

7.3 Memory-Mapped 1/0 Address Decoder (Continued)

PALlID DEVICE DESIGN Port 1 = ABO-/ AB1-/ AB2-AB3-AB4-AB5-AB6-/ AB7

One PAL 16L2 can be used to monitor a 16-bit address bus,
fully decode addresses, and furnish enables to two ports,
each of which can be anywhere within 64k of address
space. Partial decoding for a larger number of ports can be
done using other members of the PAL device family.

-AB8-AB9-ABA-ABB-ABC-/ ABD-/ ABE-/ ABF

The above example shows address decoding for memory
locations IF78H and IF79H. The equation terms could be
changed to accommodate any 16-bit address.

Typical logic equations for the memory-mapped I/O logic
are as follows:

Port a = / ABO-/ AB1-/ AB2-AB3-AB4-AB5-AB6-/ AB7-
AB8-AB9-ABA-ABB-ABC-/ ABD-/ ABE-/ ABF

PLANT'" INPUT FILE

title Memory mapped 1/0 address decoder
pattern MEMORY
revision A
author Tarif Engineer
cOlTl'any National Semiconductor Corporation
Date 11/28/1989

chip MUP PAL16L2

pin 1 2 3 4 5 6 7
ABO AB1 AB2 AB3 AB4 ABS AB6

pin 11 12 13 14 15 16 17
AB9 ABA ABB ABC IPORT1 IPORTO ABO

equations

8 9 10
AB7 AB8 GND

18 19 20
ABE ABF VCC

PORTO = IABO * IAB1 * IAB2 * AB3 * AB4 * ABS * AB6 * IAB7 * AB8 * AB9
* ABA * ABB * ABC * IABO * IABE * IABF

PORT1 ABO * IAB1 * IAB2 * AB3 * AB4 * ABS * AB6 * IAB7 * AB8 * AB9
* ABA * ABB * ABC * IABO * IABE * IABF

end of MEMORY

7-13

TL/L/9991-18

fII

en
Q)

c..
E
cu
>< w
c
o
;:;
cu
.~ c..
c.

oCt

7.3 Memory-Mapped 1/0 Address Decoder (Continued)

PLANTM JEDEC FILE

PAL16L2
titLe Memory mapped I/O address decoder
pattern MEMORY
revision A
author Tarif Engineer
company NationaL Semiconductor Corporation
Date 11/28/1989

*
QF0512*QP20*FO*
LOOOO
10101010011001100101010110010101
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000*
L02S6
10011010011001100101010110010101
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000*
C0420*
0000

TLlL/9991-21

7-14

Document fiLe for MEMORY.JNP
Device: 16L2

Pin Label

1 ABO
2 AB1
3 AB2
4 AB3
S AB4
6 ABS
7 AB6
8 AB7
9 AB8
10 GND
11 AB9
12 ABA
13 ABB
14 ABC
15 PORT1
16 PORTO
17 ABD
18 ABE
19 ABF
20· VCC

Type

com input
com input
com input
com input
com input
com input
com input
com input
com input
ground pin
com input
com input
com input
com input
neg,com output
neg,com output
com input
com input
com input
power pin

TL/Ll9991-36

Chip Diagram (DIP)

ABO-r-r-:; ~vcc
AB1- 2 19 i-ABF

AB2- 3 18 !-ABE

AB3- 4

AB4- 5

AB5- 6

AB6- 7

AB7- 8

AB8- 9

GND- 10

17 !-ABO

16 i-PORTO

15 i-PORTI

14 i-ABC

131-ABB

12 !-ABA

II~AB9

TL/L/9991-58

7.3 Memory-Mapped 1/0 Address Decoder (Continued)

1
>

AB,
2 19

> <: ABF

3 .. 18
~ ~ ABE

4 17
12 < ABC

" II
16 II

""" " ./ II
II
II

5
J' ..

L2'
JI

1
JI

15 u

" n
II ./ JI
JI
JI

6 .. 14
L2' 5.a ABC

7 .. 13
12 < ABB

8 12
L2' < ABA

9 11
.c;J ABa

• , J J ., I J I lUll UUI." IIUIII, JIIUUJ JUIIUJ UHJUI

TL/Ll9991-22

FIGURE 7.3.2. PAL 16L2 Logic Diagram Showing Address Decoder Fuse Pattern

,.
7-15

U)
Q)

'is.
E
~

LLI
C
o ..
C'CI
.2
'is.
Q.

<C

7.4 Quad 4-to-1 Multiplexer
DESCRIPTION

Widely used in computer and data communications circuits,
multiplexers route one of several input banks to an output,
based on the condition of select inputs. This particular ver­
sion has 4 input banks, each 4-bits wide (Figure 7.4.1);
therefore, two select lines are required to choose 1 of 4
inputs, as shown in the function table of Figure 7.4.2. Possi­
ble applications for our multiplexer include bus selection in a
multibus computer environment, or data manipulation in an
arithmetic/logic circuit.

With a total of 16 multiplexer inputs and two Select inputs,
this design is well suited for the GAL20V8. The pinout cho­
sen for this example is shown in Figure 7.4.3; actual pin
placement of the multiplexer outputs is not critical since the
versatility of the GAL20V8 allows the designer to choose
that combination of output pins that best suits the board
layout. The device was programmed using ABEL; the logic
design input files are shown in Figure 7.4.4, with reduced
equations shown in the document-generator file of Figure
7.4.5. The 'fuse' map is shown in Figure 7.4.6.

AO

•
•
A3

Bo

•
•
B3

INPUTS

Co

•
•
C3

Do

•
•
03

SELECT
SI So

AOUT

BOUT

COUT

DOUT

FIGURE 7.4.1. Block Diagram

}O~m

TL/L/9991-23

S1 So

0 0
0 1
1 0
1 1

7-16

AOUT BOUT COUT DOUT

Ao BO Co Do
Al Bl Cl Dl
A2 B2 C2 D2
A3 B3 C3 D3

FIGURE 7.4.2. Function Table

Ao 24 Vee

AI SI

A2 So

A3 AOUT

Bo 20 BOUT

Bl GAL20V8
19 COUT

B2 18 DOUT

B3 17 03

Co 16 O2
Cl 15 01
C2 14 Do

GND 13 C3

TLIL/9991-24

FIGURE 7.4.3. Pinout Diagram

~--~~

7.4 Quad 4-to-1 Multiplexer (Continued)

module quad_4to1_mux

title 'ABEL INPUT FILE
Quad 4 to 1 Multiplexer in a GAL20V8
National Semiconductor

April 17, 1986
Joe Eng'

"device declaration

"location
U8

"pin declaration

"inputs
AO,A1,A2,A3
BO,B1,B2,B3
CO,C1,C2,C3
00,01,02,03

"outputs

keyword
device

pin 1,2,3,4;
pin 5,6,7,8;

device code
'P20V8S' ;

pin 9,10,11,13;
pin 14,15,16,17;

Aout,Bout,cout,oout pin 21,20,19,18:

"control
SO,Sl pin 22,23:

equations

Aout (!Sl & ISO & AO) # (! Sl & SO & A1) #
(Sl & ISO & A2) # (Sl & SO & A3) :

Bout (! Sl & ISO & BO) # (!Sl & SO & B1) #
(Sl & ISO & B2) # (Sl & SO & B3);

Cout .,. (! Sl & ISO & CO) # (lSl & SO & Cl) #
(Sl & ISO & C2) # (Sl&SO&C3);

Oout = (! Sl & ISO & DO) # (!Sl & SO & D1) #
(Sl & ISO & D2) # (Sl & SO & D3):

test_vectors

«(Sl,SO,AO,A1,A2,A3,BO,B1,B2,B3,CO,Cl,C2,C3,DO,D1,D2,D3] ->
[Aout,Bout,cout,Dout])

" S S A A B B C C D o

" 100 1 2 3 012 3 a 1 2 3 012 3

outputs

ABC D

[0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [1,0,0,0]:
(0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,1,0,0];
(1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,0,1,0]:
[1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] -> [0,0,0,1]:

(0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [1,1,1,0]:
(0,1,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [1,1,0,1]:
[1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1) -> [1,0,1,1);
[1,1,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1] -> [0,1,1,1):

FIGURE 7.4.4. ABEL Input File

7·17

" select
"AO,BO,CO,DO
"A1,B1,C1,D1
" A2 , B2 , C2 , D2
"A3, B3, C3, D3

"AO,BO,CO,DO
"Al,B1,Cl,Dl
"A2,B2,C2,02
"A3 , B3 , C3 , D3

TL/L/9991-2S

"C
"E..
~r -o·
:::s
m
><
D)

3
"C
(j)
rn

• I

o r--,
G)

a..
E
CO
><

LLI
C
o
;:;
ca
.~ a..
a.
<I:

7.4 Quad 4-to-1 Multiplexer (Continued)

ABEL(tm) Version 1.19 Document Generator
Quad 4 to 1 Multiplexer in a GAL20V8 April 17, 1986
National Semiconductor Joe Eng
Equations for Module quad_4to1_mux

Device U8

Reduced Equations:

Aout - (AO & 150 & 151
t A1 & SO & 151
t A2 & ISO , 51
11 A3 & SO & 51);

Bout - (BO & ISO & 151
t B1 & SO & 151
, B2 & ISO & 51
, B3 & SO & 51);

cout

oout

(CO & 150 & 151
t C1 & SO & 151
C2 & 150 & 51
C3 & SO & 51);

(DO & ISO & 151
01 & SO & 151
02 & ISO & 51
03 & SO & 51);

FIGURE 7.4.5. Reduced ABEL Equations

7-18

TLlL/9991-26

7.4 Quad 4-to-1 Multiplexer (Continued)

OPH* 0F2706*
LOOOO
00
00
00
00
00
00
00
00
1101111 0 111 0 1111111111111111111111111111
0111111011011111111111111111111111111111
1111010111101 1111111111111 11111111111111
1111110101011111111111111111111111111111
00
00
00
00
11111110111001 11111111111111111111111111
1111111011011111011111111111111111111111
1111110111101111111101111111111111111111
1111110111011111111111110111111111111111
00
00
00
00
1111111011101111111111111111011111111111
1111111011011111111111111111111101111111
1111110111101111111111111111111111110111
1111110111011111111111111111111111111101
00
00
00
00
1111111011101111111111111111111111011111
1111111011011111111111111111110111111111
1111110111101111111111111101111111111111
1111110111011111111111011111111111111111
00
00
00
00*
L2~60

01111000*
L2~6a

00*
L26J2
1*
L26J 3
0*
L2634
0*
L263~

0*
L2636
0*
L2637
1*
L263a
1*
L2639
1-
L2640
11 *
L2704
10-
VOOOI 10000100001N00001LLLHOON*
V0002 10000100001N00001LLHL10N*
V0003 10000100001N00001U1LL01N*
V0004 10000100001N00001HLLLI1N*
VOOOS .11101101101N10111LHHII00N*
V0006 11101101101NI0IIIHLHHI0N*
V0007 11101101101N10111HIlUlO1N*
voooa 11101101101NI0111HHIlLI1N*
C~127*

FIGURE 7.4.6. 'Fuse' Map

7-19

TL/Ll9991-27

• I

tn
CD
'i5..
E
CO
><
W
C
o
;:
CO
.~
'i5..
Q.

<

7.5 DuaIS-to-1 Multiplexer
The Oual 8:1 Mux selects one of eight inputs, 00 through
07, specified by three binary select inputs, A, 8 and C. The
true data is output on Y when strobed by S. The circuit is
implemented using a PAL20L2.

LOGIC SYMBOL

Vee A S 1Y 2Y 207 206 205 204 203

i 24 23 22 21 20 19 18 17 16 15 14 13

A B C S 1Y 2Y 207 206 205 204

r-- 100 2031-

101 102 103 104 105 106 107 200 201 202

1 2 3 4 5 6 7 8 9 10 11 112

100 101 102 103 104 105 106 107 200 201 202 GNO

TL/Ll9991-28

Pinout

FUNCTION TABLE

Inputs Output

Select Strobe
Y

C B A S

X X X H H
L L L L 00
L L H L 01
L H L L 02
L H H L 03
H L L L 04
H L H L 05
H H L L 06
H H H L 07

7·20

r---, >
7.5 DuaIS-to-1 Multiplexer (Continued)

LOGIC DIAGRAM
Dual 8:1 Mux

23 22 21 20

7·21

24

18

12

Vee

2Y

----'!
TLlLl9991-29

"C
"2.
5"
0) -0"
:l
m
><
0)

3
"C
CD en

•

'" IV
C.
E
CO
><

UJ
C
o
;;
CO
.~
C.
c.

<r:

7.5 DuaIS-to-1 Multiplexer (Continued)

PLANTM INPUT FILE

title OUAL 8 to 1 multiplexer
pattern mux8t1
revision A
author Tarif Engineer
company National Semiconductor Corporation
Date 11/15/1989

chip mux8t1 PAL20L2

pin 1 2 3 4 5 6 7
100 101 102 103 104 105 106

pin 13 14 15 16 17 18 19
203 204 205 206 207 2Y 1Y

equations

!1Y /100 * /C * /B • /A * /S
+ /101 * /C * /B • A * /S
+ /102 * /C * B • /A • /S
+ /103 • /C • B • A • /S
+ /104 • C 11 /B • /A • /S
+ /105 * C * /B • A * /s
+ /106 • C * B • /A • /S
+ !107 • C * B 11 A • /S

/2Y = /200 * /C • /B * /A * /S
+ /201 * /C * /B 11 A· /S
+ /202 * /C * B· /A • /S
+ /203 * /C * B· A· /S
+ /204· C· /B • /A • /S
+ /205· C· /B 11 A· /S

+ !206· C 11 B· /A • /S
+ /207· C * B· A * /S

end of mux8t1

7-22

8
107
20
S

9 10 11 12
200 201 202 GNO
21 22 23 24
C B A VCC

TL/L/9991-FO

7.S DuaIS-to-1 Multiplexer (Continued)

PLANTM JEDEC FILE

PAL20L2
title DUAL 8 to 1 multiplexer
pattern mux8t1
revision A
author Tarif Engineer
company National Semiconductor Corporation
Date 11/15/1989
*
QF0640*QP24*FO*
LOOOO
1110111011101110111011111111111111111111
1011110111101110111011111111111111111111
1111101011011110111011111111111111111111
1111110110011110111011111111111111111111
1111111011101001111011111111111111111111
1111110111101101101011111111111111111111
1111111011011101111010111111111111111111
1111110111011101111011111011111111111111*
L0320
1111111011101110111011111111101111111111
1111110111101110111011111111111110111111
1111111011011110111011111111111111111011
1111110111011110111011111111111111111110
1111111011101101111011111111111111101111
1111110111101101111011111111111011111111
1111111011011101111011111110111111111111
1111110111011101111011101111111111111111*
C408E*
0000

7-23

TLlL/9991-F1

l>
"C
"2. O·
Q,) -O·
:::s
m
><
Q,)

3
"C
(D
rn

0
Q)

C.
E

7.5 DuaI8-to-1 Multiplexer (Continued)

CO Document file for 2MUX.INP ><
W Device: 20L2 c
0
;:;
CO
.~ Pin Label Type
C.
c.
<t 100 com input

2 101 com input
3 102 com input
4 103 com input
5 104 com input
6 lD5 com input
7 106 com input
8 107 com input
9 200 com input
10 201 com input
11 202 com input
12 GNO ground pin
13 203 com input
14 204 com input
15 205 com input
16 206 com input
17 207 com input
18 2Y neg,com output
19 lY neg,com output
20 S com input
21 C com input
22 B com input
23 A com input
24 vee power pin

TLlL/9991-F4

Chip Diagram (DIP)

100-~-Vcc
101- 2 23 -A
102- 3 22 -B
103- 4 21 ~C

104- 5 20 ~S

105- 6 19 ~1Y

106- 7 18 ~2Y

107- 8 17 r-207

200- 9 16 f-206

201- 10 15 f-205

202- 11 14 r-204

GNO- 12 13 r-203

TL/L/9991-53

7·24

7.6 16-to-1 Multiplexer
The 16:1 Mux selects one of sixteen inputs, EO through E15,
specified by four binary select inputs, A, B, C and D. The
true data is output on Y and the inverted data on W. The
circuit is implemented using a PAL20C1.

LOGIC SYMBOL

Vee A W E15 E14 E13 E12 Ell

r 24 23 22 21 20 19 18 17 16 15 14 13

A B C D Y W E15 E14 E13 E12

..- EO El1-

El E2 E3 E4 E5 E6 E7 EB E9 El0

1 2 3 4 5 6 7 8 9 10 11 112

EO El E2 E3 E4 E5 E6 E7 EB E9 El0 GND
TLIL/9991-30

Pinout

FUNCTION TABLE

Input
Output

Select

D C B A W Y

L L L L EO EO
L L L H E1 E1
L L H L E2 E2
L L H H E3 E3
L H L L E4 E4
L H L H E5 E5
L H H L E6 E6
L H H H E7 E7
H L L L E8 E8
H L L H E9 E9
H L H L E10 E10
H L H H m E11
H H L L E12 E12
H H L H E13 E13
H H H L E14 E14
H H H H E15 E15

7-25

'" CI)

Q.
E
cu
>< w
c
o
~
cu
.~
Q.
Co

c:r:

7.6 16-to-1 Multiplexer (Continued)

LOGIC DIAGRAM

23 22 21 20

\1 ~~ ~~r ~~'

I

EO
1

r-1
I

E1
2

r---t
I

E2
3

---,
I

4
E3

r-1
I

E4
5

-,
I

E5
6

r--'f
I

E6
7

r-'1
I

E7
8

16:1 Mux

,
~

,
~

" ~

" J

,
~

,
J

}--

~
I

9
E8

~
I

10 }--E9

~
I

11 " 0
~

E1 ,
--'

13 "' 1 J E1

,...--.,
I

14 ,
2

~
E1

---,
I

3 15 " ~ E1 ,
I

4 16 ,
J E1

~
--'

17 ,
5 J E1

---,

7-26

~

2

r-;:::=I

2 4
--Vee

19

18 w

12

TLlL/9991-31

7.6 16-to-1 Multiplexer (Continued)

PLANTM INPUT FILE

title 16 to 1 multiplexer
pattern mux16T1
revision A
author Tarif Engineer
company National Semiconductor Corporation
Date 11/15/1989

chip mux16T1 PAL20C1

pin 1 2 3 4 5 6 7 8
EO El E2 E3 E4 E5 E6 E7

pin 13 14 15 16 17 18 19 20
Ell E12 E13 E14 E15 \.J Y 0

equations

y EO * ID * Ie * IB * IA
+ El * 10 * IC * IB * A
+ E2 * ID * IC * B * IA
+ E3 * /0 * IC * B * A
+ E4 * 10 * C * IB * IA
+ E5 * 10 * C * /B * A
+ E6 * ID * C * B * IA
+ E7 * ID * C * B * A
+ EB * 0 * IC * IB * IA
+ E9 * 0 * IC * IB * A
+ El0* 0 * IC * B * IA
+ E11* D * IC * B * A
+ Et2* o * C * IB * IA
+ Et3* o * C * IB * A
+ Et4* o * C * B * IA
+ Et5* o * C * B * A

end of mux16T1

7-27

9 10 11 12
E8 E9 El0 GNO
21 22 23 24
C B A VCC

TL/L/9991-F2

•

II)
Q)

'ii.
E
co
><

LLI
c
o
;::
CO

.!::!
'ii.
Q.

<C

7.6 16-to-1 Multiplexer (Continued)

PLANTM JEDEC FILE

PAL20C1
title 16 to 1 multiplexer
pattern mux16T1
revision A
author Tarif Engineer
company National Semiconductor Corporation
Date 11/15/1989
*
QF0640*QP24*FO*
LOOOO
1101111011101110111011111111111111111111
0111110111101110111011111111111111111111
1111011011011110111011111111111111111111
1111110101011110111011111111111111111111
1111111011100101111011111111111111111111
1111110111101101011011111111111111111111
1111111011011101111001111111111111111111
1111110111011101111011110111111111111111
1111111011101110110111111111011111111111
1111110111101110110111111111111101111111
1111111011011110110111111111111111110111
1111110111011110110111111111111111111101
1111111011101101110111111111111111011111
1111110111101101110111111111110111111111
1111111011011101110111111101111111111111
1111110111011101110111011111111111111111*
C41CF*
0000

7-28

TL/L/9991-F3

7.6 16-to-1 Multiplexer (Continued)

Document file for MUX16T1
Device: 20e1

Pin Label

EO
2 E1
3 E2
4 E3
5 E4
6 E5
7 E6
a E7
9 Ea
10 E9
11 E10
12 GND
13 E11
14 E12
15 E13
16 E14
17 E15
18 \oJ

19 y

20 0

21 e
22 B

23 A

24 vee

Type

com input
com input
com input
com input
com input
com input
com input
com input
com input
com input
com input
ground pin
com input
com input
com input
com input
com input
unused
pos,com output
com input
com input
com input
com input
power pin

TL/L/9991-FS

Chip Diagram (DIP)

EO

El

E2

E3

E4

E5

E6

E7

EB

E9

El0

GND

7-29

Vee
A

B

C

o
y

W

E15

E14

E13

E12

Ell

TL/L/9991-S4

»
"C
'E..
(;'
D) -0'
:::J
m
><
D)

3
"C
CD en

o ,---,
CD
Q. 7.7 7-Bit Counter with Parallel Load
E = DESCRIPTION

W In this example, a GAL20V8 implements a seven-bit counter
5 with asynchronous carry-out and load functions. As illustrat­= ed in the block diagram (Figure 7.7.1) and pinout diagram
.~ (Figure 7.7.2), the carry-in and carry-out pins make the
Q. counter fully cascadable to form larger counters. The CUPL
CL design input files are shown in Figure 7. 7.3, and simulation

IICI: files in Figure 7.7.4. Note that the counter requires seven
registers and one asynchronous output, taking full advan­
tage of the generic architecture of the GAL20V8.

CLK--....

LOAO--....

7-BIT
LOAD DATA __ .. ASYNCHRONOUS ___ OUTPUTS

(00-06) COUNTER (°0-°6)

CARRYIN--....
CARRY OUT

CLEAR ---+I

TL/Ll9991-37

FIGURE 7.7.1. Block Diagram

7-30

CLK Vee

Do 2 CARRY IN

01 3 00

O2 4 °1
03 5 °2
04 GAL20VS

19 03

05 7 °4
06 S 17 °s

LOAD 9 06

CLEAR 10 CARRY OUT

11 14

GNO 12 13 OE

TL/L/9991-38

FIGURE 7.7.2. Pinout Diagram

7.7 7-Bit Counter with Parallel Load (Continued)

1*··**···***········*··*·*·******········********·******·**·**·1
1* *1
1* CUPL INPUT FILE * I
1* DESIGN INPUT FOR 7-BIT COUNTER *1
I'll *1
1*·*··*******·***********·*····**********************·********·1
1* ALLOWABLE TARGET DEVICE: GAL20V8 .1
1*··*·**··**·********1
PART NO 7BITCNT ;
NAME 7-BIT COUNTER
REV 01 ;
DATE 10/08/85 ;
DESIGNER Joe Engineer;
COMPANY National Semiconductor;
ASSEMBLY 3A-27
LOCATION U06

PIN 1 CLK 1* CLOCK INPUT ·1
PIN 2 DO I'll DATAO INPUT *1
PIN 3 D1 1* DATAl INPUT *1
PIN 4 02 1* DATA2 INPUT *1
PIN 5 03 1* DATA 3 INPUT *1
PIN 6 D4 I'll DATA4 INPUT ·1
PIN 7 05 1* DATA5 INPUT *1
PIN 8 D6 I'll DATA6 INPUT *1
PIN 9 LD 1* LOAD CONTROL *1
PIN 10 CLEAR; 1* ASYNCHRONOUS CARRY-IN *1

PIN 13 !OE ; 1* OUTPUT ENABLE *1
PIN 15 CARRYOUT
PIN 16 Q6 1* COUNTER MSB *1
PIN 17 05
PIN 18 04
PIN 19 03
PIN 20 02
PIN 21 Q1
PIN 22 00 I'll COUNTER LSB 'III
PIN 23 CARRYIN 1* CARRY-IN FOR CASCADING *1

TLlL/9991-39

FIGURE 7.7.3. CUPL Design Input File

7-31

•

en
CD
'is. 7.7 7·Bit Counter with Parallel Load (Continued)
E as
>< QO.D ... (LD & DO /* LOAD DO */ LLI
c # !LD & !QO & CARRY IN) & !CLEAR; /* TOGGLE */
0
;:;
as
.!:! Ql.D = (LD & 01 /* LOAD D1 */
'is. # !LD& !Q1 & QO & CARRYIN /* TOGGLE */ Q.

<C # !LD& Ql & !QO) & !CLEAR; /* HOLD */

Q2.D = (LD & D2 /* LOAD D2 */
!LD& !Q2 & Q1 & QO & CARRYIN /* TOGGLE */
!LD& Q2 & !Q1 /* HOLD */
!LD& Q2 & !QO) & !CLEAR; /* HOLD */

Q3.D = (LD & D3 /* LOAD D3 */
!LD& !Q3 & Q2 & Ql & QO & CARRY IN /* TOGGLE */
!LD& Q3 & !Q2 /* HOLD */
!LD& Q3 & !Q1 /* HOLD */
!LD& Q3 & !QO) & !CLEAR; /* HOLD */

Q4.D = (LD & D4 /* LOAD D4 */
!LD& !Q4& Q3 & Q2 & Q1 & QO & CARRYIN /* TOGGLE */
!LD& Q4 & !Q3 /* HOLD */
!LD& Q4 & !Q2 /* HOLD */
!LD& Q4 & !Q1 /* HOLD */
!LD& Q4 & !QO) & !CLEAR; /* HOLD */

Q5.D = (LD & 05 /* LOAD 05 */
!LD& !Q5& Q4 & Q3 & Q2 & Q1 & QO

& CARRYIN /* TOGGLE */
!LD& Q5 & !Q4 /* HOLD */
!LD& Q5 & !Q3 /* HOLD */
!LD& Q5 & !Q2 /* HOLD */
!LD& Q5 & !Ql /* HOLD */
! LD& Q5 & !QO) & !CLEAR; /* HOLD */

. Q6.D = (LD & D6 /* LOAD D6 */
!LD& !Q6& Q5 & Q4 & Q3 & Q2 & Q1 & QO

& CARRYIN /* TOGGLE */
!LD& Q6 & !Q5 /* HOLD */
!LD& Q6 & !Q4 /* HOLD */
!LD& Q6 & !Q3 /* HOLD */
!LD& Q6 & !Q2 /* HOLD */
! LD& Q6 & !Ql /* HOLD */
!LD& Q6 & !QO) & !CLEAR; /* HOLD */

CARRY OUT = ! LD & Q6 & Q5 & Q4 & Q3 & Q2 & Q1 & QO
& CARRYIN; /* CARRY-OUT */

TLIL/9991-40

FIGURE 7.7.3. CUPL Design Input File (Continued)

7-32

7.7 7-Bit Counter with Parallel Load (Continued)

1**1
1* *1
1* CUPL INPUT FILE *1
1* SIMULATION FOR 7-BIT COUNTER *1
1* */
1**1
1* ALLOWABLE TARGET DEVICE: GAL20V8 *1
1**1
PARTNO 7BITCNT ;
NAME 7-BIT COUNTER
REV 01 ,
DATE 10/08/85
DESIGNER Joe Engineer;
COMPANY National Semiconductor;
ASSEMBLY 3A-27
LOCATION U06 ;

ORDER:

CLK, IOE, CLEAR, LO, CARRYIN, D6, D5, D4, D3, D2, D1, DO, Q6,
Q5, Q4, Q3, Q2, Q1, QO, CARRYOUT;

VECTORS:

$msg"
$msg"
$msg"
$msg"
$msg"

C II.

C C COli.
L 0 L L I DDDDDDD QQQQQQQ U II.

K E R D N 654)210 654)210 T II.

a 1 X X X XXXXXXX
Cal x X XXXXXXX
C a a 1 x 1111111
C a a 1 x 0000000
C a a 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXX XXX X
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXX XXX X
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 1 X 0111111
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX
COO 1 X 1111110
COO 0 1 XXXXXXX
COO 0 1 XXXXXXX

ZZZZZZZ X
LLLLLLL L
HHHHHHH L
LLLLLLL L
LLLLLLH L
LLLLLHL L
LLLLLHH L
LLLLHLL L

/*
/*
/*
/*
/*
/*
/*
/*

LLLLHLH
LLLLHHL
LLLLHHH
LLLHLLL
LLLHLLH
LLLHLHL
LLLHLHH
LLLHHLL
LLLHHLH
LLLHHHL
LLLHHHH
LLHLLLL
LLHLLLH
LLHLLHL
LLHLLHH
LLHLHLL
LLHLHLH
LLHLHHL
LLHLHHH
LLHHLLL
LLHHLLH
LLHHLHL
LLHHLHH
LLHHHLL
LLHHHLH
LLHHHHL
LLHHHHH
LHLLLLL
LHLLLLH
LHHHHHH
HLLLLLL
HLLLLLH
HHHHHHL
HHHHHHH
LLLLLLL

L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L /*
L 1*
L /*
L /*
L 1*
L 1*
L 1*
L 1*
L 1*
L 1*
L 1*
L 1*
L /*
L /*
H 1*
L 1*

TEST III-Z *1
TEST CLEAR */
LOAD ONES *1
LOAD ZEROS */
COUNT=l *1
COUNT"'2 *1
COUNT"') */
COUNT=4 */
COUNT"'5 */
COUNT=6 *1
COUNT=? */
COUNT=8 */
COUNT=9 *1
COUNT=10 *1
COUNT=11 *1
COUNT=12 */
COUNT=l3 *1
COUNT=14 *1
COUNT"'15 *1
COUNT=16 *1
COUNT=l? */
COUNT=18 *1
COUNT=19 *1
COUNT=20 */
COUNT=21 */
COUNT=22 *1
COUNT=23 *1
COUNT=24 */
COUNT=25 */
COUNT=26 *1
COUNT=2? *1
COUNT=28 *1
COUNT=29 *1
COUNT=)O *1
COUNT=)l *1
COUNT=32 *1
COUNT=)3 *1
LOAD=63 TO OBSERVE MSB TQGGLE */
COUNT=64, OBSERVE MSB */
COUNT=65, OBSERVE MSB */
LOAD=126 TO OBSERVE CARRY */
COUNT=127, OBSERVE CARRY */
COUNT=O, OBSERVE CARRY */

FIGURE 7.7.4. CUPL Simulation File

7-33

TLlLl9991-50 ,.

o
CI)

Q.
E as
>< w
c
o

~
Q.
Q.

~

7.8 10-Bit Up/Down Counter
The ten-bit up/down counter can count up, count down, set
all output to high, disable the output (high impedance), and
load 2 LSB's, 2 MSB's and 6 middle bits high or low as a
group. All operations are synchronous with the rising edge
of the clock. SET overrides LOAD, COUNT and HOLD.
LOAD overrides COUNT and HOLD.

CIN enable counting operation or hold it. COUNT Up or
Down depend on UP signal.

All outputs are enabled when OE is low, otherwise HIGH-Z.

This circuit is implemented using a PAL20X10, with the ex­
clusive-or function the PAL20X10 facilitates design of coun­
ter and state sequences with minimum propagation delay.
The PAL20X10 offers an efficient means of implementing
counters. Normal PAL & PLA implementation would require
addition terms for the XOR functions. Having 10 output the
PAL20X10 supersets 20 and 24 medium PAL's in this spe­
cific application. On power up all registers are reset to sim­
plify sequential circuit design.

LOGIC SYMBOL

DATA
DUT

Vee i DO 01 02 03 04 05 06 07 08 09 \ ire

124 23 22 21 2D 19 18 17 16 15 14 13

DO 01 02 03 04 05 06 07 08 09

~ >CK
lD-BIT DE po-

COUNTER

DO Dl D2-D7 D8 09 LD CNT UP SET CIN
(~ ~

1 2 3 4 5 6 7 8 9 10 11 112

CK \ DO Dl D2-D7 D8 D9 I [Ii rn ms SET ~ GND

DATA
IN

TLlLl9991-51

Pinout

FUNCTION TABLE

OE CK SET LO CNT CIN UP 09-00 09-00 Operation

H X X X X X X X Z Hi-Z

L t H X X X X X H Set all HIGH

L t L L X X X D D LOADD

L t L H H X X X 0 HOLD

L t L H L H X X 0 HOLD

L t L H L L L X Oplus 1 Count UP

L t L H L L H X o minus 1 CountDN

7-34

7.8 10-Bit Up/Down Counter (Continued)

LOGIC DIAGRAM

CK!...t>o---------------,

~!!..t>

09 !;><>---!-WW-imm~::J

12

.r-

7·35

~vcc

• I
TLI LI 9991 - 52

en
CI)
Q.
E
C'CS
><
W
C o :;:

.~
Q.
Q.

ca::

7.8 10-Bit Up/Down Counter (Continued)

PLANTM INPUT FILE

title 10-BIT SYNCHRONOUS UP/OOlJN COUNTER
pattern COUNTER
revision A
author Tar if Eng i neer
company National Semiconductor Corporation
Date 11/17/1989
chip COUNTER PAL20Xl0

pin 1 2 3 4 6 7 8 9
CLK DO 01 0207 IlO ICNT IUP SET D8

pin 13 14 15 16 17 18 19 20 21
IOE 09 08 07 06 05 04 03 02

equations
/00:= /OO*LD */SET

+ ILO* ISET* IDO
$ LO */CIN*/SET*/CNT*UP
+ LD */CIN*/SET*/CNT*/UP

101 := 101*LD */SET
+ ILO*/SET*/Dl
$ LO */CIN*/SET*/CNT*UP */00
+ LO */CIN*/SET*/CNT*/UP* 00

102:= 102*LD */SET
+ ILO*/SET*/0207
$ LO */CIN*/SET*/CNT*UP */01*/00
+ LO */CIN*/SET*/CNT*/UP* 01* 00

/03:= 103*LO */SET
+ ILO*/SET*/02D7

10 11
ICIN D9
22 23
01 00

$ LO */CIN*/SET*/CNT*UP */02*/01*/00
+ LO */CIN*/SET*/CNT*/UP* 02* 01* 00

104:= 104*LO */SET
+ ILO*/SET*/D2D7
$ LD */CIN*/SET*/CNT*UP */03*102*/01*/00
+ lD */CIN*/SET*/CNT*/UP* 03* oz* 01* 00

105:= 105*LO */SET
+ ILO* ISET* 10207
$ LO */CIN*/SET*/CNT*UP */04*/03*/02*/01*/00
+ LD * ICI N* ISET* ICNT* IUP* 04* 03* 02* 01 * 00

106 : = /06*LD * ISET
+ ILO* ISET* 102D7

12
GNO
24
VCC

$ LO */CIN*/SET*/CNT*UP */05*104*/03*/02*/01*/00
+ LO */CIN*/SET*/CNT*/UP* 05* 04* 03* 02* 01* 00

107:= 107*LD */SET
+ ILD*/SET*/D2D7
$ LO * ICIN* ISET* ICNT*UP */06*/05*/04*/03*/02*/01*/00
+ LO */CIN*/SET*/CNT*/UP* 06* 05* 04* 03* 02* 01* 00

108 : = 108*LO * ISET
+ ILO* ISET* 108
$ LO */CIN*/SET*/CNT*UP */07*/06*/05*/04*/03*/02*/01*/00
+ LO */CIN*/SET*/CNT*/UP* 07* 06* 05* 04* 03* 02* 01* 00

109 : = 109*LO * ISET
+ ILO* ISET* 109
$ LO * IC I N* ISET* ICNT*UP */08*/07*/06*/05*/04*/03*/02*/01 */00
+ LD */CIN*/SET*/CNT*/UP* 08* 07* 06* 05* 04* 03* 02* 01* 00

7-36

TL/L/9991-F6

7.8 10-Bit Up/Down Counter
PLANTM JEDEC FILE

PAL20Xl0
title 10-SIT SYNCHRONOUS UP/DOliN COUNTER
pattern COUNTER
revision A
author Tari f Engineer
company National Semiconductor Corporation
Date 11/1711989

QF1600*QP24*FO*
LOOOO
1110111111111011111111111011111111111111
1011111111110111111111111011111111111111
1111111111111011011110111011111101111111
1111111111111011011101111011111101111111*
L0160
1111111011111011111111111011111111111111
1111101111110111111111111011111111111111
1110111111111011011110111011111101111111
1101111111111011011101111011111101111111*
L0320
1111111111101011111111111011111111111111
1111111110110111111111111011111111111111
11 lOll 10111 11011011110111011111101111111
1101110111111011011101111011111101111111*
L0480
1111111111111010111111111011111111111111
1111111110110111111111111011111111111111
111011 lOll 1 01 01101 1 1 10111011111101111111
1101110111011011011101111011111101111111*
L0640
1111111111111011111011111011111111111111
1111111110110111111111111011111111111111
1110111011101010011110111011111101111111
1101110111011001011101111011111101111111*
L0800
1111111111111011111111101011111111111111
1111111110110111111111111011111111111111
11101 11 011101010011010111011111101111111
1101110111011001010101111011111101111111 *
L0960
1111111111111011111111111010111111111111
1111111110110111111111111011111111111111
1110111011101010011010101011111101111111
1101110111011001010101011011111101111111*
L 1120
1111111111111011111111111011111011111111
1111111110110111111111111011111111111111
1110111011101010011010101010111101111111
1101110111011001010101011001111101111111*
L 1280
1111111111111011111111111011111111101111
1111111111110111111111111011101111111111
1110111011101010011010101010111001111111
1101110111011001010101011001110101111111*
L 1440
1111111111111011111111111011111111111110
1111111111110111111111111011111111111011
1110111011101010011010101010111001101111
1101110111011001010101011001110101011111*

CAD3E*
0000

7·37

TL/L/9991-F7

II

U)
Q)

~ 7.8 8-Bit Cascadable Shift Register
~ Document file for CNT10B.INP

UU Device: 20X10
C
o ..
m
.~ c..
Co
<I:

Pin

2
3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

label

ClK
DO
01
0207
LO
CNT
UP
SET
08
CIN
09
GNO
DE
a9
a8
07
a6
as
a4
03
a2
a1
ao
VCC

Type

clock pin
com input
com input
com input
com input
com input
com input
com input
com input
com input
com input
ground pin
enable pin
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
neg,reg,xor
power pin

Chip Diagram (DIP)

ClK-~r-Vcc
DO- 2 23 r-QO
Dl- 3 22 ~Ql

D2D7- 4 21 ~Q2
lD- 5 20 ~Q3

CNT- 6 19 r-Q4
UP- 7 18 r-Q5

SET- 8 17 r-Q6
D8- 9 16~Q7

CIN- 10 15 ~Q8
D9- 11 14 ~Q9

GND- 12 13 r-OE

7-38

feedback
feedback
feedback
feedback
feedback
feedback
feedback
feedback
feedback
feedback

TL/Ll9991-F8

TL/L/9991-59

7.9 8-Bit Equality Comparator
The equality comparator takes two 8-bit data words as in­
puts and produces one combinatorial output (EQ) which be­
comes active when the two input words match. Due to the
large number of product terms required to implement this
function, a PAL 16C1 is the appropriate device to use. The
complement output (NE) is also provided.

PINOUT

Vee
B,

B2

B3
HEO

EO

B4

B5

B6

eND 10 11 B7

TLlLl9991-GO

PLANTM INPUT FILE

title 8 bit comparator
pattern comBb
revision A
author Tarif Engineer

LOGIC DIAGRAM

EO

HE

TL/Ll9991-G 1

Note: To express this function in the sum·of·products form required by the
PAL lSC1, it is necessary to apply the identity function

XEIlY=XY+XY

as well as DeMorgan's Theorem

i\eS=A+B
to the above logic definition.

company National Semiconductor Corporation
Date 11/28/1989

chip comBb PAL16c1

: pin 1 2 3 4 S
BO AO A1 A2 A3

: PIN 11 12 13 14 15
B7 B6 B5 B4 EQ

equations

NEQ = AO * IBO + lAO * BO
+ A1 * IB1 + IA1 * B1
+ A2 * IB2 + IA2 * B2
+ A3 * 183 + IA3 * 83
+ A4 * 184 + IA4 * B4
+ A5 * 185 + IA5 * 85
+ A6 * 186 + IA6 * S6
+ A7 * IB7 + IA7 * B7

end of comBb

6 7 8 9 10 11 12
A4 AS A6 A7 GND

16 17 18 19 20
NEQ B3 S2 B1 vec

TL/L/9991-F9

7-39

fI
I

U)
Q)

C.
E
co
>< w
c
o
:;:;
CO
.~
C.
c.
cr:

7.9 a-Bit Equality Comparator (Continued)

PLANTM JEDEC FILE

PAL16C1
title 8 bit comparator
pattern com8b
revision A
author Tarif Engineer
company National Semiconductor Corporation
Date 11/28/1989

*
OF0512*oP20*FO*
LOOOO
01101111111111111111111111111111
10011111111111111111111111111111
11110110111111111111111111111111
11111001111111111111111111111111
11111111011011111111111111111111
11111111100111111111111111111111
11111111111101101111111111111111
11111111111110011111111111111111
11111111111111110110111111111111
11111111111111111001111111111111
11111111111111111111011011111111
11111111111111111111100111111111
11111111111111111111111101101111
11111111111111111111111110011111
11111111111111111111111111110110
11111111111111111111111111111001*
C3BC4*
0000

7·40

TLlLl9991-G2

»
Chip Diagram (DIP) "C

"E..
Document fiLe for eMPR8B.INP o·

I»
Device: 16e1 -o·

::s
m
><
I»

Pin LabeL Type 3
"C
CD
U)

1 BO com input
2 AD com input
3 A1 com input
4 A2 com input
5 A3 com input
6 A4 com input
7 AS com input
8 A6 com input
9 A7 com input
10 GND ground pin
11 B7 com input
12 B6 com input
13 B5 com input
14 B4 com input
15 EQ unused
16 NEQ pos,com output
17 83 com input
18 82 com input
19 B1 com input
20 vee power pin

TL/L/9991-G3

fI

7-41

t/)
CI)

"ii
E :: w
c
o =
.~
"ii a.
<C

7.10 8-Bit Barrel Shifter
DESCRIPTION
The barrel shifter (Figure 7.10.1) is a specialized shift regis­
ter that rotates data a selectable number of bit positions out
of the most-significant bit and back into the least-significant
bit-thus the name. Typical applications of a barrel shifter
are floating-point arithmetic and display rotation on a graph­
ics terminal.

Since our barrel shifter has 8 data inputs and 8 registered
outputs, as well as control signals, the GAL20V8 is the PlD
of choice. The shift-select inputs (So, S1, S2) determine the
number of positions shifted, as described in the function
table of Figure 7.10.2. The block diagram is shown in Figure
7. 10.3, and the pinout in Figure 7.10.4. The clock (elK)
input gates input data synchronously to the output registers,
and the output enable (OE) allows TRI-STATEI8l buffering of
the a outputs. The one remaining input is used for a reset
(RS) function.

The ABEL design input files shown in Figure 7.10.5 may
appear tedious, but simply enumerate the eight different bit­
shift possibilities for each output.

TL/L/9991-55

FIGURE 7.10.1. Barrel Shift Rotation

7-42

S2 S1

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

So 07 06 Os 04 03 02

0 D7 D6 D5 D4 D3 D2
1 D6 DS D4 D3 D2 D1
0 DS D4 D3 D2 D1 Do
1 D4 D3 D2 D1 Do D7
0 D3 D2 D1 Do D7 D6
1 D2 D1 Do D7 D6 Ds
0 D1 Do D7 D6 Ds D4
1 Do D7 D6 Ds D4 D3

FIGURE 7.10.2. Function Table

ClK

RS

BARREL
SHIFTER

SHIFT-CONTROL S

{

S2

INPUTS 1
50

FIGURE 7.10.3. Block Diagram

P20V8R

ClK Vee
51 52

So 07

Iry 06
06 Os

05 04
04 18 03
03 17 02

O2 16 01
01 15 00

Do 14 RS

GNO 13 OE

FIGURE 7.10.4. Pinout Diagram

01 00

D1 Do
Do D7
D7 D6
D6 Ds
Ds D4
D4 D3
D3 D2
D2 D1

TL/Ll9991-56

TL/Ll9991-57

7.10 8-Bit Barrel Shifter (Continued)

module barrel_shifter_8;

title 'ABEL INPUT FILE
8-bit Barrel Shifter in a GAL20V8
National Semiconductor

April 16, 1986
Joe Eng'

"device declaration

"location
U9

"pin declaration

"inputs

keyword
device

device code
'P20V8R' ;

07,06,05,04,03,02,01,00 pin 4,5,6,7,8,9,10,11;
CLK pin'1;

"outputs
07,06,05,04,03,02,01,00 pin 22,21,20,19,18,17,16,15;

"control
S2,S1,SO
RS
OE

pin 23,2,3;
pin 14;
pin 13;

" selects 0-7 bit shift
" resets all outputs to 0
" output enable

"constant declaration

x x.;
c ... C.;

" simplify 'don't care' constant
" simplify 'clock' constant

TL/L/9991-45

FIGURE 7.10.5. ABEL Input File

7·43

fI

en
CD
Q. 7.10 a-Bit Barrel Shifter (Continued)
E ca
>< equations W
C
0 QO := !RS & ((! S2 & !SI & ISO & DO) # ::= ca (IS2 & lSI & SO & 07) #
.~ (!S2 & SI & ISO & 06) # Q.
a. (! S2 & SI & SO & 05) #
c:((S2 & !SI & ISO & 04) #

(S2 & lSI & SO & 03) #
(S2 & SI & ISO & 02) #

(S2 & SI & SO & 01)) ;

Ql :== !RS & «IS2 & lSI & IsO & 01) #
(!S2 & lSI & SO & DO) #
(1 S2 & SI & 1 SO & 07) #

(!S2 & SI & SO & 06) #
(S2 & lSI & ISO· & 05) #

(S2 & lSI & SO & 04) #
(S2 & S1 & ISO & 03) #

(S2 & SI & SO & 02» ;

Q2 := !RS & «!S2 & lSI & ISO & 02) #
(IS2 & lSI & SO & 01) #
(IS2 & SI & ISO & DO) #

(1 S2 & SI & SO & 07) #
(S2 & lSI & ISO & 06) #

(S2 & lSI & SO & 05) #
(S2 & 51 & ISO & 04) #

(S2 & 51 & 50 & 03)) :

Q3 := IRS & « 152 & lSI & !50 & 03) 11
(1 S2 & 151 & SO & 02) #
(152 & 51 & 150 & 01) #

(152 & Sl & 50 & DO) #
(52 & lSI & !50 & 07) #

(52 & 151 & SO & 06) #
(S2 & 51 & 150 & 05) #

(52 & Sl & SO & 04)) :

Q4 := lR5 & « !S2 & 151 & ISO & 04) #
(IS2 & IS1 & SO & 03) #
(152 & Sl & 1 SO & 02) #

(I S2 & 51 & SO & 01) #
(52 & lSI & ISO & DO) #

(S2 & lSI & SO & 07) #
(S2 & 51 & ISO & 06) #

(S2 & 51 & 50 & 05)) :
TLlLl9991-46

FIGURE 7.10.5. ABEL Input File (Continued)

7-44

7.10 8-Bit Barrel Shifter (Continued)

Q5 := IR5 & ((152 & 151 & 150 & 05) #
(! 52 & 151 & 50 & 04) #
(152 & 51 & 150 & 03) #

(152 & 51 & 50 & 02) #
(52 & 151 & 150 & 01) #

(52 & 151 & 50 & DO) #
(52 & 51 & 150 & 07) #

(52 & 51 & 50 & 06)) ;

Q6 := IR5 & « !52 & 151 & 150 & 06) #
(152 & 151 & 50 & 05) #
(! 52 & 51 & 150 & 04) #

(152 & 51 & 50 & 03) #
(52 & 151 & 150 & 02) #

(52 & 151 & 50 & 01) #
(52 & 51 & 150 & ~O) #

(52 & 51 & 50 & 07)) ;

Q7 := lR5 & ((! 52 & 151 & 150 & 07) #
(152 & 151 & 50 & 06) #
(152 & Sl & 1 SO & 05) #

(!52 & Sl & 50 & 04) #
(52 & ISl & 150 & 03) #

(52 & ! 51 & SO & 02) #
(52 & 51 & 150 & 01) #

(52 & Sl & 50 & ~O)) ;

test vectors ([CLK,OE,R5,52,51,50,07 •• 001 -> [Q7 •. Q01)

" C
"LOR550 0
" K E 5 2 107 654 3 2 1 0

Q Q
76543210

[C,O,1,x,x,x,x,x,x,x,x,X,X,X1 -> [0,0,0,0,0,0,0,0);
[C,O,O,O,o,O,O,O,O,O,l,l,l,l] -> [0,0,0,0,1,1,1,1);
[C,O,O,O,O,l,l,l,l,l,O,O,O,O] -> [1,1,1,0,0,0,0,1);
[C,0,0,0,1,0,0,0,0,0,1,1,1,11 -> [0,0,1,1,1,1,0,01;
[C,0,0,0,1,1,1,1,1,1,0,0,0,01 -> [1,0,0,0,0,1,1,11;
[C,0,0,1,0,0,0,0,0,0,1,1,1,11 -> [1,1,1,1,0,0,0,0);
[C,0,0,1,0,1,1,1,1,1,0,0,0,01 -> [0,0,0,1,1,1,1,0];
[C,0,0,1,1,0,0,0,0,0,1,1,1,11 -> [1,1,0,0,0,0,1,1);
[C,0,0,1,1,1,1,1,1,1,0,0,0,01 -> [0,1,1,1,1,0,0,0];

end barrel shifter B - -

FIGURE 7.10.5. ABEL Input File (Continued)

7-45

set
no shift
shift 1

2
3
4
5
6
7

TL/L/9991-47

l>
"'C
"5!. n·
Q) -o·
::s
m
>C
Q)

3
"'C
CD
fn

U)
CD
Q.
E
m
>< w
c
o
;::
m
.~
Q.
Q.

<C

7.11 Hexadecimal 7-Segment Display Encoder
The increasing use of microcomputers has led to an in­
creased need to display numbers in hexadecimal format (0-
9, A-F). Standard drivers for this function are not available,
so most applications are forced to use several packages to
decode each digit of the display. Since 6 to 12 digits are
often being displayed, this approach can become very ex­
pensive. This example demonstrates how the hexadecimal
display format can be both decoded and the LED indicators
driven using a single PAL for each digit of the display.

FUNCTIONAL DESCRIPTION

A hex decoder/lamp driver accepts a four-bit hex digit, con­
verts it to its corresponding seven-segment display code,
and activates the appropriate segments on the display.
These drivers can be used in both direct-drive and multi­
plexed display applications. A single PAL can provide both
the basic decode/drive functions, and additional useful fea­
tures as well.

GENERAL DESCRIPTION

Figure 7. 11. 1 shows three digits of a display system that
uses three PALs to implement the complete decoding and
display-driving functions. The inputs to each section are a
hex code on pins 00-03, a ripple blanking signal, an intensi­
ty control signal, and a lamp test signal.

The hex codes are decoded to form the seven-segment pat­
terns shown in Table 7.11.1. The input codes, digit repre­
sented, and segments driven are as follows:

TABLE 7.11.1. Function Description

D3 D2 D1 Do Digit Segments

0 0 0 0 0 ABCOEF
0 0 0 1 1 BC
0 0 1 0 2 ABOEG
0 0 1 1 3 ABCOG
0 1 0 0 4 BCFG
0 1 0 1 5 ACOFG
0 1 1 0 6 ACOEFG
0 1 1 1 7 ABC
1 0 0 0 B ABCOEFG
1 0 0 1 9 ABCOFG
1 0 1 0 A ABCEFG
1 0 1 1 B COEFG
1 1 0 0 C AOEF
1 1 0 1 0 BCOEG
1 1 1 0 E AOEFG
1 1 1 1 F AEFG

7-46

Ripple-blanking input RBI is used to suppress leading ze­
roes in the display. The signal is propagated from the most
significant digit to the least significant digit. If the digit input
is zero and RBI is low (indicating that the previous digit is
also zero), all segments are left blank and this digit posi­
tion's ripple-blanking output RBO is set low.

Intensity control signallC controls the duty cycle of the dis­
play driver. When Ie is high, all segment drivers are turned
off. Pulsing this pin with a duty-cycled signal allows the ad­
justment of the display's apparent brightness.

Lamp test signal L T lets you check to see if all LED seg­
ments are energized.

PAL Device Implementation

the PAL16LB has both the required I/O pins and the drive
current capability to perform as the complete display decod­
er-driver circuit with seven inputs and eight outputs. The
logic equations for this circuit are shown in the listing. One
PAL device drives each digit; they may be cascaded without
limit. With minor changes, the same logical structure could
be used with multiplexer logic to allow a single PAL device
to decode and drive multiple digits.

7.11 Hexadecimal7-Segment Display Encoder (Continued)

DISPLAY j
LEADING 6 VCC

THREE STAGE HEXADECIMAL DECODER /DRIVER

PAL16L8
BCD TO HEXADECIMAL
DECODERI7SEGMENT
DRIVER WITH RIPPLE BLANKING

ZEROS r-----------~~

BLANK :r
LEADING -::"

ZEROS

HEXADECIMAL
INPUTS

INTENSITY
ON

ON!
LAMP TEST

OFF

TO NEXT STAGE

LED/LAMP
DRIVER OUTPUTS

FIGURE 7.11.1. Hex Display Decoder-Driver Combinational Logic Diagram

7-47

TLlLl9991-64

In
CD c..
E
m
>< w
c:
o
;=
m
.~ c..
c.
<

7.11 Hexadecimal 7-Segment Display Encoder (Continued)

title 7-segment display encoder
pattern ENC
evision A
author Tarif Engineer
corrpany National Semiconductor Corporation
Date 11/28/1989

chip ENC PAL 16L8

; pin 1
IRBI DO 01 02 03 IC

; pin 11 lZ 13 14 15 16
NC IRBO F

equations
IA IRBO * 100 * 10Z

+ IRBO * 100 * 03
+ IRBO * 01 * 02
+ IRBO * 01 * 02 * 103
+ IRBO * DO * 02 * 103

LT
17

+ IRBO * 101 * 102 * 03 + L T
A. TRST = IIC

IB = IRBO * 10Z * 103
+ IRBO * 100 * 10Z
+ IRBO * 100 * 101 * 103
+ IRBO * DO * 01 * 103
+ IRBO * DO * 101 * 103 + L T

B. TRST = Ie

IC = IRBO * 00 * 101
+ IRBO * 00 * 102
+ IRBO * 101 * 102
+ IRBO * 02 * 103
+ IRBO * 10Z * 03 + L T

C. TRST = IC

10 = IRBO * 101 * 03
+ IRBO * 100 * 10Z * 103
+ IRBO * DO * 01 * 102
+ IRBO * 100 * 01* OZ
+ IRBO * DO * 101 * 02 + L T

O.TRST = IC

IE = IRBO * 100 * 102
+ IRBO * OZ * 03
+ IRBO * 100 * 01
+ IRBO * 01 * 03

E. TRST = IC

IF = IRBO * 100 * 101
+ IRBO * 10Z * 03
+ IRBO * 01 * 03
+ IRBO * 100 * 02
+ IRBO * 101 * 02 * 103 + L T

F. TRST = IC

IG = IRBO * 01 * 102
+ IRBO * DO * 03
+ IRBO * 102 * 03
+ IRBO * 100 * 01
+ IRBO * 101 * 02 * 103 + L T

G. TRST = /lC

RBO = 100 * 101 * 102 * 103 * IRBI
RBO. TRST = VCC

end of ENC

7-48

NC
18

10
NC GNO
19 20

VCC

TLlLl9991-G4

7.11 Hexadecimal 7-Segment Display Encoder (Continued)

PAL 16L8
title 7-segment display encoder
pattern ENC
evision A
author Tarif Engineer

company National Semiconductor Corporation
Date 11/28/1989

QF2048*QP20*FO*
LOOOO
11111111111111111011111111111111
10111111101111111111111111011111
10111111111101111111111111011111
11110111011111111111111111011111
11110111011110111111111111011111
01111111011110111111111111011111
11111011101101111111111111011111
11111111111111111111011111111111*
L0256
11111111111111110111111111111111
11111111101110111111111111011111
10111111101111111111111111011111
10111011111110111111111111011111
01110111111110111111111111011111
01111011111110111111111111011111
11111111111111111111011111111111
00000000000000000000000000000000*
L0512
11111111111111110111111111111111
01111011111111111111111111011111
01111111101111111111111111011111
11111011101111111111111111011111
11111111011110111111111111011111
11111111101101111111111111011111
11111111111111111111011111111111
00000000000000000000000000000000*
L0768
11111111111111110111111111111111
11111011111101111111111111011111
10111111101110111111111111011111
01110111101111111111111111011111
10110111011111111111111111011111
01111011011111111111111111011111
11111111111111111111011111111111
00000000000000000000000000000000*

TL/L/9991-G6

7-49

L 1024
11111111111111110111111111111111
10111111101111111111111111011111
11111111011101111111111111011111
10110111111111111111111111011111
11110111111101111111111111011111
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000*

L 1280
11111111111111110111111111111111
10111011111111111111111111011111
11111111101101111111111111011111
11110111111101111111111111011111
10111111011111111111111111011111
11111011011110111111111111011111
11111111111111111111011111111111
00000000000000000000000000000000*
L 1536
11111111111111111111111111111111
10011011101110111111111111111111
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000*
L 1792
11111111111111111011111111111111
11110111101111111111111111011111
011111 I 111 I 10111111111 I 1 I 1011111
11111111101101111111111111011111
10110111111111111111111111011111
11111011011110111111111111011111
11111111111111111111011111111111
00000000000000000000000000000000*
CC1F9*

0000

TL/L/9991-61

»
"'C
"2.
O·
D,) -O·
::::I
m
><
D,)

3
"'C
CD en

o r---,
CD
~ 7.11 Hexadecimal 7-Segment Display Encoder (Continued)

:J
W
C
o
;:;
CO
.~
Q.
c. «

Document file
Device: 16L8

Pin Label

1 RBI
2 DO
3 D1
4 D2
5 D3
6 IC
7 LT
8 NC
9 NC
10 GND
11 NC
12 G
13 RBO
14 F
15 E
16 D
17 C
18 B
19 A
20 VCC

for ENC.inp

Type

com input
com input
com input
com input
com input
com input
com input
unused
unused
ground pin
unused
neg,trst, com
neg,trst, com
neg,trst, com
neg,trst, com
neg,trst, com
neg,trst,com
neg,trst,com
neg,trst,com
power pin

Chip Diagram (DIP)

RBI-~~Vcc
00- 2 19 ~A

01- 3 18 ~B

02- 4 17 ~C

03- 5 16 ~O

IC- 6 15 ~E

LT- 7 14 ~F

NC- 8 13 ~RBO

NC- 9 12 ~G

GNO- 10 11 ~NC

output
feedback
output
output
output
output
output
output

TLlL/9991-60

7·50

TL/Ll9991-62

7.11 Hexadecimal7-Segment Display Encoder (Continued)

111J .\1' I t'I 11 tllJUa '1"lIt, 2UI121] H1\Ul1 IIlt)QJI

0

~
t
I

19 J

I
A

I , .
2A

~ ~t--

I

~
I

to
18 " 1/

" " " 3 ...
-t~

B

~

"

~
II

" 17 " ::
/I
II

4 ..
~

C

"

>iJ
IS
/I

16 II
/I
11
1O
II

5
~.

D

II

:rJ II
H

15 " II

"
E

II
II

IC
6AI
-1~ ""'-.r------

II

~
..
41

14 tJ ..
U ..

~

" .
7 ...

~ LT

F

..
>J

..
\I

13 It
II
Il
\I .-

8
NC ~ ~

II

.->--tl~ " II
\I
iD

"
G

II

"
9 11

~
,.. ... NC NC

a 11] • ~., 111DII IJ1I1.l~ lilllll' lOJllHJ 141'ilUJ nUlD]1

TL/L/9991-72

FIGURE 7.11.2. PAL 16L8 Logic Diagram Showing Lamp Driver Pattern

7-51

(I)
CI)

'is.
E
co
>< w
c
o = CO

.!:!
'is.
a.
ct

7.12 Dual-Port RAM Controller
DESCRIPTION
As an example of the speed and architectural flexibility of
the GAL 16V8, a dual-port, dynamic-RAM controller capable
of controlling four banks of DRAMs is implemented. The
design, whose block diagram is shown in Figure 7.12.1 and
state diagrams in Figures 7.12.2 and 7.12.3, requires two
GAL 16V8 devices. The CUPL input listings for each device
are shown in Figures 7.12.4 and 7.12.6, with respective sim­
ulation files shown in Figures 7.12.5 and 7.12.7.

The first device, the Controller, is primarily responsible for
maintaining the state of the entire circuit. As shown by its
state diagram in Figure 7.12.2, the Controller normally re­
sides in the IDLE state. It can cycle to any of the states:
RFGT (Refresh Grant), RQGTA (Request Grant A), or
RQGTB (Request Grant B), depending on the inputs:
REFRQ (Refresh Request), MRQA (Memory Request A), or
MRQB (Memory Request B).

REFRQ has top priority, since the refresh cycle is of vital
importance for DRAM memory retention. MRQA is arbitrarily
chosen to have priority over MRQB to avoid bus contention
with contiguous requests. Every REQUEST, whether a re­
fresh request or a memory request, must receive an ACK
(acknowledge) signal before the Controller will continue to
cycle. Once an ACK is received, the Controller will either
return to the IDLE state or perform a refresh (if REFRQ is
present), and then return to the IDLE state. Cycling between
RQGT A and RQGTB is also possible.

The CUPL input file for the Controller, shown in Figure
7.12.4, distinguishes output declarations from intermediate
variable definitions, which greatly reduce the complexity of
declarations. BK3-BKo are intermediate definitions decod­
ed from address lines A17 and A16 to determine which bank

7·52

will be selected. RQGTAS, RQGTBS, and RFGTS are also
intermediate definitions of Controller state paths. These are
used to simplify the final output declarations.

Output declarations for RQGTA, RQGTB, and RFTG are
formulated by simply documenting each set of input condi­
tions that causes the Controller to enter each state. ACK is
a signal asserted by inputs the Controller receives that ac­
knowledge the end of a memory access.

The second GAL 16V8 device, called the Sequencer, is a
state counter that asserts the control signals communicat­
ing with the DRAM section. Among these signals are: RAD
(Row-Address-Data enable), CAD (Column-Address-Data
enable), RAS (RoW-Address Strobe), CAS (Column-Address
Strobe), and ACK (Acknowledge). These signals are assert­
ed when the Sequencer enters the proper state, as shown
in the state diagram of Figure 7.12.3.

The CUPL input listing for the Sequencer is shown in Figure
7.12.6. Again, intermediate variable definitions are used to
simplify output declarations. DSTa-DST1 are intermediate
definitions that name the states as decoded by the variables
ST 2, ST 1, ST o. Notice that a grey-code scheme, which mini­
mizes the number of product terms, was used for the count­
ing operation.

Next, ST 2, ST 1 and ST 0 are declared by identifying which
previous states will cause each next state. For example, to
cycle from state 2 (DST 2) to state 3 (DST 3), variables ST 2
and ST 1 will be logic ones and variable ST 0 will be a logic
zero upon reaching the new state. This can easily be ex­
tracted from the CUPL listing. Outputs RAD and CAD are
also declared using the intermediate definitions DST a­
DST1·

~--. >
7.12 Dual-Port RAM Controller (Continued)

SYSCLK

A;;"

~} """------- ~
AI6 RAS,

~ ~
RAS2 TO RAM

ST,
i-==-

RAS3
STo

~
GAL16V8 RQGTA

t.lRQA RQGle
MRQ RFGT ----!

REFRQ ACK - OE

n

SYSCLK
-=- ST2 RQGTA

RQGle ~
RDY STo

--=-
RFGT DIR

WR GAL16V8 CAD - ACK RAD

ACKREF
~

RES WE - I-=-
OE f--+ n

FIGURE 7.12.1. Block Diagram

7·53

DATA
LS373

G OE

I 1

~ LS240

OE

l

8
A7-Ao~ F240

Y

8
A'5-A8~ F240

Y

LS393
8L F240 /

Y

I+-- RAt.loo

~ RAt.lOIN

~

~

~
~

TLIL/9991-74

"'C
'2. n·
0) -o·
::J
m
><
0)

3
"'C
(j)
U)

UJ
CD
Q. 7. 12 Dual-Port RAM Controller (Continued)
E
CU
><

W REFRQ
c
o ..
CU
.2
Q.
Co
<t

FIGURE 7.12.2. State Diagram for Controller Section

FIGURE 7.12.3. State Diagram for Sequencer Section

7-54

TL/L/9991-7S

TL/L/9991-76

7.12 Dual-Port RAM Controller (Continued)

The two GAL 16V8-25 devices can be clocked at cycle times
as fast as 35 ns (28.5 MHz), ample enough for the tight
timings required to run a DRAM at its specified access
times. The GAL 16V8's power-up reset feature comes in
handy in this circuit, since no inputs were available for a
reset term. To test the functionality of this circuit, the simula­
tion facilities of CUPL were used.

It should be noted that although the Controller uses all eight
registers in the device, the Sequencer requires seven regis­
ters and one combinational output. While the Controller
could be implemented in a traditional PAL configuration
(16R8), the Sequencer requires a nonstandard architecture
which can only be implemented in a GAL 16V8 device. This
is one of the biggest advantages of GAL devices-the flexi­
bility of the architecture.

1***1
1* *1
1* CUPL INPUT FILE *1
1* Design input for the controller section of the */
1* Dual Port DRAM Controller *1
1* *1
1*** **********/
1* Allowable Target Device Types: GAL16V8 */
1***/

1** Inputs

PIN 1
PIN (2,3]
PIN (4 .• 6]
PIN 7
PIN 8
PIN 9
PIN 11

1** Outputs

PIN 19
PIN 18
PIN 17
PIN 16
PIN 15
PIN 14
PIN 13
PIN 12

**1

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

CONTROLLER SECTION;
DRAM CONTROLLER;
03/28/86 ;
01 ;
Joe Engineer;
National Semiconductor;
ONE;
U10;

SYSCLK;
[A16,A17]
[ST2,ST1,STO]
MRQA ;
MRQB ;
REFRQ
tOE

**1

!RASO
1RAS1
!RAS2
!RAS3
!RQGTA ;
!RQGTB ;
!RFGT
ACK ;

FIGURE 7.12.4. Design Input File for Controller Section

7-55

TLIL/9991-77

en
Q)

C.
E
co
><

LLI
c:
o

:,;::;
CO
.~
C.
Co
<C

7.12 Dual-Port RAM Controller (Continued)

1** Declarations and Intermediate Variable Definitions **1

BKO = (IA17 & !A16) # RFGT :
BKl = (IA17 & A16) # RFGT :
BK2 = (A17 & lA16) * RFGT :
BK3 = (A17 & A16) * RFGT :

RASEN = IST2 & STl & !STO # ST2 , STl , ISTO # !ST2 , STl & STO #
!ST2 & ISTl & STO # !ST2 & ISTl & !STO

RASO.D = BKO & RASEN
RAS1.D - BKl & RASEN
RAS2.D = BK2 & RASEN
RAS3.D = BK3 & RASEN

RQGTAS = RQGTA & !RQGTB & lRFGT

RQGTBS = lRQGTA & RQGTB & !RFGT

RFGTS = IRQGTA & IRQGTB & RFGT

IDLE = !RQGTA & lRQGTB & !RFGT

RQGTA.D = (IDLE & MRQA & IREFRQ # RQGTAS & lACK # RQGTBS & ACK &
MRQA & IREFRQ # RFGTS & ACK & MRQA) & I (ACK & !MRQA &
!MRQB & !REFRQ) :

RQGTB.D = (IDLE & IMRQA & !REFRQ & MRQB # RQGTBS & lACK # RQGTAS &
ACK & MRQB & IREFRQ # RFGTS & ACK & IMRQA & MRQB) & I (ACK &
!MRQA & IMRQB & IREFRQ) :

RFGT.D = (IDLE & REFRQ # RFGTS & !ACK # RQGTAS & ACK & REFRQ #
RQGTBS & ACK & REFRQ) & 1 (ACK & !MRQA & !MRQB & !REFRQ)

ACK.D = ST2 & ISTl & STO # !ST2 & STl & STO & RFGT :

FIGURE 7.12.4. Design Input File for Controller Section (Continued)

7·56

TL/Ll9991-78

7.12 Dual-Port RAM Controller (Continued)

/ •••••••••• *** ••••••••••• * •• ******.*** ••• **.********.**.*****.**/
/* */
/* CUPL SIMULATION FILE */
/* Simulation input for the controller section of the */
/* Dual Port DRAM Controller */
/* */
/***/
/* Allowable Target Device Types: GAL16V8 */
/*****.***************.**.** •• **.******.**.***.*****************/

ORDER:

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY'
ASSEMBLY'
LOCATION

CONTROLLER SECTION;
DRAM CONTROLLER;
03/28/86 ;
01 :
Joe Engineer;
National Semiconductor;
ONE;
U10;

SYSCLK,\2,A17,A16,%2,ST2,ST1,STO,\2,MRQA,MRQB,REFRQ,%2,!OE,%4,
!RASO,!RAS1,!RAS2,!RAS3,%2,!RQGTA,!RQGTB,!RFGT,%2,ACK;

VECTORS:
$msg" S ! ! " $msg" Y R 1111 RR!
$msg" S MME RRRR QQR " $msg" C AA SSS RRF AAAA GGF A "
$msg" L 11 TTT QQR 0 SSSS TTG C II

$msg" K 76 210 ABQ E 0123 ABT K "
$msgll ---------------------------------- "

a 00 101 000 a xxxx xxx x
C 00 101 000 a HHHH xxx H
C 00 111 000 a HHHH HHH L
C 00 111 000 a HHHH HHH L
C 00 111 100 a HHHH LHH L
C 00 010 100 a LHHH LHH L
C 00 110 100 a LHHH LHH L
C 00 all 100 a LHHH LHH L
C 00 001 100 a LHHH LHH L
C 00 000 100 a LHHH LHH L
C 00 100 100 a HHHH LHH L
C 00 101 110 a HHHH LHH H
C 00 111 110 a HHHH HLH L
C 11 111 010 a HHHH HLH L
C 11 111 010 a HHHH HLH L
C 11 010 010 a HHHL HLH L
C 11 110 010 a HHHL HLH L
C 11 all 010 a HHHL HLH L
C 11 001 010 0 HHHL HLH L
C 11 000 000 a HHHL HLH L
C 11 100 101 0 HHHH HLH L
C 11 101 101 a HHHH HLH H
C 00 111 101 a HHHH HHL L
C 00 111 101 a HHHH HHL L
C 11 010 000 a LLLL HHL L
C 11 110 000 a LLLL HHL L
C 11 all 000 0 LLLL HHL H
C 11 001 000 0 LLLL HHH L
C 11 000 000 0 HHHL HHH L
C 11 100 101 a HHHH HHL L
C 11 101 101 0 HHHH HHL H
C 00 111 101 0 HHHH LHH L
C 00 111 101 0 HHHH LHH L

TLIL/9991-BO

FIGURE 7.12.5. Simulation File for Controller Section

7-57

»
"C
"2-n·
m -o·
::s
m
>< m
3

"C
CD en

,.
I

o .---~
Q)

c. 7. 12 Dual-Port RAM Controller (Continued)
E
as
~ 1***1
c 1* *1
~ 1* CUPL INPUT FILE *1
as 1* Design input for the sequencer section for the *1
.~ 1* Dual Port DRAM Controller *1
C. 1* ~
~ 1***1

1* Allowable Target Device Types: GAL16V8 *1
1***1

1** Inputs

PIN 1
PIN [2,3]
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
PIN 11
1** Outputs

PIN 19
PIN 18
PIN 17
PIN 16
PIN 15
PIN 14
PIN. 13
PIN 12

**1

PART NO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

SYSCLKi

SEQUENCER SECTION:
DRAM CONTROLLER:
03/28/86:
01 :
Joe Engineer;
National Semiconductor;
TWO:
Ull:

[!RQGTA, !RQGTB)
= ROY :

!RFGT
!WR i
ACK i

= !RES ;
tOE

**1

= ST2
= STl

STO
= DIR

!CAD :
= !RAD ,

!ACKREF
!WE i

FIGURE 7.12.S. Input File for Sequencer Section

7-58

TL/L/9991-81

7.12 Dual-Port RAM Controller (Continued)

/** Declarations and Intermediate Variable Definitions **/

DSTl = ST2 & STl & STO :
DST2 ~ !ST2 & STl & !STO
DST3 = ST2 & STl & !STO ;
DST4 = !ST2 & STl & STO :
DST5 = IST2 & !STl & STO :
DST6 = IST2 & !STl & !STO :
DST7 = ST2 & !STl & !STO :
DST8 ST2 & !STl & STO :

,STCYC II: «RQGTA # RQGTB) & ROY , RFGT) ;

ST2.D = (DST2 # DST6 # DSTB # DST7 # DST4 & RFGT) # RES #
DSTl & !STCYC

STl.D DST2 # DST3 # DSTB # DST4 & RFGT # DSTl # RES;

STO.D (DST3 # DST4 # DST7 # DST8) # RES # DSTl & !STCYC

DIR.D WR & !DSTl :

CAD.D DST3 & !RFGT # DST4 & !RFGT # DST5 ;

RAD.D (RQGTA # RQGTB) & ROY & (DSTl # DST2)

ACKREF = RFGT & ACK

WE.D = WR & (DST5 # DST6)

FIGURE 7.12.6. Input File for Sequencer Section (Continued)

7-59

TL/L/9991-82

»
"'C
"'2.
n"
0) -0"
:::s
m
><
0)

3
"'C m en

•

o .---,
CU
Q.
E
ca
><

LIJ
c:
o
;;
ca
.~
Q.
D­

ca:

7.12 Dual-Port RAM Controller (Continued)

1***1
1* *1
1* CUPL SIMULATION FILE *1
1* Simulation File for the sequencer section of the *1
1* Dual Port DRAM Controller *1
1* *1
1***1
1* Allowable Target Device Types: GAL16V8 *1
1***1

ORDER:

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

SEQUENCER SECTION;
DRAM CONTROLLER;
03/28/86 ;
01 ;
Joe Engineer;
National Semiconductor;
TWO;
Ull;

SYSCLK,%2,!RES,%2,!RQGTA,!RQGTB,!RFGT,%2,RDY,!WR,ACK,%2,!OE,%4,
ST2,ST1,STO,%2,DIR,%2,!CAD,!RAD,%2,!WE

VECTORS:

$num" S ! ! " ;
$num" Y RR! " ;
$num" S QQR ! ! It:
$num" C R GGF R!A SSS 0 CR " :
$num" L E TTG DWC 0 TTT I AA W " ;
$num" K S ABT YRK E 210 R DO E " ;
$num" -----------------------------------": a a 111 010 a xxx x xx x

a a 111 010 a xxx x xx x
C a 111 010 a HHH L XH H
C 1 all 010 a HHH L HH H
C 1 all 110 a LHL L HL H
C 1 all 110 a HHL L HL H
C 1 all 010 a LHH L LH H
C 1 all 010 a LLH L LH H
C 1 all 010 a LLL L LH H
C 1 all 010 a HLL L HH H
C 1 all 010 a HLH L HH H
C 1 all 010 a HHH L HH H
C 1 all 010 a HHH L HH H
C 1 all 010 a HHH L HH H

FIGURE 7.12.7. SImulatIon File for Sequencer SectIon

7·60

TLlL/9991-83

7.13 8086 CPU Board Random Control Logic

P~----D r=D----CD....---------- MW
50--------1·

PD-----~~--~-~-----1~P_--------NO
EN---------~-----~~

EO---------------~======~_:r--------------~
EA---------------~--~

EI------------------t=======t~
Jo---HA 51======r;;==:!===D 5A ------~--t L......----i >0----55

DO---------------------------------t. ___ lo---- LA

FIGURE 7.13. Control Logic for 8086 CPU Board

7-61

TL/L/9991-84

o r---
CI)

C.
E as
>< w
c
o
;:;
as
.2
C.
CL
.:(

7.13 8086 CPU Board Random Control Logic (Continued)

PLANTM INPUT FILE

8086 CPU CONTROL LOGIC
CPU8086
A

title
pattern
revision
author
company
Date

Tarif Engineer
National Semiconductor
11/28/1989

Corporation

chip CPU8086 PAL12H6

pin 1 2
PO EN

pin 11 12
SO NC

equations

MW ISO + PW
LA /SA * /00
SS Sl * PO
HA Sl * PO
C3 PO * EO
NO PO * /EN

3
EO

13
NO

4
EA

14
C3

* OE

* /SA

* /SA
* EA

5
Sl

15
HA

6
SA

16
SS

* EA * E1

; end of CPU8086

Chip Diagram (DIP)

PO-~~Vcc
EN- 2 19 ~PW

EO- 3 18 ~MW

EA- 4 17~LA

Sl- 5 161-SS

SA- 6 151-HA

El- 7 14~C3

00- 8 13~NO

OE- 9 12~NC

GNO- 10 111-S0

7-62

7
E1

17
LA

8
00

18
MW

TLlLl9991-89

9
OE

19
PW

10
GNO

20
VCC

TLlLl9991-65

7.13 8086 CPU Board Random Control Logic (Continued)

PLANTM JEDEC FILE

Document file for CPU8086.inp
Device: 12H6

Pin Label Type

1 PD com input
2 EN com input
3 EO com input
4 EA com input
5 Sl com input
6 SA com input
7 E1 com input
8 DO com input
9 DE com input
10 GND ground pin
11 SO com input
12 NC unused
13 NO pos,com output
14 C3 pos,com output
15 HA pos,com output
16 SS pos,com output
17 LA pos,com output
18 MW pos,com output
19 PW com input
20 VCC power pin

PAL12H6
title
pattern
revision
author
company
Date

8086 CPU CONTROL LOGIC
CPU8086

*

A
Tarif Engineer
National Semiconductor
11/28/1989

QF0384*QP20*FO*
LOOOO
111111111111111111111110
111111011111111111110111
000000000000000000000000
000000000000000000000000*
L0096
111111111111101110111111
000000000000000000000000*
L0144
110111111101101111111111
000000000000000000000000*
L0192
110111110101100111111111
000000000000000000000000*
L0240
110101110111111111111111
000000000000000000000000*
L0288
100111111111111111111111
000000000000000000000000
000000000000000000000000
000000000000000000000000*
C134D*
0000

7-63

Corporation

TLIL/9991-69

TLIL/9991-85 •

r-­
CD
CD .
z
<C

A GAL6001-30L Zero Wait
State Page Mode Memory
System Interface Between
The DP8422A and The
68020

1.0 INTRODUCTION

This application note describes how the National Semicon·
ductor GAL6001-30L can create a zero wait state page
mode memory system interface between the DP8422A
DRAM controller and the 68020 microprocessor operating
at 16 MHz. It is assumed that the reader is already familiar
with 68020 CPU, the DP8422A and GAL design using the
GAL6001-30L.

2.0 DESCRIPTION OF DESIGN

This design illustrates the use of the GAL6001 in conjunc­
tion with the DP8422A DRAM controller to provide a no-wait
state page-mode memory system for a 68020 CPU running
at 16 MHz. This application note assumes two 32-bit memo­
ry banks using 4 M-bit DRAMs. This gives a 32 Mega-byte
memory.

This memory design forces three wait states during out-of­
page accesses and zero wait states during in-page access­
es using inexpensive 100 ns DRAMs. The theory behind this
design is that the CPU will tend to have multiple accesses
within some local area of memory (a page) before access­
ing some other area of memory (different page). The more
accesses within a page of memory, the more efficient this
memory design allows the CPU to become. The page size
of a 4 M-bit DRAM is 2048 bits. The page size of one bank
of memory (32 bits per bank) is 8192 bytes or 8 Kbytes.

It should be noticed that if the user wanted to use fast
DRAMs (80 ns or less access times) he could get rid of one
wait state during out-of-page accesses. This can be seen by
subtracting one clock period (62.5 ns) from the calculated
RAS access time (tRAG) and the CAS access time (tCAC),
section IV numbers 5 and 6. This would result in the design
forcing two wait states during out-of-page accesses, in-page
accesses would still remain with zero wait states.

Figure 1 shows a block diagram of this design driving two
banks of DRAM, each bank being 32 bits in width, giving a
maximum memory capacity of up to 32 Mbytes (using
4 M-bit X 1 DRAMs). This memory design could easily be
changed to four banks of 1 M-bit DRAMs since there are
12 bits that are compared internally, 10 bits of row address
for 1 M-bit DRAMs and 2 bank bits.

The memory banks are interleaved on page boundries (2k
double word boundaries). This means that the address bit
(A13) is tied to the bank select input of the DP8422A (B1).
The bottom 11 bits (A2-12) constitute the column address

National Semiconductor
Application Note 667

es (intra-page address) and the top 11 bits constitute the
row addresses (page address) of the DRAMs.

Address bits AO and A 1 are used, along with the transfer
size outputs (SilO, 1), to produce the four byte select strobe
inputs to the DP8422A, ECAS ~ (3:0). These byte select
strobes, ECAS~ (3:0), enable the CAS~ outputs which are
used in byte reads and writes. The ECAS ~ output of the
GAL6001 further shapes the CAS ~ pulse to the DRAMs,
CS~(3:0).

The GAL6001-30 along with the DP8422A DRAM controller
implement a page mode DRAM system. The GAL6001-30
latches the DRAM row and bank inputs (ROWO-10, B1) dur­
ing each Chip Selected access. This page address is com­
pared with each new Chip Selected address to determine
whether the current access is within the same page of
DRAM as the previous access. If the current access is with­
in the same page a zero wait state access can be complet­
ed. If the current access is to another page of the DRAM the
GAL6001-30 will end the current access by pulling AREQ~
high; latch the new current page address in its internal regis­
ters; start the new access by pulling AREQ ~ back low
again; and then pull DSACK ~ low once the current access
has completed.

If AS ~ from the 68020 is high and a refresh is requested
(RFRQ~ low) the GAL6001-30 will end the current page
mode access by pulling AREQ ~ high. Then the GAL will
allow the refresh to take place and start the next CPU
DRAM access if one has been requested.

The logic shown in this application note forms a complete
68020 memory sub-system, no other logic is needed. This
sub-system automatically takes care of:

A. arbitration between Port A and refreshing the DRAM;

B. the insertion of wait states to the processor (Port A and
Port B) when needed (Le., if RAS ~ precharge is needed,
refresh is happening during a memory access ... etc.);

C. performing byte writes and reads to the 32-bit double
words in memory.

Memory system timing diagrams appear in A'gures 2, 3, and
4. These figures are the result of simulating this design on
an engineering workstation.

Also, throughout this application note the symbol "~,, has
been used to denote an active low signal. For example
RAS ~ 0 refers to the active low RASO output of the
DP8421A.

7-64

3.0 DP8422A PROGRAMMING MODE BITS

Programming
Bits

RO = 0

R1 = 1

R2 = 1
R3 = 0

R4 = 0
R5 = 0
R6 = 0

R7 = 1
R8 = 1
R9 = X

co = 0
C1 = 1
C2 = 0

C3 = X
C4 = 0
C5 = 0
C6 = 1

C7 = 1
C8 = 1
C9 = 1

80 = 1
81 = 1

ECAS-O = 1

Description

RAS - low two clocks, RAS­
precharge of two clocks. If more
RAS - precharge is desired the user
should program three periods of
RAS - pre charge
DT ACK - 1 is chosen. DT ACK­
follows the access RAS - low on the
following rising clock edge
No WAIT states during burst accesses

If WAITIN - = 0, add one clock to
DTACK-. WAITIN- may be tied high
or low in this application depending
upon the number of wait states the
user desires to insert into the access
Select DTACK-
Non-interleaved Mode

Select based upon the input
"DELCLK" frequency. Example: if the
input clock frequency is 16 MHz then
choose CO, 1, 2 = 0, 1, 0 (divide by
eight, this will give a frequency of
2 MHz).

RAS banks selected by "81". This
mode allows two RAS - outputs to go
low during an access, and allows byte
writing in 16-bit words.
Column address setup time of 0 ns.
Row address hold time of 15 ns
Delay CAS - during write accesses to
one clock after RAS - transitions low
Fall through latches.
Access mode 1
Allow CAS - to be extended after
RAS - transitions high. Also, allow the
WE - output to be used as a refresh
request (R FRQ -) output indicator.

o = Program with low voltage level

1 = Program with high voltage level

X = Program with either high or low voltage level (don't
care condition)

4.0 16 MHz 68020 TIMING
CALCULATIONS FOR A SYSTEM WITH
THREE WAIT STATES DURING NORMAL
ACCESSES AND ZERO WAIT STATES
DURING BURST ACCESSES

1. Maximum time to CS - valid:

30 ns (68020RC16 max time to valid address)

7-65

2. Minimum time to ADS - valid:

62.5 ns (one clock period at 16 MHz)
+ 4 ns (GAL6001-30 assumed min time output clock to

AREQ- valid)

= 66.5 ns

3. Minimum CS - setup time to ADS - valid (DP8422A-25
needs a minimum of 5 ns):

66.5 ns (see #2 above)
- 30 ns (see # 1 above)

= 36.5 ns

4. Minimum CS - setup time to CLOCK high (GAL6001-30
needs 25 ns input setup time to the output CLOCK for the
AREQ- output):

62.5 ns (one clock)
-30 ns (max time to address bit 31 valid, see # 1 above)

= 32.5 ns

5. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM):

217.5 ns (three and one half clocks, (3 x 62.5) + 30 =

217.5 ns)
-15 (GAL6001-30 max CLK to AREQ- valid)
- 29 ns (ADS - to RAS - low max, DP8422A-25 # 402)

- 7 ns (74F245 max delay)
- 5 ns (68020 data setup time)
= 161.5 ns
Therefore the tRAC of the DRAM must be 161.5 ns or
less.

6. Determining tCAC during a normal access (CAS - ac­
cess time)
217.5 ns (three and one half clocks,

(3 x 62.5) + 30 = 217.5 ns)

-15 (GAL6001-30 max CLK to AREQ- valid)
-75 ns (ADS- to CAS- low max, DP8422A-25 #403a,

light load)
-14 ns (74F32 CS - (3:0) drivers max delay driving

125 pF)
-7 ns (74F245 max delay)

-5 ns (68020 data setup time)

= 102.5 ns

Therefore the tCAC and the column address access time
of the DRAM must be 102.5 ns or less.

7. Maximum time to CS- (3:0) low during a page mode ac­
cess:

62.5 ns (one clock at 16 MHz)
+ 30 ns (GAL6001-30 max time from clock to output,

ECAS-)

+ 14 ns (74F32 max time to CS - (3:0) valid)
= 106.5 ns

8. Minimum time to DRAM column address strobes low
[CS - (3:0» during a page mode access:

62.5 ns (one clock at 16 MHz)

+ 8 ns (assumed GAL6001-30 min time from input to out­
put, ECAS-)

+4 ns (assumed 74F32 min time to CS- (3:0) valid)
= 74.5 ns

» z
I

m
m
.......

•

9. Determining the minimum column address setup time to
CS- (3:0) low (0 ns needed by the DRAMs) during burst
mode accesses for zero wait states:

74.5 ns (see #8 above, min time to CS-(3:0) valid)
-30 ns (max time to 68020 address valid)
- 35 ns (DP8422A-25 max time address in to out, # 27)
= 9.5 ns minimum

10. Determining the tCAC (CAS- access time) needed dur­
ing burst mode accesses for zero wait states:

155 ns (two and one half clocks, (2 x 62.5) + 30 =

155 ns)
-106.5 ns (max time to CS-(3:0), see #7 above)
- 7 ns (74F245 max delay)
-5 ns (68020 data setup time)
= 36.5 ns

11. Determining the column address access time needed
during burst mode accesses for zero wait states:

155 ns (two and one half clocks, (2 x 62.5) + 30 =

155 ns)
-30 ns (max time to 68020 address valid)
-35 ns (DP8422A-25 max time address in to out, #27)
- 7 ns (74F245 max delay)
-5 ns (68020 data setup time)
= 78 ns

12. Minimum DSACK- (Data transfer and Size ACKnowl­
edge) setup time to clock low (68020 DSACK - input
needs 5 ns, #47a) during page mode zero wait state
accesses:

30 ns (one half clock period, S2 clock of 68020 clock
cycle)

-25 ns (GAL6001-30 input to outputs enabled,
DSACK - output)

= 5 ns
Note: Calculations can be performed for different frequencies, different logic

(ALS or CMOS ... etc.), and/or different combinations of wait states
by substituting the appropriate values into the above equations.

5.068020 GAL6001·30 INPUT
AND OUTPUT DESCRIPTIONS

Inputs:

ROWO-10 These are the row address inputs of the
DRAMs and are also connected to the
RO-10 inputs of the DP8422A-25. The
GAL6001-30 latches these inputs along
with the B1 input and compares this ad­
dress with each new address during a Chip
Selected DRAM access to determine
whether the current access is within the
same page of DRAM as the previous ac-
cess.

7-66

B1

RFRQ-

READ

DTACK-

AS-

CS-

CLK,ICLK

Outputs:

AREQ-

ECAS-

DSACK-

Internal Nodes:

LRO-10

The bank input to the DP8422A-25, B1 in­
put. This input determines which of the two
DRAM banks the CPU is currently access­
ing in. The GAL6001-30 latches this input
along with the ROWO-10 inputs and com­
pares this address with each new address
during a Chip Selected DRAM access to
determine whether the current access is
within the same page of DRAM as the pre­
vious access.

The ReFresh ReQuest input from the
DP8422A DRAM controller.

The 68020 READ and write access indica­
tor.

The DP8422A Data Transfer ACKnowl­
edge indicator.

The 68020 address strobe, indicating that
the CPU address is valid and a CPU ac­
cess is in progress.

Chip Select for the memory system. It was
assumed that the 68020 address bit 31
would be used for this indicator. When low
it indicates that the 68020 is accessing the
DRAM.

The 68020 system clock, 16 MHz in this
application.

The DRAM Access REQuest. This signal is
input to the DP8422A DRAM controller. It
will remain low as long as all 68020 chip
selected accesses remain within the cur­
rent page. As soon as an access occurs
that is not within the currently latched page
address or a refresh request occurs
AREQ - will be pulled high.

Enable CAS - is toggled during every ac­
cess and is used to drive the CAS - inputs
to the DRAMs, CS - (3:0). This input is de­
layed during write accesses to allow time
for the data to become valid at the DRAM
inputs before CAS - transitions low. The
READ input to the DRAMs is guaranteed
to transition while ECAS - is high.

The Data transfer and Size ACKnowledge
output goes to the 68020 to end the cur­
rent access when low.

These are the latched ROWO-1 0 address­
es of the current page of DRAM. These
addresses are clocked by the falling edge
ofCSJS_L-.

LB1 This is the latched B1 address of the cur­
rent page of DRAM.

CSJS_L - This is a latched version of Chip Select
and Address Strobe of the 68020. This sig­
nal toggles during each access and tran­
sitions low from the rising edge of S2 clock
and high from the rising edge of S5 clock.

This is a delayed version of CSJS_L - .
This is the DP8422A ReFresh ReQuest
Delayed and Synchronized to the 68020
system clock.

6.068020 GAL6001-30 EQUATIONS WRITTEN IN NATIONAL SEMICONDUCTOR PLAN FORMAT

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

68020/DP8422A DRAM PAGE DETECTOR FOR USE WITH NATIONAL GAL6001
PG_DETECT

CHIP

;PIN LIST

A
RUSTY MEIER
NATIONAL SEMICONDUCTOR
DEC. 11, 1989

GAL6001

RO Rl R2 R3 R4 R5 R6 R7 RFRQ - DTACK - AS - GND
CLK RS R9 R10 Bl CS- ICLK DSACK- AREQ- ECAS- READ VCC

;BURIED NODE OUTPUTS
LRO LRl LR2 LR3 LR4 LR5 LR6 LR7

;DUAL FEEDBACK NODE OUTPUTS
LRS LR9 LR10 LBl CS_AS_L - AS_D2 - NC NC NC RFRQD­

EQUATIONS

;GAL DUAL FEEDBACK NODES **************************************
;NOTICE THAT THE CLOCKS (XXX.CLKF TERMS)

;ARE THE SAME AS "CS_AS_L-" INVERTED

LRS := RS
LRS.CLKF = lCS- &: !AS- &: ICLK

!CS_AS_L- &: !AS-
!CS_AS_L- &: !ICLK

LR9 := R9
LR9.CLKF = !CS- &: !AS- &: ICLK

!CS_AS_L- &: !AS-

!CS_AS_L- &: !ICLK

LR10 := R10
LR10.CLKF = !CS- &: !AS- &: ICLK

!CS_AS_L- &: !AS-

!CS_AS_L- &: !ICLK

LBl := Bl
LB1.CLKF = !CS- &: !AS- &: ICLK

!CS_AS_L- &: !AS-

!CS_AS_L- &: !ICLK

!CS_AS_L- = !CS- &: !AS- &: ICLK
!CS_AS_L- &: !AS-
!CS_AS_L- &: !ICLK

!AS_D2- = !CS- &: !AS- &: !CS_AS_L- &: !ICLK
!CS- &: !AS- &: !AS_D2-
!CS- &: !AS_D2- &: !ICLK

!RFRQD - := !RFRQ -

;GAL OUTPUTS **************************************
DSACK- = CS-

!CS- &: RO &: !LRO

!CS- &: !RO &: LRO

!CS- &: Rl &: !LRl

!CS- &: !Rl &: LRl

!CS- &: R2 &: !LR2

!CS- &: !R2 &: LR2

!CS- &: R3 &: !LR3

7·67

• I

......
CD

!CS- !R3 &: LR3 CD &: .
Z # !CS- &: R4 II:: !LR4
oct # !CS- &: !R4 &: LR4

!CS- &: R5 &: !LR5
!CS- &: !R5 &: LR5
!CS- &: R6 &: !LR6
!CS- &: !R6 &: LR6
!CS- &: R7 &: !LR7
!CS- &: !R7 &: LR7
!CS- &: R8 &: !LR8
!CS- &: !R8 &: LR8
ICS- &: R9 &: !LR9
!CS- &: !R9 &: LR9
!CS- &: R10 &: !LR1O
!CS- II:: IRlO II: LR10
!CS- &: Bl &: !LBl
!CS- &: !Bl &: LBl
DTACK-
DSACK- &: ICLK &: !AS_D2-
AS- &: !AS_D2-
AREQ-

DSACK - • TRST = !CS- &: !AS-
ECAS- = CS-

!CS- &: RO &: !LRO
!CS- &: IRO &: LRO
!eS- &: Rl &: !LRl
!CS- &: !Rl &: LRl
!eS- &: R2 &: !LR2
!CS- &: !R2 &: LR2
!eS- &: R3 &: !LR3
!CS- &: !R3 &: LR3
!eS- &: R4 &: ILR4
!CS- &: IR4 &: LR4
!CS- &: R5 &: ILR5
!CS- &: IR5 &: LR5
!CS- &: R6 &: !LR6
!CS- &: !R6 &: LR6
!eS- &: R7 &: !LR7
!CS- &: !R7 &: LR7
!CS- &: R8 &: !LR8
!CS- &: IR8 &: LR8
!CS- &: R9 &: !LR9
!eS- &: !R9 &: LR9
!eS- &: R10 &: !LR1O
ICS- &: !R10 &: LR10
!eS- &: Bl &: !LBl
!CS- &: !Bl &: LBl
AS-
CS-
ECAS- &: !ICLK &: CS_AS_L-
AREQ-
!READ &: ECAS- &: AS_D2- &: ICLK
!RFRQD- &: CS_AS_L-

AREQ- .- !CS- &: RO &: !LRO
!CS- &: IRO &: LRO
ICS- &: Rl &: !LRl
!CS- &: !Rl &: LRl
ICS- &: R2 &: !LR2

7-68

l>
!CS- Be !R2 Be LR2 Z .
!CS- Be R3 Be !LR3 en

en
!CS- Be !R3 Be LR3 -..J

!CS- Be R4 Be !LR4
!CS- Be !R4 Be LR4
!CS- Be R5 Be !LR5
!CS- Be !R5 Be LR5
!CS- Be R6 Be !LR6
!CS- Be !R6 Be LR6
!CS- Be R7 Be !LR7
!CS- Be !R7 Be LR7
!CS- Be R8 Be !LR8
!CS- Be !R8 Be LR8
!CS- Be R9 Be !LR9
!CS- Be !R9 Be LR9
!CS- Be R10 Be !LR1O
!CS- Be !R10 Be LR10
!CS- Be Bl Be !LBl
!CS- Be !Bl Be LBl
!RFRQD- Be CS_AS_L-
AREQ- Be CS_AS_L-

;BURIED NODES **************************************
; NOTICE THAT THE CLOCKS (xxx. CLKF TERMS) ARE THE
; SAME AS 'CS_AS_L- , INVERTED

LRO := RO
LRO.CLKF = !CS- Be !AS- Be ICLK

= !CS_AS_L- Be !AS-
= !CS_AS_L- Be !ICLK

LRl := Rl
LR1.CLKF = !CS-. Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR2 := R2
LR2.CLKF !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR3 := R3
LR3.CLKF = !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR4 := R4
LR4.CLKF = !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR5 := R5
LR5.CLKF = !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR6 := R6
LR6.CLKF = !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be !ICLK

LR7 := R7
LR7.CLKF = !CS- Be !AS- Be ICLK

!CS_AS_L- Be !AS-
!CS_AS_L- Be lICLK

II
I

7-69

AN-667

CLOCK
GENERATOR ClK 16t.4Hz CLOCK

L.;
ClK

DELClK

68020 I~ ClK ClK

--.J
.!...J
o

AS", GAl6001-30l DP8422A
AS'" PAGE

DmCTOR A. READ
.. WIN",

~
AND v

R/W'"
READ

ACCESS

f OSACK.

GENERATOR AREQ'"

L;
ADS",

AREQ",

<>
READ

DSACK'" " DTACK",
--,.

A31 CS'" DTACK", 2 BANKS
A14-A24 ROWO-10 ... RFRQ", Q

/11 .. OF 4t.4-BIT
RFRQ",

//2
,.

DRAMS

A13 = B1 --,. RAS",O, 1 (32 BITS

~
//2

...

I
A14-A24 .. RAS",2,3

PER BANK)
RO-R9 /

A13 ..
B1 CAS"'(3:0) - CS",(3:0)

32 MEGA-BYTES
ADDRESS --...

A2-A12 .. ECAS",
AO,1 ,. CO-C9

.l1li ~

SIZEO,1 74F32 L.... BO
SIZEO,1 Byte Data

AREQ", -

~
Select

4/ Byte Enables, BE"'(3:O)1 ~ 4/
.. ECAS"'(3:0) DATA Generation /

logic
/ -

74F245

74F32 A. READ
DIR

AS", v
EN",

CS'"
TRANSCEIVER

32/ Data 0-31 Data 0-31 32/

/ /

TUL/10771-4

FIGURE 1. A GAL6001 Interface to the 68020/DP8422A-25/DRAM Using Page Mode Accessing

ClK

CSN

AREON

READ

DTACKN

DSACKN

ROW(10:0)

COl(10:0)

81

RASN(3:0)

CASN(3:0)

ECASN

CSN (3:0)

0(10:0)

RfRON

RflpN

DATA

INITIAL ACCESS IN-PAGE IN-PAGE NON-CSN IN-PAGE
WRITE ACCESS READ ACCESS ACCESS READ ACCESS

T1 I T2 I TWI I TW2 I TW3 I T3 T1 I T2 I T3 T1 I T2 I T3 T1 I T2 I T3 T1 T2 T3

n-ru-u-u--u-L nsL.rL nsL.rL nsL.rL n..ru-L n.
.

11 I I

rl r-, rn r-, r-, r~

IL I I

I r-L-u--t I I

I

L I

I
oJ, oJ,

'" I~+ I~", 'r= ~ I oJ, uuuuuuuuuuuuuuuuuuuuuuu ,.

~

f .::.J. 200 X 085 X 200

";) 100 - X 101 X 102 X 255 X 103 f ,

\3

\3 \ IC \

I II L-Jl. I r
\3 I '--J ~ ---.

186 X 200 X 100 X 101 X 102 X 255 X 103
~

. oJ, oJ, oJ,
READ DATA WRITE DATA READ DATA READ DATA

Tl/l/l0771-5

FIGURE 2. System Timing

7-71

>
Z . en
en
......

fI
I

.......
(D
(D .
z
<C

ClK

CS'"

AS'"

CS-AS_l'"

AS_D2'"

AREO'"

READ

DTACK",

DSACK'"

ROW(10:0)

COl(10:0)

81

RAS"'(3:0)

CAS"'(3:0)

ECAS",

CS",(3:0)

0(10:0)

RFRO'"

RFIP",

DATA

IN-PAGE
READ ACCESS

T1 I T2 I T3

255 103

READ DATA

OUT-OF-PAGE READ ACCESS

T1 I T2 I TW1 I TW2 I TW3 I T3

200

FIGURE 3. System Timing

7-72

TI

TL/Ll10771-6

IN-PAGE READ ACCESS DURING REFRESH
READ ACCESS

Tl I T2 I T3 11 I T2 I TWI I TW2 I TW3 I TW4 I TW5 I TW6 I TW7 I TWB I T3

ClK --u-LIL ruu
--, rM I

---, I

I I I I

READ

I I
~ + + + + + + + uuuuuuul+ IIUUUUUUUl I + II UUUUUUUUUUU

ROW(10:0) 201

COl(10:0)
~
2· X 201 X 202
r--

Bl

C I PRECHARGE REFRESH PRECHARGE \ C

\

I II I II

- -200 X 201 X 202 \ / 201 X 202 Q(10;0) -
I REFRESH REQUEST I

REFRESH I

+ j
DATA , READ. DATA I I READ DATA'

TL/Ll10771-7

FIGURE 4. System Timing

..
I

7·73

CD r--,
CD
CD

Z «
A PAL Interface between
Static Random Access
Memory (SRAM) and the
NSC Raster Graphics
Processor (RGP, DP8500)

INTRODUCTION

This application note describes a PAL design that interfaces
the National Semiconductor RGP to Static RAM. This allows
the RGP to be operated at up to 20 MHz with one wait state
inserted during normal accesses. It is assumed that the
reader is familiar with the National Semiconductor RGP,
SRAM, and the basics of PAL design.

DESIGN DESCRIPTION

A block diagram of the RGP to SRAM interlace is seen in
Figure 1. The State Machine block (PAL interlace) receives
the control signals from the RGP (BS1, RD -, WR - , ALE),
the SRAM chip select from the address decoding circuitry
(CS -), and the Phase 2 clock (PHI2) to the RGP. The State
Machine block outputs a READY signal back to the RGP to
allow the insertion of wait states into RGP access cycles,
drives the System Read (SYS_RD -) and System Write
(SYS_WR -) outputs to control the SRAM, drives the
DDIN - and DBE - signals to control the data transceivers,
and drives the State Variables (A, B, C) that control the
interface (see Figure 2).

The signal ALEL - shown in Figure 2 is an active low
latched version of the RGP ALE output signal. This signal
could be formed by using ALE as an input to two cross
coupled NOR gates. The inverted input DBE - could func­
tion as the reset input to the NOR gate latch.

Figure 3 shows a State Transition Diagram for the design. A
State Table Diagram for the Design (Figure 4) was then
drawn up from Figure 3. The State Table Diagram was used
to draw up Karnaugh Maps for each State Variable and out­
put of the design, these can be seen in Figures 5, 6 and 7.
These equations were then put in ABEL format in Figure 8.
Figures 9 and 10 show the timing during an RGP read and
write access to the SRAM.

DESIGN TIMING ANALYSIS AT 20 MHz

1. Maximum time to valid address at SRAM inputs from
PHI2 rising edge:

11 ns (ALE valid from PHI2 rising edge) + 23 ns
(74ALS373 maximum propagation delay of en­
able to output valid) = 34 ns.

National Semiconductor
Application Note 669

2. Maximum time to chip select valid at SRAM input from
PHI2 rising edge:

34 ns (see # 1 above) + 22 ns (maximum propaga­
tion delay of 74ALS138) = 56 ns.

3. Minimum available time to perlorm an access of SRAM
from rising edge PHI2 (during T1) to falling edge PHI2
(during T3):

150 ns (3 clocks) + 19 ns (minimum PHI2 high time)
= 169 ns.

4. Determining the SRAM address access time needed in
this design:

169 ns (available time, #3 above)

-34 ns (max time to valid address, see # 1 above)

-10 ns (74ALS245 maximum delay time)

-5 ns (RGP Data setup time) = 120 ns access time,
therefore the SRAM must have an address ac­
cess time of 120 ns or less.

5. Determining the SRAM Chip Select access time needed
in this design:

169 ns (available time, #3 above)

-56 ns (max time to valid Chip select, see #2 above)

-10 ns (74ALS245 maximum delay time)

-5 ns (RGP Data setup time) = 98 ns access time,
therefore the SRAM must have a Chip Select
ac-
cess time of 98 ns or less.

6. Determining the SRAM Output Enable (GAL SYS_RD­
output) access time needed in this design:

169 ns (available time, #3 above)

-100 ns (two clocks, rising edge of PHI2 during T1 until
rising edge PHI2 during T2)

-10 ns (GAL16V8A-10 maximum time from PHI2 rising
clock edge until clocked output is valid)

-8 ns (GAL16V8A-15 maximum time to SYS_RD­
output valid)

-10 ns (74ALS245 maximum delay time)

-5 ns (RGP Data setup time) = 36 ns access time,
therefore the SRAM must have an Output En­
able access time of 36 ns or less.

7-74

PHil
PHI 2

--,
.J. + READY

BSI

RGP RD-
WR ..
ALE

~ !
"

ADDRESS
DECODING

I' & LATCHES
74ALS373'S &

74ALS138

.... v;>"
SYSTEM ADDRESS / DATA BUS

I\.

I'

.J.

GAL 16V8
STATE MACHINE r--

SYS_Wo.. ~ ~ SYS_WR ..
(OH (wH

SRAM_BUS CS ..
SRAM

I\.
LATCHED ADDRESSES

I'
~ ~

~
A

DATiLBUS
~

DBE ..

ODIN ..

TL/L/l0773-1

FIGURE 1. Block Diagram of Raster Graphics Processor (RGP) to Static Random Access Memory (SRAM) Interface

INPUTS OUTPUTS

.ALEL .. ---+r-----"'I-_---'"-
BS1---+

CS .. ---+
RD .. ---+

PHU -------+l __ JoiI=:::.::..=::..I

• ALEL IS A LATCHED VERSION OF ALE

FIGURE 2. Synchronized State Machine Model

I SYS_RD ... lOBE ... IODIN ..

IDLE LOOP

I BSI
(NON-DRAWING)

I CS

'---r---'

TL/LlI0773-2

S6 110

FIGURE 3. State Transition Diagram for RGP/SRAM Interface Design

7-75

TL/L/l0773-3

II

m
CD
CD .
Z
ct

Present State Inputs Next State Outputs

A B C ALEL- BS1 CS- RD- A B C DBE- DDIN- SYS_RD-

a a a 1 x X x a 0 a 1 1 1
0 a 0 x 1 X X 0 0 0 1 1 1
a 0 0 x X 1 X a 0 a 1 1 1
a 0 a 0 a 0 0 a a 1 1 1 1
a a a a o· 0 1 1 0 0 1 1 1

a 0 1 X X X X a 1 1 1 0 1

0 1 a x x x x a a a a a a
a 1 1 X X X X a 1 0 0 a 0

1 0 0 x x x X 1 0 1 a 1 1

1 0 1 X X X X 1 1 1 a 1 1

1 1 a x x x x a 0 a 1 1 1

1 1 1 X X X X a a 0 0 1 1

FIGURE 4. State Table Diagram

*ASSUME: F = ALEL- # BS1 # CS- # (lALEL- & IBS1 & ICS- & IRD-)

G = ALEL- # BS1 # CS- # (IALEL- & IBS1 & ICS- & RD-)

* Assume using active low outputs, circle "O"s.

Be
IA:= F&IA

A # IA&C
00 01 11 10 #B

o [Cr ~ ~ 0) Expanding this term out:

IA:= ALEL- &IA
1 1 1 ~ Y # BSI &IA

TL/L/l0773-4 # CS- &IA

IALEL- &IBSI &ICS- &IRD- &IA

># IA&C

#B

Be
A 00 01 11 10

010\ fa IB:= IC
1 1

#A&B

lJ} 1 1<[~
TL/L/l0773-5

Be
A 00 01 11 10 IC:= G&IA&IC

oeD Va ~
#B

1 Expanding this term out:

1 1 1 N..- JI
IC:= ALEL- &IA&IC

BSI & IA&IC
TL/L/l0773-6 #CS-&IA&IC

!ALEL- & IBSI & !CS- & RD- & IA & IC

#B

FIGURE 5. Using Karnaugh Maps To Generate PAL Equations

7-76

SYS_WR- READY

1 a
1 a
1 a
1 0
1 a
1 a
1 a
1 1

a a
0 1

1 a
1 0

·Since PAL16V8 has active low outputs, circle "O"s.

TL/L/l0773-7

TL/L/l0773-8

TLlLlI0773-9

#B&e

IA&B

#A&e

This term is not needed in this example
because there never is a transition
between states '011' and '111'.

IDDIN- = IA&e

IA&B

FIGURE 6. Using Karnaugh Maps To Generate PAL Equations

·Since PAL16V8 has active low outputs, circle "O"s.

11 10

TL/LlI0773-10

TLlLlI0773-11

IREADY = IA & IB

#A&B

Ie

FIGURE 7. Using Karnaugh Maps To Generate PAL Equations

7·77

,.

en
U)
U) :Z MODULE SRAM_INTERFACE

< TITLE 'SRAM_PAL, THIS PAL INTERFACES THE NATIONAL SEMICONDUCTOR RASTER GRAPHICS PROCESSOR TO
A STATIC RANDOM ACCESS MEMORY'.

SRAM_PAL
PHI~

RD-
NC4
SYS_RD­
C

EQUATIONS

!A:

IB:

IC:

IDBE-

!DDIN-

device 16V8
Pin 1; ALEL
Pin 5; NC1
Pin 9; GND
Pin 13; SYS_WR-
Pin 17; DDIN-

= ALEL- &!A

BS1 &!A

CS- &!A

Pin 2;
Pin 6;
Pin 10;
Pin 14;
Pin 18;

IALEL- & !BS1 & ICS- & !RD- & IA

IA&C

#B

= IC

#A&B

= ALEL - & IA & IC

BS1 & IA & IC

CS- & IA & IC

IALEL- & IBS1 & ICS- & RD- & IA & IC

#B

= A&IB

#B&C

IA& B

#A&C

= !A&C

!A&B

!READY = IA & !B

#A&B

!C

BS1
NC2
NC5
A
DBE-

FIGURE 8. Able PAL Equations

7-78

Pin3; CS- Pin 4;
Pin 7; NC3 Pin 8;
Pin 11; READY Pin 12;
Pin 15; B Pin 16;
Pin 19; Vee Pin 20;

T1 T2(W) T2

PHU

PHL2

ALE

ADDRESS

BS(I-0)

RD",

WR",

CS",

STATL so VARIABLES

SYS_RD'" (OE)",)

DDIN",

READY

Notes: 20 MHz Operation: State machine changes state on rising edge of PHI~.
WAIT_DISABLE sampled by RGP on every falling edge of PHI~ during T2.
Data sampled by RGP on falling edge of PHI_2 during T3.

T3

FIGURE 9. Non Draw SRAM Read Operation

7·79

T1

so

TLlL/10773-12

I • I

(7')
CD
CD .
Z Tl T2 T3 Tl
<I:

PHU

PHL2

ALE

ADDRESS

8S(1-0)

RO'"

WR",

CS'"

STATE- so VARIA8LES

SYS_WR'"
(WE",)

08E'"

READY

TLIL/10773-13

Notes: 20 MHz Operation: State machine changes on rising edge of PHI~.
Wait sampled on every falling edge of PHI_2 during T2.

FIGURE 10. Non Draw SRAM Write Operation

7·80

A PAL Interface for a
25 MHz and above No-Wait
State DP8422A/80286 Burst
Mode DRAM Memory
System

I. INTRODUCTION

This application note describes a two PAL designs that in­
terface the DP8422A to the 80286 CPU. The first design
allows the 80286 to be operated at up to 40 MHz (80286-
20) with one wait state inserted during normal accesses.
The second design allows the 80286 to operate at up to
40 MHz (80286-20) with zero wait states inserted when op­
erating the DRAMs in page mode. Design number two also
makes use of the 74ALS6311 page detector to determine
whether the 80286 current access is within the same page
as the previous access. It is assumed that the reader is
familiar with the 80286, the DP8422A DRAM controller, the
74ALS6311 and the basics of PAL design.

II. DESCRIPTION OF DESIGN # 1,80286 OPERATING AT
UP TO 40 MHz WITH ONE WAIT STATED (80286-20)

The block diagram of this design is shown driving two banks
of DRAM, each bank being 16 bits in width, giving a maxi­
mum memory capacity of up to 4 Mbytes (using 1 Mbit x 1
DRAMs). This memory could easily be expanded up to
32 Mbytes using four banks of 4 Mbit DRAMs.

The memory banks are interleaved on word (16-bit word)
boundaries. This means that the address bit (A 1) is tied to
the bank select input of the DP8422A (B1).

Address bit AO is used, along with Bus High Enable (SHE),
to produce the two byte select ECAS-O,1 strobes. These
byte select strobes (ECAS - 0,1) enable the CAS - outputs
which are used in byte reads and writes.

If the majority of accesses made by the 80286 are sequen­
tial, the 80286 can alternate memory banks, allowing one
memory bank to be precharging (RAS - precharge) while
the other banks are being accessed. Each separate memo­
ry access to the same memory bank will require extra wait
states to be inserted into the CPU access cycles to allow for
the RAS- precharge time.

This application inserts 1 wait state in normal accesses of
the 80286. The number of wait states can be adjusted
through the WAITIN input of the DP8422A.

The logic shown in this application note forms a complete
80286 memory sub-system, no other logic is needed. This
sub·system automatically takes care of:

A. Arbitration between Port A, Port S, and refreshing the
DRAM;

B. The insertion of wait states to the processor (Port A and
Port B) when needed (Le., if RAS - precharge is need­
ed, refresh is happening during a memory access, the
other Port is currently doing an access ... etc);

7-81

National Semiconductor
Application Note 618

C. Performing byte writes and reads to the 16-bit words in
memory.

It is important that the 74ASOO NAND gates (U1) be in the
same package so these delays (CLK-, S01) track each
other.

By using the "output control" pins of some external latches
(74AS373's), this application can easily be used in a dual
access application. The addresses could be tri-stated
through these latches, the write input (WIN -), lock input
(LOCK-), and ECAS-0-3 inputs must also be able to be
tri-stated (a 74AS244 could be used for this purpose). By
multiplexing the above inputs (through the use of the above
parts and similar parts for Port B) the DP8422A can be used
in a dual access application. If this design is used in a dual
access application the tRAC and tCAC (required RAS and
CAS access time required by the DRAM) will have to be
recalculated since the time to RAS and CAS is longer for
the dual access application (see TIMING section of this ap­
plication note).

Also, throughout this application note the symbol '-' has
been used to denote and active low signal. For example
RAS - 0 refers to the active low RASO output of the
DP8421A. For even higher system performance an 'E'
speed PAL can be used.

III. DESCRIPTION OF DESIGN #2,80286 OPERATING
AT UP TO 40 MHz (80286-20) WITH ZERO WAIT STATES
USING PAGE MODE DRAMs

This design is very similar with respect to design # 1 except
for the following differences.

The memory banks are interleaved on page (1024 word)
boundaries. This means that the address bit (A 11) is tied to
the bank select input of the DP8421A (B1).

Address bit AO is used, along with Bus High Enable (SHE),
to produce the two byte select ECAS - 0,1 strobes. These
byte select strobes (ECAS - 0,1) are logically "ORed" with
the DP8421A CAS- outputs to produce the byte selecting
CAS - inputs to the DRAMs.

If the majority of accesses made by the 80286 are sequen­
tial and within a page, the 80286 in conjunction with the
page detector (74ALS6311) allow zero wait state accessing.
Each in-page memory access is completed using page
mode (toggling the CAS - inputs).

As in design # 1 it is important that the 74ASOO NAND gates
(U1) be in the same package so the delays (CLK-, S01)
track each other. For even higher system performance an
'E' speed PAL could be used.

» z
m
-a.
co

CX) ,..
CD

I

Z «
IV. 80286 DESIGNS # 1 AND #2 PROGRAMMING
MODE BITS

Programming
Bits

RO = 0
R1 = 1

R2 = 0
R3 = 1

R4 = 0

R5 = 0

R6 = 0

R7 = 1

R8 = 1
R9 = X

CO = X
C1 = X
C2 = X
C3 = X

C4 = 1
C5 = 0
C6 = 1

C7 = 1

C8 = 1

C9 = 1

80 = 1

81 = 1

ECAS-O = 1

Description

RAS - low two clocks, RAS-
precharge of two clocks. If more
RAS - precharge is desired the
user should program three
periods of RAS - precharge.

DT ACK - % is chosen.
DT ACK - follows the access
RAS- low.

No WAIT states during burst
accesses.

If WAITI N - = 0, add one clock
to DTACK-. WAITIN- may be
tied high or low in this
application depending upon the
number of wait states the user
desires to insert into the access.

Select DTACK - .

Non-interleaved Mode.

Select based upon the input
"DElClK" frequency. Example:
if the input clock frequency is
16 MHz then choose CO, 1, 2 =

0, 1, 0 (divide by eight, this will
give a frequency of 2 MHz).

RAS banks selected by "81".
This mode allows two RAS-
outputs to go low during an
access, and allows byte writing
in 16 bit words.

Column address setup time of
o ns.

Row address hold time of 15 ns.

Delay CAS - during write
accesses to one clock after
RAS - transitions low.

Fall through latches.

Access mode 1.

Allow CAS - to be extended
after RAS- transitions high.
Also, allow the WE - output to
be used as a refresh request
(RFRQ-) output indicator.

o = Program with low voltage level
1 = Program with high voltage level
X = Program with either high or low voltage level (don't care condition)

7-82

V. 80286 TIMING CALCULATIONS FOR DESIGNS # 1
AND #2 AT 32 MHz (80286-16) WITH ONE WAIT STATE
DURING NORMAL ACCESSES AND ZERO WAIT
STATES IN PAGE MODE ACCESSES (DESIGN #2
ONLY). THE WAITIN - INPUT OF THE DP8422A
SHOULD BE TIED LOW.

1. Minimum S01 high setup time to ClK - high ('D' speed
PAL needs 8 ns):

31.25 ns (one clock period, 32 MHz) - 20 ns (maximum
80286 SO - , S1 - delay, # 12a) - 1 ns (maximum skew
between ClK - and SO - , S1 - since both gates are in
the same package) = 10.25 ns.

2. Maximum address valid time (with respect to ClK - high
during phase 1 in Ts):

62.5 ns (two clocks 32 MHz) - 31 ns (80286 address
valid delay from previous clock period, # 15) + 1 ns
(minimum ClK- valid delay, 74ASOO) = -1.25 ns (be­
fore ClK - high phase 1 Ts).

3. Minimum address setup time to ADS - low (DP8421 A-
25needs14n~ #404~

31.25 ns (one clock period) + 1.25 ns (from #2 calcula­
tion above) + 2 ns (minimum ADS - valid delay from
ClK - high, beginning of phase 2 in Ts) = 34.5 ns ad­
dress setup.

4. Minimum CS setup time to ADS- low (DP8421A-25
needs 5 ns, #401): 34.5 ns (#3 above) - 10 ns (max
74AlS138 decoder) = 24.5 ns .

. 5. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM):

156.25 ns (five clock (ClK) periods to do the access)
-4.5 ns (max delay 74ASOO for ClK-) - 8 ns (max 'D'
speed PAL clocked output delay for ADS- from ClK-)
- 29 ns (ADS- to RAS- low max, DP8421A-25 #402)
- 7 ns (80286 data setup time #8) - 7 ns (74F245 max
delay) = 100.75 ns.

Therefore the tRAC of the DRAM must be 100.75 ns or
less.

6. Determining tCAC during a normal access (CAS - ac­
cess time) and column address access time needed by
the DRAM:

156.25 ns (five clock (ClK) periods to do the access)
-4.5 ns (max delay 74ASOO for ClK-) - 8 ns (max 'D'
speed PAL clocked output delay for ADS - from ClK -)
- 82 ns (ADS- to RAS- low max, DP8421A-25 #402)
- 7 ns (80286 data setup time # 8) - 7 ns (74F245 max
delay) = 47.75 ns.

Therefore the tCAC and the column address access time
of the DRAM must be 47.75 ns or less.

7. Determining the column address setup time to CAS-O-
3 low (0 ns needed by the DRAMs) during burst mode
accesses for zero wait states (DESIGN #2 ONLY):

31.25 ns (phase 1 in Ts) + 1.25 ns (# 2 above, address
valid with respect to ClK - beginning of phase 1 in Ts)
+ 2 ns (minimum 'D' speed PAL clocked output delay
from ClK -, ECAS - 0,1) + 2 ns (74AS32 min delay to
CAS - 0-3 low) = 36.5 ns.

This gives 1.5 ns column address setup time to CAS-
0-3 low (36.5 ns - 35 ns 8421A-25 column address
input to output valid, #26).

I CLOCK I GENTR

~
82284

PCLK

80286 CLKN

~
SON SON

~ SOl
SIN ,-

SRDYN
SRDYN I CHIP SELEer I CSN

DECODER
74ALSI38 I AO,BHEN

A22 A23 toll/ON

ADDRESS

DATA +-

A PAL WINN

~ PAL ENXN
v

Interfacing the 80286 to the 8421A

PAL DP8421A
16R6D 8420CLKN

CLK

4 OECLK

WINN
WINN

ADSN (AREON)
ADSN

L; AREON
DTACKN (DTl2N)

DTACKN
0

RFRON
RFRON RASNO,I

ECASNO, I
A12-A21 RASN2,3

RO-R9
All .. CASNO,I

BI

A2-Al1 CASN2,3 .. CO-C9

"L BO
ECASNO

ECASNI
ECASNO,2

ECASNI,3

DIR

EN
TRANSCEIVER

7·83

APAL WINN
V -,.

..
......
--,.

--,.

-,.

-,.

2 BANKS
(UP TO

4 BANKS)
OF 1M-BIT

DRAMS
(16 BITS

PER BANK)

.. ~

TLlF/l0442-1

» z
I

Q)
...a.
co

co
CD

I

Z
oCt

8. Determining the tCAC (CAS - access time) needed dur­
ing burst mode accesses for zero wait states (DESIGN
#2 ONLY):

93.75 ns (three clocks of ClK) - 4.5 ns (74ASOO max
delay, ClK -) - 8 ns ('0' speed PAL clocked output
delay from ClK-, ECAS-O,1) - 10 ns (74AS32 max
delay to CAS-0-3 low) - 7 ns (80286 data setup time
#8) - 7 ns (74F245 max delay) = 57.25 ns tCAC need­
ed.

9. Determining the column address access time needed
during burst mode accesses for zero wait states (DE­
SIGN #2 ONLY):

57.25 ns (#8 above, tCAC needed by the DRAM) +
1.5 ns (# 7 above, column address setup time to
CAS-0-3 low) = 58.75 ns.

10. Minimum SRDY - (Synchronous ReaDY) setup time to
ClK low (80286 SRDY input needs 15 ns, # 11):

62.5 ns (two clock periods) - 4.5 ns (74ASOO max de­
lay, ClK-) - 10 ns ('0' speed PAL combinational out­
put max delay to SRDY- low) = 48 ns.

Note: Calculations can be performed for different frequencies. different log­
ic (ALS or CMOS ... etc). and/or different combinations of wait
states by substituting the appropriate values into the above equa­
tions.

VI. 80286 PAL INPUT AND OUTPUT DESCRIPTIONS
FOR DESIGNS # 1 AND # 2

Inputs:

ClK-

PClK

S01

SO­

WIN-

CS-

DT12-

AO

BHE­

RFRQ­

HSA-

OE­

Outputs:
ECAS-O

ECAS-1

SRDY-

8420ClK-

ADS-

The inverted clock (ClK) of the 80286.

The half speed clock of the 80286, produced
by the 82284.

The 80286 SO- 'NANDed' with S1-.

The SO - output of the 80286.
The 80286 SO - input low latched throughout
the access cycle.

The DRAM chip select generated from the
80286 addresses.

The DTACK- output of the 8421A.

The least significant address bit (low byte en­
able) from the 80286.

The high byte enable from the 80286.

The refresh request output from the 8421A.

The High Speed Access output (comparison
equal) from the 74AlS6311.

Output enable of the PAl®.

The low byte CAS - enable, this output also
toggles during page mode accesses in design
#2.

The high byte CAS - enable, this output also
toggles during page mode accesses in design
#2.

This is the ready input to the 80286, it is used
to insert wait states into 80286 access cycles.

This is the CLOCK and DElClK input to the
8421 A. This clock runs at half of the 80286
ClK frequency.

This is the ADS - and AREQ - inputs to the
8421A. In design #2 this input stays low thru
multiple accesses as long as the accesses are
within a page.

7-84

NOACC- This PAL output is low at the end of an 80286
access and stays low until the next access
starts.

lREQ- In Design #2 this output latches that an ac­
cess request occurred (from the 80286) during
an out-of-page access or refresh request dur­
ing page mode accessing.

WIN - The latched SO - output from the 80286.

ENX - The PAL output used to enable the data trans­
ceivers.

80286 PAL EQUATIONS (DESIGN # 1)

1. Up to 40 MHz (80286-20)

PAL16R6D
ClK - PClK S01 SO - CS - DT12 - AO BHE - NC3 GND
OE- ECAS-1 WIN- ENX- SRDY- ADS- NOACC-
8420ClK - ECAS - 0 VCC
If (VeC> IECAS-O = ICS- *S01*SO- */AO*8420ClK­

;READ
+/CS- */ADS- */DT12-
* 1 AO*8420ClK - ;WRITE

+ IECAS-O*/ADS­
+/ECAS-O*/SRDY-

If (VeC> IECAS-1 = ICS- *S01 *SO- *
IBHE- *8420ClK-

+/CS- */ADS- */DT12- *
;READ

IBHE - *8420ClK - ;WRITE

+/ECAS-1 */ADS-
+ 1 ECAS -1* ISRDY-

18420ClK - : = IPClK

INOACC- := ISRDY-*/ADS-

IADS-

ISRDY-

IENX-

IWIN-

+ INOACC- * IPClK
+/NOACC- *CS- */ADS­

+ INOACC - * IS01
:= ICS-*S01*PClK

+/ADS- *SRDY-

:= ICS- */ADS- */DT12- *NOACC- *
IPClK

+ ISRDY - * 1 ADS- *NOACC­
:= ICS- */ADS-

:= ISO-*S01

+/WIN-*NOACC-
+ IWIN - * IPClK

80286 PAGE MODE PAL EQUATIONS
(DESIGN #2)

2. Up to 40 MHz (80286-20)

PAL16R6D
ClK- PClK S01 WIN- CS- DT12- RFRQ- HSA­
AOGND
OE- BHE- ADS- lREQ- NOACC- 8420ClK­
ECAS - 1 ECAS - 0 SRDY - VCC
If(VeC>/SRDY- = ICS-*/ADS-*

IDT12- *NOACC- *8420ClK-

+ ISRDY - * 1 ADS - *NOACC­
+ ISRDY - * 1 ADS - *8420ClK-

IECAS-O:= ICS- *S01*WIN- */AO*/HSA- *PCLK

+/CS- *S01*WIN- */AO*HSA- *ADS- *PCLK

+ ICS- */LREQ- */AO*/HSA- *WIN- *PCLK

+/CS- */ADS- */SRDY- *NOACC- */AO*PCLK

+ IECAS - 0* I ADS - *NOACC-

IECAS-1:= ICS- *S01*WIN- */BHE- */HSA- *PCLK

+/CS- *S01*WIN- */BHE- *HSA- *ADS- *PCLK

+ ICS- *LREQ- */BHE- */HSA- *WIN- *PCLK

+/CS- */ADS- */SRDY- *NOACC- */BHE- *PCLK

+/ECAS-1*/ADS- *NOACC-

18420CLK - : = IPCLK

INOACC-:= ISRDY-*/ADS-

+ INOACC - * IPCLK

+ INOACC - *CS - * I ADS­
+/NOACC-*/S01

ILREQ-:= ICS- *S01*HSA- */ADS-

+ ICS- *S01*/RFRQ- */ADS­
+ ILREQ- *ADS-

IADS-: = CS- *S01*ADS- *RFRQ- *PCLK

+/LREQ- */HSA- *PCLK

+/ADS- *NOACC-

+/ADS- */NOACC- *RFRQ- */HSA­

+/ADS- */NOACC- */PCLK

7-85

;READ WITH ADS- LOW

;READ WITH ADS- HIGH

;READ DELAYED ACCCESS

;READ WITH ADS - LOW

;READ WITH ADS- HIGH

;READ DELAYED ACCESS

co
'9'­
CD .
Z «

ClK

8420ClK-

CS-

CPU SOl

ADS-

WIN-

ADDRESS

DTACK­
(DT12-)

SRDY-

NOACC-

ECAS-O,1

RAS-O,1

RAS-2,3

CAS-O-3

DATA

80286/DP8421A Page Mode Timing (Design # 1)

r READ BANK 0 -.r- WRITE BANK 1

I ~ I ~ I ~ I ~ I ~ I ~
REFRESH WITH PENDING READ BANK 1 ACCESS-1

~ I ~ I ~ I ~ I ~ I ~ I

TL/F/10442-2

7-86

Interfacing 80286/8421A Using Page Mode Accessing (Design #2)

I CLOCK

=~ I 74ASOO PClK
PAL DP8421A

80286 ClK Ul"- ClK- 8420ClK-16R6D ClK

so-~~ 4 DEClK

Sl- ~ SOl
A WIN-

WINN

~ GWINN
V

Ul ;= T ADSN (AREQ-)
ADSN

~
~ AREQ-

SRDYN DTACK- (DT12N)
DTACKN

~
SRDYN 2 BANKS RFRQN Q

..
CHIP SELECT CSN

RFRQ- ... (UP TO
DECODER RAS-O,l 4 BANKS)
74AlS138 AO, BHE- ECAS-O,l RAS-2,3 OF 1M-BIT A12-A21 ...

A22IA231t.fI/O-1 ~ RO-R9 CAS-O,2
lOW BYTE ._ DRAMS

All
..

ECAS-O I ~ (16 BITS Bl
ADDRESS - PER BANK) HIGH BYTE_

8420ClK- FROt.f PAL A Al-Al0 ... CAS-l ,3
ECAS-ll ~ v- CO-C9

4-
.. -

.. "" DATA '--- HSA- "C-All-A21 .. PAGE 14 ClKEN BO .. DETECTOR
74ALS6311 RCAS-0-3

~
A PAL ADS- f
v-

A WIN-

~ PAL SRDY-
DIR

EN V'

TRANSCEIVER

TL/F/10442-3

@At high frequencies (ClK > 32 MHz) the WIN - input may need to be sampled by a flip-flop (clocked by 8420ClK -) before being input to the PAL to meet the
setup requirements of the PAL inputs. This would have the effect of delaying ECAS - 0,1 becoming valid by one clock period (ClK -) during read accesses, this
would not affect the performance of this interface.

7-87

......
cD
(J)

ClK

842DCLK-

cs-

CPU SOl

ADS-

LREQ-

WIN-

ADDRESS

HSA-

RFRQ-

DTACK­
(DT12-)

SRDY-

NOACe-

ECAS-O,l

RAS-O,l

RAS-2,3

CAs-D-3

DATA

AN-618

80286/DP8421A Page Mode Timing (Design #2)

IN-PAGE ACCESSING I DIFFERENT PAGE (SAME BANK) I
~ ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ TS TC TC TS TC TS

TUF/10442-4

-...J
a,
co

I

ClK

s.42OCLK-

cs-

CPU SOl

ADS-

LREQ-

W1N-

ADORESS

HSA-

RFRQ-

DTACK­
(0112-)

SROY-

NOAce-

ECAS-O.l

RAS-O.l

RAS-2.3

CAs-o-3

DATA

TS TC TC

80286/DP8421A Page Mode Timing (Design #2)

r--- DlrrEREHT PAGE (OTHER BANK)

I ~ I ~ I ~ I ~ I ~ TC -,

IN-PAGE ~
ACCESS

Ts I Tc TS

REFRESH WITH PENDING ACCESS

TC TC TC TC

TUF/l0442-5

8~9·N\f

It)
C")
It) . z «

A PAL Interface for a Dual
Access DP8422A/680301
74F632 Error Detecting and
Correcting Memory System
I INTRODUCTION

This application note describes a 3 PAL design that interfac­
es two 68030 microprocessors, both synchronous to the
same system clock, to a DP8422A DRAM controller and a
74F632 Error Detection and Correction (EDAC) chip. It is
assumed that the reader is already familiar with the 68030
CPU, the DP8422A DRAM controller, the 74F632 EDAC,
and the basics of PAL design. The National Semiconductor
DP8402A EDAC chip can be used in place of the 74F632
though it is a slower device.

This application note supports the following types of memo­
ry accesses:

1. Read accesses with 6 wait states inserted (8 clock peri­
ods total in the synchronous mode read access), any sin­
gle bit errors are automatically corrected before sending
the data to the CPU (EDAC unit in always correct model
error monitoring mode is also described);

2. Write accesses with 3 wait states inserted (5 clock peri­
ods total in the synchronous mode write access);

3. Byte write accesses with 7 wait states inserted (9 clock
periods total in the synchronous mode byte write access);

4. Burst read accesses with 3 wait states in the burst portion
of the access (4 clock periods total per synchronous
mode burst read memory access);

5. Scrubbing during DRAM refreshes (6 clock periods total
during the refresh if no errors, 8 clock periods total during
the refresh if any errors), any single bit errors are correct­
ed. The corrected word is then written back to the DRAM.

" DESCRIPTION OF 25 MHz DUAL ACCESS 68030 SyS­
TEM INTERFACED TO THE DP8422A AND THE 74F632

This design allows two 68030 microprocessors to access a
common error corrected dynamic memory system. The er­
ror corrected memory system is implemented using the
74F632 EDAC chip in the always correct mode. Whichever
68030 accessed the memory last has a higher priority. Both
68030s are interfaced to the DRAM in the synchronous
mode of operation (the accesses are terminated with the
68030 STERM - input). This allows the DRAM system to
support burst mode accesses.

During read accesses the data is always processed through
the EDAC chip (always correct type of system). If a single bit
error occurs during a read access this design guarantees
correct data to the CPU, but does not write the corrected
data back to the DRAM. Single bit soft errors in memory are
only corrected (written back to memory) during scrubbing
type refreshes. The memory is scrubbed often enough that
the probability of accumulating two soft errors in memory is
very unlikely.

During read accesses the data is always processed through
the 74F632 EDAC chip (Le., the EDAC data buffers are en­
abled to provide the data to the CPU). The 74F632 is always
put into latch and correct mode during read accesses, even
though the data from the memory may be correct. This al-

National Semiconductor
Application Note 535

lows CAS - to be toggled early (before the CPU has sam­
pled the data), during burst mode accesses, to start access­
ing the next word of the burst access.

This design drives two banks of DRAM, each bank being 39
bits in width (32 data bits plus 7 check bits) giving a maxi­
mum memory capacity of 32 Mbytes of error corrected
memory (using 4 M-bit x 1 DRAMs). By choosing a different
RAS - and CAS - configuration mode (see programming
mode bits section of DP8422A data sheet) this application
can support 4 banks of DRAM, giving a memory capacity of
64 Mbytes (using 4M-bit x 1 DRAMs, NOTE that when driv­
ing 64 Mbytes the timing calculations will have to be adjust­
ed to the greater capacitive load).

The memory banks are interleaved on every four word (32-
bit word) boundary. This means that the address bit (A4) is
tied to the bank select input of the DP8422A (B1).

Address bits A3,2 are tied to the highest row and column
address inputs (R9, C9 for 1 Mbit DRAMs) to support burst
accesses using nibble mode DRAMs. Nibble mode DRAMs
must be used! The reason for this is that nibble mode
DRAMs support address wrap-around during a burst ac­
cess. Address wrap-around is needed during an internal
cache miss where the 68030 starts a burst memory access
on a non-page boundary (Le., the first of a 4 word burst may
have the least significant address bits, "A3,A2" = 1 0). Giv­
en this condition, the CPU expects word 2, word 3, word 0,
word 1. On incrementing from word 3 to word 0 the address
bit A4 must not change (the nibble page must remain the
same). Nibble mode DRAMs support the address wrap­
around feature.

Address bits A 1, AO are used to produce the four byte select
data strobes, used in byte reads and writes. If the majority of
accesses made by the 68030 are sequential, the 68030 can
be doing burst accesses most of the time. Each burst of four
words can alternate memory banks (address bit A4 tied to
DP8422A pin 81), allowing one memory bank to be pre­
charging (RAS - precharge) while the other bank is being
accessed. This is a higher performance memory system
than a non-interleaved memory system (bank select on the
higher address bits). Each separate memory access to the
same memory bank will generally require extra wait states
to be inserted into the CPU access cycles to allow for the
RAS - precharge time.

The logic shown in this application note forms a complete
68030 memory sub-system, no other logic is needed. This
SUb-system automatically takes care of:

A. arbitration between Port A, Port B, and refreshing the
DRAM;

B. the insertion of wait states to the processor (Port A and
Port B) when needed (Le., if RAS - precharge is needed,
refresh is happening during a memory access, the other
Port is currently doing an access ... etc.);

7-90

C. performing byte writes and reads to the 32-bit words in
memory;

D. normal and burst access operations.

By making use of the enable input on the 74AS244 buffer,
this application allows dual access applications. The ad­
dresses and chip select are TRI-STATE® through this buff­
er, the write input (WIN -), lock input (LOCK -), and
ECASO-3 - inputs must also be able to be TRI-STATE
(another 74AS244 could be used for this purpose). By multi­
plexing the above inputs (through the use of the above parts
and similar parts for Port B) the DP8422A allows dual ac­
cessing to be performed.

III ANOTHER OPTION FOR A 68030 25 MHz DUAL AC­
CESS EDAC DESIGN: THE EDAC ERROR MONITORING
METHOD IN CONJUNCTION WITH THE 68030 ASYN­
CHRONOUS LATE RETRY FEATURE

The 68030 dual access EDAC system design could use the
error monitoring method in conjunction with the 68030 asyn­
chronous late retry feature, instead of the always correct
method (design shown in this application note). The error
monitoring method can yield a slight improvement in system
performance.

By using the error monitoring method of error correction
single read accesses or the first read access during a burst
access can be shortened by one clock period, allowing a
synchronous read access to have only 5 wait states insert­
ed, 7 clock periods total (compared to 6 wait states, 8 clock
periods total when doing the always correct method). All
other types of accesses (burst reads, byte writes, word
writes, refresh scrubbing) will execute in the same number
of clock cycles, and in the same manner as described in this
application note.

Read accesses can save one wait state because the data
from the DRAM memory is assumed to be correct in the
error monitoring system design. Therefore the DRAM data
is given directly to the CPU instead of running it through the
EDAC chip as was done in the always correct method.

In order to do this design it is required that the asynchro­
nous late retry feature of the 68030 and registered trans­
ceivers (74F646) be employed.

The asynchronous late retry feature of the 68030 involves
pulling the 68030 input signals "BERR - and HALT -"
both low before the falling clock edge of the last clock cycle
of the access. Given that this is done the 68030 will sus­
pend all bus activity until HALT - is brought high and then
will retry the aborted bus cycle (unless that access is not
currently needed by the CPU). This feature is useful for the
case where an error is detected in the DRAM data. In this
case BERR - and HALT - are brought low until the data
from the DRAM is corrected (by the EDAC chip) and written
back to the DRAM. BERR - and HALT - are then brough
high to continue CPU processing.

7-91

Registered transceivers (74F646) are necessary during
burst mode read accesses because CAS - transitions high
before the CPU has sampled the DRAM data. The regis­
tered transceivers hold the data valid until the CPU samples
it during these cases.

A read, read with a single bit error, and burst read access
timing are shown at the end of this application note imple­
menting the error monitoring method. The user can see how
these access cycles differ from the always correct method
access cycles.

IV 68030 25 MHz DUAL ACCESS DESIGN,
PROGRAMMING MODE BITS

Programming
Bits

RO = 1
R1 = 1

R2 = 1
R3 = 0

R4 = 0
R5 = 0

R6 = 0

R7 = 1

R8 = 1
R9 = X

CO = X
C1 = X
C2 = X

C3 = X
C4 = 0
C5 = 0
C6 = 1

C7 = 1

C8 = 1

C9 = 1

BO = 1

Description

RAS - low four clocks, RAS - precharge of
three clocks

DTACK- 1 is chosen. DTACK- low first
rising CLK edge after access RAS - is low.

No WAIT states during burst accesses

If WAITIN - = 0, add one clock to
DTACK-. WAITIN- may be tied high or
low in this application depending upon the
number of wait states the user desires to in­
sert into the access.

Select DT ACK-

Non-interleaved mode

Select based upon the input "DELCLK" fre­
quency. Example: if the input clock frequen­
cy is 20 MHz then choose CO,1,2 = 0,0,0
(divide by ten, this will give a frequency of
2 MHz). If DELCLK of the DP8422A is over
20 MHz do an initial divide by two externally
and then run that output into the DELCLK
input and choose the correct divider.

RAS- groups selected by "B1". This mode
allows two RAS - outputs to go low during
an access, and allows byte writing in 32-bit
words.

Column address setup time of 0 ns

Row address hold time of 15 ns

Delay CAS - during write accesses to one
clock after RAS - transitions low

Fall-thru latches

B 1 = 1 Access mode 1

ECASO - = 0 Non-extend CAS­
o = Program with low voltage level

1 = Program with high voltage level

X = Program with either high or low voltage level (don't care condition)

» z .
U1
CAl
U1

II

Ln r--
('I)
Ln .
Z «

V 6803025 MHz WORST CASE TIMING CALCULATIONS

The worst case access is an access from Port 8. This oc­
curs because the time to RAS - and CAS - low is longer
for the Port 8 access than; a Port A access, a refresh with
scrubbing access, or an access which has been delayed
from starting (due to refresh, RAS - precharge time, or the
other Port accessing memory).

A. Worst case time to RAS - low from the beginning of an
access cycle:

40 ns (T1 clock period of 68030) + 10 ns (PAL16R4D
maximum combinational output delay to produce
AREQ8 -) + 41 ns (DP8422A-25 parameter # 1 02,
AREQ- to RAS- delay maximum) = 91 ns

8. Worst case time to CAS - low from the beginning of an
access cycle:

40 ns + 10 ns + 94 ns (DP8422A-25 parameter # 118a,
AREQ8 - to CAS - delay maximum) = 144 ns

C. Worst case time to DRAM data valid:

144 ns (from "8" above, maximum time to CAS -) + 50
ns (CAS - access time "tCAC" for a typical 100 ns
DRAM) = 194 ns

D. Worst case time to data valid on the EDAC data bus:

194 ns (from "C" above) + 7 ns (74AS244 maximum
delay) = 201 ns

E. Worst case time until the error flags are valid from the
74F632:

201 ns (from "D" above) + 31 ns (74F632 maximum
time to error flags valid) = 232 ns

F. Worst case time until corrected data is valid from the
74F632:

201 ns (from "D" above) + 28 ns (74F632 maximum
time from data in to corrected data out) = 229 ns

G. Worst case time until corrected data is available at the
CPU:

229 ns (from "F" above) + 7 ns (74F245 maximum de­
lay) = 236 ns

VI 68030 25 MHz DUAL ACCESS DESIGN, TIMING CAL­
CULATIONS

1. Minimum ADS - low setup time to CLOCK - high for
DT ACK - logic to work correctly (DP8422A-25 needs
25 ns, parameter #400b):

40 ns (one clock period) - 10 ns (PAL 16R4D combina­
tional output maximum that produces AREQ-, ADS-)
= 30 ns

2a. Minimum address setup time to ADS - low (DP8422A-
25 needs 14 ns, parameter #404):

40 ns (one clock period) - 20 ns (assumed 68030 max
time to address valid from ClK high) - 6.2 ns
(74AS244 buffer delay max) + 2.5 ns (minimum PAL
16R4D combinational output delay that produces
AREQ-, ADS-) = 16.3 ns

7-92

2b. Minimum address setup time to ClK high (used in #38
calculation below):

40 ns (one clock period) - 20 ns (assumed 68030 max
time to address valid from ClK high) - 6.2 ns
(74AS244 buffer delay max) = 13.8 ns

3a. Minimum CS - setup time to ADS - low (DP8422A-25
needs 5 ns, parameter #401):

16.3 ns (#2a) - 9 ns (max 74AS138 decoder) =
7.3 ns

3b. Minimum CS - setup time to ClK high (PAL equations
need 0 ns):

13.8 ns (#2b) - 9 ns (max 74AS138 decoder) =
4.8 ns

4. Determining tRAC during a normal access (RAS - ac­
cess time needed by the DRAM):

200 ns (five and one-half clock periods to get data from
the DRAM to the 74F632 data inputs) - 3 ns (74F632
data setup time to mode input SO high) + 2.5 ns (mini­
mum PAL16R4D combinational output delay for "SO")
- 84 ns (from "A" of worst case times, from the begin­
ning of the access to RAS - low) - 6.2 ns (74F244
DRAM buffer delay maximum) = 129.3 ns

Therefore the tRAC of the DRAM must be 129.3 ns or
less.

5. Determining tCAC during a normal access (CAS - ac­
cess time) and column address access time needed by
the DRAM:

220 ns (five and one-half clock periods to get data from
the DRAM to the 74F632 data inputs) - 3 ns (74F632
data setup time to mode input SO high) + 2.5 ns (mini­
mum PAL 16R4D combinational output delay for "SO")
- 138 ns (from "8" of worst case times, from the be­
ginning of the access to CAS- low) - 6.2 ns (74F244
DRAM buffer delay maximum) = 75.3 ns

Therefore the tCAC of the DRAM must be 75.3 ns or
less.

6. Determining the nibble mode access time needed dur­
ing a burst access:

100 ns (two and one-half clock periods to do the burst)
- 8 ns (PAL16R4D clocked output delay maximum for
ENCAS - output) - 27 ns (DP8422A-25 ECASn - to
CASn- asserted maximum, parameter #14) - 3 ns
(74F632 data setup time to mode input SO high) + 2.5
ns (minimum PAL 16R4D combinational output delay for
"SO") - 6.2 ns (74F244 DRAM buffer delay maximum)
= 58.3 ns

Therefore the nibble mode access time of the DRAM
must be 58.3 ns or less

7. Maximum time to DTACK1- low (PAL 16R4D needs 10
ns setup to ClK):

40 ns (One clock) - 28 ns (DT ACK2 - low from CLK
high on DP8422A-25, parameter # 18) = 12 ns

8. Minimum STERM - setup time to CLK (0 ns to ClK
rising edge is needed by the 68030):

20 ns (one-half clock period) - 10 ns (PAL 16R4D com­
binational output maximum) = 10 ns

··Note: That calculations can be performed for different frequencies and/or
different combinations of wait states by substituting the appropriate
values into the above equations.

»
VII PAL INPUT DESCRIPTIONS STERMA- This output is used to insert synchronous Z

BClK System Clock wait states to the Port A 68030 en
w

ClK System Clock STERMB- This output is used to insert synchronous U1

CSA- Chip Select from Port A 68030 wait states to the Port B 68030

ASA- Address Strobe from Port A 68030 SERR- This output latches the fact that the 74F632
detected an error in the data it read from the

CSASA- Chip selected access request from Port A DRAM
68030

BERR- This output latches that the 74F632 detected
CSB- Chip Select from Port B 68030 a multiple bit error in the data it read from the
ASB- Address Strobe from Port B 68030 DRAM
DTACK- Data Transfer ACKnowledge for Port B ac- WE- This output controls write enable to the

cesses DRAMs
ATACKB- Transfer ACKnowledge for Port B accesses IX 68030 25 MHz DUAL ACCESS EDAC SYSTEM DESIGN
R Read/Write - (R/W -) indicator from the PAL EQUATIONS IN ABEL FORMAT

currently granted CPU
DP1 device "PAL16R4D"

CBREQ- Cache Burst REQuest indicator from the cur-
rently granted CPU BClK pin 1; VCC pin 20;

WCBREQ- When low this signal indicates either a write ClK pin 2; AREO- pin 19;

access or a non-burst access CSASA- pin 3; AREOB- pin 18;

RFIP- Indicates that a DRAM refresh is in progress CSB- pin 4; D1- pin 17;

RASO- RASO - output from the DP8422A DRAM
ASB- pin 5; D2- pin 16;

controller DTACK- pin 6; D3- pin 15;

WORD- Indicates a word access (32 bits) as opposed
ATACKB- pin 7; ENCAS- pin 14;

to a byte or multi-byte access (less than 32 WCBREQ- pin 8; COUNT- pin 13;

bits) RFIP- pin 9; RASO- pin 12;

GRANTB GRANTB output from the DP8422A DRAM GND pin 10; OE- pin 11;

controller, when high this output indicates EQUATIONS
that Port B currently is granted to access the IAREQ- = !CSASA- & ClK
DRAM #!AREQ- & !CSASA-

VIII PAL OUTPUT DESCRIPTIONS # !AREQ - & !ClK;

AREQ- DRAM Access REQuest for Port A 68030 IAREQB - = ICSB - & !ASB - & ClK
AREQB- DRAM Access REQuest for Port A 68030 # IAREQB - & !CSB - & IASB-

COUNT- The enable for the shift register counter (out- # IAREQB - & !ClK;

puts D1-6-) !COUNT- = !AREQ- & !DTACK- & !CSASA-
D1-6- Shift register counter, these outputs are used #!AREQB- & !ATACKB- & !ASB-

to drive the PAL control outputs in the proper #IRFIP- & !RASO-;
sequence for each access (Port A, Port B,

ID1- := !AREQ- & IDTACK-refresh) and are clocked outputs
#!ATACKB- & !AREQB-

ENCAS- This output, when low, enables the CAS- #!RFIP- & IRASO;
outputs of the DP8422A DRAM controller
and is a clocked output ID2 - :!D1 - & D3 - & ICOUNT-

EXRF- This output is used to EXtend the ReFresh #D3- & !AREQ- & IDTACK- & RFIP-;

cycle to allow an access from one of the ID3- := ID2- & ICOUNT-;
banks of DRAM, if an error occurs (ERR-
low) the refresh cycle is extended even long- IENCAS - : = IWCBREQ-
er to allow the corrected data to be written # D1-
back to memory # ID2-

SO- This output controls the SO mode input of the # D3-

74F632 # IRFIP-;

S1- This output controls the S1 mode input of the DP2 device "PAL 16l8D"
74F632

TRAN_EN - This output is used to enable the data trans-
BClK pin 1; VCC pin 20;

ceivers for the currently enabled Port (A or B) R pin2; EXRF- pin 19;

OEB- This output is used to drive the OEBO-3-
WORD- pin3; SO pin 18;

inputs of the 74F632 to provide byte output GRANTB pin 4; S1 pin 17;

control of the latched corrected data RFIP- pin 5; TRAN_EN- pin 16;

OECB- This output controls when to enable the SERR- pin 6; OEB- pin 15;

check bits out of the 74F632 D2- pin 7; OECB- pin 14;

lEDBO- This output is used to latch the corrected D5- pin 8; STERMA- pin 13;

data in the output latches of the 74F632 D6- pin 9; STERMB- pin 12;
GND pin 10; OE- pin 11;

7-93

EQUATIONS

IEXRF- = IRFIP- & S1 & !02- & 05- & OS- &

SERR-
#IEXRF- & IRFIP- & S1 & 05- & OS­
#IRFIP- & 105- & !SERR-;

ISO = IR & IWORO- & RFIP­
102- & 05-
ISO & BClK
105 - & IBClK
ISO & 105-
ISO- &! OS-
IS1 & ISERR- & !RFIP-;

IS1 = IR & IWORO- & RFIP­
!05 - & IBClK
IS1 & !05-
IS1 & 10S- & !R & WORO­
IS1 & 10S- & !RFIP-
!S1 & !SERR- & IRFIP-;

ITRAN_EN - = R & !05 - & IBClK & RFIP-
ITRAN_EN- & R & 105- & OS- & RFIP­
R & !05- & !STERMA- & RFIP-
R & !05- & !STERMB- & RFIP-
!R & !WORO- & !S1 & RFIP-
!R & WORO- & 105- & !BClK & RFIP­
ITRAN_EN - & IR & WORD - & !05 - &

RFIP-
ITRAN_EN - & IR & WORD - & IDS - &

RFIP-;

IOEB- = R & 105- & IBClK
IOEB- & R & !05-
IRFIP - & 105 - & IBClK & ISERR­
IOEB- & IRFIP- & 105- & ISERR­
lOEB - & IRFIP - & IDS - & ISERR­
IR & WORO- & 105- & IBClK
IOEB- & IR & WORO- & 105-
IOEB- & IR & WORO- & !OS-;

IOECB- = IR & !WORO- & RFIP- & !S1
IRFIP- & !05- & !BClK & !SERR-
IOECB- & !RFIP- & 105- & !SERR­
IOECB - & IRFIP - & IDS - & !SERR­
IR & WORO- & !05- & !BClK
IOECB- & IR & WORO- & 105-
IOECB- & IR & WORO- & 10S-;

ISTERMA- = R & RFIP- & !05- & OS- &

!GRANTB- & IBClK
ISTERMA- & R & RFIP- & !05- &

!GRANTB - & BClK
IR & IWORO- & RFIP- & 102- & OS- &

IGRANTB- & IBClK
ISTERMA - & IR & IWORO - & RFIP - &

102 - & OS - !GRANTB & BClK
IR & WORO- & RFIP- & 105- & !OS- &

!GRANTB - & IBClK
!STERMA- & IR & WORO- & RFIP- & !OS &

!GRANTB & BClK;

7-94

ISTERMB- = R & RFIP- & !05- & OS- &

GRANTB- & IBClK
!STERMB- & R & RFIP- & 105- &

GRANTB - & BClK
!R & IWORO- & RFIP- & 102- & OS- &

IGRANTB & IBClK
ISTERMB- & IR & IWORO- & RFIP- &

!02- & OS- GRANTB & BClK
!R & WORO- & RFIP- & 105- & 10S- &

GRANTB- & IBClK
ISTERMB- & IR & WORO- & RFIP- &

IDS & GRANTB & BClK;

OP3 device "PAL 1SR40"

BClK pin 1; VCC
ClK pin2; lEOBO-
SO- pin3; SERR-
S1- pin 4; WE-
ERR- pin 5; 04-
MERR- pinS; 05-
COUNT- pin 7; OS-
02- pin 8; BERR-
03- pin 9; OECB-
GNO pin 10; OE-

EQUATIONS

!lEOBO = !02 - & ISO - & S1 - & IClK
#llEOBO- & !03- & !SO-
!lEOBO - & IClK

ISERR- = 104- & SO- & S1- & ICOUNT- &

IERR- & ClK
. # ISERR - & ICOUNT - ;

IBERR- = 04- & SO- & S1- & ICOUNT- &

IMERR- & ClK
IBERR - & ICOUNT - ;

pin 20;
pin 19;
pin 18;
pin 17;
pin 1S;
pin 15;
pin 14;
pin 13;
pin 12;
pin 11;

IWE- := !S1- & 102- & 03":'" & ICOUNT- & IOECB-;

!04- := !03- & !COUNT-;

!05- := !04- & !COUNT-;

!OS- := !05- & !COUNT-;

Key: Reading PAL equations
EXAMPLE EQUATIONS:

!AREQ- = ICSASA- & ClK
!AREQ- & ICSASA-

. # !AREQ- & IClK-

This example reads: the output "AREQ-" will transition
low given that one of the following conditions are valid;

1. the input "CSASA - " is low AND the input "ClK" is high,
OR

2. the output "AREQ -" is low AND the input "CSASA - "
is low, OR

3. the output "AREQ -" is low AND the input "ClK" is low.

L.

CLOCK
GENERATOR

1

-l-_
3 ASN CSN R/WN + ASN, CSN, R/JiN 3 -l-

CBREON :1 CONTROL LOGIC I. CBREON

2 STREIAN CBACKN. rl I STREIAN, CBACKN • 2
68030

BERRN
68030

BERRN 1 I ' '4
I

PORT A ENABLEN ADSN,
,~

4 PORT B ENABLEN

AREON, AREOBN, DATA STROBES
CSN, WEN GRANTBN,
ENCASN ATACKBN,

DTACKN, RflpN
CLK DELCLK

DATA ()
~ DATA

STROBES () STROBES 4

4 4 LOCKN LOCKN 4 RIACN
,

RIACN DP8422A

I\.
BUffERS " A BUffERS

A :::"1 PORTA \ / PORTA IL. ~ ADDRESS 2-25 74AS244 ROW,COLUIAN ROW,COLUIAN 74AS244 ADDRESS 2-25
V BANK ADDRESS / \. BANK ADDRESS ['f

V ~

BUffER ENABLE I I I

'" '" IAULTIPLEXED fROIA CONTROL I I
0 0 ADDRESS LOGIC VI VI
-< -< ~ 00-10 i 1

ENN

(,)
<>;1-'4

D ~ 4 11 D ... ;:.
A

I I 1\
A

T fROIA WEN DRAIA IAEIAORY T
A CONTROL UP TO 4 BANKS Of 39 BITS 5 A

WEN I (DATA + CHECK BITS =39) 39 BITS BUffERS
32

USING 41.4 X 1 DRAIAS = Of DATA+ 74AS244 32

B 641.4 BYTES Of ERROR CHECKBITS B
I CORRECTED DRAIA V I
T DRAIA T
S

L DATA + ..::::.. BUffERS S

~
CHECKBITS

J I INTO IAEIAORY A
BIDIRECTIONAL DATA + CHECK BITS

I I
DATA fROIA CPU

TRANSCEIVER V EDAC DATA Be \J
ENABLES fROIA CHECKBIT EDAC IAODE,
CONTROL LOGIC

""
BUS "7

LATCH AND
BUffER

,~ CONTROL 8 I fROIA .~ 'l CONTROL
ENN EDAC UNIT ' I LOGIC

PORTA 74f632 ERROR !:2~ e- 2 fLAGS I TO CONTROL I ~~ 1 LOGIC ..,~

Vl~

-:,V '"
R/WN

1 PORT B

l...----1\ 4 1/1

~ ,~~t=-74f245 4
DATA 0-31 74f245 -----,., N"

Control logic in this system needs the following: 3 PAL®s and some logic gates

·CBACK is tied low back to 68030

TL/F/9729-1

FIGURE 1. Block Diagram of Dual Access 68030 Error Detecting and Correcting (74F632) Memory System

7-95

• I

II)
('t)
II) . vee Z
<I: 20

CLK 1 19 LEDBO
TO 74F632

CLK 2 18 SERR
SO 3 PAL #3 17 WE TO DRAMs
Sl 4 FOR 16 04

ERR 5 68030 15 05
FROM 74F632 MERR 6 EOAC 14 06

COUNT 7 SYSTEM 13 BERR TO GRANTED 68030
02 8 12 o ECB
03 9 11 OE

10

Vee
20

CLK 19 EXRF
R 2 18 SO

WORD 3 PAL #2 17 Sl
GRANTB 4 FOR 16 TRAN_EN

TO PORT DECODER THEN TRANSCEIVERS
FROM OP8422A RFIP 5 68030 15 OEB

TO BYTE DECODER THEN 74F632
SERR 6 EOAC 14 OECB TO 74F632

02 7 SYSTEM 13 STERMA PORT A 68030
05 8 12 STERMB PORT B 68030
06 9 11 OE

10

Vee
20

CLK 1 19 AREQ
CLK 2 18 AREQB

PORTA 68030 CSASA 3 PAL #1 17 01
"'-':~~-----C> TO OP8422A

CSB 4 FOR 16 D2
PORTB 68030 ASB 5 68030 15 03

OTACK 6 EOAC 14 ENCAS
ATACKB 7 SYSTEM 13 COUNT

WCBRE 8 12 RASO
RFlp 9 11 OE ~--=-=-----<:J FROM OP8422A

10

ATACKB
DTACK FROM OP8422A

TL/F/9729-2

'If WITRI5 Is low then 32 bits are being accessed from the memory system.

If WORri Is high then less than 32 bits are being accessed from the memory system.

FIGURE 2. Control LogiC for 68030 Dual Access EDAC Memory System

7-96

ClK

AS A

DTACK

D2

D4

RFlp

RAS (1:0)

RAS (3:2)

CAS (3:0)

EN CAS

OEB"",OECB

SO,Sl

lEDBO , TRAN_EN

CPU ADDRESS

EDAC DATABUS

T1

rL --.

h

X

I

W1 W2 W3 W4 W5 W6 T2

rL rL..J rL rL rL-rL rL-
I

•
•

L

• • • ,.
•

• •
L

L

• I

\.

, 3

,1

'1 f ,
I I , 1 f '2
I I

VALID
I I

I I I
READ X CORRECT

READ ACCESS

FIGURE 3. 68030 EDAC Read Access Timing

7-97

n TI

rL rL-

I

J

r-
r-

• r-

I

r-

j

I

J

I 1
I

f
I

I

TLlF/9729-3

.....
cO
CD

A

AR

DTA'

STER

RAS~ (

RAS~ (

CAS~ (

ENe.

OEB~,OEI

SO

LEDS
TRAN_

CPU ADDR

EDAC DATA
Previous

Read Access

T1 WI
:LK rL-r--t-
;A~ --,
:O~ r-h
:K~ ~
)1~ II

)2~ II

)3~ IL-~
)~

)5~

)6~

IA~

iE~

IP~

1:0) \.

1:2) J
1:0) --'
,S~

!R~

:B~ ..J
,SI 1J 1

~~..: I '-;-J
ESS](

JUS ~

W2 W3 W4

r--t-rL rL-

I

I

I

I

\.C

\.1

\,1

VAliD

I I I

AN-535

W5 W6 T2 BWI BW2 BW3 T3 BWI BW2 BW3 T4 BWI BW2 BW3 T5

r--t-r--t-n-n-r--t-r--t-r--t-r--t-n-rL rL-r--t-r--t-r--t-n-
I

I .1

--
II I

-
I IL--

I I I I L LJ

-
II I 'I I 1..-

I I I I I I II

I L I I I I I IL--

W t....-I L..; ~ L ~ L L..I

C I \. C I \. C I \. C

r-h r-h ,r-il

L~
\,1 I \,1 I \.1 1 \~

I \. 11 I \. 11 I \. 11 I \1---
\.2 I \.1 \. 2 I \,1 I \,2 I \. 1 I \~

1-
READ 1 X CORRECT 1 READ 2 X CORRECT 2 J--(READ 3](CORRECT 3 J--(READ ~](CORRECT ~

T
BURST READ ACCESS .

TUF/9729-4

FIGURE 4. 68030 EDAC Burst Read Access Timing

CLK

ASA",

AREQ",

T2

IL
~

h

~

h

~

RAS'" (1:0)

RAS (3:2)

CAS (3:0)

EN CAS'"

SO.SI

LEDBO",. TRAN_EN'"

CPU ADDRESS

EDAC DATABUS

PREVIOUS REA
ACCESS

0

C

1

I
2

I

I
CORRECT

I

T1

rL
I

I

I

I

I

1

1

1 ,
/1\

1 ,
X

WI W2 W3 T2 I

IL rL. IL rL. IL r--

I

I I

I rl-
I I r
I I J

I L r
L-r

I

I r I--

I L .J

'-
,I--

'- 3

2 1
I I

I I
12 1

I I I I I
VALID

I I ~ _1 ~
WRITE J-

WORD WRITE I

FIGURE 5. 68030 EDAC Word Write Access Timing

7-99

TL/F/9729-5

l>
Z
en
w
U1

• I

Ln
C")
Ln .
z 11 W1 W2 W3 W4 WS W6 W7 T2 n
<I: ClK rL r--L rL rL rt-n.......J rt-rL rL r--L ~

ASA --, I

AREQ I I

OTACK I r-~
01 -' I

02 I J I I

03 ~ I J I

04J I I I

05 I I

06 I I

STERMA L J

WE I I

RFIP

RAS (1 :0) , Ir
RAS (3:2) I
CAS (3:0) -' ,-c C " ENCAS

ERR

OEB OECB --' '1' r--
SO.Sl --' '\.1 , '\. ET -

I
lEDBO TRAN_EN --' ,"1 , , 2 ,

I I I I I
CPU ADDRESS][VALID

I I I I I I
EOAC OATABUS '""\ READ CORRECTED)----- I I I

BYTE WRITE ACCESS I

TL/F/9729-6

FIGURE 6. 68030 EDAC Byte Write Access Timing

7-100

ClK

RFIP",

RAS'" (1:0)

RAS'" (3:2)

CAS'" (3:0)

ENCAS",

EXRF'"

ERR'"

OEB"',OECB",

SO,SI

lEDBO"', TRAN_EN'"

CPU ADDRESS

EDAC DATABUS

n TI RF1 RF2 RF3 RF4 RF5 RF6

rL rL rt-rL rt-rL ~ rt-rL

~ I

I I L-

U I I

U I I

I

L-

...,

.I , REFRESH NO ERRORS J

, J
I

--.I , C J

I EXTEND I REFRESH I

'1' J

,1 J ,
I

\.1 J
I L

READ CORRECT

DRAM REFRESH WITH
SCRUBBING

FIGURE 7. 68030 EDAC DRAM Refresh with Scrubbing

7·101

rL

r-
r-

r-
r-

r

TL/F/9729-7

» z . en
w
en

fI

AN-535

TI WI W2 W3 W4 W5 W6 .. - W7 ... W8 ..- W9 .. - Wl0 ... - Wll T2 .- TI ..
RF"1 RF"2 RF"3 RF"4 RF"S RF"6 RF"7 RF"8

ClK r-t..J rL r1..-rt.....J rt-r1..-rLJ rt-r1..-rt..... rt-r1..-rt..... !L rt-rL ro-

AREO I II

DTACK r -I

D1 L J I :.
D2 I I I I I I

D3 I I I I I 'r-
D4 I I I I L..-r
DS I I

D6 I I

STERMA L ~
WE I I I I

~I
RFlP

RAS (1:0)

RAS (3:2)

I

~ REF'RESH WITH SINGLE BIT ERROR I

~ r I--I \.
I I

CAS (3:0) \. C I \. 3 I

EN CAS
I

EXRF" I EXTEND REF'RESH I

ERR I I

OEB"",OECB \.2\. 1 \.2

SO,SI \.1 I \.
I I I I I I I I

lEDBO , TRAN_EN \.1 I \.2
I I I I I 1 I I I

CPU ADDRESS VALID

EDAC DATABUS
I I I I I I ~ I I I I I I

READ CORRECT WRITE ACCESS DATA
I I I I

WRIlt: ACCESS 'DURING DRAM SCRUBBING
I I I I I

REF"RESH WITH SINGLE BIT ERROR
TL/F/9729-B

FIGURE 8. 68030 EDAC Write Access during Refresh Timing

T2A WBl WB2 WB3 WB4 WB5 WB6 WB7 WBB WB9 WB10 T2B TI
ClK n--l rL-rL.,; rt.....J rL-rI-rL.,; rI-rI-rI-rI-rt.....J rL-

AREOB- I

ATACKB- I I I

Dl- I I I .-
D2- I I I L-W-
03- , I I I

D4- L I I I

D5- I

D6- L-h
STERMB- I J I

WE-
,

I

§I GRANTB-

RAS- (1:0)

I

RAS- (3:2) JI

CAS- (3:0) 3 I I\, 3 J

ENCAS-

EXRF ...

ERR ...

OEB"',OECB ... I \.1 I

SO,Sl I , 1 I \.\. rrT
I I I

LEDBO-, TRAN_EN- _2 I \. 1 I \.2 I
l I I I I I I

DPB422A ADDRESS PORT A. X PORT ~

I I l
EDAC DATABUS WRITE READ PORT B CORR B

I I I I I I I

PORT B ACESS DURING PORT A ACCESS .
TUF/9729-9

FIGURE 9. 68030 EDAC Port B Access during Port A Access

seS-NV

II

BCLK

WE to DRAMs

STERM",

TRAN_EN

(CLOCK OF) CPBA
\ 74F646 CPAB

E
D

OECB",

A ERR FLAG
C

U OEB'" (3:0)

N
I 50,51
T

LEDBO", =
DRAM BUFF _EN",

T1 WI W2 W3 W4 W5 T2 Tl WI W2 W3 W4 WS T2 Al A2 TI

DATA ON
EDAC BUS ,-------,---W>--------+<"----'I' --_+_'

BERR"" HALT",

READ ACCESS (NO ERRORS) READ ACCESS (SINGLE BIT ERROR) WRITE BACK

TL/F/9729-10

FIGURE 10.68030 EDAC Error Monitoring Method Using the Asynchronous Late Retry Feature of the 68030

7-104

T1 WI W2 W3 W4 W5 T2 BWI BW2 BW3 T3 BWI BW2 BW3 T4 TI TI

BCLK

ADS"".AREQ

WE to DRAMs

STERM

RASn

CASn

TRAN_EN

(CLOCK OF) CPBA
74F646 CPAB

E
OECB

D
A ERR FLAG
C

U
OEB (3:0)

N
I SO.SI
T

LEDBO =
DRAM BUFF _EN

DATA ON
EDAC BUS

BERR , HALT
READ WITH BURST BURST BURST

TL/F/9729-11

FIGURE 11.68030 EDAC Error Monitoring Method Using the Asynchronous Late Retry Feature of the 68030

7-105

:t>
Z en
w
U1

fI

Section 8
Appendicesl
Physical Dimensions

Section 8 Contents
Appendix A-Boolean Logic Review . 8-3

A.1 Basic Operators and Theorems . 8-3
A.2 Derivation of a Boolean Expression ... 8-4
A.3 Minimization. 8-6
A.4 K-Map Method... 8-7
A.S Sequential Circuit Elements 8-11
A.6 State Machine Fundamentals. 8-12
A.7 Avoiding Logic Hazards............................. 8-14

Appendix B-Theory of PLD Testing. 8-16
B.1 Testing Methods.. 8-16
B.2 Test Generation Techniques.......................... 8-17
B.3 Response Evaluation Techniques. 8-27

Physical Dimensions. 8-32
Bookshelf
Distributors

8·2

~National
~ Semiconductor

Appendix A
Boolean Logic Review

A.1 Basic Operators and Theorems
A gate is an electronic circuit which operates on one or
more input signals to produce an output signal. There are
three basic gates from which all other logic can be realized:
AND, OR, and INVERTER gates. Figure A.1.1 shows these
three basic gates and their truth table.

A_-,L.....--)-r
TL/l/9992-7

(A) AND Gate

:=D-----r
TL/l/9992-6

(B) OR Gate

A-[>o-r
TL/L/9992-9

(e) Inverter

Input

A

0
0
1
1

Input

A

0
0
1
1

Input

A

0

1

B

0
1
0
1

B

0
1
0
1

FIGURE A.1.1. Basic Gates

Output

F

0
0
0
1

Output

F

0
1
1
1

Output

F

1

0

To express the function of these gates by 800lean algebra,
we need to define 800lean operators as follows:

Logical Equality

x Negate (Not, Invert, Complement)

+ OR (Sum)

AND (Product)

EB Exclusive OR

The function of an AND gate in Figure A. 1. 1 can be ex­
pressed as:

F = A-8

The function of an OR gate and INVERTER can be ex­
pressed as:

F=A+8

and F = A

8-3

800lean operators are logical operators, which are different
from arithmetic operators. For example, + is logical addi­
tion, - is logical multiplication. We call such equations 800-
lean equations or logic equations.

A number of logic theorems and laws will be used to manip­
ulate and reduce logical equations. These theorems and
laws are as follows:

Theorem 1 A + 0

Theorem 2 A - 0
Theorem 3 A + 1

A- 1

A+A

A-A

A+A
A-A
"to

A + A- 8

A - (A + 8)

=A

=0
= 1

=A

=A

=A

= 1

=0
=A

=A

=A

Theorem 4

Theorem 5

Theorem 6

Theorem 7

Theorem 8

Theorem 9

Theorem 10

Theorem 11

Theorem 12

Theorem 13
(A + 8) - (A + C) = A + 8 - C

=A+8

Commutative Law

A+B=8+A

A-8=8-A

Associative Law

A+B+C=~+~+C=A+~+q

A - 8 - C = (A - 8) - C = A - (8 - C)
Distributive Law

A + (8 - C - D) = (A + 8) - (A + q - (A + D)

A - (8 + C + D) = A - B + A - C + A - D
DeMorgan's Theorem

(A + B + q = A - B - C
(A - 8 - q = A + B + C

The complement of any 800lean expression, or a part of
any expression, may be found by means of De Morgan's the­
orem. Two steps are used to form a complement in this
theorem:

1. OR symbols are replaced with AND symbols or AND sym-
bols with OR symbols.

2. Each of the terms in the expression is complemented.

DeMorgan's theorem is one of the most powerful tools for
engineering applications. It is very useful for designing with
programmable logic devices because it provides a quick
and simple conversion method between PRODUCT-OF­
SUMS and SUM-OF-PRODUCTS expressions, which will be
defined later.

OJ
o
o
CD
Q)
::::J
r­
o

(Q

n'
::D
(I)

< (D'

==

• I

== CI)
os:
CI)

a:
(.) os,
o
...I
C
CO
CI)

o
o
III

A.2 Derivation of a Boolean Expression
Any logic expression can be reduced to a two-level form
and expressed as either a SUM-OF-PRODUCTS (SOP) or
PRODUCT-OF-SUMS (POS). 8efore we define SOP o~
POS, we need to define "terms".

1. Product Term: A product term is a single variable or the
logical product of several variables. The variable mayor
may not be complemented.

2. Sum Term: A sum term is a single variable or the sum of
several variables. The variables mayor may not be com­
plemented.

3. Normal Term: A normal term is a product or sum term in
which no variable appears more than once.

4. Mlnterm: A minterm is a product term containing every
variable once and only once (either true or complement­
ed).

5. Maxterm: A maxterm is a sum term containing every vari-
able once and only once (either true or complemented).

For example, the term A - 8 - C is a product term; A + 8 is
a sum term; A is both a product term and a sum term; A +
8 - C is neither a product term nor a sum term; A + B is a
sum term; A - B - C is a product term; B is both a sum term
and a product term. We now define two most important
forms:

1. SUM-Of-PRODUCTS Expression: A sum-of-products
expression is a product term or several product terms
logically added together.

2. PRODUCT-Of-SUMS Expression: A product-of-sums
expression is a sum term or several sum terms logically
multiplied together.

For example, the expression A - 8 + A - B is a sum-of­
products expression; (A + 8) - (A + B) is a product-of­
sums expression.

One prime reason for using sum-of-products or product-of­
sums expressions is their straightforward conversion to very
simple gating networks. In their purest, simplest form they
go into two-level networks, which are networks for which the
longest path through which a signal must pass from input to
output is two gates long.

When designing a logic circuit, the logic designer works
from two sets of known values; the various states which the
inputs to the logical network can take, and the desired out­
puts for each input condition. The logic expression is de­
rived from these SElts of values and the procedure is as
follows:

1. Construct a table of the input and output values (Table
A.2.1 left half).

2a. To derive a SUM-OF-PRODUCTS (SOP) expression:

A product term column is added listing the inputs A, 8,
and C according to their value in the input columns (Ta­
ble A.2.1). Then the product terms from each row in
which the output is a "1" are collected.

Therefore:

F = A - 8 - C + A - 8 - C + A - 8 - C (Eq. A.2.1)
2b. To derive a PRODUCT-OF-SUMS (POS) expression:

A sum term column is added listing the inputs A, 8, and
C according to their complement value in the input col­
umns (Table A.2.1). Then the sum terms from each row
in which the output is "0" are collected.

Therefore:

F=~+8+q~+8+~~+8+q
(A + 8 + C) (A + B + C) (Eq. A.2.2)

Figure A.2. 1 is the logic circuit derived from Eq A.2.1 Figure
A.2.2 is derived from Eq. A.2.2.

Eq. A.2.1 Can be simplified as shown below:

F =A-8-C+A-8-C+A-8-C

= A - 8 (C + C) + A - 8 - C
=A-8+A-8-C

= 8 (A + A - C)

= 8 (A + C)

=A-8+8-C

Eq. A.2.2 can be simplified as shown:

F=~+8+q~+8+~~+8+q
(A + 8 + C) (A + B + C)

= (A + 8) (A + 8) (A + C)

= 8 (A + C)

=A-8+8-C

TABLE A.2.1. Truth Table Eq. A.2.1 and Eq. A.2.2

Inputs Outputs
Product Terms Sum Terms

A B C f

0 0 0 0 ABC A+8+C
0 0 1 0 ABC A+8+C
0 1 0 1 A8C A+B+C
0 1 1 1 A8C A+B+C
1 0 0 0 ABC A+8+C
1 0 1 0 ABC A+8+C
1 1 0 1 A8C A+B+C
1 1 1 1 A8C A+B+C

8-4

The two final expressions obtained are identical and can be implemented by the circuit shown in Figure A.2.3. This is much
simpler than the circuits in Figures A.2. 1 and A.2.2. This simplified procedure is called minimization.

A-----r-~
8-----t
C ------f._~

A-----r-~
B -----I ... --------1
C ------f._~

A-----r-~
8-----1
C ------f._~

FIGURE A.2.1. Logic Circuits of Eq. A.2.1

A-----r-......
B-------~ >---~ c------...... -;
A-----r-......
B ------~ >---.. c------...... -;

~-----r-~>---~~~~~r=~
A ------11'-,
B >--~
c-----...... -;

FIGURE A.2.2. Logic Circuits of Eq. A.2.2

:=gt-------l,..---D-r
FIGURE A.2.3. Simplified Logic Circuits

8-5

TL/L/9992-10

TLIL/9992-11

TLIL/9992-12

m
o
o
CD
Q)
::J
r
o

CC
n'
::D
CD
<
(D'
=:

== CD .s:
CD a::
CJ
's,
.9
c
CO
CD
'0 o
m

A.3 Minimization
Logic circuits can be represented by logic expressions or so
called logic equations. As discussed, we can minimize the
logic circuit through logic equations minimization. For exam·
pie, Figure A.3. 1 can be expressed by Eq. A.3.1.

F = (A - B - C + D) - (B + D) + A - C - (B + D)
(Eq. A.3.1)

By using the theorems and laws mentioned in 3.1, we mini·
mize Eq. A.3.1 as follows:

F A-B-C + B-D + A-B-C-D + D + A-C­
B+A-C-D

A - B - C (1 + D) + D(B + 1) + A - C - B + A -
C - D Distributive Law

A - B - C + D + A - C - B + A - C - D Theory 3
A - B (C + C) + D (1 + A - C) Distributive Law

A- B + D

A---..... --r-"'"
B ~--~~

The minimum SOP expression can now be implemented as
the simple AND·OR logic circuits as shown in Figure A.3.2.

We can use Boolean Algebra to reduce the number of prod·
uct terms. However, Karnaugh Mapping and the Quine·
McCluskey method are two other powerful tools to minimize
the logic equations. We'll discuss Karnaugh Mapping meth·
od in the next section.

C '---...... -

D----~~------~~~,

TLlLl9992-13

FIGURE A.3.1. A Random Logic Circuit

A -----rC)t---------D-r=AB+ 0

D----------------~ TL/L/9992-14

FIGURE A.3.2. Minimized Logic Circuit

8-6

A.4 K-Map Method
A Karnaugh map, hereafter called a K-map, is a graphical
method for representing a Boolean function. It is similar to a
truth table in that the K-map supplies the TRUE or FALSE
value of a Boolean function for all possible combinations of
its logical argument. There are many ways in which a K-map
can be arranged. The most important considerations of the
arrangement are:

1. There must be a unique location on the K-map for enter­
ing the TRUE/FALSE value of the function that corre­
sponds to each combination of input variables.

2. The locations should be arranged so, with minimization
mentioned in Section A.3, that they are readily apparent
to the trained observer.

The second consideration implies that a successful K-map­
ping arrangement should point to groups of minterms or
maxterms that can be combined into reduced forms.
K-maps are also useful in expanding partially reduced ex­
pressions into standard forms prior to the minimization pro­
cess.

The K-map is one of the most powerful tools at the hands of
the logic designer. The power of the K-map does not lie in
its application of any marvelous new theorems, but rather in
its utilization of the remarkable ability of the human mind to
perceive patterns in pictorial representations of data. This is
not a new idea. Anytime we use a graph instead of a table of
numerical data, we are utilizing the human ability to recog­
nize complex patterns and relationships in a graphical rep­
resentation far more rapidly and surely than in a tabular rep­
resentation. A few examples of how to create a K-map fol­
low.

First, consider a truth table for two variables. We list all four
possible input combinations and the corresponding function
values, i.e., the truth tables for AND and OR. (Figure A. 4. 1)

'-(B 00 01 11

I

B~
,ttj

10

TL/L/9992-15

TL/L/9992-17

(a)

(b)

A B A-B A B A+B

0 0 0 0 0 0
0 1 0 0 1 1
1 1 1 1 1 1
1 0 0 1 0 1

FIGURE A.4.1. Truth Tables for AND and OR

As an alternative approach, set up a diagram consisting of
four small boxes, one for each combination of variables.
Place a "1" in any box representing a combination of vari­
ables for which the function has the value 1. There is no
logical objection to putting "O's" in the other boxes, but they
are usually omitted for clarity.

The diagrams in Figure A.4.2(a) are perfectly valid K-maps,
but it is more common to arrange the four boxes in a square,
as shown in Figure AA.2(b).

Since there must be one square for each input combination,
there must be 2n squares in a K-map for n-variables. What­
ever the number of variables, we may interpret the map in
terms of a graphical form of the truth table (Figure A.4.3(a))
or in terms of union and intersection of areas (Figure
AA.3(b)). The K-maps for some other three-variable func­
tions are shown in Figure AAA.

Particularly note the functions mapped in Figure A.4.3(a)
and A.4A(b). These are both minterms. Each is represented
by one square, obviously, and each one of the eight squares
corresponds to one of the eight minterms of three variables.
This is the origin of the name minterm. A minterm is the form
of Boolean function corresponding to the minimum possible
area, other than 0, on a K-map. A maxterm, on the other
hand, is the form of Boolean function corresponding to the
maximum possible area, other than 1, on a K-map. Figure
A.4.3(b) and A.4A(c) are two examples.

A+B

~ 00

I
01 11 10

TL/L/9992-16

A+B

BlBAO 1
o 1

1 1 1

TL/L/9992-1 B

FIGURE A.4.2. K-Maps for AND and OR

8-7

3:
Q) .s: A.4 K-Map Method (Continued)
Q)

DC AB A B C A-B-C
~ C 0 0 0 0
o
..J
c::
CU
Q)

0
0
0

0
1
1

1 0
0 0
1 0

0

1

00 01 11 10

1

'0 TLlL/9992-19 1 0 0 0 o
m 1

1
1

0 1 0
1 0 0
1 1 1

A
, 1

~
c~

A
I 1

cEEEEJ
, ,

(a)

TLlLl9992-20

TL/L/9992-22

A + B + C = A+B+C
(b)

A

c I I I I I
,

A . ,

~
cr=EEEJ . ,

FIGURE A.4.3. K-Maps for 3-Varlable AND and OR

8·8

TL/Ll9992-21

TL/Ll9992-23

A AB
I C

8HJ ell

0

1

TLIL/9992-24

AC+AC
(a)

A AB
C

cl
1 1 1 1

0

1
,

TLIL/9992-26

A+B+C
(e)

FIGURE A.4.4. Sample 3-Variable K-Maps

8-9

00

00

1

01

ABC
(b)

01

1

1

C + AB
(d)

11

11

1

10

1

TL/Ll9992-25

10

1

TLlLl9992-27

m
o
o
CD
D)
::l
r­o
cc o·
:a
CD
<
CD·
:liE

A.4 K-Map Method (Continued)

Since each square on a K-map corresponds to a row in a
truth table, it is appropriate to number the squares just as
we numbered the row. These standard K-maps are shown
in FigureA.4.5for two and three variables. Now, if a function
is stated in the form of the minterm list, all we need to do is
enter 1's in the corresponding squares to produce the
K-map.

BmAQ 1
o 0 2

1 1 3

TLlLl9992-2B

C AB 00 01 11 10

o 0 4

1 1 3 7 5

TLlLl9992-29

FIGURE A.4.5. K-Maps for Two and Three Variables

If a function is stated as a maxterm list, we can enter O's in
the squares listed or 1's in those not listed.

A map showing the O's of a function is a perfectly valid
K-map, although it is more common to show the 1's.

For example, the K-map of f(A, B, C) = m(O, 2, 3, 7) is
shown in Figure A.4.6 and the K-map of f(A, B, C) = M(O, 1,
5, 6) is shown in Figure A.4. 7 where m means minterm, M
means maxterm.

AB
00 01 11 10

C

0 1 1

1 1 1

TL/Ll9992-30

FIGURE A.4.6. K-Map of M(O, 2, 3, 7)

C AB 00 01 11 10 C AB 00 01 11 10

o 0 o o
~~---+---r--,OR

1 0 o

TLlL/9992-31 TL/L/9992-32

FIGURE A.4.7. K-Map of M(O, 1,5,6)

As shown, the K-map can be generated from the truth table
on minterm expression or maxterm expression. For the re­
mainder of this section, we will learn how to minimize the
minterm expression by using the K-map.

The general principle of this minimization technique is "Any
pair of n-variable minterms which are adjacent on a K-map
may be combined into a single product term of n - 1 liter­
als." The definition of "adjacent" should include opposite

8-10

edges of the K-map, for instance, Figure A.4.8(a) and
A.4.8(b) both have a pair of adjacent minterms.

(a) (b)
FIGURE A.4.8. Adjacent Minterms on a K-Map

Consider this function

f(A, B, C) = m(O, 1, 4, 6)

= ABC + A BC + AB C + ABC

which results on the K-map, on the pattern shown in Figure
AA.B.

AB 00
C

o 111°
1 l!.f

01 11 10

2 cC~4
375

FIGURE A.4.9. Minimization
TL/Ll9992-33

Therefore, combine minterms 0 and 1, 4 and 6 to get a
minimal expression:

f(A, B, C) = A B + AC

Figure A.4.10 shows some examples. Notice that it is per­
missible to include a minterm in several terms if it helps
make the term shorter.

AB
CD 00 01 111 I 10

~~ I~,~:
r-

01 1

11 1
'--

10

I I
TL/Ll9992-34

AB J
CD 00 01 11 110

00 LJ L:..-- -
01 1 1

11 1 1

- n 11
:-

10

I I
TL/Ll9992-35

FIGURE A.4.10. Minimization

A.4 K-Map Method (Continued)

Quite often, some of the possible combinations of input val­
ues never occur. In this case, we "don't care" what the
function does if these input combinations appear. The
K-map makes it easy to take advantage of these "don't
care" conditions by letting the "don't care" minterms be 1
or 0, depending on which value results in a simpler expres­
sion. Figure AA. 11 shows an example of the use of "don't
cares" (redundancies) to simplify the terms.

AB
CD 00 01 11 10

00 X I X 1 I
01

11

10 111 X 1 1 I
TL/Ll9992-36

FIGURE A.4.11. Minimization

When working with larger functions, the tabular reduction
developed by Quine and modified by McCluskey is an alter-

DATA----n---. an + 1 = on

CLOCK----U

TL/L/9992-37

----n---. an + 1 = (Tea + Teo)n ----U
TLlL/9992-38

----(JQ ---. an + 1 = (S + ReS e o)n
____ C ReS*1

---- R
TL/L/9992-39

----(JQ ---. an + 1 = (J e 0 + K eo)n

---- C

---- K

TLlL/9992-40

native to the K-map method. The Quine-McCluskey mini­
mization method involves simple, repetitive operations that
compare each minterm that is present in a sum-of-minterms
expression for a Boolean functions to all other minterms
with which it may form a combinable grouping.

The reader can refer to "Introduction to Switching Theory
and Logic Design" by Hill and Peterson to understand the
Quine-McCluskey method.

A.5 Sequential Circuit Elements
Usually the subject of logic design is subdivided into two
types: sequential and combinational. A purely combinational
logic subsystem has no memory. Its outputs are completely
defined by its present inputs. The analysis and design of
combinational logic is much easier. A sequential logic sub­
system has memory and its outputs are functions of not only
present inputs but the previous outputs. Circuits of mUlti­
plexer/selector, decoder/encoder, adder, and comparator
are examples of combinational circuits. Shift register, coun­
ter, state machine, and memory controller are examples of
sequential circuits.

on Qn + 1

o o

Tn Qn + 1

0 Qn

1 (Q)n

R S Qn + 1

0 0 Qn

0 1 1
1 0 0
1 1 X

J K Qn + 1

0 0 Qn

0 1 0
1 0 1
1 1 (o)n

FIGURE A.5.1. Basic Flip-Flops

8-11

m
o
o
CD
I»
:::s
r­
o

CO
r;'
:IJ
CD
<
(i)'
:e

[II
I

Just as we have a logic gate as the basic combinational
circuit element, we have a flip-flop as a basic sequential
circuit element. A flip-flop is a memory device which can
remember, or store, a binary bit of information. There are
four basic flip-flop types: (1) 0 flip-flop, (2) T flip-flop, (3) RS
flip-flop, and (4) JK flip-flop. Figure A. 5. 1 shows these ele­
ments and their truth table.

With the memory elements, the output does· not change as
a function of the inputs until the clock transition. Therefore,
a superscript notation is used to indicate that the output
during clock period n + 1 is a function of the inputs during
the previous clock period n.

The 0 (delay) flip-flop means the input (0) is "stored" in the
flip-flop when the clock occurs and will appear on the output
(Q) during the next (n + 1) clock time. The 0 flip-flop is thus
very much like a single-bit RAM. It is very useful for data
storage and other special applications.

The other three types of flip-flops defined in Figure A. 5. 1 are
also one-bit storage elements, but instead of simply storing
the input, they change state in response to the inputs by
various logical rules. Since they hold their previous state in
spite of the clock, unless an input goes true, they often sim­
plify the combinational logic functions required to control
them in control applications.

The T (toggle) flip-flop, for example, stays in its previous
state if the T input is false before the clock. If the T input is
true, the output changes to the opposite state (toggle) on
the clock. The T flip-flop is thus useful, for example, in bina­
ry counters where we want each bit to invert every time
there is a carry from the lower order bits.

The R-S flip-flop sets after the S input is true and resets
after the R input is true. Its output is undefined if both Rand
S are true. It is possible to define a Set Overrides Reset
(SOR) or a Reset Overrides Set (ROS) flip-flop. It will set or
reset respectively if both the R and the S inputs are true.

The J-K flip-flop sets after J is true and resets after K is
true. It is similar to an R-S flip-flop except that if J and K are
both true, the output changes to the opposite state (toggle).
It can be used as a T flip-flop by tying the J and K inputs
together.

Since the J-K flip-flop can essentially do the job of both the
R-S and the T flip-flop, the R-S and the T flip-flops are
seldom seen. The choice is between J-K flip-flops for small
counters and control or 0 flip-flops for data storage applica­
tions. Actually the J-K flip-flop can even do the job of the 0
flip-flop with the addition of a single inverter, as shown in
Figure A.5.2.

Q
0- ----

TL/L/9992-41

FIGURE A.5.2. Implement D Flip-Flop by Using J-K

Another memory element type, called a latch, is often de­
scribed on data sheets with a truth table like the one for the
o flip-flop in Figure A. 5. 1. It is definitely not like a 0 flip-flop,
however, because the output changes as soon as the clock
goes high and does not "latch" until the clock falls (if the

8-12

input changes while the clock is high, the output follows it).
Because of this characteristic, a latch is not usable in the
synchronous logic.

A.6 State Machine Fundamentals
The relationships among present-state variables, primary in­
put variables, next-state (or excitation) variables, and pri­
mary output variables that describe the behaviour of a se­
quential system can be specified in several ways. As an
example, consider the simple sequential system that is
shown in Figure A. 6. 1.

12

o S>!=l'
" 4D~y~J

TL/Ll9992-42

FIGURE A.S.1. A Typical Sequential Circuit

This system has two primary input variables, having four
different combinations of values. There is one primary out­
put variable and one state variable. It uses delay for memo­
ry. There are only two possible present states: y = 0 and
y = 1. When combined with the four input combinations,
these give eight different total present states. The values of
the next-state variable, Y, and the primary output variable,
F, must be specified for each total present state. The tabu­
lar arrangement shown in Table A.6.1 is a common method
for presenting this information. This descriptive tool is called
a state table.

Present
State

Y

0
1

1112

0,1/0

1.1/0

TABLE A.S.1. State Table

Next-State

V

= 00 01 10 11 1112 =

0 1 0 1
0 1 1 1

O,O/On 1,0/0

G

0,0/0

G
1,1/IV 1,0/1

0,1/0

Output
F

00 01 10 11

0 0 0 0
0 0 1 1

TL/Ll9992-43

FIGURE A.S.2. State Diagram

A.6 State Machine Fundamentals (Continued)

A second method for describing the behavior of a sequen-
tial system is the use of a state diagram. This method pres-
ents a pictorial representation of the present-state/next-
state sequences that apply to the sequential device. State
changes are marked with directed arrows, with the primary
input and output conditions that apply to each state transfer
given beside the arrows. The state diagram for the system
of Figure A. 6. 1 is shown in Figure A.6.2. A slash separates
the input information from the output information.

State tables and state diagrams are essential tools in the
analysis and design of sequential digital systems. The read­
er should be familiar with these two tools by reading the
references listed in the end of this section.

Because a sequential system has feedback from its outputs
to its input, certain types of instabilities and uncertainies can
occur. When present, these conditions make the operation
of circuit difficult or impossible to describe. They may even
render the circuit useless, since its behavior may not be
predictable or consistent. Several of these types of prob­
lems are listed below.

1. The input or output conditions of the system may be in­
determinant. For example, the circuit in Figure A.6.3.

TL/L/9992-44

FIGURE A.S.3. Example of Hazard Circuit

11 -

2. The output condition of the system may be unstable,
changing even though the external inputs do not change.
Figure A.6.4 illustrates an example.

TLIL/9992-45

FIGURE A.S.4. Example of Unstable Circuit

3. The output condition of the system, even though stable,
may not be predictable depending upon the primary input
conditions. Figure A.6.S is an example.

However, these problems mentioned above can be avoided
by making certain restrictions in the way sequential systems
are designed and used. For instance, the following are
some restrictions:

1. Avoiding continuing instabilities (oscillations).

2. Allowing only fundamental-mode operation.

3. Allowing only pulse-mode operation.

~---------'------Fl I)
12

J " ~ ~---------+~~--F2

~ DELAY I--
...... _...;.;f2;......-I: DELAY : ____ ___

TL/L/9992-46

FIGURE A.S.S. Example of Circuit with Unpredictable Output States

8-13

to
o
o
CD
Q)
::s
r­
o

(Q

n"
::0
CD
<
iii" ::

A.7 Avoiding Logic Hazards
The flexible alternative which PLDs provide to design with
standard logic requires care in understanding criteria specif­
ic to the new design methodology. Care must be taken in
understanding the capabilities of the part chosen and ir fol­
lowing the design procedure described later in this chapter.
But even careful adherence to the design flow will not avoid
some of the more common errors, which are common in
other design methodologies, as well as PLDs. This section
outlines some of the more common anomalies and sug­
gests how they might be avoided.

HAZARDS AND GLITCHES

Not all devices have the same propagation delay. A hazard
may be caused by configuring a set of gates such that a
change in the input signals can cause a spurious output
signal or "glitch". In combinational circuits, the hazard will
be prevented since the outputs are presumed to be a func­
tion of steady-state input signals and are not scanned until
all transients have stabilized. However, in sequential cir­
cuits, particularly where the outputs of such a combinational
circuit are used as inputs to a sequential circuit, glitches
may occur.

STATIC AND DYNAMIC HAZARDS

Depending on the initial and final value of the output, there
can be two classes of hazards. When these values are the
same, extraneous output signals result from a static hazard.
As an example, the circuit shown in Figure A. 7. 1 will exhibit
an output glitch due to a static hazard when both inputs A
and B are high and the control input is changed from high to
low. In a perfect world, the output signal would not change,
but the propagation delay of the logic gates (in this case the
inverter) will cause a momentary low glitch on the otherwise
high output, as shown.

A------1

OUTPUT

TLlL/9992-1

FIGURE A.7.1. Circuit with Static Hazard

If the initial and final states of the output of a circuit are
different, then an extraneous output results from a dynamic

8-14

hazard. As an example, this would be characterized by a
circuit which moved through an intermediate state before
settling in the final configurations, such as a 0-1-0-1 instead
of a clean 0-1.

FUNCTION AND LOGIC HAZARDS

The causes of hazards are classed as either function or
logic. Function hazards exist when logic is specified with a
change in more than one input variable possible simulta­
neously. Figure A. 7.2 shows a truth table which illustrates
this. The circuit is intended to move from stable state
XYZ = 000 to stable state XYZ = 101. If the input variable
X and Z do not change absolutely simultaneously, an output
glitch due to a function hazard will occur. Assume both X
and Z transition from 0 to 1 at about the same time, but not
simultaneously. If X changes before Z, a momentary state of
100 will exist, giving a transient output of 0 until Z changes
and the final output stabilizes at 1. If Z changes before X,
the inputs are momentarily 001, which gives an output 0,
which changes to 1 as X changes.

TL/Ll9992-2

FIGURE A.7.2. Truth Table
illustrating a Function Hazard

Functional glitches can be avoided by assigning the state
variables in such a manner that transitions between states
require only one variable to change at a time.

Unequal delays which occur because of the detailed logic
implementation are called logic hazards. These can exist
even if only one variable at a time changes, as illustrated by
Figure A. 7.3. This Karnaugh map displays a logic hazard in
the Y input, which moves the circuit from the set XYZ to the
set WYZ. Each group shown in Figure A. 7.3 represents one
product term that is an input to the circuit. In this example, it
is an OR gate, and therefore at least one of the product
terms must be 1 to give an output of 1. Due to circuit propa­
gation delays, any real-world circuit will move out of the
starting sets faster than it moves into the final sets. There is
therefore the possibility of a brief interval when neither cor­
responding product is at 1.

WX

Y z
o
o

y

o

0

1

1

0

WX

z
0

1

1

0

00 01 11 10

0 0 0 0

o CL 1D0

0 o ICf J)
0 0 0 0

TLlL/9992-3

(a)

00 01 11 10

0 0 0 0

o ICL tffio
0 o ItIl J)
0 0 0 0

TLlLl9992-4

(b)

FIGURE A.7.3 Karnaugh Map (K-Map)
Used to Resolve a Function Hazard

A remedy for this is to ensure that any pair between which a
transition may take place are in a single set. In other words,
any 1-values which appear next to each other in the K-map
must be contained within the same set, as shown in Figure
A. 7.3.

REMEDIES FOR MORE COMPLEX CIRCUITS

Once the number of terms exceeds two or three, K-maps
become increasingly difficult to work with. A remedy for this
can be found by adding additional terms to the original Boo­
lean equations. From this, it can be determined whether a
logic hazard exists by examining the modified equations. If a
variable and its complement appear in separate product
terms in the same equation and these product terms contain
that are not mutually exclusive, a logic hazard exists. The
hazard can be eliminated by generating a new product term
to overlay each pair of product terms which pose a logic
hazard. The new product term is selected from canonical
product terms which differ only by the state of the variable
causing the hazard.

Hazards can exist irrespective of the design methodology
used. In manual design, generation and careful examination
of K-maps, particularly multiple inputs for state change, can
reveal potential hazards. Computer-aided design tools such
as ABEL and CUPL are not completely hazard-free and a
similar examination of their results may reveal hazards and
require adjustment of minimization level and the addition of
redundant terms, as for manual design.

As an example of hazard recognition and correction, consid­
er the circuit shown in Figure A. 7.4. The Boolean equation
describing this is:

XYZ + WYZ

Examining the equation reveals a logic hazard because both
Y and Y appear in separate product terms and inputs Wand
X are not mutually exclusive. The problem can be eliminated
in two steps. Firstly, expand the expression to its canonical
form, which gives:

WXYZ + WXYZ + WXYZ + WXYZ

8-15

Secondly, develop a new product term from those which
overlay the original two and differ only by the state of the
variable causing the hazard, in this case Y. This gives:

XYZ + WXZ (Y + Y) + WYZ

= XYZ + wxz + WYZ

In this case, the new product term WXZ overlays the original
and is illustrated on the K-map of Figure A.7.3. Therefore,
the addition of an AND gate and an input to the OR gate will
result in elimination of the hazard, as shown in Figure A. 7.4.

W X Y Z

(a) Logic Hazard Exists

W X Y Z

(b) No Logic Hazard

FIGURE A.7.4. Recognition and
Correction of a Logic Hazard

References

OUTPUT

TL/L/9992-5

OUTPUT

TL/L/9992-6

Hill & Peterson, "Introduction to Switching Theory and Logi­
cal Design".

Kohavi, "Switching and Finite Automata Theory".

Rhyne, "Fundamentals of Digital Systems Designs".

Krieger, "Basic Switching Circuit Theory".

m
o
o
CD
D)
:::J
r o

(Q
(;'

::tJ
CD
<
CD'
::e

[II
I

C)
c ..
tn
Q)

l­
e
...I
a. -o
~
o
Q)
.c
I-

~National
~ Semiconductor

Appendix 8
Theory of PLD Testing

B.1 Testing Methods
There are many test methods for LSI circuits, each with its
own way of generating and processing test data. These ap­
proaches can be divided into two broad categories-con­
current and explicit.2

In concurrent approaches, normal user-application input
patterns serve as diagnostic patterns. Thus testing and nor­
mal computation proceed concurrently. In explicit ap­
proaches, on the other hand, special input patterns are ap­
plied as tests. Hence, normal computation and testing occur
at different times.

CONCURRENT TESTING

Systems that are tested concurrently are designed such
that all the information transferred among various parts of
the system is coded with different types of error detecting
codes. In addition, special circuits monitor this coded data
continuously and signal detection of any fault.

Different coding techniques are required to suit the different
types of information used inside LSI systems. For example
m-out-of-n codes (n-bit patterns with exactly m 1 's and
n - m O's) are suitable for coding control signals, while
arithmetic codes are best suited for coding ALU operands.3

The monitoring circuits-checkers-are placed in various
locations inside the systems so that they can detect most of
the faults. A checker is sometimes designed in a way that
enables it to detect a fault in its own circuitry as well as in
the monitored data. Such a checker is called a self-checking
checker.3

Hayes and McCluskey surveyed various concurrent testing
methods that can be used with microprocessor-based LSI
systems.2 Concurrent testing approaches provide the fol­
lowing advantages:

• Explicit testing expenses (e.g., for test equipment, down
time, and test pattern generation) are eliminated during
the life of the system, since the data patterns used in
normal operation serve as test patterns.

• The faults are detected instantaneously during the use of
the LSI chip, hence the first faulty data pattern caused by
a certain fault is detected. Thus, the user can rely on the
correctness of his output results within the degree of
fault coverage provided by the error detection code used.
In explicit approaches, on the other hand, nothing can be
said about the correctness of the results until the chip is
explicitly tested.

• Transient faults, which may occur during normal opera­
tion, are detected if they cause any faulty data pattern.
These faults cannot be detected by any explicit testing
method.

8-16

Unfortunately, the concurrent testing approach suffers from
several problems that limit its usage in LSI testing:

• The application patterns may not exercise all the storage
elements or all the internal connection lines. Defects
may exist in places that are not exercised, and hence the
faults these defects would produce will not be detected.
Thus, the assumption that faults are detected as they
occur, or at least before any other fault occurs, is no
longer valid. Undetected faults will cause fault accumula­
tion. As a result, the fault detection mechanism may fail
because most error detection codes have a limited capa­
bility for detecting multiple faults.

• Using error detecting codes to code the information sig­
nals used in an LSI chip requires additional 1/0 pins. At
least two extra pins are needed as error signal indicators.
(A single pin cannot be used, since such a pin stuck at
the good value could go undetected). Because of con­
straints on pin count, however, such requirements can­
not be fulfilled.

• Additional hardware circuitry is required to implement the
checkers and to increase the width of the data carriers
used for storing and transferring the coded information.

• Designing an LSI circuit for concurrent testing is a much
more complicated task than designing a similar LSI cir­
cuit that will be tested explicitly.

• Concurrent approaches provide no control over critical
voltage or timing parameters. Hence, devices cannot be
tested under marginal timing and electrical conditions.

• The degree of fault coverage usually provided by concur­
rent methods is less than that provided by explicit meth­
ods.

The above-mentioned problems have limited the use of con­
current testing for most commercially available LSI circuits.
However, as digital systems grow more complex and diffi­
cult to test, it becomes increasingly attractive to build test
procedures into the UUT (unit under test) itself. We will not
consider the concurrent approach further in this article. For
a survey of work in concurrent testing, see Hayes and
McCluskey.2

EXPLICIT TESTING

All explicit testing methods separate the testing process
from normal operation. In general, an explicit testing pro­
cess involves three steps:

• Generating the test patterns_ The goal of this step is to
produce those input patterns which will exercise the UUT
under different modes of operation while trying to detect
any existing fault.

• Applying the test patterns to the UUT. There are two
ways to accomplish this step. The first is external test­
ing-the use of special test equipment to apply the test
patterns externally. The second is internal testing-the
application of test patterns internally by forcing the UUT
to execute a self-testing procedure.2 Obviously, the sec­
ond method can only be used with systems that can exe­
cute programs (for example, with microprocessor-based
systems). External testing gives better control over the
test process and enables testing under different timing
and electrical conditions. On the other hand, internal
testing is easier to use because it does not need special
test equipment or engineering skills.

• Evaluating the responses obtained from the UUT.
This step is designed with one of two goals in mind. The
first is the detection of an erroneous, which indicates the
existence of one or more faults (go/no-go testing). The
other is the isolation of the fault, if one exists, in an easily
replaceable module (fault location testing). Our interest
in this article will be go/no-go testing, since fault location
testing of LSI circuits sees only limited use.

Many explicit test methods have evolved in the last decade.
They can be distinguished by the techniques used to gener­
ate the test patterns and to detect and evaluate the faulty
responses (Figure B. 1. 1). In what follows, we concentrate
on explicit testing and present in-depth discussions of the
methods of test generation and response evaluation em­
ployed with explicit testing.

B.2 Test Generation Techniques
The test generation process represents the most important
part of any explicit testing method. Its main goal is to gener­
ate those test patterns that, when applied to the UUT, sensi­
tize existing faults and propagate a faulty response to an
observable output of the UUT. A test sequence is consid­
ered good if it can detect a high percentage of the possible
UUT faults; it is considered good, in other words, if its de­
gree of fault coverage is high.

Rigorous test generation should consist of three main activi­
ties:

• Selecting a good descriptive model, at a suitable level,
for the system under consideration. Such a model should
reflect the exact behavior of the system in all its possible
modes of operation.

• Developing a fault model to define the types of faults that
will be considered during test generation. In selecting a
fault model, the percentage of possible faults covered by
the model should be maximized, and the test costs asso­
ciated with the use of the model should be minimized.
The latter can be accomplished by keeping the complexi­
ty of the test generation low and the length of the tests
short. Clearly these objectives contradict one another-a
good fault model is usually found as a result of a trade-off
between them. The nature of the fault model is usually
influenced by the model used to describe the system.

• Generating tests to detect all the faults in the fault model.
This part of test generation is the soul of the whole test
process. Designing a test sequence to detect a certain
fault in a digital circuit usually involves two problems.
First, the fault must be excited; i.e., a certain test se­
quence must be applied that will force a faulty value to
appear at the fault site if the fault exists. Second, the test
must be made sensitive to the fault; i.e., the effect of the
fault must propagate through the network to an observ­
able output.

Rigorous test generation rests heavily on both accurate de­
scriptive (system) models and accurate fault models.

Test generation for digital circuits is usually approached ei­
ther at the gate-level or at the functional level. The classical
approach of modeling digital circuits as a group of connect­
ed gates and flip-flops has been used extensively. Using
this level of description, test designers introduced many
types of fault models, such as the classical stuck-at model.
They also assumed that such models could describe physi­
cal circuit failures in terms of logic. This assumption has
sometimes restricted the number of physical failures that
can be modeled, but it has also reduced the complexity of
test generation since failures at the elementary level do not
have to be considered.

TL/L/9993-1

FIGURE 8.1.1. LSI Test Technology

8-17

-I :::r
CD
o
~
o -" r-
C
-I
CD
en -:i'
Ul

I

[II
I

C)
c
;:;
t/)

~
C
..J
D. -o
~
o
Q)
.c
t-

Many algorithms have been developed for generating tests
for a given fault in combinational networks,(1, 4, 5, 6, 7) How­
ever, the complexity of these algorithms depends on the
topology of the network; it can become very high for some
circuits. Ibarra and Sahni have shown that the problem of
generating tests to detect single stuck-at faults in a combi­
national circuit modeled at the gate level is an NP-complete
problem.8 Moreover, if the circuit is sequential, the problem
can become even more difficult depending on the deepness
of the circuit's sequential logic.

Thus, for LSI circuits having many thousands of gates, the
gate level approach to the test generation problem is not
very feasible. A new approach, the functional level, is need­
ed.

Another important reason for considering faults at the func­
tional level is the constraint imposed on LSI testing by a
user environment-the test patterns have to be generated

8-18

;San Fran6tsg),19
.0;,.1978.

without a knowledge of the implementation details of the
chip at the gate level. The only source of information usually
available is the typicallC catalog, which details the different
modes of operation and describes the general architecture
of the circuit. With such information, the test designer finds
it easier to define the functional behavior of the circuit and
to associate faults with the functions. He can partition the
UUT into various modules such as registers, multiplexers,
ALUs, ROMs, and RAMs. Each module can be treated as a
"black box" performing a specified input! output mapping.
These modules can then be tested for functional failures;
explicit consideration of faults affecting the internal lines is
not necessary. The example given below clarifies the idea.

Consider a simple one-out-of-four multiplexers such as the
one shown in Agure B.2. 1. This multiplexer can be modeled
at the gate level as shown in Figure B.2. 1 (a), or at the func­
tionallevel as shown in Figure B.2.1.(b).

x v z w

Co

C1

u
TLlLl9993-2

(a) Gate-Level Description

Co
c1

x v z w

u
TLlL/9993-3

C1

0
0
1
1

Co U

0 X

1 Y
0 Z
1 W

(b) Functional-Level Description

FIGURE B.2.1. A One-Out-of-Four Multiplexer

A possible fault model for the gate-level description is the
single stuck-at fault model. With this model, the fault list
may contain faults such as the line labeled with f is stuck at
0, or the control line "Co" is stuck at 1.

At the functional level, the multiplexer is considered a black
box with a well-defined function. Thus, a fault model for it
may specify the following as possible faults: selection of
wrong source, selection of no source, or presence of stuck­
at faults in the input lines or in the multiplexer output. With
this model, the fault list may contain faults such as source
"X" is selected instead of source "Y", or line "Z" is stuck at
1.
Ad hoc methods-which determine what faults are the most
probable-are sometimes used to generate fault lists. But if
no fault model is assumed, then the tests derived must be
either exhaustive or a rather ad hoc check of the functionali­
ty of the system. Exhaustive tests are impossible for even
small systems because of the enormous number of possible
states, and superficial tests provide neither good coverage
nor even an indication of what faults are covered.

Once the fault list has been defined, the next step is to find
the test patterns required to detect the faults in the list. As
previously mentioned, each fault first has to be excited so
that an error signal will be generated somewhere in the
UUT. Then this signal has to be sensitized at one of the
observable outputs of the UUT. The three examples below
describe how to excite and sensitize different types of faults
in the types of modules usually encountered in LSI circuits.

Consider the gate-level description of the three-bit incre­
menter shown in Figure 8.2.2.

8-19

C, o--_H----.I

VI

TL/Ll9993-4

FIGURE B.2.2. Gate-Level Description
of Three-Bit Incrementer

The incrementer output, Y 2 Y 1 Yo is the binary sum of Cj and
the three-bit binary number X2X1XO, while Co is the carry­
out bit of the sum. Note that Xo(Yo) is the least significant bit
of the incrementer input (output).

Assume we want to detect the fault "line f is stuck at 0." To
excite that fault we will force a 1 to appear on line f so that,
if it is stuck at 0, a faulty value will be generated at the fault
site. To accomplish this both Xo and Cj must be set to 1. To
sensitize the faulty 0 at f, we have to set X1 to 1; this will
propagate the fault to Y 2 independent of .the value of X2.
Note that if we set X1 to 0, the fault will be masked since the
AND gate output will be 0, independent of the value at f.
Note also that X2 was not specified in the above test. How­
ever, by setting X2 to 1, the fault will propagate to both Y 2
and Co, which makes the response evaluation task easier.

Consider a microprocessor RAM and assume we want to
generate a test sequence to detect the fault "accessing

-I
:s"
C'D
0

-<
0 -"'C
r-
C
-I
C'D en -S·
Ul

C)
c
:;;
CD
t-
e
..J
a.
"0
~
o
CD
.c
t-

word i in the RAM results in accessing the word j instead."
To excite such a fault, we will use the following sequence of
instructions (assume a microprocessor with single-operand
instructions):

Load the word 00 ... 0 into the accumulator.

Store the accumulator contents into memory address j.

Load the word 11 ... 1 into the accumulator.

Store the accumulator contents into memory address i.

If the fault exists, these instructions will force a 11 ... 1
word to be stored in memory address j instead of 00 .. .
O. To sensitize the fault, we need only read what is in
memory address j, using the appropriate instructions.
Note that the RAM and its fault have been considered at
the functional level, since we did not specify how the RAM
is implemented.

Consider the program counter (PC) of a microprocessor
and assume we want to generate a test sequence that will
detect any fault in the incrementing mode of this PC, Le.,
any fault that makes the PC unable to be. incremented
from x to x + 1 for any address x. One way to excite this
fault is to force the PC to step through all the possible
addresses. This can be easily done by initializing the PC
to zero and then executing the no-operation instruction
x + 1 times. As a result, the PC will contain an address
different than x + 1. By executing another no-operation
instruction, the wrong address can be observed at the
address bus and the fault detected. In practice, such an
exhaustive test sequence is very expensive, and more
economical tests have to be used. Note that, as in the
example immediately above, the problem and its solution
have been considered at the functional level.

Four methods are currently used to generate test patterns
for LSI circuits: manual test generation, algorithmic test
generation, simulation-aided test generation, and random
test generation.

MANUAL TEST GENERATION

In manual test generation, the test designer carefully ana­
lyzes the UUT. This analysis can be done at the gate lev­
el, at the functional level or at a combination of the two.
The analysis of the different parts of the UUT is intended
to determine the specific patterns that will excite and sen­
sitize each fault in the fault list. At one time, the manual
approach was widely used for medium- and small-scale
digital circuits. Then, the formulation of the D-algorithm
and similar algorithms eliminated the need for analyzing
each circuit manually and provided an efficient means to
generate the required test patterns.15 However, the arrival
of LSI circuits and microprocessors required a shift back
toward manual test generation techniques, because most

. of the algorithmic techniques used with SSI and MSI cir­
cuits were not suitable for LSI circuits.

Manual test generation tends to optimize the length of the
test patterns and provides a relatively high degree of fault
coverage. However, generating tests manually takes a
considerable amount of effort and requires persons with
special skills. Realizing that test generation has to be

8-20

done economically, test designers are now moving in the
direction of automatic test generation.

One good example of manual test generation is the work
done by Sridhar and Hayes,9 who generated test patterns
for a simple bit-sliced microprocessor at the functional level.

A bit-sliced microprocessor is an array of n identical ICs
called slices, each of which is a simple processor for oper­
ands of k bit length, where k is typically 2 or 4. The intercon­
nections among the n slices are such that the entire array
forms a processor for nAbit operands. The simplicity of the
individual slices and the regularity of the interconnections
make it feasible to use systematic methods for fault analysis
and test generation.

Sridhar and Hayes considered a one-bit processor slice as a
simplified model for the commercially available bit-sliced
processors such as the Am2901.10 A slice can be modeled
as a collection of modules interconnected in a known way.
These modules are regarded as black boxes with well-de­
fined input-output relationships. Examples of these function­
al modules are ALUs, multiplexers, and registers. Combina­
tional modules are described by their truth tables, while se­
quential modules are defined by their state tables (or state
diagrams).

The following fault categories were considered:

• For combinational modules, all possible faults that in­
duce arbitrary changes in the truth table of the module,
but that cannot convert it into a sequential circuit.

• For sequential modules, all possible faults that can cause
arbitrary changes in the state table of the module without
increasing the number of states.

Only one module was assumed to be faulty at any time.

To test for the faults allowed by the above-mentioned fault
model, all possible input patterns must be applied to each
combinational module (exhaustive testing), and a checking
sequence11 to each sequential module. In addition, the re­
sponses of each module must be propagated to observable
output lines. The tests required by the individual modules
were easily generated manually-a direct consequence of
the small operand size (k = 1). And because the slices
were identical, the tests for one slice were easily extended
to the whole array of slices. In fact, Sridhar and Hayes
showed that an arbitrary number of simple interconnected
slices could be tested with the same number of tests as that
required for a single slice, as long as only one slice was
faulty at one time. This property is called C-testability. Note
that the use of carry-Iookahead· when connecting slices
eliminates C-testability.· Also note that slices with operand
sizes equal to 2 or more usually are not C-testable.

The idea of modeling a digital system as a collection of
interconnected functional modules can be used in modeling
any LSI circuit. However, using exhaustive tests and check­
ing.sequences to test individual modules is feasible only for
toy systems. Hence, the fault model proposed by Sridhar
and Hayes, though very powerful, is not directly applicable
to LSI testing.

PATH SENSITIZATION AND THE D-ALGORITHM
One of the classical fault detection methods at the gate and flip-flop level is the O-algorithm1• 5 employing the path
sensitization testing technique.4 The basic principle involved In path sensitization Is relatively simple. For an input X; to
detect a fault "line a is stuck at j, j = 0, 1," the input X; must cause the signal a in the normal (fault-free) circuit to take
the value J. This condition is necessary but not sufficient to detect the fault. The error signal must be propagated along
some path from its site to an observable output.
To generate a test to detect a stuck-at fault in a combinational circuit, the following path sensitization procedure must be
followed:
• Excitation:-The inputs must be specified so as to generate the appropriate value (0 for stuck-at 1 and 1 for stuck-at

0) at the site of the fault.
-. Error propagation-A path from the fault site to an observable output must be selected, and additional signal values

to propagate the fault signal along this path must be specified.
• Error propagatlon-A path from the fault site to an observable output must be selected, and additional signal values

to propagate the fault signal along this path must be specified.
-Une justification-Input values must be specified so as to produce the signals values specified in the step above .

. There may be several possible choices for error propagation and line justification. Also, in some cases there may be a
choice of ways in whlch to excite Ihefault. Some of these choices may lead to an Inconsistency, and so the procedure
must p8cktrack and consider the next alternative. If all the alternatives lead to an inconsistency, this implies that the fault
cannot be detected.
TO. facilitate the path sensitization process, we introduce the symbol 0 to represent a signal which has the value 1 in a
normal circuit and Oin a faulty circuit; and '0 to represent aSigral which has the value 0 in a normal circuit and 1in a
faulty circuit-The path sensitization procedure can be formulated in terms of a cubical algebra1, 5 to enable automatic
genera~?11 of test.. This .also facilitates test generation for more complex fault models and· for fault propagation through
complex logic elements.
"'!~ .shaU d~fine.t~~e~ typ~sofcu~es(i.e~,line value~speclfled in. positional notation):

... ~ .••• For a.cIrcuit. element t;:which realizes tne. combinational function I, the "primitive cubes" offer a typical presentation
•. ClfW(;)prime.implicants of I and ;. These cubes conciselyrepresent the logical behavior of E .
• AUprimitive O-cube ofa fault"in a logic element Especifies the minimal input conditions that must be applied to E in

orderto produce an error signal (0 or O)atthe output of Eo
-The "propagation O-cubes" of a logic element Especify the minimal input conditions to the logic element that are

required to propagate an error signal on an input (or inputs) to the output of that element.
.Tg.generate a test fora stuck-at fault in a combinational circuit, the O-algorithm must perform the following:
1~<.Fau't excitatioo:-A primitive O·cube Of the. fault under consideration must be selected. This generates the error signal

1:).?,"5atthesiteofthefault.JUsually a choice exists in this step. The Initial choice is arbitrary, and it may be
ri~(i).~S~ry tg back~ackand.consideranothe.rchOice).

2.lmpUcati0o:-lnStep 1som~ of the gateinp~ts or outputs may be specified so as to uniquely imply values on other
. signals in the circuit. The implication procadure is performed both forwards and backwards through the circuit.

Implication is performed a~Jonows:Wheneve.ra previously unspecified signal value becomes specified, all the ele­
ments associated with this signal areplaced on aUst.Band processed one at a time (and removed). For each element
processed,ltisdeterminedlfnew values of 0,1, 0, and Dare Implied, based on the previously specified inputs and
gutputs.These implied line v~.uesare determined by intersecting the test cube (which specifies all the previously
d~termined signalvalues of the circuit) with the primitive cubes of the element. If any line values are implied, the area
s~clfjed In thetest cube, and the associated gates are placed on the list B. An Inconsistency occurs when a value Is

>impliejj .on a line which ~asbeen specified previOUSly to a different value. If an inconsistency occurs, the procedure
mus~~~cktrackto the last pOint a choice existed, reset all lines to their values at that point, and begin again with the
next choice;

··~.~pl'opagation41\1IthE;lelements in thEJCircuitwhoseOutputvalues are unspeCified and whose input has some sigr~l·
P?rDar~pla<?~~ol1 a list caled tl)e O"trontier.ln this step. an.slement from the O·frontier is selected and valuesar~
~~igl1ad· ~?~unlSPeclfiedfnputslSoas. to .. pr9pagate the 0 ort? on its inputs to one of its outputs. This is accgrn~
pliSl1e(i by.intersectlngthecurrentte.st·cubedescribing .the· circuit signal values with· a propagation O-cube 01 the
sel~~ecJ.~I~mentottheO.frontier,f~sultinginanewtest cube. If such intersection is impossible,a new element in the

~Jl~~~e~6;~~e~:~~g!f!~}:~;~tlon .• fa~.ls.fOr •.• ~I.I •. t~.r el.ements in ... t.he. O'frontler, •. the. procedure .. backtracks .• to .•. the last

.\;lm~li~~ignOf .9·prgpa~atlo~lmpUc~tj9~i~perf9nn~.df?rthe new. test cube derived. inStepS.
;R~~\epS:S:~nd4are repeated until thef~ultysignal has been propagated to an output of the circuit.

8-21

-I
:T
CD
o
-<
o --a
r­
C
-I
CD en -S·

(Q

I •

en
c
;:;
U)

~
C
..J
D. -o
~
o
Q)
.c
I-

~;f~·SE·~.~I~I~A!IO~.·.~t4D .T~E".[).AL~.~Rt±~~.·.·.(8ontin.~Od)·•.•...•...•.• '

~ •• ~inejustifipation7Execotion o.f f)teps1 .• to 5 may result in. specifyingtheoutpufyalue of. an.el~ment Ebutl
~()meof thelrp\jts to the.eloment unspE;lclfled. The unspecified Inputsofsuch.an element are aSSigned yalues S()

~ryfJhdh;e;~.es~:6:~~ ;~:n~'.'.~::.~:~ ~.~~t.i.dj~~i.~r~~ i.~~:~~~i.~R~~:;;~.~~~~e ... wit~ •... ~ny pri.mitiv;fUb~ •• Of •. the .•. el.e[e

7.trtl~II~~?~?fHg3.I~.~tlfic~ti~n-frtlPlicati~n .. i~. perfor~edon.the new test .cube .·deriv~d •• in SteP.6...····.·x../.·.· .. ·

E)' Steps 6 and·7.are repeated until aU specified .elementoutputs have. been justified •. ·.6acktrayking· Olay .. again'·'!?6
required •

REFERENCES
1:'. M.A Breuer and A.D. Friedman, Diagnosis and ReliableD9sign of Digital Systems, Computer Science press, Washington, D,C., 1976.

4 ••• · •• ~~.2~:~~~~;~~.~~~i~g.a .• Nea(IY·. Mlni~.~I •• set.·.01 •• Fault •• Dete.cti~~.Tests forc~mbinatoriat.Nels ••• '.·I£f£.T~S .•• f/~~onfq .• comf1Ut~~, •• ~~I, ..• :C •. 1.5.

5;J.P, Roth,W.<kBouricius; and P.R. Schneider, "PrograrnmedAlgorithms to Corppute Tests to Detect and Distinguish Between Failures)1l Logic
Circuits," IE££Trans. £Iectronic Computers, Vol~ EC~ 16,' No.5, Oct. 1967, pp.567 :-58Q.

ALGORITHMIC TEST GENERATION

In algorithmic test generation, the test designer devises a
set of algorithms to generate the 1 's and O's needed to test
the UUT. Algorithmic test techniques are much more eco­
nomical than manual techniques. They also provide the test
designer with a high level of flexibility. Thus, he can improve
the fault coverage of the tests by replacing or modifying
parts of the algorithms. Of course, this task is much simpler
than modifying the 1 's and O's in a manually generated test
sequence.

Techniques that use the gate-level description of the UUT,
such as path sensitization4 and the D-algorithm,5 can no
longer be used in testing complicated LSI circuits. Thus, the
problem of generating meaningful sets of tests directly from
the functional description of the UUT has become increas­
ingly important. Relatively little work has been done on func·
tional·level testing of LSI chips that are not memory ele·
ments.9,12-17 Functional testing of memory chips is rela­
tively simple because of the regularity of their design and
also because their components can be easily controlled and
observed from the outside. Various test generation algo­
rithms have been developed to detect different types of
faults in memories. 1,18 In the rest of ths section we will
concentrate on the general problem of generating tests for
irregular LSI chips, Le., for LSI chips which are not strictly
memory chips.

It is highly desirable to find an algorithm that can generate
tests for any LSI circuit, or at least most LSI circuits. One
good example of work in this area is the technique proposed
by Thatte and Abraham for generating tests for microproc­
essors.12,13 Another approach, pursued by the authors of
this article, is a test generation procedure capable of han­
dling general LSI circuits. 15, 16, 17

THE THATTE·ABRAHAM TECHNIQUE

Microprocessors constitute a high percentage of today's LSI
circuits. Thatte and Abraham 12, 13 approached the micro­
processor test generation problem at the functional level.

8-22

• The test generation procedure they developed was
based on:

• A functional description of the microprocessor at the reg­
ister-transfer level. The model is defined in terms of data
flow among storage units during the execution of an in­
struction. The functional behavior of a microprocessor is
thus described by information about its instruction set
and the functions performed by each instruction.

• A fault model describing faults in the various functional
parts of the UUT (e.g., the data transfer function, the
data storage function, the instruction decoding and con­
trol function). This fault model describes the faulty be­
havior of the UUT without knowing its implementation de­
tails.

The microprocessor is modeled by a graph. Each register in
the microprocessor (including general-purpose registers
and accumulator, stack, program counter, address buffer,
and processor status word registers) is represented by a
node of the graph. Instructions of the microprocessors are
classified as being of transfer, data manipulation, or branch
type. There exists a directed edge (labeled with an instruc­
tion) from one node to another if during an execution of the
instruction data flow occurs from the register represented by
the first node to that represented by the second. Examples
of instruction representation are given in Figure 8.2.3.

Having described the function or the structure of the UUT,
one needs an appropriate fault model in order to derive use­
ful tests. The approach used by Thatte and Abraham is to
partition the various functions of a microprocessor into five
classes: the register decoding function, the instruction de­
coding and control function, the data storage function, the
data transfer function, and the data manipulation function.
Fault models are derived for each of these functions at a
higher level and independently of the details of implementa­
tion for the microprocessor. The fault model is quite general.
Tests are derived allowing any number of faults, but only in
one function at a time; this restriction exists solely to cut
down the complexity of test generation.

~ I~ 11

R2 <&
TL/Ll9993-5

(a) (b) (c) (d)

FIGURE B.2.3. Representations of Microprocessor Instruction-Ih
(a) Transfer Instruction, R2 ~ R1; (b) Add Instruction, R3 ~ R1 + R2;

(c) 13, OR Instruction, R2 ~ R1 OR R2; (d) 14 Rotate Left Instruction

The fault model for the register decoding function allows
any possible set of registers to be accessed instead of a
particular register. (If the set is null then no register is ac­
cessed.) This fault model is thus very general and indepen­
dent of the actual realization of the decoding mechanism.

For the instruction decoding and control function, the faulty
behavior of the microprocessor is specified as follows.
When instruction Ij, is executed anyone of the following
can happen:

• Instead of instruction Ij, some other instruction Ik is exe­
cuted. This fault is denoted by F(lj Ilk).

• In addition to instruction Ij' some other instruction Ik is
activated. This fault is denoted by F(lj Ilj + Ik)'

• No instruction is executed. This fault is denoted by F(lj I
8).

Under this specification, any number of instructions can be
faulty.

In the fault model for the data storage function, any cell in
any data storage module is allowed to be stuck at 0 or 1.
This can occur in any number of cells.

The fault model for the data transfer function includes the
following types of faults:

• A line in a path used in the execution of an instruction is
stuck at 0 or 1.

• Two lines of a path used in the instruction are coupled,
i.e., they fail to carry different logic values.

Note that the second fault type cannot be modeled by sin­
gle stuck-at faults. The transfer paths in this fault model are
logical paths and thus will account for any failure in the actu­
al physical paths.

Since there is a variety of designs for the ALU and other
functional units such as increment or shift logic, no specific
fault model is used for the data manipulation function. It is
assumed that complete test sets can be derived for the
functional units for a given fault model.

By carefully analyzing the logical behavior of the microproc­
essor according to the fault models presented above,
Thatte and Abraham formulated a set of algorithms to gen­
erate the necessary test patterns. These algorithms step
the microprocessor through a precisely defined set of in­
structions and addresses. Each algorithm was designed for
detecting a particular class of faults, and theorems were
proved which showed exactly the kind of faults detected by
each algorithm. These algorithms employ the excitation and
sensitization concepts previously described.

To gain insight into the problems involved in using the algo­
rithms, Thatte investigated the testing of an eight-bit micro­
processor from Hewlett-Packard.12 He generated the test
patterns for the microprocessor by hand, using the algo­
rithms. He found that 96 percent of the single stuck-at faults
that could affect the microprocessor were detected by the

8-23

test sequence he generated. This figure indicates the validi­
ty of the technique.

THE ABADIR-REGHBATI TECHNIQUE

Here we will briefly describe a test generation technique we
developed for LSI circuits.15,16 We assume that the tests
would be generated in a user environment in which the
gate- and flip-flop-level details of the chip were not known.

We developed a module-level model for LSI circuits. This
model bypasses the gate and flip-flop levels and directly
describes blocks of logic (modules) according to their func­
tions. Any LSI circuit can be modeled as a network of inter­
connected modules such as counters, registers, ALUs,
ROMs, RAMs, multiplexers and decoders.

Each module in an LSI circuit was modeled as a black box
having a number of functions defined by a set of binary
decision diagrams (see box).19 This type of diagram, a func­
tional description tool introduced by Akers in 1978, is a con­
cise means for completely defining the logical operation of
one or more digital functions in an implementation-free
form. The information usually found in an Ie catalog is suffi­
cient to derive the set of binary decision diagrams describ­
ing the functions performed by the different modules in a
device. These diagrams-like truth tables and state ta­
bles-are amenable to extensive logical analysis. However,
unlike truth tables and state tables-are amenable to exten­
sive logical analysis. However, unlike truth tables and state
tables, they do not have the unpleasant property of growing
exponentially with the number of variables involved. More­
over, the diagrams can be stored and processed easily in a
digital computer. An important feature of these diagrams is
that they state exactly how the module will behave in every
one of its operation modes. Such information can be ex­
tracted from the module's diagrams in the form of a set of
experiments.15,20 Each of these experiments describes the
behavior of the module in one of its modes of operation.
The structure of these experiments makes them suitable for
use in automatic test generation.

We also developed a functional-level fault model describing
faulty behavior in the different modules of an LSI chip. This
model is quite independent of the details of implementation
and covers functional faults that alter the behavior of a mod­
ule during one of its modes of operation. It also covers
stuck-at faults affecting any input or output pin or any inter­
connection line in the chip.

Using the above-mentioned models, we proposed a func­
tional test generation procedure based on path sensitization
and D-algorithm.15 The procedure takes the module-level
model of the LSI chip and the functional description of its
modules as parameters and generates tests to detect faults
in the fault model. The fault collapsing technique1 was used
to reduce the length of the test sequence. As in the D-algo­
rithm, the procedure employs three basic operations, name-

-I
:T
(l)
o
-<
o -"tJ
r­
C
-I
(l)
en -:5'

c.c

en
c ..
(I)

~
C
-I
A. -o
~
o
CD
s:.
I-

Iy implication, D-propagation, and line justification. However,
these operations are performed on functional modules.

We also presented algorithmic solutions to the problems of
performing these operations on functional modules.16 For
each of the three operations, we gave an algorithm which
takes the module's set of experiments and current state
(i.e., the values assigned to the module inputs, outputs, and
internal memory elements) as parameters and generates all
the possible states of the module after performing the re­
quired operation.

We have also reported our efforts to develop test se­
quences based on our test generation procedure for typical
LSI circuits.17 More specifically, we considered a one-bit
microprocessor slice C that has all the basic features of the
four-bit Am2901 microprocessor slice.10 The circuit C was
modeled as a network of eight functional modules: an ALU,
a latch register, an addressable register, and five multiplex­
ers. The functions of the individual modules were described
in terms of binary decision diagrams or equivalent sets of
experiments. Test capable of detecting various faults cov­
ered by the fault model were then generated for the circuit
C. We showed that if the fault collapsing technique is used,
a significant reduction in the length of the final test se­
quence results.

The test generation effort was quite straightforward, indicat­
ing that the technique can be automated without much diffi­
culty. Our study also shows that for a simplified version of
the circuit C the length of the test sequence generated by
our technique is very close to the length of the test se­
quence manually generated by Sridhar and Hayes9 for the
same circuit. We also described techniques for modeling
some of the features of the Am2909 four-bit microprogram
sequencer10 that are not covered by the circuit C.

The results of our case study were quite promising and
showed that our technique is a viable and effective one for
generating tests for LSI circuits.

SIMULATION-AIDED TEST GENERATION

Logic simulation techniques have been used widely in the
evaluation and verification of new digital circuits. However;
an important application of logic simulation is to interpret the
behavior of a circuit under a certain fault or faults. This is
known as fault simulation. To clarify how this technique can

I be used to generate tests for LSI systems, we will first de­
scribe its use with SSI/MSI-type circuits.

To generate a fault simulator for an SSI/MSI circuit, the
following information is needed.1

• the gate-level description of the circuit, written in a spe­
cial language;

• the initial conditions of the memory elements; and

• a list of the faults to be simulated, including classical
types of faults such as stuck-at faults and adjacent pin
shorts.

8-24

The above is fed to a simulation package which generates
the fault simulator of the circuit under test. The resulting
simulator can simulate the behavior of the circuit under nor­
mal conditions as well as when any faults exist.

Now, by applying various input patterns (either generated by
hand, by an algorithm, or at random) the simulator checks to
see if the output response of the correct circuit differs from
one of the responses of the faulty circuits. If it does, then
this input pattern detects the fault which created the wrong
output response; otherwise the input pattern is useless. If an
input pattern is found to detect a certain fault, this fault is
deleted from the fault list and the process continues until
either the input patterns or the faults are finished. At the
end, the faults remaining in the fault list are those which
cannot be detected by the input patterns. This direclty mea­
sures the degree of fault coverage of the input patterns
used.

Two examples of this type of logic simulator are LAMP-the
Logic Analyzer for Maintenance Planning developed at Bell
Laboratories,21 and the Testaid III fault simulator developed
at the Hewlett-Packard Company.12 Both work primarily at
the gate level and simulate stuck-at faults only. One of the
main applications of such fault simulators is to determine
the degree of fault coverage provided by a test sequence
generated by any other test generation technique.

There are two key requirements that affect the success of
any fault simulator:

• the existence of a software model for each primitive ele­
ment of the circuit, and

• the existence of a good fault model for the UUT which
can be used to generate a fault list covering most of the
actual physical faults.

These two requirements have been met for SSI/MSI cir­
cuits, but they pose serious problems for LSI circuits. If it
can be done at all, modeling LSI circuits at the gate level
requires great effort. One part of the problem is the lack of
detailed information about the internal structure of most LSI
chips. The other is the time and memory required to simu­
late and LSI circuit containing thousands of gates. Another
severe problem facing almost all LSI test generation tech­
niques is the lack of good fault models at a level higher than
the gate level.

The Abadir-Reghbati description model proposed in the pre­
vious section permits the test designer to bypass the gate­
level description and, using binary decision diagrams, to de­
fine blocks of logic according to their functions. Thus, the
simulation of complex LSI circuits can take place at a higher
level, and this eliminates the large time and memory require­
ments. Furthermore, the Abadir-Reghbati fault model is
quite efficient and is suitable for simulation purposes. In
fact, the implication operation16 employed by the test gen­
eration procedure represents the main building block of any
fault simulator. It must be noted that fault simulation tech­
niques are very useful in optimizing the length of the test
sequence generated by any test generation technique.

BINARY DECISION DIAGRAMS
Binary decision diagrams are a means of defining the logical operation of digital functions.19 They tell the user how to
determine the output value of a digital function by examining the values of the inputs. Each node in these diagrams is
associated with a binary variable, and there are two branches coming out from each node. The right branch is the "1"
branch, while the left branch is the "0" branch. Depending on the value of the node variable, one of the two branches
will be selected when the diagram is processed.
To see how binary decision diagrams can be used, consider the half-adder shown in Figure B.2.4(a). Assume we are
interested in defining a procedure to determine the value of C, given the binary values of X and Y. We can do this by
looking at the value of X. If X = 0, then C = 0, and we are finished. If X = 1, we look at Y. If Y = 0, then C = 0, else C
"'" 1, and in either case we are finished. Figure B.2.4(b) shows a simple diagram of this procedure. By entering the
diagram at the node indicated by the arrow labeled with C and then proceeding through the diagram following the
appropriate branches until a ° or 1 value Is reached, we can determine the value C. Figure 8.2.4(c) shows the diagram
representing the function S of the half-adder.

c

.~
o 1

TUL/9993-$
(b)

FIGURE B.2.4. (a) Half-Adderj (b) Binary Decision Diagram
for C = X. Y; (c) Binary Decision Diagram for S = X ('!) Y

To simplify the diagrams, any diagram node which has two branches as exit branches can be replaced by the
itself or its· complement. These variables are called exit variables. Figure 8.2.5 shows how this convention is used
simplify the diagrams describing the half-adder.

c s

AA
o v y V

TLlU9993-9

FIGURE B.2.5 Simplified Binary Decision Diagrams for the Half·Adder

,.nthe previous discussion, we have considered only simple diagrams inwhich the variables withinthenodes are primary .
. inpu~variables. However, we can expand the scope of these diagrams by using auxiliary variables as the node variables.
Trese auxiliary variables are defined by their diagrams. Thus, when user encounters such a node variable, say Qi .. V!tlile
tracing a path, he must first process the diagram defining g to determine the value of g, and then return to theg!iginf;l.1
node and take the appropriate branch. This process is similar to the use of subroutines in high~level progran}.mip9
languages;
FOr example, consider the full-adder defined by:

Cj+1 = EjCj+ Ej Ai

8i= Ej+ Ci,

TL/l/!)993-10

FIGURE B.2.6. Binary Decision Diagrams for a FUll-Adder

8-25

-I :::r
(1)
o
-<
o -""C
r­
C
-I
(1)
en -:i'
co

Qr---~
c = o
~
C
-J
~
~ o
~ o
~
J:
~

~26

RANDOM TEST GENERATION

This method can be considered the simplest method for
testing a device. A random number generator is used to
simultaneously apply random input patterns both to the UUT
and to a copy of it known to be fault-free. (This copy is
called the golden unit.) The results obtained from the two
units are compared, and if they do not match, a fault in the
UUT is detected. This response evaluation technique is
known as comparison testing; we will discuss it later. It is
important to note that every time the UUT is tested, a new
random test sequence is used.

The important question is how effective the random test is,
or, in other words, what fault coverage a random test of
given length provides. This question can be answered by
employing a fault simulator to simulate the effect of random
test patterns of various lengths. The results of such experi­
ments on SSI and MSI circuits show that random test gener­
ation is most suitable for circuits without deep sequential
logic.1,22,23 However, by combining random patterns with
manually generated ones, test designers can obtain very
good results.

The increased sequentiality of LSI circuits reduces the appli­
cability of random testing. Again, combining manually gener­
ated test patterns with random ones improves the degree of
fault coverage. However, two factors restrict the use of the
random test generation technique:

• The dependency on the golden unit, which is assumed to
be fault-free, weakens the level of confidence in the re­
sults.

• There is no accurate measure of how effective the test
is, since all the data gathered about random tests are
statistical data. Thus, the amount of fault coverage pro­
vided by a particular random test process is unpredict­
able.

UUT

B.3 Response Evaluation
Techniques
Different methods have been used to evaluate UUT re­
sponses to test patterns. We restrict our discussion to the
case where the final goal is only to detect faults or, equiva­
lently, to detect any wrong output response. There are two
ways of achieving this goal-using a good response genera­
tor or using a compact testing technique.

GOOD RESPONSE GENERATION

This technique implements an ideal strategy: comparing
UUT responses with good response patterns to detect any
faulty response. Clearly, the key problems are how to obtain
a good response and at what stage in the testing process
that response will be generated. In current test systems, two
approaches to solving these problems are taken-stored
response testing and comparison testing.

STORED RESPONSE TESTING

In stored response testing, a one-shot operation generates
the good response patterns at the end of the test genera­
tion stage. These patterns are stored in an auxiliary memory
(usually a ROM). A flow diagram of the stored response
testing technique is shown in Figure B.3. 1.

Different methods can be used to obtain good responses of
a circuit to a particular test sequence. One way is to do it
manually by analyzing the UUT and the test patterns. This
method is the most suitable if the test patterns were gener­
ated manually in the first place.

The method most widely used to obtain good responses
from the UUT is to apply the test patterns either to a known
good copy of the UUT -the golden unit-or to a software­
simulated version of the UUT. Of course, if fault simulation
techniques were used to generate the test patterns, the
UUT's good responses can be obtained very easily as a
partial product from the simulator.

ERROR
SIGNAL

TL/L/9993-11

FIGURE 8.3.1. Stored Response Testing

8-27

-I
:T
CD
o
~
o -"tI
r­
C
-I
CD
U) -:i"
co

en
c

:e:;
f/)

~
C
...I
D.. -o
~
o
Q)
.c
I-

The use of a known good device depends on the availability
of such a device. Hence, different techniques must be used
for the user who wants to test his LSI system and for the
designer who wants to test his prototype design. However,
golden units are usually available once the device goes into
production. Moreover, confidence in the correctness of the
responses can be increased by using three or five good
devices together to generate the good responses.

The major advantage of the stored response technique is
that the good responses are generated only once for each
test sequence, thus reducing the cost of the response eval­
uation step. However, the stored response technique suf­
fers from various disadvantages:

• Any change in the test sequence requires the whole pro­
cess to be repeated.

• A very large memory is usually needed to store all the
good responses to a reasonable test sequence, because
both the length and the width of the responses are rela­
tively large. As a result, the cost of testing equipment
increases.

• The speed with which the test patterns can be applied to
the UUT is limited by the access time of the memory
used to store the good responses.

COMPARISON TESTING

Another way to evaluate the responses of the UUT during
the testing process is to apply the test patterns simulta­
neously to both the UUT and a golden unit and to compare
their responses to detect any faulty response. The flow dia­
gram of the comparison testing technique is shown in Figure
8.3.2. The use of comparison testing makes possible the
testing of the UUT at different speeds under different elec­
trical parameters, given that these parameters are within the
operating limits of the golden unit, which is assumed to be
ideal.

Note that in comparison testing the golden unit is used to
generate the good responses every time the UUT is tested.
In stored response testing, on the other hand, the golden
unit is used to generate the good responses only once.

TEST
PATTERNS

UUT

GOLDEN
UNIT

The disadvantages of depending on a golden unit are more
serious here, however, since every explicit testing process
requires one golden unit. This means that every tester must
contain a golden copy of each LSI circuit tested by that
tester.

One of the major advantages of comparison testing is that
nothing has to be changed in the response evaluation stage
if the test sequence is altered This makes comparison test­
ing highly desirable if test patterns are generated randomly.

COMPACT TESTING

The major drawback of good response generation tech­
niques in general, and stored response testing in particular,
is the huge amount of response data that must be analyzed
and stored. Compact testing methods attempt to solve this
by compressing the response data R into a more compact
from f(R) from which most of the fault information in R can
be derived. Thus, because only the compact form of the
good responses has to be stored, the need for large memo­
ry or expensive golden units is eliminated. An important
property of the compression function f is that it can be im­
plemented with simple circuitry. Thus, compact testing does
not require much test equipment and is especially suited for
field maintenance work. A general diagram of the compact
testing technique is shown in Figure 8.3.3.

Several choices for the function f exist, such as "the num­
ber of 1 's in the sequence," "the number of 0 to 1 and 1 to 0
transitions in the sequence" (transition counting),24 or "the
signature of the sequence" (signature ana/ysis).25 For each
compression function f, there is a slight probability that a
response R1 different from the fault-free response RO will
be compressed to a form equal to f(RO), i.e., f(R1) =
f(RO). Thus, the fault causing the UUT to produce R1 in­
stead of RO will not be detected, even though it is covered
by the test patterns.

The two compression functions that are the most widely
accepted commercially are transition counting and signa­
ture analysis.

ERROR
SIGNAL

TL/L/9993-12

FIGURE 8.3.2. Comparison Testing

8-28

ERROR
SIGNAL

TL/L/9993-13

FIGURE B.3.3. Compact Testing
TRANSITION COUNTING

In transition counting, the number of logical transitions (0 to
1 and vice versa) is computed at each output pin by simply
running each output of the UUT into a special counter. Thus,
the number of counters needed is equal to the number of
output pins observed. For every m-bit output data stream (at
one pin), an n-bit counter is required, where n = [Iog2m].
As in stored response testing, the transition counts of the
good responses are obtained by applying the test sequence
to a golden copy of the UUT and counting the number of
transitions at each output pin. This latter information is used
as a reference in any explicit testing process.

In the testing of an LSI circuit by means of transition count­
ing, the input patterns can be applied to the UUT at a very
high rate, since the response evaluation circuitry is very fast.
Also, the size of the memory needed to store the transition
counts of the good responses can be very small. For exam­
ple, a transition counting test using 16 million patterns at a
rate of 1 MHz will take 16 seconds, and the compressed
stored response will occupy only K 24-bit words, where K is
the number of output pins. This can be contrasted with the
16 million K-bit words of storage space needed if regular
stored response testing is used.

The test patterns used in a transition counting test system
must be designed such that their output responses maxi­
mize the fault coverage of the test.24 The example below
shows how this can be done.

Consider the one-out-of-four multiplexer shown in Figure
8.3.4. To check for multiple stuck-at faults in the multiplexer
input lines, eight test patterns are required, as shown in Ta­
ble B.3.1. The sequence of applying these eight patterns to
the multiplexer is not important if we want to evaluate the
output responses one by one. However, this sequence will
greatly affect the degree of fault coverage if transition
counting is used. To illustrate this fact, consider the eight
single stuck-at faults in the four input lines X1, X2, X3 and
X4 (Le, X1 stuck-at 0, X1 stuck-at 1, X2 stuck-at 0, and so
on). Each of these faults will be detected by only one pat­
tern among the eight test patterns. For example, the fault
"X1 stuck-at 0" will be detected by applying the first test
pattern in Table B.3.1, but the other seven test patterns will
not detect this fault. Now, suppose we want to use transition
counting to evaluate the output responses of the multiplex­
er. Applying the eight test patterns in the sequence shown
in Table B.3.1 (from top to bottom) will produce the output
response 10101010 (from left to right), with a transition
count of seven. Any possible combination of the eight faults
described above will change the transition count to a num­
ber different from seven, and the fault will be detected.
(Note that no more than four of the eight faults can occur at

8-29

X1 X2 X3 X4

v
TL/L/9993-14

So S1 Y

0 0 X1
0 1 X2
1 0 X3
1 1 X4

FIGURE B.3.4. One-Out-of-Four Multiplexer

anyone time.) Thus, the test sequence shown in Table
B.3.1 will detect all single and multiple stuck-at faults in the
four input lines of the multiplexers.

Now, if we change the sequence of the test patterns to the
one shown in Table B.3.2., the fault coverage of the test will
decrease considerable. The output responses of the se­
quence of Table B.3.2 will be 11001100, with a transition
count of three. As a result, six of the eight single stuck-at
faults will not be detected, because the transition count of
the six faulty responses will remain three. For example, the
fault "X1 stuck-at 1" will change the output response to
11101100, which has a transition count of three. Hence, this
fault will not be detected. Moreover, most of the multiple
combinations of the eight faults will not change the tran­
sition count of the output, and hence they will not be detect­
ed either.

It is clear from the above example that the order of applying
the test patterns to the UUT greatly affects the fault cover­
age of the test. When testing combinational circuits, the test
designer is completely free to choose the order of test pat­
terns. However, he cannot do the same with test patterns
for sequential circuits. More seriously, because he is dealing
with LSI circuits that probably have multiple output lines, he
will find that a particular test sequence may give good re­
sults at some outputs and bad results at others. One way to
solve these contradictions is to use simulation techniques to
find the optimal test sequence. However, because of the
limitations discussed here, transition counting cannot be
recognized as a powerful compact LSI testing method.

-t
::r
CD
0

-<
0 --a
r-
C
-t
CD
UJ -S·
ec

en
c

+=i en
Q)

f­
o
..J
Do -o
~
o
Q)
.c
f-

So

0
0
0
0
1
1
1
1

So

0
0
0
0
1
1
1
1

TABLE B.3.1. The Eight Test Patterns Used
for Testing the Multiplexer of Figure B.3.4

S1 X1 X2 X3 X4

0 1 0 0 0
0 0 1 1 1
1 0 1 0 0
1 1 0 1 1
0 0 0 1 0
0 1 1 0 1
1 0 0 0 1
1 1 1 1 0

TABLE B.3.2. A Different Sequence
of the Eight Multiplexer Test Patterns

S1 X1 X2 X3 X4

0 1 0 0 0
1 0 1 0 0
0 0 1 1 1
1 1 0 1 1
0 0 0 1 0
1 0 0 0 1
0 1 1 0 1
1 1 1 1 0

SIGNATURE ANALYSIS

Y

1
0

1
0
1

0

1
0

Y

1
1
0
0
1
1
0
0

In 1977 Hewlett-Packard Corporation introduced a new
compact testing technique called signature analysis, intend­
ed for testing LSI systems.25- 28 In this method, each output
response is passed through a 16-bit linear feedback shift
register whose contents f(R), after the test patterns have
been applied, are called the test signature. Figure 8.3.5
shows an example of a linear feedback shift register used in
signature analysis.

The signature provided by linear feedback shift registers
can be regarded as a unique fingerprint-hence, test de­
signers have extremely high confidence in these shift regis­
ters as tools for catching errors. To better understand this
confidence, let us examine the 16-bit linear feedback shift
register shown in Figure 8.3.5. Let us assume a data stream
of length n is fed to the serial data input line (representing
the output response to be evaluated). There are 2n possible
combinations of data streams, and each one will be com­
pressed to one of the 216 possible signatures. Linear feed­
back shift registers have the property of equally distributing
the different combinations of data streams over the different
signatures.27 This property is illustrated by the following nu­
merical examples.

• Assume n = 16. Then each data stream will be mapped
to a distinctive signature (one-to-one mapping).

• Assume n = 17. Then exactly two data streams will be
mapped to the same signature. Thus, for a particular data
stream (the UUT good output response), there is only
one other data stream (a faulty output response) that will
have the same signature; i.e., only one fault response out
of 217 -1 possible faults will not be detected.

• Assume n = 18. Then four different data streams will be
mapped to the same signature. Hence, only three faults
out of 218 - 1 possible faults will not be detected.

We can generalize the results obtained above. For any re­
sponse data stream of length n > 16, the probability of
missing a faulty response when using a 16-bit signature an­
alyzer is 27

2n - 16 - 1
2n-1 ;::::2- 16,forn» 16.

Hence, the possibility of missing an error in the bit stream is
very small (on the order of 0.002 percent). Note also that a
great percentage of the faults will affect more than one out­
put pin-hence the probability of not detecting these kind of
faults is even lower.

r~ ~(--'--'--I ~I)~I 1""--'--101 1 I~l, 1 "",-,--,I J
" 16·BIT SHIFT REGISTER

SERIAL
DATA

INPUT
TL/Ll9993-15

FIGURE B.3.5. The 16-Blt Linear Feedback Shift Register Used In Signature Analysis

8-30

Signature analysis provides a much higher level of confi­
dence for detecting faulty output responses than that pro­
vided by transition counting. But, like transition counting, it
requires only very simple hardware circuitry and a small
amount of memory for storing the good signatures. As a
result, the signatures of the output responses can be calcu­
lated even when the UUT is tested at its maximum speed.
Unlike transition counting, the degree of fault coverage pro­
vided by signature analysis is not sensitive to the order of
the test patterns. Thus, it is clear that signature analysis is
the most attractive solution to the response evaluation prob­
lem.

The rapid growth of the complexity and performance of digi­
tal circuits presents a testing problem of increasing severity.
Although many testing methods have worked well for SSI
and MSI circuits, most of them are rapidly becoming obso­
lete. New techniques are required to cope with the vastly
more complicated LSI circuits.

In general, testing techniques fall into the concurrent and
explicit categories. In this article, we gave special attention
to explicit testing techniques, especially those approaching
the problem at the functional level. The explicit testing pro­
cess can be partitioned into three steps: generating the test,
applying the test to the UUT, and evaluating the UUT's re­
sponses. The various testing techniques are distinguished
by the methods they used to perform these three steps.
Each of these techniques has certain strengths and weak­
nesses.

We have tried to emphasize the range of testing techniques
available, and to highlight some of the milestones in the
evolution of LSI testing. The details of an individual test
method can be found in the source we have cited.

References
1. M.A. Breuer and AD. Friedman, Diagnosis and Reliable

Design of Digital Systems, Computer Science Press,
Washington, D.C., 1976.

2. J.P. Hayes and E.J. McCluskey, "Testing Considerations
in Microprocessor-Based Design", Computer, Vol. 13,
No.3, March 1980, pp. 17-26.

3. J. Wakerly, Error Detecting Codes, Self-Checking Circuits
and Applications, American Elsevier, New York, 1978.

4. D.B. Armstrong, "On Finding a Nearly Minimal Set of
Fault Detection Tests for Combinatorial Nets," IEEE
Trans. Electronic Computers, Vol. EC-15, No.2, Feb.
1966, pp. 63-73.

5. J.P. Roth, W.G. Bouricius, and P.R. Schneider, "Pro­
grammed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits," IEEE
Trans. Electronica Computers, Vol. EC-16, No.5, October
1967, pp. 567-580.

6. S.B. Akers, "Test Generation Techniques," Computer,
Vol. 13, No.3, March 1980, pp. 9-15.

7. E.1. Muehldorf and AD. Savkar, "LSI Logic Testing-An
Overview," IEEE Trans. Computers, Vol. C-30, No.1,
January 1981, pp. 1-17.

8. O.H. Ibarra and S.K. Sahni, "Polynomially Complete Fault
Detection Problems," IEEE Trans. Computers, Vol. C-24,
No.3, March 1975, pp. 242-249.

9. T. Sridhar and J.P. Hayes, "Testing Bit-Sliced Microproc­
essors," Proc. 9th Int'! Symp. Fault-Tolerant Computing,
1979, pp. 211-218.

10. The Am2900 Family Data Book, Advanced Micro Devic­
es, Inc., 1979.

8-31

11. Z. Kohavi, Switching and Finite Automata Theory,
McGraw-Hili, New York, 1970.

12. S.M. Thatte, "Test Generation for Microprocessors,"
PhD Thesis, University of Illinois, Urbana, 1979.

13. S.M. Thatte and J.A. Abraham, "Test Generation For
Microprocessors," IEEE Trans. Computers .. Vol. C-29,
No.6, June 1980, pp. 429-441.

14. M.A. Breuer and AD. Friedman, "Functional Level Prim­
itives in Test Generation," IEEE Trans. Computers, Vol.
C-29, No.3, March 1980, pp. 223-235.

15. M.S. Abadir and H.K. Reghbati, "Test Generation for
LSI: A New Approach," Tech. Report 81-7, Dept. of
Computational Science, University of Saskatchewan,
Saskatoon, 1981.

16. M.S. Abadir and H.K. Reghbati, "Test Generation for
LSI: Basic Operations," Tech. Report 81-8, Dept. of
Computational Science, University of Saskatchewan,
Saskatoon, 1981.

17. M.S. Abadir and H.K. Reghbati, "Test Generation for
LSI: A Case Study," Tech. Report 81-9, Dept. of Compu­
tational Science, University of Saskatchewan, Saska­
toon, 1981.

18. M.S. Abadir and H.K. Reghbati, "Functional Testing of
Semiconductor Random Access Memories," Tech. Re­
port 81-6, Dept. of Computational Science, University of
Saskatchewan, Saskatoon, 1981.

19. S.B. Akers, "Binary Decision Diagram," IEEE Trans.
Computers, Vol. C-27, No.6, June 1978, pp. 509-516.

20. S.B. Akers, "Functional Testing with Binary Decision Di­
agram," Proc. 8th Int'! Symp. Fault-Tolerant Computing,
June 1978, pp. 82-92.

21. B.A Zimmer, "Test Techniques for Circuit Boards Con­
taining Large Memories and Microprocessors," Proc.
1976 Semiconductor Test Symp., pp. 16-21.

22. P. Agrawal and V.D. Agrawal, "On Improving the Effi­
ciency of Monte Carlo Test Generation," Proc. 5th Int'!
Symp. Fault-Tolerant Computing, June 1975, pp. 205-
209.

23. D. Bastin, E. Girard, J.C. Rault, and R. Tulloue, "Proba­
bilistic Test Generation Methods," Proc. 3rd Int'I Symp.
Fault-Tolerant Computing, June 1973, p. 171.

24. J.P. Hayes, "Transition Count Testing of Combinational
Logic Circuits," IEEE Trans. Computers, Vol. C-25, No.
6, June 1976, pp. 613-620.

25. "Signature Analysis," Hewlett Packard J., Vol. 28, No.9,
May 1977.

26. R. David, "Feedback Shift Register Testing," Proc. 8th
Int'! Symp. Fault- Tolerant Computing, June 1978.

27. H.J. Nadig, "Testing a Microprocessor Product Using
Signature Analysis," Proc. 1978 Semiconductor Test
Symp., pp. 159-169.

28. J.B. Peatman, Digital Hardware Design, McGraw-Hili,
New York, 1980.

29." M. Garey and D. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Free­
man, San Francisco, 1978.

30. E. Horowitz and S. Sahni, Fundamentals of Computer
Algorithms, Computer Science Press, Washington D.C.,
1978.

-I
::r
(j)
o
-<
o -"'C
r­
C
-I
CD en -S·
(C

en
c
o
·iii
c
CI)

E
C
'ii
u

~National
~ Semiconductor

.~ 20 Lead Ceramic Dual-In-Line Package (J)
~ NS Package Number J20A

All dimensions are in inches (millimeters)

0.9S5
.... -----(25.019) -----~

0.180
(4.572)

MAX

I..- 0.310-0.410
(7.S74-10.41)

GLASS SEALANT

0.00S-0.012
(0.203 - 0.305)

0.100±0.010
(2.540 ± 0.254)

24 Lead Ceramic Dual-In-Line Package (J)
NS Package Number J24F

'.025 RAD
(D.l351

1.290
1--------(32.77) MAX---------I

0.060 ±D.OOS
(1.524 ±D.1211 TVP

MAX

0.055 ± 0.005
(1.397±0.127)

0.01S±0.003 ~I L
(0.457 ±0.076) II

0.200
(5.0S0)

MAX

0.125-0.200
(3.175 - 5.0BO)

•

J20AtAEVMI

0.100 :to.Ol0 I
(2.64 :to,264I--1

TVP

+ t • 95· ±S. 0.008-0.012

"'---O-.1f-2S- I 0.310-0.410 I ~:pD3-0.30SI
(3~1~1 I--17.814-10.411--1

J24F(REVGI

8·32

20 Lead Molded Dual-In-Line Package (N)
NS Package Number N20A

0.092 x 0.030

(2.337 X 0.762)
MAX DP

1.013-1.040 ::::1
(25.73-26.42)

~====19==1=8==1=7==16===15~1~4==\3~=12~1~1~---r

PIN NO.lIDENT~1 ~ + 0.260±0.005
1'. (6.604 ±0.127)

~
(~:~~~)~ OPTION 1 ~:;t;1 r=r=;;:r:;::;:;:;:::;r=;::::::;:::;::;;:;:::;:::~::;::;r:;:;::::;::;;;=J--L

''':~:'20 ~
I ;'620-.'281 I
I I I~ ,----t-i---~I-+-----.......

0.032io.005=Vo 19
(O.S13 io.127)

RAD

PIN NO. lIDENT~

I

0.130 0.005

(3.302

OPTlDN 2

g ,o,,,-oo,,rJ
I I

(~.~~9-0.381)

- 900iO.004° L t
0.020

I ~ I 0.125-0.140 (0.508)
. . 0.060 to.005 t- 0.0ISiO.003 _ (3.175-3.556) MIN

0.325 ~~:~~ (1.524tO.127) (0.45710.076)

(8.255 +1.016)
~ -0.381

N20AIREVGI

24 Lead Skinny Dual-In-Line Package (0.300" Centers Molded) (N)
NS Package Number N24C

0.009-0.015
(0.229-0.381)

0.325 ~~:~~~
fS 255 + 1.01S)
~ . -0.381

0.300 - 0.320

C6:~:12" I

0.092
(2.337)
(2 PLS)

0.OS5 -rJ (1.651)

0.075 ± 0.015 I
(1.905±0.3Bl) I--

8-33

1.243 -1.270
(31.57 -32.2S)

MAX

f
0.260±0.005

(S.S04±0.127)

~

N24CIREV FI

"'tI
::T
'< en
ci'
e!-
O
3"
CD
:::J en
0"
:::J en

en c
o
'iii
c
Q)

E
C
ca
(.)

'~
.c
D..

20 Lead Plastic Chip Carrier (V)
NS Package Number V20A

4 SPACES AT

o.OSOW
(1.270)

S#
19 201 2 3 A 0.080

18 4 (2.032)
DIA NOM += 0 .' "'~'"

4S~~~~ AT \13 9\ 0.226
(1.270)" ~ (5.740)

0.310 - 0.330
(7.874 -8.382)

(CONTACT DIMENSION)

NOM
SQUARE

~JiF===!;===rdim~:=WW-li*1=- 0.032-0.040
(0.127-0.381) (0.813-1.016)

PIN NO.1
10ENT

28 Lead Plastic Chip Carrier (V)
NS Package Number V28A

l (CD:::~i~~i:ON) [0.020 0.013-0.018
~ (0.508) ~ I (0.330-0.457) 0.165-0.180
(0.813-1.016) MIN TYP (4.191-4.572)

t i==t w t t
~-0.015 r=~- I •

(0.127-0.381) ~ j • I
PIN NO.1 0.026-0.032 I ~
IDENT jl (0.660-0.813) (2.642-2.997)
~ TYP
(11.43)
REF sa

0.485-0.495
(12.32-12.57)

SQUARE

8-34

0.

04Sl (1.143)
x4S'

~
15' VIEW A·A

V20AiAEVJ)

VIEWA·A

kI
0.045 -l t;:

(1.143)
x45'

V28A(REVG)

~National
~ Semiconductor
Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this
bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.

Please send them to:

Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK-1990
Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky. Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987
SSI/MSI Functions • Peripheral Functions • LSIIVLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK-1988
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC
MM54HCT/MM74HCT. CD4XXX. MM54CXXX/MM74CXXX. Surface Mount

DATA ACQUISITION LINEAR DEVICES-1989
Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters
Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK-1990
LAN IEEE 802.3 • High Speed Serial/IBM Data Communications. ISDN Components • UARTs
Modems • Transmission Line Drivers/Receivers

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989
Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors
Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series
Consumer Series • Power Components. Transistor Datasheets • Process Characteristics

DRAM MANAGEMENT HANDBOOK-1989
Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for the
DP8408A109A117/18/19/28/29. Microprocessor Applications for the DP8420Al21A122A
Microprocessor Applications for the NS32CG821

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989
Embedded System Processor Overview • Central Processing Units. Slave Processors. Peripherals
Development Systems and Software Tools

F100K DATABOOK-1989
Family Overview ~ F1 OOK Datasheets • 11 C Datasheets • 10K and 100K Memory Datasheets
Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations
Power Distribution and Thermal Considerations. Testing Techniques. Quality Assurance and Reliability

FACTTM ADVANCED CMOS LOGIC DATABOOK-1989
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations. 54ACI74ACXXX. 54ACT174ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-Rev. 1-1988
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations. 54F174FXXX

FAST® APPLICATIONS HANDBOOK-1990
Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders. Encoders
Operators. FIFOs. Counters. TTL Small Scale Integration. Line Driving and System Design
FAST Characteristics and Testing. Packaging Characteristics

GENERAL PURPOSE LINEAR DEVICES DATABOOK-1989
Continuous Voltage Regulators • Switching Voltage Regulators. Operational Amplifiers • Buffers • Voltage Comparators
Instrumentation Amplifiers • Surface Mount

GRAPHICS HANDBOOK-1989
Advanced Graphics Chipset • DP8500 Development Tools • Application Notes

INTERFACE DATABOOK-1988
Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers
Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rei Interface

LINEAR APPLICATIONS HANDBOOK-1986
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.

Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK-1989
Contains former Fairchild Products
Introduction to Bipolar Logic • Low Power Schottky. Schottky • TTL • TTL-Low Power

MASS STORAGE HANDBOOK-1989
Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

MEMORY DATABOOK-1990
PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECL I/O SRAMs

MICROCONTROLLER DATABOOK-1989
COP400 Family • COP800 Family • COPS Applications. HPC Family. HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

MICROPROCESSOR DATABOOK-1989
Series 32000 Overview • Central Processing Units • Slave Processors. Peripherals
Development Systems and Software Tools • Application Notes • NSC800 Family

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1990
Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools
Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK-1989
Real Time Clocks and Timer Clock Peripherals. Application Notes

RELIABILITY HANDBOOK-1986
Reliability and the Die. Internal Construction. Finished Package. MIL·STD·883 • MIL·M·38510
The Specification Development Process. Reliability and the Hybrid Device • VLSIIVHSIC Devices
Radiation Environment. Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor. The Total Military/Aerospace Standardization Program
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL·M·38510 Class B Products
Radiation Hardened Technology. Wafer Fabrication. Semiconductor Assembly and Packaging
Semiconductor Packages. Glossary of Terms. Key Government Agencies. AN/ Numbers and Acronyms
Bibliography. MIL·M·38510 and DESC Drawing Cross Listing

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989
Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits
Surface Mount

TELECOMMUNICATIONS-1990
Line Card Components. Integrated Services Digital Network Components. Analog Telephone Components
Application Notes

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS
ALABAMA San Jose Orlando MARYLAND

Huntsville Anthem Electronics Time Electronics Columbia
Arrow Electronics (408) 453-1200 (407) 841-6565 Anthem Electronics
(205) 837-6955 Pioneer Technology Oviedo (301) 995-6640
Bell Industries (408) 954-9100 Zeus Components Arrow Electronics
(205) 837-1074 Zeus Components (407) 365-3000 (301) 995-0003
Hamilton! Avnet (408) 629-4789 SI. Petersburg Hamilton! Avnet
(205) 837-7210 Sunnyvale Hamilton! Avnet (301) 995-3500
Pioneer Technology Arrow Electronics (813) 576-3930 Time Electronics
(205) 837-9300 (408) 745-6600 Winter Park (301) 964-3090
Time Electronics Bell Industries Hamilton! Avnet Zeus Components
(205) 721-1133 (408) 734-8570 (407) 628-3888 (301) 997-1118

ARIZONA Hamilton! Avnet GEORGIA Gaithersburg
Chandler (408) 743-3355 Duluth Pioneer Technology

Hamilton! Avnet Time Electronics Arrow Electronics (301) 921-0660

(602) 231-5100 (408) 734-9888 (404) 497-1300 MASSACHUSETTS
Phoenix Thousand Oaks Norcross Andover

Arrow Electronics Bell Industries Bell Industries Bell Industries
(602) 437-0750 (805) 499-6821 (404) 662-0923 (508) 474-8880

Tempe Torrance Hamilton! Avnet Lexington
Anthem Electronics Time Electronics (404) 447-7500 Pioneer Standard
(602) 966-6600 (213) 320-0880 Pioneer Technology (617) 861-9200
Bell Industries Tustin (404) 448-1711 Zeus Components
(602) 966-7800 Arrow Electronics Time Electronics (617) 863-8800
Time Electronics (714) 838-5422 (404) 448-4448 Norwood
(602) 967-2000 Yorba Linda

ILLINOIS Gerber Electronics
CALIFORNIA

Zeus Components
Addison (617) 769-6000

Agora Hills
(714) 921-9000

Pioneer Electronics Peabody
Bell Industries COLORADO (708) 437-9680 Hamilton! Avnet
(818) 706-2608 Englewood Bensenville (508) 531-7430

Zeus Components Anthem Electronics Hamilton! Avnet Time Electronics
(818) 889-3838 (303) 790-4500 (708) 860-7780 (508) 532-6200

Anaheim Arrow Electronics Elk Grove Village Wilmington
Time Electronics (303) 790-4444 Anthem Electronics Anthem Electronics
(714) 934-0911 Hamilton! Avnet (708) 640-6066 (508)657-5170

Chatsworth (303) 799-7800 Bell Industries Arrow Electronics
Anthem Electronics CONNECTICUT (708) 640-1910 (508) 658-0900

(818) 700-1000 Cheshire Itasca MICHIGAN
Arrow Electronics Time Electronics Arrow Electronics Ann Arbor
(818) 701-7500 (203) 271-3200 (708) 250-0500 Bell Industries
Hamilton Electro Sales Danbury Urbana (313) 971-9093
(818) 700-6500 Hamilton! Avnet Bell Industries Grand Rapids
Time Electronics (203) 797-2800 (217) 328-1077 Arrow Electronics
(818) 998-7200 Norwalk Wood Dale (616) 243-0912

Costa Mesa Pioneer Standard Time Electronics Hamilton! Avnet
Avnet Electronics (203) 853-1515 (708) 350-0610 (616) 243-8805
(714) 754-6050 Wallingford INDIANA Pioneer Standard
Hamilton Electro Sales Arrow Electronics Carmel (616) 698-1800
(714) 641-4159 (203) 265-7741 Hamilton! Avnet Livonia

Cypress Waterbury (317) 844-9333 Arrow Electronics
Bell Industries Anthem Electronics Fort Wayne (313) 665-4100
(714) 895-7801 (203) 575-1575 Bell Industries Pioneer Standard

Gardena FLORIDA (219) 423-3422 (313) 525-1800
Bell Industries Altamonte Springs Indianapolis Novi
(213) 515-1800 Bell Industries Advent Electronics Inc. Hamilton! Avnet
Hamilton! Avnet (407) 339-0078 (317) 872-4910 (313) 347-4720
(213) 217-6751 Pioneer Technology Arrow Electronics Southfield

Irvine (407) 834-9090 (317) 243-9353 R. M. Electronics, Inc.
Anthem Electronics Clearwater Bell Industries (313)262-1582
(714) 768-4444 Pioneer Technology (317) 634-8200 Wyoming

Ontario (813) 536-0445 Pioneer Standard R. M. Electronics, Inc.
Hamilton! Avnet Deerfield Beach (317) 573-0880 (616) 531-9300
(714) 989-4602 Arrow Electronics IOWA MINNESOTA

Rocklin (305) 429-8200 Cedar Rapids Eden Prairie
Anthem Electronics Bell Industries Anthem Electronics
(916) 624·9744 Advent Electronics

(305) 421-1997 (319) 363-0221 (612) 944-5454
Bell Industries Pioneer Technology Pioneer Standard
(916) 652-0414 Arrow Electronics

(305) 428-8877 (319) 395-7230 (612) 944-3355
Sacramento Fort Lauderdale Edina

Hamilton! Avnet Bell Industries
Hamilton! Avnet (319) 395-0730 Arrow Electronics

(916) 925·2216 (305) 971-2900 (612) 830-1800
San Diego Hamilton! Avnet

Time Electronics (319) 362-4757 Time Electronics
Anthem Electronics (305) 484-7778 (612) 835-1250
(619) 453·9005 Lake Mary KANSAS Minnetonka
Arrow Electronics Arrow Electronics Lenexa Hamilton! Avnet
(619) 565-4800 (407) 333-9300 Arrow Electronics (612) 932-0600
Hamilton! Avnet Largo (913) 541-9542
(619) 571-7510 Bell Industries Hamilton! Avnet
Time Electronics (813) 541-4434 (913) 888-8900
(619) 586-1331

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

MISSOURI Rochester OREGON WASHINGTON
Chesterfield Arrow Electronics Beaverton Bellevue

Hamilton/ Avnet (716) 427·0300 Almac·Stroum Electronics Almac·Stroum Electronics
(314) 537·1600 Hamilton/ Avnet (503) 629·8090 (206) 643·9992

St.Louis (716) 475·9130 Anthem Electronics Bothell
Arrow Electronics Summit Electronics (503) 643·1114 Anthem Electronics
(314) 567·6888 (716) 334·8110 Arrow Electronics (206) 483·1700
Pioneer Standard Ronkonkoma (503) 645·6456 Kent
(314) 432-4350 Zeus Components Hamilton/ Avnet Arrow Electronics
Time Electronics (516) 737·4500 (503) 627·0201 (206) 575·4420
(314) 391·6444 Syracuse Lake Oswego Redmond

NEW HAMPSHIRE Hamilton/ Avnet Bell Industries Bell Industries

Hudson (315) 437·2641 (503) 635·6500 (206) 885·9963

Bell Industries Time Electronics Portland Hamilton/ Avnet
(603) 882·1133 (315) 432·0355 Time Electronics (206) 881·6697

Manchester Westbury (503) 684·3780 Time Electronics
Arrow Electronics Hamilton/ Avnet Export Div. PENNSYLVANIA (206) 882·1600

(603) 668·6968 (516) 997·6868 Horsham WISCONSIN
Hamilton/ Avnet Woodbury Anthem Electronics Brookfield
(603) 624·9400 Pioneer Electronics (215) 443·5150 Arrow Electronics

NEW JERSEY
(516) 921·8700 Pioneer Technology (414) 792·0150

Cherry Hill NORTH CAROLINA (215) 674·4000 Mequon

Hamilton/ Avnet Charlotte King of Prussia Taylor Electric
(609) 424·0100 Pioneer Technology Time Electronics (414) 241·4321

Fairfield (704) 527·8188 (215) 337·0900 Waukesha

Anthem Electronics Time Electronics Monroeville Bell Industries
(201) 227·7960 (704) 522·7600 Arrow Electronics (414) 547·8879

Hamilton/ Avnet Durham (412) 856·7000 Hamilton/ Avnet
(201) 575·3390 Pioneer Technology Pittsburgh (414) 784·4516

Marlton (919) 544·5400 Hamilton/ Avnet CANADA
Arrow Electronics Raleigh (412) 281·4150 WESTERN PROVINCES
(609) 596·8000 Arrow Electronics Pioneer Burnaby

Parsippany (919) 876·3132 (412) 782·2300 Hamilton/ Avnet
Arrow Electronics Hamilton/ Avnet TEXAS (604) 437·6667
(201) 538·0900 (919) 878·0810 Austin Semad Electronics

Pine Brook Winston·Salem Arrow Electronics (604) 420·9889
Nu Horizons Electronics Arrow Electronics (512) 835·4180 Calgary
(201) 882·8300 (919) 725·8711 Hamilton/ Avnet Hamilton/ Avnet
Pioneer Standard OHIO (512) 837·8911 (403) 250·9380
(201) 575·3510 Centerville Pioneer Standard Semad Electronics
Time Electronics Arrow Electronics (512) 835·4000 (403) 252·5664
(201) 882·4611 (513) 435·5563 Time Electronics Zentronics

NEW MEXICO Bell Industries (512) 399·3051 (403) 272·1021

Albuquerque (513) 435·8660 Carrollton Edmonton

Alliance Electronics Inc. Belllndustries·Military Arrow Electronics Zentronics
(505) 292·3360 (513) 434·8231 . (214) 380·6464 (403) 468·9306

Arrow Electronics Cleveland Time Electronics Richmond
(505) 243·4566 Pioneer (214) 241·7441 Zentronics
Bell Industries (216) 587·3600 Dallas (604) 273·5575

(505) 292·2700 Dayton Hamilton/ Avnet Saskatoon
Hamilton/ Avnet Hamilton/ Avnet (214) 404·9906 Zentronics
(505) 345·0001 (513) 439·6700 Pioneer Standard (306) 955·2207

NEW YORK
Pioneer Standard (214) 386·7300 Winnipeg
(513) 236·9900 Houston Zentronics

Amityville Zeus Components Arrow Electronics (204) 694·1957
Nu Horizons Electronics
(516) 226·6000

(914) 937·7400 (713) 530·4700 EASTERN PROVINCES
Dublin Pioneer Standard Mississauga Binghamton Time Electronics (713) 988·5555

Pioneer Hamilton/ Avnet
(607) 722·9300

(614) 761·1100 Richardson (416) 677·7432

Buffalo
Solon Anthem Electronics Time Electronics

Summit Electronics
Arrow Electronics (214) 238·7100 (416) 672·5300

(716) 887·2800
(216) 248·3990 Zeus Components Zentronics

Commack
Hamilton/ Avnet (214) 783·7010 (416) 564·9600

Anthem Electronics
(216) 831·3500 Stafford Nepean

(516) 864·6600
Westerville Hamilton/ Avnet Hamilton/ Avnet

Fairport
Hamilton/ Avnet (713) 240·7733 (613) 226·1700

Pioneer Standard
(614) 882·7004 UTAH Zentronics

(716) 381·7070 OKLAHOMA Midvale (613) 226·8840

Time Electronics Tulsa Beillndustrles Ottawa
(716) 383·8853 Arrow Electronics (801) 255·9611 Semad Electronics

Hauppauge (918) 252·7537 Salt Lake City (613) 727·8325

Arrow Eiectronics Hamilton/ Avnet Anthem Electronics Pointe Claire
(518) 231·1000 (918) 252·7297 (801) 973·8555 Semad Electronics
Hamilton/ Avnet Pioneer Standard Arrow Electronics (514) 694·0860

(516) 434·7413 (918) 492·0546 (801) 973·6913 St. Laurent
Time Eiectronlcs Radio Inc. Hamllton/ Avnet Hamlltonl Avnet
(516) 273·0100 (918) 587·9123 (801) 972·4300 (514) 335·1000

Port Chester West Valley Zentronics
Zeus Components Time Electronics (514) 737·9700

(914) 937·7400 (801) 973·6161 Willowdale
ElectroSonic Inc.
(416) 494·1666

SALES OFFICES

ALABAMA FLORIDA MICHIGAN ONTARIO
Huntsville Boca Raton Grand Rapids Mississauga

(205) 721-9367 (407) 997-6133 (616) 940-0566 (416) 676-2920

ARIZONA Orlando W. Bloomfield Nepean

Tempe (407) 629-1720 (313) 655-0166 (613) 596-0411

(602) 966-4563 St. Petersburg MINNESOTA OREGON

CALIFORNIA
(613) 577-5017 Bloomington Portland

Inglewood GEORGIA (612) 654-6200 (503) 639-5442

(213) 645-4226 Norcross MISSOURI PENNSYLVANIA
Roseville (404) 441-2740 St. Louis Horsham

(916) 766-5577 ILLINOIS (314) 569-9630 (215) 672-6767
San Diego Schaumburg NEW JERSEY PUERTO RICO

(619) 567-0666 (706) 397-6777 Paramus Rio Piedras
Santa Clara INDIANA (201) 599-0955 (609) 756-9211

(406) 562-5900 Carmel NEW MEXICO QUEBEC Tustin (317) 643-7160 Albuquerque Pointe Claire (714) 259-6660
Woodland Hills

Fort Wayne (505) 884-5601 (514) 426-2992

(818) 868-2602
(219) 484-0722

NEW YORK TEXAS
IOWA Fairport Austin COLORADO

Boulder
Cedar Rapids (716) 223-7700 (512) 346-3990

(303) 440-3400
(319) 395-0090 Melville Houston

Colorado Springs KANSAS (516) 351-1000 (713) 771-3547

(719) 576-3319 Overland Park Wappinger Falls Richardson

Englewood (913) 451-4402 (914) 296-0660 (214) 234-3611

(303) 790-6090 MARYLAND NORTH CAROLINA UTAH

CONNECTICUT Hanover Raleigh Salt Lake City

Hamden (301) 796-8900 (919) 632-0661 (801) 322-4747

(203) 268-1560 MASSACHUSETTS OHIO WASHINGTON
Burlington Dayton Bellevue

(617) 221-4500 (513) 435-6666 (206) 453-9944
Independence WISCONSIN

(216) 524-5577 Brookfield
(414) 762-1618

~National
D Semiconductor

