




























































































































































































































































































































































































































































































































































































































































































































































7.3 Memory-Mapped 1/0 Address Decoder (Continued) 

PALlID DEVICE DESIGN Port 1 = ABO-/ AB1-/ AB2-AB3-AB4-AB5-AB6-/ AB7 

One PAL 16L2 can be used to monitor a 16-bit address bus, 
fully decode addresses, and furnish enables to two ports, 
each of which can be anywhere within 64k of address 
space. Partial decoding for a larger number of ports can be 
done using other members of the PAL device family. 

-AB8-AB9-ABA-ABB-ABC-/ ABD-/ ABE-/ ABF 

The above example shows address decoding for memory 
locations IF78H and IF79H. The equation terms could be 
changed to accommodate any 16-bit address. 

Typical logic equations for the memory-mapped I/O logic 
are as follows: 

Port a = / ABO-/ AB1-/ AB2-AB3-AB4-AB5-AB6-/ AB7-
AB8-AB9-ABA-ABB-ABC-/ ABD-/ ABE-/ ABF 

PLANT'" INPUT FILE 

title Memory mapped 1/0 address decoder 
pattern MEMORY 
revision A 
author Tarif Engineer 
cOlTl'any National Semiconductor Corporation 
Date 11/28/1989 

chip MUP PAL16L2 

pin 1 2 3 4 5 6 7 
ABO AB1 AB2 AB3 AB4 ABS AB6 

pin 11 12 13 14 15 16 17 
AB9 ABA ABB ABC IPORT1 IPORTO ABO 

equations 

8 9 10 
AB7 AB8 GND 

18 19 20 
ABE ABF VCC 

PORTO = IABO * IAB1 * IAB2 * AB3 * AB4 * ABS * AB6 * IAB7 * AB8 * AB9 
* ABA * ABB * ABC * IABO * IABE * IABF 

PORT1 ABO * IAB1 * IAB2 * AB3 * AB4 * ABS * AB6 * IAB7 * AB8 * AB9 
* ABA * ABB * ABC * IABO * IABE * IABF 

end of MEMORY 
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7.3 Memory-Mapped 1/0 Address Decoder (Continued) 

PLANTM JEDEC FILE 

PAL16L2 
titLe Memory mapped I/O address decoder 
pattern MEMORY 
revision A 
author Tarif Engineer 
company NationaL Semiconductor Corporation 
Date 11/28/1989 

* 
QF0512*QP20*FO* 
LOOOO 
10101010011001100101010110010101 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
L02S6 
10011010011001100101010110010101 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
C0420* 
0000 

TLlL/9991-21 
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Document fiLe for MEMORY.JNP 
Device: 16L2 

Pin Label 

1 ABO 
2 AB1 
3 AB2 
4 AB3 
S AB4 
6 ABS 
7 AB6 
8 AB7 
9 AB8 
10 GND 
11 AB9 
12 ABA 
13 ABB 
14 ABC 
15 PORT1 
16 PORTO 
17 ABD 
18 ABE 
19 ABF 
20· VCC 

Type 

com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
ground pin 
com input 
com input 
com input 
com input 
neg,com output 
neg,com output 
com input 
com input 
com input 
power pin 

TL/Ll9991-36 

Chip Diagram (DIP) 

ABO-r-r-:; ~vcc 
AB1- 2 19 i-ABF 

AB2- 3 18 !-ABE 

AB3- 4 

AB4- 5 

AB5- 6 

AB6- 7 

AB7- 8 

AB8- 9 

GND- 10 

17 !-ABO 

16 i-PORTO 

15 i-PORTI 

14 i-ABC 

131-ABB 

12 !-ABA 

II~AB9 

TL/L/9991-58 



7.3 Memory-Mapped 1/0 Address Decoder (Continued) 

1 
> 

AB, 
2 19 

> <: ABF 

3 .. 18 
~ ~ ABE 

4 17 
12 < ABC 

" II 
16 II 

""" " ./ II 
II 
II 

5 
J' .. 

L2' 
JI 

1 
JI 

15 u 

" n 
II ./ JI 
JI 
JI 

6 .. 14 
L2' 5.a ABC 

7 .. 13 
12 < ABB 

8 12 
L2' < ABA 

9 11 
.c;J ABa 

• , J J ., I J I lUll UUI." IIUIII, JIIUUJ JUIIUJ UHJUI 

TL/Ll9991-22 

FIGURE 7.3.2. PAL 16L2 Logic Diagram Showing Address Decoder Fuse Pattern 
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7.4 Quad 4-to-1 Multiplexer 
DESCRIPTION 

Widely used in computer and data communications circuits, 
multiplexers route one of several input banks to an output, 
based on the condition of select inputs. This particular ver­
sion has 4 input banks, each 4-bits wide (Figure 7.4.1); 
therefore, two select lines are required to choose 1 of 4 
inputs, as shown in the function table of Figure 7.4.2. Possi­
ble applications for our multiplexer include bus selection in a 
multibus computer environment, or data manipulation in an 
arithmetic/logic circuit. 

With a total of 16 multiplexer inputs and two Select inputs, 
this design is well suited for the GAL20V8. The pinout cho­
sen for this example is shown in Figure 7.4.3; actual pin 
placement of the multiplexer outputs is not critical since the 
versatility of the GAL20V8 allows the designer to choose 
that combination of output pins that best suits the board 
layout. The device was programmed using ABEL; the logic 
design input files are shown in Figure 7.4.4, with reduced 
equations shown in the document-generator file of Figure 
7.4.5. The 'fuse' map is shown in Figure 7.4.6. 

AO 

• 
• 
A3 

Bo 

• 
• 
B3 

INPUTS 

Co 

• 
• 
C3 

Do 

• 
• 
03 

SELECT 
SI So 

AOUT 

BOUT 

COUT 

DOUT 

FIGURE 7.4.1. Block Diagram 

}O~m 

TL/L/9991-23 

S1 So 

0 0 
0 1 
1 0 
1 1 

7-16 

AOUT BOUT COUT DOUT 

Ao BO Co Do 
Al Bl Cl Dl 
A2 B2 C2 D2 
A3 B3 C3 D3 

FIGURE 7.4.2. Function Table 

Ao 24 Vee 

AI SI 

A2 So 

A3 AOUT 

Bo 20 BOUT 

Bl GAL20V8 
19 COUT 

B2 18 DOUT 

B3 17 03 

Co 16 O2 
Cl 15 01 
C2 14 Do 

GND 13 C3 

TLIL/9991-24 

FIGURE 7.4.3. Pinout Diagram 



~--------------------------------------------------------------~~ 

7.4 Quad 4-to-1 Multiplexer (Continued) 

module quad_4to1_mux 

title 'ABEL INPUT FILE 
Quad 4 to 1 Multiplexer in a GAL20V8 
National Semiconductor 

April 17, 1986 
Joe Eng' 

"device declaration 

"location 
U8 

"pin declaration 

"inputs 
AO,A1,A2,A3 
BO,B1,B2,B3 
CO,C1,C2,C3 
00,01,02,03 

"outputs 

keyword 
device 

pin 1,2,3,4; 
pin 5,6,7,8; 

device code 
'P20V8S' ; 

pin 9,10,11,13; 
pin 14,15,16,17; 

Aout,Bout,cout,oout pin 21,20,19,18: 

"control 
SO,Sl pin 22,23: 

equations 

Aout ( !Sl & ISO & AO) # ( ! Sl & SO & A1) # 
(Sl & ISO & A2) # (Sl & SO & A3) : 

Bout (! Sl & ISO & BO) # (!Sl & SO & B1) # 
(Sl & ISO & B2) # (Sl & SO & B3); 

Cout .,. (! Sl & ISO & CO) # (lSl & SO & Cl) # 
(Sl & ISO & C2) # (Sl&SO&C3); 

Oout = (! Sl & ISO & DO) # (!Sl & SO & D1) # 
(Sl & ISO & D2) # (Sl & SO & D3): 

test_vectors 

«(Sl,SO,AO,A1,A2,A3,BO,B1,B2,B3,CO,Cl,C2,C3,DO,D1,D2,D3] -> 
[Aout,Bout,cout,Dout]) 

" S S A A B B C C D o 

" 100 1 2 3 012 3 a 1 2 3 012 3 

outputs 

ABC D 

[0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [1,0,0,0]: 
(0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,1,0,0]; 
(1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,0,1,0]: 
[1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,0,0,1]: 

(0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [1,1,1,0]: 
(0,1,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [1,1,0,1]: 
[1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1) -> [1,0,1,1); 
[1,1,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [0,1,1,1): 

FIGURE 7.4.4. ABEL Input File 

7·17 

" select 
"AO,BO,CO,DO 
"A1,B1,C1,D1 
" A2 , B2 , C2 , D2 
"A3, B3, C3, D3 

"AO,BO,CO,DO 
"Al,B1,Cl,Dl 
"A2,B2,C2,02 
"A3 , B3 , C3 , D3 
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7.4 Quad 4-to-1 Multiplexer (Continued) 

ABEL(tm) Version 1.19 Document Generator 
Quad 4 to 1 Multiplexer in a GAL20V8 April 17, 1986 
National Semiconductor Joe Eng 
Equations for Module quad_4to1_mux 

Device U8 

Reduced Equations: 

Aout - (AO & 150 & 151 
t A1 & SO & 151 
t A2 & ISO , 51 
11 A3 & SO & 51); 

Bout - (BO & ISO & 151 
t B1 & SO & 151 
, B2 & ISO & 51 
, B3 & SO & 51); 

cout 

oout 

(CO & 150 & 151 
t C1 & SO & 151 
# C2 & 150 & 51 
# C3 & SO & 51); 

(DO & ISO & 151 
# 01 & SO & 151 
# 02 & ISO & 51 
# 03 & SO & 51); 

FIGURE 7.4.5. Reduced ABEL Equations 
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7.4 Quad 4-to-1 Multiplexer (Continued) 

OPH* 0F2706* 
LOOOO 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
1101111 0 111 0 1111111111111111111111111111 
0111111011011111111111111111111111111111 
1111010111101 1111111111111 11111111111111 
1111110101011111111111111111111111111111 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
11111110111001 11111111111111111111111111 
1111111011011111011111111111111111111111 
1111110111101111111101111111111111111111 
1111110111011111111111110111111111111111 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
1111111011101111111111111111011111111111 
1111111011011111111111111111111101111111 
1111110111101111111111111111111111110111 
1111110111011111111111111111111111111101 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
1111111011101111111111111111111111011111 
1111111011011111111111111111110111111111 
1111110111101111111111111101111111111111 
1111110111011111111111011111111111111111 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000 
0000000000000000000000000000000000000000* 
L2~60 

01111000* 
L2~6a 

0000000000000000000000000000000000000000000000000000000000000000* 
L26J2 
1* 
L26J 3 
0* 
L2634 
0* 
L263~ 

0* 
L2636 
0* 
L2637 
1* 
L263a 
1* 
L2639 
1-
L2640 
1111111111111111111111111111111111111111111111111111111111111111 * 
L2704 
10-
VOOOI 10000100001N00001LLLHOON* 
V0002 10000100001N00001LLHL10N* 
V0003 10000100001N00001U1LL01N* 
V0004 10000100001N00001HLLLI1N* 
VOOOS .11101101101N10111LHHII00N* 
V0006 11101101101NI0IIIHLHHI0N* 
V0007 11101101101N10111HIlUlO1N* 
voooa 11101101101NI0111HHIlLI1N* 
C~127* 

FIGURE 7.4.6. 'Fuse' Map 
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7.5 DuaIS-to-1 Multiplexer 
The Oual 8:1 Mux selects one of eight inputs, 00 through 
07, specified by three binary select inputs, A, 8 and C. The 
true data is output on Y when strobed by S. The circuit is 
implemented using a PAL20L2. 

LOGIC SYMBOL 

Vee A S 1Y 2Y 207 206 205 204 203 

i 24 23 22 21 20 19 18 17 16 15 14 13 

A B C S 1Y 2Y 207 206 205 204 

r-- 100 2031-

101 102 103 104 105 106 107 200 201 202 

1 2 3 4 5 6 7 8 9 10 11 112 

100 101 102 103 104 105 106 107 200 201 202 GNO 

TL/Ll9991-28 

Pinout 

FUNCTION TABLE 

Inputs Output 

Select Strobe 
Y 

C B A S 

X X X H H 
L L L L 00 
L L H L 01 
L H L L 02 
L H H L 03 
H L L L 04 
H L H L 05 
H H L L 06 
H H H L 07 

7·20 
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7.5 DuaIS-to-1 Multiplexer (Continued) 

LOGIC DIAGRAM 
Dual 8:1 Mux 

23 22 21 20 

7·21 

24 

18 

12 

Vee 

2Y 

----'! 
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7.5 DuaIS-to-1 Multiplexer (Continued) 

PLANTM INPUT FILE 

title OUAL 8 to 1 multiplexer 
pattern mux8t1 
revision A 
author Tarif Engineer 
company National Semiconductor Corporation 
Date 11/15/1989 

chip mux8t1 PAL20L2 

pin 1 2 3 4 5 6 7 
100 101 102 103 104 105 106 

pin 13 14 15 16 17 18 19 
203 204 205 206 207 2Y 1Y 

equations 

!1Y /100 * /C * /B • /A * /S 
+ /101 * /C * /B • A * /S 
+ /102 * /C * B • /A • /S 
+ /103 • /C • B • A • /S 
+ /104 • C 11 /B • /A • /S 
+ /105 * C * /B • A * /s 
+ /106 • C * B • /A • /S 
+ !107 • C * B 11 A • /S 

/2Y = /200 * /C • /B * /A * /S 
+ /201 * /C * /B 11 A· /S 
+ /202 * /C * B· /A • /S 
+ /203 * /C * B· A· /S 
+ /204· C· /B • /A • /S 
+ /205· C· /B 11 A· /S 

+ !206· C 11 B· /A • /S 
+ /207· C * B· A * /S 

end of mux8t1 
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8 
107 
20 
S 

9 10 11 12 
200 201 202 GNO 
21 22 23 24 
C B A VCC 
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7.S DuaIS-to-1 Multiplexer (Continued) 

PLANTM JEDEC FILE 

PAL20L2 
title DUAL 8 to 1 multiplexer 
pattern mux8t1 
revision A 
author Tarif Engineer 
company National Semiconductor Corporation 
Date 11/15/1989 
* 
QF0640*QP24*FO* 
LOOOO 
1110111011101110111011111111111111111111 
1011110111101110111011111111111111111111 
1111101011011110111011111111111111111111 
1111110110011110111011111111111111111111 
1111111011101001111011111111111111111111 
1111110111101101101011111111111111111111 
1111111011011101111010111111111111111111 
1111110111011101111011111011111111111111* 
L0320 
1111111011101110111011111111101111111111 
1111110111101110111011111111111110111111 
1111111011011110111011111111111111111011 
1111110111011110111011111111111111111110 
1111111011101101111011111111111111101111 
1111110111101101111011111111111011111111 
1111111011011101111011111110111111111111 
1111110111011101111011101111111111111111* 
C408E* 
0000 

7-23 
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7.5 DuaI8-to-1 Multiplexer (Continued) 

CO Document file for 2MUX.INP >< 
W Device: 20L2 c 
0 
;:; 
CO 
.~ Pin Label Type 
C. 
c. 
<t 100 com input 

2 101 com input 
3 102 com input 
4 103 com input 
5 104 com input 
6 lD5 com input 
7 106 com input 
8 107 com input 
9 200 com input 
10 201 com input 
11 202 com input 
12 GNO ground pin 
13 203 com input 
14 204 com input 
15 205 com input 
16 206 com input 
17 207 com input 
18 2Y neg,com output 
19 lY neg,com output 
20 S com input 
21 C com input 
22 B com input 
23 A com input 
24 vee power pin 

TLlL/9991-F4 

Chip Diagram (DIP) 

100-~-Vcc 
101- 2 23 -A 
102- 3 22 -B 
103- 4 21 ~C 

104- 5 20 ~S 

105- 6 19 ~1Y 

106- 7 18 ~2Y 

107- 8 17 r-207 

200- 9 16 f-206 

201- 10 15 f-205 

202- 11 14 r-204 

GNO- 12 13 r-203 

TL/L/9991-53 
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7.6 16-to-1 Multiplexer 
The 16:1 Mux selects one of sixteen inputs, EO through E15, 
specified by four binary select inputs, A, B, C and D. The 
true data is output on Y and the inverted data on W. The 
circuit is implemented using a PAL20C1. 

LOGIC SYMBOL 

Vee A W E15 E14 E13 E12 Ell 

r 24 23 22 21 20 19 18 17 16 15 14 13 

A B C D Y W E15 E14 E13 E12 

..- EO El1-

El E2 E3 E4 E5 E6 E7 EB E9 El0 

1 2 3 4 5 6 7 8 9 10 11 112 

EO El E2 E3 E4 E5 E6 E7 EB E9 El0 GND 
TLIL/9991-30 

Pinout 

FUNCTION TABLE 

Input 
Output 

Select 

D C B A W Y 

L L L L EO EO 
L L L H E1 E1 
L L H L E2 E2 
L L H H E3 E3 
L H L L E4 E4 
L H L H E5 E5 
L H H L E6 E6 
L H H H E7 E7 
H L L L E8 E8 
H L L H E9 E9 
H L H L E10 E10 
H L H H m E11 
H H L L E12 E12 
H H L H E13 E13 
H H H L E14 E14 
H H H H E15 E15 

7-25 
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7.6 16-to-1 Multiplexer (Continued) 

LOGIC DIAGRAM 

23 22 21 20 

\1 ~~ ~~r ~~' 

I 

EO 
1 

r-1 
I 

E1 
2 

r---t 
I 

E2 
3 

---, 
I 

4 
E3 

r-1 
I 

E4 
5 

-, 
I 

E5 
6 

r--'f 
I 

E6 
7 

r-'1 
I 

E7 
8 

16:1 Mux 

, 
~ 

, 
~ 

" ~ 

" J 

, 
~ 

, 
J 

}--

~ 
I 

9 
E8 

~ 
I 

10 }--E9 

~ 
I 

11 " 0 
~ 

E1 , 
--' 

13 "' 1 J E1 

,...--., 
I 

14 , 
2 

~ 
E1 

---, 
I 

3 15 " ~ E1 , 
I 

4 16 , 
J E1 

~ 
--' 

17 , 
5 J E1 

---, 

7-26 

~ 

2 

r-;:::=I 

2 4 
--Vee 

19 

18 w 

12 

TLlL/9991-31 



7.6 16-to-1 Multiplexer (Continued) 

PLANTM INPUT FILE 

title 16 to 1 multiplexer 
pattern mux16T1 
revision A 
author Tarif Engineer 
company National Semiconductor Corporation 
Date 11/15/1989 

chip mux16T1 PAL20C1 

pin 1 2 3 4 5 6 7 8 
EO El E2 E3 E4 E5 E6 E7 

pin 13 14 15 16 17 18 19 20 
Ell E12 E13 E14 E15 \.J Y 0 

equations 

y EO * ID * Ie * IB * IA 
+ El * 10 * IC * IB * A 
+ E2 * ID * IC * B * IA 
+ E3 * /0 * IC * B * A 
+ E4 * 10 * C * IB * IA 
+ E5 * 10 * C * /B * A 
+ E6 * ID * C * B * IA 
+ E7 * ID * C * B * A 
+ EB * 0 * IC * IB * IA 
+ E9 * 0 * IC * IB * A 
+ El0* 0 * IC * B * IA 
+ E11* D * IC * B * A 
+ Et2* o * C * IB * IA 
+ Et3* o * C * IB * A 
+ Et4* o * C * B * IA 
+ Et5* o * C * B * A 

end of mux16T1 
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7.6 16-to-1 Multiplexer (Continued) 

PLANTM JEDEC FILE 

PAL20C1 
title 16 to 1 multiplexer 
pattern mux16T1 
revision A 
author Tarif Engineer 
company National Semiconductor Corporation 
Date 11/15/1989 
* 
QF0640*QP24*FO* 
LOOOO 
1101111011101110111011111111111111111111 
0111110111101110111011111111111111111111 
1111011011011110111011111111111111111111 
1111110101011110111011111111111111111111 
1111111011100101111011111111111111111111 
1111110111101101011011111111111111111111 
1111111011011101111001111111111111111111 
1111110111011101111011110111111111111111 
1111111011101110110111111111011111111111 
1111110111101110110111111111111101111111 
1111111011011110110111111111111111110111 
1111110111011110110111111111111111111101 
1111111011101101110111111111111111011111 
1111110111101101110111111111110111111111 
1111111011011101110111111101111111111111 
1111110111011101110111011111111111111111* 
C41CF* 
0000 

7-28 
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7.6 16-to-1 Multiplexer (Continued) 

Document file for MUX16T1 
Device: 20e1 

Pin Label 

EO 
2 E1 
3 E2 
4 E3 
5 E4 
6 E5 
7 E6 
a E7 
9 Ea 
10 E9 
11 E10 
12 GND 
13 E11 
14 E12 
15 E13 
16 E14 
17 E15 
18 \oJ 

19 y 

20 0 

21 e 
22 B 

23 A 

24 vee 

Type 

com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
ground pin 
com input 
com input 
com input 
com input 
com input 
unused 
pos,com output 
com input 
com input 
com input 
com input 
power pin 

TL/L/9991-FS 

Chip Diagram (DIP) 

EO 

El 

E2 

E3 

E4 

E5 

E6 

E7 

EB 

E9 

El0 

GND 
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o ,---------------------------------------------------------------------------------------, 
CD 
Q. 7.7 7-Bit Counter with Parallel Load 
E = DESCRIPTION 

W In this example, a GAL20V8 implements a seven-bit counter 
5 with asynchronous carry-out and load functions. As illustrat­= ed in the block diagram (Figure 7.7.1) and pinout diagram 
.~ (Figure 7.7.2), the carry-in and carry-out pins make the 
Q. counter fully cascadable to form larger counters. The CUPL 
CL design input files are shown in Figure 7. 7.3, and simulation 

IICI: files in Figure 7.7.4. Note that the counter requires seven 
registers and one asynchronous output, taking full advan­
tage of the generic architecture of the GAL20V8. 

CLK--.... 

LOAO--.... 

7-BIT 
LOAD DATA __ .. ASYNCHRONOUS ___ OUTPUTS 

(00-06) COUNTER (°0-°6) 

CARRYIN--.... 
CARRY OUT 

CLEAR ---+I 

TL/Ll9991-37 

FIGURE 7.7.1. Block Diagram 
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CLK Vee 

Do 2 CARRY IN 

01 3 00 

O2 4 °1 
03 5 °2 
04 GAL20VS 

19 03 

05 7 °4 
06 S 17 °s 

LOAD 9 06 

CLEAR 10 CARRY OUT 

11 14 

GNO 12 13 OE 

TL/L/9991-38 

FIGURE 7.7.2. Pinout Diagram 



7.7 7-Bit Counter with Parallel Load (Continued) 

1*··**···***········*··*·*·******········********·******·**·**·1 
1* *1 
1* CUPL INPUT FILE * I 
1* DESIGN INPUT FOR 7-BIT COUNTER *1 
I'll *1 
1*·*··*******·***********·*····**********************·********·1 
1* ALLOWABLE TARGET DEVICE: GAL20V8 .1 
1*··*·**··********************************************·********1 
PART NO 7BITCNT ; 
NAME 7-BIT COUNTER 
REV 01 ; 
DATE 10/08/85 ; 
DESIGNER Joe Engineer; 
COMPANY National Semiconductor; 
ASSEMBLY 3A-27 
LOCATION U06 

PIN 1 CLK 1* CLOCK INPUT ·1 
PIN 2 DO I'll DATAO INPUT *1 
PIN 3 D1 1* DATAl INPUT *1 
PIN 4 02 1* DATA2 INPUT *1 
PIN 5 03 1* DATA 3 INPUT *1 
PIN 6 D4 I'll DATA4 INPUT ·1 
PIN 7 05 1* DATA5 INPUT *1 
PIN 8 D6 I'll DATA6 INPUT *1 
PIN 9 LD 1* LOAD CONTROL *1 
PIN 10 CLEAR; 1* ASYNCHRONOUS CARRY-IN *1 

PIN 13 !OE ; 1* OUTPUT ENABLE *1 
PIN 15 CARRYOUT 
PIN 16 Q6 1* COUNTER MSB *1 
PIN 17 05 
PIN 18 04 
PIN 19 03 
PIN 20 02 
PIN 21 Q1 
PIN 22 00 I'll COUNTER LSB 'III 
PIN 23 CARRYIN 1* CARRY-IN FOR CASCADING *1 

TLlL/9991-39 

FIGURE 7.7.3. CUPL Design Input File 
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en 
CD 
'is. 7.7 7·Bit Counter with Parallel Load (Continued) 
E as 
>< QO.D ... (LD & DO /* LOAD DO */ LLI 
c # !LD & !QO & CARRY IN) & !CLEAR; /* TOGGLE */ 
0 
;:; 
as 
.!:! Ql.D = (LD & 01 /* LOAD D1 */ 
'is. # !LD& !Q1 & QO & CARRYIN /* TOGGLE */ Q. 

<C # !LD& Ql & !QO) & !CLEAR; /* HOLD */ 

Q2.D = (LD & D2 /* LOAD D2 */ 
# !LD& !Q2 & Q1 & QO & CARRYIN /* TOGGLE */ 
# !LD& Q2 & !Q1 /* HOLD */ 
# !LD& Q2 & !QO) & !CLEAR; /* HOLD */ 

Q3.D = (LD & D3 /* LOAD D3 */ 
# !LD& !Q3 & Q2 & Ql & QO & CARRY IN /* TOGGLE */ 
# !LD& Q3 & !Q2 /* HOLD */ 
# !LD& Q3 & !Q1 /* HOLD */ 
# !LD& Q3 & !QO) & !CLEAR; /* HOLD */ 

Q4.D = (LD & D4 /* LOAD D4 */ 
# !LD& !Q4& Q3 & Q2 & Q1 & QO & CARRYIN /* TOGGLE */ 
# !LD& Q4 & !Q3 /* HOLD */ 
# !LD& Q4 & !Q2 /* HOLD */ 
# !LD& Q4 & !Q1 /* HOLD */ 
# !LD& Q4 & !QO) & !CLEAR; /* HOLD */ 

Q5.D = (LD & 05 /* LOAD 05 */ 
# !LD& !Q5& Q4 & Q3 & Q2 & Q1 & QO 

& CARRYIN /* TOGGLE */ 
# !LD& Q5 & !Q4 /* HOLD */ 
# !LD& Q5 & !Q3 /* HOLD */ 
# !LD& Q5 & !Q2 /* HOLD */ 
# !LD& Q5 & !Ql /* HOLD */ 
# ! LD& Q5 & !QO) & !CLEAR; /* HOLD */ 

. Q6.D = (LD & D6 /* LOAD D6 */ 
# !LD& !Q6& Q5 & Q4 & Q3 & Q2 & Q1 & QO 

& CARRYIN /* TOGGLE */ 
# !LD& Q6 & !Q5 /* HOLD */ 
# !LD& Q6 & !Q4 /* HOLD */ 
# !LD& Q6 & !Q3 /* HOLD */ 
# !LD& Q6 & !Q2 /* HOLD */ 
# ! LD& Q6 & !Ql /* HOLD */ 
# !LD& Q6 & !QO) & !CLEAR; /* HOLD */ 

CARRY OUT = ! LD & Q6 & Q5 & Q4 & Q3 & Q2 & Q1 & QO 
& CARRYIN; /* CARRY-OUT */ 

TLIL/9991-40 

FIGURE 7.7.3. CUPL Design Input File (Continued) 
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7.7 7-Bit Counter with Parallel Load (Continued) 

1**************************************************************1 
1* *1 
1* CUPL INPUT FILE *1 
1* SIMULATION FOR 7-BIT COUNTER *1 
1* */ 
1**************************************************************1 
1* ALLOWABLE TARGET DEVICE: GAL20V8 *1 
1**************************************************************1 
PARTNO 7BITCNT ; 
NAME 7-BIT COUNTER 
REV 01 , 
DATE 10/08/85 
DESIGNER Joe Engineer; 
COMPANY National Semiconductor; 
ASSEMBLY 3A-27 
LOCATION U06 ; 

ORDER: 

CLK, IOE, CLEAR, LO, CARRYIN, D6, D5, D4, D3, D2, D1, DO, Q6, 
Q5, Q4, Q3, Q2, Q1, QO, CARRYOUT; 

VECTORS: 

$msg" 
$msg" 
$msg" 
$msg" 
$msg" 

C II. 

C C COli. 
L 0 L L I DDDDDDD QQQQQQQ U II. 

K E R D N 654)210 654)210 T II. 

a 1 X X X XXXXXXX 
Cal x X XXXXXXX 
C a a 1 x 1111111 
C a a 1 x 0000000 
C a a 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXX XXX X 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXX XXX X 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 1 X 0111111 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 
COO 1 X 1111110 
COO 0 1 XXXXXXX 
COO 0 1 XXXXXXX 

ZZZZZZZ X 
LLLLLLL L 
HHHHHHH L 
LLLLLLL L 
LLLLLLH L 
LLLLLHL L 
LLLLLHH L 
LLLLHLL L 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

LLLLHLH 
LLLLHHL 
LLLLHHH 
LLLHLLL 
LLLHLLH 
LLLHLHL 
LLLHLHH 
LLLHHLL 
LLLHHLH 
LLLHHHL 
LLLHHHH 
LLHLLLL 
LLHLLLH 
LLHLLHL 
LLHLLHH 
LLHLHLL 
LLHLHLH 
LLHLHHL 
LLHLHHH 
LLHHLLL 
LLHHLLH 
LLHHLHL 
LLHHLHH 
LLHHHLL 
LLHHHLH 
LLHHHHL 
LLHHHHH 
LHLLLLL 
LHLLLLH 
LHHHHHH 
HLLLLLL 
HLLLLLH 
HHHHHHL 
HHHHHHH 
LLLLLLL 

L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L /* 
L 1* 
L /* 
L /* 
L 1* 
L 1* 
L 1* 
L 1* 
L 1* 
L 1* 
L 1* 
L 1* 
L /* 
L /* 
H 1* 
L 1* 

TEST III-Z *1 
TEST CLEAR */ 
LOAD ONES *1 
LOAD ZEROS */ 
COUNT=l *1 
COUNT"'2 *1 
COUNT"') */ 
COUNT=4 */ 
COUNT"'5 */ 
COUNT=6 *1 
COUNT=? */ 
COUNT=8 */ 
COUNT=9 *1 
COUNT=10 *1 
COUNT=11 *1 
COUNT=12 */ 
COUNT=l3 *1 
COUNT=14 *1 
COUNT"'15 *1 
COUNT=16 *1 
COUNT=l? */ 
COUNT=18 *1 
COUNT=19 *1 
COUNT=20 */ 
COUNT=21 */ 
COUNT=22 *1 
COUNT=23 *1 
COUNT=24 */ 
COUNT=25 */ 
COUNT=26 *1 
COUNT=2? *1 
COUNT=28 *1 
COUNT=29 *1 
COUNT=)O *1 
COUNT=)l *1 
COUNT=32 *1 
COUNT=)3 *1 
LOAD=63 TO OBSERVE MSB TQGGLE */ 
COUNT=64, OBSERVE MSB */ 
COUNT=65, OBSERVE MSB */ 
LOAD=126 TO OBSERVE CARRY */ 
COUNT=127, OBSERVE CARRY */ 
COUNT=O, OBSERVE CARRY */ 

FIGURE 7.7.4. CUPL Simulation File 
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7.8 10-Bit Up/Down Counter 
The ten-bit up/down counter can count up, count down, set 
all output to high, disable the output (high impedance), and 
load 2 LSB's, 2 MSB's and 6 middle bits high or low as a 
group. All operations are synchronous with the rising edge 
of the clock. SET overrides LOAD, COUNT and HOLD. 
LOAD overrides COUNT and HOLD. 

CIN enable counting operation or hold it. COUNT Up or 
Down depend on UP signal. 

All outputs are enabled when OE is low, otherwise HIGH-Z. 

This circuit is implemented using a PAL20X10, with the ex­
clusive-or function the PAL20X10 facilitates design of coun­
ter and state sequences with minimum propagation delay. 
The PAL20X10 offers an efficient means of implementing 
counters. Normal PAL & PLA implementation would require 
addition terms for the XOR functions. Having 10 output the 
PAL20X10 supersets 20 and 24 medium PAL's in this spe­
cific application. On power up all registers are reset to sim­
plify sequential circuit design. 

LOGIC SYMBOL 

DATA 
DUT 

Vee i DO 01 02 03 04 05 06 07 08 09 \ ire 

124 23 22 21 2D 19 18 17 16 15 14 13 

DO 01 02 03 04 05 06 07 08 09 

~ >CK 
lD-BIT DE po-

COUNTER 

DO Dl D2-D7 D8 09 LD CNT UP SET CIN 
( ~ ~ 

1 2 3 4 5 6 7 8 9 10 11 112 

CK \ DO Dl D2-D7 D8 D9 I [Ii rn ms SET ~ GND 

DATA 
IN 

TLlLl9991-51 

Pinout 

FUNCTION TABLE 

OE CK SET LO CNT CIN UP 09-00 09-00 Operation 

H X X X X X X X Z Hi-Z 

L t H X X X X X H Set all HIGH 

L t L L X X X D D LOADD 

L t L H H X X X 0 HOLD 

L t L H L H X X 0 HOLD 

L t L H L L L X Oplus 1 Count UP 

L t L H L L H X o minus 1 CountDN 

7-34 



7.8 10-Bit Up/Down Counter (Continued) 

LOGIC DIAGRAM 

CK!...t>o---------------, 

~!!..t> 

09 !;><>---!-WW-imm~::J 

12 

.r-

7·35 
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7.8 10-Bit Up/Down Counter (Continued) 

PLANTM INPUT FILE 

title 10-BIT SYNCHRONOUS UP/OOlJN COUNTER 
pattern COUNTER 
revision A 
author Tar if Eng i neer 
company National Semiconductor Corporation 
Date 11/17/1989 
chip COUNTER PAL20Xl0 

pin 1 2 3 4 6 7 8 9 
CLK DO 01 0207 IlO ICNT IUP SET D8 

pin 13 14 15 16 17 18 19 20 21 
IOE 09 08 07 06 05 04 03 02 

equations 
/00:= /OO*LD */SET 

+ ILO* ISET* IDO 
$ LO */CIN*/SET*/CNT*UP 
+ LD */CIN*/SET*/CNT*/UP 

101 := 101*LD */SET 
+ ILO*/SET*/Dl 
$ LO */CIN*/SET*/CNT*UP */00 
+ LO */CIN*/SET*/CNT*/UP* 00 

102:= 102*LD */SET 
+ ILO*/SET*/0207 
$ LO */CIN*/SET*/CNT*UP */01*/00 
+ LO */CIN*/SET*/CNT*/UP* 01* 00 

/03:= 103*LO */SET 
+ ILO*/SET*/02D7 

10 11 
ICIN D9 
22 23 
01 00 

$ LO */CIN*/SET*/CNT*UP */02*/01*/00 
+ LO */CIN*/SET*/CNT*/UP* 02* 01* 00 

104:= 104*LO */SET 
+ ILO*/SET*/D2D7 
$ LD */CIN*/SET*/CNT*UP */03*102*/01*/00 
+ lD */CIN*/SET*/CNT*/UP* 03* oz* 01* 00 

105:= 105*LO */SET 
+ ILO* ISET* 10207 
$ LO */CIN*/SET*/CNT*UP */04*/03*/02*/01*/00 
+ LD * ICI N* ISET* ICNT* IUP* 04* 03* 02* 01 * 00 

106 : = /06*LD * ISET 
+ ILO* ISET* 102D7 

12 
GNO 
24 
VCC 

$ LO */CIN*/SET*/CNT*UP */05*104*/03*/02*/01*/00 
+ LO */CIN*/SET*/CNT*/UP* 05* 04* 03* 02* 01* 00 

107:= 107*LD */SET 
+ ILD*/SET*/D2D7 
$ LO * ICIN* ISET* ICNT*UP */06*/05*/04*/03*/02*/01*/00 
+ LO */CIN*/SET*/CNT*/UP* 06* 05* 04* 03* 02* 01* 00 

108 : = 108*LO * ISET 
+ ILO* ISET* 108 
$ LO */CIN*/SET*/CNT*UP */07*/06*/05*/04*/03*/02*/01*/00 
+ LO */CIN*/SET*/CNT*/UP* 07* 06* 05* 04* 03* 02* 01* 00 

109 : = 109*LO * ISET 
+ ILO* ISET* 109 
$ LO * IC I N* ISET* ICNT*UP */08*/07*/06*/05*/04*/03*/02*/01 */00 
+ LD */CIN*/SET*/CNT*/UP* 08* 07* 06* 05* 04* 03* 02* 01* 00 
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7.8 10-Bit Up/Down Counter 
PLANTM JEDEC FILE 

PAL20Xl0 
title 10-SIT SYNCHRONOUS UP/DOliN COUNTER 
pattern COUNTER 
revision A 
author Tari f Engineer 
company National Semiconductor Corporation 
Date 11/1711989 

QF1600*QP24*FO* 
LOOOO 
1110111111111011111111111011111111111111 
1011111111110111111111111011111111111111 
1111111111111011011110111011111101111111 
1111111111111011011101111011111101111111* 
L0160 
1111111011111011111111111011111111111111 
1111101111110111111111111011111111111111 
1110111111111011011110111011111101111111 
1101111111111011011101111011111101111111* 
L0320 
1111111111101011111111111011111111111111 
1111111110110111111111111011111111111111 
11 lOll 10111 11011011110111011111101111111 
1101110111111011011101111011111101111111* 
L0480 
1111111111111010111111111011111111111111 
1111111110110111111111111011111111111111 
111011 lOll 1 01 01101 1 1 10111011111101111111 
1101110111011011011101111011111101111111* 
L0640 
1111111111111011111011111011111111111111 
1111111110110111111111111011111111111111 
1110111011101010011110111011111101111111 
1101110111011001011101111011111101111111* 
L0800 
1111111111111011111111101011111111111111 
1111111110110111111111111011111111111111 
11101 11 011101010011010111011111101111111 
1101110111011001010101111011111101111111 * 
L0960 
1111111111111011111111111010111111111111 
1111111110110111111111111011111111111111 
1110111011101010011010101011111101111111 
1101110111011001010101011011111101111111* 
L 1120 
1111111111111011111111111011111011111111 
1111111110110111111111111011111111111111 
1110111011101010011010101010111101111111 
1101110111011001010101011001111101111111* 
L 1280 
1111111111111011111111111011111111101111 
1111111111110111111111111011101111111111 
1110111011101010011010101010111001111111 
1101110111011001010101011001110101111111* 
L 1440 
1111111111111011111111111011111111111110 
1111111111110111111111111011111111111011 
1110111011101010011010101010111001101111 
1101110111011001010101011001110101011111* 

CAD3E* 
0000 
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U) 
Q) 

~ 7.8 8-Bit Cascadable Shift Register 
~ Document file for CNT10B.INP 

UU Device: 20X10 
C 
o .. 
m 
.~ c.. 
Co 
<I: 

Pin 

2 
3 
4 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

label 

ClK 
DO 
01 
0207 
LO 
CNT 
UP 
SET 
08 
CIN 
09 
GNO 
DE 
a9 
a8 
07 
a6 
as 
a4 
03 
a2 
a1 
ao 
VCC 

Type 

clock pin 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
com input 
ground pin 
enable pin 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
neg,reg,xor 
power pin 

Chip Diagram (DIP) 

ClK-~r-Vcc 
DO- 2 23 r-QO 
Dl- 3 22 ~Ql 

D2D7- 4 21 ~Q2 
lD- 5 20 ~Q3 

CNT- 6 19 r-Q4 
UP- 7 18 r-Q5 

SET- 8 17 r-Q6 
D8- 9 16~Q7 

CIN- 10 15 ~Q8 
D9- 11 14 ~Q9 

GND- 12 13 r-OE 

7-38 

feedback 
feedback 
feedback 
feedback 
feedback 
feedback 
feedback 
feedback 
feedback 
feedback 

TL/Ll9991-F8 
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7.9 8-Bit Equality Comparator 
The equality comparator takes two 8-bit data words as in­
puts and produces one combinatorial output (EQ) which be­
comes active when the two input words match. Due to the 
large number of product terms required to implement this 
function, a PAL 16C1 is the appropriate device to use. The 
complement output (NE) is also provided. 

PINOUT 

Vee 
B, 

B2 

B3 
HEO 

EO 

B4 

B5 

B6 

eND 10 11 B7 

TLlLl9991-GO 

PLANTM INPUT FILE 

title 8 bit comparator 
pattern comBb 
revision A 
author Tarif Engineer 

LOGIC DIAGRAM 

EO 

HE 

TL/Ll9991-G 1 

Note: To express this function in the sum·of·products form required by the 
PAL lSC1, it is necessary to apply the identity function 

XEIlY=XY+XY 

as well as DeMorgan's Theorem 

i\eS=A+B 
to the above logic definition. 

company National Semiconductor Corporation 
Date 11/28/1989 

chip comBb PAL16c1 

: pin 1 2 3 4 S 
BO AO A1 A2 A3 

: PIN 11 12 13 14 15 
B7 B6 B5 B4 EQ 

equations 

NEQ = AO * IBO + lAO * BO 
+ A1 * IB1 + IA1 * B1 
+ A2 * IB2 + IA2 * B2 
+ A3 * 183 + IA3 * 83 
+ A4 * 184 + IA4 * B4 
+ A5 * 185 + IA5 * 85 
+ A6 * 186 + IA6 * S6 
+ A7 * IB7 + IA7 * B7 

end of comBb 

6 7 8 9 10 11 12 
A4 AS A6 A7 GND 

16 17 18 19 20 
NEQ B3 S2 B1 vec 

TL/L/9991-F9 
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7.9 a-Bit Equality Comparator (Continued) 

PLANTM JEDEC FILE 

PAL16C1 
title 8 bit comparator 
pattern com8b 
revision A 
author Tarif Engineer 
company National Semiconductor Corporation 
Date 11/28/1989 

* 
OF0512*oP20*FO* 
LOOOO 
01101111111111111111111111111111 
10011111111111111111111111111111 
11110110111111111111111111111111 
11111001111111111111111111111111 
11111111011011111111111111111111 
11111111100111111111111111111111 
11111111111101101111111111111111 
11111111111110011111111111111111 
11111111111111110110111111111111 
11111111111111111001111111111111 
11111111111111111111011011111111 
11111111111111111111100111111111 
11111111111111111111111101101111 
11111111111111111111111110011111 
11111111111111111111111111110110 
11111111111111111111111111111001* 
C3BC4* 
0000 

7·40 
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» 
Chip Diagram (DIP) "C 

"E.. 
Document fiLe for eMPR8B.INP o· 

I» 
Device: 16e1 -o· 

::s 
m 
>< 
I» 

Pin LabeL Type 3 
"C 
CD 
U) 

1 BO com input 
2 AD com input 
3 A1 com input 
4 A2 com input 
5 A3 com input 
6 A4 com input 
7 AS com input 
8 A6 com input 
9 A7 com input 
10 GND ground pin 
11 B7 com input 
12 B6 com input 
13 B5 com input 
14 B4 com input 
15 EQ unused 
16 NEQ pos,com output 
17 83 com input 
18 82 com input 
19 B1 com input 
20 vee power pin 

TL/L/9991-G3 

fI 

7-41 



t/) 
CI) 

"ii 
E :: w 
c 
o = 
.~ 
"ii a. 
<C 

7.10 8-Bit Barrel Shifter 
DESCRIPTION 
The barrel shifter (Figure 7.10.1) is a specialized shift regis­
ter that rotates data a selectable number of bit positions out 
of the most-significant bit and back into the least-significant 
bit-thus the name. Typical applications of a barrel shifter 
are floating-point arithmetic and display rotation on a graph­
ics terminal. 

Since our barrel shifter has 8 data inputs and 8 registered 
outputs, as well as control signals, the GAL20V8 is the PlD 
of choice. The shift-select inputs (So, S1, S2) determine the 
number of positions shifted, as described in the function 
table of Figure 7.10.2. The block diagram is shown in Figure 
7. 10.3, and the pinout in Figure 7.10.4. The clock (elK) 
input gates input data synchronously to the output registers, 
and the output enable (OE) allows TRI-STATEI8l buffering of 
the a outputs. The one remaining input is used for a reset 
(RS) function. 

The ABEL design input files shown in Figure 7.10.5 may 
appear tedious, but simply enumerate the eight different bit­
shift possibilities for each output. 

TL/L/9991-55 

FIGURE 7.10.1. Barrel Shift Rotation 
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S2 S1 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

So 07 06 Os 04 03 02 

0 D7 D6 D5 D4 D3 D2 
1 D6 DS D4 D3 D2 D1 
0 DS D4 D3 D2 D1 Do 
1 D4 D3 D2 D1 Do D7 
0 D3 D2 D1 Do D7 D6 
1 D2 D1 Do D7 D6 Ds 
0 D1 Do D7 D6 Ds D4 
1 Do D7 D6 Ds D4 D3 

FIGURE 7.10.2. Function Table 

ClK 

RS 

BARREL 
SHIFTER 

SHIFT-CONTROL S 

{ 

S2 

INPUTS 1 
50 

FIGURE 7.10.3. Block Diagram 

P20V8R 

ClK Vee 
51 52 

So 07 

Iry 06 
06 Os 

05 04 
04 18 03 
03 17 02 

O2 16 01 
01 15 00 

Do 14 RS 

GNO 13 OE 

FIGURE 7.10.4. Pinout Diagram 

01 00 

D1 Do 
Do D7 
D7 D6 
D6 Ds 
Ds D4 
D4 D3 
D3 D2 
D2 D1 

TL/Ll9991-56 
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7.10 8-Bit Barrel Shifter (Continued) 

module barrel_shifter_8; 

title 'ABEL INPUT FILE 
8-bit Barrel Shifter in a GAL20V8 
National Semiconductor 

April 16, 1986 
Joe Eng' 

"device declaration 

"location 
U9 

"pin declaration 

"inputs 

keyword 
device 

device code 
'P20V8R' ; 

07,06,05,04,03,02,01,00 pin 4,5,6,7,8,9,10,11; 
CLK pin'1; 

"outputs 
07,06,05,04,03,02,01,00 pin 22,21,20,19,18,17,16,15; 

"control 
S2,S1,SO 
RS 
OE 

pin 23,2,3; 
pin 14; 
pin 13; 

" selects 0-7 bit shift 
" resets all outputs to 0 
" output enable 

"constant declaration 

x .... x.; 
c ... C.; 

" simplify 'don't care' constant 
" simplify 'clock' constant 

TL/L/9991-45 
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en 
CD 
Q. 7.10 a-Bit Barrel Shifter (Continued) 
E ca 
>< equations W 
C 
0 QO := !RS & ( ( ! S2 & !SI & ISO & DO) # ::= ca (IS2 & lSI & SO & 07) # 
.~ (!S2 & SI & ISO & 06) # Q. 
a. ( ! S2 & SI & SO & 05) # 
c:( (S2 & !SI & ISO & 04) # 

(S2 & lSI & SO & 03) # 
(S2 & SI & ISO & 02) # 

(S2 & SI & SO & 01) ) ; 

Ql :== !RS & «IS2 & lSI & IsO & 01) # 
(!S2 & lSI & SO & DO) # 
( 1 S2 & SI & 1 SO & 07) # 

(!S2 & SI & SO & 06) # 
(S2 & lSI & ISO· & 05) # 

(S2 & lSI & SO & 04) # 
(S2 & S1 & ISO & 03) # 

(S2 & SI & SO & 02» ; 

Q2 := !RS & «!S2 & lSI & ISO & 02) # 
(IS2 & lSI & SO & 01) # 
(IS2 & SI & ISO & DO) # 

(1 S2 & SI & SO & 07) # 
(S2 & lSI & ISO & 06) # 

(S2 & lSI & SO & 05) # 
(S2 & 51 & ISO & 04) # 

(S2 & 51 & 50 & 03) ) : 

Q3 := IRS & « 152 & lSI & !50 & 03) 11 
( 1 S2 & 151 & SO & 02) # 
( 152 & 51 & 150 & 01) # 

(152 & Sl & 50 & DO) # 
(52 & lSI & !50 & 07) # 

(52 & 151 & SO & 06) # 
(S2 & 51 & 150 & 05) # 

(52 & Sl & SO & 04) ) : 

Q4 := lR5 & « !S2 & 151 & ISO & 04) # 
(IS2 & IS1 & SO & 03) # 
( 152 & Sl & 1 SO & 02) # 

( I S2 & 51 & SO & 01) # 
(52 & lSI & ISO & DO) # 

(S2 & lSI & SO & 07) # 
(S2 & 51 & ISO & 06) # 

(S2 & 51 & 50 & 05) ) : 
TLlLl9991-46 

FIGURE 7.10.5. ABEL Input File (Continued) 
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7.10 8-Bit Barrel Shifter (Continued) 

Q5 := IR5 & ( ( 152 & 151 & 150 & 05) # 
( ! 52 & 151 & 50 & 04) # 
(152 & 51 & 150 & 03) # 

( 152 & 51 & 50 & 02) # 
(52 & 151 & 150 & 01) # 

(52 & 151 & 50 & DO) # 
(52 & 51 & 150 & 07) # 

(52 & 51 & 50 & 06) ) ; 

Q6 := IR5 & « !52 & 151 & 150 & 06) # 
(152 & 151 & 50 & 05) # 
( ! 52 & 51 & 150 & 04) # 

( 152 & 51 & 50 & 03) # 
(52 & 151 & 150 & 02) # 

(52 & 151 & 50 & 01) # 
(52 & 51 & 150 & ~O) # 

(52 & 51 & 50 & 07) ) ; 

Q7 := lR5 & ( ( ! 52 & 151 & 150 & 07) # 
( 152 & 151 & 50 & 06) # 
( 152 & Sl & 1 SO & 05) # 

(!52 & Sl & 50 & 04) # 
(52 & ISl & 150 & 03) # 

(52 & ! 51 & SO & 02) # 
(52 & 51 & 150 & 01) # 

(52 & Sl & 50 & ~O) ) ; 

test vectors ([CLK,OE,R5,52,51,50,07 •• 001 -> [Q7 •. Q01) 

" C 
"LOR550 0 
" K E 5 2 107 654 3 2 1 0 

Q Q 
76543210 

[C,O,1,x,x,x,x,x,x,x,x,X,X,X1 -> [0,0,0,0,0,0,0,0); 
[C,O,O,O,o,O,O,O,O,O,l,l,l,l] -> [0,0,0,0,1,1,1,1); 
[C,O,O,O,O,l,l,l,l,l,O,O,O,O] -> [1,1,1,0,0,0,0,1); 
[C,0,0,0,1,0,0,0,0,0,1,1,1,11 -> [0,0,1,1,1,1,0,01; 
[C,0,0,0,1,1,1,1,1,1,0,0,0,01 -> [1,0,0,0,0,1,1,11; 
[C,0,0,1,0,0,0,0,0,0,1,1,1,11 -> [1,1,1,1,0,0,0,0); 
[C,0,0,1,0,1,1,1,1,1,0,0,0,01 -> [0,0,0,1,1,1,1,0]; 
[C,0,0,1,1,0,0,0,0,0,1,1,1,11 -> [1,1,0,0,0,0,1,1); 
[C,0,0,1,1,1,1,1,1,1,0,0,0,01 -> [0,1,1,1,1,0,0,0]; 

end barrel shifter B - -

FIGURE 7.10.5. ABEL Input File (Continued) 
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set 
no shift 
shift 1 

2 
3 
4 
5 
6 
7 
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7.11 Hexadecimal 7-Segment Display Encoder 
The increasing use of microcomputers has led to an in­
creased need to display numbers in hexadecimal format (0-
9, A-F). Standard drivers for this function are not available, 
so most applications are forced to use several packages to 
decode each digit of the display. Since 6 to 12 digits are 
often being displayed, this approach can become very ex­
pensive. This example demonstrates how the hexadecimal 
display format can be both decoded and the LED indicators 
driven using a single PAL for each digit of the display. 

FUNCTIONAL DESCRIPTION 

A hex decoder/lamp driver accepts a four-bit hex digit, con­
verts it to its corresponding seven-segment display code, 
and activates the appropriate segments on the display. 
These drivers can be used in both direct-drive and multi­
plexed display applications. A single PAL can provide both 
the basic decode/drive functions, and additional useful fea­
tures as well. 

GENERAL DESCRIPTION 

Figure 7. 11. 1 shows three digits of a display system that 
uses three PALs to implement the complete decoding and 
display-driving functions. The inputs to each section are a 
hex code on pins 00-03, a ripple blanking signal, an intensi­
ty control signal, and a lamp test signal. 

The hex codes are decoded to form the seven-segment pat­
terns shown in Table 7.11.1. The input codes, digit repre­
sented, and segments driven are as follows: 

TABLE 7.11.1. Function Description 

D3 D2 D1 Do Digit Segments 

0 0 0 0 0 ABCOEF 
0 0 0 1 1 BC 
0 0 1 0 2 ABOEG 
0 0 1 1 3 ABCOG 
0 1 0 0 4 BCFG 
0 1 0 1 5 ACOFG 
0 1 1 0 6 ACOEFG 
0 1 1 1 7 ABC 
1 0 0 0 B ABCOEFG 
1 0 0 1 9 ABCOFG 
1 0 1 0 A ABCEFG 
1 0 1 1 B COEFG 
1 1 0 0 C AOEF 
1 1 0 1 0 BCOEG 
1 1 1 0 E AOEFG 
1 1 1 1 F AEFG 
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Ripple-blanking input RBI is used to suppress leading ze­
roes in the display. The signal is propagated from the most 
significant digit to the least significant digit. If the digit input 
is zero and RBI is low (indicating that the previous digit is 
also zero), all segments are left blank and this digit posi­
tion's ripple-blanking output RBO is set low. 

Intensity control signallC controls the duty cycle of the dis­
play driver. When Ie is high, all segment drivers are turned 
off. Pulsing this pin with a duty-cycled signal allows the ad­
justment of the display's apparent brightness. 

Lamp test signal L T lets you check to see if all LED seg­
ments are energized. 

PAL Device Implementation 

the PAL16LB has both the required I/O pins and the drive 
current capability to perform as the complete display decod­
er-driver circuit with seven inputs and eight outputs. The 
logic equations for this circuit are shown in the listing. One 
PAL device drives each digit; they may be cascaded without 
limit. With minor changes, the same logical structure could 
be used with multiplexer logic to allow a single PAL device 
to decode and drive multiple digits. 



7.11 Hexadecimal7-Segment Display Encoder (Continued) 

DISPLAY j 
LEADING 6 VCC 

THREE STAGE HEXADECIMAL DECODER /DRIVER 

PAL16L8 
BCD TO HEXADECIMAL 
DECODERI7SEGMENT 
DRIVER WITH RIPPLE BLANKING 

ZEROS r-----------~~ 

BLANK :r 
LEADING -::" 

ZEROS 

HEXADECIMAL 
INPUTS 

INTENSITY 
ON 

ON! 
LAMP TEST 

OFF 

TO NEXT STAGE 

LED/LAMP 
DRIVER OUTPUTS 

FIGURE 7.11.1. Hex Display Decoder-Driver Combinational Logic Diagram 
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7.11 Hexadecimal 7-Segment Display Encoder (Continued) 

title 7-segment display encoder 
pattern ENC 
evision A 
author Tarif Engineer 
corrpany National Semiconductor Corporation 
Date 11/28/1989 

chip ENC PAL 16L8 

; pin 1 
IRBI DO 01 02 03 IC 

; pin 11 lZ 13 14 15 16 
NC IRBO F 

equations 
IA IRBO * 100 * 10Z 

+ IRBO * 100 * 03 
+ IRBO * 01 * 02 
+ IRBO * 01 * 02 * 103 
+ IRBO * DO * 02 * 103 

LT 
17 

+ IRBO * 101 * 102 * 03 + L T 
A. TRST = IIC 

IB = IRBO * 10Z * 103 
+ IRBO * 100 * 10Z 
+ IRBO * 100 * 101 * 103 
+ IRBO * DO * 01 * 103 
+ IRBO * DO * 101 * 103 + L T 

B. TRST = Ie 

IC = IRBO * 00 * 101 
+ IRBO * 00 * 102 
+ IRBO * 101 * 102 
+ IRBO * 02 * 103 
+ IRBO * 10Z * 03 + L T 

C. TRST = IC 

10 = IRBO * 101 * 03 
+ IRBO * 100 * 10Z * 103 
+ IRBO * DO * 01 * 102 
+ IRBO * 100 * 01* OZ 
+ IRBO * DO * 101 * 02 + L T 

O.TRST = IC 

IE = IRBO * 100 * 102 
+ IRBO * OZ * 03 
+ IRBO * 100 * 01 
+ IRBO * 01 * 03 

E. TRST = IC 

IF = IRBO * 100 * 101 
+ IRBO * 10Z * 03 
+ IRBO * 01 * 03 
+ IRBO * 100 * 02 
+ IRBO * 101 * 02 * 103 + L T 

F. TRST = IC 

IG = IRBO * 01 * 102 
+ IRBO * DO * 03 
+ IRBO * 102 * 03 
+ IRBO * 100 * 01 
+ IRBO * 101 * 02 * 103 + L T 

G. TRST = /lC 

RBO = 100 * 101 * 102 * 103 * IRBI 
RBO. TRST = VCC 

end of ENC 

7-48 

NC 
18 

10 
NC GNO 
19 20 

VCC 
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7.11 Hexadecimal 7-Segment Display Encoder (Continued) 

PAL 16L8 
title 7-segment display encoder 
pattern ENC 
evision A 
author Tarif Engineer 

company National Semiconductor Corporation 
Date 11/28/1989 

QF2048*QP20*FO* 
LOOOO 
11111111111111111011111111111111 
10111111101111111111111111011111 
10111111111101111111111111011111 
11110111011111111111111111011111 
11110111011110111111111111011111 
01111111011110111111111111011111 
11111011101101111111111111011111 
11111111111111111111011111111111* 
L0256 
11111111111111110111111111111111 
11111111101110111111111111011111 
10111111101111111111111111011111 
10111011111110111111111111011111 
01110111111110111111111111011111 
01111011111110111111111111011111 
11111111111111111111011111111111 
00000000000000000000000000000000* 
L0512 
11111111111111110111111111111111 
01111011111111111111111111011111 
01111111101111111111111111011111 
11111011101111111111111111011111 
11111111011110111111111111011111 
11111111101101111111111111011111 
11111111111111111111011111111111 
00000000000000000000000000000000* 
L0768 
11111111111111110111111111111111 
11111011111101111111111111011111 
10111111101110111111111111011111 
01110111101111111111111111011111 
10110111011111111111111111011111 
01111011011111111111111111011111 
11111111111111111111011111111111 
00000000000000000000000000000000* 

TL/L/9991-G6 
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L 1024 
11111111111111110111111111111111 
10111111101111111111111111011111 
11111111011101111111111111011111 
10110111111111111111111111011111 
11110111111101111111111111011111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 

L 1280 
11111111111111110111111111111111 
10111011111111111111111111011111 
11111111101101111111111111011111 
11110111111101111111111111011111 
10111111011111111111111111011111 
11111011011110111111111111011111 
11111111111111111111011111111111 
00000000000000000000000000000000* 
L 1536 
11111111111111111111111111111111 
10011011101110111111111111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
L 1792 
11111111111111111011111111111111 
11110111101111111111111111011111 
011111 I 111 I 10111111111 I 1 I 1011111 
11111111101101111111111111011111 
10110111111111111111111111011111 
11111011011110111111111111011111 
11111111111111111111011111111111 
00000000000000000000000000000000* 
CC1F9* 

0000 
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Document file 
Device: 16L8 

Pin Label 

1 RBI 
2 DO 
3 D1 
4 D2 
5 D3 
6 IC 
7 LT 
8 NC 
9 NC 
10 GND 
11 NC 
12 G 
13 RBO 
14 F 
15 E 
16 D 
17 C 
18 B 
19 A 
20 VCC 

for ENC.inp 

Type 

com input 
com input 
com input 
com input 
com input 
com input 
com input 
unused 
unused 
ground pin 
unused 
neg,trst, com 
neg,trst, com 
neg,trst, com 
neg,trst, com 
neg,trst, com 
neg,trst,com 
neg,trst,com 
neg,trst,com 
power pin 

Chip Diagram (DIP) 

RBI-~~Vcc 
00- 2 19 ~A 

01- 3 18 ~B 

02- 4 17 ~C 

03- 5 16 ~O 

IC- 6 15 ~E 

LT- 7 14 ~F 

NC- 8 13 ~RBO 

NC- 9 12 ~G 

GNO- 10 11 ~NC 

output 
feedback 
output 
output 
output 
output 
output 
output 

TLlL/9991-60 
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7.11 Hexadecimal7-Segment Display Encoder (Continued) 
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FIGURE 7.11.2. PAL 16L8 Logic Diagram Showing Lamp Driver Pattern 
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7.12 Dual-Port RAM Controller 
DESCRIPTION 
As an example of the speed and architectural flexibility of 
the GAL 16V8, a dual-port, dynamic-RAM controller capable 
of controlling four banks of DRAMs is implemented. The 
design, whose block diagram is shown in Figure 7.12.1 and 
state diagrams in Figures 7.12.2 and 7.12.3, requires two 
GAL 16V8 devices. The CUPL input listings for each device 
are shown in Figures 7.12.4 and 7.12.6, with respective sim­
ulation files shown in Figures 7.12.5 and 7.12.7. 

The first device, the Controller, is primarily responsible for 
maintaining the state of the entire circuit. As shown by its 
state diagram in Figure 7.12.2, the Controller normally re­
sides in the IDLE state. It can cycle to any of the states: 
RFGT (Refresh Grant), RQGTA (Request Grant A), or 
RQGTB (Request Grant B), depending on the inputs: 
REFRQ (Refresh Request), MRQA (Memory Request A), or 
MRQB (Memory Request B). 

REFRQ has top priority, since the refresh cycle is of vital 
importance for DRAM memory retention. MRQA is arbitrarily 
chosen to have priority over MRQB to avoid bus contention 
with contiguous requests. Every REQUEST, whether a re­
fresh request or a memory request, must receive an ACK 
(acknowledge) signal before the Controller will continue to 
cycle. Once an ACK is received, the Controller will either 
return to the IDLE state or perform a refresh (if REFRQ is 
present), and then return to the IDLE state. Cycling between 
RQGT A and RQGTB is also possible. 

The CUPL input file for the Controller, shown in Figure 
7.12.4, distinguishes output declarations from intermediate 
variable definitions, which greatly reduce the complexity of 
declarations. BK3-BKo are intermediate definitions decod­
ed from address lines A17 and A16 to determine which bank 

7·52 

will be selected. RQGTAS, RQGTBS, and RFGTS are also 
intermediate definitions of Controller state paths. These are 
used to simplify the final output declarations. 

Output declarations for RQGTA, RQGTB, and RFTG are 
formulated by simply documenting each set of input condi­
tions that causes the Controller to enter each state. ACK is 
a signal asserted by inputs the Controller receives that ac­
knowledge the end of a memory access. 

The second GAL 16V8 device, called the Sequencer, is a 
state counter that asserts the control signals communicat­
ing with the DRAM section. Among these signals are: RAD 
(Row-Address-Data enable), CAD (Column-Address-Data 
enable), RAS (RoW-Address Strobe), CAS (Column-Address 
Strobe), and ACK (Acknowledge). These signals are assert­
ed when the Sequencer enters the proper state, as shown 
in the state diagram of Figure 7.12.3. 

The CUPL input listing for the Sequencer is shown in Figure 
7.12.6. Again, intermediate variable definitions are used to 
simplify output declarations. DSTa-DST1 are intermediate 
definitions that name the states as decoded by the variables 
ST 2, ST 1, ST o. Notice that a grey-code scheme, which mini­
mizes the number of product terms, was used for the count­
ing operation. 

Next, ST 2, ST 1 and ST 0 are declared by identifying which 
previous states will cause each next state. For example, to 
cycle from state 2 (DST 2) to state 3 (DST 3), variables ST 2 
and ST 1 will be logic ones and variable ST 0 will be a logic 
zero upon reaching the new state. This can easily be ex­
tracted from the CUPL listing. Outputs RAD and CAD are 
also declared using the intermediate definitions DST a­
DST1· 
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7.12 Dual-Port RAM Controller (Continued) 

SYSCLK 

A;;" 

~} """------- ~ 
AI6 RAS, 

~ ~ 
RAS2 TO RAM 

ST, 
i-==-

RAS3 
STo 

~ 
GAL16V8 RQGTA 

t.lRQA RQGle 
MRQ RFGT ----! 

REFRQ ACK - OE 

n 

SYSCLK 
-=- ST2 RQGTA 

RQGle ~ 
RDY STo 

--=-
RFGT DIR 

WR GAL16V8 CAD - ACK RAD 

ACKREF 
~ 

RES WE - I-=-
OE f--+ n 

FIGURE 7.12.1. Block Diagram 
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Q. 7. 12 Dual-Port RAM Controller (Continued) 
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FIGURE 7.12.2. State Diagram for Controller Section 

FIGURE 7.12.3. State Diagram for Sequencer Section 
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7.12 Dual-Port RAM Controller (Continued) 

The two GAL 16V8-25 devices can be clocked at cycle times 
as fast as 35 ns (28.5 MHz), ample enough for the tight 
timings required to run a DRAM at its specified access 
times. The GAL 16V8's power-up reset feature comes in 
handy in this circuit, since no inputs were available for a 
reset term. To test the functionality of this circuit, the simula­
tion facilities of CUPL were used. 

It should be noted that although the Controller uses all eight 
registers in the device, the Sequencer requires seven regis­
ters and one combinational output. While the Controller 
could be implemented in a traditional PAL configuration 
(16R8), the Sequencer requires a nonstandard architecture 
which can only be implemented in a GAL 16V8 device. This 
is one of the biggest advantages of GAL devices-the flexi­
bility of the architecture. 

1***************************************************************1 
1* *1 
1* CUPL INPUT FILE *1 
1* Design input for the controller section of the */ 
1* Dual Port DRAM Controller *1 
1* *1 
1***************************************************** **********/ 
1* Allowable Target Device Types: GAL16V8 */ 
1***************************************************************/ 

1** Inputs 

PIN 1 
PIN (2,3] 
PIN (4 .• 6] 
PIN 7 
PIN 8 
PIN 9 
PIN 11 

1** Outputs 

PIN 19 
PIN 18 
PIN 17 
PIN 16 
PIN 15 
PIN 14 
PIN 13 
PIN 12 

**1 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

CONTROLLER SECTION; 
DRAM CONTROLLER; 
03/28/86 ; 
01 ; 
Joe Engineer; 
National Semiconductor; 
ONE; 
U10; 

SYSCLK; 
[A16,A17] 
[ST2,ST1,STO] 
MRQA ; 
MRQB ; 
REFRQ 
tOE 

**1 

!RASO 
1RAS1 
!RAS2 
!RAS3 
!RQGTA ; 
!RQGTB ; 
!RFGT 
ACK ; 

FIGURE 7.12.4. Design Input File for Controller Section 
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7.12 Dual-Port RAM Controller (Continued) 

1** Declarations and Intermediate Variable Definitions **1 

BKO = (IA17 & !A16) # RFGT : 
BKl = (IA17 & A16) # RFGT : 
BK2 = (A17 & lA16) * RFGT : 
BK3 = (A17 & A16) * RFGT : 

RASEN = IST2 & STl & !STO # ST2 , STl , ISTO # !ST2 , STl & STO # 
!ST2 & ISTl & STO # !ST2 & ISTl & !STO 

RASO.D = BKO & RASEN 
RAS1.D - BKl & RASEN 
RAS2.D = BK2 & RASEN 
RAS3.D = BK3 & RASEN 

RQGTAS = RQGTA & !RQGTB & lRFGT 

RQGTBS = lRQGTA & RQGTB & !RFGT 

RFGTS = IRQGTA & IRQGTB & RFGT 

IDLE = !RQGTA & lRQGTB & !RFGT 

RQGTA.D = (IDLE & MRQA & IREFRQ # RQGTAS & lACK # RQGTBS & ACK & 
MRQA & IREFRQ # RFGTS & ACK & MRQA) & I (ACK & !MRQA & 
!MRQB & !REFRQ) : 

RQGTB.D = (IDLE & IMRQA & !REFRQ & MRQB # RQGTBS & lACK # RQGTAS & 
ACK & MRQB & IREFRQ # RFGTS & ACK & IMRQA & MRQB) & I (ACK & 
!MRQA & IMRQB & IREFRQ) : 

RFGT.D = (IDLE & REFRQ # RFGTS & !ACK # RQGTAS & ACK & REFRQ # 
RQGTBS & ACK & REFRQ) & 1 (ACK & !MRQA & !MRQB & !REFRQ) 

ACK.D = ST2 & ISTl & STO # !ST2 & STl & STO & RFGT : 

FIGURE 7.12.4. Design Input File for Controller Section (Continued) 
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7.12 Dual-Port RAM Controller (Continued) 

/ •••••••••• *** ••••••••••• * •• ******.*** ••• **.********.**.*****.**/ 
/* */ 
/* CUPL SIMULATION FILE */ 
/* Simulation input for the controller section of the */ 
/* Dual Port DRAM Controller */ 
/* */ 
/***************************************************************/ 
/* Allowable Target Device Types: GAL16V8 */ 
/*****.***************.**.** •• **.******.**.***.*****************/ 

ORDER: 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY' 
ASSEMBLY' 
LOCATION 

CONTROLLER SECTION; 
DRAM CONTROLLER; 
03/28/86 ; 
01 : 
Joe Engineer; 
National Semiconductor; 
ONE; 
U10; 

SYSCLK,\2,A17,A16,%2,ST2,ST1,STO,\2,MRQA,MRQB,REFRQ,%2,!OE,%4, 
!RASO,!RAS1,!RAS2,!RAS3,%2,!RQGTA,!RQGTB,!RFGT,%2,ACK; 

VECTORS: 
$msg" S ! ! " $msg" Y R 1111 RR! 
$msg" S MME RRRR QQR " $msg" C AA SSS RRF AAAA GGF A " 
$msg" L 11 TTT QQR 0 SSSS TTG C II 

$msg" K 76 210 ABQ E 0123 ABT K " 
$msgll ---------------------------------- " 

a 00 101 000 a xxxx xxx x 
C 00 101 000 a HHHH xxx H 
C 00 111 000 a HHHH HHH L 
C 00 111 000 a HHHH HHH L 
C 00 111 100 a HHHH LHH L 
C 00 010 100 a LHHH LHH L 
C 00 110 100 a LHHH LHH L 
C 00 all 100 a LHHH LHH L 
C 00 001 100 a LHHH LHH L 
C 00 000 100 a LHHH LHH L 
C 00 100 100 a HHHH LHH L 
C 00 101 110 a HHHH LHH H 
C 00 111 110 a HHHH HLH L 
C 11 111 010 a HHHH HLH L 
C 11 111 010 a HHHH HLH L 
C 11 010 010 a HHHL HLH L 
C 11 110 010 a HHHL HLH L 
C 11 all 010 a HHHL HLH L 
C 11 001 010 0 HHHL HLH L 
C 11 000 000 a HHHL HLH L 
C 11 100 101 0 HHHH HLH L 
C 11 101 101 a HHHH HLH H 
C 00 111 101 a HHHH HHL L 
C 00 111 101 a HHHH HHL L 
C 11 010 000 a LLLL HHL L 
C 11 110 000 a LLLL HHL L 
C 11 all 000 0 LLLL HHL H 
C 11 001 000 0 LLLL HHH L 
C 11 000 000 0 HHHL HHH L 
C 11 100 101 a HHHH HHL L 
C 11 101 101 0 HHHH HHL H 
C 00 111 101 0 HHHH LHH L 
C 00 111 101 0 HHHH LHH L 

TLIL/9991-BO 

FIGURE 7.12.5. Simulation File for Controller Section 
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o .---------------------------------------------------------------------------------------~ 
Q) 

c. 7. 12 Dual-Port RAM Controller (Continued) 
E 
as 
~ 1***************************************************************1 
c 1* *1 
~ 1* CUPL INPUT FILE *1 
as 1* Design input for the sequencer section for the *1 
.~ 1* Dual Port DRAM Controller *1 
C. 1* ~ 
~ 1***************************************************************1 

1* Allowable Target Device Types: GAL16V8 *1 
1***************************************************************1 

1** Inputs 

PIN 1 
PIN [2,3] 
PIN 4 
PIN 5 
PIN 6 
PIN 7 
PIN 8 
PIN 11 
1** Outputs 

PIN 19 
PIN 18 
PIN 17 
PIN 16 
PIN 15 
PIN 14 
PIN. 13 
PIN 12 

**1 

PART NO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

SYSCLKi 

SEQUENCER SECTION: 
DRAM CONTROLLER: 
03/28/86: 
01 : 
Joe Engineer; 
National Semiconductor; 
TWO: 
Ull: 

[!RQGTA, !RQGTB) 
= ROY : 

!RFGT 
!WR i 
ACK i 

= !RES ; 
tOE 

**1 

= ST2 
= STl 

STO 
= DIR 

!CAD : 
= !RAD , 

!ACKREF 
!WE i 

FIGURE 7.12.S. Input File for Sequencer Section 
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7.12 Dual-Port RAM Controller (Continued) 

/** Declarations and Intermediate Variable Definitions **/ 

DSTl = ST2 & STl & STO : 
DST2 ~ !ST2 & STl & !STO 
DST3 = ST2 & STl & !STO ; 
DST4 = !ST2 & STl & STO : 
DST5 = IST2 & !STl & STO : 
DST6 = IST2 & !STl & !STO : 
DST7 = ST2 & !STl & !STO : 
DST8 ST2 & !STl & STO : 

,STCYC II: «RQGTA # RQGTB) & ROY , RFGT) ; 

ST2.D = (DST2 # DST6 # DSTB # DST7 # DST4 & RFGT) # RES # 
DSTl & !STCYC 

STl.D DST2 # DST3 # DSTB # DST4 & RFGT # DSTl # RES; 

STO.D (DST3 # DST4 # DST7 # DST8) # RES # DSTl & !STCYC 

DIR.D WR & !DSTl : 

CAD.D DST3 & !RFGT # DST4 & !RFGT # DST5 ; 

RAD.D (RQGTA # RQGTB) & ROY & (DSTl # DST2) 

ACKREF = RFGT & ACK 

WE.D = WR & (DST5 # DST6) 

FIGURE 7.12.6. Input File for Sequencer Section (Continued) 
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o .---------------------------------------------------------------------------------------, 
CU 
Q. 
E 
ca 
>< 

LIJ 
c: 
o 
;; 
ca 
.~ 
Q. 
D­

ca: 

7.12 Dual-Port RAM Controller (Continued) 

1***************************************************************1 
1* *1 
1* CUPL SIMULATION FILE *1 
1* Simulation File for the sequencer section of the *1 
1* Dual Port DRAM Controller *1 
1* *1 
1***************************************************************1 
1* Allowable Target Device Types: GAL16V8 *1 
1***************************************************************1 

ORDER: 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

SEQUENCER SECTION; 
DRAM CONTROLLER; 
03/28/86 ; 
01 ; 
Joe Engineer; 
National Semiconductor; 
TWO; 
Ull; 

SYSCLK,%2,!RES,%2,!RQGTA,!RQGTB,!RFGT,%2,RDY,!WR,ACK,%2,!OE,%4, 
ST2,ST1,STO,%2,DIR,%2,!CAD,!RAD,%2,!WE 

VECTORS: 

$num" S ! ! " ; 
$num" Y RR! " ; 
$num" S QQR ! ! It: 
$num" C R GGF R!A SSS 0 CR " : 
$num" L E TTG DWC 0 TTT I AA W " ; 
$num" K S ABT YRK E 210 R DO E " ; 
$num" -----------------------------------": a a 111 010 a xxx x xx x 

a a 111 010 a xxx x xx x 
C a 111 010 a HHH L XH H 
C 1 all 010 a HHH L HH H 
C 1 all 110 a LHL L HL H 
C 1 all 110 a HHL L HL H 
C 1 all 010 a LHH L LH H 
C 1 all 010 a LLH L LH H 
C 1 all 010 a LLL L LH H 
C 1 all 010 a HLL L HH H 
C 1 all 010 a HLH L HH H 
C 1 all 010 a HHH L HH H 
C 1 all 010 a HHH L HH H 
C 1 all 010 a HHH L HH H 

FIGURE 7.12.7. SImulatIon File for Sequencer SectIon 

7·60 

TLlL/9991-83 



7.13 8086 CPU Board Random Control Logic 

P~----D r=D----CD....---------- MW 
50--------1· 

PD-----~~--~-~-----1~P_--------NO 
EN---------~-----~~ 

EO---------------~======~_:r--------------~ 
EA---------------~--~ 

EI------------------t=======t~ 
Jo---HA 51======r;;==:!===D 5A ------~--t L......----i >0----55 

DO---------------------------------t. ___ lo---- LA 

FIGURE 7.13. Control Logic for 8086 CPU Board 
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7.13 8086 CPU Board Random Control Logic (Continued) 

PLANTM INPUT FILE 

8086 CPU CONTROL LOGIC 
CPU8086 
A 

title 
pattern 
revision 
author 
company 
Date 

Tarif Engineer 
National Semiconductor 
11/28/1989 

Corporation 

chip CPU8086 PAL12H6 

pin 1 2 
PO EN 

pin 11 12 
SO NC 

equations 

MW ISO + PW 
LA /SA * /00 
SS Sl * PO 
HA Sl * PO 
C3 PO * EO 
NO PO * /EN 

3 
EO 

13 
NO 

4 
EA 

14 
C3 

* OE 

* /SA 

* /SA 
* EA 

5 
Sl 

15 
HA 

6 
SA 

16 
SS 

* EA * E1 

; end of CPU8086 

Chip Diagram (DIP) 

PO-~~Vcc 
EN- 2 19 ~PW 

EO- 3 18 ~MW 

EA- 4 17~LA 

Sl- 5 161-SS 

SA- 6 151-HA 

El- 7 14~C3 

00- 8 13~NO 

OE- 9 12~NC 

GNO- 10 111-S0 
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7.13 8086 CPU Board Random Control Logic (Continued) 

PLANTM JEDEC FILE 

Document file for CPU8086.inp 
Device: 12H6 

Pin Label Type 

1 PD com input 
2 EN com input 
3 EO com input 
4 EA com input 
5 Sl com input 
6 SA com input 
7 E1 com input 
8 DO com input 
9 DE com input 
10 GND ground pin 
11 SO com input 
12 NC unused 
13 NO pos,com output 
14 C3 pos,com output 
15 HA pos,com output 
16 SS pos,com output 
17 LA pos,com output 
18 MW pos,com output 
19 PW com input 
20 VCC power pin 

PAL12H6 
title 
pattern 
revision 
author 
company 
Date 

8086 CPU CONTROL LOGIC 
CPU8086 

* 

A 
Tarif Engineer 
National Semiconductor 
11/28/1989 

QF0384*QP20*FO* 
LOOOO 
111111111111111111111110 
111111011111111111110111 
000000000000000000000000 
000000000000000000000000* 
L0096 
111111111111101110111111 
000000000000000000000000* 
L0144 
110111111101101111111111 
000000000000000000000000* 
L0192 
110111110101100111111111 
000000000000000000000000* 
L0240 
110101110111111111111111 
000000000000000000000000* 
L0288 
100111111111111111111111 
000000000000000000000000 
000000000000000000000000 
000000000000000000000000* 
C134D* 
0000 
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A GAL6001-30L Zero Wait 
State Page Mode Memory 
System Interface Between 
The DP8422A and The 
68020 

1.0 INTRODUCTION 

This application note describes how the National Semicon· 
ductor GAL6001-30L can create a zero wait state page 
mode memory system interface between the DP8422A 
DRAM controller and the 68020 microprocessor operating 
at 16 MHz. It is assumed that the reader is already familiar 
with 68020 CPU, the DP8422A and GAL design using the 
GAL6001-30L. 

2.0 DESCRIPTION OF DESIGN 

This design illustrates the use of the GAL6001 in conjunc­
tion with the DP8422A DRAM controller to provide a no-wait 
state page-mode memory system for a 68020 CPU running 
at 16 MHz. This application note assumes two 32-bit memo­
ry banks using 4 M-bit DRAMs. This gives a 32 Mega-byte 
memory. 

This memory design forces three wait states during out-of­
page accesses and zero wait states during in-page access­
es using inexpensive 100 ns DRAMs. The theory behind this 
design is that the CPU will tend to have multiple accesses 
within some local area of memory (a page) before access­
ing some other area of memory (different page). The more 
accesses within a page of memory, the more efficient this 
memory design allows the CPU to become. The page size 
of a 4 M-bit DRAM is 2048 bits. The page size of one bank 
of memory (32 bits per bank) is 8192 bytes or 8 Kbytes. 

It should be noticed that if the user wanted to use fast 
DRAMs (80 ns or less access times) he could get rid of one 
wait state during out-of-page accesses. This can be seen by 
subtracting one clock period (62.5 ns) from the calculated 
RAS access time (tRAG) and the CAS access time (tCAC), 
section IV numbers 5 and 6. This would result in the design 
forcing two wait states during out-of-page accesses, in-page 
accesses would still remain with zero wait states. 

Figure 1 shows a block diagram of this design driving two 
banks of DRAM, each bank being 32 bits in width, giving a 
maximum memory capacity of up to 32 Mbytes (using 
4 M-bit X 1 DRAMs). This memory design could easily be 
changed to four banks of 1 M-bit DRAMs since there are 
12 bits that are compared internally, 10 bits of row address 
for 1 M-bit DRAMs and 2 bank bits. 

The memory banks are interleaved on page boundries (2k 
double word boundaries). This means that the address bit 
(A13) is tied to the bank select input of the DP8422A (B1). 
The bottom 11 bits (A2-12) constitute the column address 
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es (intra-page address) and the top 11 bits constitute the 
row addresses (page address) of the DRAMs. 

Address bits AO and A 1 are used, along with the transfer 
size outputs (SilO, 1), to produce the four byte select strobe 
inputs to the DP8422A, ECAS ~ (3:0). These byte select 
strobes, ECAS~ (3:0), enable the CAS~ outputs which are 
used in byte reads and writes. The ECAS ~ output of the 
GAL6001 further shapes the CAS ~ pulse to the DRAMs, 
CS~(3:0). 

The GAL6001-30 along with the DP8422A DRAM controller 
implement a page mode DRAM system. The GAL6001-30 
latches the DRAM row and bank inputs (ROWO-10, B1) dur­
ing each Chip Selected access. This page address is com­
pared with each new Chip Selected address to determine 
whether the current access is within the same page of 
DRAM as the previous access. If the current access is with­
in the same page a zero wait state access can be complet­
ed. If the current access is to another page of the DRAM the 
GAL6001-30 will end the current access by pulling AREQ~ 
high; latch the new current page address in its internal regis­
ters; start the new access by pulling AREQ ~ back low 
again; and then pull DSACK ~ low once the current access 
has completed. 

If AS ~ from the 68020 is high and a refresh is requested 
(RFRQ~ low) the GAL6001-30 will end the current page 
mode access by pulling AREQ ~ high. Then the GAL will 
allow the refresh to take place and start the next CPU 
DRAM access if one has been requested. 

The logic shown in this application note forms a complete 
68020 memory sub-system, no other logic is needed. This 
sub-system automatically takes care of: 

A. arbitration between Port A and refreshing the DRAM; 

B. the insertion of wait states to the processor (Port A and 
Port B) when needed (Le., if RAS ~ precharge is needed, 
refresh is happening during a memory access ... etc.); 

C. performing byte writes and reads to the 32-bit double 
words in memory. 

Memory system timing diagrams appear in A'gures 2, 3, and 
4. These figures are the result of simulating this design on 
an engineering workstation. 

Also, throughout this application note the symbol "~,, has 
been used to denote an active low signal. For example 
RAS ~ 0 refers to the active low RASO output of the 
DP8421A. 
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3.0 DP8422A PROGRAMMING MODE BITS 

Programming 
Bits 

RO = 0 

R1 = 1 

R2 = 1 
R3 = 0 

R4 = 0 
R5 = 0 
R6 = 0 

R7 = 1 
R8 = 1 
R9 = X 

co = 0 
C1 = 1 
C2 = 0 

C3 = X 
C4 = 0 
C5 = 0 
C6 = 1 

C7 = 1 
C8 = 1 
C9 = 1 

80 = 1 
81 = 1 

ECAS-O = 1 

Description 

RAS - low two clocks, RAS­
precharge of two clocks. If more 
RAS - precharge is desired the user 
should program three periods of 
RAS - pre charge 
DT ACK - 1 is chosen. DT ACK­
follows the access RAS - low on the 
following rising clock edge 
No WAIT states during burst accesses 

If WAITIN - = 0, add one clock to 
DTACK-. WAITIN- may be tied high 
or low in this application depending 
upon the number of wait states the 
user desires to insert into the access 
Select DTACK-
Non-interleaved Mode 

Select based upon the input 
"DELCLK" frequency. Example: if the 
input clock frequency is 16 MHz then 
choose CO, 1, 2 = 0, 1, 0 (divide by 
eight, this will give a frequency of 
2 MHz). 

RAS banks selected by "81". This 
mode allows two RAS - outputs to go 
low during an access, and allows byte 
writing in 16-bit words. 
Column address setup time of 0 ns. 
Row address hold time of 15 ns 
Delay CAS - during write accesses to 
one clock after RAS - transitions low 
Fall through latches. 
Access mode 1 
Allow CAS - to be extended after 
RAS - transitions high. Also, allow the 
WE - output to be used as a refresh 
request (R FRQ - ) output indicator. 

o = Program with low voltage level 

1 = Program with high voltage level 

X = Program with either high or low voltage level (don't 
care condition) 

4.0 16 MHz 68020 TIMING 
CALCULATIONS FOR A SYSTEM WITH 
THREE WAIT STATES DURING NORMAL 
ACCESSES AND ZERO WAIT STATES 
DURING BURST ACCESSES 

1. Maximum time to CS - valid: 

30 ns (68020RC16 max time to valid address) 
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2. Minimum time to ADS - valid: 

62.5 ns (one clock period at 16 MHz) 
+ 4 ns (GAL6001-30 assumed min time output clock to 

AREQ- valid) 

= 66.5 ns 

3. Minimum CS - setup time to ADS - valid (DP8422A-25 
needs a minimum of 5 ns): 

66.5 ns (see #2 above) 
- 30 ns (see # 1 above) 

= 36.5 ns 

4. Minimum CS - setup time to CLOCK high (GAL6001-30 
needs 25 ns input setup time to the output CLOCK for the 
AREQ- output): 

62.5 ns (one clock) 
-30 ns (max time to address bit 31 valid, see # 1 above) 

= 32.5 ns 

5. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM): 

217.5 ns (three and one half clocks, (3 x 62.5) + 30 = 

217.5 ns) 
-15 (GAL6001-30 max CLK to AREQ- valid) 
- 29 ns (ADS - to RAS - low max, DP8422A-25 # 402) 

- 7 ns (74F245 max delay) 
- 5 ns (68020 data setup time) 
= 161.5 ns 
Therefore the tRAC of the DRAM must be 161.5 ns or 
less. 

6. Determining tCAC during a normal access (CAS - ac­
cess time) 
217.5 ns (three and one half clocks, 

(3 x 62.5) + 30 = 217.5 ns) 

-15 (GAL6001-30 max CLK to AREQ- valid) 
-75 ns (ADS- to CAS- low max, DP8422A-25 #403a, 

light load) 
-14 ns (74F32 CS - (3:0) drivers max delay driving 

125 pF) 
-7 ns (74F245 max delay) 

-5 ns (68020 data setup time) 

= 102.5 ns 

Therefore the tCAC and the column address access time 
of the DRAM must be 102.5 ns or less. 

7. Maximum time to CS- (3:0) low during a page mode ac­
cess: 

62.5 ns (one clock at 16 MHz) 
+ 30 ns (GAL6001-30 max time from clock to output, 

ECAS-) 

+ 14 ns (74F32 max time to CS - (3:0) valid) 
= 106.5 ns 

8. Minimum time to DRAM column address strobes low 
[CS - (3:0» during a page mode access: 

62.5 ns (one clock at 16 MHz) 

+ 8 ns (assumed GAL6001-30 min time from input to out­
put, ECAS-) 

+4 ns (assumed 74F32 min time to CS- (3:0) valid) 
= 74.5 ns 
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9. Determining the minimum column address setup time to 
CS- (3:0) low (0 ns needed by the DRAMs) during burst 
mode accesses for zero wait states: 

74.5 ns (see #8 above, min time to CS-(3:0) valid) 
-30 ns (max time to 68020 address valid) 
- 35 ns (DP8422A-25 max time address in to out, # 27) 
= 9.5 ns minimum 

10. Determining the tCAC (CAS- access time) needed dur­
ing burst mode accesses for zero wait states: 

155 ns (two and one half clocks, (2 x 62.5) + 30 = 

155 ns) 
-106.5 ns (max time to CS-(3:0), see #7 above) 
- 7 ns (74F245 max delay) 
-5 ns (68020 data setup time) 
= 36.5 ns 

11. Determining the column address access time needed 
during burst mode accesses for zero wait states: 

155 ns (two and one half clocks, (2 x 62.5) + 30 = 

155 ns) 
-30 ns (max time to 68020 address valid) 
-35 ns (DP8422A-25 max time address in to out, #27) 
- 7 ns (74F245 max delay) 
-5 ns (68020 data setup time) 
= 78 ns 

12. Minimum DSACK- (Data transfer and Size ACKnowl­
edge) setup time to clock low (68020 DSACK - input 
needs 5 ns, #47a) during page mode zero wait state 
accesses: 

30 ns (one half clock period, S2 clock of 68020 clock 
cycle) 

-25 ns (GAL6001-30 input to outputs enabled, 
DSACK - output) 

= 5 ns 
Note: Calculations can be performed for different frequencies, different logic 

(ALS or CMOS ... etc.), and/or different combinations of wait states 
by substituting the appropriate values into the above equations. 

5.068020 GAL6001·30 INPUT 
AND OUTPUT DESCRIPTIONS 

Inputs: 

ROWO-10 These are the row address inputs of the 
DRAMs and are also connected to the 
RO-10 inputs of the DP8422A-25. The 
GAL6001-30 latches these inputs along 
with the B1 input and compares this ad­
dress with each new address during a Chip 
Selected DRAM access to determine 
whether the current access is within the 
same page of DRAM as the previous ac-
cess. 

7-66 

B1 

RFRQ-

READ 

DTACK-

AS-

CS-

CLK,ICLK 

Outputs: 

AREQ-

ECAS-

DSACK-

Internal Nodes: 

LRO-10 

The bank input to the DP8422A-25, B1 in­
put. This input determines which of the two 
DRAM banks the CPU is currently access­
ing in. The GAL6001-30 latches this input 
along with the ROWO-10 inputs and com­
pares this address with each new address 
during a Chip Selected DRAM access to 
determine whether the current access is 
within the same page of DRAM as the pre­
vious access. 

The ReFresh ReQuest input from the 
DP8422A DRAM controller. 

The 68020 READ and write access indica­
tor. 

The DP8422A Data Transfer ACKnowl­
edge indicator. 

The 68020 address strobe, indicating that 
the CPU address is valid and a CPU ac­
cess is in progress. 

Chip Select for the memory system. It was 
assumed that the 68020 address bit 31 
would be used for this indicator. When low 
it indicates that the 68020 is accessing the 
DRAM. 

The 68020 system clock, 16 MHz in this 
application. 

The DRAM Access REQuest. This signal is 
input to the DP8422A DRAM controller. It 
will remain low as long as all 68020 chip 
selected accesses remain within the cur­
rent page. As soon as an access occurs 
that is not within the currently latched page 
address or a refresh request occurs 
AREQ - will be pulled high. 

Enable CAS - is toggled during every ac­
cess and is used to drive the CAS - inputs 
to the DRAMs, CS - (3:0). This input is de­
layed during write accesses to allow time 
for the data to become valid at the DRAM 
inputs before CAS - transitions low. The 
READ input to the DRAMs is guaranteed 
to transition while ECAS - is high. 

The Data transfer and Size ACKnowledge 
output goes to the 68020 to end the cur­
rent access when low. 

These are the latched ROWO-1 0 address­
es of the current page of DRAM. These 
addresses are clocked by the falling edge 
ofCSJS_L-. 

LB1 This is the latched B1 address of the cur­
rent page of DRAM. 

CSJS_L - This is a latched version of Chip Select 
and Address Strobe of the 68020. This sig­
nal toggles during each access and tran­
sitions low from the rising edge of S2 clock 
and high from the rising edge of S5 clock. 



This is a delayed version of CSJS_L - . 
This is the DP8422A ReFresh ReQuest 
Delayed and Synchronized to the 68020 
system clock. 

6.068020 GAL6001-30 EQUATIONS WRITTEN IN NATIONAL SEMICONDUCTOR PLAN FORMAT 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

68020/DP8422A DRAM PAGE DETECTOR FOR USE WITH NATIONAL GAL6001 
PG_DETECT 

CHIP 

;PIN LIST 

A 
RUSTY MEIER 
NATIONAL SEMICONDUCTOR 
DEC. 11, 1989 

GAL6001 

RO Rl R2 R3 R4 R5 R6 R7 RFRQ - DTACK - AS - GND 
CLK RS R9 R10 Bl CS- ICLK DSACK- AREQ- ECAS- READ VCC 

;BURIED NODE OUTPUTS 
LRO LRl LR2 LR3 LR4 LR5 LR6 LR7 

;DUAL FEEDBACK NODE OUTPUTS 
LRS LR9 LR10 LBl CS_AS_L - AS_D2 - NC NC NC RFRQD­

EQUATIONS 

;GAL DUAL FEEDBACK NODES ************************************** 
;NOTICE THAT THE CLOCKS (XXX.CLKF TERMS) 

;ARE THE SAME AS "CS_AS_L-" INVERTED 

LRS := RS 
LRS.CLKF = lCS- &: !AS- &: ICLK 

# !CS_AS_L- &: !AS-
# !CS_AS_L- &: !ICLK 

LR9 := R9 
LR9.CLKF = !CS- &: !AS- &: ICLK 

# !CS_AS_L- &: !AS-

# !CS_AS_L- &: !ICLK 

LR10 := R10 
LR10.CLKF = !CS- &: !AS- &: ICLK 

# !CS_AS_L- &: !AS-

# !CS_AS_L- &: !ICLK 

LBl := Bl 
LB1.CLKF = !CS- &: !AS- &: ICLK 

# !CS_AS_L- &: !AS-

# !CS_AS_L- &: !ICLK 

!CS_AS_L- = !CS- &: !AS- &: ICLK 
# !CS_AS_L- &: !AS-
# !CS_AS_L- &: !ICLK 

!AS_D2- = !CS- &: !AS- &: !CS_AS_L- &: !ICLK 
# !CS- &: !AS- &: !AS_D2-
# !CS- &: !AS_D2- &: !ICLK 

!RFRQD - := !RFRQ -

;GAL OUTPUTS ************************************** 
DSACK- = CS-

# !CS- &: RO &: !LRO 

# !CS- &: !RO &: LRO 

# !CS- &: Rl &: !LRl 

# !CS- &: !Rl &: LRl 

# !CS- &: R2 &: !LR2 

# !CS- &: !R2 &: LR2 

# !CS- &: R3 &: !LR3 
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...... 
CD 

# !CS- !R3 &: LR3 CD &: . 
Z # !CS- &: R4 II:: !LR4 
oct # !CS- &: !R4 &: LR4 

# !CS- &: R5 &: !LR5 
# !CS- &: !R5 &: LR5 
# !CS- &: R6 &: !LR6 
# !CS- &: !R6 &: LR6 
# !CS- &: R7 &: !LR7 
# !CS- &: !R7 &: LR7 
# !CS- &: R8 &: !LR8 
# !CS- &: !R8 &: LR8 
# ICS- &: R9 &: !LR9 
# !CS- &: !R9 &: LR9 
# !CS- &: R10 &: !LR1O 
# !CS- II:: IRlO II: LR10 
# !CS- &: Bl &: !LBl 
# !CS- &: !Bl &: LBl 
# DTACK-
# DSACK- &: ICLK &: !AS_D2-
# AS- &: !AS_D2-
# AREQ-

DSACK - • TRST = !CS- &: !AS-
ECAS- = CS-

# !CS- &: RO &: !LRO 
# !CS- &: IRO &: LRO 
# !eS- &: Rl &: !LRl 
# !CS- &: !Rl &: LRl 
# !eS- &: R2 &: !LR2 
# !CS- &: !R2 &: LR2 
# !eS- &: R3 &: !LR3 
# !CS- &: !R3 &: LR3 
# !eS- &: R4 &: ILR4 
# !CS- &: IR4 &: LR4 
# !CS- &: R5 &: ILR5 
# !CS- &: IR5 &: LR5 
# !CS- &: R6 &: !LR6 
# !CS- &: !R6 &: LR6 
# !eS- &: R7 &: !LR7 
# !CS- &: !R7 &: LR7 
# !CS- &: R8 &: !LR8 
# !CS- &: IR8 &: LR8 
# !CS- &: R9 &: !LR9 
# !eS- &: !R9 &: LR9 
# !eS- &: R10 &: !LR1O 
# ICS- &: !R10 &: LR10 
# !eS- &: Bl &: !LBl 
# !CS- &: !Bl &: LBl 
# AS-
# CS-
# ECAS- &: !ICLK &: CS_AS_L-
# AREQ-
# !READ &: ECAS- &: AS_D2- &: ICLK 
# !RFRQD- &: CS_AS_L-

AREQ- .- !CS- &: RO &: !LRO 
# !CS- &: IRO &: LRO 
# ICS- &: Rl &: !LRl 
# !CS- &: !Rl &: LRl 
# ICS- &: R2 &: !LR2 
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l> 
# !CS- Be !R2 Be LR2 Z . 
# !CS- Be R3 Be !LR3 en 

en 
# !CS- Be !R3 Be LR3 -..J 

# !CS- Be R4 Be !LR4 
# !CS- Be !R4 Be LR4 
# !CS- Be R5 Be !LR5 
# !CS- Be !R5 Be LR5 
# !CS- Be R6 Be !LR6 
# !CS- Be !R6 Be LR6 
# !CS- Be R7 Be !LR7 
# !CS- Be !R7 Be LR7 
# !CS- Be R8 Be !LR8 
# !CS- Be !R8 Be LR8 
# !CS- Be R9 Be !LR9 
# !CS- Be !R9 Be LR9 
# !CS- Be R10 Be !LR1O 
# !CS- Be !R10 Be LR10 
# !CS- Be Bl Be !LBl 
# !CS- Be !Bl Be LBl 
# !RFRQD- Be CS_AS_L-
# AREQ- Be CS_AS_L-

;BURIED NODES ************************************** 
; NOTICE THAT THE CLOCKS (xxx. CLKF TERMS) ARE THE 
; SAME AS 'CS_AS_L- , INVERTED 

LRO := RO 
LRO.CLKF = !CS- Be !AS- Be ICLK 

= !CS_AS_L- Be !AS-
= !CS_AS_L- Be !ICLK 

LRl := Rl 
LR1.CLKF = !CS-. Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR2 := R2 
LR2.CLKF !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR3 := R3 
LR3.CLKF = !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR4 := R4 
LR4.CLKF = !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR5 := R5 
LR5.CLKF = !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR6 := R6 
LR6.CLKF = !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be !ICLK 

LR7 := R7 
LR7.CLKF = !CS- Be !AS- Be ICLK 

# !CS_AS_L- Be !AS-
# !CS_AS_L- Be lICLK 

II 
I 
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A PAL Interface between 
Static Random Access 
Memory (SRAM) and the 
NSC Raster Graphics 
Processor (RGP, DP8500) 

INTRODUCTION 

This application note describes a PAL design that interfaces 
the National Semiconductor RGP to Static RAM. This allows 
the RGP to be operated at up to 20 MHz with one wait state 
inserted during normal accesses. It is assumed that the 
reader is familiar with the National Semiconductor RGP, 
SRAM, and the basics of PAL design. 

DESIGN DESCRIPTION 

A block diagram of the RGP to SRAM interlace is seen in 
Figure 1. The State Machine block (PAL interlace) receives 
the control signals from the RGP (BS1, RD -, WR - , ALE), 
the SRAM chip select from the address decoding circuitry 
(CS -), and the Phase 2 clock (PHI2) to the RGP. The State 
Machine block outputs a READY signal back to the RGP to 
allow the insertion of wait states into RGP access cycles, 
drives the System Read (SYS_RD -) and System Write 
(SYS_WR -) outputs to control the SRAM, drives the 
DDIN - and DBE - signals to control the data transceivers, 
and drives the State Variables (A, B, C) that control the 
interface (see Figure 2). 

The signal ALEL - shown in Figure 2 is an active low 
latched version of the RGP ALE output signal. This signal 
could be formed by using ALE as an input to two cross 
coupled NOR gates. The inverted input DBE - could func­
tion as the reset input to the NOR gate latch. 

Figure 3 shows a State Transition Diagram for the design. A 
State Table Diagram for the Design (Figure 4) was then 
drawn up from Figure 3. The State Table Diagram was used 
to draw up Karnaugh Maps for each State Variable and out­
put of the design, these can be seen in Figures 5, 6 and 7. 
These equations were then put in ABEL format in Figure 8. 
Figures 9 and 10 show the timing during an RGP read and 
write access to the SRAM. 

DESIGN TIMING ANALYSIS AT 20 MHz 

1. Maximum time to valid address at SRAM inputs from 
PHI2 rising edge: 

11 ns (ALE valid from PHI2 rising edge) + 23 ns 
(74ALS373 maximum propagation delay of en­
able to output valid) = 34 ns. 

National Semiconductor 
Application Note 669 

2. Maximum time to chip select valid at SRAM input from 
PHI2 rising edge: 

34 ns (see # 1 above) + 22 ns (maximum propaga­
tion delay of 74ALS138) = 56 ns. 

3. Minimum available time to perlorm an access of SRAM 
from rising edge PHI2 (during T1) to falling edge PHI2 
(during T3): 

150 ns (3 clocks) + 19 ns (minimum PHI2 high time) 
= 169 ns. 

4. Determining the SRAM address access time needed in 
this design: 

169 ns (available time, #3 above) 

-34 ns (max time to valid address, see # 1 above) 

-10 ns (74ALS245 maximum delay time) 

-5 ns (RGP Data setup time) = 120 ns access time, 
therefore the SRAM must have an address ac­
cess time of 120 ns or less. 

5. Determining the SRAM Chip Select access time needed 
in this design: 

169 ns (available time, #3 above) 

-56 ns (max time to valid Chip select, see #2 above) 

-10 ns (74ALS245 maximum delay time) 

-5 ns (RGP Data setup time) = 98 ns access time, 
therefore the SRAM must have a Chip Select 
ac-
cess time of 98 ns or less. 

6. Determining the SRAM Output Enable (GAL SYS_RD­
output) access time needed in this design: 

169 ns (available time, #3 above) 

-100 ns (two clocks, rising edge of PHI2 during T1 until 
rising edge PHI2 during T2) 

-10 ns (GAL16V8A-10 maximum time from PHI2 rising 
clock edge until clocked output is valid) 

-8 ns (GAL16V8A-15 maximum time to SYS_RD­
output valid) 

-10 ns (74ALS245 maximum delay time) 

-5 ns (RGP Data setup time) = 36 ns access time, 
therefore the SRAM must have an Output En­
able access time of 36 ns or less. 
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FIGURE 1. Block Diagram of Raster Graphics Processor (RGP) to Static Random Access Memory (SRAM) Interface 

INPUTS OUTPUTS 

.ALEL .. ---+r-----"'I-_---'"-
BS1---+ 

CS .. ---+ 
RD .. ---+ 

PHU -------+l __ JoiI=:::.::..=::..I 

• ALEL IS A LATCHED VERSION OF ALE 

FIGURE 2. Synchronized State Machine Model 

I SYS_RD ... lOBE ... IODIN .. 
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(NON-DRAWING) 

I CS 
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TL/LlI0773-2 

S6 110 

FIGURE 3. State Transition Diagram for RGP/SRAM Interface Design 
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Present State Inputs Next State Outputs 

A B C ALEL- BS1 CS- RD- A B C DBE- DDIN- SYS_RD-

a a a 1 x X x a 0 a 1 1 1 
0 a 0 x 1 X X 0 0 0 1 1 1 
a 0 0 x X 1 X a 0 a 1 1 1 
a 0 a 0 a 0 0 a a 1 1 1 1 
a a a a o· 0 1 1 0 0 1 1 1 

a 0 1 X X X X a 1 1 1 0 1 

0 1 a x x x x a a a a a a 
a 1 1 X X X X a 1 0 0 a 0 

1 0 0 x x x X 1 0 1 a 1 1 

1 0 1 X X X X 1 1 1 a 1 1 

1 1 a x x x x a 0 a 1 1 1 

1 1 1 X X X X a a 0 0 1 1 

FIGURE 4. State Table Diagram 

*ASSUME: F = ALEL- # BS1 # CS- # (lALEL- & IBS1 & ICS- & IRD-) 

G = ALEL- # BS1 # CS- # (IALEL- & IBS1 & ICS- & RD-) 

* Assume using active low outputs, circle "O"s. 

Be 
IA:= F&IA 

A # IA&C 
00 01 11 10 #B 

o [Cr ~ ~ 0) Expanding this term out: 

IA:= ALEL- &IA 
1 1 1 ~ Y # BSI &IA 

TL/L/l0773-4 # CS- &IA 

# IALEL- &IBSI &ICS- &IRD- &IA 

># IA&C 

#B 

Be 
A 00 01 11 10 

010\ fa IB:= IC 
1 1 

#A&B 

lJ} 1 1<[ ~ 
TL/L/l0773-5 

Be 
A 00 01 11 10 IC:= G&IA&IC 

oeD Va ~ 
#B 

1 Expanding this term out: 

1 1 1 N..- JI 
IC:= ALEL- &IA&IC 

# BSI & IA&IC 
TL/L/l0773-6 #CS-&IA&IC 

# !ALEL- & IBSI & !CS- & RD- & IA & IC 

#B 

FIGURE 5. Using Karnaugh Maps To Generate PAL Equations 
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·Since PAL16V8 has active low outputs, circle "O"s. 

TL/L/l0773-7 

TL/L/l0773-8 

TLlLlI0773-9 

#B&e 

# IA&B 

#A&e 

This term is not needed in this example 
because there never is a transition 
between states '011' and '111'. 

IDDIN- = IA&e 

# IA&B 

FIGURE 6. Using Karnaugh Maps To Generate PAL Equations 

·Since PAL16V8 has active low outputs, circle "O"s. 

11 10 

TL/LlI0773-10 

TLlLlI0773-11 

IREADY = IA & IB 

#A&B 

# Ie 

FIGURE 7. Using Karnaugh Maps To Generate PAL Equations 
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en 
U) 
U) :Z MODULE SRAM_INTERFACE 

< TITLE 'SRAM_PAL, THIS PAL INTERFACES THE NATIONAL SEMICONDUCTOR RASTER GRAPHICS PROCESSOR TO 
A STATIC RANDOM ACCESS MEMORY'. 

SRAM_PAL 
PHI~ 

RD-
NC4 
SYS_RD­
C 

EQUATIONS 

!A: 

IB: 

IC: 

IDBE-

!DDIN-

device 16V8 
Pin 1; ALEL 
Pin 5; NC1 
Pin 9; GND 
Pin 13; SYS_WR-
Pin 17; DDIN-

= ALEL- &!A 

# BS1 &!A 

# CS- &!A 

Pin 2; 
Pin 6; 
Pin 10; 
Pin 14; 
Pin 18; 

# IALEL- & !BS1 & ICS- & !RD- & IA 

# IA&C 

#B 

= IC 

#A&B 

= ALEL - & IA & IC 

# BS1 & IA & IC 

# CS- & IA & IC 

# IALEL- & IBS1 & ICS- & RD- & IA & IC 

#B 

= A&IB 

#B&C 

# IA& B 

#A&C 

= !A&C 

# !A&B 

!READY = IA & !B 

#A&B 

# !C 

BS1 
NC2 
NC5 
A 
DBE-

FIGURE 8. Able PAL Equations 
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Pin3; CS- Pin 4; 
Pin 7; NC3 Pin 8; 
Pin 11; READY Pin 12; 
Pin 15; B Pin 16; 
Pin 19; Vee Pin 20; 
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ALE 
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WR", 

CS", 

STATL so VARIABLES 

SYS_RD'" (OE)",) 

DDIN", 

READY 

Notes: 20 MHz Operation: State machine changes state on rising edge of PHI~. 
WAIT_DISABLE sampled by RGP on every falling edge of PHI~ during T2. 
Data sampled by RGP on falling edge of PHI_2 during T3. 

T3 

FIGURE 9. Non Draw SRAM Read Operation 
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(7') 
CD 
CD . 
Z Tl T2 T3 Tl 
<I: 

PHU 

PHL2 

ALE 

ADDRESS 

8S(1-0) 

RO'" 

WR", 

CS'" 

STATE- so VARIA8LES 

SYS_WR'" 
(WE",) 

08E'" 

READY 

TLIL/10773-13 

Notes: 20 MHz Operation: State machine changes on rising edge of PHI~. 
Wait sampled on every falling edge of PHI_2 during T2. 

FIGURE 10. Non Draw SRAM Write Operation 
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A PAL Interface for a 
25 MHz and above No-Wait 
State DP8422A/80286 Burst 
Mode DRAM Memory 
System 

I. INTRODUCTION 

This application note describes a two PAL designs that in­
terface the DP8422A to the 80286 CPU. The first design 
allows the 80286 to be operated at up to 40 MHz (80286-
20) with one wait state inserted during normal accesses. 
The second design allows the 80286 to operate at up to 
40 MHz (80286-20) with zero wait states inserted when op­
erating the DRAMs in page mode. Design number two also 
makes use of the 74ALS6311 page detector to determine 
whether the 80286 current access is within the same page 
as the previous access. It is assumed that the reader is 
familiar with the 80286, the DP8422A DRAM controller, the 
74ALS6311 and the basics of PAL design. 

II. DESCRIPTION OF DESIGN # 1,80286 OPERATING AT 
UP TO 40 MHz WITH ONE WAIT STATED (80286-20) 

The block diagram of this design is shown driving two banks 
of DRAM, each bank being 16 bits in width, giving a maxi­
mum memory capacity of up to 4 Mbytes (using 1 Mbit x 1 
DRAMs). This memory could easily be expanded up to 
32 Mbytes using four banks of 4 Mbit DRAMs. 

The memory banks are interleaved on word (16-bit word) 
boundaries. This means that the address bit (A 1) is tied to 
the bank select input of the DP8422A (B1). 

Address bit AO is used, along with Bus High Enable (SHE), 
to produce the two byte select ECAS-O,1 strobes. These 
byte select strobes (ECAS - 0,1) enable the CAS - outputs 
which are used in byte reads and writes. 

If the majority of accesses made by the 80286 are sequen­
tial, the 80286 can alternate memory banks, allowing one 
memory bank to be precharging (RAS - precharge) while 
the other banks are being accessed. Each separate memo­
ry access to the same memory bank will require extra wait 
states to be inserted into the CPU access cycles to allow for 
the RAS- precharge time. 

This application inserts 1 wait state in normal accesses of 
the 80286. The number of wait states can be adjusted 
through the WAITIN input of the DP8422A. 

The logic shown in this application note forms a complete 
80286 memory sub-system, no other logic is needed. This 
sub·system automatically takes care of: 

A. Arbitration between Port A, Port S, and refreshing the 
DRAM; 

B. The insertion of wait states to the processor (Port A and 
Port B) when needed (Le., if RAS - precharge is need­
ed, refresh is happening during a memory access, the 
other Port is currently doing an access ... etc); 
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C. Performing byte writes and reads to the 16-bit words in 
memory. 

It is important that the 74ASOO NAND gates (U1) be in the 
same package so these delays (CLK-, S01) track each 
other. 

By using the "output control" pins of some external latches 
(74AS373's), this application can easily be used in a dual 
access application. The addresses could be tri-stated 
through these latches, the write input (WIN -), lock input 
(LOCK-), and ECAS-0-3 inputs must also be able to be 
tri-stated (a 74AS244 could be used for this purpose). By 
multiplexing the above inputs (through the use of the above 
parts and similar parts for Port B) the DP8422A can be used 
in a dual access application. If this design is used in a dual 
access application the tRAC and tCAC (required RAS and 
CAS access time required by the DRAM) will have to be 
recalculated since the time to RAS and CAS is longer for 
the dual access application (see TIMING section of this ap­
plication note). 

Also, throughout this application note the symbol '-' has 
been used to denote and active low signal. For example 
RAS - 0 refers to the active low RASO output of the 
DP8421A. For even higher system performance an 'E' 
speed PAL can be used. 

III. DESCRIPTION OF DESIGN #2,80286 OPERATING 
AT UP TO 40 MHz (80286-20) WITH ZERO WAIT STATES 
USING PAGE MODE DRAMs 

This design is very similar with respect to design # 1 except 
for the following differences. 

The memory banks are interleaved on page (1024 word) 
boundaries. This means that the address bit (A 11) is tied to 
the bank select input of the DP8421A (B1). 

Address bit AO is used, along with Bus High Enable (SHE), 
to produce the two byte select ECAS - 0,1 strobes. These 
byte select strobes (ECAS - 0,1) are logically "ORed" with 
the DP8421A CAS- outputs to produce the byte selecting 
CAS - inputs to the DRAMs. 

If the majority of accesses made by the 80286 are sequen­
tial and within a page, the 80286 in conjunction with the 
page detector (74ALS6311) allow zero wait state accessing. 
Each in-page memory access is completed using page 
mode (toggling the CAS - inputs). 

As in design # 1 it is important that the 74ASOO NAND gates 
(U1) be in the same package so the delays (CLK-, S01) 
track each other. For even higher system performance an 
'E' speed PAL could be used. 
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IV. 80286 DESIGNS # 1 AND #2 PROGRAMMING 
MODE BITS 

Programming 
Bits 

RO = 0 
R1 = 1 

R2 = 0 
R3 = 1 

R4 = 0 

R5 = 0 

R6 = 0 

R7 = 1 

R8 = 1 
R9 = X 

CO = X 
C1 = X 
C2 = X 
C3 = X 

C4 = 1 
C5 = 0 
C6 = 1 

C7 = 1 

C8 = 1 

C9 = 1 

80 = 1 

81 = 1 

ECAS-O = 1 

Description 

RAS - low two clocks, RAS-
precharge of two clocks. If more 
RAS - precharge is desired the 
user should program three 
periods of RAS - precharge. 

DT ACK - % is chosen. 
DT ACK - follows the access 
RAS- low. 

No WAIT states during burst 
accesses. 

If WAITI N - = 0, add one clock 
to DTACK-. WAITIN- may be 
tied high or low in this 
application depending upon the 
number of wait states the user 
desires to insert into the access. 

Select DTACK - . 

Non-interleaved Mode. 

Select based upon the input 
"DElClK" frequency. Example: 
if the input clock frequency is 
16 MHz then choose CO, 1, 2 = 

0, 1, 0 (divide by eight, this will 
give a frequency of 2 MHz). 

RAS banks selected by "81". 
This mode allows two RAS-
outputs to go low during an 
access, and allows byte writing 
in 16 bit words. 

Column address setup time of 
o ns. 

Row address hold time of 15 ns. 

Delay CAS - during write 
accesses to one clock after 
RAS - transitions low. 

Fall through latches. 

Access mode 1. 

Allow CAS - to be extended 
after RAS- transitions high. 
Also, allow the WE - output to 
be used as a refresh request 
(RFRQ-) output indicator. 

o = Program with low voltage level 
1 = Program with high voltage level 
X = Program with either high or low voltage level (don't care condition) 
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V. 80286 TIMING CALCULATIONS FOR DESIGNS # 1 
AND #2 AT 32 MHz (80286-16) WITH ONE WAIT STATE 
DURING NORMAL ACCESSES AND ZERO WAIT 
STATES IN PAGE MODE ACCESSES (DESIGN #2 
ONLY). THE WAITIN - INPUT OF THE DP8422A 
SHOULD BE TIED LOW. 

1. Minimum S01 high setup time to ClK - high ('D' speed 
PAL needs 8 ns): 

31.25 ns (one clock period, 32 MHz) - 20 ns (maximum 
80286 SO - , S1 - delay, # 12a) - 1 ns (maximum skew 
between ClK - and SO - , S1 - since both gates are in 
the same package) = 10.25 ns. 

2. Maximum address valid time (with respect to ClK - high 
during phase 1 in Ts): 

62.5 ns (two clocks 32 MHz) - 31 ns (80286 address 
valid delay from previous clock period, # 15) + 1 ns 
(minimum ClK- valid delay, 74ASOO) = -1.25 ns (be­
fore ClK - high phase 1 Ts). 

3. Minimum address setup time to ADS - low (DP8421 A-
25needs14n~ #404~ 

31.25 ns (one clock period) + 1.25 ns (from #2 calcula­
tion above) + 2 ns (minimum ADS - valid delay from 
ClK - high, beginning of phase 2 in Ts) = 34.5 ns ad­
dress setup. 

4. Minimum CS setup time to ADS- low (DP8421A-25 
needs 5 ns, #401): 34.5 ns (#3 above) - 10 ns (max 
74AlS138 decoder) = 24.5 ns . 

. 5. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM): 

156.25 ns (five clock (ClK) periods to do the access) 
-4.5 ns (max delay 74ASOO for ClK-) - 8 ns (max 'D' 
speed PAL clocked output delay for ADS- from ClK-) 
- 29 ns (ADS- to RAS- low max, DP8421A-25 #402) 
- 7 ns (80286 data setup time #8) - 7 ns (74F245 max 
delay) = 100.75 ns. 

Therefore the tRAC of the DRAM must be 100.75 ns or 
less. 

6. Determining tCAC during a normal access (CAS - ac­
cess time) and column address access time needed by 
the DRAM: 

156.25 ns (five clock (ClK) periods to do the access) 
-4.5 ns (max delay 74ASOO for ClK-) - 8 ns (max 'D' 
speed PAL clocked output delay for ADS - from ClK - ) 
- 82 ns (ADS- to RAS- low max, DP8421A-25 #402) 
- 7 ns (80286 data setup time # 8) - 7 ns (74F245 max 
delay) = 47.75 ns. 

Therefore the tCAC and the column address access time 
of the DRAM must be 47.75 ns or less. 

7. Determining the column address setup time to CAS-O-
3 low (0 ns needed by the DRAMs) during burst mode 
accesses for zero wait states (DESIGN #2 ONLY): 

31.25 ns (phase 1 in Ts) + 1.25 ns (# 2 above, address 
valid with respect to ClK - beginning of phase 1 in Ts) 
+ 2 ns (minimum 'D' speed PAL clocked output delay 
from ClK -, ECAS - 0,1) + 2 ns (74AS32 min delay to 
CAS - 0-3 low) = 36.5 ns. 

This gives 1.5 ns column address setup time to CAS-
0-3 low (36.5 ns - 35 ns 8421A-25 column address 
input to output valid, #26). 
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8. Determining the tCAC (CAS - access time) needed dur­
ing burst mode accesses for zero wait states (DESIGN 
#2 ONLY): 

93.75 ns (three clocks of ClK) - 4.5 ns (74ASOO max 
delay, ClK -) - 8 ns ('0' speed PAL clocked output 
delay from ClK-, ECAS-O,1) - 10 ns (74AS32 max 
delay to CAS-0-3 low) - 7 ns (80286 data setup time 
#8) - 7 ns (74F245 max delay) = 57.25 ns tCAC need­
ed. 

9. Determining the column address access time needed 
during burst mode accesses for zero wait states (DE­
SIGN #2 ONLY): 

57.25 ns (#8 above, tCAC needed by the DRAM) + 
1.5 ns (# 7 above, column address setup time to 
CAS-0-3 low) = 58.75 ns. 

10. Minimum SRDY - (Synchronous ReaDY) setup time to 
ClK low (80286 SRDY input needs 15 ns, # 11): 

62.5 ns (two clock periods) - 4.5 ns (74ASOO max de­
lay, ClK-) - 10 ns ('0' speed PAL combinational out­
put max delay to SRDY- low) = 48 ns. 

Note: Calculations can be performed for different frequencies. different log­
ic (ALS or CMOS ... etc). and/or different combinations of wait 
states by substituting the appropriate values into the above equa­
tions. 

VI. 80286 PAL INPUT AND OUTPUT DESCRIPTIONS 
FOR DESIGNS # 1 AND # 2 

Inputs: 

ClK-

PClK 

S01 

SO­

WIN-

CS-

DT12-

AO 

BHE­

RFRQ­

HSA-

OE­

Outputs: 
ECAS-O 

ECAS-1 

SRDY-

8420ClK-

ADS-

The inverted clock (ClK) of the 80286. 

The half speed clock of the 80286, produced 
by the 82284. 

The 80286 SO- 'NANDed' with S1-. 

The SO - output of the 80286. 
The 80286 SO - input low latched throughout 
the access cycle. 

The DRAM chip select generated from the 
80286 addresses. 

The DTACK- output of the 8421A. 

The least significant address bit (low byte en­
able) from the 80286. 

The high byte enable from the 80286. 

The refresh request output from the 8421A. 

The High Speed Access output (comparison 
equal) from the 74AlS6311. 

Output enable of the PAl®. 

The low byte CAS - enable, this output also 
toggles during page mode accesses in design 
#2. 

The high byte CAS - enable, this output also 
toggles during page mode accesses in design 
#2. 

This is the ready input to the 80286, it is used 
to insert wait states into 80286 access cycles. 

This is the CLOCK and DElClK input to the 
8421 A. This clock runs at half of the 80286 
ClK frequency. 

This is the ADS - and AREQ - inputs to the 
8421A. In design #2 this input stays low thru 
multiple accesses as long as the accesses are 
within a page. 
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NOACC- This PAL output is low at the end of an 80286 
access and stays low until the next access 
starts. 

lREQ- In Design #2 this output latches that an ac­
cess request occurred (from the 80286) during 
an out-of-page access or refresh request dur­
ing page mode accessing. 

WIN - The latched SO - output from the 80286. 

ENX - The PAL output used to enable the data trans­
ceivers. 

80286 PAL EQUATIONS (DESIGN # 1) 

1. Up to 40 MHz (80286-20) 

PAL16R6D 
ClK - PClK S01 SO - CS - DT12 - AO BHE - NC3 GND 
OE- ECAS-1 WIN- ENX- SRDY- ADS- NOACC-
8420ClK - ECAS - 0 VCC 
If (VeC> IECAS-O = ICS- *S01*SO- */AO*8420ClK­

;READ 
+/CS- */ADS- */DT12-
* 1 AO*8420ClK - ;WRITE 

+ IECAS-O*/ADS­
+/ECAS-O*/SRDY-

If (VeC> IECAS-1 = ICS- *S01 *SO- * 
IBHE- *8420ClK-

+/CS- */ADS- */DT12- * 
;READ 

IBHE - *8420ClK - ;WRITE 

+/ECAS-1 */ADS-
+ 1 ECAS -1* ISRDY-

18420ClK - : = IPClK 

INOACC- := ISRDY-*/ADS-

IADS-

ISRDY-

IENX-

IWIN-

+ INOACC- * IPClK 
+/NOACC- *CS- */ADS­

+ INOACC - * IS01 
:= ICS-*S01*PClK 

+/ADS- *SRDY-

:= ICS- */ADS- */DT12- *NOACC- * 
IPClK 

+ ISRDY - * 1 ADS- *NOACC­
:= ICS- */ADS-

:= ISO-*S01 

+/WIN-*NOACC-
+ IWIN - * IPClK 

80286 PAGE MODE PAL EQUATIONS 
(DESIGN #2) 

2. Up to 40 MHz (80286-20) 

PAL16R6D 
ClK- PClK S01 WIN- CS- DT12- RFRQ- HSA­
AOGND 
OE- BHE- ADS- lREQ- NOACC- 8420ClK­
ECAS - 1 ECAS - 0 SRDY - VCC 
If(VeC>/SRDY- = ICS-*/ADS-* 

IDT12- *NOACC- *8420ClK-

+ ISRDY - * 1 ADS - *NOACC­
+ ISRDY - * 1 ADS - *8420ClK-



IECAS-O:= ICS- *S01*WIN- */AO*/HSA- *PCLK 

+/CS- *S01*WIN- */AO*HSA- *ADS- *PCLK 

+ ICS- */LREQ- */AO*/HSA- *WIN- *PCLK 

+/CS- */ADS- */SRDY- *NOACC- */AO*PCLK 

+ IECAS - 0* I ADS - *NOACC-

IECAS-1:= ICS- *S01*WIN- */BHE- */HSA- *PCLK 

+/CS- *S01*WIN- */BHE- *HSA- *ADS- *PCLK 

+ ICS- *LREQ- */BHE- */HSA- *WIN- *PCLK 

+/CS- */ADS- */SRDY- *NOACC- */BHE- *PCLK 

+/ECAS-1*/ADS- *NOACC-

18420CLK - : = IPCLK 

INOACC-:= ISRDY-*/ADS-

+ INOACC - * IPCLK 

+ INOACC - *CS - * I ADS­
+/NOACC-*/S01 

ILREQ-:= ICS- *S01*HSA- */ADS-

+ ICS- *S01*/RFRQ- */ADS­
+ ILREQ- *ADS-

IADS-: = CS- *S01*ADS- *RFRQ- *PCLK 

+/LREQ- */HSA- *PCLK 

+/ADS- *NOACC-

+/ADS- */NOACC- *RFRQ- */HSA­

+/ADS- */NOACC- */PCLK 
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;READ WITH ADS- LOW 

;READ WITH ADS- HIGH 

;READ DELAYED ACCCESS 

;READ WITH ADS - LOW 

;READ WITH ADS- HIGH 

;READ DELAYED ACCESS 
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Interfacing 80286/8421A Using Page Mode Accessing (Design #2) 

I CLOCK 

=~ I 74ASOO PClK 
PAL DP8421A 

80286 ClK Ul"- ClK- 8420ClK-16R6D ClK 

so-~~ 4 DEClK 

Sl- ~ SOl 
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V 
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~ 
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SRDYN DTACK- (DT12N) 
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~ 
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.. 
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.. "" DATA '--- HSA- "C-All-A21 .. PAGE 14 ClKEN BO .. DETECTOR 
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~ 
A PAL ADS- f 
v-

A WIN-

~ PAL SRDY-
DIR 

EN V' 

TRANSCEIVER 

TL/F/10442-3 

@At high frequencies (ClK > 32 MHz) the WIN - input may need to be sampled by a flip-flop (clocked by 8420ClK -) before being input to the PAL to meet the 
setup requirements of the PAL inputs. This would have the effect of delaying ECAS - 0,1 becoming valid by one clock period (ClK -) during read accesses, this 
would not affect the performance of this interface. 
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A PAL Interface for a Dual 
Access DP8422A/680301 
74F632 Error Detecting and 
Correcting Memory System 
I INTRODUCTION 

This application note describes a 3 PAL design that interfac­
es two 68030 microprocessors, both synchronous to the 
same system clock, to a DP8422A DRAM controller and a 
74F632 Error Detection and Correction (EDAC) chip. It is 
assumed that the reader is already familiar with the 68030 
CPU, the DP8422A DRAM controller, the 74F632 EDAC, 
and the basics of PAL design. The National Semiconductor 
DP8402A EDAC chip can be used in place of the 74F632 
though it is a slower device. 

This application note supports the following types of memo­
ry accesses: 

1. Read accesses with 6 wait states inserted (8 clock peri­
ods total in the synchronous mode read access), any sin­
gle bit errors are automatically corrected before sending 
the data to the CPU (EDAC unit in always correct model 
error monitoring mode is also described); 

2. Write accesses with 3 wait states inserted (5 clock peri­
ods total in the synchronous mode write access); 

3. Byte write accesses with 7 wait states inserted (9 clock 
periods total in the synchronous mode byte write access); 

4. Burst read accesses with 3 wait states in the burst portion 
of the access (4 clock periods total per synchronous 
mode burst read memory access); 

5. Scrubbing during DRAM refreshes (6 clock periods total 
during the refresh if no errors, 8 clock periods total during 
the refresh if any errors), any single bit errors are correct­
ed. The corrected word is then written back to the DRAM. 

" DESCRIPTION OF 25 MHz DUAL ACCESS 68030 SyS­
TEM INTERFACED TO THE DP8422A AND THE 74F632 

This design allows two 68030 microprocessors to access a 
common error corrected dynamic memory system. The er­
ror corrected memory system is implemented using the 
74F632 EDAC chip in the always correct mode. Whichever 
68030 accessed the memory last has a higher priority. Both 
68030s are interfaced to the DRAM in the synchronous 
mode of operation (the accesses are terminated with the 
68030 STERM - input). This allows the DRAM system to 
support burst mode accesses. 

During read accesses the data is always processed through 
the EDAC chip (always correct type of system). If a single bit 
error occurs during a read access this design guarantees 
correct data to the CPU, but does not write the corrected 
data back to the DRAM. Single bit soft errors in memory are 
only corrected (written back to memory) during scrubbing 
type refreshes. The memory is scrubbed often enough that 
the probability of accumulating two soft errors in memory is 
very unlikely. 

During read accesses the data is always processed through 
the 74F632 EDAC chip (Le., the EDAC data buffers are en­
abled to provide the data to the CPU). The 74F632 is always 
put into latch and correct mode during read accesses, even 
though the data from the memory may be correct. This al-
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lows CAS - to be toggled early (before the CPU has sam­
pled the data), during burst mode accesses, to start access­
ing the next word of the burst access. 

This design drives two banks of DRAM, each bank being 39 
bits in width (32 data bits plus 7 check bits) giving a maxi­
mum memory capacity of 32 Mbytes of error corrected 
memory (using 4 M-bit x 1 DRAMs). By choosing a different 
RAS - and CAS - configuration mode (see programming 
mode bits section of DP8422A data sheet) this application 
can support 4 banks of DRAM, giving a memory capacity of 
64 Mbytes (using 4M-bit x 1 DRAMs, NOTE that when driv­
ing 64 Mbytes the timing calculations will have to be adjust­
ed to the greater capacitive load). 

The memory banks are interleaved on every four word (32-
bit word) boundary. This means that the address bit (A4) is 
tied to the bank select input of the DP8422A (B1). 

Address bits A3,2 are tied to the highest row and column 
address inputs (R9, C9 for 1 Mbit DRAMs) to support burst 
accesses using nibble mode DRAMs. Nibble mode DRAMs 
must be used! The reason for this is that nibble mode 
DRAMs support address wrap-around during a burst ac­
cess. Address wrap-around is needed during an internal 
cache miss where the 68030 starts a burst memory access 
on a non-page boundary (Le., the first of a 4 word burst may 
have the least significant address bits, "A3,A2" = 1 0). Giv­
en this condition, the CPU expects word 2, word 3, word 0, 
word 1. On incrementing from word 3 to word 0 the address 
bit A4 must not change (the nibble page must remain the 
same). Nibble mode DRAMs support the address wrap­
around feature. 

Address bits A 1, AO are used to produce the four byte select 
data strobes, used in byte reads and writes. If the majority of 
accesses made by the 68030 are sequential, the 68030 can 
be doing burst accesses most of the time. Each burst of four 
words can alternate memory banks (address bit A4 tied to 
DP8422A pin 81), allowing one memory bank to be pre­
charging (RAS - precharge) while the other bank is being 
accessed. This is a higher performance memory system 
than a non-interleaved memory system (bank select on the 
higher address bits). Each separate memory access to the 
same memory bank will generally require extra wait states 
to be inserted into the CPU access cycles to allow for the 
RAS - precharge time. 

The logic shown in this application note forms a complete 
68030 memory sub-system, no other logic is needed. This 
SUb-system automatically takes care of: 

A. arbitration between Port A, Port B, and refreshing the 
DRAM; 

B. the insertion of wait states to the processor (Port A and 
Port B) when needed (Le., if RAS - precharge is needed, 
refresh is happening during a memory access, the other 
Port is currently doing an access ... etc.); 
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C. performing byte writes and reads to the 32-bit words in 
memory; 

D. normal and burst access operations. 

By making use of the enable input on the 74AS244 buffer, 
this application allows dual access applications. The ad­
dresses and chip select are TRI-STATE® through this buff­
er, the write input (WIN -), lock input (LOCK -), and 
ECASO-3 - inputs must also be able to be TRI-STATE 
(another 74AS244 could be used for this purpose). By multi­
plexing the above inputs (through the use of the above parts 
and similar parts for Port B) the DP8422A allows dual ac­
cessing to be performed. 

III ANOTHER OPTION FOR A 68030 25 MHz DUAL AC­
CESS EDAC DESIGN: THE EDAC ERROR MONITORING 
METHOD IN CONJUNCTION WITH THE 68030 ASYN­
CHRONOUS LATE RETRY FEATURE 

The 68030 dual access EDAC system design could use the 
error monitoring method in conjunction with the 68030 asyn­
chronous late retry feature, instead of the always correct 
method (design shown in this application note). The error 
monitoring method can yield a slight improvement in system 
performance. 

By using the error monitoring method of error correction 
single read accesses or the first read access during a burst 
access can be shortened by one clock period, allowing a 
synchronous read access to have only 5 wait states insert­
ed, 7 clock periods total (compared to 6 wait states, 8 clock 
periods total when doing the always correct method). All 
other types of accesses (burst reads, byte writes, word 
writes, refresh scrubbing) will execute in the same number 
of clock cycles, and in the same manner as described in this 
application note. 

Read accesses can save one wait state because the data 
from the DRAM memory is assumed to be correct in the 
error monitoring system design. Therefore the DRAM data 
is given directly to the CPU instead of running it through the 
EDAC chip as was done in the always correct method. 

In order to do this design it is required that the asynchro­
nous late retry feature of the 68030 and registered trans­
ceivers (74F646) be employed. 

The asynchronous late retry feature of the 68030 involves 
pulling the 68030 input signals "BERR - and HALT -" 
both low before the falling clock edge of the last clock cycle 
of the access. Given that this is done the 68030 will sus­
pend all bus activity until HALT - is brought high and then 
will retry the aborted bus cycle (unless that access is not 
currently needed by the CPU). This feature is useful for the 
case where an error is detected in the DRAM data. In this 
case BERR - and HALT - are brought low until the data 
from the DRAM is corrected (by the EDAC chip) and written 
back to the DRAM. BERR - and HALT - are then brough 
high to continue CPU processing. 
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Registered transceivers (74F646) are necessary during 
burst mode read accesses because CAS - transitions high 
before the CPU has sampled the DRAM data. The regis­
tered transceivers hold the data valid until the CPU samples 
it during these cases. 

A read, read with a single bit error, and burst read access 
timing are shown at the end of this application note imple­
menting the error monitoring method. The user can see how 
these access cycles differ from the always correct method 
access cycles. 

IV 68030 25 MHz DUAL ACCESS DESIGN, 
PROGRAMMING MODE BITS 

Programming 
Bits 

RO = 1 
R1 = 1 

R2 = 1 
R3 = 0 

R4 = 0 
R5 = 0 

R6 = 0 

R7 = 1 

R8 = 1 
R9 = X 

CO = X 
C1 = X 
C2 = X 

C3 = X 
C4 = 0 
C5 = 0 
C6 = 1 

C7 = 1 

C8 = 1 

C9 = 1 

BO = 1 

Description 

RAS - low four clocks, RAS - precharge of 
three clocks 

DTACK- 1 is chosen. DTACK- low first 
rising CLK edge after access RAS - is low. 

No WAIT states during burst accesses 

If WAITIN - = 0, add one clock to 
DTACK-. WAITIN- may be tied high or 
low in this application depending upon the 
number of wait states the user desires to in­
sert into the access. 

Select DT ACK-

Non-interleaved mode 

Select based upon the input "DELCLK" fre­
quency. Example: if the input clock frequen­
cy is 20 MHz then choose CO,1,2 = 0,0,0 
(divide by ten, this will give a frequency of 
2 MHz). If DELCLK of the DP8422A is over 
20 MHz do an initial divide by two externally 
and then run that output into the DELCLK 
input and choose the correct divider. 

RAS- groups selected by "B1". This mode 
allows two RAS - outputs to go low during 
an access, and allows byte writing in 32-bit 
words. 

Column address setup time of 0 ns 

Row address hold time of 15 ns 

Delay CAS - during write accesses to one 
clock after RAS - transitions low 

Fall-thru latches 

B 1 = 1 Access mode 1 

ECASO - = 0 Non-extend CAS­
o = Program with low voltage level 

1 = Program with high voltage level 

X = Program with either high or low voltage level (don't care condition) 

» z . 
U1 
CAl 
U1 

II 
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V 6803025 MHz WORST CASE TIMING CALCULATIONS 

The worst case access is an access from Port 8. This oc­
curs because the time to RAS - and CAS - low is longer 
for the Port 8 access than; a Port A access, a refresh with 
scrubbing access, or an access which has been delayed 
from starting (due to refresh, RAS - precharge time, or the 
other Port accessing memory). 

A. Worst case time to RAS - low from the beginning of an 
access cycle: 

40 ns (T1 clock period of 68030) + 10 ns (PAL16R4D 
maximum combinational output delay to produce 
AREQ8 -) + 41 ns (DP8422A-25 parameter # 1 02, 
AREQ- to RAS- delay maximum) = 91 ns 

8. Worst case time to CAS - low from the beginning of an 
access cycle: 

40 ns + 10 ns + 94 ns (DP8422A-25 parameter # 118a, 
AREQ8 - to CAS - delay maximum) = 144 ns 

C. Worst case time to DRAM data valid: 

144 ns (from "8" above, maximum time to CAS -) + 50 
ns (CAS - access time "tCAC" for a typical 100 ns 
DRAM) = 194 ns 

D. Worst case time to data valid on the EDAC data bus: 

194 ns (from "C" above) + 7 ns (74AS244 maximum 
delay) = 201 ns 

E. Worst case time until the error flags are valid from the 
74F632: 

201 ns (from "D" above) + 31 ns (74F632 maximum 
time to error flags valid) = 232 ns 

F. Worst case time until corrected data is valid from the 
74F632: 

201 ns (from "D" above) + 28 ns (74F632 maximum 
time from data in to corrected data out) = 229 ns 

G. Worst case time until corrected data is available at the 
CPU: 

229 ns (from "F" above) + 7 ns (74F245 maximum de­
lay) = 236 ns 

VI 68030 25 MHz DUAL ACCESS DESIGN, TIMING CAL­
CULATIONS 

1. Minimum ADS - low setup time to CLOCK - high for 
DT ACK - logic to work correctly (DP8422A-25 needs 
25 ns, parameter #400b): 

40 ns (one clock period) - 10 ns (PAL 16R4D combina­
tional output maximum that produces AREQ-, ADS-) 
= 30 ns 

2a. Minimum address setup time to ADS - low (DP8422A-
25 needs 14 ns, parameter #404): 

40 ns (one clock period) - 20 ns (assumed 68030 max 
time to address valid from ClK high) - 6.2 ns 
(74AS244 buffer delay max) + 2.5 ns (minimum PAL 
16R4D combinational output delay that produces 
AREQ-, ADS-) = 16.3 ns 
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2b. Minimum address setup time to ClK high (used in #38 
calculation below): 

40 ns (one clock period) - 20 ns (assumed 68030 max 
time to address valid from ClK high) - 6.2 ns 
(74AS244 buffer delay max) = 13.8 ns 

3a. Minimum CS - setup time to ADS - low (DP8422A-25 
needs 5 ns, parameter #401): 

16.3 ns (#2a) - 9 ns (max 74AS138 decoder) = 
7.3 ns 

3b. Minimum CS - setup time to ClK high (PAL equations 
need 0 ns): 

13.8 ns (#2b) - 9 ns (max 74AS138 decoder) = 
4.8 ns 

4. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM): 

200 ns (five and one-half clock periods to get data from 
the DRAM to the 74F632 data inputs) - 3 ns (74F632 
data setup time to mode input SO high) + 2.5 ns (mini­
mum PAL16R4D combinational output delay for "SO") 
- 84 ns (from "A" of worst case times, from the begin­
ning of the access to RAS - low) - 6.2 ns (74F244 
DRAM buffer delay maximum) = 129.3 ns 

Therefore the tRAC of the DRAM must be 129.3 ns or 
less. 

5. Determining tCAC during a normal access (CAS - ac­
cess time) and column address access time needed by 
the DRAM: 

220 ns (five and one-half clock periods to get data from 
the DRAM to the 74F632 data inputs) - 3 ns (74F632 
data setup time to mode input SO high) + 2.5 ns (mini­
mum PAL 16R4D combinational output delay for "SO") 
- 138 ns (from "8" of worst case times, from the be­
ginning of the access to CAS- low) - 6.2 ns (74F244 
DRAM buffer delay maximum) = 75.3 ns 

Therefore the tCAC of the DRAM must be 75.3 ns or 
less. 

6. Determining the nibble mode access time needed dur­
ing a burst access: 

100 ns (two and one-half clock periods to do the burst) 
- 8 ns (PAL16R4D clocked output delay maximum for 
ENCAS - output) - 27 ns (DP8422A-25 ECASn - to 
CASn- asserted maximum, parameter #14) - 3 ns 
(74F632 data setup time to mode input SO high) + 2.5 
ns (minimum PAL 16R4D combinational output delay for 
"SO") - 6.2 ns (74F244 DRAM buffer delay maximum) 
= 58.3 ns 

Therefore the nibble mode access time of the DRAM 
must be 58.3 ns or less 

7. Maximum time to DTACK1- low (PAL 16R4D needs 10 
ns setup to ClK): 

40 ns (One clock) - 28 ns (DT ACK2 - low from CLK 
high on DP8422A-25, parameter # 18) = 12 ns 

8. Minimum STERM - setup time to CLK (0 ns to ClK 
rising edge is needed by the 68030): 

20 ns (one-half clock period) - 10 ns (PAL 16R4D com­
binational output maximum) = 10 ns 

··Note: That calculations can be performed for different frequencies and/or 
different combinations of wait states by substituting the appropriate 
values into the above equations. 
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VII PAL INPUT DESCRIPTIONS STERMA- This output is used to insert synchronous Z 

BClK System Clock wait states to the Port A 68030 en 
w 

ClK System Clock STERMB- This output is used to insert synchronous U1 

CSA- Chip Select from Port A 68030 wait states to the Port B 68030 

ASA- Address Strobe from Port A 68030 SERR- This output latches the fact that the 74F632 
detected an error in the data it read from the 

CSASA- Chip selected access request from Port A DRAM 
68030 

BERR- This output latches that the 74F632 detected 
CSB- Chip Select from Port B 68030 a multiple bit error in the data it read from the 
ASB- Address Strobe from Port B 68030 DRAM 
DTACK- Data Transfer ACKnowledge for Port B ac- WE- This output controls write enable to the 

cesses DRAMs 
ATACKB- Transfer ACKnowledge for Port B accesses IX 68030 25 MHz DUAL ACCESS EDAC SYSTEM DESIGN 
R Read/Write - (R/W -) indicator from the PAL EQUATIONS IN ABEL FORMAT 

currently granted CPU 
DP1 device "PAL16R4D" 

CBREQ- Cache Burst REQuest indicator from the cur-
rently granted CPU BClK pin 1; VCC pin 20; 

WCBREQ- When low this signal indicates either a write ClK pin 2; AREO- pin 19; 

access or a non-burst access CSASA- pin 3; AREOB- pin 18; 

RFIP- Indicates that a DRAM refresh is in progress CSB- pin 4; D1- pin 17; 

RASO- RASO - output from the DP8422A DRAM 
ASB- pin 5; D2- pin 16; 

controller DTACK- pin 6; D3- pin 15; 

WORD- Indicates a word access (32 bits) as opposed 
ATACKB- pin 7; ENCAS- pin 14; 

to a byte or multi-byte access (less than 32 WCBREQ- pin 8; COUNT- pin 13; 

bits) RFIP- pin 9; RASO- pin 12; 

GRANTB GRANTB output from the DP8422A DRAM GND pin 10; OE- pin 11; 

controller, when high this output indicates EQUATIONS 
that Port B currently is granted to access the IAREQ- = !CSASA- & ClK 
DRAM #!AREQ- & !CSASA-

VIII PAL OUTPUT DESCRIPTIONS # !AREQ - & !ClK; 

AREQ- DRAM Access REQuest for Port A 68030 IAREQB - = ICSB - & !ASB - & ClK 
AREQB- DRAM Access REQuest for Port A 68030 # IAREQB - & !CSB - & IASB-

COUNT- The enable for the shift register counter (out- # IAREQB - & !ClK; 

puts D1-6-) !COUNT- = !AREQ- & !DTACK- & !CSASA-
D1-6- Shift register counter, these outputs are used #!AREQB- & !ATACKB- & !ASB-

to drive the PAL control outputs in the proper #IRFIP- & !RASO-; 
sequence for each access (Port A, Port B, 

ID1- := !AREQ- & IDTACK-refresh) and are clocked outputs 
#!ATACKB- & !AREQB-

ENCAS- This output, when low, enables the CAS- #!RFIP- & IRASO; 
outputs of the DP8422A DRAM controller 
and is a clocked output ID2 - :!D1 - & D3 - & ICOUNT-

EXRF- This output is used to EXtend the ReFresh #D3- & !AREQ- & IDTACK- & RFIP-; 

cycle to allow an access from one of the ID3- := ID2- & ICOUNT-; 
banks of DRAM, if an error occurs (ERR-
low) the refresh cycle is extended even long- IENCAS - : = IWCBREQ-
er to allow the corrected data to be written # D1-
back to memory # ID2-

SO- This output controls the SO mode input of the # D3-

74F632 # IRFIP-; 

S1- This output controls the S1 mode input of the DP2 device "PAL 16l8D" 
74F632 

TRAN_EN - This output is used to enable the data trans-
BClK pin 1; VCC pin 20; 

ceivers for the currently enabled Port (A or B) R pin2; EXRF- pin 19; 

OEB- This output is used to drive the OEBO-3-
WORD- pin3; SO pin 18; 

inputs of the 74F632 to provide byte output GRANTB pin 4; S1 pin 17; 

control of the latched corrected data RFIP- pin 5; TRAN_EN- pin 16; 

OECB- This output controls when to enable the SERR- pin 6; OEB- pin 15; 

check bits out of the 74F632 D2- pin 7; OECB- pin 14; 

lEDBO- This output is used to latch the corrected D5- pin 8; STERMA- pin 13; 

data in the output latches of the 74F632 D6- pin 9; STERMB- pin 12; 
GND pin 10; OE- pin 11; 

7-93 



EQUATIONS 

IEXRF- = IRFIP- & S1 & !02- & 05- & OS- & 

SERR-
#IEXRF- & IRFIP- & S1 & 05- & OS­
#IRFIP- & 105- & !SERR-; 

ISO = IR & IWORO- & RFIP­
# 102- & 05-
# ISO & BClK 
# 105 - & IBClK 
# ISO & 105-
# ISO- &! OS-
# IS1 & ISERR- & !RFIP-; 

IS1 = IR & IWORO- & RFIP­
# !05 - & IBClK 
# IS1 & !05-
# IS1 & 10S- & !R & WORO­
# IS1 & 10S- & !RFIP-
# !S1 & !SERR- & IRFIP-; 

ITRAN_EN - = R & !05 - & IBClK & RFIP-
# ITRAN_EN- & R & 105- & OS- & RFIP­
# R & !05- & !STERMA- & RFIP-
# R & !05- & !STERMB- & RFIP-
# !R & !WORO- & !S1 & RFIP-
# !R & WORO- & 105- & !BClK & RFIP­
# ITRAN_EN - & IR & WORD - & !05 - & 

RFIP-
# ITRAN_EN - & IR & WORD - & IDS - & 

RFIP-; 

IOEB- = R & 105- & IBClK 
# IOEB- & R & !05-
# IRFIP - & 105 - & IBClK & ISERR­
# IOEB- & IRFIP- & 105- & ISERR­
# lOEB - & IRFIP - & IDS - & ISERR­
# IR & WORO- & 105- & IBClK 
# IOEB- & IR & WORO- & 105-
# IOEB- & IR & WORO- & !OS-; 

IOECB- = IR & !WORO- & RFIP- & !S1 
# IRFIP- & !05- & !BClK & !SERR-
# IOECB- & !RFIP- & 105- & !SERR­
# IOECB - & IRFIP - & IDS - & !SERR­
# IR & WORO- & !05- & !BClK 
# IOECB- & IR & WORO- & 105-
# IOECB- & IR & WORO- & 10S-; 

ISTERMA- = R & RFIP- & !05- & OS- & 

!GRANTB- & IBClK 
# ISTERMA- & R & RFIP- & !05- & 

!GRANTB - & BClK 
# IR & IWORO- & RFIP- & 102- & OS- & 

IGRANTB- & IBClK 
# ISTERMA - & IR & IWORO - & RFIP - & 

102 - & OS - !GRANTB & BClK 
# IR & WORO- & RFIP- & 105- & !OS- & 

!GRANTB - & IBClK 
# !STERMA- & IR & WORO- & RFIP- & !OS & 

!GRANTB & BClK; 
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ISTERMB- = R & RFIP- & !05- & OS- & 

GRANTB- & IBClK 
# !STERMB- & R & RFIP- & 105- & 

GRANTB - & BClK 
# !R & IWORO- & RFIP- & 102- & OS- & 

IGRANTB & IBClK 
# ISTERMB- & IR & IWORO- & RFIP- & 

!02- & OS- GRANTB & BClK 
# !R & WORO- & RFIP- & 105- & 10S- & 

GRANTB- & IBClK 
# ISTERMB- & IR & WORO- & RFIP- & 

IDS & GRANTB & BClK; 

OP3 device "PAL 1SR40" 

BClK pin 1; VCC 
ClK pin2; lEOBO-
SO- pin3; SERR-
S1- pin 4; WE-
ERR- pin 5; 04-
MERR- pinS; 05-
COUNT- pin 7; OS-
02- pin 8; BERR-
03- pin 9; OECB-
GNO pin 10; OE-

EQUATIONS 

!lEOBO = !02 - & ISO - & S1 - & IClK 
#llEOBO- & !03- & !SO-
# !lEOBO - & IClK 

ISERR- = 104- & SO- & S1- & ICOUNT- & 

IERR- & ClK 
. # ISERR - & ICOUNT - ; 

IBERR- = 04- & SO- & S1- & ICOUNT- & 

IMERR- & ClK 
# IBERR - & ICOUNT - ; 

pin 20; 
pin 19; 
pin 18; 
pin 17; 
pin 1S; 
pin 15; 
pin 14; 
pin 13; 
pin 12; 
pin 11; 

IWE- := !S1- & 102- & 03":'" & ICOUNT- & IOECB-; 

!04- := !03- & !COUNT-; 

!05- := !04- & !COUNT-; 

!OS- := !05- & !COUNT-; 

Key: Reading PAL equations 
EXAMPLE EQUATIONS: 

!AREQ- = ICSASA- & ClK 
# !AREQ- & ICSASA-

. # !AREQ- & IClK-

This example reads: the output "AREQ-" will transition 
low given that one of the following conditions are valid; 

1. the input "CSASA - " is low AND the input "ClK" is high, 
OR 

2. the output "AREQ -" is low AND the input "CSASA - " 
is low, OR 

3. the output "AREQ -" is low AND the input "ClK" is low. 
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Control logic in this system needs the following: 3 PAL®s and some logic gates 

·CBACK is tied low back to 68030 

TL/F/9729-1 

FIGURE 1. Block Diagram of Dual Access 68030 Error Detecting and Correcting (74F632) Memory System 
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II) 
('t) 
II) . vee Z 
<I: 20 

CLK 1 19 LEDBO ..... 
TO 74F632 

CLK 2 18 SERR .... 
SO 3 PAL #3 17 WE ..... TO DRAMs 
Sl 4 FOR 16 04 ..... 

ERR ..... 5 68030 15 05 ..... 
FROM 74F632 MERR ..... 6 EOAC 14 06 ..... 

COUNT ..... 7 SYSTEM 13 BERR ..... TO GRANTED 68030 
02 ..... 8 12 o ECB ..... 
03 .... 9 11 OE .... 

10 

Vee 
20 

CLK 19 EXRF .... 
R 2 18 SO 

WORD .... 3 PAL #2 17 Sl 
GRANTB 4 FOR 16 TRAN_EN .... 

TO PORT DECODER THEN TRANSCEIVERS 
FROM OP8422A RFIP .... 5 68030 15 OEB ..... 

TO BYTE DECODER THEN 74F632 
SERR ..... 6 EOAC 14 OECB ..... TO 74F632 

02 .... 7 SYSTEM 13 STERMA ..... PORT A 68030 
05 ..... 8 12 STERMB ..... PORT B 68030 
06 .... 9 11 OE ..... 

10 

Vee 
20 

CLK 1 19 AREQ ..... 
CLK 2 18 AREQB ..... 

PORTA 68030 CSASA .... 3 PAL #1 17 01 ..... 
"'-':~~-----C> TO OP8422A 

CSB ..... 4 FOR 16 D2 ..... 
PORTB 68030 ASB ..... 5 68030 15 03 ..... 

OTACK ..... 6 EOAC 14 ENCAS .... 
ATACKB .... 7 SYSTEM 13 COUNT .... 

WCBRE .... 8 12 RASO .... 
RFlp .... 9 11 OE .... ~--=-=-----<:J FROM OP8422A 

10 

ATACKB .... 
DTACK .... FROM OP8422A 

TL/F/9729-2 

'If WITRI5 Is low then 32 bits are being accessed from the memory system. 

If WORri Is high then less than 32 bits are being accessed from the memory system. 

FIGURE 2. Control LogiC for 68030 Dual Access EDAC Memory System 
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FIGURE 4. 68030 EDAC Burst Read Access Timing 
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FIGURE 6. 68030 EDAC Byte Write Access Timing 
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7-104 



T1 WI W2 W3 W4 W5 T2 BWI BW2 BW3 T3 BWI BW2 BW3 T4 TI TI 

BCLK 

ADS"".AREQ ..... 

WE .... to DRAMs 

STERM ..... 

RASn ..... 

CASn ..... 

TRAN_EN 

(CLOCK OF) CPBA 
74F646 CPAB 

E 
OECB ..... 

D 
A ERR FLAG ..... 
C 

U 
OEB .... (3:0) 

N 
I SO.SI 
T 

LEDBO .... = 
DRAM BUFF _EN ..... 

DATA ON 
EDAC BUS 

BERR .... , HALT ..... 
READ WITH BURST BURST BURST 

TL/F/9729-11 
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Appendix A 
Boolean Logic Review 

A.1 Basic Operators and Theorems 
A gate is an electronic circuit which operates on one or 
more input signals to produce an output signal. There are 
three basic gates from which all other logic can be realized: 
AND, OR, and INVERTER gates. Figure A.1.1 shows these 
three basic gates and their truth table. 

A_-,L.....--)-r 
TL/l/9992-7 

(A) AND Gate 

:=D-----r 
TL/l/9992-6 

(B) OR Gate 

A-[>o-r 
TL/L/9992-9 

(e) Inverter 

Input 

A 

0 
0 
1 
1 

Input 

A 

0 
0 
1 
1 

Input 

A 

0 

1 

B 

0 
1 
0 
1 

B 

0 
1 
0 
1 

FIGURE A.1.1. Basic Gates 

Output 

F 

0 
0 
0 
1 

Output 

F 

0 
1 
1 
1 

Output 

F 

1 

0 

To express the function of these gates by 800lean algebra, 
we need to define 800lean operators as follows: 

Logical Equality 

x Negate (Not, Invert, Complement) 

+ OR (Sum) 

AND (Product) 

EB Exclusive OR 

The function of an AND gate in Figure A. 1. 1 can be ex­
pressed as: 

F = A-8 

The function of an OR gate and INVERTER can be ex­
pressed as: 

F=A+8 

and F = A 

8-3 

800lean operators are logical operators, which are different 
from arithmetic operators. For example, + is logical addi­
tion, - is logical multiplication. We call such equations 800-
lean equations or logic equations. 

A number of logic theorems and laws will be used to manip­
ulate and reduce logical equations. These theorems and 
laws are as follows: 

Theorem 1 A + 0 

Theorem 2 A - 0 
Theorem 3 A + 1 

A- 1 

A+A 

A-A 

A+A 
A-A 
"to 

A + A- 8 

A - (A + 8) 

=A 

=0 
= 1 

=A 

=A 

=A 

= 1 

=0 
=A 

=A 

=A 

Theorem 4 

Theorem 5 

Theorem 6 

Theorem 7 

Theorem 8 

Theorem 9 

Theorem 10 

Theorem 11 

Theorem 12 

Theorem 13 
(A + 8) - (A + C) = A + 8 - C 

=A+8 

Commutative Law 

A+B=8+A 

A-8=8-A 

Associative Law 

A+B+C=~+~+C=A+~+q 

A - 8 - C = (A - 8) - C = A - (8 - C) 
Distributive Law 

A + (8 - C - D) = (A + 8) - (A + q - (A + D) 

A - (8 + C + D) = A - B + A - C + A - D 
DeMorgan's Theorem 

(A + B + q = A - B - C 
(A - 8 - q = A + B + C 

The complement of any 800lean expression, or a part of 
any expression, may be found by means of De Morgan's the­
orem. Two steps are used to form a complement in this 
theorem: 

1. OR symbols are replaced with AND symbols or AND sym-
bols with OR symbols. 

2. Each of the terms in the expression is complemented. 

DeMorgan's theorem is one of the most powerful tools for 
engineering applications. It is very useful for designing with 
programmable logic devices because it provides a quick 
and simple conversion method between PRODUCT-OF­
SUMS and SUM-OF-PRODUCTS expressions, which will be 
defined later. 
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A.2 Derivation of a Boolean Expression 
Any logic expression can be reduced to a two-level form 
and expressed as either a SUM-OF-PRODUCTS (SOP) or 
PRODUCT-OF-SUMS (POS). 8efore we define SOP o~ 
POS, we need to define "terms". 

1. Product Term: A product term is a single variable or the 
logical product of several variables. The variable mayor 
may not be complemented. 

2. Sum Term: A sum term is a single variable or the sum of 
several variables. The variables mayor may not be com­
plemented. 

3. Normal Term: A normal term is a product or sum term in 
which no variable appears more than once. 

4. Mlnterm: A minterm is a product term containing every 
variable once and only once (either true or complement­
ed). 

5. Maxterm: A maxterm is a sum term containing every vari-
able once and only once (either true or complemented). 

For example, the term A - 8 - C is a product term; A + 8 is 
a sum term; A is both a product term and a sum term; A + 
8 - C is neither a product term nor a sum term; A + B is a 
sum term; A - B - C is a product term; B is both a sum term 
and a product term. We now define two most important 
forms: 

1. SUM-Of-PRODUCTS Expression: A sum-of-products 
expression is a product term or several product terms 
logically added together. 

2. PRODUCT-Of-SUMS Expression: A product-of-sums 
expression is a sum term or several sum terms logically 
multiplied together. 

For example, the expression A - 8 + A - B is a sum-of­
products expression; (A + 8) - (A + B) is a product-of­
sums expression. 

One prime reason for using sum-of-products or product-of­
sums expressions is their straightforward conversion to very 
simple gating networks. In their purest, simplest form they 
go into two-level networks, which are networks for which the 
longest path through which a signal must pass from input to 
output is two gates long. 

When designing a logic circuit, the logic designer works 
from two sets of known values; the various states which the 
inputs to the logical network can take, and the desired out­
puts for each input condition. The logic expression is de­
rived from these SElts of values and the procedure is as 
follows: 

1. Construct a table of the input and output values (Table 
A.2.1 left half). 

2a. To derive a SUM-OF-PRODUCTS (SOP) expression: 

A product term column is added listing the inputs A, 8, 
and C according to their value in the input columns (Ta­
ble A.2.1). Then the product terms from each row in 
which the output is a "1" are collected. 

Therefore: 

F = A - 8 - C + A - 8 - C + A - 8 - C (Eq. A.2.1) 
2b. To derive a PRODUCT-OF-SUMS (POS) expression: 

A sum term column is added listing the inputs A, 8, and 
C according to their complement value in the input col­
umns (Table A.2.1). Then the sum terms from each row 
in which the output is "0" are collected. 

Therefore: 

F=~+8+q~+8+~~+8+q 
(A + 8 + C) (A + B + C) (Eq. A.2.2) 

Figure A.2. 1 is the logic circuit derived from Eq A.2.1 Figure 
A.2.2 is derived from Eq. A.2.2. 

Eq. A.2.1 Can be simplified as shown below: 

F =A-8-C+A-8-C+A-8-C 

= A - 8 (C + C) + A - 8 - C 
=A-8+A-8-C 

= 8 (A + A - C) 

= 8 (A + C) 

=A-8+8-C 

Eq. A.2.2 can be simplified as shown: 

F=~+8+q~+8+~~+8+q 
(A + 8 + C) (A + B + C) 

= (A + 8) (A + 8) (A + C) 

= 8 (A + C) 

=A-8+8-C 

TABLE A.2.1. Truth Table Eq. A.2.1 and Eq. A.2.2 

Inputs Outputs 
Product Terms Sum Terms 

A B C f 

0 0 0 0 ABC A+8+C 
0 0 1 0 ABC A+8+C 
0 1 0 1 A8C A+B+C 
0 1 1 1 A8C A+B+C 
1 0 0 0 ABC A+8+C 
1 0 1 0 ABC A+8+C 
1 1 0 1 A8C A+B+C 
1 1 1 1 A8C A+B+C 
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The two final expressions obtained are identical and can be implemented by the circuit shown in Figure A.2.3. This is much 
simpler than the circuits in Figures A.2. 1 and A.2.2. This simplified procedure is called minimization. 

A-----r-~ 
8-----t 
C ------f._~ 

A-----r-~ 
B -----I ... --------1 
C ------f._~ 

A-----r-~ 
8-----1 
C ------f._~ 

FIGURE A.2.1. Logic Circuits of Eq. A.2.1 

A-----r-...... 
B-------~ >---~ c------...... -; 
A-----r-...... 
B ------~ >---.. c------...... -; 

~-----r-~>---~~~~~r=~ 
A ------11'-, 
B >--~ 
c-----...... -; 

FIGURE A.2.2. Logic Circuits of Eq. A.2.2 

:=gt-------l,..---D-r 
FIGURE A.2.3. Simplified Logic Circuits 
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A.3 Minimization 
Logic circuits can be represented by logic expressions or so 
called logic equations. As discussed, we can minimize the 
logic circuit through logic equations minimization. For exam· 
pie, Figure A.3. 1 can be expressed by Eq. A.3.1. 

F = (A - B - C + D) - (B + D) + A - C - (B + D) 
(Eq. A.3.1) 

By using the theorems and laws mentioned in 3.1, we mini· 
mize Eq. A.3.1 as follows: 

F A-B-C + B-D + A-B-C-D + D + A-C­
B+A-C-D 

A - B - C (1 + D) + D(B + 1) + A - C - B + A -
C - D Distributive Law 

A - B - C + D + A - C - B + A - C - D Theory 3 
A - B (C + C) + D (1 + A - C) Distributive Law 

A- B + D 

A---..... --r-"'" 
B ~--~~ 

The minimum SOP expression can now be implemented as 
the simple AND·OR logic circuits as shown in Figure A.3.2. 

We can use Boolean Algebra to reduce the number of prod· 
uct terms. However, Karnaugh Mapping and the Quine· 
McCluskey method are two other powerful tools to minimize 
the logic equations. We'll discuss Karnaugh Mapping meth· 
od in the next section. 

C '---...... - .... 

D----~~------~~~, 

TLlLl9992-13 

FIGURE A.3.1. A Random Logic Circuit 

A -----rC ........ )t---------D-r=AB+ 0 

D----------------~ TL/L/9992-14 

FIGURE A.3.2. Minimized Logic Circuit 
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A.4 K-Map Method 
A Karnaugh map, hereafter called a K-map, is a graphical 
method for representing a Boolean function. It is similar to a 
truth table in that the K-map supplies the TRUE or FALSE 
value of a Boolean function for all possible combinations of 
its logical argument. There are many ways in which a K-map 
can be arranged. The most important considerations of the 
arrangement are: 

1. There must be a unique location on the K-map for enter­
ing the TRUE/FALSE value of the function that corre­
sponds to each combination of input variables. 

2. The locations should be arranged so, with minimization 
mentioned in Section A.3, that they are readily apparent 
to the trained observer. 

The second consideration implies that a successful K-map­
ping arrangement should point to groups of minterms or 
maxterms that can be combined into reduced forms. 
K-maps are also useful in expanding partially reduced ex­
pressions into standard forms prior to the minimization pro­
cess. 

The K-map is one of the most powerful tools at the hands of 
the logic designer. The power of the K-map does not lie in 
its application of any marvelous new theorems, but rather in 
its utilization of the remarkable ability of the human mind to 
perceive patterns in pictorial representations of data. This is 
not a new idea. Anytime we use a graph instead of a table of 
numerical data, we are utilizing the human ability to recog­
nize complex patterns and relationships in a graphical rep­
resentation far more rapidly and surely than in a tabular rep­
resentation. A few examples of how to create a K-map fol­
low. 

First, consider a truth table for two variables. We list all four 
possible input combinations and the corresponding function 
values, i.e., the truth tables for AND and OR. (Figure A. 4. 1) 

'-(B 00 01 11 

I 

B~ 
,ttj 

10 

TL/L/9992-15 

TL/L/9992-17 

(a) 

(b) 

A B A-B A B A+B 

0 0 0 0 0 0 
0 1 0 0 1 1 
1 1 1 1 1 1 
1 0 0 1 0 1 

FIGURE A.4.1. Truth Tables for AND and OR 

As an alternative approach, set up a diagram consisting of 
four small boxes, one for each combination of variables. 
Place a "1" in any box representing a combination of vari­
ables for which the function has the value 1. There is no 
logical objection to putting "O's" in the other boxes, but they 
are usually omitted for clarity. 

The diagrams in Figure A.4.2(a) are perfectly valid K-maps, 
but it is more common to arrange the four boxes in a square, 
as shown in Figure AA.2(b). 

Since there must be one square for each input combination, 
there must be 2n squares in a K-map for n-variables. What­
ever the number of variables, we may interpret the map in 
terms of a graphical form of the truth table (Figure A.4.3(a)) 
or in terms of union and intersection of areas (Figure 
AA.3(b)). The K-maps for some other three-variable func­
tions are shown in Figure AAA. 

Particularly note the functions mapped in Figure A.4.3(a) 
and A.4A(b). These are both minterms. Each is represented 
by one square, obviously, and each one of the eight squares 
corresponds to one of the eight minterms of three variables. 
This is the origin of the name minterm. A minterm is the form 
of Boolean function corresponding to the minimum possible 
area, other than 0, on a K-map. A maxterm, on the other 
hand, is the form of Boolean function corresponding to the 
maximum possible area, other than 1, on a K-map. Figure 
A.4.3(b) and A.4A(c) are two examples. 

A+B 

~ 00 

I 
01 11 10 

TL/L/9992-16 

A+B 

BlBAO 1 
o 1 

1 1 1 

TL/L/9992-1 B 

FIGURE A.4.2. K-Maps for AND and OR 
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Q) .s: A.4 K-Map Method (Continued) 
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0 1 0 
1 0 0 
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cEEEEJ 
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TLlLl9992-20 

TL/L/9992-22 

A + B + C = A+B+C 
(b) 

A 

c I I I I I 
, 

A . , 

~ 
cr=EEEJ . , 

FIGURE A.4.3. K-Maps for 3-Varlable AND and OR 
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AC+AC 
(a) 

A AB 
C 
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1 1 1 1 

0 

1 
, 

TLIL/9992-26 

A+B+C 
(e) 

FIGURE A.4.4. Sample 3-Variable K-Maps 
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A.4 K-Map Method (Continued) 

Since each square on a K-map corresponds to a row in a 
truth table, it is appropriate to number the squares just as 
we numbered the row. These standard K-maps are shown 
in FigureA.4.5for two and three variables. Now, if a function 
is stated in the form of the minterm list, all we need to do is 
enter 1's in the corresponding squares to produce the 
K-map. 

BmAQ 1 
o 0 2 

1 1 3 

TLlLl9992-2B 

C AB 00 01 11 10 

o 0 4 

1 1 3 7 5 

TLlLl9992-29 

FIGURE A.4.5. K-Maps for Two and Three Variables 

If a function is stated as a maxterm list, we can enter O's in 
the squares listed or 1's in those not listed. 

A map showing the O's of a function is a perfectly valid 
K-map, although it is more common to show the 1's. 

For example, the K-map of f(A, B, C) = m(O, 2, 3, 7) is 
shown in Figure A.4.6 and the K-map of f(A, B, C) = M(O, 1, 
5, 6) is shown in Figure A.4. 7 where m means minterm, M 
means maxterm. 

AB 
00 01 11 10 

C 

0 1 1 

1 1 1 

TL/Ll9992-30 

FIGURE A.4.6. K-Map of M(O, 2, 3, 7) 

C AB 00 01 11 10 C AB 00 01 11 10 

o 0 o o 
~~---+---r--,OR 

1 0 o 

TLlL/9992-31 TL/L/9992-32 

FIGURE A.4.7. K-Map of M(O, 1,5,6) 

As shown, the K-map can be generated from the truth table 
on minterm expression or maxterm expression. For the re­
mainder of this section, we will learn how to minimize the 
minterm expression by using the K-map. 

The general principle of this minimization technique is "Any 
pair of n-variable minterms which are adjacent on a K-map 
may be combined into a single product term of n - 1 liter­
als." The definition of "adjacent" should include opposite 
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edges of the K-map, for instance, Figure A.4.8(a) and 
A.4.8(b) both have a pair of adjacent minterms. 

(a) (b) 
FIGURE A.4.8. Adjacent Minterms on a K-Map 

Consider this function 

f(A, B, C) = m(O, 1, 4, 6) 

= ABC + A BC + AB C + ABC 

which results on the K-map, on the pattern shown in Figure 
AA.B. 

AB 00 
C 

o 111° 
1 l!.f 

01 11 10 

2 cC~4 
375 

FIGURE A.4.9. Minimization 
TL/Ll9992-33 

Therefore, combine minterms 0 and 1, 4 and 6 to get a 
minimal expression: 

f(A, B, C) = A B + AC 

Figure A.4.10 shows some examples. Notice that it is per­
missible to include a minterm in several terms if it helps 
make the term shorter. 

AB 
CD 00 01 111 I 10 

~~ I~,~: 
r-

01 1 

11 1 
'--

10 

I I 
TL/Ll9992-34 

AB J 
CD 00 01 11 110 

00 LJ L:..-- -
01 1 1 

11 1 1 

- n 11 
:-

10 

I I 
TL/Ll9992-35 

FIGURE A.4.10. Minimization 



A.4 K-Map Method (Continued) 

Quite often, some of the possible combinations of input val­
ues never occur. In this case, we "don't care" what the 
function does if these input combinations appear. The 
K-map makes it easy to take advantage of these "don't 
care" conditions by letting the "don't care" minterms be 1 
or 0, depending on which value results in a simpler expres­
sion. Figure AA. 11 shows an example of the use of "don't 
cares" (redundancies) to simplify the terms. 

AB 
CD 00 01 11 10 

00 X I X 1 I 
01 

11 

10 111 X 1 1 I 
TL/Ll9992-36 

FIGURE A.4.11. Minimization 

When working with larger functions, the tabular reduction 
developed by Quine and modified by McCluskey is an alter-

DATA----n---. an + 1 = on 

CLOCK----U 

TL/L/9992-37 

----n---. an + 1 = (Tea + Teo)n ----U 
TLlL/9992-38 

----(JQ ---. an + 1 = (S + ReS e o)n 
____ C ReS*1 

---- R 
TL/L/9992-39 

----(JQ ---. an + 1 = (J e 0 + K eo)n 

---- C 

---- K 

TLlL/9992-40 

native to the K-map method. The Quine-McCluskey mini­
mization method involves simple, repetitive operations that 
compare each minterm that is present in a sum-of-minterms 
expression for a Boolean functions to all other minterms 
with which it may form a combinable grouping. 

The reader can refer to "Introduction to Switching Theory 
and Logic Design" by Hill and Peterson to understand the 
Quine-McCluskey method. 

A.5 Sequential Circuit Elements 
Usually the subject of logic design is subdivided into two 
types: sequential and combinational. A purely combinational 
logic subsystem has no memory. Its outputs are completely 
defined by its present inputs. The analysis and design of 
combinational logic is much easier. A sequential logic sub­
system has memory and its outputs are functions of not only 
present inputs but the previous outputs. Circuits of mUlti­
plexer/selector, decoder/encoder, adder, and comparator 
are examples of combinational circuits. Shift register, coun­
ter, state machine, and memory controller are examples of 
sequential circuits. 

on Qn + 1 

o o 

Tn Qn + 1 

0 Qn 

1 (Q)n 

R S Qn + 1 

0 0 Qn 

0 1 1 
1 0 0 
1 1 X 

J K Qn + 1 

0 0 Qn 

0 1 0 
1 0 1 
1 1 (o)n 

FIGURE A.5.1. Basic Flip-Flops 
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Just as we have a logic gate as the basic combinational 
circuit element, we have a flip-flop as a basic sequential 
circuit element. A flip-flop is a memory device which can 
remember, or store, a binary bit of information. There are 
four basic flip-flop types: (1) 0 flip-flop, (2) T flip-flop, (3) RS 
flip-flop, and (4) JK flip-flop. Figure A. 5. 1 shows these ele­
ments and their truth table. 

With the memory elements, the output does· not change as 
a function of the inputs until the clock transition. Therefore, 
a superscript notation is used to indicate that the output 
during clock period n + 1 is a function of the inputs during 
the previous clock period n. 

The 0 (delay) flip-flop means the input (0) is "stored" in the 
flip-flop when the clock occurs and will appear on the output 
(Q) during the next (n + 1) clock time. The 0 flip-flop is thus 
very much like a single-bit RAM. It is very useful for data 
storage and other special applications. 

The other three types of flip-flops defined in Figure A. 5. 1 are 
also one-bit storage elements, but instead of simply storing 
the input, they change state in response to the inputs by 
various logical rules. Since they hold their previous state in 
spite of the clock, unless an input goes true, they often sim­
plify the combinational logic functions required to control 
them in control applications. 

The T (toggle) flip-flop, for example, stays in its previous 
state if the T input is false before the clock. If the T input is 
true, the output changes to the opposite state (toggle) on 
the clock. The T flip-flop is thus useful, for example, in bina­
ry counters where we want each bit to invert every time 
there is a carry from the lower order bits. 

The R-S flip-flop sets after the S input is true and resets 
after the R input is true. Its output is undefined if both Rand 
S are true. It is possible to define a Set Overrides Reset 
(SOR) or a Reset Overrides Set (ROS) flip-flop. It will set or 
reset respectively if both the R and the S inputs are true. 

The J-K flip-flop sets after J is true and resets after K is 
true. It is similar to an R-S flip-flop except that if J and K are 
both true, the output changes to the opposite state (toggle). 
It can be used as a T flip-flop by tying the J and K inputs 
together. 

Since the J-K flip-flop can essentially do the job of both the 
R-S and the T flip-flop, the R-S and the T flip-flops are 
seldom seen. The choice is between J-K flip-flops for small 
counters and control or 0 flip-flops for data storage applica­
tions. Actually the J-K flip-flop can even do the job of the 0 
flip-flop with the addition of a single inverter, as shown in 
Figure A.5.2. 

Q 
0- ----

TL/L/9992-41 

FIGURE A.5.2. Implement D Flip-Flop by Using J-K 

Another memory element type, called a latch, is often de­
scribed on data sheets with a truth table like the one for the 
o flip-flop in Figure A. 5. 1. It is definitely not like a 0 flip-flop, 
however, because the output changes as soon as the clock 
goes high and does not "latch" until the clock falls (if the 
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input changes while the clock is high, the output follows it). 
Because of this characteristic, a latch is not usable in the 
synchronous logic. 

A.6 State Machine Fundamentals 
The relationships among present-state variables, primary in­
put variables, next-state (or excitation) variables, and pri­
mary output variables that describe the behaviour of a se­
quential system can be specified in several ways. As an 
example, consider the simple sequential system that is 
shown in Figure A. 6. 1. 

12 

o S>!=l' 
" 4D~y~J 

TL/Ll9992-42 

FIGURE A.S.1. A Typical Sequential Circuit 

This system has two primary input variables, having four 
different combinations of values. There is one primary out­
put variable and one state variable. It uses delay for memo­
ry. There are only two possible present states: y = 0 and 
y = 1. When combined with the four input combinations, 
these give eight different total present states. The values of 
the next-state variable, Y, and the primary output variable, 
F, must be specified for each total present state. The tabu­
lar arrangement shown in Table A.6.1 is a common method 
for presenting this information. This descriptive tool is called 
a state table. 

Present 
State 

Y 

0 
1 

1112 

0,1/0 

1.1/0 

TABLE A.S.1. State Table 

Next-State 

V 

= 00 01 10 11 1112 = 

0 1 0 1 
0 1 1 1 

O,O/On 1,0/0 

G 

0,0/0 

G 
1,1/IV 1,0/1 

0,1/0 

Output 
F 

00 01 10 11 

0 0 0 0 
0 0 1 1 

TL/Ll9992-43 

FIGURE A.S.2. State Diagram 



A.6 State Machine Fundamentals (Continued) 

A second method for describing the behavior of a sequen-
tial system is the use of a state diagram. This method pres-
ents a pictorial representation of the present-state/next-
state sequences that apply to the sequential device. State 
changes are marked with directed arrows, with the primary 
input and output conditions that apply to each state transfer 
given beside the arrows. The state diagram for the system 
of Figure A. 6. 1 is shown in Figure A.6.2. A slash separates 
the input information from the output information. 

State tables and state diagrams are essential tools in the 
analysis and design of sequential digital systems. The read­
er should be familiar with these two tools by reading the 
references listed in the end of this section. 

Because a sequential system has feedback from its outputs 
to its input, certain types of instabilities and uncertainies can 
occur. When present, these conditions make the operation 
of circuit difficult or impossible to describe. They may even 
render the circuit useless, since its behavior may not be 
predictable or consistent. Several of these types of prob­
lems are listed below. 

1. The input or output conditions of the system may be in­
determinant. For example, the circuit in Figure A.6.3. 

TL/L/9992-44 

FIGURE A.S.3. Example of Hazard Circuit 

11 -

2. The output condition of the system may be unstable, 
changing even though the external inputs do not change. 
Figure A.6.4 illustrates an example. 

TLIL/9992-45 

FIGURE A.S.4. Example of Unstable Circuit 

3. The output condition of the system, even though stable, 
may not be predictable depending upon the primary input 
conditions. Figure A.6.S is an example. 

However, these problems mentioned above can be avoided 
by making certain restrictions in the way sequential systems 
are designed and used. For instance, the following are 
some restrictions: 

1. Avoiding continuing instabilities (oscillations). 

2. Allowing only fundamental-mode operation. 

3. Allowing only pulse-mode operation. 

~---------'------Fl I ) 
12 

J " ~ ~---------+~~--F2 

~ DELAY I--
...... _...;.;f2;......-I: DELAY : ...... ____ ___ 

TL/L/9992-46 

FIGURE A.S.S. Example of Circuit with Unpredictable Output States 
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A.7 Avoiding Logic Hazards 
The flexible alternative which PLDs provide to design with 
standard logic requires care in understanding criteria specif­
ic to the new design methodology. Care must be taken in 
understanding the capabilities of the part chosen and ir fol­
lowing the design procedure described later in this chapter. 
But even careful adherence to the design flow will not avoid 
some of the more common errors, which are common in 
other design methodologies, as well as PLDs. This section 
outlines some of the more common anomalies and sug­
gests how they might be avoided. 

HAZARDS AND GLITCHES 

Not all devices have the same propagation delay. A hazard 
may be caused by configuring a set of gates such that a 
change in the input signals can cause a spurious output 
signal or "glitch". In combinational circuits, the hazard will 
be prevented since the outputs are presumed to be a func­
tion of steady-state input signals and are not scanned until 
all transients have stabilized. However, in sequential cir­
cuits, particularly where the outputs of such a combinational 
circuit are used as inputs to a sequential circuit, glitches 
may occur. 

STATIC AND DYNAMIC HAZARDS 

Depending on the initial and final value of the output, there 
can be two classes of hazards. When these values are the 
same, extraneous output signals result from a static hazard. 
As an example, the circuit shown in Figure A. 7. 1 will exhibit 
an output glitch due to a static hazard when both inputs A 
and B are high and the control input is changed from high to 
low. In a perfect world, the output signal would not change, 
but the propagation delay of the logic gates (in this case the 
inverter) will cause a momentary low glitch on the otherwise 
high output, as shown. 

A------1 

OUTPUT 

TLlL/9992-1 

FIGURE A.7.1. Circuit with Static Hazard 

If the initial and final states of the output of a circuit are 
different, then an extraneous output results from a dynamic 
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hazard. As an example, this would be characterized by a 
circuit which moved through an intermediate state before 
settling in the final configurations, such as a 0-1-0-1 instead 
of a clean 0-1. 

FUNCTION AND LOGIC HAZARDS 

The causes of hazards are classed as either function or 
logic. Function hazards exist when logic is specified with a 
change in more than one input variable possible simulta­
neously. Figure A. 7.2 shows a truth table which illustrates 
this. The circuit is intended to move from stable state 
XYZ = 000 to stable state XYZ = 101. If the input variable 
X and Z do not change absolutely simultaneously, an output 
glitch due to a function hazard will occur. Assume both X 
and Z transition from 0 to 1 at about the same time, but not 
simultaneously. If X changes before Z, a momentary state of 
100 will exist, giving a transient output of 0 until Z changes 
and the final output stabilizes at 1. If Z changes before X, 
the inputs are momentarily 001, which gives an output 0, 
which changes to 1 as X changes. 

TL/Ll9992-2 

FIGURE A.7.2. Truth Table 
illustrating a Function Hazard 

Functional glitches can be avoided by assigning the state 
variables in such a manner that transitions between states 
require only one variable to change at a time. 

Unequal delays which occur because of the detailed logic 
implementation are called logic hazards. These can exist 
even if only one variable at a time changes, as illustrated by 
Figure A. 7.3. This Karnaugh map displays a logic hazard in 
the Y input, which moves the circuit from the set XYZ to the 
set WYZ. Each group shown in Figure A. 7.3 represents one 
product term that is an input to the circuit. In this example, it 
is an OR gate, and therefore at least one of the product 
terms must be 1 to give an output of 1. Due to circuit propa­
gation delays, any real-world circuit will move out of the 
starting sets faster than it moves into the final sets. There is 
therefore the possibility of a brief interval when neither cor­
responding product is at 1. 
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(a) 

00 01 11 10 

0 0 0 0 
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0 o ItIl J) 
0 0 0 0 

TLlLl9992-4 

(b) 

FIGURE A.7.3 Karnaugh Map (K-Map) 
Used to Resolve a Function Hazard 

A remedy for this is to ensure that any pair between which a 
transition may take place are in a single set. In other words, 
any 1-values which appear next to each other in the K-map 
must be contained within the same set, as shown in Figure 
A. 7.3. 

REMEDIES FOR MORE COMPLEX CIRCUITS 

Once the number of terms exceeds two or three, K-maps 
become increasingly difficult to work with. A remedy for this 
can be found by adding additional terms to the original Boo­
lean equations. From this, it can be determined whether a 
logic hazard exists by examining the modified equations. If a 
variable and its complement appear in separate product 
terms in the same equation and these product terms contain 
that are not mutually exclusive, a logic hazard exists. The 
hazard can be eliminated by generating a new product term 
to overlay each pair of product terms which pose a logic 
hazard. The new product term is selected from canonical 
product terms which differ only by the state of the variable 
causing the hazard. 

Hazards can exist irrespective of the design methodology 
used. In manual design, generation and careful examination 
of K-maps, particularly multiple inputs for state change, can 
reveal potential hazards. Computer-aided design tools such 
as ABEL and CUPL are not completely hazard-free and a 
similar examination of their results may reveal hazards and 
require adjustment of minimization level and the addition of 
redundant terms, as for manual design. 

As an example of hazard recognition and correction, consid­
er the circuit shown in Figure A. 7.4. The Boolean equation 
describing this is: 

XYZ + WYZ 

Examining the equation reveals a logic hazard because both 
Y and Y appear in separate product terms and inputs Wand 
X are not mutually exclusive. The problem can be eliminated 
in two steps. Firstly, expand the expression to its canonical 
form, which gives: 

WXYZ + WXYZ + WXYZ + WXYZ 
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Secondly, develop a new product term from those which 
overlay the original two and differ only by the state of the 
variable causing the hazard, in this case Y. This gives: 

XYZ + WXZ (Y + Y) + WYZ 

= XYZ + wxz + WYZ 

In this case, the new product term WXZ overlays the original 
and is illustrated on the K-map of Figure A.7.3. Therefore, 
the addition of an AND gate and an input to the OR gate will 
result in elimination of the hazard, as shown in Figure A. 7.4. 

W X Y Z 

(a) Logic Hazard Exists 

W X Y Z 

(b) No Logic Hazard 

FIGURE A.7.4. Recognition and 
Correction of a Logic Hazard 
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Appendix 8 
Theory of PLD Testing 

B.1 Testing Methods 
There are many test methods for LSI circuits, each with its 
own way of generating and processing test data. These ap­
proaches can be divided into two broad categories-con­
current and explicit.2 

In concurrent approaches, normal user-application input 
patterns serve as diagnostic patterns. Thus testing and nor­
mal computation proceed concurrently. In explicit ap­
proaches, on the other hand, special input patterns are ap­
plied as tests. Hence, normal computation and testing occur 
at different times. 

CONCURRENT TESTING 

Systems that are tested concurrently are designed such 
that all the information transferred among various parts of 
the system is coded with different types of error detecting 
codes. In addition, special circuits monitor this coded data 
continuously and signal detection of any fault. 

Different coding techniques are required to suit the different 
types of information used inside LSI systems. For example 
m-out-of-n codes (n-bit patterns with exactly m 1 's and 
n - m O's) are suitable for coding control signals, while 
arithmetic codes are best suited for coding ALU operands.3 

The monitoring circuits-checkers-are placed in various 
locations inside the systems so that they can detect most of 
the faults. A checker is sometimes designed in a way that 
enables it to detect a fault in its own circuitry as well as in 
the monitored data. Such a checker is called a self-checking 
checker.3 

Hayes and McCluskey surveyed various concurrent testing 
methods that can be used with microprocessor-based LSI 
systems.2 Concurrent testing approaches provide the fol­
lowing advantages: 

• Explicit testing expenses (e.g., for test equipment, down 
time, and test pattern generation) are eliminated during 
the life of the system, since the data patterns used in 
normal operation serve as test patterns. 

• The faults are detected instantaneously during the use of 
the LSI chip, hence the first faulty data pattern caused by 
a certain fault is detected. Thus, the user can rely on the 
correctness of his output results within the degree of 
fault coverage provided by the error detection code used. 
In explicit approaches, on the other hand, nothing can be 
said about the correctness of the results until the chip is 
explicitly tested. 

• Transient faults, which may occur during normal opera­
tion, are detected if they cause any faulty data pattern. 
These faults cannot be detected by any explicit testing 
method. 
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Unfortunately, the concurrent testing approach suffers from 
several problems that limit its usage in LSI testing: 

• The application patterns may not exercise all the storage 
elements or all the internal connection lines. Defects 
may exist in places that are not exercised, and hence the 
faults these defects would produce will not be detected. 
Thus, the assumption that faults are detected as they 
occur, or at least before any other fault occurs, is no 
longer valid. Undetected faults will cause fault accumula­
tion. As a result, the fault detection mechanism may fail 
because most error detection codes have a limited capa­
bility for detecting multiple faults. 

• Using error detecting codes to code the information sig­
nals used in an LSI chip requires additional 1/0 pins. At 
least two extra pins are needed as error signal indicators. 
(A single pin cannot be used, since such a pin stuck at 
the good value could go undetected). Because of con­
straints on pin count, however, such requirements can­
not be fulfilled. 

• Additional hardware circuitry is required to implement the 
checkers and to increase the width of the data carriers 
used for storing and transferring the coded information. 

• Designing an LSI circuit for concurrent testing is a much 
more complicated task than designing a similar LSI cir­
cuit that will be tested explicitly. 

• Concurrent approaches provide no control over critical 
voltage or timing parameters. Hence, devices cannot be 
tested under marginal timing and electrical conditions. 

• The degree of fault coverage usually provided by concur­
rent methods is less than that provided by explicit meth­
ods. 

The above-mentioned problems have limited the use of con­
current testing for most commercially available LSI circuits. 
However, as digital systems grow more complex and diffi­
cult to test, it becomes increasingly attractive to build test 
procedures into the UUT (unit under test) itself. We will not 
consider the concurrent approach further in this article. For 
a survey of work in concurrent testing, see Hayes and 
McCluskey.2 

EXPLICIT TESTING 

All explicit testing methods separate the testing process 
from normal operation. In general, an explicit testing pro­
cess involves three steps: 

• Generating the test patterns_ The goal of this step is to 
produce those input patterns which will exercise the UUT 
under different modes of operation while trying to detect 
any existing fault. 



• Applying the test patterns to the UUT. There are two 
ways to accomplish this step. The first is external test­
ing-the use of special test equipment to apply the test 
patterns externally. The second is internal testing-the 
application of test patterns internally by forcing the UUT 
to execute a self-testing procedure.2 Obviously, the sec­
ond method can only be used with systems that can exe­
cute programs (for example, with microprocessor-based 
systems). External testing gives better control over the 
test process and enables testing under different timing 
and electrical conditions. On the other hand, internal 
testing is easier to use because it does not need special 
test equipment or engineering skills. 

• Evaluating the responses obtained from the UUT. 
This step is designed with one of two goals in mind. The 
first is the detection of an erroneous, which indicates the 
existence of one or more faults (go/no-go testing). The 
other is the isolation of the fault, if one exists, in an easily 
replaceable module (fault location testing). Our interest 
in this article will be go/no-go testing, since fault location 
testing of LSI circuits sees only limited use. 

Many explicit test methods have evolved in the last decade. 
They can be distinguished by the techniques used to gener­
ate the test patterns and to detect and evaluate the faulty 
responses (Figure B. 1. 1). In what follows, we concentrate 
on explicit testing and present in-depth discussions of the 
methods of test generation and response evaluation em­
ployed with explicit testing. 

B.2 Test Generation Techniques 
The test generation process represents the most important 
part of any explicit testing method. Its main goal is to gener­
ate those test patterns that, when applied to the UUT, sensi­
tize existing faults and propagate a faulty response to an 
observable output of the UUT. A test sequence is consid­
ered good if it can detect a high percentage of the possible 
UUT faults; it is considered good, in other words, if its de­
gree of fault coverage is high. 

Rigorous test generation should consist of three main activi­
ties: 

• Selecting a good descriptive model, at a suitable level, 
for the system under consideration. Such a model should 
reflect the exact behavior of the system in all its possible 
modes of operation. 

• Developing a fault model to define the types of faults that 
will be considered during test generation. In selecting a 
fault model, the percentage of possible faults covered by 
the model should be maximized, and the test costs asso­
ciated with the use of the model should be minimized. 
The latter can be accomplished by keeping the complexi­
ty of the test generation low and the length of the tests 
short. Clearly these objectives contradict one another-a 
good fault model is usually found as a result of a trade-off 
between them. The nature of the fault model is usually 
influenced by the model used to describe the system. 

• Generating tests to detect all the faults in the fault model. 
This part of test generation is the soul of the whole test 
process. Designing a test sequence to detect a certain 
fault in a digital circuit usually involves two problems. 
First, the fault must be excited; i.e., a certain test se­
quence must be applied that will force a faulty value to 
appear at the fault site if the fault exists. Second, the test 
must be made sensitive to the fault; i.e., the effect of the 
fault must propagate through the network to an observ­
able output. 

Rigorous test generation rests heavily on both accurate de­
scriptive (system) models and accurate fault models. 

Test generation for digital circuits is usually approached ei­
ther at the gate-level or at the functional level. The classical 
approach of modeling digital circuits as a group of connect­
ed gates and flip-flops has been used extensively. Using 
this level of description, test designers introduced many 
types of fault models, such as the classical stuck-at model. 
They also assumed that such models could describe physi­
cal circuit failures in terms of logic. This assumption has 
sometimes restricted the number of physical failures that 
can be modeled, but it has also reduced the complexity of 
test generation since failures at the elementary level do not 
have to be considered. 

TL/L/9993-1 

FIGURE 8.1.1. LSI Test Technology 
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Many algorithms have been developed for generating tests 
for a given fault in combinational networks,(1, 4, 5, 6, 7) How­
ever, the complexity of these algorithms depends on the 
topology of the network; it can become very high for some 
circuits. Ibarra and Sahni have shown that the problem of 
generating tests to detect single stuck-at faults in a combi­
national circuit modeled at the gate level is an NP-complete 
problem.8 Moreover, if the circuit is sequential, the problem 
can become even more difficult depending on the deepness 
of the circuit's sequential logic. 

Thus, for LSI circuits having many thousands of gates, the 
gate level approach to the test generation problem is not 
very feasible. A new approach, the functional level, is need­
ed. 

Another important reason for considering faults at the func­
tional level is the constraint imposed on LSI testing by a 
user environment-the test patterns have to be generated 
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without a knowledge of the implementation details of the 
chip at the gate level. The only source of information usually 
available is the typicallC catalog, which details the different 
modes of operation and describes the general architecture 
of the circuit. With such information, the test designer finds 
it easier to define the functional behavior of the circuit and 
to associate faults with the functions. He can partition the 
UUT into various modules such as registers, multiplexers, 
ALUs, ROMs, and RAMs. Each module can be treated as a 
"black box" performing a specified input! output mapping. 
These modules can then be tested for functional failures; 
explicit consideration of faults affecting the internal lines is 
not necessary. The example given below clarifies the idea. 

Consider a simple one-out-of-four multiplexers such as the 
one shown in Agure B.2. 1. This multiplexer can be modeled 
at the gate level as shown in Figure B.2. 1 (a), or at the func­
tionallevel as shown in Figure B.2.1.(b). 
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(a) Gate-Level Description 
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(b) Functional-Level Description 

FIGURE B.2.1. A One-Out-of-Four Multiplexer 

A possible fault model for the gate-level description is the 
single stuck-at fault model. With this model, the fault list 
may contain faults such as the line labeled with f is stuck at 
0, or the control line "Co" is stuck at 1. 

At the functional level, the multiplexer is considered a black 
box with a well-defined function. Thus, a fault model for it 
may specify the following as possible faults: selection of 
wrong source, selection of no source, or presence of stuck­
at faults in the input lines or in the multiplexer output. With 
this model, the fault list may contain faults such as source 
"X" is selected instead of source "Y", or line "Z" is stuck at 
1. 
Ad hoc methods-which determine what faults are the most 
probable-are sometimes used to generate fault lists. But if 
no fault model is assumed, then the tests derived must be 
either exhaustive or a rather ad hoc check of the functionali­
ty of the system. Exhaustive tests are impossible for even 
small systems because of the enormous number of possible 
states, and superficial tests provide neither good coverage 
nor even an indication of what faults are covered. 

Once the fault list has been defined, the next step is to find 
the test patterns required to detect the faults in the list. As 
previously mentioned, each fault first has to be excited so 
that an error signal will be generated somewhere in the 
UUT. Then this signal has to be sensitized at one of the 
observable outputs of the UUT. The three examples below 
describe how to excite and sensitize different types of faults 
in the types of modules usually encountered in LSI circuits. 

Consider the gate-level description of the three-bit incre­
menter shown in Figure 8.2.2. 
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FIGURE B.2.2. Gate-Level Description 
of Three-Bit Incrementer 

The incrementer output, Y 2 Y 1 Yo is the binary sum of Cj and 
the three-bit binary number X2X1XO, while Co is the carry­
out bit of the sum. Note that Xo(Yo) is the least significant bit 
of the incrementer input (output). 

Assume we want to detect the fault "line f is stuck at 0." To 
excite that fault we will force a 1 to appear on line f so that, 
if it is stuck at 0, a faulty value will be generated at the fault 
site. To accomplish this both Xo and Cj must be set to 1. To 
sensitize the faulty 0 at f, we have to set X1 to 1; this will 
propagate the fault to Y 2 independent of .the value of X2. 
Note that if we set X1 to 0, the fault will be masked since the 
AND gate output will be 0, independent of the value at f. 
Note also that X2 was not specified in the above test. How­
ever, by setting X2 to 1, the fault will propagate to both Y 2 
and Co, which makes the response evaluation task easier. 

Consider a microprocessor RAM and assume we want to 
generate a test sequence to detect the fault "accessing 
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word i in the RAM results in accessing the word j instead." 
To excite such a fault, we will use the following sequence of 
instructions (assume a microprocessor with single-operand 
instructions): 

Load the word 00 ... 0 into the accumulator. 

Store the accumulator contents into memory address j. 

Load the word 11 ... 1 into the accumulator. 

Store the accumulator contents into memory address i. 

If the fault exists, these instructions will force a 11 ... 1 
word to be stored in memory address j instead of 00 .. . 
O. To sensitize the fault, we need only read what is in 
memory address j, using the appropriate instructions. 
Note that the RAM and its fault have been considered at 
the functional level, since we did not specify how the RAM 
is implemented. 

Consider the program counter (PC) of a microprocessor 
and assume we want to generate a test sequence that will 
detect any fault in the incrementing mode of this PC, Le., 
any fault that makes the PC unable to be. incremented 
from x to x + 1 for any address x. One way to excite this 
fault is to force the PC to step through all the possible 
addresses. This can be easily done by initializing the PC 
to zero and then executing the no-operation instruction 
x + 1 times. As a result, the PC will contain an address 
different than x + 1. By executing another no-operation 
instruction, the wrong address can be observed at the 
address bus and the fault detected. In practice, such an 
exhaustive test sequence is very expensive, and more 
economical tests have to be used. Note that, as in the 
example immediately above, the problem and its solution 
have been considered at the functional level. 

Four methods are currently used to generate test patterns 
for LSI circuits: manual test generation, algorithmic test 
generation, simulation-aided test generation, and random 
test generation. 

MANUAL TEST GENERATION 

In manual test generation, the test designer carefully ana­
lyzes the UUT. This analysis can be done at the gate lev­
el, at the functional level or at a combination of the two. 
The analysis of the different parts of the UUT is intended 
to determine the specific patterns that will excite and sen­
sitize each fault in the fault list. At one time, the manual 
approach was widely used for medium- and small-scale 
digital circuits. Then, the formulation of the D-algorithm 
and similar algorithms eliminated the need for analyzing 
each circuit manually and provided an efficient means to 
generate the required test patterns.15 However, the arrival 
of LSI circuits and microprocessors required a shift back 
toward manual test generation techniques, because most 

. of the algorithmic techniques used with SSI and MSI cir­
cuits were not suitable for LSI circuits. 

Manual test generation tends to optimize the length of the 
test patterns and provides a relatively high degree of fault 
coverage. However, generating tests manually takes a 
considerable amount of effort and requires persons with 
special skills. Realizing that test generation has to be 
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done economically, test designers are now moving in the 
direction of automatic test generation. 

One good example of manual test generation is the work 
done by Sridhar and Hayes,9 who generated test patterns 
for a simple bit-sliced microprocessor at the functional level. 

A bit-sliced microprocessor is an array of n identical ICs 
called slices, each of which is a simple processor for oper­
ands of k bit length, where k is typically 2 or 4. The intercon­
nections among the n slices are such that the entire array 
forms a processor for nAbit operands. The simplicity of the 
individual slices and the regularity of the interconnections 
make it feasible to use systematic methods for fault analysis 
and test generation. 

Sridhar and Hayes considered a one-bit processor slice as a 
simplified model for the commercially available bit-sliced 
processors such as the Am2901.10 A slice can be modeled 
as a collection of modules interconnected in a known way. 
These modules are regarded as black boxes with well-de­
fined input-output relationships. Examples of these function­
al modules are ALUs, multiplexers, and registers. Combina­
tional modules are described by their truth tables, while se­
quential modules are defined by their state tables (or state 
diagrams). 

The following fault categories were considered: 

• For combinational modules, all possible faults that in­
duce arbitrary changes in the truth table of the module, 
but that cannot convert it into a sequential circuit. 

• For sequential modules, all possible faults that can cause 
arbitrary changes in the state table of the module without 
increasing the number of states. 

Only one module was assumed to be faulty at any time. 

To test for the faults allowed by the above-mentioned fault 
model, all possible input patterns must be applied to each 
combinational module (exhaustive testing), and a checking 
sequence11 to each sequential module. In addition, the re­
sponses of each module must be propagated to observable 
output lines. The tests required by the individual modules 
were easily generated manually-a direct consequence of 
the small operand size (k = 1). And because the slices 
were identical, the tests for one slice were easily extended 
to the whole array of slices. In fact, Sridhar and Hayes 
showed that an arbitrary number of simple interconnected 
slices could be tested with the same number of tests as that 
required for a single slice, as long as only one slice was 
faulty at one time. This property is called C-testability. Note 
that the use of carry-Iookahead· when connecting slices 
eliminates C-testability.· Also note that slices with operand 
sizes equal to 2 or more usually are not C-testable. 

The idea of modeling a digital system as a collection of 
interconnected functional modules can be used in modeling 
any LSI circuit. However, using exhaustive tests and check­
ing.sequences to test individual modules is feasible only for 
toy systems. Hence, the fault model proposed by Sridhar 
and Hayes, though very powerful, is not directly applicable 
to LSI testing. 



PATH SENSITIZATION AND THE D-ALGORITHM 
One of the classical fault detection methods at the gate and flip-flop level is the O-algorithm1• 5 employing the path 
sensitization testing technique.4 The basic principle involved In path sensitization Is relatively simple. For an input X; to 
detect a fault "line a is stuck at j, j = 0, 1," the input X; must cause the signal a in the normal (fault-free) circuit to take 
the value J. This condition is necessary but not sufficient to detect the fault. The error signal must be propagated along 
some path from its site to an observable output. 
To generate a test to detect a stuck-at fault in a combinational circuit, the following path sensitization procedure must be 
followed: 
• Excitation:-The inputs must be specified so as to generate the appropriate value (0 for stuck-at 1 and 1 for stuck-at 

0) at the site of the fault. 
-. Error propagation-A path from the fault site to an observable output must be selected, and additional signal values 

to propagate the fault signal along this path must be specified. 
• Error propagatlon-A path from the fault site to an observable output must be selected, and additional signal values 

to propagate the fault signal along this path must be specified. 
-Une justification-Input values must be specified so as to produce the signals values specified in the step above . 

. There may be several possible choices for error propagation and line justification. Also, in some cases there may be a 
choice of ways in whlch to excite Ihefault. Some of these choices may lead to an Inconsistency, and so the procedure 
must p8cktrack and consider the next alternative. If all the alternatives lead to an inconsistency, this implies that the fault 
cannot be detected. 
TO. facilitate the path sensitization process, we introduce the symbol 0 to represent a signal which has the value 1 in a 
normal circuit and Oin a faulty circuit; and '0 to represent aSigral which has the value 0 in a normal circuit and 1in a 
faulty circuit-The path sensitization procedure can be formulated in terms of a cubical algebra1, 5 to enable automatic 
genera~?11 of test.. This .also facilitates test generation for more complex fault models and· for fault propagation through 
complex logic elements. 
"'!~ .shaU d~fine.t~~e~ typ~sofcu~es(i.e~,line value~speclfled in. positional notation): 

... ~ .••• For a.cIrcuit. element t;:which realizes tne. combinational function I, the "primitive cubes" offer a typical presentation 
•. ClfW(;)prime.implicants of I and ;. These cubes conciselyrepresent the logical behavior of E . 
• AUprimitive O-cube ofa fault"in a logic element Especifies the minimal input conditions that must be applied to E in 

orderto produce an error signal (0 or O)atthe output of Eo 
-The "propagation O-cubes" of a logic element Especify the minimal input conditions to the logic element that are 

required to propagate an error signal on an input (or inputs) to the output of that element. 
.Tg.generate a test fora stuck-at fault in a combinational circuit, the O-algorithm must perform the following: 
1~<.Fau't excitatioo:-A primitive O·cube Of the. fault under consideration must be selected. This generates the error signal 

1:).?,"5atthesiteofthefault.JUsually a choice exists in this step. The Initial choice is arbitrary, and it may be 
ri~(i).~S~ry tg back~ackand.consideranothe.rchOice). 

2.lmpUcati0o:-lnStep 1som~ of the gateinp~ts or outputs may be specified so as to uniquely imply values on other 
. signals in the circuit. The implication procadure is performed both forwards and backwards through the circuit. 

Implication is performed a~Jonows:Wheneve.ra previously unspecified signal value becomes specified, all the ele­
ments associated with this signal areplaced on aUst.Band processed one at a time (and removed). For each element 
processed,ltisdeterminedlfnew values of 0,1, 0, and Dare Implied, based on the previously specified inputs and 
gutputs.These implied line v~.uesare determined by intersecting the test cube (which specifies all the previously 
d~termined signalvalues of the circuit) with the primitive cubes of the element. If any line values are implied, the area 
s~clfjed In thetest cube, and the associated gates are placed on the list B. An Inconsistency occurs when a value Is 

>impliejj .on a line which ~asbeen specified previOUSly to a different value. If an inconsistency occurs, the procedure 
mus~~~cktrackto the last pOint a choice existed, reset all lines to their values at that point, and begin again with the 
next choice; 

··~.~pl'opagation41\1IthE;lelements in thEJCircuitwhoseOutputvalues are unspeCified and whose input has some sigr~l· 
P?rDar~pla<?~~ol1 a list caled tl)e O"trontier.ln this step. an.slement from the O·frontier is selected and valuesar~ 
~~igl1ad· ~?~unlSPeclfiedfnputslSoas. to .. pr9pagate the 0 ort? on its inputs to one of its outputs. This is accgrn~ 
pliSl1e(i by.intersectlngthecurrentte.st·cubedescribing .the· circuit signal values with· a propagation O-cube 01 the 
sel~~ecJ.~I~mentottheO.frontier,f~sultinginanewtest cube. If such intersection is impossible,a new element in the 

~Jl~~~e~6;~~e~:~~g!f!~}:~;~tlon .• fa~.ls.fOr •.• ~I.I •. t~.r ..... el.ements in ... t.he. O'frontler, •. the. procedure .. backtracks .• to .•. the last 

.\;lm~li~~ignOf .9·prgpa~atlo~lmpUc~tj9~i~perf9nn~.df?rthe new. test cube derived. inStepS. 
;R~~\epS:S:~nd4are repeated until thef~ultysignal has been propagated to an output of the circuit. 

8-21 

-I 
:T 
CD 
o 
-< 
o --a 
r­
C 
-I 
CD en -S· 

(Q 

I • 



en 
c 
;:; 
U) 

~ 
C 
..J 
D. -o 
~ 
o 
Q) 
.c 
I-

~;f~·SE·~.~I~I~A!IO~.·.~t4D .T~E".[).AL~.~Rt±~~.·.·.(8ontin.~Od)· ....•.•...•...•.• ' 

~ •• ~inejustifipation7Execotion o.f f)teps1 .• to 5 may result in. specifyingtheoutpufyalue of. an.el~ment Ebutl 
~()meof thelrp\jts to the.eloment unspE;lclfled. The unspecified Inputsofsuch.an element are aSSigned yalues S() 
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7.trtl~II~~?~?fHg3.I~.~tlfic~ti~n-frtlPlicati~n .. i~. perfor~edon.the new test .cube .·deriv~d •• in SteP.6...····.·x../.·.· .. · .... 

E)' Steps 6 and·7.are repeated until aU specified .elementoutputs have. been justified •. ·.6acktrayking· Olay .. again'·'!?6 
required • 
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ALGORITHMIC TEST GENERATION 

In algorithmic test generation, the test designer devises a 
set of algorithms to generate the 1 's and O's needed to test 
the UUT. Algorithmic test techniques are much more eco­
nomical than manual techniques. They also provide the test 
designer with a high level of flexibility. Thus, he can improve 
the fault coverage of the tests by replacing or modifying 
parts of the algorithms. Of course, this task is much simpler 
than modifying the 1 's and O's in a manually generated test 
sequence. 

Techniques that use the gate-level description of the UUT, 
such as path sensitization4 and the D-algorithm,5 can no 
longer be used in testing complicated LSI circuits. Thus, the 
problem of generating meaningful sets of tests directly from 
the functional description of the UUT has become increas­
ingly important. Relatively little work has been done on func· 
tional·level testing of LSI chips that are not memory ele· 
ments.9,12-17 Functional testing of memory chips is rela­
tively simple because of the regularity of their design and 
also because their components can be easily controlled and 
observed from the outside. Various test generation algo­
rithms have been developed to detect different types of 
faults in memories. 1,18 In the rest of ths section we will 
concentrate on the general problem of generating tests for 
irregular LSI chips, Le., for LSI chips which are not strictly 
memory chips. 

It is highly desirable to find an algorithm that can generate 
tests for any LSI circuit, or at least most LSI circuits. One 
good example of work in this area is the technique proposed 
by Thatte and Abraham for generating tests for microproc­
essors.12,13 Another approach, pursued by the authors of 
this article, is a test generation procedure capable of han­
dling general LSI circuits. 15, 16, 17 

THE THATTE·ABRAHAM TECHNIQUE 

Microprocessors constitute a high percentage of today's LSI 
circuits. Thatte and Abraham 12, 13 approached the micro­
processor test generation problem at the functional level. 
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• The test generation procedure they developed was 
based on: 

• A functional description of the microprocessor at the reg­
ister-transfer level. The model is defined in terms of data 
flow among storage units during the execution of an in­
struction. The functional behavior of a microprocessor is 
thus described by information about its instruction set 
and the functions performed by each instruction. 

• A fault model describing faults in the various functional 
parts of the UUT (e.g., the data transfer function, the 
data storage function, the instruction decoding and con­
trol function). This fault model describes the faulty be­
havior of the UUT without knowing its implementation de­
tails. 

The microprocessor is modeled by a graph. Each register in 
the microprocessor (including general-purpose registers 
and accumulator, stack, program counter, address buffer, 
and processor status word registers) is represented by a 
node of the graph. Instructions of the microprocessors are 
classified as being of transfer, data manipulation, or branch 
type. There exists a directed edge (labeled with an instruc­
tion) from one node to another if during an execution of the 
instruction data flow occurs from the register represented by 
the first node to that represented by the second. Examples 
of instruction representation are given in Figure 8.2.3. 

Having described the function or the structure of the UUT, 
one needs an appropriate fault model in order to derive use­
ful tests. The approach used by Thatte and Abraham is to 
partition the various functions of a microprocessor into five 
classes: the register decoding function, the instruction de­
coding and control function, the data storage function, the 
data transfer function, and the data manipulation function. 
Fault models are derived for each of these functions at a 
higher level and independently of the details of implementa­
tion for the microprocessor. The fault model is quite general. 
Tests are derived allowing any number of faults, but only in 
one function at a time; this restriction exists solely to cut 
down the complexity of test generation. 
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(a) (b) (c) (d) 

FIGURE B.2.3. Representations of Microprocessor Instruction-Ih 
(a) Transfer Instruction, R2 ~ R1; (b) Add Instruction, R3 ~ R1 + R2; 

(c) 13, OR Instruction, R2 ~ R1 OR R2; (d) 14 Rotate Left Instruction 

The fault model for the register decoding function allows 
any possible set of registers to be accessed instead of a 
particular register. (If the set is null then no register is ac­
cessed.) This fault model is thus very general and indepen­
dent of the actual realization of the decoding mechanism. 

For the instruction decoding and control function, the faulty 
behavior of the microprocessor is specified as follows. 
When instruction Ij, is executed anyone of the following 
can happen: 

• Instead of instruction Ij, some other instruction Ik is exe­
cuted. This fault is denoted by F(lj Ilk ). 

• In addition to instruction Ij' some other instruction Ik is 
activated. This fault is denoted by F(lj Ilj + Ik)' 

• No instruction is executed. This fault is denoted by F(lj I 
8). 

Under this specification, any number of instructions can be 
faulty. 

In the fault model for the data storage function, any cell in 
any data storage module is allowed to be stuck at 0 or 1. 
This can occur in any number of cells. 

The fault model for the data transfer function includes the 
following types of faults: 

• A line in a path used in the execution of an instruction is 
stuck at 0 or 1. 

• Two lines of a path used in the instruction are coupled, 
i.e., they fail to carry different logic values. 

Note that the second fault type cannot be modeled by sin­
gle stuck-at faults. The transfer paths in this fault model are 
logical paths and thus will account for any failure in the actu­
al physical paths. 

Since there is a variety of designs for the ALU and other 
functional units such as increment or shift logic, no specific 
fault model is used for the data manipulation function. It is 
assumed that complete test sets can be derived for the 
functional units for a given fault model. 

By carefully analyzing the logical behavior of the microproc­
essor according to the fault models presented above, 
Thatte and Abraham formulated a set of algorithms to gen­
erate the necessary test patterns. These algorithms step 
the microprocessor through a precisely defined set of in­
structions and addresses. Each algorithm was designed for 
detecting a particular class of faults, and theorems were 
proved which showed exactly the kind of faults detected by 
each algorithm. These algorithms employ the excitation and 
sensitization concepts previously described. 

To gain insight into the problems involved in using the algo­
rithms, Thatte investigated the testing of an eight-bit micro­
processor from Hewlett-Packard.12 He generated the test 
patterns for the microprocessor by hand, using the algo­
rithms. He found that 96 percent of the single stuck-at faults 
that could affect the microprocessor were detected by the 
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test sequence he generated. This figure indicates the validi­
ty of the technique. 

THE ABADIR-REGHBATI TECHNIQUE 

Here we will briefly describe a test generation technique we 
developed for LSI circuits.15,16 We assume that the tests 
would be generated in a user environment in which the 
gate- and flip-flop-level details of the chip were not known. 

We developed a module-level model for LSI circuits. This 
model bypasses the gate and flip-flop levels and directly 
describes blocks of logic (modules) according to their func­
tions. Any LSI circuit can be modeled as a network of inter­
connected modules such as counters, registers, ALUs, 
ROMs, RAMs, multiplexers and decoders. 

Each module in an LSI circuit was modeled as a black box 
having a number of functions defined by a set of binary 
decision diagrams (see box).19 This type of diagram, a func­
tional description tool introduced by Akers in 1978, is a con­
cise means for completely defining the logical operation of 
one or more digital functions in an implementation-free 
form. The information usually found in an Ie catalog is suffi­
cient to derive the set of binary decision diagrams describ­
ing the functions performed by the different modules in a 
device. These diagrams-like truth tables and state ta­
bles-are amenable to extensive logical analysis. However, 
unlike truth tables and state tables-are amenable to exten­
sive logical analysis. However, unlike truth tables and state 
tables, they do not have the unpleasant property of growing 
exponentially with the number of variables involved. More­
over, the diagrams can be stored and processed easily in a 
digital computer. An important feature of these diagrams is 
that they state exactly how the module will behave in every 
one of its operation modes. Such information can be ex­
tracted from the module's diagrams in the form of a set of 
experiments.15,20 Each of these experiments describes the 
behavior of the module in one of its modes of operation. 
The structure of these experiments makes them suitable for 
use in automatic test generation. 

We also developed a functional-level fault model describing 
faulty behavior in the different modules of an LSI chip. This 
model is quite independent of the details of implementation 
and covers functional faults that alter the behavior of a mod­
ule during one of its modes of operation. It also covers 
stuck-at faults affecting any input or output pin or any inter­
connection line in the chip. 

Using the above-mentioned models, we proposed a func­
tional test generation procedure based on path sensitization 
and D-algorithm.15 The procedure takes the module-level 
model of the LSI chip and the functional description of its 
modules as parameters and generates tests to detect faults 
in the fault model. The fault collapsing technique1 was used 
to reduce the length of the test sequence. As in the D-algo­
rithm, the procedure employs three basic operations, name-
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Iy implication, D-propagation, and line justification. However, 
these operations are performed on functional modules. 

We also presented algorithmic solutions to the problems of 
performing these operations on functional modules.16 For 
each of the three operations, we gave an algorithm which 
takes the module's set of experiments and current state 
(i.e., the values assigned to the module inputs, outputs, and 
internal memory elements) as parameters and generates all 
the possible states of the module after performing the re­
quired operation. 

We have also reported our efforts to develop test se­
quences based on our test generation procedure for typical 
LSI circuits.17 More specifically, we considered a one-bit 
microprocessor slice C that has all the basic features of the 
four-bit Am2901 microprocessor slice.10 The circuit C was 
modeled as a network of eight functional modules: an ALU, 
a latch register, an addressable register, and five multiplex­
ers. The functions of the individual modules were described 
in terms of binary decision diagrams or equivalent sets of 
experiments. Test capable of detecting various faults cov­
ered by the fault model were then generated for the circuit 
C. We showed that if the fault collapsing technique is used, 
a significant reduction in the length of the final test se­
quence results. 

The test generation effort was quite straightforward, indicat­
ing that the technique can be automated without much diffi­
culty. Our study also shows that for a simplified version of 
the circuit C the length of the test sequence generated by 
our technique is very close to the length of the test se­
quence manually generated by Sridhar and Hayes9 for the 
same circuit. We also described techniques for modeling 
some of the features of the Am2909 four-bit microprogram 
sequencer10 that are not covered by the circuit C. 

The results of our case study were quite promising and 
showed that our technique is a viable and effective one for 
generating tests for LSI circuits. 

SIMULATION-AIDED TEST GENERATION 

Logic simulation techniques have been used widely in the 
evaluation and verification of new digital circuits. However; 
an important application of logic simulation is to interpret the 
behavior of a circuit under a certain fault or faults. This is 
known as fault simulation. To clarify how this technique can 

I be used to generate tests for LSI systems, we will first de­
scribe its use with SSI/MSI-type circuits. 

To generate a fault simulator for an SSI/MSI circuit, the 
following information is needed.1 

• the gate-level description of the circuit, written in a spe­
cial language; 

• the initial conditions of the memory elements; and 

• a list of the faults to be simulated, including classical 
types of faults such as stuck-at faults and adjacent pin 
shorts. 
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The above is fed to a simulation package which generates 
the fault simulator of the circuit under test. The resulting 
simulator can simulate the behavior of the circuit under nor­
mal conditions as well as when any faults exist. 

Now, by applying various input patterns (either generated by 
hand, by an algorithm, or at random) the simulator checks to 
see if the output response of the correct circuit differs from 
one of the responses of the faulty circuits. If it does, then 
this input pattern detects the fault which created the wrong 
output response; otherwise the input pattern is useless. If an 
input pattern is found to detect a certain fault, this fault is 
deleted from the fault list and the process continues until 
either the input patterns or the faults are finished. At the 
end, the faults remaining in the fault list are those which 
cannot be detected by the input patterns. This direclty mea­
sures the degree of fault coverage of the input patterns 
used. 

Two examples of this type of logic simulator are LAMP-the 
Logic Analyzer for Maintenance Planning developed at Bell 
Laboratories,21 and the Testaid III fault simulator developed 
at the Hewlett-Packard Company.12 Both work primarily at 
the gate level and simulate stuck-at faults only. One of the 
main applications of such fault simulators is to determine 
the degree of fault coverage provided by a test sequence 
generated by any other test generation technique. 

There are two key requirements that affect the success of 
any fault simulator: 

• the existence of a software model for each primitive ele­
ment of the circuit, and 

• the existence of a good fault model for the UUT which 
can be used to generate a fault list covering most of the 
actual physical faults. 

These two requirements have been met for SSI/MSI cir­
cuits, but they pose serious problems for LSI circuits. If it 
can be done at all, modeling LSI circuits at the gate level 
requires great effort. One part of the problem is the lack of 
detailed information about the internal structure of most LSI 
chips. The other is the time and memory required to simu­
late and LSI circuit containing thousands of gates. Another 
severe problem facing almost all LSI test generation tech­
niques is the lack of good fault models at a level higher than 
the gate level. 

The Abadir-Reghbati description model proposed in the pre­
vious section permits the test designer to bypass the gate­
level description and, using binary decision diagrams, to de­
fine blocks of logic according to their functions. Thus, the 
simulation of complex LSI circuits can take place at a higher 
level, and this eliminates the large time and memory require­
ments. Furthermore, the Abadir-Reghbati fault model is 
quite efficient and is suitable for simulation purposes. In 
fact, the implication operation16 employed by the test gen­
eration procedure represents the main building block of any 
fault simulator. It must be noted that fault simulation tech­
niques are very useful in optimizing the length of the test 
sequence generated by any test generation technique. 



BINARY DECISION DIAGRAMS 
Binary decision diagrams are a means of defining the logical operation of digital functions.19 They tell the user how to 
determine the output value of a digital function by examining the values of the inputs. Each node in these diagrams is 
associated with a binary variable, and there are two branches coming out from each node. The right branch is the "1" 
branch, while the left branch is the "0" branch. Depending on the value of the node variable, one of the two branches 
will be selected when the diagram is processed. 
To see how binary decision diagrams can be used, consider the half-adder shown in Figure B.2.4(a). Assume we are 
interested in defining a procedure to determine the value of C, given the binary values of X and Y. We can do this by 
looking at the value of X. If X = 0, then C = 0, and we are finished. If X = 1, we look at Y. If Y = 0, then C = 0, else C 
"'" 1, and in either case we are finished. Figure B.2.4(b) shows a simple diagram of this procedure. By entering the 
diagram at the node indicated by the arrow labeled with C and then proceeding through the diagram following the 
appropriate branches until a ° or 1 value Is reached, we can determine the value C. Figure 8.2.4(c) shows the diagram 
representing the function S of the half-adder. 

c 

.~ 
o 1 

TUL/9993-$ 
(b) 

FIGURE B.2.4. (a) Half-Adderj (b) Binary Decision Diagram 
for C = X. Y; (c) Binary Decision Diagram for S = X ('!) Y 

To simplify the diagrams, any diagram node which has two branches as exit branches can be replaced by the 
itself or its· complement. These variables are called exit variables. Figure 8.2.5 shows how this convention is used 
simplify the diagrams describing the half-adder. 
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FIGURE B.2.5 Simplified Binary Decision Diagrams for the Half·Adder 

,.nthe previous discussion, we have considered only simple diagrams inwhich the variables withinthenodes are primary . 
. inpu~variables. However, we can expand the scope of these diagrams by using auxiliary variables as the node variables. 
Trese auxiliary variables are defined by their diagrams. Thus, when user encounters such a node variable, say Qi .. V!tlile 
tracing a path, he must first process the diagram defining g to determine the value of g, and then return to theg!iginf;l.1 
node and take the appropriate branch. This process is similar to the use of subroutines in high~level progran}.mip9 
languages; 
FOr example, consider the full-adder defined by: 

Cj+1 = EjCj+ Ej Ai 

8i= Ej+ Ci, 

TL/l/!)993-10 

FIGURE B.2.6. Binary Decision Diagrams for a FUll-Adder 
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RANDOM TEST GENERATION 

This method can be considered the simplest method for 
testing a device. A random number generator is used to 
simultaneously apply random input patterns both to the UUT 
and to a copy of it known to be fault-free. (This copy is 
called the golden unit.) The results obtained from the two 
units are compared, and if they do not match, a fault in the 
UUT is detected. This response evaluation technique is 
known as comparison testing; we will discuss it later. It is 
important to note that every time the UUT is tested, a new 
random test sequence is used. 

The important question is how effective the random test is, 
or, in other words, what fault coverage a random test of 
given length provides. This question can be answered by 
employing a fault simulator to simulate the effect of random 
test patterns of various lengths. The results of such experi­
ments on SSI and MSI circuits show that random test gener­
ation is most suitable for circuits without deep sequential 
logic.1,22,23 However, by combining random patterns with 
manually generated ones, test designers can obtain very 
good results. 

The increased sequentiality of LSI circuits reduces the appli­
cability of random testing. Again, combining manually gener­
ated test patterns with random ones improves the degree of 
fault coverage. However, two factors restrict the use of the 
random test generation technique: 

• The dependency on the golden unit, which is assumed to 
be fault-free, weakens the level of confidence in the re­
sults. 

• There is no accurate measure of how effective the test 
is, since all the data gathered about random tests are 
statistical data. Thus, the amount of fault coverage pro­
vided by a particular random test process is unpredict­
able. 

UUT 

B.3 Response Evaluation 
Techniques 
Different methods have been used to evaluate UUT re­
sponses to test patterns. We restrict our discussion to the 
case where the final goal is only to detect faults or, equiva­
lently, to detect any wrong output response. There are two 
ways of achieving this goal-using a good response genera­
tor or using a compact testing technique. 

GOOD RESPONSE GENERATION 

This technique implements an ideal strategy: comparing 
UUT responses with good response patterns to detect any 
faulty response. Clearly, the key problems are how to obtain 
a good response and at what stage in the testing process 
that response will be generated. In current test systems, two 
approaches to solving these problems are taken-stored 
response testing and comparison testing. 

STORED RESPONSE TESTING 

In stored response testing, a one-shot operation generates 
the good response patterns at the end of the test genera­
tion stage. These patterns are stored in an auxiliary memory 
(usually a ROM). A flow diagram of the stored response 
testing technique is shown in Figure B.3. 1. 

Different methods can be used to obtain good responses of 
a circuit to a particular test sequence. One way is to do it 
manually by analyzing the UUT and the test patterns. This 
method is the most suitable if the test patterns were gener­
ated manually in the first place. 

The method most widely used to obtain good responses 
from the UUT is to apply the test patterns either to a known 
good copy of the UUT -the golden unit-or to a software­
simulated version of the UUT. Of course, if fault simulation 
techniques were used to generate the test patterns, the 
UUT's good responses can be obtained very easily as a 
partial product from the simulator. 

ERROR 
SIGNAL 

TL/L/9993-11 

FIGURE 8.3.1. Stored Response Testing 
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The use of a known good device depends on the availability 
of such a device. Hence, different techniques must be used 
for the user who wants to test his LSI system and for the 
designer who wants to test his prototype design. However, 
golden units are usually available once the device goes into 
production. Moreover, confidence in the correctness of the 
responses can be increased by using three or five good 
devices together to generate the good responses. 

The major advantage of the stored response technique is 
that the good responses are generated only once for each 
test sequence, thus reducing the cost of the response eval­
uation step. However, the stored response technique suf­
fers from various disadvantages: 

• Any change in the test sequence requires the whole pro­
cess to be repeated. 

• A very large memory is usually needed to store all the 
good responses to a reasonable test sequence, because 
both the length and the width of the responses are rela­
tively large. As a result, the cost of testing equipment 
increases. 

• The speed with which the test patterns can be applied to 
the UUT is limited by the access time of the memory 
used to store the good responses. 

COMPARISON TESTING 

Another way to evaluate the responses of the UUT during 
the testing process is to apply the test patterns simulta­
neously to both the UUT and a golden unit and to compare 
their responses to detect any faulty response. The flow dia­
gram of the comparison testing technique is shown in Figure 
8.3.2. The use of comparison testing makes possible the 
testing of the UUT at different speeds under different elec­
trical parameters, given that these parameters are within the 
operating limits of the golden unit, which is assumed to be 
ideal. 

Note that in comparison testing the golden unit is used to 
generate the good responses every time the UUT is tested. 
In stored response testing, on the other hand, the golden 
unit is used to generate the good responses only once. 

TEST 
PATTERNS 

UUT 

GOLDEN 
UNIT 

The disadvantages of depending on a golden unit are more 
serious here, however, since every explicit testing process 
requires one golden unit. This means that every tester must 
contain a golden copy of each LSI circuit tested by that 
tester. 

One of the major advantages of comparison testing is that 
nothing has to be changed in the response evaluation stage 
if the test sequence is altered This makes comparison test­
ing highly desirable if test patterns are generated randomly. 

COMPACT TESTING 

The major drawback of good response generation tech­
niques in general, and stored response testing in particular, 
is the huge amount of response data that must be analyzed 
and stored. Compact testing methods attempt to solve this 
by compressing the response data R into a more compact 
from f(R) from which most of the fault information in R can 
be derived. Thus, because only the compact form of the 
good responses has to be stored, the need for large memo­
ry or expensive golden units is eliminated. An important 
property of the compression function f is that it can be im­
plemented with simple circuitry. Thus, compact testing does 
not require much test equipment and is especially suited for 
field maintenance work. A general diagram of the compact 
testing technique is shown in Figure 8.3.3. 

Several choices for the function f exist, such as "the num­
ber of 1 's in the sequence," "the number of 0 to 1 and 1 to 0 
transitions in the sequence" (transition counting),24 or "the 
signature of the sequence" (signature ana/ysis).25 For each 
compression function f, there is a slight probability that a 
response R1 different from the fault-free response RO will 
be compressed to a form equal to f(RO), i.e., f(R1) = 
f(RO). Thus, the fault causing the UUT to produce R1 in­
stead of RO will not be detected, even though it is covered 
by the test patterns. 

The two compression functions that are the most widely 
accepted commercially are transition counting and signa­
ture analysis. 

ERROR 
SIGNAL 

TL/L/9993-12 

FIGURE 8.3.2. Comparison Testing 
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FIGURE B.3.3. Compact Testing 
TRANSITION COUNTING 

In transition counting, the number of logical transitions (0 to 
1 and vice versa) is computed at each output pin by simply 
running each output of the UUT into a special counter. Thus, 
the number of counters needed is equal to the number of 
output pins observed. For every m-bit output data stream (at 
one pin), an n-bit counter is required, where n = [Iog2m]. 
As in stored response testing, the transition counts of the 
good responses are obtained by applying the test sequence 
to a golden copy of the UUT and counting the number of 
transitions at each output pin. This latter information is used 
as a reference in any explicit testing process. 

In the testing of an LSI circuit by means of transition count­
ing, the input patterns can be applied to the UUT at a very 
high rate, since the response evaluation circuitry is very fast. 
Also, the size of the memory needed to store the transition 
counts of the good responses can be very small. For exam­
ple, a transition counting test using 16 million patterns at a 
rate of 1 MHz will take 16 seconds, and the compressed 
stored response will occupy only K 24-bit words, where K is 
the number of output pins. This can be contrasted with the 
16 million K-bit words of storage space needed if regular 
stored response testing is used. 

The test patterns used in a transition counting test system 
must be designed such that their output responses maxi­
mize the fault coverage of the test.24 The example below 
shows how this can be done. 

Consider the one-out-of-four multiplexer shown in Figure 
8.3.4. To check for multiple stuck-at faults in the multiplexer 
input lines, eight test patterns are required, as shown in Ta­
ble B.3.1. The sequence of applying these eight patterns to 
the multiplexer is not important if we want to evaluate the 
output responses one by one. However, this sequence will 
greatly affect the degree of fault coverage if transition 
counting is used. To illustrate this fact, consider the eight 
single stuck-at faults in the four input lines X1, X2, X3 and 
X4 (Le, X1 stuck-at 0, X1 stuck-at 1, X2 stuck-at 0, and so 
on). Each of these faults will be detected by only one pat­
tern among the eight test patterns. For example, the fault 
"X1 stuck-at 0" will be detected by applying the first test 
pattern in Table B.3.1, but the other seven test patterns will 
not detect this fault. Now, suppose we want to use transition 
counting to evaluate the output responses of the multiplex­
er. Applying the eight test patterns in the sequence shown 
in Table B.3.1 (from top to bottom) will produce the output 
response 10101010 (from left to right), with a transition 
count of seven. Any possible combination of the eight faults 
described above will change the transition count to a num­
ber different from seven, and the fault will be detected. 
(Note that no more than four of the eight faults can occur at 
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X1 X2 X3 X4 
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So S1 Y 

0 0 X1 
0 1 X2 
1 0 X3 
1 1 X4 

FIGURE B.3.4. One-Out-of-Four Multiplexer 

anyone time.) Thus, the test sequence shown in Table 
B.3.1 will detect all single and multiple stuck-at faults in the 
four input lines of the multiplexers. 

Now, if we change the sequence of the test patterns to the 
one shown in Table B.3.2., the fault coverage of the test will 
decrease considerable. The output responses of the se­
quence of Table B.3.2 will be 11001100, with a transition 
count of three. As a result, six of the eight single stuck-at 
faults will not be detected, because the transition count of 
the six faulty responses will remain three. For example, the 
fault "X1 stuck-at 1" will change the output response to 
11101100, which has a transition count of three. Hence, this 
fault will not be detected. Moreover, most of the multiple 
combinations of the eight faults will not change the tran­
sition count of the output, and hence they will not be detect­
ed either. 

It is clear from the above example that the order of applying 
the test patterns to the UUT greatly affects the fault cover­
age of the test. When testing combinational circuits, the test 
designer is completely free to choose the order of test pat­
terns. However, he cannot do the same with test patterns 
for sequential circuits. More seriously, because he is dealing 
with LSI circuits that probably have multiple output lines, he 
will find that a particular test sequence may give good re­
sults at some outputs and bad results at others. One way to 
solve these contradictions is to use simulation techniques to 
find the optimal test sequence. However, because of the 
limitations discussed here, transition counting cannot be 
recognized as a powerful compact LSI testing method. 
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TABLE B.3.1. The Eight Test Patterns Used 
for Testing the Multiplexer of Figure B.3.4 

S1 X1 X2 X3 X4 

0 1 0 0 0 
0 0 1 1 1 
1 0 1 0 0 
1 1 0 1 1 
0 0 0 1 0 
0 1 1 0 1 
1 0 0 0 1 
1 1 1 1 0 

TABLE B.3.2. A Different Sequence 
of the Eight Multiplexer Test Patterns 

S1 X1 X2 X3 X4 

0 1 0 0 0 
1 0 1 0 0 
0 0 1 1 1 
1 1 0 1 1 
0 0 0 1 0 
1 0 0 0 1 
0 1 1 0 1 
1 1 1 1 0 

SIGNATURE ANALYSIS 
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In 1977 Hewlett-Packard Corporation introduced a new 
compact testing technique called signature analysis, intend­
ed for testing LSI systems.25- 28 In this method, each output 
response is passed through a 16-bit linear feedback shift 
register whose contents f(R), after the test patterns have 
been applied, are called the test signature. Figure 8.3.5 
shows an example of a linear feedback shift register used in 
signature analysis. 

The signature provided by linear feedback shift registers 
can be regarded as a unique fingerprint-hence, test de­
signers have extremely high confidence in these shift regis­
ters as tools for catching errors. To better understand this 
confidence, let us examine the 16-bit linear feedback shift 
register shown in Figure 8.3.5. Let us assume a data stream 
of length n is fed to the serial data input line (representing 
the output response to be evaluated). There are 2n possible 
combinations of data streams, and each one will be com­
pressed to one of the 216 possible signatures. Linear feed­
back shift registers have the property of equally distributing 
the different combinations of data streams over the different 
signatures.27 This property is illustrated by the following nu­
merical examples. 

• Assume n = 16. Then each data stream will be mapped 
to a distinctive signature (one-to-one mapping). 

• Assume n = 17. Then exactly two data streams will be 
mapped to the same signature. Thus, for a particular data 
stream (the UUT good output response), there is only 
one other data stream (a faulty output response) that will 
have the same signature; i.e., only one fault response out 
of 217 -1 possible faults will not be detected. 

• Assume n = 18. Then four different data streams will be 
mapped to the same signature. Hence, only three faults 
out of 218 - 1 possible faults will not be detected. 

We can generalize the results obtained above. For any re­
sponse data stream of length n > 16, the probability of 
missing a faulty response when using a 16-bit signature an­
alyzer is 27 

2n - 16 - 1 
2n-1 ;::::2- 16,forn» 16. 

Hence, the possibility of missing an error in the bit stream is 
very small (on the order of 0.002 percent). Note also that a 
great percentage of the faults will affect more than one out­
put pin-hence the probability of not detecting these kind of 
faults is even lower. 

r~ ~(--'--'--I ~I )~I 1""--'--101 1 I~l, 1 "",-,--,I J 
" 16·BIT SHIFT REGISTER 

SERIAL 
DATA 

INPUT 
TL/Ll9993-15 

FIGURE B.3.5. The 16-Blt Linear Feedback Shift Register Used In Signature Analysis 
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Signature analysis provides a much higher level of confi­
dence for detecting faulty output responses than that pro­
vided by transition counting. But, like transition counting, it 
requires only very simple hardware circuitry and a small 
amount of memory for storing the good signatures. As a 
result, the signatures of the output responses can be calcu­
lated even when the UUT is tested at its maximum speed. 
Unlike transition counting, the degree of fault coverage pro­
vided by signature analysis is not sensitive to the order of 
the test patterns. Thus, it is clear that signature analysis is 
the most attractive solution to the response evaluation prob­
lem. 

The rapid growth of the complexity and performance of digi­
tal circuits presents a testing problem of increasing severity. 
Although many testing methods have worked well for SSI 
and MSI circuits, most of them are rapidly becoming obso­
lete. New techniques are required to cope with the vastly 
more complicated LSI circuits. 

In general, testing techniques fall into the concurrent and 
explicit categories. In this article, we gave special attention 
to explicit testing techniques, especially those approaching 
the problem at the functional level. The explicit testing pro­
cess can be partitioned into three steps: generating the test, 
applying the test to the UUT, and evaluating the UUT's re­
sponses. The various testing techniques are distinguished 
by the methods they used to perform these three steps. 
Each of these techniques has certain strengths and weak­
nesses. 

We have tried to emphasize the range of testing techniques 
available, and to highlight some of the milestones in the 
evolution of LSI testing. The details of an individual test 
method can be found in the source we have cited. 
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J24F(REVGI 
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20 Lead Molded Dual-In-Line Package (N) 
NS Package Number N20A 

0.092 x 0.030 

(2.337 X 0.762) 
MAX DP 

1.013-1.040 ::::1 
(25.73-26.42) 

~====19==1=8==1=7==16===15~1~4==\3~=12~1~1~---r 

PIN NO.lIDENT~1 ~ + 0.260±0.005 
1'. (6.604 ±0.127) 

~
(~:~~~)~ OPTION 1 ~:;t;1 r=r=;;:r:;::;:;:;:::;r=;::::::;:::;::;;:;:::;:::~::;::;r:;:;::::;::;;;=J--L 

''':~:'20 ~ 
I ;'620-.'281 I 
I I I~ ,----t-i---~I-+-----....... 

0.032io.005=Vo 19 
(O.S13 io.127) 

RAD 

PIN NO. lIDENT~ 

I 

0.130 0.005 

(3.302 

OPTlDN 2 

g ,o,,,-oo,,rJ 
I I 

(~.~~9-0.381) 

- 900iO.004° L t 
0.020 

I ~ I 0.125-0.140 (0.508) 
. . 0.060 to.005 t- 0.0ISiO.003 _ (3.175-3.556) MIN 

0.325 ~~:~~ (1.524tO.127) (0.45710.076) 

(8.255 +1.016) 
~ -0.381 

N20AIREVGI 

24 Lead Skinny Dual-In-Line Package (0.300" Centers Molded) (N) 
NS Package Number N24C 

0.009-0.015 
(0.229-0.381) 

0.325 ~~:~~~ 
fS 255 + 1.01S) 
~ . -0.381 

0.300 - 0.320 

C6:~:12" I 

0.092 
(2.337) 
(2 PLS) 

0.OS5 -rJ (1.651) 

0.075 ± 0.015 I 
(1.905±0.3Bl) I--

8-33 

1.243 -1.270 
(31.57 -32.2S) 

MAX 

f 
0.260±0.005 

(S.S04±0.127) 

~ 

N24CIREV FI 
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20 Lead Plastic Chip Carrier (V) 
NS Package Number V20A 

4 SPACES AT 

o.OSOW 
(1.270) 

S#
19 201 2 3 A 0.080 

18 4 (2.032) 
DIA NOM += 0 .' "'~'" 

4S~~~~ AT \13 9\ 0.226 
(1.270)" ~ (5.740) 

0.310 - 0.330 
(7.874 -8.382) 

(CONTACT DIMENSION) 

NOM 
SQUARE 

~JiF===!;===rdim~:=WW-li*1=- 0.032-0.040 
(0.127-0.381) (0.813-1.016) 

PIN NO.1 
10ENT 

28 Lead Plastic Chip Carrier (V) 
NS Package Number V28A 

l (CD:::~i~~i:ON) [ 0.020 0.013-0.018 
~ (0.508) ~ I (0.330-0.457) 0.165-0.180 
(0.813-1.016) MIN TYP (4.191-4.572) 

t i==t w t t 
~-0.015 r=~- I • 

(0.127-0.381) ~ j • I 
PIN NO.1 0.026-0.032 I ~ 
IDENT jl (0.660-0.813) (2.642-2.997) 
~ TYP 
(11.43) 
REF sa 

0.485-0.495 
(12.32-12.57) 

SQUARE 

8-34 

0.

04Sl (1.143) 
x4S' 

~ 
15' VIEW A·A 

V20AiAEVJ) 
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kI 
0.045 -l t;: 
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National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical 
literature. 

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and 
section contents for each book. 
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ALS/AS LOGIC DATABOOK-1990 
Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky. Advanced Schottky 

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987 
SSI/MSI Functions • Peripheral Functions • LSIIVLSI Functions • Design Guidelines • Packaging 

CMOS LOGIC DATABOOK-1988 
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC 
MM54HCT/MM74HCT. CD4XXX. MM54CXXX/MM74CXXX. Surface Mount 

DATA ACQUISITION LINEAR DEVICES-1989 
Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters 
Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount 

DATA COMMUNICATION/LAN/UART DATABOOK-1990 
LAN IEEE 802.3 • High Speed Serial/IBM Data Communications. ISDN Components • UARTs 
Modems • Transmission Line Drivers/Receivers 

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989 
Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors 
Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series 
Consumer Series • Power Components. Transistor Datasheets • Process Characteristics 

DRAM MANAGEMENT HANDBOOK-1989 
Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for the 
DP8408A109A117/18/19/28/29. Microprocessor Applications for the DP8420Al21A122A 
Microprocessor Applications for the NS32CG821 

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989 
Embedded System Processor Overview • Central Processing Units. Slave Processors. Peripherals 
Development Systems and Software Tools 

F100K DATABOOK-1989 
Family Overview ~ F1 OOK Datasheets • 11 C Datasheets • 10K and 100K Memory Datasheets 
Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations 
Power Distribution and Thermal Considerations. Testing Techniques. Quality Assurance and Reliability 



FACTTM ADVANCED CMOS LOGIC DATABOOK-1989 
Description and Family Characteristics • Ratings, Specifications and Waveforms 
Design Considerations. 54ACI74ACXXX. 54ACT174ACTXXX 

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-Rev. 1-1988 
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations. 54F174FXXX 

FAST® APPLICATIONS HANDBOOK-1990 
Reprint of 1987 Fairchild FAST Applications Handbook 
Contains application information on the FAST family: Introduction • Multiplexers • Decoders. Encoders 
Operators. FIFOs. Counters. TTL Small Scale Integration. Line Driving and System Design 
FAST Characteristics and Testing. Packaging Characteristics 

GENERAL PURPOSE LINEAR DEVICES DATABOOK-1989 
Continuous Voltage Regulators • Switching Voltage Regulators. Operational Amplifiers • Buffers • Voltage Comparators 
Instrumentation Amplifiers • Surface Mount 

GRAPHICS HANDBOOK-1989 
Advanced Graphics Chipset • DP8500 Development Tools • Application Notes 

INTERFACE DATABOOK-1988 
Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers 
Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rei Interface 

LINEAR APPLICATIONS HANDBOOK-1986 
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit 
applications using both monolithic and hybrid circuits from National Semiconductor. 

Individual application notes are normally written to explain the operation and use of one particular device or to detail various 
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by 
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index. 

LS/S/TTL DATABOOK-1989 
Contains former Fairchild Products 
Introduction to Bipolar Logic • Low Power Schottky. Schottky • TTL • TTL-Low Power 

MASS STORAGE HANDBOOK-1989 
Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs 
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits 
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide 

MEMORY DATABOOK-1990 
PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECL I/O SRAMs 

MICROCONTROLLER DATABOOK-1989 
COP400 Family • COP800 Family • COPS Applications. HPC Family. HPC Applications 
MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools 

MICROPROCESSOR DATABOOK-1989 
Series 32000 Overview • Central Processing Units • Slave Processors. Peripherals 
Development Systems and Software Tools • Application Notes • NSC800 Family 

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1990 
Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools 
Fabrication of Programmable Logic • Application Examples 

REAL TIME CLOCK HANDBOOK-1989 
Real Time Clocks and Timer Clock Peripherals. Application Notes 



RELIABILITY HANDBOOK-1986 
Reliability and the Die. Internal Construction. Finished Package. MIL·STD·883 • MIL·M·38510 
The Specification Development Process. Reliability and the Hybrid Device • VLSIIVHSIC Devices 
Radiation Environment. Electrostatic Discharge • Discrete Device • Standardization 
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device 
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership 
Reliability Testing at National Semiconductor. The Total Military/Aerospace Standardization Program 
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL·M·38510 Class B Products 
Radiation Hardened Technology. Wafer Fabrication. Semiconductor Assembly and Packaging 
Semiconductor Packages. Glossary of Terms. Key Government Agencies. AN/ Numbers and Acronyms 
Bibliography. MIL·M·38510 and DESC Drawing Cross Listing 

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989 
Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits 
Surface Mount 

TELECOMMUNICATIONS-1990 
Line Card Components. Integrated Services Digital Network Components. Analog Telephone Components 
Application Notes 





NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS 
ALABAMA San Jose Orlando MARYLAND 

Huntsville Anthem Electronics Time Electronics Columbia 
Arrow Electronics (408) 453-1200 (407) 841-6565 Anthem Electronics 
(205) 837-6955 Pioneer Technology Oviedo (301) 995-6640 
Bell Industries (408) 954-9100 Zeus Components Arrow Electronics 
(205) 837-1074 Zeus Components (407) 365-3000 (301) 995-0003 
Hamilton! Avnet (408) 629-4789 SI. Petersburg Hamilton! Avnet 
(205) 837-7210 Sunnyvale Hamilton! Avnet (301) 995-3500 
Pioneer Technology Arrow Electronics (813) 576-3930 Time Electronics 
(205) 837-9300 (408) 745-6600 Winter Park (301) 964-3090 
Time Electronics Bell Industries Hamilton! Avnet Zeus Components 
(205) 721-1133 (408) 734-8570 (407) 628-3888 (301) 997-1118 

ARIZONA Hamilton! Avnet GEORGIA Gaithersburg 
Chandler (408) 743-3355 Duluth Pioneer Technology 

Hamilton! Avnet Time Electronics Arrow Electronics (301) 921-0660 

(602) 231-5100 (408) 734-9888 (404) 497-1300 MASSACHUSETTS 
Phoenix Thousand Oaks Norcross Andover 

Arrow Electronics Bell Industries Bell Industries Bell Industries 
(602) 437-0750 (805) 499-6821 (404) 662-0923 (508) 474-8880 

Tempe Torrance Hamilton! Avnet Lexington 
Anthem Electronics Time Electronics (404) 447-7500 Pioneer Standard 
(602) 966-6600 (213) 320-0880 Pioneer Technology (617) 861-9200 
Bell Industries Tustin (404) 448-1711 Zeus Components 
(602) 966-7800 Arrow Electronics Time Electronics (617) 863-8800 
Time Electronics (714) 838-5422 (404) 448-4448 Norwood 
(602) 967-2000 Yorba Linda 

ILLINOIS Gerber Electronics 
CALIFORNIA 

Zeus Components 
Addison (617) 769-6000 

Agora Hills 
(714) 921-9000 

Pioneer Electronics Peabody 
Bell Industries COLORADO (708) 437-9680 Hamilton! Avnet 
(818) 706-2608 Englewood Bensenville (508) 531-7430 

Zeus Components Anthem Electronics Hamilton! Avnet Time Electronics 
(818) 889-3838 (303) 790-4500 (708) 860-7780 (508) 532-6200 

Anaheim Arrow Electronics Elk Grove Village Wilmington 
Time Electronics (303) 790-4444 Anthem Electronics Anthem Electronics 
(714) 934-0911 Hamilton! Avnet (708) 640-6066 (508)657-5170 

Chatsworth (303) 799-7800 Bell Industries Arrow Electronics 
Anthem Electronics CONNECTICUT (708) 640-1910 (508) 658-0900 

(818) 700-1000 Cheshire Itasca MICHIGAN 
Arrow Electronics Time Electronics Arrow Electronics Ann Arbor 
(818) 701-7500 (203) 271-3200 (708) 250-0500 Bell Industries 
Hamilton Electro Sales Danbury Urbana (313) 971-9093 
(818) 700-6500 Hamilton! Avnet Bell Industries Grand Rapids 
Time Electronics (203) 797-2800 (217) 328-1077 Arrow Electronics 
(818) 998-7200 Norwalk Wood Dale (616) 243-0912 

Costa Mesa Pioneer Standard Time Electronics Hamilton! Avnet 
Avnet Electronics (203) 853-1515 (708) 350-0610 (616) 243-8805 
(714) 754-6050 Wallingford INDIANA Pioneer Standard 
Hamilton Electro Sales Arrow Electronics Carmel (616) 698-1800 
(714) 641-4159 (203) 265-7741 Hamilton! Avnet Livonia 

Cypress Waterbury (317) 844-9333 Arrow Electronics 
Bell Industries Anthem Electronics Fort Wayne (313) 665-4100 
(714) 895-7801 (203) 575-1575 Bell Industries Pioneer Standard 

Gardena FLORIDA (219) 423-3422 (313) 525-1800 
Bell Industries Altamonte Springs Indianapolis Novi 
(213) 515-1800 Bell Industries Advent Electronics Inc. Hamilton! Avnet 
Hamilton! Avnet (407) 339-0078 (317) 872-4910 (313) 347-4720 
(213) 217-6751 Pioneer Technology Arrow Electronics Southfield 

Irvine (407) 834-9090 (317) 243-9353 R. M. Electronics, Inc. 
Anthem Electronics Clearwater Bell Industries (313)262-1582 
(714) 768-4444 Pioneer Technology (317) 634-8200 Wyoming 

Ontario (813) 536-0445 Pioneer Standard R. M. Electronics, Inc. 
Hamilton! Avnet Deerfield Beach (317) 573-0880 (616) 531-9300 
(714) 989-4602 Arrow Electronics IOWA MINNESOTA 

Rocklin (305) 429-8200 Cedar Rapids Eden Prairie 
Anthem Electronics Bell Industries Anthem Electronics 
(916) 624·9744 Advent Electronics 

(305) 421-1997 (319) 363-0221 (612) 944-5454 
Bell Industries Pioneer Technology Pioneer Standard 
(916) 652-0414 Arrow Electronics 

(305) 428-8877 (319) 395-7230 (612) 944-3355 
Sacramento Fort Lauderdale Edina 

Hamilton! Avnet Bell Industries 
Hamilton! Avnet (319) 395-0730 Arrow Electronics 

(916) 925·2216 (305) 971-2900 (612) 830-1800 
San Diego Hamilton! Avnet 

Time Electronics (319) 362-4757 Time Electronics 
Anthem Electronics (305) 484-7778 (612) 835-1250 
(619) 453·9005 Lake Mary KANSAS Minnetonka 
Arrow Electronics Arrow Electronics Lenexa Hamilton! Avnet 
(619) 565-4800 (407) 333-9300 Arrow Electronics (612) 932-0600 
Hamilton! Avnet Largo (913) 541-9542 
(619) 571-7510 Bell Industries Hamilton! Avnet 
Time Electronics (813) 541-4434 (913) 888-8900 
(619) 586-1331 



NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued) 

MISSOURI Rochester OREGON WASHINGTON 
Chesterfield Arrow Electronics Beaverton Bellevue 

Hamilton/ Avnet (716) 427·0300 Almac·Stroum Electronics Almac·Stroum Electronics 
(314) 537·1600 Hamilton/ Avnet (503) 629·8090 (206) 643·9992 

St.Louis (716) 475·9130 Anthem Electronics Bothell 
Arrow Electronics Summit Electronics (503) 643·1114 Anthem Electronics 
(314) 567·6888 (716) 334·8110 Arrow Electronics (206) 483·1700 
Pioneer Standard Ronkonkoma (503) 645·6456 Kent 
(314) 432-4350 Zeus Components Hamilton/ Avnet Arrow Electronics 
Time Electronics (516) 737·4500 (503) 627·0201 (206) 575·4420 
(314) 391·6444 Syracuse Lake Oswego Redmond 

NEW HAMPSHIRE Hamilton/ Avnet Bell Industries Bell Industries 

Hudson (315) 437·2641 (503) 635·6500 (206) 885·9963 

Bell Industries Time Electronics Portland Hamilton/ Avnet 
(603) 882·1133 (315) 432·0355 Time Electronics (206) 881·6697 

Manchester Westbury (503) 684·3780 Time Electronics 
Arrow Electronics Hamilton/ Avnet Export Div. PENNSYLVANIA (206) 882·1600 

(603) 668·6968 (516) 997·6868 Horsham WISCONSIN 
Hamilton/ Avnet Woodbury Anthem Electronics Brookfield 
(603) 624·9400 Pioneer Electronics (215) 443·5150 Arrow Electronics 

NEW JERSEY 
(516) 921·8700 Pioneer Technology (414) 792·0150 

Cherry Hill NORTH CAROLINA (215) 674·4000 Mequon 

Hamilton/ Avnet Charlotte King of Prussia Taylor Electric 
(609) 424·0100 Pioneer Technology Time Electronics (414) 241·4321 

Fairfield (704) 527·8188 (215) 337·0900 Waukesha 

Anthem Electronics Time Electronics Monroeville Bell Industries 
(201) 227·7960 (704) 522·7600 Arrow Electronics (414) 547·8879 

Hamilton/ Avnet Durham (412) 856·7000 Hamilton/ Avnet 
(201) 575·3390 Pioneer Technology Pittsburgh (414) 784·4516 

Marlton (919) 544·5400 Hamilton/ Avnet CANADA 
Arrow Electronics Raleigh (412) 281·4150 WESTERN PROVINCES 
(609) 596·8000 Arrow Electronics Pioneer Burnaby 

Parsippany (919) 876·3132 (412) 782·2300 Hamilton/ Avnet 
Arrow Electronics Hamilton/ Avnet TEXAS (604) 437·6667 
(201) 538·0900 (919) 878·0810 Austin Semad Electronics 

Pine Brook Winston·Salem Arrow Electronics (604) 420·9889 
Nu Horizons Electronics Arrow Electronics (512) 835·4180 Calgary 
(201) 882·8300 (919) 725·8711 Hamilton/ Avnet Hamilton/ Avnet 
Pioneer Standard OHIO (512) 837·8911 (403) 250·9380 
(201) 575·3510 Centerville Pioneer Standard Semad Electronics 
Time Electronics Arrow Electronics (512) 835·4000 (403) 252·5664 
(201) 882·4611 (513) 435·5563 Time Electronics Zentronics 

NEW MEXICO Bell Industries (512) 399·3051 (403) 272·1021 

Albuquerque (513) 435·8660 Carrollton Edmonton 

Alliance Electronics Inc. Belllndustries·Military Arrow Electronics Zentronics 
(505) 292·3360 (513) 434·8231 . (214) 380·6464 (403) 468·9306 

Arrow Electronics Cleveland Time Electronics Richmond 
(505) 243·4566 Pioneer (214) 241·7441 Zentronics 
Bell Industries (216) 587·3600 Dallas (604) 273·5575 

(505) 292·2700 Dayton Hamilton/ Avnet Saskatoon 
Hamilton/ Avnet Hamilton/ Avnet (214) 404·9906 Zentronics 
(505) 345·0001 (513) 439·6700 Pioneer Standard (306) 955·2207 

NEW YORK 
Pioneer Standard (214) 386·7300 Winnipeg 
(513) 236·9900 Houston Zentronics 

Amityville Zeus Components Arrow Electronics (204) 694·1957 
Nu Horizons Electronics 
(516) 226·6000 

(914) 937·7400 (713) 530·4700 EASTERN PROVINCES 
Dublin Pioneer Standard Mississauga Binghamton Time Electronics (713) 988·5555 

Pioneer Hamilton/ Avnet 
(607) 722·9300 

(614) 761·1100 Richardson (416) 677·7432 

Buffalo 
Solon Anthem Electronics Time Electronics 

Summit Electronics 
Arrow Electronics (214) 238·7100 (416) 672·5300 

(716) 887·2800 
(216) 248·3990 Zeus Components Zentronics 

Commack 
Hamilton/ Avnet (214) 783·7010 (416) 564·9600 

Anthem Electronics 
(216) 831·3500 Stafford Nepean 

(516) 864·6600 
Westerville Hamilton/ Avnet Hamilton/ Avnet 

Fairport 
Hamilton/ Avnet (713) 240·7733 (613) 226·1700 

Pioneer Standard 
(614) 882·7004 UTAH Zentronics 

(716) 381·7070 OKLAHOMA Midvale (613) 226·8840 

Time Electronics Tulsa Beillndustrles Ottawa 
(716) 383·8853 Arrow Electronics (801) 255·9611 Semad Electronics 

Hauppauge (918) 252·7537 Salt Lake City (613) 727·8325 

Arrow Eiectronics Hamilton/ Avnet Anthem Electronics Pointe Claire 
(518) 231·1000 (918) 252·7297 (801) 973·8555 Semad Electronics 
Hamilton/ Avnet Pioneer Standard Arrow Electronics (514) 694·0860 

(516) 434·7413 (918) 492·0546 (801) 973·6913 St. Laurent 
Time Eiectronlcs Radio Inc. Hamllton/ Avnet Hamlltonl Avnet 
(516) 273·0100 (918) 587·9123 (801) 972·4300 (514) 335·1000 

Port Chester West Valley Zentronics 
Zeus Components Time Electronics (514) 737·9700 

(914) 937·7400 (801) 973·6161 Willowdale 
ElectroSonic Inc. 
(416) 494·1666 



SALES OFFICES 

ALABAMA FLORIDA MICHIGAN ONTARIO 
Huntsville Boca Raton Grand Rapids Mississauga 

(205) 721-9367 (407) 997-6133 (616) 940-0566 (416) 676-2920 

ARIZONA Orlando W. Bloomfield Nepean 

Tempe (407) 629-1720 (313) 655-0166 (613) 596-0411 

(602) 966-4563 St. Petersburg MINNESOTA OREGON 

CALIFORNIA 
(613) 577-5017 Bloomington Portland 

Inglewood GEORGIA (612) 654-6200 (503) 639-5442 

(213) 645-4226 Norcross MISSOURI PENNSYLVANIA 
Roseville (404) 441-2740 St. Louis Horsham 

(916) 766-5577 ILLINOIS (314) 569-9630 (215) 672-6767 
San Diego Schaumburg NEW JERSEY PUERTO RICO 

(619) 567-0666 (706) 397-6777 Paramus Rio Piedras 
Santa Clara INDIANA (201) 599-0955 (609) 756-9211 

(406) 562-5900 Carmel NEW MEXICO QUEBEC Tustin (317) 643-7160 Albuquerque Pointe Claire (714) 259-6660 
Woodland Hills 

Fort Wayne (505) 884-5601 (514) 426-2992 

(818) 868-2602 
(219) 484-0722 

NEW YORK TEXAS 
IOWA Fairport Austin COLORADO 

Boulder 
Cedar Rapids (716) 223-7700 (512) 346-3990 

(303) 440-3400 
(319) 395-0090 Melville Houston 

Colorado Springs KANSAS (516) 351-1000 (713) 771-3547 

(719) 576-3319 Overland Park Wappinger Falls Richardson 

Englewood (913) 451-4402 (914) 296-0660 (214) 234-3611 

(303) 790-6090 MARYLAND NORTH CAROLINA UTAH 

CONNECTICUT Hanover Raleigh Salt Lake City 

Hamden (301) 796-8900 (919) 632-0661 (801) 322-4747 

(203) 268-1560 MASSACHUSETTS OHIO WASHINGTON 
Burlington Dayton Bellevue 

(617) 221-4500 (513) 435-6666 (206) 453-9944 
Independence WISCONSIN 

(216) 524-5577 Brookfield 
(414) 762-1618 
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