billion per year. Most electrostatic damage is caused by the handling of devices by personnel who have not taken adequate precautions. One would expect this in light of the fact that the capacitance of the human body ranges from 50 to 200 pF . The ESD characteristics of work surfaces and of materials passing through the area should not be ignored, however, in an attempt to concentrate on the human effect.

## Types of ESD Damage

The damage caused by ESD results from the charge＇s tend－ ency to seek the shortest path to ground，overstressing any electrical interfaces in that path．There are several different types of damage that result，and each of these tends to be typical of specific component technologies and elements．

## Dielectric Breakdown

Dielectric breakdown occurs when the voltage across an oxide exceeds its dielectric breakdown strength．The single most important factor in this breakdown is the oxide thick－ ness（Figure 6－5）．Thinner oxide is more susceptible to elec－ trostatic punch－through，which leaves a permanent low－re－ sistance short through the oxide．Where there are pin holes or other weaknesses in the oxide，damage will be possible at lower charge levels．It should be noted that semiconduc－ tor manufacturers have reduced oxide thicknesses as they have reduced the overall size of the devices．ESD sensitivity has therefore increased dramatically．


TL／F／9903－7

## FIGURE 6－5．Bipolar Transistor

Electrostatic charge which does not actually result in a breakdown can cause lattice damage in the oxide，lowering its ability to withstand subsequent ESD exposure．A weak－ ened lattice will also have a lower breakdown threshold volt－ age，and this mechanism is voltage dependent．

## Thermal Secondary Breakdown or Junction Burnout

Junction burnout is a significant failure mechanism for bipo－ lar devices，and tends to be power dependent rather than voltage dependent．The interface（or junction）between a P －type diffusion and an N －type diffusion normally has a posi－ tive temperature coefficient at low temperatures（that is，in－ creased temperature will result in increased resistance）． When a reverse－biased pulse is applied，the junction dissi－ pates heat in its very narrow depletion region，and the tem－ perature increases rapidly．If enough energy is applied，the temperature of the junction will reach a point at which the temperature coefficient of the silicon will turn negative（that is，at which increased temperature will result in decreased resistance）．Since the area of the junction is not uniform，hot spots occur．When the melting temperature of silicon （ $1415^{\circ} \mathrm{C}$ ）is reached as a result of the ensuing thermal run－ away condition，junction melting occurs in the localized area．If there is an additional energy available after the initia－ tion of melt，the hot spot can grow into a filament short．The longer the pulse，the wider the resultant filament short．
After the occurrence of the transient，the silicon will resolidi－ fy．In a relatively short pulse，a hot spot may form，but not grow completely across the junction．As a result，the dam－ age may not manifest itself immediately as a junction short but will appear at a later time as a result of electromigration． Shrinking geometries will decrease junction areas，and this should increase the susceptibility of these devices to ESD related junction problems．

## Metallization Melt

Semiconductor interconnect metallization typically has a small cross－sectional area and limited current carrying capa－ bility．As feature sizes continue to be reduced，metallization cross－section will be reduced as well．Reducing metalliza－ tion line width by half and metallization thickness by half reduces the current carrying capability of that metallization stripe by $75 \%$ ．Metallization melt，which is a power－depen－ dent failure mechanism，is more likely to occur during short duration，high current pulses，since the only available heat sink（the bonding pad）is nearby and the heat dissipated in the metallization does not have time to flow into the sur－ rounding areas．It can also occur as a side effect during junction melt．

## Latent Failures

Immediate failure resulting from ESD exposure is easily de－ termined：the device no longer works．A failed device may be removed from the lot or from the subassembly in which it is installed，and it represents no further reliability risk to the system．There are，however，devices which have been ex－ posed to ESD but which have not immediately failed．Unfor－ tunately，there has never been sufficient data dealing with the long－term reliability of devices which have survived ESD exposure，although some experts feel that two to five devic－ es are degraded for every one that fails．It should be obvi－ ous from an examination of the failure mechanisms de－ scribed above that there can be significant degradation without immediate failure．Damage can manifest itself in ej－ ther a shortening of the device＇s lifetime（a possible cause for many of the infant mortality failures seen during burn－in） or in electrical performance shifts，many of which cause the device to fail electrical test limits．

## ESD Protective Measures

It should be obvious then that there are three principal con－ siderations when dealing with ESD．The first is that the de－ vice should be designed in a manner that minimizes ESD sensitivity and incorporates some ESD protective features． The second is that both manufacturers and users must un－ derstand the ESD susceptibility of the devices with which they are dealing．Thirdly，both user and manufacturer must understand the generation of and sources of ESD charges well enough to establish proper precautions throughout their plants．

## Device Design

The continuing development of faster and more complex ICs makes it unlikely that we will see a return to thicker oxide layers or larger junctions．Early ICs used fairly simple clamping diodes on the inputs to protect them against volt－ age transients in the system．Similar，but more complex pro－ tective networks can be employed to provide ESD protec－ tion．An example of such circuitry is shown in Figure 6－6 as it is employed in the design of the F100K 300 Series family． Electrostatic discharge（ESD）protection diodes were added to all 300 Series designs specifically in the circuit paths that were most prone to ESD damage on F100K 100 Series products：input－to－$V_{C C}$ ，input－to－$V_{E E}$ ，and output－to－ $\mathrm{V}_{\mathrm{CC}}$ ．


FIGURE 6-6. 300 Series ESD Protection Circuitry

These diodes (D1, D2 and D3) are utilized to shunt the current caused by an ESD voltage pulse away from either the input or output circuitry. Depending on the polarity of the ESD voltage, the diodes either become forward-biased, directing the current into the supply, or go into reverse breakdown, directing the current into the substrate. Either way the ESD-caused current is shunted away from the input and output transistors, avoiding damage to the circuitry. The diodes are designed to be rugged enough to guarantee 2000 V of ESD protection on all 300 Series products (they typically withstand up to 4000 V ). Even in providing this protection level, these diodes have a negligible impact on input capacitance. Addition of these diodes typically adds only tenths of picofarads to each product's input capacitance.

## Assessing ESD Tolerance Levels

As awareness of the importance of addressing ESD concerns spread, many experts felt that ESD testing had to be uniform if results were to be shared. Method 3015 of MIL-STD-883 was created for the purpose of allowing manufacturers to assess the ESD tolerance levels of the devices they offered and to allow users to determine the ESD sensitivity of the parts with which they were assembling systems. Method 3015 has established a test circuit (see Figure 6-7) which approximates the resistance and capacitance found in the human body (which continues to provide the major source of destructive ESD). The testing is performed by charging the capacitor in the test circuit and then discharging that capacitor into the unit under test. After testing, a device will be classified as either Class 1, those devices which exhibit ESD-induced failure or degradation at levels between zero volts and $1,999 \mathrm{~V}$; or Class 2, those which may exhibit ESD sensitivity at levels between $2,000 \mathrm{~V}$ and $3,999 \mathrm{~V}$; or Class 3 , those devices which may exhibit ESD sensitivity at levels above $4,000 \mathrm{~V}$ but have passed all testing up to that level. This testing is performed on a sample basis at initial device qualification and need not be repeated unless the device is redesigned. The testing is considered destructive, even for those devices which do not fail.


FIGURE 6-7. ESD Test Circuit

A device may be characterized as Class 1 in lieu of testing at a manufacturer's discretion. Some manufacturers, concerned with the possibility of latent damage due to inadequate protection of devices which test as Class 2, and concerned that static charges resulting from handling can run as high as 50 kV , have elected to treat all of their devices as Class 1, thus ensuring that consistent implementation of common handling procedures will provide maximum protection for all devices.
Data generated by an RADC study of electrostatic discharge susceptibility (VZAP-1, Spring 1983) would seem to support that kind of a conservative approach. The data (see Figure 6-8) shows the point at which failure first occurred for a given device. It indicates that there are a number of devices which can be expected to fail between 2 kV and 5 kV , but few that will survive beyond 10 kV .
Those devices which are classified as Class 1 must be marked with one equilateral triangle, and those classified as Class 2 must be marked with two equilateral triangles to identify them as static sensitive. (Class 3 devices will have no top mark designator.)

TABLE I. Device ESD Failure Threshold Classification

| MIL Class | ESD Tolerance | Top Mark Designation |
| :---: | :---: | :---: |
| Class 1 | 0 V to $1,999 \mathrm{~V}$ | One triangle (i.e., $\mathbf{4}$ ) |
| Class 2 | $2,000 \mathrm{~V}$ to $3,995 \mathrm{~V}$ | Two triangles (i.e., $\mathbf{4}$ ) |
| Class 3 | $4,000 \mathrm{~V}$ and above | No mark |

## ESD Precautionary Measures

ESD protective measures fall into two categories: those which shield the device from ESD and those which control the occurrence of ESD. ESD shielding can be accomplished by either grounding all of the device leads together, thus providing a more direct path to ground, or by surrounding the device with insulating material that would keep ESD from reaching the device. The first method is most practical during device assembly and environmental test, the second during shipment and storage. However, neither can be utilized during electrical testing.
Most of the handling of ICs, however, occurs during electrical testing. Testing cannot be performed if the device's leads are shorted together, nor can it take place if the device is within an insulated container. Control of ESD during testing is therefore extremely important. This is accomplished through the grounding of all potential sources of ESD. Stainless steel work surfaces connected to ground
through an appropriate resistive element provide a harmless bleed-off of any charge that occurs. Requiring that all personnel who handle devices wear ground straps can effectively eliminate the human body and its clothing as sources of ESD. It is also important to minimize the handling of devices. This can be partially accomplished through the use of automated test handlers, which allow the devices to be loaded into the testers from ESD-protective rails and returned to those rails from the tester. Equally important is the elimination of any unnecessary testing or test insertions. Semiconductor manufacturers have decreased the number of test insertions for many devices by combining parametric, functional and switching tests onto a single insertion test program. Users have minimized handling by relying more heavily on the testing performed by their vendors and by eliminating incoming testing. Pick-and-place systems and other automated board assembly hardware have also helped to minimize device handling. Most systems manufacturers have also implemented procedures that minimize the handling of boards and subassemblies in order to ensure that devices receive no potentially damaging exposure to ESD after board assembly.

Effective control of ESD, however, cannot be accomplished unless the entire work area is designed around ESD concerns. At the National Mil/Aero facilities, all work areas in which parts may be handled or through which parts may pass have ESD-protective flooring in addition to grounded work surfaces, ground straps for all operators, and other protective features. This level of attention to detail is essential to the minimization of ESD problems.

## Summary

Electrostatic discharge will continue to be a major concern for those who use semiconductor devices. As device geometries continue to shrink, the ESD sensitivity of devices will increase. Only through proper handling and packaging, and through proper attention to ESD concerns will we be able to ensure that long term reliability of key systems is not negatively affected by ESD problems.


FIGURE 6-8. Failure Rate at Ascending ESD VoItages

# Chapter 7 300 Series Package Qualification 

## INTRODUCTION

In order to facilitate migration from the original F100K ECL 100 Series ( 1001 XX ) family to the F100K ECL 300 Series (1003XX) family, National Semiconductor has published this guide to 300 Series qualification. Much of the focus is toward the secondary migration of ceramic to plastic packaging.
This guide contains thermal comparison data by package type, AC comparison data by package type, input capacitance comparison data by package type, and other valuable information for use in qualifying the 300 Series for your application.
The original F100K 100 Series family (1001XX) was the accepted standard for subnanosecond logic used in highspeed next-generation systems. The main features were:

- High speed: 750 ps internal gate delays
- Temperature compensation (signal levels, noise margins)
- Complementary outputs (with no sacrifice of speed)
- High common mode noise rejection (differential line receivers)
- Easy-to-use edge rates (1V/ns)
- High fanout capability
- Wired-OR capability
- Low EMI
- Low impedance drive capability $(25 \Omega, 50 \Omega)$
- Optimum I/O pin assignment (side power pins, outputs adjacent to GND)
But, while perfectly adequate for its original intended purpose (supercomputers, mainframes, etc.), the 100 Series had several limitations that gave some system designers reasons to avoid utilizing the superior performance of F100K ECL. Some of those problem areas were power consumption, limited temperature and voltage ranges, the absence of ESD protection, limited packaging options, incompatibility with +5.0 V systems, and no military product availability.
F100K 300 Series ECL was introduced with plastic packaging options to retain all the traditional benefits and high performance of the original 100 Series, along with some key enhancements:
- POWER REDUCTION: 300 Series power consumption was reduced by $30 \%-50 \%$ from original 100 Series levels (even while increasing the specified voltage range from -4.8 V to -5.7 V ). This improvement has lowered F100K power-per-bit to the same or less than $10 \mathrm{~K} / 10 \mathrm{KH}$ ECL levels. Also, ECL power levels are constant over frequency, making 300 Series the low-power bipolar al-
ternative above 45 MHz , and the overall low-power alternative (including both Bipolar TTL and CMOS logic families) above 60 MHz .
- EXTENDED TEMPERATURE RANGE: The 300 Series has been designed to operate at Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ), Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges.
- EXTENDED VOLTAGE RANGE: The 300 Series has been designed to operate over an extended voltage range of -4.2 V to -5.7 V , spanning the voltage ranges of all ECL logic families, and also making it possible to operate ECL in a +5.0 V system.
- NEW OUTPUT SKEW SPECS: The improvements to the 300 Series circuitry that have increased the temperature and voltage ranges also make it possible to specify several output skew parameters on the PCC package which guarantee the level of pin-to-pin skew and output duty cycle degradation.
- ESD PROTECTION: The 300 Series has been designed to have a minimum of $2,000 \mathrm{~V}$ of electrostatic discharge (ESD) protection, which helps eliminate "walking wounded" at incoming test, and even ESD-related board failures.
- INCREASED PACKAGING OPTIONS: The 300 Series is now offered in 28-lead Plastic Chip Carrier (PCC), 24 -lead 400 mil Plastic DIP (PDIP), and 24 -lead 300 mil SOIC. The availability of plastic packaging allows National Semiconductor to set initial PDIP and SOIC pricing significantly below historic F100K ECL pricing.
- +5.0V COMPATIBILITY: The increased voltage range of the 300 Series allows it to be operated in a +5.0 V system. Also, several Single-Rail Positive ECL (PECL) devices, which translate from differential ECL operated at +5.0 V to traditional TTL-compatible levels, have been developed.
- MILITARY AVAILABILITY: The 300 Series is in complete compliance with the requirements of MIL-STD-883 for Class B devices. Also, DESC has initiated Standard Military Drawings (SMD's) for the 300 Series.
An F100K 300 Series device is easily identified by the device numbering scheme. A typical F100K 100 Series device was referred to as 1001XX, 300 Series devices are referred to as $1003 X X$. For example, the 100101 has been replaced by the 100301. This naming convention carries throughout the whole family.


## POWER REDUCTION

## New Process

F100K 300 Series ECL is fabricated using an advanced isoplanar technology called FAST-LSI. FAST-LSI includes many improvements over FAST-Z (the process used for the
original F100K 100 Series ECL), which enhance performance, manufacturability, and reliability. Both processes are descendants of Fairchild's Isoplanar II oxide-isolated process which yielded the industry standard FAST $^{\oplus}$ family of products.

## Power Comparison (1001XX vs 1003XX)

Parasitic capacitances and resistances are reduced due to smaller geometries, allowing significant power reduction, up to $50 \%$ lower than FAST-Z. Dual-Supply (ECL, TTL) Level Translators were prime candidates for power reduction since they have a high supply voltage across the part (nominally 9.5 V , 5 V TTL plus 4.5 V ECL). The 1003 XX replacements for the 1001XX level translators (100124, 100125, 100128) all exhibit a $50 \%$ power reduction from the 1001 XX part.

For more information on the FAST-LSI process, refer to the Family Overview.

## Decreased Junction Temperature

With the lower power of the 300 Series, there is a reduction in junction temperature when converting from 100 Series in ceramic packaging to 300 Series in plastic packaging. This factor, combined with the inherent flat power requirements over frequency of ECL circuitry, enable designers to use ECL in plastic in high performance systems which have significant power constraints and little or no airflow, such as desktop workstations. Figure 7-1 compares the junction temperatures of the original 100 Series packaged in CDIP with 300 Series ECL packaged in PDIP, PCC, and SOIC. Figure 7-1 represents worst case conditions: zero airflow, power current at the maximum limit, and a $70^{\circ} \mathrm{C}$ ambient temperature.


100 AND 300 SERIES ECL DEVICE TYPES.

FIGURE 7-1. Junction Temperature Comparison (Ceramic vs Plastic Packaging)

## The Effect of Airflow on Junction Temperature

A small amount of airflow significantly decreases the thermal resistance of the plastic packages. Figure $7-2$ shows the impact of airflow on the thermal resistance of the PDIP package. Most of the benefit from adding airflow is realized in the first 225 linear feet per minute (LFPM). The reduction in thermal resistance due to the increase in airflow significantly reduces the device junction temperature. Figure 7-3 is identical to Figure 7-1, with the exception of a moderate airflow of 225 LFPM.


TL/F/10993-2
FIGURE 7-2. $\theta_{\text {JA }}$ vs Airflow for 4 Die Areas

The junction temperatures in Figures 7-1 through 7-3 are based on the worst possible case of power dissipation, which assumes that the device is being operated at the maximum power supply voltage ( -5.7 V ) and that the power supply current is marginal to the extreme maximum current limit. Using nominal power dissipation ( -4.5 V supply voltage with typical power supply current) significantly reduces the calculated junction temperature increase with respect to ambient.

As an example, at $70^{\circ} \mathrm{C}$ ambient, the 100324 SC has a worst case junction temperature of $135^{\circ} \mathrm{C}$, whereas its nominal junction temperature is $112^{\circ} \mathrm{C}$.

## Family Performance Comparisons

No matter what the frequency or duty cycle is, ECL circuitry draws constant DC power, eliminating the noise margin jeopardy associated with the dynamic switching currents of other technologies. When an internal ECL gate switches, the gate current is simply redirected from one side of the gate to the other, yielding no net change in power requirements, even at frequencies of $50 \mathrm{MHz}-250 \mathrm{MHz}$ or more. In addition, the complementary output buffers of ECL are similar in that there is no dynamic switching current, which results in no ground bounce. Figure $7-4$ compares power consumption over frequency on several octal registers (100353, 74ALS374, 74F374, and 74AC374). This graph shows that the power requirements of the 300 Series 100353 are less than all of the other technologies above 60 MHz .


FIGURE 7-3. Junction Temperature Comparison (Ceramic vs Plastic Packaging)


TL/F/10993-4

Note: ICC measured in test jig, $25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, 50 \%$ duty cycle, all outputs switching. ECL current $=I_{\mathrm{CC}}+I_{\mathrm{TT}}$.
FIGURE 7-4. Power Comparison by Technology

## Speed-Power Product over Frequency

The speed-power product is one generally accepted measure of overall device performance. When the power numbers from Figure 7-4 are weighted with the device speed performance (in Figure 7-5, effectively producing a plot of speed-power product over frequency), the benefits of ECL become even more evident. At frequencies greater than 5 MHz , ECL exhibits the lowest speed-power product.

## EXTENDED VOLTAGE RANGE <br> AND IMPROVED NOISE MARGIN

F100K 300 Series ECL was designed with a more stabilized voltage reference generator, which allows all products to offer a single set of DC Input/Output specifications across a wider supply range ( -4.2 V to -5.7 V ) than the original F100K 100 Series (see Figure 7-6).

Regardless of whether the designer's system is F100K input/output levels at a nominal $-4.5 \mathrm{~V}, \mathrm{~F} 100 \mathrm{~K}$ input/output levels at a nominal $-5.2 \mathrm{~V}, 10 \mathrm{~K}$ input/output levels at a nominal -5.2 V or ECL operated on a nominal +5.0 V rail, the single set of 300 Series DC input/output specifications guarantee full operation. This allows easy interconnectivity with ECL ASICS, RAM's, 10 K - and 10 KH -compatible logic, and +5.0 V TTL devices. As usual, if F100K ECL is driving a 10K ECL input (non-temperature-compensated), care must be taken when operating at ambient temperatures above $55^{\circ} \mathrm{C}$.
ECL has an inherent insensitivity to power supply ( $\mathrm{V}_{\mathrm{EE}}$ ) variations, since $E C L$ is referenced to ground ( $V_{C C}$ ), unregulated power supplies do not cause changes in input thresholds or output levels.


FIGURE 7-5. Speed/Power Comparison by Technology

inTERFACING WITH TTL WHEN ECL IS AT +5.0V
FIGURE 7-6. 300 Series (Extended Specified Voltage Range)

This single set of DC specifications increases 300 Series noise margin to a minimum of 140 mV compared to 115 mV of the original 100 Series (see Figure 7-7).

## OUTPUT SKEW

## ECL Skew

ECL is inherently low skew due to several factors. The differential pair circuitry of ECL keeps the skew between "true" and "complement" outputs to a minimum. The lack of dynamic current demands during switching eliminates the skew associated with power supply pin impedance and its associated "ground bounce" effects. Lastly, ECL is not a saturating logic, so LH-to-HL skew is also minimized.

## Addition of Skew Specifications

Several skew specifications, chosen based on system performance demands, have been added to the 300 Series ECL PCC AC datasheet specifications for most devices to enable ECL designers to take advantage of ECL low skew. The parameters (tOSLH, $\mathrm{t}_{\mathrm{OSHL}}$, $\mathrm{t}_{\mathrm{OST}}$ and $\mathrm{t}_{\mathrm{PS}}$ ) relate back to a specific system requirement which helps the designer to compensate for pin-to-pin skew and output duty cycle degradation. (For a more detailed explanation, refer to the Family Overview Section.)

## THERMAL CONSIDERATIONS

To calculate the operating junction temperature ( $\mathrm{T}_{\mathrm{J}}$ ) of F100K ECL 300 Series devices, one can use either of the two equations listed below, depending on whether the ambient temperature $\left(T_{A}\right)$ or case temperature ( $T_{C}$ ) is known:

$$
\begin{aligned}
& T_{J}=T_{A}+\left(P_{D} \times \theta_{J A}\right) \\
& T_{J}=T_{C}+\left(P_{D} \times \theta_{J C}\right)
\end{aligned}
$$

One can see that the junction temperature of a device is dependent on thermal factors in the environment ( $T_{A}$ or $T_{C}$ ), the power dissipation of the device itself ( $\mathrm{P}_{\mathrm{D}}$ ), and packagedependent thermal resistance coefficients ( $\theta_{\mathrm{JA}}$ or $\theta_{\mathrm{JC}}$ ).

## Calculating Device Power Dissipation

The device power dissipation $P_{D}$ is a function of the maximum absolute value of device power ( $\mathrm{V}_{\mathrm{EE}} \mathrm{MAX}$ ), the maximum absoulte value $I_{E E}$ limit (IEE MAX), the number of loaded outputs in the high state ( nh ), and the number of loaded outputs in the low state (nl), as follows:

$$
\begin{aligned}
P_{D}= & \left(V_{E E M A X} \times I_{E E M A X}\right)+ \\
& \left(n h \times\left[V_{O H} \times I_{O H}\right]\right)+\left(n I \times\left[V_{O L} \times I_{O L}\right]\right)
\end{aligned}
$$

$V_{E E} M A X$ is defined either by the worst case power supply voltage in a specific application, or it can be taken from the databook absolute value maximum limit ( -5.7 V ). $\mathrm{I}_{\mathrm{EE} \text { MAX }}$ is taken from the databook device specification.
The second and third factors of the power dissipation ( $\mathrm{P}_{\mathrm{D}}$ ) equation depend on the output loading scheme used; for the standard $50 \Omega$ to $-2 V$ ECL load, this term results in 27 mW per complementary output pair ( 14 mW for the output at $\mathrm{V}_{\mathrm{OH}}$, and 13 mW for the output at $\mathrm{V}_{\mathrm{OL}}$. Figures 5-10 and 5-14 in Chapter 5 of this databook list output power dissipation figures for multiple combinations of parallel and serial output terminations. $P_{D}$ for single-ended ECL outputs should be calculated with the outputs in the high state, which is worst case.
$\theta_{\mathrm{JA}}$ and $\theta_{\mathrm{JC}}$ are package-dependent thermal resistance coefficients derived empirically in the National Semiconductor Packaging Development Laboratory in compliance with MIL-STD-883 Method 1012. The laboratory presents data on each package using several die sizes to generate a family of curves. The data is taken at several airflows. From the thermal resistance charts (Figures 7-8 through 7-12), increased airflow reduces the thermal resistance. Increase die size also reduces the thermal resistance, which is convenient since die size corresponds in general with device power. Table 7-1 contains die areas of 1003XX devices to use in conjunction with the thermal resistance charts in Figures 7-8 through 7-12.


FIGURE 7-7. 300 Series Improved Noise Margins


FIGURE 7-8. Thermal Resistance by Die Area (Ceramic 400 mil DIP (CDIP))


FIGURE 7-9. Thermal Resistance by Die Area (Plastic 400 mil DIP (PDIP))


TL/F/10993-11
FIGURE 7-11. Thermal Resistance by Die Area (Plastic Chip Carrier (PCC))


FIGURE 7-12. Thermal Resistance by Die Area (Ceramic Quad Flat Pack (QFP))

TABLE 7-1. F100K 300 Series Die Area

| Part Type | Area $=$ Mil ${ }^{2}$ |
| :---: | :---: |
| 100301 | 4422 |
| 100302 | 4422 |
| 100304 | 3843 |
| 100307 | 3843 |
| 100310 | 5670 |
| 100311 | 5670 |
| 100313 | 4422 |
| 100314 | 4422 |
| 100315 | 2401 |
| 100316 | 4420 |
| 100319 | 4420 |
| 100321 | 2907 |
| 100322 | 2907 |
| 100323 | 4420 |
| 100324 | 4422 |
| 100325 | 5475 |
| 100328 | 9309 |
| 100329 | 9309 |
| 100331 | 5325 |
| 100336 | 10494 |
| 100341 | 6106 |
| 100343 | 6230 |
| 100344 | 6230 |
| 100350 | 4636 |
| 100351 | 4636 |
| 100352 | 6230 |
| 100353 | 6230 |
| 100354 | 6230 |
| 100355 | 4891 |
| 100360 | 4422 |
| 100363 | 5032 |
| 100364 | 5032 |
| 100370 | 5110 |
| 100371 | 4422 |
| 100389 | 5767 |
| 100390 | 3905 |
| 100391 | 5767 |
| 100392 | 5767 |
| 100393 | 8736 |
| 100395 | 8736 |
|  |  |

## Case Temperture vs Ambient Temperature: <br> What is the Difference?

F100K ECL Logic is specified over a case temperature range, as opposed to an ambient temperature range. There is a critical difference between case temperature and ambient temperature that can not be overlooked, and can be shown with the following example:

Looking at a 300 Series device with typical power dissipation and thermal resistance figures:

$$
\frac{\theta_{\mathrm{JA}}}{68^{\circ} \mathrm{C} / \mathrm{W}} \quad \frac{\theta_{\mathrm{JC}}}{32^{\circ} \mathrm{C} / \mathrm{W}} \quad \frac{\mathrm{P}_{\mathrm{D}}}{0.5 \mathrm{~W}}
$$

At $T_{A}=70^{\circ} \mathrm{C}$, the junction temperature is calculated as:

$$
\begin{aligned}
T_{J} & =T_{A}+\quad\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right) \\
& =70^{\circ} \mathrm{C}+\left(0.5 \mathrm{~W} \times 68^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =70^{\circ} \mathrm{C}+34^{\circ} \mathrm{C} \\
& =104^{\circ} \mathrm{C}
\end{aligned}
$$

Using the same $T_{J}$ of $104^{\circ} \mathrm{C}$ to work back toward a $T_{C}$, you get:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{C}} & =\mathrm{T}_{J}-\quad\left(\mathrm{P}_{\mathrm{D}} \times \theta_{J \mathrm{C}}\right) \\
& =104^{\circ} \mathrm{C}-\left(0.5 \mathrm{~W} \times 32^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =104^{\circ} \mathrm{C}-16^{\circ} \mathrm{C} \\
& =88^{\circ} \mathrm{C}
\end{aligned}
$$

So, on this device at a $T_{J}$ of $104^{\circ} \mathrm{C}, T_{C}$ is $18^{\circ} \mathrm{C}$ higher than $\mathrm{T}_{\mathrm{A}}\left(88^{\circ} \mathrm{C}\right.$ vs $\left.70^{\circ} \mathrm{C}\right)$. Figure $7-13$ shows that the difference between $T_{C}$ and $T_{A}$ increases linearly with increasing $P_{D}$ everything else being equal, a 1.0 W device in the above scenario would have a $36^{\circ} \mathrm{C}$ difference $\left(2 \times 18^{\circ} \mathrm{C}\right)$ between $T_{C}$ and $T_{A}$.


## FIGURE 7-13. Case vs Ambient Temperature 24-Lead PDIP

The difference between $T_{C}$ and $T_{A}$ decreases with increasing airflow. In fact, $T_{C}$ is the temperature of the case when measured at 2000 LFM (closely approximates infinite airflow).

## PACKAGING OPTIONS

The low power designs of 300 Series ECL, combined with the manufacturability of the FAST-LSI process, have enabled the 300 Series to be offered in packaging that takes up less board space than the standard 400 -mil DIP of the original 100 Series, namely the 28 -lead Plastic Chip Carrier (PCC) and 24 -lead 300 -mil SOIC. These plastic package solutions can dramatically increase board density and reduce user cost compared to the package offerings of the original 100 Series.

The required board space for the 24-lead PCC is $113 \%$ less than that for 24 -lead 400 -mil DIP packages. The SOIC is a $103 \%$ reduction compared to the DiF.
The new 24-lead 400 mil Plastic DIP is intended as a drop-in replacement cost reduction for all users of "100 Series" or " 300 Series" 24 -lead 400 mil Ceramic DIP.

## PACKAGE COMPARISONS

A comparison between the SOIC, PDIP, CDIP, and PCC packages (prop delays, input capacitance) is provided here to assist in the transition from ceramic to plastic packaging.

## AC Comparisons

Two devices were selected for the AC comparison: the 100304 is a simple ECL gate in which inputs and outputs are found on both side pins and corner pins of the dual-in-line packages, and the 100325 is an ECL-TTL. level translator which represents the dynamic current switching effects of TTL outputs.
The results show that there is less than 100 ps of difference in the $100304 \mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$ propagation delay between all four packages (see Figure 7-14).


Figure $7-15$ shows that the CDIP package exhibits a $130 \mathrm{ps}-150 \mathrm{ps}$ spread between side pins and corner pins, whereas the PDIP packaye reduces that to 30 ps, indicating that dual-in-line packaging has an inherent pin-to-pin skew. Due to the complementary nature of ECL circuitry and its flat power requirements over its frequency range, the effects of differences in power supply lead inductance and capacitance are minimized. Therefore, the minimal difference between packages, and the extremely low output skew displayed in Figures $7-14$ and 7-15, should be expected. Once dynamic supply current effects are eliminated, the difference in propagation delay measurements between packages are mainly due to differences in package lead length, and measurement accuracy.
Figure $7-16$ shows that there is less than 300 ps difference between the four packages on a 3 ns measurement on the 100325, even with its TTL outputs.


FIGURE 7-16. Propagation Delay Comparison by Package, 100325

FIGURE 7-14. Propagation Delay Comparison by Package, 100304


TL/F/10993-15
FIGURE 7-15. Propagation Delay Comparison PDIP vs CDIP, 100304

Figure $7-17$ shows that the differences between corner pins and side pins on a 100325 in a DIP package are negligible, although the outputs (Q3, Q4, and Q5) closest to the TTL supply ( $V_{\mathrm{TTL}}$ ) pins have a somewhat tighter range of values than the outputs (Q0, Q1 and Q2) closest to the ground ( $\mathrm{V}_{\mathrm{CC}}$ ) pins.
This data shows that there is negligible difference in $A C$ propagation delay between the CDIP, PDIP, SOIC and PCC packages.
Figures $7-18$ and $7-20$ show that the PCC package is an electrically symmetrical package, all outputs exhibit similar propagation delays. Figures $7-19$ and $7-21$ show that the SOIC package exhibits similar characteristics to the PDIP package (typically longer delays on corner pins, as opposed to side pins).


FIGURE 7-17. Propagation Delay Comparison PDIP vs CDIP, 100325


FIGURE 7-18. Propagation Delay Comparison PCC, 100304


FIGURE 7-19. Propagation Delay Comparison PDIP vs SOIC, 100304

Input Capacitance Comparisons
Input capacitance differences were also measured between packages. The 100304 was used for the input capacitance comparison. Figure $7-22$ shows that one of the reasons for in-line package corner pins exhibiting longer propagation delays is due to an increase in lead capacitance on the corner pins.


FIGURE 7-20. Propagation Delay Comparison PCC, 100325


FIGURE 7-21. Propagation Delay Comparison PDIP vs SOIC, 100325


TL/F/10993-22
FIGURE 7-22. Input Capacitance
Dual-In-Line Packages, 100304

# Chapter 8 Quality Assurance and Reliability 

## Introduction

F100K ECL is manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

## Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

## Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. Inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. In these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

## Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon wafers are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.

## Bulk Chemical and Material Inspection

Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing F100K wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analyzed to verify their chemical make-up.
Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

## Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

## Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.
Process Audit-Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.
Environmental Monitor-Monitors concerning the process environment, i.e., water purity, air temperature/humidity, and particulate count.
Process Monitor-Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.
Lot Acceptance-Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.
Process Qualification-Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, i.e., epi, aluminum, vapox, and backside gold.
Process Integrity Audit-Special audits conducted on oxidation and metal evaporation processes (CV drift-oxidation; SEM evaluation-metal evaporation).

## Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

## Process Flow

Figure 8-1 shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.

Process Quality Control (Continued)


THIN FILM: Metal (aluminum, nichrome, titanium-tungsten and Chemical Vapor) Deposition (silox, doped silox and nitride passivation)


Process Controls (Examples)
A. Environmental
B. Chemical supplies
C. Substrate examination (resistivity, flatness, thickness, crystal perfection, etc.)
D. Photoresist evaluation
E. Mask inspections
A. Process audit
A. Process audit/qualification
B. Environmental
C. Process monitors (thickness, pinhole and crack measurements)
D. C V Plotting
E. Calibration
A. Process audits
B. Environmental
C. Visual examinations
D. Photoresist evaluation (preparation, storage, application, baking, development and removal)
E. Etchant controls
F. Exposure controls (intensity, uniformity)
A. Process audits/qualification
B. Environmental
C. Temperature profiling
D. Quartz cleaning
E. Calibration
F. Electrical tests (resistivity, breakdown voltages, etc.)
A. Process audits/qualification
B. Environmental
C. Visual examinations
D. Epitaxy controls (thickness, resistivity cleaning, visual examination)
E. Metallization controls (thickness, temperature cleaning, SEM, C V plotting)
F. Glassivation controls (thickness, dopant concentration, pinhole and crack measurements)
A. Process audit
B. Environmental
C. Visual examinations
A. Process audit
B. Inspection

FIGURE 8-1. Process Flow Chart

## Quality Assurance

To assure that ail product shipped meets doiti internai National specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (Figure 8-2) are required. A flow, much more detailed than the one presented in Figure 8-2, governs the assembly of the devices and the performance of the environmental, mechanical and electrical tests.

## Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

## Qualification Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or

(3) new packages or asscmbly processes. Stress tests are run and the results are evaluated against existing reliability levels. These results must be better than or equal to current product for the new product to receive qualification.
New Product Designs-Receive, as a minimum, $+125^{\circ} \mathrm{C}$ operating life tests. Readouts are normally scheduled at 168 hours, 1168 hours and 2168 hours. The samples stressed are electrically good units from initial wafer runs. Additional life testing, consisting of high-temperature operating life test, 85/85 humidity bias tests and bias pressure pot (BPTH) tests, may be run as deemed necessary. Redesigns of existing device layouts are considered to be new product designs, and full qualification is necessary.
New Fabrication Processes-Qualifications are designed to evaluate the new process against the current process. Stress tests consist of operating life test, high-temperature operating life test, 85/85 humidity bias test and/or biased


FIGURE 8-2. Generalized Process Flow

## Reliability (Continued)

pressure pot (BPTH) test. In addition, package environment tests may be performed. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.
New Packages or Assembly Processes-Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix shown in Table $8-1$. In addition, $+100^{\circ} \mathrm{C}$ operating life tests, 85/85 humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed.

## Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occurring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported on a monthly basis. When a problem is identified, the respective engineering group is notified, and production is stopped until corrective action is taken.
Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

## Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing.

## Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at all product meetings, which gives high visibility to the reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

TABLE 8-1. Package Environmental Stress Matrix

| Test | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| GROUP B |  |  |
| Subgroup 1 Physical Dimensions | 2016 |  |
| Subgroup 2 Resistance to Solvents | 2015 |  |
| Subgroup 3 Solderability | 2003 | Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$ |
| Subgroup 5 Bond Strength <br> (1) Thermocompression <br> (2) Ultrasonic or Wedge | 2011 | (1) Test Condition C or D <br> (2) Test Condition C or D |
| GROUP C |  |  |
| Subgroup 2 <br> Temperature Cycling Constant Acceleration <br> Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination End-Point Electrical Parameters | $\begin{array}{r} 1010 \\ 2001 \\ \\ 1014 \end{array}$ | Test Condition C $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ <br> Test Condition E ( 30 kg ), $\mathrm{Y}_{1}$ Orientation and $\mathrm{X}_{1}$ Orientation <br> Test Condition D ( 20 kg ) for Packages over 5 gram weight or with Seal Ring Greater than 2 inches |



## Terminating F100K ECL Inputs

## INTRODUCTION

Many F100K designs require that certain inputs be preset to a HIGH or LOW level. Because of the construction of the F100K input circuitry, a LOW can be realized by simply leaving the input OPEN. However, a HIGH must be terminated in a special way, as simply tying the input to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ is unacceptable.

## DESIGN CONSIDERATIONS

The ranges of $V_{I H}$ and $V_{I L}$ across $V_{E E}(-4.2 \mathrm{~V}$ to -5.7 V for
 -1475 mV to -1830 mV respectively.
By staying within these ranges, the input conditions are assured. Figure 1 shows the voltage versus current for the F100K input transistor. If the input is tied to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ the input transistor saturates (Point D) which can damage internal circuitry. The best $\mathrm{V}_{\mathrm{IH}}$ to realize a HIGH is a voltage drop of 0.9 V below $V_{C C} / V_{C C A}$. As can be seen from the graph, this locates the quiescent point on the flat part of the curve (Point C) midway within the acceptable range of $\mathrm{V}_{\mathrm{IH}}$. Figure 2 shows three ways in which a HIGH can be realized on the input. These circuits allow the user to maintain constant input signals at optimum levels of $\mathrm{V}_{\mathrm{EE}}$ and temperature. Each circuit can handle multiple fanouts, the number depending upon the maximum current capability of the circuit. The designer should be aware that although Figures $2 A, 2 B$ and $2 C$

National Semiconductor Application Note 682
The ECL Applications Staff

supply ECL compatible signal levels, they differ in power consumption and susceptibility to changes in temperature and $\mathrm{V}_{\mathrm{EE}}$.
For designs where there are multiple unused inputs and extra logic gates available, fanout from the unused gates is possible. As an example of this, one gate of the 100302 is capable of driving ten quiescent inputs at voltage and current levels typical of F100K as shown in Figure 3.
Figure 4 shows, in more detail, the F100K pull-up scheme and the input circuitry. Although the circuits of Figure 2 are good examples, a detailed circuit analysis must include the $50 \mathrm{k} \Omega$ input resistor. In Figure 4A, the resistor ( $\mathrm{R}_{\mathrm{D}}$ ) which sets the diode biasing current is in parallel with the $50 \mathrm{k} \Omega$ input resistor. Likewise, the circuit of Figure $4 B$ shows that $R_{2}$ is in parallel with the input resistor.
The point to emphasize is never tie an F100K input to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ in order to realize a HIGH preset. Instead, the following is recommended:

- For a LOW level-leave input open or tie to $V_{E E}$.
- For a HIGH level-tie input to a diode drop or 0.9 V below $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$.
Remember also that the $50 \mathrm{k} \Omega$ input resistor must be considered in the circuit parameter calculations.



FIGURE 2. Equivalent Circuits for HIGH Termination


TL/F/10644-5
FIGURE 3. Utilizing Unused Gates to Terminate Multiple HIGHs and LOWs


A


B

FIGURE 4. Pull-Up Circuit Examples

## 300 MHz Dual Eight-Way Multiplexer/Demultiplexer

## INTRODUCTION

High speed multiplexing and demultiplexing is an integral part of the fast expanding telecommunications market, and can be used successfully in inter-computer and intra-computer wide-path communications. The National family of F100K ECL components provides an excellent solution to this design problem. This applications note describes a data transmission scheme that can transfer information at the rate of 75 Mbytes per second using only four twisted pair transmission lines.
Using 100341 8-Bit Shift Registers as parallel to serial and serial to parallel converters it is possible to design a simple
mux/demux that can operate at speeds as high as 300 MHz (Figure 1). The data to be multiplexed onto the transmission lines are applied as 16 bits ( 2 bytes) in parallel to the inputs of the 100341s where they are loaded into the registers under control of a synchronization pulse (SYNC). The mode of the 100341s is then changed to shift right and the data is transmitted on the output lines at the clock rate. When the last bit has been shifted out, the register is loaded with the next data to be transmitted.


TL/F/10645-1
FIGURE 1. 300 MHz Dual Eight-Way Multiplexer/Demultiplexer

The clock signal (CLOCK) is a free-running 300 MHz square wave and the synchronization signal (SYNC) goes low for one cloch cycle in every eight. These two signals are tranismitted along with the data to facilitate synchronized reception at the other end.

At the receiving end, the 100341s are used as simple shift registers that accomplish the task of demultiplexing the data. The SYNC signal controls the loading of the 100351 receiver registers.

## CLOCK AND SYNC GENERATION

The CLOCK signal in this application is a 300 MHz square wave generated with a voltage controlled oscillator coupled with a phase-locked loop. However, any available clock signal may be used at a frequency of DC to 300 MHz .
The SYNC signal is generated with the use of another 100341 connected as in Figure 2. This circuit is self starting, requiring no initialization for proper operation. When the SYNC signal is low, the data present at the parallel load inputs (P0-P7) are loaded into the register on the next clock pulse. When SYNC goes high (as a result of loading the high value on PO ), the mode of the 100341 is changed to shift right and the low loaded from P7 is shifted across the

100341 and appears on the SYNC wire eight cycles later. This in turn causes the 100341 to load again and the cycle repeats. The SYNC signal is high for seven clock cycles and low for one cycle, allowing it to be used as the synchronization pulse for the mux/demux circuit.


TL/F/10645-2
FIGURE 2. SYNC Pulse Generator

## CLOCK AND SYNC WAVEFORMS



## 100336 Four-Stage Counter/Shift Register

## INTRODUCTION

Many system designs require bi-directional counting and shifting functions. In most cases these functions are separate and unique requirements within the system design. For this reason, separate catalog parts are available. In some cases however, there is a requirement to have a device that will allow both counting and shifting functions. This is especially true in arithmetic, timing, sequential, or communication applications. National offers a very versatile counter/shift register in the 100336. This application note describes its function in detail and offers some simple uses.

## DESCRIPTION

The 100336 contains four synchronous, presettable flipflops. Synchronous operation is provided by having all flipflops clocked simultaneously so that all output changes coincide. This mode of operation eliminates counting spikes on the outputs which are normally associated with asynchronous counters. The clock input is buffered and triggers the four flip-flops on the rising (positive-going) edge.
The counters are fully programmable allowing the outputs to be set to either a HIGH (1) or LOW (0). As presetting is synchronous, setting low levels on the select inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{2}\right)$ (see Table I) disables the counter and causes the outputs to agree with the parallel inputs ( $P_{3}-P_{0}$ ) on the next rising edge of the clock. Loading is accomplished regardless of the levels of the two enables ( $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ ).

TABLE I. Function Select Table

| $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Function |
| :--- | :--- | :--- | :--- |
| L | L | L | Parallel Load |
| L | L | H | Complement |
| L | H | L | Shift Left |
| L | H | H | Shift Right |
| H | L | L | Count Down |
| H | L | H | Clear |
| H | H | L | Count Up |
| H | H | H | Hold |

National Semiconductor Application Note 684
ECL Applications Staff


The 100336 features both synchronous and asynchronous clear functions. The synchronous clear is performed by setting a binary five (101B) at the select inputs. On the next rising edge of the clock, the outputs will be forced LOW $(0000)$ regardless of the levels at the enable inputs. A bufferred asynchronous master reset (MR) is provided to clear all outputs LOW (0000) regardless of the levels of the clock, select, or enable inputs.
Count up/count down functions are selected with the select inputs ( $\mathrm{S}_{2}-\mathrm{S}_{0}$ ). These are synchronous operations and the outputs will increment/decrement in value on the rising edge of the clock. Both count enable inputs ( $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}})$ must be true (LOW) to count. The terminal count output $(\overline{\mathrm{TC}})$ becomes active-LOW when the count reaches zero in the DOWN mode or fifteen in the UP mode. Its duration is approximately equal to one period of the clock. The $\overline{T C}$ output is not recommended for use as a clock or synchronous reset for flip-flops. See Figure 1 for timing relationships in UP/DOWN counting.
In simple ripple-carry cascading applications the terminal count $\overline{\mathrm{TC}}$ is fed forward to enable the trickle enable ( $\overline{\mathrm{CET}}$ ) input. This method is increasingly inefficient as the counting chain lengthens. The upper limit of the clock frequency is determined by the clock-to-terminal-count delay of the first stage, the cumulative trickle-enable ( $\overline{\mathrm{CET}}$ )-to-terminal-count delay of the intermediate stages, and the trickle-enable-toclock delay of the last stage. For faster counting rates a carry-lookahead scheme is necessary. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to change over from MAX to MIN in the UP mode, or from MIN to MAX in the DOWN mode. Since the final count cycle takes 16 clocks to complete, there is ample time for the ripple to propagate through the intermediate stages. The critical timing that limits the counting rate is the clock-to-terminalcount of the first stage plus the parallel-enable-to-clock ( $\overline{C E P}$ ) setup time of the last stage. Figure 2 shows the connections for the fast-carry counting scheme.

## TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (Preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.
5. Inhibit counting.


TL/F/10646-1
Note: A MR overrides enables, data, and count inputs.
FIGURE 1. 100336 Used as Binary Up/Down Counter


FIGURE 2. Fast Carry Counting Scheme

Shift right/left modes are performed by making the appropriate selection on the selection inputs ( $\mathrm{S}_{2}-\mathrm{S}_{0}$ ). Each rising edge of the clock will cause the outputs to shift once in the direction which is selected. For shift-left operation, input $D_{3}$ is used as the serial input. For shift-right operation, input $\overline{\mathrm{CET}} / \mathrm{D}_{0}$ is used as the serial input. During shift operation the terminal count output reflects the level at the $Q_{3}$ output and the enables are "don't cares". See Figure 3 for shift operation timing relationships and shift sequences.
The 100336 provides two special modes of operation. The complement mode performs a one's complement of the outputs ( $Q_{3}-Q_{0}$ ) on the rising edge of the clock input regardless of the levels at the enable inputs. The hold feature is asynchronous and simply stops counting or shifting operations. Both complement and hold are performed with proper selection of the select inputs. For a complete truth table of the 100336 operation, refer to Table II.

## DESIGN CONSIDERTIONS

Presetting the parallel inputs ( $\mathrm{P}_{3}-\mathrm{P}_{0}$ ) may require a mixture of HIGH's and LOW's. A LOW may be preset by leaving the respective input open as the 100336 has a $50 \mathrm{k} \Omega$ resistor to $\mathrm{V}_{\mathrm{EE}}$ on the parallel inputs. A HIGH must never be made by tying the input to $V_{C C} / V_{C C A}$. This saturates the input transistor. Instead the input is set at a diode drop below $\mathrm{V}_{\mathrm{CC}}$ / $V_{C C A}$ for a preset HIGH. See Applications Note 682.

Unused output pairs $\left(\bar{Q}_{n} / Q_{n}\right)$ may be left unterminated. However, unused single outputs should be terminated to balance current switching in the outputs. For further details on system design considerations refer to the F100K ECL Design Guide. For AC/DC performance specifications and critical timing parameters refer to the 100336 datasheet.

## APPLICATIONS

Figures 4 and 5 demonstrate the use of the 100336 as UP/ DOWN BCD counters. One additional gate is required to detect the limit count. Notice the alternate gate methods in Figure 4. The 100304 shows the classical AND/NAND design similar to TTL and the 100302 shows the OR/NOR design of ECL.
Figure 6 incorporates the use of a 100331 triple D-type flipflop. By using one stage of the 100331, a 50/50 duty cycle can be realized from the divider.
An 8-bit parallel-to-serial shifter can be constructed by cascading two 100336's as shown in Figure 7. The third counter reloads another 8 -bit data word after eight serial counts.

TYPICAL, CLEAR, LOAD, AND COUNT SEQUENCES
Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary twelve.
3. Shift-left using $D_{3}$ as serial input.
4. Shift-right using $\overline{\mathrm{CET}} / \mathrm{D}_{0}$ as serial input.


TL/F/10646-3
Note 1: In shift-right mode $\overline{T C}$ follows the $Q_{3}$ output.
Note 2: In shift-left mode $\overline{T C}$ follows the $D_{3}$ input.
Note 3: CEP is a "don't care" during shifting.
FIGURE 3. 100336 Used as Bi-Directional Shift Register

| Truth Table$Q_{0}=L S B$ |  |  |  |  |  |  | TABLE II. Truth Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inputs |  |  |  |  |  |  |  | Outputs |  |  |  |  | Mode |
| MR | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | CEP | $\mathrm{D}_{0} / \overline{\text { CET }}$ | $\mathrm{D}_{3}$ | CP | $\mathrm{a}_{3}$ | $\mathrm{a}_{2}$ | $\mathrm{Q}_{1}$ | $\mathrm{a}_{0}$ | TC |  |
| L | L | L | L | X | X | x | $\checkmark$ | $\mathrm{P}_{3}$ | $\mathrm{P}_{2}$ | $P_{1}$ | $\mathrm{P}_{0}$ | L | Preset (Parallel Load) |
| L | L | L | H | X | X | x | $\checkmark$ | $\overline{\mathrm{Q}}_{3}$ | $\overline{\mathrm{Q}}_{2}$ | $\overline{\mathrm{Q}}_{1}$ | $\overline{\mathrm{Q}}_{0}$ | L | Invert |
| L | L | H | L | X | X | X | $\checkmark$ | $\mathrm{D}_{3}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{1}$ | $\mathrm{D}_{3}$ | Shift Left |
| L | L | H | H | X | X | X | $\checkmark$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{1}$ | $Q_{0}$ | $\mathrm{D}_{0}$ | $\mathrm{Q}_{3}{ }^{*}$ | Shift Right |
| L | H | L | L | L | L | X | $\checkmark$ |  | - $Q_{3}$ | minus |  | (1) | Count Down |
| L |  | L | L |  |  |  | X | $\begin{aligned} & \hline Q_{3} \\ & Q_{3} \end{aligned}$ | $\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$ | $\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$ |  | Count Down with CEP not active Count Down with $\overline{\text { CET }}$ not active |
| L | H | L | H | X | X | X | $\checkmark$ | L | L | L | L | H | Clear |
| L | H | H | L | L | L | X | $\sim$ |  | $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | plus |  | (2) | Count Up |
|  |  | H H |  |  |  |  | X x x | $\begin{aligned} & \hline Q_{3} \\ & Q_{3} \end{aligned}$ | $\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$ | $\begin{aligned} & Q_{0} \\ & Q_{0} \\ & \hline \end{aligned}$ |  | Count Up with $\overline{\text { CEP }}$ not active Count Up with CET not active |
| L | H | H | H | X | X | X | X | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{2}$ | $Q_{1}$ | $\mathrm{Q}_{0}$ | H | Hold |
| H | L | L | L | $\times$ | X | x | X | L | L | L | L | L |  |
| H | L | L | H | x | x | x | x | L | L | L | L | L |  |
| H | L | H | L | X | X | X | x |  | L | L | L | L |  |
| H | L | H | H | x | x | x | x | L | 1 | L | L | L |  |
| H | H | L | L | x | L | x | x | L | L | L | L | L | Asynchronous |
| H | H | L | L | x | H | x | x |  | L | L | L | H |  |
| H | H | L | H | x | x | x | x | L | L | L |  | H |  |
| H | H | H | L | x | x | x | x |  | , | L |  | H |  |
| H | H | H | H | x | x | $\times$ | x | L | L | L | L | H |  |
| $\begin{aligned} \hline \text { (1) }= & L \text { if } Q_{0}-Q_{3}=L L L L \\ & H \text { if } Q_{0}-Q_{3} \neq L L L L \\ \text { (2) }= & L \text { if } Q_{0}-Q_{3}=H H H H \\ & H \text { if } Q_{0}-Q_{3} \neq H H H H \\ H= & \text { HIGH Voltage Level } \\ \mathrm{L}= & \text { LOW Voltage Level } \\ \mathrm{X}= & \text { Don't Care } \\ \sim= & \text { LOW-to-HIGH Transition } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |



TL/F/10646-5
FIGURE 5. BCD Down Counter (9-0)


FIGURE 6. Divide by Five
SYMMETRICAL
$F_{\text {OUT }}=F_{I N} \div 5$
TL/F/10646-6


FIGURE 7. 8-Bit Shift Left
TL/F/10646-7

ECL Backplane Design

## INTRODUCTION

Designers are constantly trying to improve the performance of their systems. In many applications, this can be accomplished by increasing the speed of the system backplane. As system bandwidth requirements exceed $50 \mathrm{MHz}, \mathrm{ECL}$ is the logic of choice over TTL. ECL devices are designed for transmission line applications which means that ringing, reflections, and noise are minimized. These problems are not easily handled with TTL devices. ECL devices are the fastest in common use today and have increased steadily in popularity over the past 10 years with the additional speed requirements of many systems. With this popularity have come improvements such as increased reliability, power reduction, and better ESD protection.

ECL devices today offer the flexibility of single-ended or differential backplanes. National Semiconductor has responded to the increasing need for ECL backplanes by introducing octal registers, latches and translators. The registers and latches offer the flexibility to drive a $25 \Omega$ (with cutoff) or $50 \Omega$ load impedance. The $25 \Omega$ drivers are intended to drive a $50 \Omega$ transmission line which is doubly terminated in its characteristic impedance, or a single low impedance $25 \Omega$ line. Considerations such as transmission line media (microstrip, stripline, coaxial, twisted pair, etc.) terminations, connectors, power planes and loading effects must all be understood to design the optimum system.

## National Semiconductor Application ivote 706 <br> Doug Bush Applications Engineer



## ECL/TTL PERFORMANCE PARAMETERS

There are several advantages associated with using ECL. ECL is a non-saturating logic, as opposed to TTL, which results in much faster switching speeds for drivers tied to the backplane. The ECL circuit contains a differential amplifier with its outputs being a function of the difference between two input voltages; where one is a reference voltage $\left(\mathrm{V}_{\mathrm{BB}}\right)$ and the other $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is a logic HIGH or LOW (see Figure 1). The differential inputs determine which path the constant current (Is) will flow. An internal reference circuit establishes a stable $\mathrm{V}_{\mathrm{BB}}$ voltage of -1.32 V . When a LOW level ( -1.730 V typical) signal is applied to $\mathrm{V}_{\mathrm{IN}}$, Q1 "cuts off'. Transistor Q2 is turned on with collector current through the Q2 branch being supplied by the current source ( $\mathrm{I}_{\mathrm{S}}$ ). This sets up a LOW level on A and a HIGH level on the compliment output as long as the output is properly terminated.

A HIGH level ( -0.970 V typical) applied to $\mathrm{V}_{\mathrm{IN}}$ will then turn on Q1 and "cutoff" Q2. This will set up a HIGH voltage level on A and a LOW level on its compliment. Since the current is nearly constant at all times, even during switching, current spikes are minimized on the power supply. This is an important feature of ECL (unlike TTL) because the power requirement is unaffected by frequency. ECL becomes more favorable at frequencies above 50 MHz with a $50 \%$ duty cycle. The outputs of ECL devices require typically an external termination resistor and termination voltage ( $V_{T T}$ ) to develop the proper output voltage levels.


FIGURE 1. ECL Gate

ECL outputs are perfectly suited to drive transmission lines. With an output impedance of $6 \Omega$ to $8 \Omega$ and rise times less than 1 ns , reflections are minimized resulting in a clean signal.
A comparison of the approximate input and output capacitance values for non-I/O IC's shows that TTL devices generally run higher than ECL devices. These parameters are important because they in part determine the amount of loading that will be present on the backplane. With reduced loading on the backplane comes increased speed.

|  | ECL (PCC) | TTL (PDIP) |
| :--- | :---: | :---: |
| Input Capacitance | 3.0 pF | 5.0 pF |
| Output Capacitance | 3.0 pF | 5.0 pF |

ECL also has the ability to drive low impedance transmission lines (i.e., 25ת). As the transmission line impedance decreases, the speed of the transmitted signal increases. The lower impedance also reduces the effects of noise. The National Semiconductor F100K 300 Series octal devices were specifically designed for this type of application.

## ECL TERMINAL SCHEMES

## Parallel Termination

Termination of ECL outputs can be accomplished in several different ways. The most common way is to terminate the emitter follower output in the transmission line characteristic impedance $\left(Z_{O}\right)$ to a $V_{T T}$ voltage of -2.0 V as shown in Figure 1. This method is used with $\mathrm{Z}_{\mathrm{O}}=50 \Omega$ ) to set specifications for most of the F100K 300 Series devices.

## Thevenin Termination

The Thevenin equivalent termination method (shown in Figure 2) requires one resistor be connected between the end
of the line to be terminated and the $\mathrm{V}_{\mathrm{CC}}$ rail, with another placed between the end of the line and the $V_{E E}$ supply. This method will of course eliminate the need for a $-2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{TT}}$ supply, but the penalty is that the power dissipated will increase nearly eight times from the previous method. Several designers avoid this method for exactly that reason.

## Series Termination

An alternate way to terminate the output is by a series termination scheme. With this arrangement, a resistor pair is placed directly at the output of the driver (shown in Figure 3). The series damping resistor (RS) should be chosen such that;

$$
Z_{\mathrm{O}}=\mathrm{RS}+\mathrm{R}_{\mathrm{OUT}}
$$

where: $Z_{O}=$ characteristic impedance of the transmission line
$\mathrm{R}_{\text {OUT }}=$ output resistance of the gate
RS $=$ series damping resistor
The value of ROUT for the F100K 300 Series devices is $6 \Omega$ when the output is conditioned to a HIGH level, and $8 \Omega$ when conditioned to a LOW level. An average value of $7 \Omega$ is used when calculating the value of RS. The RE resistor in this termination scheme is used to discharge the line when the driven output goes into a low condition. To ensure that the proper amount of current needed is available, RE is chosen by the formula:

$$
\mathrm{RE}<\mathrm{Z}_{\mathrm{O}}\left[\left(\mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{EE}}\right) / 0.49\right]-\mathrm{RS}-\mathrm{Z}_{\mathrm{O}}
$$

The table (shown in Figure 3) gives the resistor values of RS and RE max for $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ ) needed for several different characteristic impedance transmission lines.


FIGURE 2. Thevenin Termination


FIGURE 3. Series Termination Scheme

The advantages of the series termination method is that an additional $\mathrm{V}_{\mathrm{T}}$ supply is not required (unlike parallel termination), and all reflections back to the driver are absorbed by the series resistor (RS). This makes series termination ideal for situations in which ringing and overshoots are present on the transmission line. A voltage divider action occurs at the beginning of the transmission line (marked $\mathbf{A}$ in Figure 3) which means that only half the amplitude of the driver output will be present along the line until the signal reaches the end of the transmission line. For this reason, loads should not be distributed along the line. For parallel and thevenin terminations, the full amplitude is seen on the line at all times.
Although there are other termination schemes available, the ones discussed above are the easiest, cost effective and most popular.

## BOARD DESIGN CONSIDERATIONS

As with any good design, transmission line media, power/ ground distribution, connectors, board layout, decoupling, and thermal effects must all be considered.
When designing a backplane with F100K 300 Series ECL logic, a controlled impedance transmission line is recommended. If the transmission line characteristic impedance is not matched along the line, reflections will occur. Available transmission line media include microstrip, stripline, coax, ribbon cable, and twisted pair to name a few. The most popular transmission line media for ECL is microstrip and stripline. Stripline is embedded within the layers of the PC board between two ground layers, while microstrip is run on the top and/or bottom layers of the board. Microstrip and
stripline enable the designer to have very accurate and controlled impedances. This becomes important when determining delays and terminations within a designed system. It is important to remember that all transmission line types mentioned have a distinct propagation delay/unit length associated with them. As an example, microstrip lines on G10/FR4 boards have a propagation delay of approximately $1.77 \mathrm{~ns} / \mathrm{ft}$.
In order to transfer ECL signals from one board to another, a connector is needed. In most cases, the connector will cause impedance discontinuities. In order to keep reflections and signal distortions at a minimum, the discontinuity should be as small as possible. Although impedance matched connectors are expensive, the distortions that result are nearly negligible. Connectors also have a capacitance associated with them on the order of $1 \mathrm{pF}-3 \mathrm{pF}$. This capacitance will of course have a direct effect on the backplane loading. When using edge connectors to interface data from a motherboard and a daughter card, several pins ( $>10 \%$ ) should be dedicated to power and ground in order to maintain signal and power fidelity from one board to another. An example of this is shown in Figure 4.
When using a PC board with ECL and TTL logic together, the most noise will generally be found at the TTL ground. Since ECL logic levels are referenced directly from the $V_{C C}$ line, it is critical to have a dedicated ECL $V_{C C}$ plane that is stable and noise free. For this reason, the TTL ground and ECL $V_{C C}$ planes are placed as far from each other as possible. Variations on $\mathrm{V}_{\mathrm{TT}}$ and $\mathrm{V}_{\mathrm{EE}}$ are more tolerable. Figure 5 shows a typical layout for an eight layer TTL/ECL PC board. Signals are run on both sides of the board for ease of connecting signals.


TL/F/10910-4
FIGURE 4. PC Board Pin Distribution

| LAYER 1 | Signal |
| :--- | :--- |
| LAYER 2 | TTL Ground |
| LAYER 3 | $\mathrm{TTL}+5 \mathrm{~V}$ |
| LAYER 4 | $\mathrm{V}_{\mathrm{TT}}$ |
| LAYER 5 | Signal/Thermal |
| LAYER 6 | $\mathrm{ECL}-4.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{EE}}\right)$ |
| LAYER 7 | ECL 0.0V $\left(\mathrm{V}_{\mathrm{CC}}\right)$ |
| LAYER 8 | Signal |

FIGURE 5. PC Board Power Planes
Inductance is always present in any conductor. As the rate of change in current through an inductor increases, the greater the induced voltage will be since $V=L(d / / d t)$. With digital systems changing logic levels, a change in current will inevitably occur and produce unwanted voltage drops.

Oscillations are also connected with additional inductance present in digital circuits. This implies that inductance in board design should be kept at a minimum.
Inductance is very dependant on geometry, with solid sheet conductors being the best for keeping inductance at the lowest possible level. This is the reason why planes (as in Figure 5) instead of grids, combs, or traces are used for power and ground. It is best to mount IC's directly over ground planes and connect the device ground pins to it whenever possible. It is also recommended that decoupling capacitors of $0.01 \mu \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$ be placed between $\mathrm{V}_{\mathrm{EE}}$ and $V_{C C}$, and between $V_{T T}$ and $V_{C C}$.
The power required for different IC's will vary, meaning that the heat dissipated by each will change. In order to maintain gate junction temperatures, cooling devices may be necessary. As an example, planes can be used as thermal mass resulting in an effective heat sink. Cooling is important because if junction temperatures exceed manufacturer specifications, circuits can fail, degrade, or function incorrectly.

## SYSTEM DESIGN CONSIDERATIONS

## Wired-OR Configuration

F100K 300 Series devices have an emitter follower configuration on each output. The open emitter outputs of several devices can be tied together to create a Wired-OR configuration. An example of this is shown in Figure 6. This configuration has the advantage of obtaining the OR operation without using an external gate, thus reducing the package count of the design. The Wired-OR also saves on power by reducing the number of terminations needed (one termination for each Wired-OR grouping), and increases the speed of the system by removing the additional propagation delay that would have been inherent with an additional OR gate. Since ringing and undershoots are functions of the transmission line intrinsic capacitance and inductance, it is important to minimize these by using the shortest trace lengths possible.

Although the Wired-OR allows for additional levels of logic, there is a penalty. This penalty is a reduction in the LOW lovel noise margin. As the number of outputs tied together increases, the $\mathrm{V}_{\mathrm{OL}}$ level rises significantly. With a single output in the LOW state of approximately -1.70 V driving a $50 \Omega$ impedance terminated in -2.0 V , a typical IOL current of 6.0 mA flows. In the Wired-OR state with four outputs tied together (all in the LOW state), the loL current supplied by each output is nearly equal. The decreased current being supplied by each output transistor due to current sharing results in a reduction of the $V_{B E}$ junction voltage which in turn raises the $V_{O L}$ level. As a rule of thumb, the $V_{O L}$ level will be raised approximately 25 mV for every two outputs that are tied together on a bus. It should also be mentioned that the $\mathrm{V}_{\mathrm{OH}}$ levels will rise as the number of outputs tied together increases and thus the high level noise margin increases. This effect is usually ignored since $\mathrm{V}_{\mathrm{OH}}$ is moving away from the threshold.


FIGURE 6. Wired-OR Configuration

## Cutoff Drivers

The $V_{O L}$ noise margin degradation found in Wired-OR networks can be avoided by using Nationals octal cutoff driver devices. When the output enable (see Figure 7) of the cutoff driver is brought to a HIGH level, the base of the output transistor is biased to a level of -1.5 V to -1.6 V which in turn "cuts it off". This implies that a cutoff output will not source any current. With this, the HIGH and LOW level noise margins will not change from the non Wired-OR situation. With the output in the cutoff state, an output capacitance of 3 pF is present on the backplane.

## Loading Effects

As the number of devices tied to the backplane increases, distributed loading effects due to gate input and output capacitance need to be considered. The additional capacitance on the backplane reduces the effective characteristic impedance of the transmission line. This change indicates that in order to avoid reflections and terminate the line properly, a new terminating resistor needs to be calculated. The characteristic impedance for a lossless transmission line is calculated by:

$$
Z_{O}=\sqrt{\left(L_{0} / C_{O}\right)}
$$

Where: $L_{O}=$ intrinsic inductance/unit length
$\mathrm{C}_{\mathrm{O}}=$ intrinsic capacitance/unit length
$C_{D}=$ distributed capacitance

With the effects of distributed loading on the transmission line, the effective characteristic impedance becomes:

$$
Z^{\prime} O=\sqrt{\left(L_{O} /\left(C_{O}+C_{D}\right)\right.}=Z_{O} \div \sqrt{\left(1+C_{D} / C_{O}\right)}
$$

As an example, consider the distributed loading scheme shown in Figure 8. A $50 \Omega$ microstrip line, 10 inches long, on glass epoxy board ( $\mathrm{Er}=5.0$ ), is used as the transmission line with five equally spaced distributed loads.

$$
\mathrm{C}_{\mathrm{O}}=\mathrm{t}_{\mathrm{PD}} / \mathrm{Z}_{\mathrm{O}}=0.148 \mathrm{~ns} / \mathrm{inch} \div 50 \Omega=2.96 \mathrm{pF} / \mathrm{inch}
$$

With an input impedance of approximately $3.0 \mathrm{pF} /$ gate (for PLCC devices);

$$
\begin{aligned}
C_{D}=Z_{O} \div \sqrt{\left(1+C_{D} / C_{O}\right)} & =5(3.0 \mathrm{pF}) / 10 \text { inches } \\
& =1.5 \mathrm{pF} / \text { inch }
\end{aligned}
$$

This gives an effective transmission line impedance of $Z^{\prime}{ }_{O}=Z_{O} \div \sqrt{\left(C_{O}+C_{D}\right)}=50 \div \sqrt{(1+(1.5 / 2.96))}=40.7 \Omega$
This implies that in order to terminate the transmission line properly, a terminating resistor (RT) of $40 \Omega$ is required.


TL/F/10910-6
FIGURE 7. ECL Cutoff Driver

${ }^{t_{P D}}$ (MICROSTRIP GLASS EPOXY) $=1.77 \mathrm{~ns} / \mathrm{ft}=0.148 \mathrm{~ns} / \mathrm{inch}$
FIGURE 8. Distributed Loading Example

## APPLICATION EXAMPLES

In order to transfer data efficiently on an ECL backplane, ECL drivers receivers, translators, and transceivers are required. Single ended ECL backplane devices include the following:

| 100328 | Octal ECL/TTL Bidirectional Translator with <br> Latch |
| :---: | :--- |
| 100329 | Octal ECL/TTL Bidirectional Translator with <br> Register |
| 100343 | Octal Latch ( $50 \Omega$ drive) |
| 100344 | Octal Latch with Cutoff Drivers ( $25 \Omega$ drive) |
| 100352 | Octal Buffer with Cutoff Drivers ( $25 \Omega$ drive) |
| 100353 | Octal Register (50 2 drive) |
| 100354 | Octal Register with Cutoff Drivers ( $25 \Omega$ drive) |
| Differential ECL backplane devices include the following: |  |
| 100314 | Quint Differential Line Receiver |
| 100316 | Quad Low Skew Differential Cutoff Driver <br> ( $25 \Omega$ drive) |

100319 Hex Single-Ended Input, Differential Output Cutoff Driver ( $25 \Omega$ drive)
100324 Hex TTL-to-ECL Translator
100325 Hex ECL-to-TTL Translator
100397 Quad Differential ECL/TTL Bidirectional Translator/Driver with Cutoff ( $25 \Omega$ drive)
100398 Quad Differential ECL/TTL Bidirectional Translator/Driver with Cutoff ( $25 \Omega$ drive), with TTL Control

## Single-Ended ECL Backplane

A single-ended ECL backplane implies that signals are transmitted as a voltage on a singie iine reierenced to AC ground. In the example shown in Figure 9, several listeners and talkers are tied to the common backplane. The $50 \Omega$ transmission line is terminated at both ends of the line in its characteristic impedance of $50 \Omega$. This, in effect, requires a $25 \Omega$ driver. This need is satisfied with National Semiconductors 100344 octal latch with $25 \Omega$ cutoff drive, 100352 octal buffer with $25 \Omega$ cutoff drive, and the 100354 octal register with $25 \Omega$ cutoff drive. When designing such a system, the effects of connectors, transmission line delay, and load capacitance should all be considered as discussed previously.

## Differential ECL Backplane

A single-ended backplane is susceptible to ground potential differences at the ends of the line thus creating distorted signals being transmitted or received. For this reason, a sin-gle-ended backplane is not recommended for noisy environments. Differential line driving (as shown in Figure 10) has a high noise rejection which results in a more reliable data transmission. Common mode voltages of $\leq-2.0 \mathrm{~V}$ are rejected with an input voltage differential of 150 mV required for full output swing. (Please refer to $\mathrm{V}_{\mathrm{CM}}$ specification for the 100314 in the F100K ECL Databook.)


FIGURE 9. Single-Ended ECL Backplane

The differential line driver and receivers communicate over a pair of wires where one is a HIGH voltage level and the other must be a LOW. If external noise occurs near the differential line, both wires will obtain the same distortions. Since the noise present on both of the lines is the same, the signal received at the terminated end of the line will not be effected because it is obtained by the difference of the signals on the lines. The difference of two lines will be the same with or without the noise problem.
The advantage of a differential line driving scheme is the clean transmission of signals in noisy or industrial environments. As the differential line driving application in Figure 10 shows, in order to isolate unused outputs from the line $25 \Omega$ cutoff drivers are required. With the introduction of National Semiconductors 100316 quad differential $25 \Omega$ cutoff driver, 100319 hex single-ended input, differential output $25 \Omega$ cutoff driver, and 100397/100398 ECL/TTL quad bidirectional translators/drivers with latch and ECL $25 \Omega$ cutoff drive, this
type of application is now possible. The 100397 has ECL control pins while the 100398 offers TTL control pins.

## ECL Transceiver

Although an ECL transceiver does not currently exist, creating one is rather simple when using $25 \Omega$ cutoff driver devices as shown in Figure 11. This device could be used to communicate between a single-ended or differential ECL bus and other circuitry. The circuit shown uses two 100352 devices configured to give a transceiver operation. The function table for the operation of the transceiver is shown in Figure 11. In order to transmit data from A to $\mathrm{B}, \mathrm{OEN}_{2}$ is HIGH while $\overline{\mathrm{OEN}}_{1}$ is LOW. The HIGH level on $\overline{\mathrm{OEN}}_{2}$ "cuts off" the bottom driver and allows for data transfer from $A$ to B. To transfer data from $B$ to $A, \overline{O E N}_{1}$ is held HIGH with $\overline{\mathrm{OEN}}_{2}$ at a LOW level. When both output enable pins are at a HIGH level, both 100352 devices are in the cutoff state which results in a lower than low $V_{\text {OLZ }}$ state $\left(V_{O L Z}=\right.$ -2.0 V ) at points A and B .


TL/F/10910-9
FIGURE 10. Differential ECL Backplane (1-Bit)


Truth Table

| $\overline{\mathrm{OEN}}_{1}$ | $\overline{\mathrm{OEN}}_{2}$ | Outputs |
| :---: | :---: | :---: |
| L | L | A, B HIGH |
| L | H | Bus A Data to Bus B |
| H | L | Bus B Data to Bus A |
| H | H | A, B, Cutoff ( $\mathrm{V}_{\text {OLZ }}$ ) |

TL/F/10910-10
FIGURE 11. ECL Transceiver

## Operating ECL from a Single Positive Supply

## INTRODUCTION

ECL is normally specified for operation with a negative $V_{E E}$ power source and a negative $V_{T T}$ termination supply. This is the optimum operating configuration for ECL but not the only one. Operating ECL from a positive $\mathrm{V}_{\mathrm{CC}}$ supply is a practical alternative that is gaining in popularity. Positive referenced ECL, or PECL as it is referred to, has been implemented in various mixed signal ASIC for use in the Video Graphics and Communications fields and is used in clock distribution as well. New single supply translator chips are becoming available to facilitate the interface of PECL logic levels to TTL and back again. Logic designers who strive for maximum speed in a system, now can easily replace sections of TTL logic with ECL and operate in PECL fashion from the common TTL VCC supply.

## STANDARD NEGATIVE SUPPLY

## ECL OPERATION AND WHY

Figure 1 shows F100K logic elements operating in standard negative supply ECL configuration. The most positive potential is the primary voltage reference for ECL operation. Standard ECL input and output levels are therefore negative potentials referenced to the stable passive Ground (OV). The inherent F 100 K voltage compensation permits stable input and output levels over a broad range of $V_{E E}$ 's; i.e., -4.2 to -5.7 VDC for 300 Series F100K. Thus ECL logic operating from $\mathrm{a}-4.2 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$ is compatible to logic operating from a -5.7 V supply assuming both are referenced to a common OV Ground.

Since ECL logic outputs only source currents that originate from the potential applied to its $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ pins, the use of a OV low impedance and low inductance ground potential is the optimum choice for operation. The use of a continuous

## National Semiconductor Application Note 780 John Davis


copper ground plane as the primary ECL reference is the ideal source for the high frequency transient currents demanded by the logic during switching. Note that despite the ideal nature of a ground plane as the primary ECL. reference, when mixing TTL (or other noisy circuitry) into ECL systems, the recommendation is to reference the TTL to a separate ground plane. This is to keep the high transient TTL switching energy out of the primary ECL reference and preserve ECL noise margins.
When F100K ECL output signal interconnection lengths are direct and short enough, transmission line effects may be ignored and then only a RE output biasing resistor is required for logic operation. Please refer to section seven of the "F100K ECL Logic Databook and Design Guide" for a more detailed explanation of transmission line effects and ECL termination techniques. The RE resistor provides bias to keep the ECL emitter follower output transistor on for both high and low logic states. The RE resistor is normally connected between the ECL output and the most negative potential ( $V_{\mathrm{EE}}$ ) thus permitting "single" supply operation.
The $V_{E E}$ potential will ideally be distributed to the ECL logic from a power plane or bus which has low DC series resistance and low AC impedance. The low AC impedance is essential to supply the transient energy needed during switching. Although the inherent nature of ECL by design is to maintain essentially constant $I_{E E}$ current even during switching, the charging and discharging of internal and external capacitances and the switching currents in the RE resistors place transient demands on $\mathrm{V}_{\mathrm{EE}}$. The degree to which the user can maintain complementary balance of ECL output loading will greatly influence the nature of the transient lee demands.


F100K 300 Series Voltage Levels Specified for Standard Negative $V_{\text {EE }}$ Supply Operation

| Level | Min | Typ | Max | Units |
| :--- | :---: | :---: | :---: | :---: |
| $V_{\mathrm{OH}}$ | -1.025 | -0.955 | -0.87 | VDC |
| $\mathrm{V}_{\mathrm{IH}}$ | -1.165 |  | -0.87 | VDC |
| $\mathrm{V}_{\mathrm{BB}}$ |  | -1.320 |  | VDC |
| $\mathrm{V}_{\mathrm{IL}}$ | -1.83 |  | -1.475 | VDC |
| $\mathrm{V}_{\mathrm{OL}}$ | -1.83 | -1.705 | -1.62 | VDC |

Conditions: $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}=0.0 \mathrm{VDC}$ Ground $V_{E E}=-4.2$ to -5.7 VDC $\mathrm{RT}=50 \Omega ; \mathrm{V}_{\mathrm{TT}}=-2.0 \mathrm{VDC}$ All Levels W.R.T. Ground

FIGURE 1. ECL Standard Operation from a Negative $V_{\text {EE }}$ Supply

The usual recommendation for the $V_{E E}$ plane is to bypass every ECL device at its VEE pin with a good RF quality ceramic capacitor. The point at which the RE resistors return to the VEE plane should also be bypassed particularly if it is a single return from a multiple resistor R-PAK. Values from $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ of the "High K Class II Dielectric" ceramic 25 U grade capacitor are recommended for commercial applications. The lower series inductance inherent in the leadless chip style capacitor is preferred over leaded types for highest frequency performance. The "Mid K Class II Dielectric" ceramic X7R grade capacitor offers acceptable bypass operating characteristics over the broader temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Bulk bypassing of the $V_{E E}$ plane with a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is recommended at the point where the $\mathrm{V}_{\text {EE }}$ supply connects to the plane. Aluminum or Tantalum Electrolytic capacitors are usually used for bulk bypassing. Miniaturized surface mount Electrolytic capacitors are available for use in high density component applications.
In typical ECL system designs, some inter-connection lengths will exceed the critical values and force the consideration of transmission line effects. The most common high performance and power efficient termination scheme requires the use of a negative $2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{TT}}$ termination supply. A single RT resistor in conjunction with the $\mathrm{V}_{\mathrm{TT}}$ supply will terminate each output's transmission line in its characteristic impedance and will also provide optimum bias to the ECL output transistor.
The $V_{T T}$ potential will ideally be distributed to the RT terminators from a power plane which has low $D C$ series resist-
ance and low AC impedance. The low AC impedance is essential to supply the transient energy in the termination resistors during switching. Bypassing $\mathrm{V}_{T T}$ wherever RT resistors return to the $\mathrm{V}_{T T}$ plane is essential to maintaining the low AC impedance of the plane. Capacitor recommendations for bypassing $V_{T T}$ are the same as for $V_{E E}$ above.
The regulation of the $V_{T T}$ supply is not critical. A variation of $\pm 5 \%$ from nominal causes typically only $\pm 12 \mathrm{mV}$ variation in output levels for $50 \Omega$ terminations or $\pm 7 \mathrm{mV}$ variation for $100 \Omega$ terminations. Note that in standard ECL configuration, the $V_{T}$ supply need only sink current into its negative terminal (single ended $V_{T T}$ operation with positive terminal grounded). $V_{T T}$ here will typically be a simple series regulated supply. If the need for single negative supply operation is paramount, a less power efficient Thevenin termination scheme can be used between the $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{EE}}$ planes and selective use of series damping in conjunction with RE resistors may also be implemented.

## THE PECL TRANSFORMATION

Transforming ECL from negative supply to positive supply operations is conceptually quite easy. Just offset all standard ECL operating potentials by a positive amount equal to an absolute value within the normal $\mathrm{V}_{\mathrm{EE}}$ operating range. For F100K 300 Series the normal $V_{E E}$ range is -4.5 to -5.7 VDC . A 5 V offset fits nicely within the range and happens to match the nominal potential for TTL systems. Thus $\mathrm{V}_{\mathrm{EE}}$ becomes the 0 V ground with $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ offset to +5 V and $V_{T T}$ (if required) offset to +3 VDC. Figure 2 illustrates the transformation (from Figure 1).


F100K 300 Series VoItage Levels Specified for Positive VCC Supply [PECL] Operation

| Level | Min | Typ | Max | Units |
| :--- | :---: | :---: | :---: | :---: |
| $V_{O H}$ | $V_{C C}-1.025$ | $V_{C C}-0.955$ | $V_{C C}-0.87$ | $V_{D C}$ |
| $V_{I H}$ | $V_{C C}-1.165$ |  | $V_{C C}-0.87$ | $V_{D C}$ |
| $V_{B B}$ |  | $V_{C C}-1.320$ |  | $V_{D C}$ |
| $V_{I L}$ | $V_{C C}-1.83$ |  | $V_{C C}-1.475$ | $V_{D C}$ |
| $V_{\mathrm{OL}}$ | $V_{C C}-1.83$ | $V_{C C}-1.705$ | $V_{C C}-1.62$ | $V_{D C}$ |

Conditions: $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}=4.2$ to 5.7 VDC
$V_{E E}=0.0 \mathrm{~V}$ to Ground
$R T=50 \Omega ; V_{T T}=V_{C C}-2.0 \mathrm{VDC}$
All Levels W.R.T. Ground
FIGURE 2. ECL Operation from a Positive VCc Supply [PECL]

## CONSIDERATIONS FOR PECL OPERATION

All the considerations previously discussed for standard operation still apply; i.e., solid isolated and well bypassed reference planes, etc. Some additional considerations apply for PECL operation.
PECL input and output levels are referenced to the active positive $V_{\mathrm{CC}}$ rail that is variable and subject to line and load regulation. PECL level compatibility between sub-systems or systems can be difficult if precise $\mathrm{V}_{\mathrm{CC}}$ distribution and accuracy are not maintained throughout. Differential PECL signal transmission and reception between systems may be necessary to ease the $V_{\mathrm{CC}}$ accuracy burden.
This active positive $V_{C C}$ potential is the primary reference for PECL levels and the source of PECL switching currents. The distribution of $V_{C C}$ to PECL logic is just as important as is the ground distribution to the standard ECL configuration. $\mathrm{V}_{\mathrm{CC}}$ should be delivered from a continuous copper plane with liberal use of high frequency decoupling capacitors at each PECL device's $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ pins.
If TTL or other noisy circuitry is to share the $V_{C C}$, a separate powerplane should be provided. TTL switching transients should be isolated from the PECL VCC plane to preserve PECL noise immunity. Again, differential PECL operation may be warranted for situations where noise control is limited and good common mode noise rejection is required.
The various requirements for output termination and bias previously discussed for standard ECL applies directly to PECL operation. Note that the nominal $+3 V V_{T T}$ supply in PECL mode is required to sink current into its positive terminal (single ended $V_{T T}$ operation with negative terminal grounded) from the emitter follower outputs throught the RT resistors. A current sinking $V_{T T}$ supply will be necessary if operated single ended to ground. The $V_{T T}$ supply should track the $V_{C C}$ supply keeping a nominal 2 V offset to assure optimum biasing of the outputs.
The $\mathrm{V}_{\mathrm{EE}}$ for PECL operation is OV or ground potential and should be distributed from a continuous copper plane in consideration of handling the transients switching currents from the RE bias resistors. Although the PECL VEE plane will be somewhat tolerant of TTL noise, the recommenda-
tion is to isolate TTL transient switching energy in a separate TTL ground plane.

## POWERPLANES

The dedication and organization of powerplanes is essential to successful ECL system design.
Figure 3 illustrates an optimum powerplane implementation for Standard ECL operation on a printed circuit mother board in conjunction with TTL circuitry. Figure 4 shows an optimum powerplane configuration for PECL operation. Note that the dedication and positioning of separate ECL and TTL powerplanes is intended to preserve ECL noise immunity when operating in a mixed signal environment.

| Copper Plane 1 | Signal |
| ---: | :--- |
| 2 | TTL oV Ground |
| 3 | TTL +5V VCC |
| 4 | Auxillary GND/Power/Thermal |
| 5 | ECL $-2 \mathrm{~V} V_{\mathrm{TT}}$ |
| 6 | ECL $-4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$ |
| 7 | ECL OV Ground |
| 8 | Signal |

FIGURE 3. Powerplane Layup for Standard ECL Operation

| Copper Plane 1 | Signal |
| ---: | :--- |
| 2 | TTL OV Ground |
| 3 | TTL + 5V V |
| 4 | Auxillary GND/Power/Thermal |
| 5 | ECL $+3 V V_{T T}$ |
| 6 | ECL $0 V V_{\mathrm{EE}} /$ Ground |
| 7 | ECL $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ |
| 8 | Signal |

FIGURE 4. Powerplane Layup for Positive Referenced ECL

The optimum multiple powerplane approach may not be feasible for some designs. Logic and powerplane partitioning (islands) can be used to control noise when ECL and TTL must share the same powerplane. Figure 5 illustrates the basic concept where areas of a system board are organized by logic type and share the same horizontal powerplane. Low pass filters are usually used to help isolate high frequency signals in sections of the shared plane.

## POWER SUPPLY SEQUENCING CONSIDERATIONS

In logic systems where multiple independent power supplies are used, or where two independently powered systems are connected logically, some consideration must be given to supply sequencing. This is particularly true for ECL/PECL logic due to placement of ESD (Electrostatic Discharge) protection diodes on the inputs and outputs. Figure 6 shows the typical ESD diode placement in a F100K 300 Series device. Figures $7 a$ and $7 b$ illustrate independently powered ECL driver and receiver operating with an independent ground referenced $V_{T T}$ termination supply.


TL/F/10919-5
FIGURE 5. Powerplane and Logic Partitioning


TL/F/10919-6
FIGURE 6. F100K 300 Series ESD Diode Circuit Placement

When the devices (Figure 7a) are operated in Standard ECL fashion, $\mathrm{V}_{E E 1}$ may be off while $\mathrm{V}_{\mathrm{EE} 2}$ and $\mathrm{V}_{\mathrm{TT}}$ remain on without causing a forward bias potential on any of the ESD diodes. Note that both the true and complement outputs of the ECL1 driver will source logic one current simultaneously to the $V_{T T}$ supply when $V_{E E 1}$ is off while $V_{T T}$ remains on. Emitter follower transistors of ECL1 are biased on to a logic high level by the $\mathrm{V}_{\mathrm{T}} / \mathrm{RT}$ even in absence of $\mathrm{V}_{\mathrm{EE} 1}$. The potential for $V_{T T}$ current overload exists under these circumstances.
When $V_{E E 2}$ is powered off and $V_{T T}$ remains on, the low rail input ESD diode of ECL2 (connected to $V_{E E 2}$ ) will forward bias and conduct heavily as $V_{T T}$ tries to re-power the $V_{E E 2}$ rail. The diode conduction will be limited by the RT resistor and the impedance of the off $\mathrm{V}_{\mathrm{EE} 2}$ supply in parallel with the ECL2 logic impedance. Although the ESD diode current density rating will typically support this current overstress, the recommendation is to avoid this by insuring that $\mathrm{V}_{\mathrm{EE} 2}$ and $V_{T T}$ are ramped together and that $V_{E E 2}$ is never more positive than $\mathrm{V}_{T T}$ by 0.5 V .
When the devices (Figure 7b) are operated in PECL fashion, there is a very clear forward bias hazard to ESD diodes when supplies are sequenced. If $\mathrm{V}_{\mathrm{CC} 2}$ is dropped before $\mathrm{V}_{\mathrm{CC}}$, the positive referenced emitter followers of ECL1 will attempt to re-power up ECL2 through its high rail input ESD diode (connected to $\mathrm{V}_{\mathrm{CC}}$ ). The ECL emitter follower outputs are low impedance voltage sources ( $6 \Omega$ typical) and can source an incredible amount of current (greater than 200 mA each output). Thus $\mathrm{V}_{\mathrm{CC}}$ must never be more negative than $\mathrm{V}_{\mathrm{CC}}$ by 1.0 V to avoid current overstress.
When $V_{C C 1}$ is powered off and $V_{T T}$ and $V_{E E 2}$ remain on, the output ESD diode of ECL1 (connected to $\mathrm{V}_{\mathrm{CC} 1}$ ) will for-
ward bias and conduct heavily as $\mathrm{V}_{T T}$ tries to re-power the $V_{C C 1}$ rail. The diode conduction will be current limited by the RT resistor and the impedance of the off $V_{C C}$ supply in parallel with the ECL1 impedance. Although the ESD diode current density rating will typically support this current overstress, the recommendation is to avoid this by insuring that $V_{T T}$ is never more positive than $V_{C C 1}$ by 0.5 V .
If $V_{C C 1}$ and $V_{C C 2}$ are dropped while $V_{T T}$ remains on, then $V_{T T}$ tries to re-power both $V_{C C}$ rails through the output ESD diode of ECL1 and the high rail input ESD diode of ECL2. The forward bias current is limited by the RT resistor and the $\mathrm{V}_{\mathrm{CC} 1} / \mathrm{V}_{\mathrm{CC} 2}$ supply impedance in parallel with the collective logic impedance. This diode overstress is undesirable and should be avoided by insuring that $\mathrm{V}_{\mathrm{T}}$ is never more positive than $V_{C C 1}$ or $V_{\mathrm{CC}}$ by more than 0.5 V .
If $V_{T T}$ is dropped before $V_{C C 1}$, then increased load current can flow through the RT resistor from the emitter follower output of ECL1. Therefore $V_{T T}$ ramping should be timed with $V_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.
From the previous discussion, the most critical concern is that no PECL receiver should be powered down if driven directly by a powered up PECL driver without some form of current limiting. The inputs to the receiver must be current limited with external resistors of $100 \Omega$ or greater to be able to survive the overstress caused if $\mathrm{V}_{\mathrm{CC} 1}$ is ever permitted to be more positive than $\mathrm{V}_{\mathrm{CC} 2}$ by more than 1.0 V . Although the use of current limiting resistors will alter the effective input edge rates and device propagation delays slightly, careful selection and placement of resistors will minimize device performance degradation. Use of surface mounted chip resistors located close to the input is recommended.


FIGURE 7a. ESD Diodes in Standard ECL Operation


TL/F/10919-4
FIGURE 7b. ESD Diodes in PECL Operation

## DUAL SUPPLY TRANSLATORS-THE CONVENTIONAL APPROACH

Dual supply ECL-to-TTL and TTL-to-ECL IC translators have been in general use for several years. These devices perform the logic level translations between ECL operating from a negative $V_{E E}$ supply and TTL operating from a positive $V_{C C}$ supply. This approach naturally allows each logic
family to operate in their conventional and Data Book specified manner. System designers typically are most comfortable with the dual supply aproach. This conventional method permits the use of the most familiar design practice for ECL and should easily yield reliable mixed signal system operation. The growing list of F100K 300 Series Dual Supply Translators, as shown in Figure 8, is testimony to the continued popularity and versatility of this approach.

| Features | 100324 | 100325 | 100328 | 100329 | 100393 | 100395 | 100397 | 100398 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Bits | 6 | 6 | 8 | 8 | 9 | 9 | 4 | 4 |
| ECL-to-TTL |  | X | X | X | X | X | X | X |
| TTL-to-ECL | X |  | X | X |  |  | X | X |
| Flow-Thru | X | X |  |  |  |  |  |  |
| Latched |  |  | X |  | X |  | X | X |
| Registered |  |  |  | X |  | X |  |  |
| ECL Differential Input |  | X1 |  |  |  |  | X | X |
| ECL Differential Output | X |  |  |  |  |  | X | X |
| ECL Output Drive ( $\Omega$ ) | 50 |  | 50 | 50 |  |  | 25 | 25 |
| ECL Cutoff ( Hi Z ) |  |  | X | X |  |  | X | X |
| TTL Output Drive (mA) ( $\mathrm{lOL} / \mathrm{l}_{\mathrm{OH}}$ ) |  | 20/-2 | 23/-3 | 24/-3 | 64/-15 | 64/-15 | 64/-15 | 64/-15 |
| TTL TRI-STATE® |  |  | X | X | X | X | X | X |
| ECL Control Pins |  |  | X | X | X | X | X |  |
| TTL Control Pins | X |  |  |  | X |  |  | X |
| TPD E to T (ns Max) |  | 4.8 | 5.9 | 7.7 | 5.3 | 6.4 | 5.8 | 5.8 |
| TPD T to E (ns Max) | 3.0 |  | 3.8 | 3.9 |  |  | 2.4 | 2.2 |
| $\mathrm{I}_{\mathrm{EE}}$ (mA Max) | -70 | -37 | -169 | -199 | -39 | -67 | -99 | -99 |
| $I_{\text {EE ( }}$ (mA Max) (Cutoff) |  |  | -169 | -199 |  |  | -159 | -159 |
| ICC (mA Max) | 38 | 65 | 74 | 74 | 65 | 65 | 36 | 45 |

${ }^{1} V_{B B}$ provided for Single-ended Operation
FIGURE 8. Table of F100K $\mathbf{3 0 0}$ Series Dual Supply Translators

## SINGLE SUPPLY TRANSLATORS-THE NEW WAVE APPROACH

Single Supply Transiaiors that aliow PECL-io-TTL or TTL-to-PECL interfaces are a recent addition to the F100K 300 Series ECL family. Development of these devices is motivated by the need for a convenient technique by which higher performance ECL logic can be integrated into existing TTL systems containing a single positive supply. These devices should also provide a vehicle for new lower cost designs of mixed signal single supply systems.
Figure 9 describes three such devices being offered in the F100K 300 Series family. The popularity of PECL operation
is expected to grow significantly as designers become more familiar with the technique. As interest and usage of Single Supply Translators increase, the family of this type of device can be expected to expand.
A simple illustration of the ease with which the Single Supply Translator can accomplish the interface from TTL to PECL and back to TTL is shown in Figure 10. Note that the translator devices have on chip $V_{C C}$ partitions that facilitate the use of dual powerplanes for the preservation of ECL noise immunity. Differential operation on the PECL side of the translator is recommended to be used to maximize noise immunity. A $V_{B B}$ reference voltage output is provided on the 100390 device to facilitate single ended operation.

| Features | 100390 | 100391 | 100392 | 100389 |
| :---: | :---: | :---: | :---: | :---: |
| Data Bits | 6 | 6 | 5 | 6 |
| ECL-to-TTL | X |  |  |  |
| TTL-to-ECL |  | X |  |  |
| CMOS-to-ECL |  |  | X | X |
| ECL Differential Input | X2 |  |  |  |
| ECL Differential Output |  | X | X | X |
| ECL Output Drive ( $\Omega$ ) |  | 50 | 25 | 50 |
| ECL Cutoff (Hi Z) |  |  | X |  |
| TTL Output Drive (mA) ( $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ ) | 24/-3 |  |  |  |
| TTL TRI-STATE | X |  |  |  |
| TTL Control Pins | X | X |  |  |
| CMOS Control Pins |  |  | X | X |
| TPDE to T ( $\mathrm{ns} \mathrm{Max)}$ | 6.4 |  |  |  |
| TPD T to E (ns Max) |  | 1.7 |  |  |
| TPD C to E (ns Max) |  |  | TBD | TBD |
| $\mathrm{I}_{\mathrm{EE}}$ (mA Max) (Cutoff) |  |  | TBD |  |
| ICC (mA Max) | 48 | 60 | TBD | TBD |

$2 V_{B B}$ provided for Single-ended Operation
FIGURE 9. Table of F100K 300 Series Single Supply Translators


FIGURE 10. Use of Single Supply Translators

## F100K ECL Dual Rail Translators

National Semiconductor Application Note 784 Doug Bush

七8L-N甘

## INTRODUCTION

The complex electronic systems being designed today often require mixed technologies to incorporate the most efficient balance of performance, speed, power, and cost. In order for one technology to communicate with the other, an interface is needed. One of the most common mix of technolgies seen today is high speed ECL with the slower, but very popular TTL and CMOS. To make this interface as quick and clean as possible, level translators are used. This applications note will discuss ECL to TTL and TTL to ECL level translators available from National Semiconductor's F100K ECL 300 Series product line. Focus will be on Dual Rail Translators (translators which require both ECL and TTL power supplies for normal operation), their differentiating features and possible uses.

## TRANSLATOR SELECTION

National Semiconductor offers translators of all different types. Table I shows the TTL to ECL and ECL to TTL translators that are presently available. The first 300 Series translators designed were the 100324 and 100325. With these devices, unidirectional translation is possible in either direction (TTL to ECL with the 100324, ECL to TTL with
the 100325). As systems and data widths become larger, more bits need to be translated. This need was satisfied with the introduction of 8 - and 9 -bit translators. The 8 -bit translators $(100328,100329)$ also offer bidirectional translation functionality for applications which require two way communication. In many cases, communication over significant distances is needed in noisy environments. To handle this situation, differential translators like the 100397 and 100398 are used. The 100397 and 100398 also offer bidirectional translation with differential ECL and $25 \Omega$ drive with cutoff. The 100397 uses ECL control pins while a separate option, the 100398, has TTL control pins. In applications where high output drive is needed after an ECL to TTL translation the 9 -bit 100393, and 100395, or 4-bit 100397 and 100398 can be used. The $64 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ output current capability is ideal for driving long lines and achieving faster switching times by discharging the line it is tied to faster when in the LOW output state. These outputs are also capable of driving higher fanouts than the lower output current devices.
If the designer only has a +5 V supply available (i.e., An additional ECL supply cannot be used), single rail translators can be used. For more information on single rail transla-

TABLE I. 300 Series Dual Rail Translators

| Features | 100324 | 100325 | 100328 | 100329 | 100393 | 100395 | 100397 | 100398 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Bits | 6 | 6 | 8 | 8 | 9 | 9 | 4 | 4 |
| ECL to TTL |  | X | X | X | X | X | X | X |
| TTL to ECL | X |  | X | X |  |  | X | X |
| Latched |  |  | X |  | X |  | X | X |
| Registered |  |  |  | X |  | X |  |  |
| ECL Differential | OUT | IN* |  |  |  |  | 1/0 | 1/0 |
| ECL Drive (Ohms) | 50 |  | 50 | 50 |  |  | 25 | 25 |
| ECL Cutoff |  |  | X | $x$ |  |  | X | X |
| TTL Drive $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}(\mathrm{~mA})$ |  | 20/-2 | 24/-3 | 24/-3 | 64/-15 | 64/-15 | 64/-15 | 64/-15 |
| TTL TRI-STATE ${ }^{\text {® }}$ |  |  | X | $x$ | x | X | $x$ | X |
| ECL Control Pins |  |  | X | X | X | X | X |  |
| TTL Control Pins | X |  |  |  | X |  |  | X |
| TPD ECL to TTL (ns Max) |  | 4.8 | 5.9 | 7.7 | 5.3 | 6.4 | 5.7 | 5.7 |
| TPD TTL to ECL ( $n \mathrm{~s}$ Max) | 3.0 |  | 3.8 | 3.9 |  |  | 2.4 | 2.4 |
| $\mathrm{IEE}^{\text {(mA Max) }}$ | -70 | -37 | -169 | -199 | -39 | -67 | -99 | -99 |
| ICC (mA Max) | 38 | 65 | 74 | 74 | 65 | 65 | 36 | 45 |

[^11]tion refer to applications note AN-780 "Operating ECL From a Single Positive Supply".

## TRANSLATOR OPERATION SPEED ADVANTAGES

Designers who have primarily a TTL system will often use ECL in areas such as clock distribution, backplanes, and differential data transmission where speed is most important. This can be accomplished by level translating from TTL to ECL, performing the desired ECL operation, and then translating back to TTL. As intimidating as this approach sounds, the propagation delay savings gained can be very significant. Consider as an example the TTL "error capture circuit" shown in Figure 1A and the same function performed using ECL shown in Figure 1B. In Figure 1A, a TTL system with control lines CR0 and CR1 is being monitored for errors. The error capture circuit consists of a buffer, decoder, and six counters. The buffer transfers signals from the control lines to the inputs of the decoder.

The decoder determines which type of error is present and then feeds into a 2 stage counter to keep track of how many times a particular orror occurs.
Table II gives conditions for all possible levels on the control lines. When a counter reaches a terminal count of 256 for any type of error, a signal is fed to the TTL controller which initiates a service routine for that particular type of error. For the PDIP devices shown in Figure 1A, the maximum propagation delay at room temperature for the error capture circuit is approximately 51 ns .

TABLE II. System Errors

| CR0 | CR1 | Z0 | Z1 | Z2 | Z3 | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| L | L | L | H | H | H | No Errors |
| H | L | H | L | H | H | Type 1 Error (T1) |
| L | H | H | H | L | H | Type 2 Error (T2) |
| H | H | H | H | H | H | Type 3 Error (T3) |



TL/F/10938-1
FIGURE 1A. TTL Error Capture Circuit

A significant amount of time can be saved by using translators and performing the error capture with ECL. In Figure $1 B$, an ECL error capture solution is implemented. In this case, a 100324 TTL to ECL translator is used to buffer the control line signals and provide the required ECL voltage levels. Data is then fed into the 100370 decoder and inverted for counter input. As in the TTL circuit (see Figure 1A), when the count reaches 256 for any type of error, a signal is fed into the controller for service routine activation. The ECL signal is first converted to TTL by use of the 100325 before being transferred to the controller. The error circuit for Figure $1 B$ has a maximum propagation delay (using CDIP package at $25^{\circ} \mathrm{C}$ ) of approximately 20 ns .
A comparison of the ECL and TTL error capture circuits shows that ECL offers a 31 ns advantage in speed over the equivalent TTL design. This is a savings of more than half of the entire TTL timing budget. Another benefit of using ECL in high speed applications is that as frequency increases, TTL power increases while ECL power remains constant. In fact, as system bandwidth requirements exceed 50 MHz , ECL shows a power advantage over TTL. Since the translators in Table I have either TTL inputs or outputs, the power will increase slightly with frequency, but not as much as pure TTL devices.

## POWER SUPPLY AND NOISE CONSIDERATIONS

The primary consideration with mixed voltage, dual rail translators is to insure maximum noise protection between the TTL and ECL ground. The ECL bandgap circuit (shown in Figure 2A) is used to generate internal reference voltages. The internally generated reference voltage used to set the input and output threshold levels is called $\mathrm{V}_{\mathrm{BB}}$. The potential generated to control the level of the active current source is called $\mathrm{V}_{\mathrm{CS}}$. These reference voltages ( $\mathrm{V}_{\mathrm{BB}}$ and $V_{C S}$ ) set up by the bandgap circuitry are referenced to the ECL ground ( $V_{C C}$ ). Any noise on this ground will be injected into the reference voltages ( $\mathrm{V}_{\mathrm{BB}}$ and $\mathrm{V}_{\mathrm{CS}}$ ) producing reduced noise immunity. This implies that a stable, noise free ECL ground is needed.


FIGURE 2A. ECL. Bandgap Circuit


TL/F/10938-2
FIGURE 1B. ECL Error Capture Circuit

Ground bounce has been a concern of TTL designers for many years. Figure $2 B$ shows the TTL totem pole output stiucture. The intrinsic inductance in the ground lead (TTL GND) and power lead ( $\mathrm{V}_{\mathrm{TTL}}$ ) are labeled as L1 and L2, respectively. In order to switch from HIGH to LOW, current (marked I1 in Figure 2B) must flow through Q3 and L2 to discharge the load capacitance. As this current changes, a voltage is developed across the inductor L2 (Recall: $\mathrm{V} 2=\mathrm{L} 2(\mathrm{~d} 2 / \mathrm{dt})$. Since the inductor (L2) is between system ground and the device ground, there will be a voltage drop between them. This voltage difference between device and system ground will cause the device input and output levels to be offset because they are referenced to the internal device ground. The devices which are driving inputs or being driven by the outputs are referenced to the system ground (TTL GND in Figure 2B). This effect is known as ground bounce.


TL/F/10938-4
FIGURE 2B. TTL Totem Pole Output
To insure maximum noise protection, it is recommended that the ECL and TTL ground planes on the printed circuit board (PCB) are run independently, and are only connected back at the low impedance source of the power supply. Likewise separate power planes will be used for the TTL positive supply ( $\mathrm{V}_{\mathrm{TL}}$ ), ECL negative supply ( $\mathrm{V}_{\mathrm{EE}}$ ), and ECL output load power supply $\left(\mathrm{V}_{\top}\right)$. This leads to five layers of a multi-layer PCB being dedicated to power planes. Additional
layers, either internal or on the surface, can be used to run signal lines. Figure 3 shows a typical layout for a seven layer TTL/ECL PCB. Signals are run on both sides of the board.

| LAYER 1 | Signal |
| :--- | :--- |
| LAYER 2 | TTL Ground |
| LAYER 3 | TTL $+5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{TTL}}\right)$ |
| LAYER 4 | VT |
| LAYER 5 | ECL $-4.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{EE}}\right)$ |
| LAYER 6 | ECL $0.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$ |
| LAYER 7 | Signal |

FIGURE 3. PC Board Power Planes
Consideration should be made with regard to the power up sequencing of translators. Table III describes the conditions observed for the various translators when ECL or TTL power is lost.
Control pins should be driven by power up referenced signals, so that during power up sequencing, the Output Enable pins are driven to the disable state.

## DESIGN CONSIDERATIONS

## Translator Pin Connections

Dual rail translation implies that both positive ( $\mathrm{V}_{\mathrm{TTL}}$ ) and negative ( $\mathrm{V}_{\mathrm{EE}}$ ) voltage supplies must be used. These voltages are typically +5 V and -5 V respectively. $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{C C A}$ pins are used for the ground connection to OV . In addition to the traditional ceramic DIP and Flatpak packages, the F100K 300 Series translators offer a 28 -pin Plastic Leadless Chip Carrier (PLCC) package for surface mount capability to reduce board space. This package includes three $V_{\text {EES }}$ pins which are used to dissipate heat from the package. These pins are connected internally through the substrate to $\mathrm{V}_{\mathrm{EE}}$. It is recommended that these pins be connected to the $V_{E E}$ power plane and NEVER to $V_{C C}, V_{C C A}$, or $V_{T T L}$.

## Translator Location

When using ECL with TTL or CMOS, it is important to group CMOS and TTL devices away from the ECL devices. This will reduce the possibility of corruption of ECL signals caused by noisy TTL or CMOS switching. Translators with TTL outputs should be grouped with the TTL devices on the printed circuit board (PCB), and translators with ECL outputs should be grouped with the ECL devices.

TABLE III. Output State Under Power Loss

| Product | Loss of $V_{\text {TTL }}$ |  | Loss of $V_{\text {EE }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ECL Output State | TTL Output State | ECL Output State | TTL Output State |
| 100324 | $V_{\mathrm{OH}}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{N} / \mathrm{A}$ |
| 100325 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{HI}-\mathrm{Z}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{HI}-\mathrm{Z}$ |
| 100328 | $\mathrm{~V}_{\mathrm{OH}}$ | $\mathrm{HI}-\mathrm{Z}$ | VH | $\mathrm{HI}-\mathrm{Z}$ |
| 100329 | $\mathrm{~V}_{\mathrm{OH}}$ | $\mathrm{HI}-\mathrm{Z}$ | V |  |
| 100393 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{HI}-\mathrm{Z}$ | $\mathrm{N} / \mathrm{A}$ | HI |
| 100395 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{HI}-\mathrm{Z}$ | $\mathrm{N} / \mathrm{A}$ | HI |

## APPLICATIONS

Some of the many uses for ECL/TTL translators are:
High Speed Cache Memory: Figure 4 shows a two way set associative cache system. Data is transferred from the ECL memory to cache with the use of a single 8 -bit 100328 bidjrectional translator. Once the data reaches the cache, it can be moved to the microprocessor quickly for manipulation. Since the data bus is a two way communication system, a bidirectional translator is needed. The address bus, on
the other hand, requires only a one way communication. This implies a unidirectional translator could be used to interface the address to ECL memory. It would take three hex 100324 devices for the 16 -bit line shown in Figure 4, but to reduce package count two 8 -bit 100329 devices are used. The ECL memory based system allows reading and writing access within one clock cycle. Since the memory is accessed quickly, the wait states produced by memory read and write are virtually eliminated which results in a faster operating system.


FIGURE 4. Two Way Set Associative Cache System

Peripheral Interface Applications: The 100393 and 100395 9-bit translators are ideal for translation applications where an 8 -bit data bus with parity is used. An example of this situation is shown in Figure 5. In this case, ECL data and parity is transferred through an ECL controller and sent to the ECL-to-TTL translator. Data and parity is then converted to TTL levels and sent through a cable to the peripheral unit (such as a printer) for parity checking and data transfer. The 9-bit ECL-to-TTL translator (100393 or 100395) allows for an 8 -bit data transfer and 1 bit for parity. The 9 -bit function of the 100393 and 100395 also enables the translation to be performed with one chip which reduces chip count and board space. These translators also have a 64 mA output drive which is needed to drive the long length of cable associated with the printer hook up.


FIGURE 5. Peripheral Interface Application
TTL/CMOS Dynamic Random Access Memories (DRAMs): In instances where high speed ECL CPUs are used, low power/low cost DRAMs can be addressed as
bulk storage for non-speed critical operations by interfacing the ECL CPU with DRAM via the 100328/100329. This enables you to perform all of your high speed data processing tasks in ECL and use more readily available TTL/CMOS DRAMs for data storage.
High Speed Coprocessor: A high speed ECL coprocessor can be added to a lower speed processor for enhancement of high density computations. This will increase the speed and improve the overall system performance. The 100324 and 100325 would allow differential communication to the ECL coprocessor and the differential ECL signals give noise immunity from the surrounding TTL system.
ECL. Bussing: All the translators give TTL systems the ability to use high speed and low EMI ECL backplanes. ECL backplane applications typically use mixed technologies off the backplane which means that quick and reliable translation is needed. Refer to the "ECL Backplane Design", applications note for additional information.
Graphlcs: The 100324/100328/100329 give TTL to ECL conversion for use in high speed ECL graphics applications. The graphics will be in parallel form in the TTL state, converted to ECL then turned into serial form by either the 100341/100336 shift registers, before being fed to a high speed graphics driver.

## REFERENCES

D. Bush, "ECL Backplane Design", April 1991 Applications Note AN-768.
J. Davis, "Operating ECL From a Single Positive Supply", June 1991 Applications Note AN-780
W. Blood, "MECL System Design Handbook", Fourth Edition, 1988. Copyright Motorola, Inc.
"F100K ECL Logic Databook and Design Guide", 1990 Edition.

## Taking Advantage of ECL Minimum-Skew Clock Drivers

## CLOCK DISTRIBUTION BACKGROUND

Digital systems have tended from their inception toward incorporation of higher speed elements rather than architectural changes as the solution to the computational speed problem. One result of this has been mounting pressure on the semiconductor elements of these systems for higher speed and all that this implies. Not only the operating frequency and signal propagation delay but also the relative timing relationships of devices performing parallel tasks were challenged. As semiconductor process improvements pushed operating speeds higher, the evolution from individ-ually-packaged to multiply-packaged gates helped reduce delay and speed differences among like devices. Even so, areas still existed where system designers demanded ever greater improvements in performance uniformity of digital logic elements. The synchronization signal generation system, often referred to as the clock system, is one area in need of such improvement.
Most digital logic systems employ some means of synchronizing the actions carried out by the system's elements. The precision with which these various elements are regulated can be shown to have a direct effect on the overall speed of the system. The less time variation that must be allocated to the logic elements in the signal path, the faster that operation may be executed. Therefore, the overall time to perform all operations may be reduced or the system speed may be increased. In addition, the coordinated timing of the synchronizing system itself must benefit from an equivalent reduction in relative timing of its elements, or else only limited overall benefit to system performance is possible.

## CLOCK NETWORK ELEMENTS

The typical synchronizing or clock system consists of several closely related elements:

- a primary signal source, usually a precisely regulated, high frequency oscillator,
- frequency dividers to derive lower frequencies from the primary source,
- distribution amplifiers to boost signal power or supply separated loads,
- signal delay, duty-cycle alteration or re-synchronizing elements,
- interconnect wiring, connectors and signal distribution network,
- and a power source and distribution system for the semiconductor devices in the system.
Each of these elements contributes a degree of variability to the overall timing precision capability of the system. By virtue of the fact that the physical properties of each element can be controlled only within certain limits, the complete system will exhibit a variability somewhat larger than its elements taken individually. The effect of the variations contributed by the elements to the overall system variability is a physical fact that may be demonstrated mathematically.

Among the factors affecting variability are:

- physical size such as the length of wiring,
- electrical properties such as resistance and charge,
- internally generated and externally induced noise,
- and environmental factors like temperature and altitude.

The visible effect of variability on the system timing is popularly termed "skew". Similarly, the individual variabilities of each element are likewise termed "skew". The term "skew" is used also to describe the difference in delay between like paths taken by signals in a logic device or system. However, as with many useful terms when carelessly applied, the term "skew" can lead to some confusion unless it is more precisely defined.
When applied to the differences in propagation of electrical signals through like paths in a logic system, the term "skew" will be taken to mean "differential timing error". In terms of the overall effect on the desired timing performance of the affected system or device, "skew" will be defined as "a deviation or asymmetry from the mean or desired timing value". The latter meaning of skew will assume greater importance in the prediction and analysis of system timing errors to be covered later in this note.

## MEETING THE SKEW CHALLENGE

Control of skew in systems is at best a difficult challenge for design engineers. At its worst, skew can be the thing that makes or breaks a design. So, to give engineers an advantage in controlling skew, National offers ECL devices specifically designed to minimize the device-related component of skew. In addition, the skew properties of these devices are specified and tested. This has been done to reduce the design effort required to compensate for device-related skew effects. The results are tighter system timing margins, more reliable operation and faster operating speeds. This means greater system through-put and information processing efficiency.

## 300-SERIES ECL—The Best Weapon Against Skew

300-Series ECL has some natural advantages in the war on skew. ECL differential amplifiers are minimum-skew by their very circuit configuration. The fundamental property of the differential amplifier used as a logic element is balanced switching. The amplifier, Figure 1, is symmetrical. This results in identical switching delays regardless of output. Following stages are added symmetrically, Figure 2, so that overall balance is maintained internally. 300-Series devices designed for minimum-skew also employ a unique die layout to preserve the basic amplifier balance.
Another advantage of 300 -Series ECL is its precise, stable $V_{B B}$ reference supply with wide operating power supply range. This reference is compensated for stability from the effects of changes in temperature or supply voltage. 300Series minimum-skew devices operate from -4.2 V to -5.7 V supplies as do all other 300 -Series logic devices. Ad-
vanced semiconductor processing, design and manufacturing result in uniquely low power consumption for this ECL family.
Augmenting the inherent balanced design of the amplifier, 300 -Series minimum-skew devices feature differential inputs and outputs. Selected devices have an additional singleended input and input selector for use as a test input or
auxiliary main input. However, skew tolerances are wider when using the single-ended input. The differential outputs are fully buffered emitter-foliowers. They are designed io have symmetrical transitions and skew performance under symmetrical loading conditions. Some devices also make an external $\mathrm{V}_{\mathrm{BB}}$ reference available for use in situations where the inputs must be separately biased.


TL/F/10982-1
FIGURE 1. ECL Differentical Amplifier


FIGURE 2. ECL Buffered Amplifier

Skew can be adversly affected by packaging. For this reason National has chosen to supply F100K minimum-skew devices in packaging complementing their inherent performance. F100K devices are supplied in SOIC, PCC and flatpak packaging as appropriate for the intended class of service; commercial, industrial or military.

## PACKAGE TYPE AND LAYOUT

Packaging and pinout also affect skew performance. Smaller, more symmetrical packaging like PLCC and SOIC types contribute less to skew than do DIP packages. Their smaller size reduces parasitic inductance, a contributor to noise and signal delay. Symmetrical pin layout equalizes path length for all signals from the die to the circuit board thereby reducing a skew component. And, additional output $\mathrm{V}_{\mathrm{CC}}$ pins help reduce skew by providing extra paths for output signal return currents to ground.

## TESTING

Despite careful design, packaging and advanced processing, skew performance is worth little unless its effect on device performance can be accurately known. Reliable skew values, guaranteed by test, are essential in predicting system performance. 300-Series ECL minimum-skew devices are fully tested and specified for all standard DC and AC parameters as well as all relevant skew parameters.
It should be appreciated that devices designed for minimum skew values of a few tens of picoseconds are difficult to test using ordinary IC test equipment. Therefore, National has developed advanced production test equipment capable of measuring the AC and skew characteristics of these highperformance devices. This results in more accurate and dependable data for design and greater uniformity of product.

## SYSTEM DESIGN OBJECTIVES

The best way to take advantage of minimum-skew driver capabilities is through good system design. Minimum-skew specified devices cannot compensate for or improve on a poor system design. However, these devices can add extra margin to a good design. They also permit more predictable performance in well designed system environments.
The majority of problems that plague clock generation and distribution systems lies beyond the active devices and outside of their effect. These problems result from shortcomings in the signal transmission, power supply or mechanical systems. A good system design should give the minimumskew driver a fighting chance to perform satisfactorily. This is the primary job of the system designer.
But, before the designer can effectively use these devices, a reasonable set of electrical and mechanical specification objectives for the overall system must first be developed. Next, the device specifications as they apply within the scope of the system specification must be understood thoroughly. Only then can devices with performance appropriate to the overall objectives be selected. Indeed, the process of resolving device and system objectives may reveal incompatibilities. Then either the system requirements or the choice of device must be changed. Lastly and most import tantly, the active devices must not be over-worked or handicapped by improper load conditions or the system environment.
A good set of system objective specifications will incorporate all of the following considerations:

- A stable, adequate, noise-free and well isolated DC power supply and power distribution system,
- Noise-resistant and RFI/EMI-proof design and suppression techniques,
- A carefully designed signal transmission and distribution system,
- Appropriate and efficient printed circuit board layout,
- Adequate cooling for all power-dissipative devices,
- Environmental requirements like altitude, humidity, and temperature:
- The appropriate active devices for the required performance.
The sections that follow present design techniques and guidelines formulated around the above objective specifications. Colateral sources where more complete or additional design information may be found will be noted or may be found listed in the Appendix.


## POWER SUPPLY NETWORK DESIGN OBJECTIVES

ECL minimum-skew devices can benefit especially from a well designed power supply system. Though not unique for minimum-skew devices, the design of ECL power supply systems must achieve several important objectives.

1. The power system must supply constant, noise-free voltage at adequate current levels to all active devices in the system.
2. The power system must appear as a virtual battery to each device. That is, it must effectively isolate devices such that each appears to be independently powered. Thus, noise signals resulting from operations going on within each device will not propagate to other devices through the power supply system.
3. The power supply system also must propagato without distortion the return or image currents for all signal-carrying transmission lines.
4. The power distribution planes within each printed circuit board (FCP) should act as electrostatic shields to reduce RFI radiation from the transmission line system.
These objectives can be adequately met if reasonable care is taken in the design of the power supply feed system, the supply isolation and bypassing and the organization and layout of the PCB's.
More information on power supply design considerations can be found in the "F100K ECL Logic Databook and Design Guide", Chapter 5.

## POWER SUPPL.Y BYPASSING

The topic of power system bypassing is generally given inadequate treatment in logic applications literature. The common approach taken is to simply recommend that a $0.1 \mu \mathrm{~F}$ ceramic capacitor be used for every so many devices. In systems with frequencies predominating below 10 MHz and edge rates on the order of $1 \mathrm{~V} / \mathrm{ns}$ or slower, this prescription may be adequate. However, for systems with frequencies above 10 MHz and edge rates less than $1 \mathrm{~V} / \mathrm{ns}$, the above prescription is bad medicine. The reasons are easy to explain but require a look at the role and objective of bypassing.
Bypassing serves two general roles in the power supply sys-tem-filtering and energy storage. Both of these are related by the fact that, in performing filtering, the capacitor stores and releases energy. To be more specific, the four goals of an efficient bypassing scheme are:

1. Reducing the internal impedance of the power distribution wiring system,
2. Low-pass filtering of the DC being supplied to each active device,

## 3. Isolating active devices from each other, and

4. Controlling noise due to transient current demands on the supply system.
These four goals are interrelated and are parts of the primary objective of having each active device appear as though powered by an internal, ideal battery. In fact, goals 2,3 and 4 can be considered as results of achieving goal 1. Reducing the impedance of the power system conductors at all frequencies in the system pass-band helps accomplish all goals of efficient bypassing.
The "F100K ECL Logic Databook and Design Guide" (Section 7, Chapter 5) recommends multi-layer PCB construction with entire layers assigned to each supply voltage and ground. While this might appear to be an ideal power distribution method for DC, it increasingly deviates from the ideal as frequency increases. For frequencies below about 10 MHz , the internal impedance of power plane layers may be in the range of $1 \Omega$ to $10 \Omega$ depending upon geometry. At higher frequencies, and especially above 50 MHz to 100 MHz , skin and striction effects cause a ten-fold or greater increase in internal impedance. This means that current changes resulting from switching of the active devices at high frequencies can induce large voltages in the power planes. These noise voltages affect nearby circuits and signals on transmission lines. To eliminate this interference, a means is needed for decreasing the impedance of the planes at high frequencies.
Restricting the pass-band of a wire transmission system to frequencies approaching DC is termed low-pass filtering. Suitably sized capacitors placed at regular intervals on a wire transmission system form a low-pass filter. As frequency increases, the capacitor's reactance decreases. This reduces the amplitude of the signal as it traverses the transmission line. Therefore, the effect of noise generated by an IC on the power supply voltage of its near neighbors is reduced. In addition, lowering the internal impedance of the power plane system reduces radiated RFI and the effects of external interference sources on the power supply system. And, the power plane system will appear as a more nearly uniform AC ground for signal-carrying transmission lines in adjacent layers of the PCB.
Another property of the transmission line, low-pass filter is that it delays signals traveling on the line. In addition to attenuating $A C$ signals and noise generated by the active devices, the signals are also delayed. This effectively increases the isolation between devices in the time-domain. Naturally, as the delay of the power supply transmission system increases, the closer the bypass capacitors must be to the noise source in order for them to be optimally effective.
Supply bypassing is generally less critical in F100K ECL systems than in 10K systems, especially since output load balancing can be used. Bypassing still must perform the functions mentioned previously, but the balanced switching of F100K results in a quieter overall system to begin with. The primary suppression role of bypassing is in controlling noise from unbalanced output switching on the power system.
The selection of bypassing components for F100K systems should be based on the expected operating frequencies of the various networks as well as the output transition rates. Also, the choice of balanced versus unbalanced output loading plays a major role.

Capacitors bypass or suppress frequencies best near their self resonant frequency, Figure 3. At this frequency the capacitor appears to be more nearly a short-circuit. Below resonance the capacitive component of reactance dominates. Above resonance the inductive component plays a bigger role. The effective impedance at resonance is the resistive component or ESR (equivalent series resistance). It is normally desirable to minimize the ESR so that the capacitor is a good short circuit. However, it may be more desirable to have some resistance in series with the capacitor in order to broaden the range of frequencies where the capacitor is effective.
In the time domain, the capacitor's behavior becomes more complex. Fast risetime transient pulses contain frequencies generally far above the capacitor's self-resonant frequency. During these pulses, the capacitor has an instantaneous impedance value ten or more times its ESR. For this reason, it is often desirable to "bandspread" the bypass capacitor by using several different capacitor values in parallel. An example of this is placing $0.1 \mu \mathrm{~F}, 10 \mathrm{nF}$ and 1 nF ceramic chip capacitors in parallel. The capacitors may be attached to the PCB in a sandwich, "piggy-back" style, provided their lengths are equal. Leaded capacitors may be placed close together on the circuit board to achieve a similar result, also. The signal frequencies being transmitted by the logic devices and the switching frequencies of device outputs are not the only signals that must be handled by the bypassing. There are also frequencies associated with the energy transfer between different functional groups of components on the PCB's and in the overall system. For instance, a memory system may be active at one-fourth of the rate of an associated CPU group. The peak energy exchange rate between the memory system and the power supply would be one-fourth that of the CPU and the supply. Though the memory may handle signals at the same frequency as the CPU during communications, the power supply system also sees the lower frequency as well. Therefore, the power supply system and the memory/CPU circuit board must have bypass capacitors for both sets of frequencies. For this reason, larger value capacitors, usually tantalum or similar electrolytic types, are found on circuit boards. These capacitors smooth energy transfers at lower frequencies.

## CLOCK SOURCE NOISE CONTROL

The clock system is normally the source of most high frequency noise in digital systems. Part of the overall design objective for the clock system is that it not create interference with other parts of the system.
Isolation of the clock source and its associated distribution amplifiers is an effective way of reducing such interference. Insertion of a ferrite choke in the power supply feed to the active devices forms a noise filter that reduces interference from these devices to other logic through the power system. The filter may take the form of a Pi-network or longitudinal choke as in Figure 4. In selecting the inductor, the core must have sufficient current rating to handle the load without saturation. Also, the core material should be capable of operating over the frequency range of the oscillator and associated components. Type 3B or 4B core materials are typical for ECL applications. Suitable 6 -hole ferrite chokes are available from Fair-Rite, Siemens, Ferroxcube and others.

## CLOCK NETWORK TOPOLOGIES

The choice of clock network topology is intimately a part of the architecture and partitioning of the system. To recom-


TL/F/10982-3


TIME DOMAIN
FIGURE 3. Capacitor Reactance


FIGURE 4. Power Supply Isolation Techniques
mend a particular topology would be presumptive. Therefore, the scope of this discussion will be limited to more genera! considerations of the networks.
The general forms of networks suitable for clock distribution are: point-to-point, daisy-chain, radial (star), branching (tree), auxiliary main input and bus. Any of these can be implemented as single-wire-over-ground or balanced differential networks. The differential method has advantages of less suceptability to interference from noise, temperature effects, threshold shifts and common-mode signals. These, plus the network's inherent balance, mean lower skew. F100K is particularly suited to use in differential networks. It employs differential outputs on virtually all devices and differential inputs particularly on clock distribution devices.
Naturally, to benefit from the advantages of the differential network, its balance must be maintained. Loading and terminations should be applied equally to both conductors of the differential pair. If loading is not balanced, the propagation delay of each conductor will be different. This can lead to differences in the arrival time of the complementary signals thereby increasing skew.
Regardless of the network topology, the relationships of network impedance, drive capability, critical loading and termination must always be considered.

## IMPEDANCE, LOADING AND INTERFERENCE

The equivalent generator resistance of the F100K output emitter follower is approximately $7 \Omega$. With this low value, the output is nearly an ideal voltage source capable of driving almost any reasonable value of load impedance or transmission line type. High impedance transmission lines (above $50 \Omega$ ) are difficult to achieve in practice on PCB's with thin dielectrics. However, high impedances are more common with twisted-pair lines. The propagation velocity of energy is more affected by capacitive loading on high impedance lines. And high impedance lines are more susceptable to crosstalk and noise interference.
Low impedances (less than $50 \Omega$ ) require wide line widths, a problem where small packages and dense PCB layout are desirable. Also, lower impedances require more energy from the driver. For a given output type, this results in lower voltage swings into the line and higher DC and AC power since the termination value is lower, also. An advantage of lower impedances is that of their being less affected by capacitive loading and crosstalk.
The effect of loading versus line impedance is easily illustrated. A $50 \Omega$ line in FR-4 material has an unloaded propagation delay of about $56 \mathrm{ps} / \mathrm{cm}$. Unloaded $25 \Omega$ and $100 \Omega$ lines in this material have the same delay. By adding only $1 \mathrm{pF} / \mathrm{cm}$ load to the $50 \Omega$ line, the delay is increased by 21 ps . The $25 \Omega$ line's delay increases 11 ps and the $100 \Omega$ line by 38 ps . Clearly, skew-versus-loading is easier to control if the line impedance is kept low. This is the reason that, from all practical standpoints, $50 \Omega$ is widely considered as the best line impedance choice.
Controlling the chosen impedance and skew in practical networks can be difficult in practice. This is particularly true where many loads need to be driven in precise phase relationship to a source. Ideally, it would be best to drive each load in a point-to-point connection. Except for the most exacting applications, this can be costly in terms of board space, power and components.

Series-terminated radial or star networks can be used in many cases to drive multiple loads from one output. As long as the load impedanice driven dues not exceed output divive capability, 2, 3 or 4 lines may be driven. Radial nets may also be driven from the end of another transmission line connected to the driver output. In this case, the impedance of the line between the driver output and the star-point must be less than the impedance of any line connected to it. Each line radiating from the star-point is driven through a series termination. The value of the resistor is chosen to give the minimum required voltage swing at the input connected at the receiving end of the line. More details for designing radial networks may be found in Chapter 4 of the "F100K Logic Databook and Design Guide".
Timing and skew are more difficult to control with the daisychain network and its bi-directional equivalent, the bus network. Differences in the individual load values attached to the net contribute to increased skew. This is especially true in parallel-path buses where there is another complicating factor. The bus is normally bi-directional. Whereas the dai-sy-chain net has one source and multiple loads, the bus has multiple sources. Delay from one source to a given destination, relative to another source to the same destination, may create difficult timing situations, especially where all sources share a common distributed clock. In such situations, consideration should be given to re-synchronization of the common clock relative to the other signals being transmitted from the particular location on the bus. This re-timed clock will then be properly synchronized to its related signals and a reduction in location-dependent skew on the bus will result.

## TERMINATION NETWORKS

Minimum-skew drivers cannot correct the behavior of improperly terminated networks. In fact, operation of any driv-er-network combination is impaired by faulty termination. Faulty termination corrupts signals and contributes to skew, timing and noise problems. A brief look at the goals of basic series and parallel termination networks will clarify their use.
The goal of parallel termination is absorbtion of all transmitted energy at the network terminus with none reflected to the source. Any signal distortion occurring is solely due to reflections from the loads attached to the line. The parallel termination should have a resistive value close to that of the network's impedance to be optimally effective. Parallel terminations may be simply a single resistor from the terminus of the network to a voltage source (normally -2 V ) or they may be Thevenin networks equivalent to the single resistor and voltage source values.
The series termination operates on the principle of Ohm's Law. As a voltage divider, the goal of the series termination is to reduce the driver's output voltage transmitted into the line by about one-half. When this voltage (referred to as the incident wave voltage) reaches the opposite end or terminus of the network, which is unterminated and approximately an open circuit, the voltage level doubles. A receiver at the terminus of the line sees its full input voltage swing. However, receivers between the input and terminus ends see only the voltage transmitted into the line. All of the voltage arriving at the terminus is reflected back to the source with the same polarity as that of the incident wave voltage.

As this reflected wave voltage transits the line toward the source end, the voltage level along the line is raised to the full swing voltage of the driver's output. Only at the instant when this voltage wave reaches each input will that input see its full voltage swing. Therefore, intermediate loads experience a period where input voltage is at or near threshold level. Consequently, there is a delay of more than one line transit time until the input voltage reaches a proper level. For this reason, series terminations are used almost exclusively in point-to-point networks.
In some cases, networks may require combinations of series and parallel terminations to achieve satisfactory performance. Networks of this type must be carefully designed and tested on an individual basis to assure correct operation. The laws governing such networks are the same as for the basic networks and terminations. Further information on terminations, other network configurations and their design requirements can be found in the "F100K ECL Logic Databook and Design Guide", Chapter 4.

## PC BOARD LAYOUT RECOMMENDATIONS

Proper PC board layout is high on the list of important considerations when using ECL minimum-skew devices. The performance enhancement offered by minimum-skew devices can be wasted by inadequate layout. So, a look at some additional layout recommendations aimed at maintaining the high performance that these ECL devices are capable is essential.
F100K ECL minimum-skew devices are available standardly in surface mount packaging. Devices use either SOIC and PCC packages. Each package type has its own unique mounting requirements. However, there are some common areas where both types can benefit from attention to layout. These areas are bypassing location, power and ground connections, differential line layout and power plane isolation.
Literature available from National Semiconductor is listed in the Appendix.

## BYPASS CAPACITOR PLACEMENT

The placement of bypass capacitors is as important as their electrical characteristics. Placement and connection into the system can significantly alter the effectiveness and electrical performance of the bypassing elements. Ideally, the capacitor is placed as close as possible to the device requiring the bypass. Only an absolute minimum of wire length should connect the capacitor to the power planes or the IC leads. If surface mount capacitors are used, the mounting lands are connected directly to the power planes
through vias and omit any extra wiring. Figure 5 shows the recommended placement and connection methods for PCC layouts on conventional multi-layer PCB's. Figure 6 shows the recommended application where SOIC packaging is used.

## POWER AND GROUND CONNECTIONS

Power and ground connection paths must be kept short otherwise excess inductance is introduced in the IC's power leads. Excess inductance reduces the effectiveness of any associated bypassing and makes the power supply seen by the IC less stable. Where multiple power or ground pins are provided on the IC package, all should be connected to the appropriate supply potential. Figure 7 shows examples of correct and incorrect power connections to PCC and SOIC packaged devices.

## DIFFERENTIAL LINE LAYOUT

National's minimum-skew devices generally employ differential inputs and outputs as an aid in combating skew. When combined with properly designed differential transmission line layouts, precise system timing is possible. However, careless layout of differential lines can cause serious timing and skew problems. By observing a few simple rules, effective differential transmission systems can be easily designed.

1. Differential transmission lines must be organized in pairs. Lines originating at complementary outputs must be paired throughout their lengths. Additional spacing should be allowed between pairs in all layers. Approximately twice the spacing between the lines of the pair should be . used between pairs.
2. Both lines of a differential pair must be of equal length. Changes of direction must be accompanied by either an equal and opposite change of direction or additional length must be added to the resulting shorter line.
3. Differential lines should be paired (run parallel) in the same layer. When a direction change dictates a change of layer, both conductors should change layers. In general, there should be an equal number of vias in each line as the result of layer changes. The width of the lines may be adjusted according to preserve line impedance.
4. Corners in lines with angles greater than $45^{\circ}$ should be mitered or radiused to preserve impedance uniformity.
Figure 8 illustrates these rules with several ways in which differential lines may be implemented correctly and incorrectly.


TL/F/10982-7

ACCEPTABLE


TL/F/10982-8



## AVOIDING SKEW TOLERANCE BUILD-UP

There are additional steps that can be taken to avoid skew build-up. Perhaps the simplest is to observe the rule of equal loading and termination. Briefly stated, all matching delay paths must be loaded equally, both resistively and reactively. Complementary outputs must have equal resistive termination values. Capacitive loading must be equal for both outputs, also. This is especially true of differential lines.
For example and using the delay value for $50 \Omega$ lines mentioned previously, a loading difference of 5 pF between the conductors of a differential line can result in a skew of 105 ps , or about one-fifth of a risetime. When combined with other effects like crosstalk and impedance discontinuities, significant skew can occur.
Path delay distribution is another step that can be taken to avoid skew build-up, Figure 9. This means that, if a clock distribution path must pass through several amplifiers, steps should be taken to assure that the signal does not use the same path, pin-wise, through all amplifiers. To illustrate, assume that the path passes through three F100311, 1:9 differential drivers. The input pins in all cases are 28 (in) and 2 (in/). If the first output pair is 25 (D0) and 24 (D0/), then choose pins 23 (D1) and 22 (D1/) for amplifier \#2 and pins 20 (D2) and 19 (D2/) for the third amplifier. Additional variation can be achieved by reversing the input phase through each amplifier. Of course, the output phase must be similarly reversed to match the input. These points may seem minor, but all contribute to reducing the mathematical probability of skew tolerance build-up.

## TESTING MINIMUM-SKEW CLOCK SYSTEMS

As with all types of electronic systems, the performance of minimum-skew circuits must be verifyable and testable. The very nature of these systems calls for more care and precision in testing than other types of logic systems. And, greater precision is required from the test equipment and its use. Certainly the oscilloscope is the most frequently used piece of test equipment for logic systems. While it does provide much information about the quality of signals, it may be the cause of error if improperly applied. Perhaps the single largest error source and the least recognized is the place where scope and circuit meet, the probe. To do justice to the subject of probing and probes in pulse application would require a book unto itself. One very useful book from Tektronix is "ABC's of Probes". In it are emphasized some essentials for choosing a suitable probe for the job. Some of these are:

- Compatibility with the scope system,
- Adequate bandwith and risetime capability exceeding that of the system to be tested,
- Low circuit loading, which implies low capacitance at the tip,
- High enough impedance so as to not unduly load the circuit being probed (This does not mean that FET probes are the best choice!),
- And delay matching when multiple probes are used for relative delay measurements.

The choice of scope is equally important and the list of its basic features is similar to that for the probe. Where the precise nature of the signal to be measured is unknown, the analog scope may provide the most useful information initially. While it does not have all of the sophistication of digital scopes, it offers fewer complications and a fidelity that is hard to beat. The digital scope, especially if it has storage capability, can be an asset where comparison of signals taken at different times and places in the circuit is important. Additional useful information on scopes and in-circuit measurements may be found in the series "Troubleshooting Analog Circuits" by National Semiconductor's Bob Pease in "EDN" and available as a reprint from National.
A final consideration and one that is often overlooked is the incorporation of test points in the circuit. The increasing use of surface mount devices and dense layouts makes probing these circuits more difficult. Inclusion of test points or test connectors can ease the job considerably. Just remember to make sure that the test points do not corrupt the signals and are themselves designed for minimum-skew. Test points may even be provided by reserving one output of an ECL minimum-skew device at each critical point in the circuit. This provides isolation for the probe and minimal loading on the monitored circuit. And, of course it should go without saying that test points should be accessible without the need to mechanically or electrically alter normal operation of the equipment being tested.

## APPENDIX

## Available Literature

Application Notes
AN-467 - Surface Mount: From Design to Delivery
AN-468 - Wave Soldering of Surface Mount Components
AN-469 - Reliability of Small Outline Surface Mount Packages
AN-470 - Wave Soldering: Is SOIC Reliability Compromised?

## Datasheets

113295-001 - Plastic Chip Carrier Technology
113615-001 - A Basic Guide to Surface Mounting of Electronic Components

Other Literature
570430-001 - Reliability Report Update Small Outline (SO) Package
570435-001 - Getting Started in Surface Mount
980040-001 - Reliability Report Update - Plastic Chip Carrier (PCC) Package
980045-001 - Reliability Report Update - Small Outline (SO) Package
980055-004 - Surface Mount Availability Guide F100K ECL 100 Series to 300 Series Conversion Book
Troubleshooting Analog Circuits (EDN Article Series Reprint)

## Databooks

400080 - Reliability Handbook
400028 - F100K ECL Logoic Databook and Design Guide

## BIBLIOGRAPHY

"F100K ECL Logic Databook and Design Guide", National Semiconductor Corp., 1991
"Radiotron Designer's Handbook"; Fourth Ed.; F. LangfordSmith; Amalgamated Wireless Valve Co. Pty. Ltd.; Sydney, Australia; 1952
"The RF Capacitor Handbook"; 1st Ed.; American Technical Ceramics; 1979
"Traveling-Wave Engineering"; R.K. Moore; McGraw-Hill; 1960
"Communications Systems: An Introduction to Signals and Noise in Electrical Communications"; A. Bruce Carlson; McGraw-Hill; 1968
"Analysis, Transmission and Filtering of Signals"; M. Javid and E. Brenner; MrGraw-Hill; 1963
'ABC's of Probes'; Tektronix, Inc.; 1989
Electronic Circuit Calculations Simplifed, Part 4-RC combinations in D.C. circuits"; S.W. Amos; "Wireless World"; 9/1975; pp. 423-426
'Electronic Circuit Calculations Simplified, Part 5 - RC combinations in A.C. circuits", S.W. Amos; "Wireless World"; 10/1975; pp. 475-478

Section 6
Ordering Information and Physical Dimensions

## Section 6 Contents

Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
ECL Tape-and-Reel Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Bookshelf
Distributors

## ORDER INFORMATION

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


For most current packaging information, contact product marketing.

## ECL Tape-and-Reel Specification

## General Description

Tape-and-Reel is a new method for shipment of surface mount devices. This approach simplifies the handling of semiconductors for automated circuit board assembly systems. A Tape-and-Reel holds hundreds-to-thousands of surface mount devices (as compared with less than 100 devices in a rail), so that pick-and-place machines have to be reloaded less frequently. This savings in labor will further reduce manufacturing costs for automated circuit board assembly.

## Features

- Conductive PVC material redeuces static charge buildup
■ Fully meets proposed EIA standard RS-481A (taping of surface-mounted components for automatic placing)

■ Fully compatible with National's surface mount package types

- Variable code density code 39 bar code label for Automated Inventory Management availability
- Mechanical samples of surface mount packages available in Tape-and-Reel for automated assembly process development
■ Single Tape-and-Reel holds hundreds-to-thousands of surface mount semiconductors for additional labor savings
- Conductive cover Tape-and-Reel availability
- Reels individually packed


## Tape-and-Reel Diagram



## Tape-and-Reel Overview

## TAPE FORMAT AND DEVICE ORIENTATION



## MATERIALS

- Cavity Tape: Conductive PVC (less than $10^{5} \Omega / \mathrm{Sq}$ )
- Cover Tape: Polyester

1. Conductive Cover available

- Reel: 1. Solid 80 pt. Fibreboard (standard)

2. Conductive Fibreboard available
3. Conductive Plastic (PVC) available

LABEL
Human and machine readable label is provided on reel. A variable (C.P.I.) density code 39 is available. NSC STD Label (7.6 C.P.I.).

## Field

Lot Number
Date Code
Revision Level
National Part No. I.D.
Quantity
Fields are separated by at least one blank space.
Future Tape-and-Reel packs will also include a smaller-size bar code label (high-density code 39) at the beginning of the

## Example:

 tape. (This tape label is not available on current production.)
National Semiconductor will also offer additional labels containing information per your specific specification.

## SO-24 (Wide)

TAPE FORMAT

| DirectionofFeed $\uparrow$ | Tape Section | \# Cavities | Cavity Status | Cover Tape Status |
| :---: | :---: | :---: | :---: | :---: |
|  | Leader | 5 (min) | Empty | Unsealed |
|  | (Start End) | 5 (min) | Empty | Sealed |
|  | Carrier | 1000 | Filled | Sealed |
|  | Trailer | 2 (min) | Empty | Sealed |
|  | (Hub End) | 2 (min) | Empty | Unsealed |

TAPE DIMENSIONS


TL/F/10995-4

REEL DIMENSIONS


## PLCC-28

TAPE FORMAT

| Direction of $\uparrow$ Feed | Tape Section | \# Cavities | Cavity Status | Cover Tape Status |
| :---: | :---: | :---: | :---: | :---: |
|  | Leader | 5 (min) | Empty | Unsealed |
|  | (Start End) | 5 (min) | Empty | Sealed |
|  | Carrier | 750 | Filled | Sealed |
|  | Trailer | 2 (min) | Empty | Sealed |
|  | (Hub End) | 2 (min) | Empty | Unsealed |

TAPE DIMENSIONS


TL/F/10995-6

## REEL DIMENSIONS



TL/F/10995-7

## Application-Total System Saving



TL/F/10995-8

Cost pressures today are forcing many electronics manufacturers to automate their production lines. Surface mount technology plays a key role in this cost-savings trend because:

1. The mounting of devices on the PC board surface eliminates the expense of drilling holes;
2. The use of pick-and-place machines to assemble the PC boards greatly reduces labor costs;
3. The lighter and more compact assembled products resulting from the smaller dimensions of surface mount packages mean lower material costs.
Production processes now permit both surface mount and insertion mount components to be assembled on the same PC board.

Automated manufacturers can improve their cost savings by using Tape-and-Reel for surface mount devices. Simplified handling results because hundreds-to-thousands of semiconductors are carried on a single Tape-and-Reel pack (see the "Ordering Information" section for the exact quantities). With this higher device count per reel (when compared with less than 100 devices per rail), pick-and-place machines have to be re-loaded less frequently and lower labor costs result.
With Tape-and-Reel, manufacturers save twice-once from using surface mount technology for automated PC board assembly and again from less device handling during shipment and machine set-up.

## Ordering Information

When you order a surface mount semiconductor, it will be in one of the 15 available surface mount package types (see Section 6 for the physical dimensions of the surface
mount packages). Specifying the Tape-and-Reel method of shipment means that you will receive your devices in the following quantities per Tape-and-Reel pack:

|  |  | Device Quantity |
| :--- | :--- | :---: |
| Small Outline IC | SO-24 (Wide) | 1000 |
| Plastic Chip Carrier IC | PLCC-28 | 750 |

## Appendix l—Short-Form Procurement Specification

TAPE FORMAT

| $\rightarrow$ Direction of Feed |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trailer (Hub End) |  | Carrier | Leader (Start End) |  |
|  | Empty Cavities, min (Unsealed Cover Tape) | Empty Cavities, $\min$ (Sealed Cover Tape) | Filled Cavities (Sealed Cover Tape) | $\begin{gathered} \text { Empty Cavities, } \\ \text { min } \\ \text { Sealed } \\ \text { Cover Tape) } \\ \hline \end{gathered}$ | Empty Cavities, min (Unsealed Cover Tape) |
| SMALL OUTLINE IC |  |  |  |  |  |
| SO-24 (Wide) | 2 | 2 | 1000 | 5 | 5 |
| PLASTIC CHIP CARRIER IC |  |  |  |  |  |
| PLCC-28 | 2 | 2 | 750 | 5 | 5 |

TAPE DIMENSIONS ( 24 Millimeter Tape or Less)


TL/F/10995-9

|  | W | P | F | E | $\mathrm{P}_{\mathbf{2}}$ | $\mathrm{P}_{\mathbf{0}}$ | D | T | $\mathbf{A}_{0}$ | $\mathrm{~B}_{\mathbf{0}}$ | $\mathrm{K}_{0}$ | $\mathrm{D}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SMALL OUTLINE IC
 PLASTIC CHIP CARRIER IC

Note 1: $A_{0}, B_{0}$ and $K_{0}$ dimensions are measured 0.3 mm above the inside wall of the cavity bottom.
Note 2: Tape with components shall pass around a mandril radius R without damage.
Note 3: Cavity tape material shall be PVC conductive (less than $10^{5} \Omega / \mathrm{Sq}$ ).
Note 4: Cover tape material shall be polyester (30-65 grams peel-back force).
Note 5: $\mathrm{D}_{1}$ Dimension is centered within cavity.
Note 6: All dimensions are in millimeters.

## Appendix I—Short-Form Procurement Specification (Continued)

REEL DIMENSIONS


TL/F/10995-10

|  |  | A (Max) | B (Min) | C | D (Min) | N (Min) | G | T (Max) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 mm Tape | SO-24 (Wide) PLCC-28 | $\frac{(13.00)}{(330)}$ | $\frac{0.059}{1.5}$ | $\frac{0.512 \pm 0.002}{13 \pm 0.05}$ | $\frac{0.795}{20.2}$ | $\frac{1.969}{50}$ | 0.960 $\mathrm{C}_{-0.078}^{+0.000}$ -2 | $\frac{1.197}{30.4}$ |

Units: $\frac{\text { Inches }}{\text { Millimeters }}$

Material: Paperboard (Non-Flaking)

## 14 Lead Ceramic Dual In-Line Package (D) NS Package Number J14A



## 16 Lead Ceramic Dual In-Line Package (D) NS Package Number J16A



## 24 Lead Ceramic Dual In-Line Package (0.400" Wide) (D)

 NS Packáge Number J245

## 8 Lead (0.150" Wide) Molded Small Outline Package (S) NS Package Number M08A



## 16 Lead Small Outline Integrated Circuit (S)

 NS Package Number M16A

## 24 Lead ( $0.300^{\prime \prime}$ Wide) Molded Small Outline Package (S)

 NS Package Number M24B

## 24 Lead Molded Dual In-Line Package (P) NंS Package Number ìj24E



## 28 Lead Plastic Chip Carrier (Q) NS Package Number V28A



## 16 Lead Ceramic Flatpak (F) NS Package Number W16A



## 24 Lead Quad Cerpak (F) NS Package Number W24B



W24B (REV C)

## Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090

## ALS/AS LOGIC DATABOOK—1990 <br> Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

# ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 <br> SSI/MSI Functions • Peripheral Functions •LSI/VLSI Functions • Design Guidelines • Packaging 

## CMOS LOGIC DATABOOK—1988

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

## DATA ACQUISITION LINEAR DEVICES—1989

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

## DATA ACQUISITION DATABOOK SUPPLEMENT—1992

New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.

## DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

## DRAM MANAGEMENT HANDBOOK—1991

Dynamic Memory Control • Error Detection and Correction - Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A Microprocessor Applications for the NS32CG821

## EMBEDDED CONTROLLERS DATABOOK—1992

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

## FDDI DATABOOK—1991

FDDI Overview • DP83200 FDDI Chip Set • Development Support • Application Notes and System Briefs

## F100K ECL LOGIC DATABOOK \& DESIGN GUIDE-1992

Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets •11C Datasheets Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations Power Distribution and Thermal Considerations • Testing Techniques • 300 Series Package Qualification Quality Assurance and Reliability • Application Notes

FACTTM ADVANCED CMOS LOGIC DATABOOK—1990<br>Description and Family Characteristics $\bullet$ Ratings, Specifications and Waveforms<br>Design Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXX<br>Quiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA

# FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1990 <br> Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations • 54F/74FXXX 

## FAST ${ }^{\circledR}$ APPLICATIONS HANDBOOK—1990

Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders
Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics

## GENERAL PURPOSE LINEAR DEVICES DATABOOK—1989

Continuous Voltage Regulators • Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators Instrumentation Amplifiers • Surface Mount

## IBM DATA COMMUNICATIONS HANDBOOK—1992

IBM Data Communications • Application Notes

## INTERFACE: LINE DRIVERS AND RECEIVERS DATABOOK—1992

EIA-232 • EIA-422/423 • EIA-485 • Line Drivers • Receivers • Repeaters • Transceivers • Application Notes

## LINEAR APPLICATIONS HANDBOOK—1991

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

## LOCAL AREA NETWORK DATABOOK—1992

Integrated Ethernet Network Interface Controller Products • Ethernet Physical Layer Transceivers Ethernet Repeater Interface Controller Products • Hardware and Software Support Products • FDDI Products • Glossary

## LOW VOLTAGE DATABOOK—1992

This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS).

## MASS STORAGE HANDBOOK—1989

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

## MEMORY DATABOOK—1992

CMOS EPROMs • CMOS EEPROMs • PROMs • Application Notes

## PROGRAMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1990 <br> Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Design Development Tools • Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK—1991
Real Time Clocks and Timer Clock Peripherals • Application Notes

## RELIABILITY HANDBOOK—1987

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device $\bullet$ Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

## SPECIAL PURPOSE LINEAR DEVICES DATABOOK—1989

Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits Surface Mount

## TELECOMMUNICATIONS-1992

COMBO and SLIC Devices • ISDN • Digital Loop Devices • Analog Telephone Components • Software Application Notes

## NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

alabama
Huntsville
Hamilton/Avnet
(205) 837.7210

Pioneer Technology
(205) 837-9300

Time Electronics
(205) 721-1133

ARIZONA
Chandler
Hamilton/Avnet
(602) $961 \cdot 1211$

Tempe
Anthem Electronics
(602) 966-6600

Bell Industries
(602) $966-7800$

Time Electronics (602) 967-2000

CALIFORNIA
Agora Hills
Bell Industries (818) 706-2608 Time Electronics (818) 707-2890 Zeus Components (818) 889-3838

Burbank Elmo Semiconductor (818) 768-7400

Calabasas F/X Electronics (818) 591-9220

Chatsworth Anthem Electronics (818) 775-1333 Time Electronics (818) 998-7200

Costa Mesa Hamilton Electro Sales (714) 641-4100

Cypress
Bell Industries (714) 895-7801

Gardena Hamilton/Avnet (213) 516-8600

Irvine
Anthem Electronics (714) 768-4444

Rocklin
Anthem Electronics
(916) 624-9744

Bell Industries
(916) 652-0414

Roseville
Hamilton/Avnet (916) 925-2216

San Diego
Anthem Electronics
(619) 453-9005

Hamilton/Avnet (619) 571-1900 Time Electronics (619) 586-0129

San Jose Anthem Electronics
(408) 453-1200

Pioneer Technology
(408) 954-9100

Zeus Components
(408) 629-4789

Sunnyvalo
Beil Industries
(408) 734-8570

Hamilton/Avnet
(408) 743-3300

Time Electronics
(408) 734-9888

Torrance
Time Electronics
(213) 320-0880

Tustin
Time Electronics
(714) 669-0100

Woodland Hills Hamilton/Avnet (818) 594-0404

Yorba Linda
Zeus Components
(714) 921-9000

COLORADO
Denver Bell Industries (303) 691-9010

Englewood Anthem Electronics
(303) 790-4500 Hamilton/Avnet (303) 799-7800 Time Electronics (303) 721-8882

CONNECTICUT
Danbury Hamilton/Avnet (203) 743-6077

Shelton
Pioneer Standard (203) 929-5600

Waterbury
Anthem Electronics
(203) 575-1575

FLORIDA
Altamonte Springs
Bell Industries
(407) 339-0078

Pioneer Technology
(407) 834-9090

Zeus Components
(407) 788-9100

Deerfield Beach
Bell Industries
(305) 421-1997

Pioneer Technology
(305) 428-8877

Fort Lauderdale Hamilton/Avnet (305) 767-6377

Time Electronics
(305) 484-1778

Orlando
Chip Supply
(407) 298-7100

Time Electronics
(407) 841-6565

St. Petersburg Hamilton/Avnet (813) 572-4329

Winter Park
Hamilton/Avnet (407) 657-3300

GEORGIA
Duluth
Hamilton/Avnet (404) 446-0611 Pioneer Technology (404) 623-1003

Norcross Bell Industries
(404) 662-0923

Time Electronics
(404) 368-0969

ILLINOIS
Addison
Pioneer Electronics
(708) 495-9680

Bensenville
Hamilton/Avnet
(708) 860-7700

Elk Grove Village Bell Industries (708) 640-1910

Schaumburg
Anthem Electronics
(708) 884-0200

Time Electronics
(708) 303-3000

INDIANA
Carmel
Hamilton/Avnet (317) 844-9333

Fort Wayne
Bell Industries
(219) 423-3422

Indianapolis
Advent Electronics Inc.
(317) 872-4910

Bell Industries
(317) 875-8200

Pioneer Standard
(317) 573-0880

IOWA
Cedar Rapids Advent Electronics (319) 363-0221 Hamilton/Avnet (319) 362-4757

KANSAS
Lenexa
Hamilton/Avnet (913) 888-8900

MARYLAND
Columbia Anthem Electronics (301) 995-6840 Time Electronics (301) 964-3090 Zeus Components (301) 997-1118

Gaithersburg Pioneer Technology (301) 921-0660

MASSACHUSETTS
Andover
Bell Industries (508) 474-8880

Beverly
Sertech Laboratories (508) 927-5820

Lexington
Pioneer Standard (617) 861-9200

Norwood Gerber Electronics (617) 769-6000

Peabody
Hamilton/Avnet
(508) 531-7430

Time Electronics (508) 532-9900

Tyngsboro Port Electronics (508) 649-4880

Wakefield Zeus Components (617) 246-8200

Wilmington Anthem Electronics (508) 657-5170

MICHIGAN
Grand Rapids Pioneer Standard (616) 698-1800

Grandville Hamilton/Avnet (616) 243-8805

Livonia Pioneer Standard (313) 525-1800

Novi
Hamilton/Avnet (313) 347-4720

Wyoming
R. M. Electronics, Inc. (616) 531-9300
minnesota
Eden Prairie Anthem Electronics (612) $944-5454$ Pioneer Standard (612) 944-3355

Edina Time Electronics (612) 943-2433

Minnetonka Hamilton/Avnet (612) 932-0600

MISSOURI
Chesterfield Hamilton/Avnet (314) 537-1600

St. Louis
Time Electronics (314) 391-6444

NEW JERSEY
Cherry Hill Hamilton/Avnet (609) 424-0100

Fairfield Hamilton/Avnet (201) 575-3390 Pioneer Standard (201) 575-3510

Marlton Time Electronics (609) 596-6700

Pine Brook Anthem Electronics (201) 227-7960

Wayne
Time Electronics (201) 785-8250

NEW MEXICO
Albuquerque Alliance Electronics Inc. (505) 292-3360 Bell Industries (505) 292-2700 Hamilton/Avnet (505) 345-0001

## NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

NEW YORK
Binghamton
Pioneer
(607) 722-9300
Buffalo
Summit Electronics
(716) 887-2800
Commack
Anthem Electronics
(516) 864-6600
Fairport
Pioneer Standard
(716) 381-7070
Hauppauge
Hamilton/Avnet
(516) 231-9444
Time Electronics
(516) 273-0100
Port Chester
Zeus Components
(914) 937-7400
Rochester
Hamilton/Avnet
(716) 292-0730
Summit Electronics
(716) 334-8110
Ronkonkoma
Zeus Components
(516) 737-4500
Syracuse
Hamilton/Avnet
(315) 437-2641
Time Electronics
(315) 432-0355
Westbury
Hamilton/Avnet Export Div.
(516) 997-6868
Woodbury
Pioneer Electronics
(516) 921-8700
NORTH CAROLINA
Charlotte
Hamilton/Avnet
(704) 527-2485
Pioneer Technology
(704) 527-8188
Durham
Pioneer Technology
(919) 544-5400
Morrisville
Pioneer Technology
(919) 460-1530
Raleigh
Hamilton/Avnet
(919) 878-0810
Time Electronics
(919) 874-9650
OHIO
Cleveland
Pioneer
(216) 587-3600

Columbus
Time Electronics
(614) 794-3301

Dayton
Bell Industries
(513) 435-8660

Bell Industries-Military
(513) 434-8231

Hamilton/Avnet
(513) 439-6700

Pioneer Standard
(513) 236-9900

Zeus Components
(513) 293-6162

Solon
Hamilton/Avnet
(216) 349-5100

OKLAHOMA
Tulsa
Hamilton/Avnet
(918) 664-0444

Pioneer Standard
(918) 665-7840

Radio Inc.
(918) 587-9123

OREGON
Beaverton
Anthem Electronics
(503) 643-1114

Hamilton/Avnet
(503) 627-0201

Lake Oswego
Bell Industries
(503) 635-6500

Portland
Time Electronics
(503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150

Pioneer Technology
(215) 674-4000

Mars
Hamilton/Avnet
(412) 281-4150

Pittsburgh
Pioneer
(412) 782-2300

TEXAS
Austin
Hamilton/Avnet
(512) 837-8911

Minco Technology Labs.
(512) 834-2022

Pioneer Standard
(512) 835-4000

Time Electronics (512) 346-7346

Dallas
Hamilton/Avnet
(214) 308-8111 Pioneer Standard (214) 386-7300

Houston
Hamilton/Avnet
(713) 240-7733

Pioneer Standard
(713) 495-4700

Richardson
Anthem Electronics
(214) 238-7100

Time Electronics
(214) 644-4644

Zeus Components (214) 783-7010

UTAH
Midvale
Bell Industries
(801) 255-9611

Salt Lake City Anthem Electronics (801) 973-8555 Hamilton/Avnet (801) 972-2800

West Valley Time Electronics (801) 973-8494

WASHINGTON
Bothell
Anthem Electronics
(206) 483-1700

Kirkland
Time Electronics
(206) 820-1525

Redmond
Bell Industries
(206) 867-5410

Hamilton/Avnet
(206) 241-8555

WISCONSIN
Brookfield
Pioneer Electronics
(414) $784-3480$

Mequon
Taylor Electric (414) 241-4321

Waukesha
Bell Industries
(414) 547-8879 Hamilton/Avnet (414) 784-8205

## CANADA

WESTERN PROVINCES
Burnaby
Hamilton/Avnet
(604) 420-4101

Semad Electronics (604) 420-9889

Calgary
Electro Sonic Inc.
(403) 255-9550

Semad Electronics
(403) 252-5664

Zentronics
(403) 295-8838

Edmonton
Zentronics
(403) 468-9306

Markham
Semad Electronics Ltd.
(416) 475-3922

Richmond
Electro Sonic Inc.
(604) 273-2911

Zentronics
(604) 273-5575

Saskatoon
Zentronics
(306) 955-2207

Winnipeg
Zentronics
(204) 694-1957

EASTERN PROVINCES
Mississauga
Hamilton/Avnet
(416) 795-3825

Time Electronics
(416) 672-5300

Zentronics
(416) 564-9600

Nepean
Hamilton/Avnet
(613) 226-1700

Zentronics
(613) 226-8840

Ottawa
Electro Sonic Inc.
(613) 728-8333

Semad Electronics (613) 727-8325

Pointe Claire
Semad Electronics (514) 694-0860

St. Laurent Hamilton/Avnet (514) 335-1000 Zentronics (514) 737-9700

Willowdale ElectroSonic Inc. (416) 494-1666

Winnipeg
Electro Sonic Inc. (204) 783-3105


## National Semiconductor Corporation

2900 Semiconductor Drive
P.O. Box 58090

Santa-Clara, CA- 95052:8090
For sales, literature and technical support for North America, please contact the National Semiconductor Customer Support Center at 1-800-272-9959.

## SALES OFFICES

CANADA
National Semiconductor 5925 Airport Rd.
Suite 615
Missisauga, Ontario L4V1W1
Tel: (416) 678-2920
Fax: (416) 678-2535

## PUERTO RICO

National Semiconductor La Electronica Bldg.
Suite 312, R.D. \#1, km 14.5 Rio Piedras, Puerto Rico 00927 Tel: (809) 758-9211
Fax: (809) 763-6959

## INTERNATIONAL OFFICES

National Semiconductor
(Australia) Pty, Ltd. 16 Business Park Dr.
Notting Hill, VIC 3168
Australia
Tel: (3) 558-9999
Fax: (3) 558-9998
National Semiconductor
(Australia) Pty, Ltd.
Suite \#4, Level 5
3 Thomas Holt Drive
North Ryde, N.S.W. 2113
Sydney, Australia
Tel: (02) 887-4355
Telex: AA 27173
Fax: (02) 805-0298
National Semiconductores
Do Brazil Ltda.
Av. Brig. Faria Lima, 1409
6 Andar
Cep-01451, Paulistano
Sao Paulo, SP
Brazil
Tel: (55-11) 212-5066
Telex: 391-1131931 NSBR BR
Fax: (55-11) 212-1181
National Semiconductor
Bulgaria
P.C.I.S.A.

Dondukov Bld. 25/3
Sofia 1000
Bulgaria
Tel: (02) 880116

National Semiconductor
(UK) Ltd.
Valdemarsgade 21
DK-4100 Ringsted
Denmark
Tel: (57) 672080
Fax: (57) 672082

National Semiconductor
(UK) Ltd.
Mekaanikonkatu 13
SF-00810 Helsinki
Finland
Tel: 358-0.759-1855
Telex: 126116
Fax: 358-0-759-1393
National Semiconductor ${ }^{\text {湯 }}$

## France

Centre d'Affaires "La Boursidière"
Bâtiment Champagne
3P 90
Route Nationale 186
F-92357 Le Plessis Robinson
Paris, France
Tel: (01) 40-94-88-88
Telex: 631065
Fax: (01) 40-94-88-11
National Semiconductor
GmbH
Dieselstrasse 23
D-3004 Isernhagen 2
Germany
Tel: (05-11) 723449
Fax: (05-11) 778872
National Semiconductor
GmbH
Eschborner Landstrasse 130-132
D-6000 Frankfurt 90
Germany
Tel: (0-69) 7891090
Telex: 4185397
Fax: (0-69) 78-95-38-3
National Semiconductor
GmbH
ndustriestrasse 10
D-8080 Fürstenfeldbruck
Germany
Tel: (0-81-41) 103-0
Telex: 527649
Fax: (0-81-41) 10-35-06
National Semiconductor
GmbH
Untere Waldplätze 37
D-7000 Stuttgart 80
Germany
Tel: (07-11) 68-65-11
Telex: 7255993
Fax: (07-11) 68-65-260
National Semiconductor
Hong Kong Ltd
13th Floor, Straight Block Ocean Centre

## 5 Canton Rd.

Tsimshatsui, East Kowloon
Hong Kong
Tel: (852) 737-1600
Telex: 51292 NSHKL
Fax: (852) 736-9960

National Semiconductor
(UK) Ltd.
Unit 2A
Clonskeagh Square
Clonskeagh Road
Dublin 14
Ireland
Tel: (01) 269-5344
Fax: (01) 283-0650
National Semiconductor SpA
Strada 7, Pallazo R/3
I-20089 Rozzano-Milanofiori
Italy
Tel: (02) 57500300
Telex: 352647
Fax: (02) 57500400
National Semiconductor
Japan Ltd.
Sanseido BIdg. 5F
4-15-3, Nishi-shinjuku,
Shinjuku-ku
Tokyo
Japan 160
Tel: (03) 3299-700
Fax: (03) 3299-7000
National Semiconductor
(Far East) Ltd
Korean Branch
13th Floor, Dai Han
Life Insurance 63 Building
60 , Yoido-dong. Youngdeungpo-ku
Seoul
Korea 150-763
Tel: (02) 784-8051
Telex: 24942 NSRKLO
Fax: (02) 784-8054
Electronica NSC
de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: (525) 524-9402
Fax: (525) 524-9342
National Semiconductor

## Benelux B.V.

Flevolaan 4
NL-1382 JZ Weesp
The Netherlands
Tel: (02) 94030448
Fax: (02) 94030430
National Semiconductor
(UK) Ltd.
Isveien 45
N -1390 Vollen
Norway
Tel: (2) 79-6500
Fax: (2) 79-6040

National Semiconductor
Asia Pacific Pte. Ltd.
Southpoint 200
200 Cantonment Road \# 13-01
Singapore 0208 ,
Singapore
Tel: (65) 225-2229
Telex: NATSEMI RS 50808
Fax: (65) 225-7080
National Semiconductor
Calle Agustin de Foxa, 27 ( $9^{\circ} \mathrm{D}$ )
E-28036 Madrid
Spain
Tel: (01) 7-33-29-58
Telex: 46133
Fax: (01) 7-33-80-18
National Semiconductor AB
P.O. Box 1009

Grosshandlarvagen 7
S-121 23 Johanneshov
Sweden
Tel: (08) 7228050
Fax: (08) 7229095
National Semiconductor
Alte Winterthurerstrasse 53
$\mathrm{CH}-8304$ Wallisellen-Zürich
Switzerland
Tel: (01) 8-30-27-27
Fax: (01) 8-30-19-00
National Semiconductor
(Far East) Ltd.
Taiwan Branch
9th Floor, No. 18
Sec. 1, Chang An East Road
Taipei, Taiwan, R.O.C.
Tel: (02) 521-3288
Fax: (02) 561-3054
National Semiconductor

## (UK) Ltd.

The Maples, Kembrey Park
Swindon, Wiltshire SN2 6UT
United Kingdom
Tel: (07-93) 61414
Telex: 444674
Fax: (07-93) 522180


[^0]:    L = Low Voltage Level
    $H=$ High Voltage Level
    X = Don't Care

[^1]:    Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$ ), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.
    Note 2: Screen tested $100 \%$ on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
    Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
    Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

[^2]:    H = HIGH Voltage Level
    $\mathrm{L}=\mathrm{LOW}$ Voltage Level
    Z $=$ HIGH Impedance
    $U=$ Undefined

[^3]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    Blank $=\mathrm{X}=$ Don't Care

[^4]:    H $=$ HIGH Voltage Level
    L = LOW Voltage Level

[^5]:    *Worst case, Flatpak

[^6]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level
    $\mathrm{X}=$ Don't Care

[^7]:    H = HIGH Voltage Level
    L = Low Voltage Level
    X = Don't Care
    $\widetilde{\sim}=$ LOW to HIGH Transition
    $\mathrm{Q}_{\mathrm{n}-1}=$ Previous State

[^8]:    $H=H I G H$ Voltage Leve
    L = LOW Voltage Level
    $\mathrm{X}=$ Don't Care
    $\tau=$ LOW to HIGH Transition
    $\mathrm{t}, \mathrm{t}+1=$ Time Before and After Clock Positive Transition

[^9]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level

[^10]:    $M=A_{2 a}=H_{c}=L O W$
    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
    L =LOW Voltage Level
    X $=$ Don't Care

[^11]:    *VBE output available for 100325

