Interface Databook

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.
We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.
Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch inre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité:
 Une Vocation Commune Chez National Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.
Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisànt des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.
Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. Il nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

INTERFACE DATABOOK

1990 Edition

Transmission Line Drivers/Receivers

Bus Transceivers

Peripheral Power Drivers

Display Drivers

Memory Support
Microprocessor Support
Level Translators and Buffers
Frequency Synthesis
Hi-Rel Interface
Appendices/Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTM	Embedded System	MicrotalkerTM	SABRTM
Abuseable ${ }^{\text {TM }}$	ProcessortM	MICROWIRETM	ScriptrChekTM
AnadigTM	E-Z-LINKTM	MICROWIRE/PLUSTM	SCXTM
ANS-R-TRANTM	FACTTM	MOLETM	SERIES/800TM
APPSTM	FACT Quiet Series ${ }^{\text {TM }}$	MPATM	Series 900тм
ASPECTTM	FAIRCADTM	MST'M	Series 3000тM
Auto-Chem DeflasherTM	FairtechTM	Naked-8TM	Series 32000 ${ }^{\text {® }}$
ВСРтм	FAST ${ }^{(1)}$	National ${ }^{\text {® }}$	Shelf \sim Chek ${ }^{\text {TM }}$
BI-FETTM	5-Star ServiceTM	National Semiconductor ${ }^{\text {® }}$	Simple SwitcherTM
BI-FET IITM	FlashTM	National Semiconductor	SofChekTM
BI-LINETM	GENIXTM	Corp. ${ }^{(8)}$	SONICTM
BIPLANTM	GNXTM	NAX 800 ${ }^{\text {TM }}$	SPIRETM
BLCTM	GTOTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refresh ${ }^{\text {TM }}$
BLXTM	HAMRTM	Nitride Plus Oxide ${ }^{\text {TM }}$	STARTM
BMACTM	HandiScantm	NML ${ }^{\text {TM }}$	Starlink ${ }^{\text {TM }}$
Brite-Litetm	HEX 3000 ${ }^{\text {TM }}$	NOBUSTM	STARPLEXTM
BSITM	НРСтм	NSC800TM	Super-Block ${ }^{\text {TM }}$
BTLTM	${ }^{3} L^{\text {® }}$	NSCISETM	SuperChiptm
CDDTM	ICM ${ }^{\text {TM }}$	NSX-16TM	SuperScript TM
CheckTrack ${ }^{\text {TM }}$	INFOCHEXTM	NS-XC-16 ${ }^{\text {TM }}$	SYS32TM
СIM ${ }^{\text {™ }}$	Integral ISETM	NTERCOM ${ }^{\text {™ }}$	TapePak ${ }^{\text {® }}$
CIMBUSTM	Intelisplay ${ }^{\text {TM }}$	NURAM ${ }^{\text {TM }}$	TDSTM
CLASICTM	ISETM	OXISSTM	TeleGate ${ }^{\text {TM }}$
Clock $\sim^{\text {Chek }}{ }^{\text {TM }}$	ISE/06TM	P^{2} CMOSTM	The National Anthem ${ }^{(1)}$
COMBO ${ }^{\text {® }}$	ISE/08TM	PC MasterTM	TimenChek ${ }^{\text {TM }}$
COMBO ITM	ISE/16 ${ }^{\text {TM }}$	Perfect Watch ${ }^{\text {TM }}$	TINATM
COMBO IITM	ISE32TM	PharmaصChek ${ }^{\text {TM }}$	TLCTM
COPSTM microcontrollers	ISOPLANARTM	PLANTM	TrapezoidalTM
CRDTM	ISOPLANAR-Z'M	PLANARTM	TRI-CODETM
DA4TM	KeyScantm	PLAYERTM	TRI-POLYTM
Datachecker ${ }^{\text {® }}$	LMCMOSTM	Plus-2TM	TRI-SAFETM
DENSPAKTM	M ${ }^{2} \mathrm{CMOSTM}$	Polycraft ${ }^{\text {TM }}$	TRI-STATE ${ }^{\text {® }}$
DIBTM	Macrobus ${ }^{\text {TM }}$	POSilinkTM	TURBOTRANSCEIVERTM
Digitalker®	Macrocomponent ${ }^{\text {TM }}$	POSitalker ${ }^{\text {TM }}$	VIPTM
DISCERNTM	MAXI-ROM ${ }^{\text {® }}$	Power + ControlTM	VR32Tm
DISTILLTM	Meat $ص$ Chek ${ }^{\text {TM }}$	POWERplanarTM	WATCHDOGTM
DNR ${ }^{\text {® }}$	MenuMaster ${ }^{\text {TM }}$	QUAD3000'm	XMOSTM
DPVM ${ }^{\text {TM }}$	MicrobusTM data bus	QUIKLOOKTM	XPUTM
E2CMOSTM	MICRO-DACTM	RATTM	Z STARTM
ELSTARTM	μ talker ${ }^{\text {TM }}$	RTX16TM	883B/RETSTM
			883S/RETSTM

Unibus ${ }^{\circledR}$ is a registered trademark of Digital Equipment Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NationalSemiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction

Since its creation in 1973, National Semiconductor's Interface design and production teams have produced technically advanced products unparalleled in the semiconductor industry.
Growing from a line of early drivers and receivers, which pioneered the introduction of the TRI-STATE ${ }^{\text {® }}$ function, National Semiconductor's Interface product line today is the most comprehensive available-with over 260 devices in a variety of product categories. These Interface devices support and complement National's VLSI product families.
Based on its advanced design and process capabilities, Na tional's Interface product line includes:

- The industry's most advanced RS-232 drivers and receivers
- The industry's most advanced RS-422 drivers, receivers and transceivers
- The industry's most advanced RS-485 drivers, receivers and transceivers
- The industry's only offering of over 16 devices incorporating power up/down glitch-free protection
- The industry's first TrapezoidalTM bus transceiver
- The industry's first transceivers for the Futurebus + standard
- The industry's first fault protected peripheral driver incorporating a major breakthrough in current sensing and shutdown circuitry.
In addition to the detailed Interface product datasheets included in this databook, complete product selection guides can be found at the beginning of each section for quick reference.
The Interface Appendix supplies helpful terms and definitions, cross references, design and process information and package information. Application Notes can be found in specific chapters.
For more information on National Semiconductor's INTERFACE products contact your local National authorized sales representative or distributor.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Prellminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Additional Information on Advanced Peripherals xix
Interface Product Cross Reference Guide.. xxii
Section 1 Transmission Line Drivers/Receivers
Transmission Line Drivers and Receivers-Introduction 1-4
Transmission Line Drivers and Receivers—Selection Guide . 1-6
DS1488 Quad Line Driver . 1-13
DS14C88/DS14C89A Quad CMOS Line Driver/Receiver17
DS1489/DS1489A Quad Line Receiver .. . 1-23
DS26C31C CMOS Quad TRI-STATE Differential Line Driver . 1-27
DS26F31C/DS26F31M Quad High Speed Differential Line Driver . 1-34
DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver. 1-37
DS26C32AC/DS26C32AM CMOS Quad Differential Line Receiver . 1-40
DS26F32C/DS26F32M Quad Differential Line Receiver 1-46
DS26LS32C/DS26LS32M/DS26LS32AC/DS26LS33C/DS26LS33M/DS26LS33AC
Quad Differential Line Receivers .. 1-50
DS34C86 Quad CMOS Differential Line Receiver . 1-53
DS35F86/DS34F86 RS-422/RS-423 Quad Line Receiver with TRI-STATE Outputs ... 1-58
DS3486 Quad RS-422/RS-423 Line Receiver . 1-62
DS34C87 CMOS Quad TRI-STATE Differential Line Driver . 1-66
DS35F87/DS34F87 RS-422 Quad Line Driver with TRI-STATE Outputs 1-71
DS3587/DS3487 Quad TRI-STATE Line Driver. 1-75
DS1603/DS3603 TRI-STATE Dual Receivers .. . 1-78
DS1650/DS1652/DS3650/DS3652 Quad Differential Line Receivers 1-82
DS1691A/DS3691 RS-422/RS-423 Line Drivers with TRI-STATE Outputs 1 . 1 .90
DS1692/DS3692 TRI-STATE Differential Line Drivers . 1-97
DS16F95/DS36F95 RS-485/RS-422 Differential Bus Transceiver 1-102
DS3695/DS3695T/DS3696/DS3696T/DS3697/DS3698 Multipoint RS-485/RS-422
Transceivers/Repeaters ... 1-108
DS3695A/DS3695AT/DS3696A/DS3696AT Multipoint RS-485/RS-422 Transceivers. 1-117
DS36950 Quad Differential Bus Transceiver. 1-123
DS55107/DS55108/DS75107/DS75108/DS75208 Dual Line Receivers 1-132
DS55110A/ μ A55110A/DS75110A/ μ A75110A Dual Line Drivers 1-139
DS55113/DS75113 Dual TRI-STATE Differential Line Drivers . 1-144
DS55114/DS75114 Dual Differential Line Drivers . 1-151
DS55115/DS75115 Dual Differential Line Receivers . 1-156
DS55121/DS75121 Dual Line Drivers . 1-161
DS55122 Triple Line Receiver .
DS75123 Dual Line Driver . 1-166
DS75124 Triple Line Receiver . 1-168
DS75128/DS75129 Eight-Channel Line Receivers . 1-171
DS75150 Dual Line Driver 1 .175
DS75154 Quad Line Receiver . 1-179
DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers. 1-184
DS7820/DS8820 Dual Line Receivers. 1-189
DS7820A/DS8820A Dual Line Receivers . 1-193
DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receivers 1-198
DS7830/DS8830 Dual Differential Line Drivers . 1-202
DS7831/DS8831/DS7832/DS8832 Dual TRI-STATE Line Drivers 1-206
DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receivers 1-213

Table of Contents ${ }_{\text {(Conininues) }}$

Section 1 Transmission Line Drivers/Receivers (Continued)DS78LS120/DS88LS120 Dual Differential Line Receivers (Noise Filtering and Fail
Safe) 1-221
DS8921/DS8921T/DS8921A/DS8921AT Differential Line Drivers and Receiver Pair 1-228
DS8922/DS8922A/DS8923/DS8923A TRI-STATE RS-422 Dual Differential LineDriver and Receiver Pairs1-233
DS8924 Quad TRI-STATE Differential Line Driver 1-239
$\mu \mathrm{A} 9616 \mathrm{H} / \mathrm{DS} 9616 \mathrm{H}$ Triple Line Drivers 1-242
$\mu \mathrm{A} 9622 / \mathrm{DS} 9622$ Dual Line Receivers 1-246
$\mu A 9627 / D S 9627$ Dual Line Receivers 1-249
DS9636A/ μ A9636A RS-423 Dual Programmable Slew Rate Line Drivers 1-253
DS9637A/ μ A9637A Dual Differential Line Receivers 1-257
DS9638/ μ A9638 RS-422 Dual High Speed Differential Line Drivers 1-262
DS9639A/ μ A9639A Dual Differential Line Receivers 1-266
DS96F172/DS96F174 RS-485/RS-422 Quad Differential Drivers 1-270
DS96172/ μ A96172/DS96174/ μ A96174 RS-485/RS-422 Quad Differential Line Drivers 1-275
DS96F173/DS96F175 RS-485/RS-422 Quad Differential Receivers 1-280
DS96173/ μ A96173/DS96175/ μ A96175 RS-485/RS-422 Quad Differential Line
Receivers 1-285
DS96176/ μ A96176 RS-485/RS-422 Differential Bus Transceivers 1-290
DS96177/ μ A96177 RS-485/RS-422 Differential Bus Repeaters 1-297
MM78C29/MM88C29 Quad Single-Ended Line Drivers 1-304
MM78C30/MM88C30 Quad Differential Line Drivers 1-304
AN-22 Integrated Circuits for Digital Data Transmission 1-310
AN-108 Transmission Line Characteristics 1-324
AN-214 Transmission Line Drivers and Receivers for EIA Standards RS-422 and RS-423 $1-330$
AN-216 Summary of Electrical Characteristics of Some Well Known Digital Interface Standards 1-340
AN-409 Transceivers and Repeaters Meeting the EIA RS-485 Interface Standard 1-353
AN-438 Low Power RS-232C Driver and Receiver in CMOS 1-360
AN-457 High Speed, Low Skew RS-422 Drivers and Receivers Solve Critical System Timing Problems 1-364
AN-702 Build a Directional-Sensing Bidirectional Repeater 1-368
$\mu A 9614 / D S 9614$ Dual Differential Line Driver (See DS55114 Datasheet)
μ A9615/DS9615 Dual Differential Line Receiver (See DS55115 Datasheet)
DS55107A Dual Line Receiver (See DS55107 Datasheet)
Section 2 Bus Transceivers
Bus Transceivers Including Futurebus + - Introduction 2-3
Bus Transceivers-Selection Guide 2-4
Futurebus + Arbitration Controller 2-6
Futurebus + BTL 9-Bit Data Transceiver 2-7
Futurebus + Handshake Transceiver 2-8
Futurebus + Arbitration Transceiver 2-9
Futurebus + BTL 9-Bit Latching Transceiver 2-10
AN-671 IEEE 896 Futurebus + -A Solution to the Bus Driving Problem 2-11
DP8303A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-16
DP7304B/DP8304B 8-Bit TRI-STATE Bidirectional Transceivers (Non-Inverting) 2-21
DP8307A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-26
DP7308/DP8308 8-Bit TRI-STATE Bidirectional Transceivers (Non-Inverting) 2-30

Table of Contents ${ }_{\text {(coninines) }}$

Section 2 Bus Transceivers (Continued) DS26S10C/DS26S10M/DS26S11C/DS26S11M Quad Bus Transceivers 2-34
DS3662 Quad High Speed Trapezoidal Bus Transceiver $2-39$
AN-259 DS3662—The Bus Optimizer 2-43
AN-337 Reducing Noise on Microcomputer Buses 2-50
DS3667 TRI-STATE Bidirectional Transceiver $2-57$
DS3862 Octal High Speed Trapezoidal Bus Transceiver 2-62
DS3890 BTL Octal Trapezoidal Driver 2-68
DS3892 BTL Octal TRI-STATE Repeater 2-68
DS3898 BTL Octal Trapezoidal Repeater 2-68
DS3893A BTL Turbotransceiver 2-74
DS3896/DS3897 BTL Trapezoidal Transceivers 2-79
AN-514 Timing Analysis of Synchronous and Asynchronous Buses 2-86
DS75160A/DS75161A/DS75162A IEEE-488 GPIB Transceivers 2-93
DS7640/DS8640 Quad NOR Unified Bus Receivers 2-101
DS7641/DS8641 Quad Unified Bus Transceivers 2-103
DS7833/DS8833/DS7835/DS8835 Quad TRI-STATE Bus Transceivers 2-106
DS7834/DS8834/DS7839/DS8839 Quad TRI-STATE Bus Transceivers 2-110
DS7836/DS8836 Quad NOR Unified Bus Receiver 2-114
DS7837/DS8837 Hex United Bus Receivers 2-116
DS7838/DS8838 Quad Unified Bus Transceivers 2-119
Section 3 Peripheral Power Drivers
Peripheral Power Drivers-Introduction 3-3
Peripheral Power Drivers-Selection Guide 3-4
DP7310/DP8310/DP7311/DP8311 Octal Latched Peripheral Drivers 3-5
DS1631/DS3631/DS1632/DS3632/DS1633/DS3633/DS1634/DS3634 CMOS Dual Peripheral Drivers 3-12
DS3654 Printer Solenoid Driver 3-17
DS3656 Quad Peripheral Driver 3-21
DS3658 Quad High Current Peripheral Driver 3-23
DS3668 Quad Fault Protected Peripheral Driver 3-26
DS3669 Quad High Current Peripheral Driver 3-29
DS3680 Quad Negative Voltage Relay Driver 3-32
DS3686 Dual Positive Voltage Relay Driver 3-35
DS1687/DS3687 Negative Voltage Relay Drivers 3-38
DS55451/2/3/4, DS75450/1/2/3/4 Series Dual Peripheral Drivers 3-41
DS55461/2/3/4, DS75461/2/3/4 Series Dual Peripheral Drivers 3-57
DS2001/DS9665/DS2002/DS9666/DS2003/DS9667/DS2004/DS9668 High Current/Voltage Darlington Drivers 3-65
AN-213 Safe Operating Areas for Peripheral Drivers 3-70
Section 4 Display Drivers
Display Drivers-Introduction 4-3
Display Drivers-Selection Guide 4-4
DS75491 MOS-to-LED Quad Segment Driver 4-6
DS75492 MOS-to-LED Hex Digit Driver 4-6
DS55493/DS75493 Quad LED Segment Drivers 4-9
DS55494/DS75494 Hex Digit Drivers 4-12
DS8654 8-Output Display Driver (LED, VF, Thermal Printer) 4-14
DS8669 2-Digit BCD to 7-Segment Decoder/Driver 4-18
DS8863/DS8963 MOS-to-LED 8-Digit Drivers 4-21
DS8870 Hex LED Digit Driver 4-24

Table of Contents ${ }_{(\text {coninues) }}$

Section 4 Display Drivers (Continued) DS8874 9-Digit Shift Input LED Driver 4-26
DS7880/DS8880 High Voltage 7-Segment Decoder/Driver 4-28
DS8884A High Voltage Cathode Decoder/Driver 4-32
DS8973 9-Digit LED Driver 4-35
AN-84 Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Drivers 4-37
MM5450/MM5451 LED Display Drivers 4-40
MM5452/MM5453 Liquid Crystal Display Drivers 4-46
MM5480 LED Display Driver 4-53
MM5481 LED Display Driver 4-57
MM5483 Liquid Crystal Display Driver 4-61
MM5484 16-Segment LED Display Driver 4-64
MM5486 LED Display Driver 4-67
MM58201 Multiplexed LCD Driver 4-72
MM58241 High Voltage Display Driver 4-78
MM58242 High Voltage Display Driver 4-83
MM58248 High Voltage Display Driver 4-88
MM58341 High Voltage Display Driver 4-93
MM58342 High Voltage Display Driver 4-98
MM58348 High Voltage Display Driver 4-103
AN-350 Designing an LCD Dot Matrix Display Interface 4-108
AN-371 The MM58348/342/341/248/242/241 Directly Drive Vacuum Fluorescent (VF) Displays 4-127
AN-378 A Novel Process for Vacuum Fluorescent (VF) Display Drivers 4-138
AN-440 New CMOS Vacuum Fluorescent Drivers Enable Three Chip System to Provide Intelligent Control of Dot Matrix VF Display 4-144
Section 5 Memory Support
Memory Support-Introduction 5-3
Memory Support-Selection Guide 5-4
DP84240/DP84244 Octal TRI-STATE MOS Drivers 5-5
DS0025C Two Phase MOS Clock Driver 5-10
DS0026/DS0056 5 MHz Two Phase MOS Clock Drivers 5-14
DS3245 Quad MOS Clock Driver 5-22
DS1628/DS3628 Octal TRI-STATE MOS Drivers 5-25
DS3647A Quad TRI-STATE MOS Memory I/O Register 5-28
DS1648/DS3648/DS1678/DS3678 TRI-STATE TTL to MOS Multiplexers/Drivers 5-34
DS1649/DS3649/DS1679/DS3679 Hex TRI-STATE TTL to MOS Drivers 5-39
DS1651/DS3651 Quad High Speed MOS Sense Amplifiers 5-43
DS16149/DS36149/DS16179/DS36179 Hex MOS Drivers 5-49
DS55325/DS75325 Memory Drivers 5-53
DS75361 Dual TTL-to-MOS Driver 5-66
DS75365 Quad TTL-to-MOS Driver 5-71
AN-76 Applying Modern Clock Drivers to MOS Memories 5-76
Section 6 Microprocessor Support
Microprocessor Support-Introduction 6-3
Microprocessor Support-Selection Guide 6-4
DP8212/DP8212M 8-Bit Input/Output Ports 6-5
DP8216/DP8216M/DP8226/DP8226M 4-Bit Bidirectional Bus Transceivers 6-13
DP8224 Clock Generator and Driver 6-18
DP8228/DP8228M/DP8238/DP8238M System Controller and Bus Driver 6-24

Table of Contents ${ }_{\text {(coninineos) }}$

Section 7 Level Translators and Buffers
Level Translators and Buffers-Introduction 7-3
Level Translators and Buffers-Selection Guide 7-4
DP8480A 10k ECL-to-TTL Level Translator with Latch 7-5
DP8481 TTL-to-10k ECL Level Translator with Latch 7-8
DP8482A 100k ECL to TTL Level Translator with Latch 7-11
DP8483 TTL-to-100k ECL Level Translator with Latch 7-14
DS1630B/DS3630B Hex CMOS Compatible Buffers 7-17
DS7800/DS8800 Dual Voltage Level Translators 7-21
DS78L12/DS88L12 Hex TTL-MOS Inverter/Interface Gates 7-24
MM5034/MM5035 Octal 80-Bit Static Shift Registers 7-27
Section 8 Frequency Synthesis
Frequency Synthesis-Introduction 8-3
Frequency Synthesis-Selection Guide 8-5
DS8614/DS8615/DS8616/DS8617 130/. $n_{1} 5 \mathrm{MHz}$ Low Power Dual Modulus Prescalers 8-6
DS8627/DS8628 130/225 MHz Low Power Prescalers 8-10
DS8673/DS8674 Low Power VHF/UHF Prescalers 8-13
DS8906 AM/FM Digital Phase-Locked Loop Synthesizer 8-16
DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-23
DS8908B AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-29
DS8911/DS8913 AM/FM/TV Sound Up-Conversion Frequency Synthesizers 8-37
MM5368 CMOS Oscillator Divider Circuit $8-46$
MM5369 Series 17 Stage Oscillator/Divider 8-49
MM5437 Digital Noise Source 8-52
MM54240 Asynchronous Receiver/Transmitter Remote Controller 8-55
AN-335 Digital PLL Synthesis 8-63
AN-512 DS8911 AM/FM/TV Sound Up-Conversion Frequency Synthesizer 8-70
Section 9 Hi-Rel Interface
Interface Military Products-Selection Guide 9-3
Hi-Rel Interface 9-6
National's A + Program 9-16
Section 10 Appendices and Physical Dimensions Technical Terms and Definitions 10-3
Industry Package Cross Reference Guide 10-5
Packaging and Physical Dimensions
AN-336 Understanding Integrated Circuit Package Power Capabilities 10-8
AN-450 Small Outline (S.O.) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 10-13
Physical Dimensions 10-23
Data BookshelfSales and Distribution Offices

Alpha-Numeric Index

AN-22 Integrated Circuits for Digital Data Transmission 1-310
AN-76 Applying Modern Clock Drivers to MOS Memories 5-76
AN-84 Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Drivers 4-37
AN-108 Transmission Line Characteristics 1-324
AN-213 Safe Operating Areas for Peripheral Drivers 3-70
AN-214 Transmission Line Drivers and Receivers for EIA Standards RS-422 and RS-423 1-330
AN-216 Summary of Electrical Characteristics of Some Well Known Digital Interface Standards 1-340
AN-259 DS3662-The Bus Optimizer 2-43
AN-335 Digital PLL Synthesis 8-63
AN-336 Understanding Integrated Circuit Package Power Capabilities 10-8
AN-337 Reducing Noise on Microcomputer Buses 2-50
AN-350 Designing an LCD Dot Matrix Display Interface 4-108
AN-371 The MM58348/342/341/248/242/241 Directly Drive Vacuum Fluorescent (VF) Displays 4-127
AN-378 A Novel Process for Vacuum Fluorescent (VF) Display Drivers 4-138
AN-409 Transceivers and Repeaters Meeting the EIA RS-485 Interface Standard 1-353
AN-438 Low Power RS-232C Driver and Receiver in CMOS 1-360
AN-440 New CMOS Vacuum Fluorescent Drivers Enable Three Chip System to Provide Intelligent Control of Dot Matrix VF Display 4-144
AN-450 Small Outline (S.O.) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 10-13
AN-457 High Speed, Low Skew RS-422 Drivers and Receivers Solve Critical System Timing Problems 1-364
AN-512 DS8911 AM/FM/TV Sound Up-Conversion Frequency Synthesizer 8-70
AN-514 Timing Analysis of Synchronous and Asynchronous Buses 2-86
AN-671 IEEE 896 Futurebus + -A Solution to the Bus Driving Problem 2-11
AN-702 Build a Directional-Sensing Bidirectional Repeater 1-368
DP7304B 8-Bit TRI-STATE Bidirectional Transceiver (Non-Inverting) 2-21
DP7308 8-Bit TRI-STATE Bidirectional Transceiver (Non-Inverting) 2-30
DP7310 Octal Latched Peripheral Driver 3-5
DP7311 Octal Latched Peripheral Driver 3-5
DP8212 8-Bit Input/Output Port 6-5
DP8212M 8-Bit Input/Output Port 6-5
DP8216 4-Bit Bidirectional Bus Transceiver 6-13
DP8216M 4-Bit Bidirectional Bus Transceiver 6-13
DP8224 Clock Generator and Driver 6-18
DP8226 4-Bit Bidirectional Bus Transceiver 6-13
DP8226M 4-Bit Bidirectional Bus Transceiver 6-13
DP8228 System Controller and Bus Driver 6-24
DP8228M System Controller and Bus Driver 6-24
DP8238 System Controller and Bus Driver 6-24
DP8238M System Controller and Bus Driver 6-24
DP8303A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-16
DP8304B 8-Bit TRI-STATE Bidirectional Transceiver (Non-Inverting) 2-21
DP8307A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-26
DP8308 8-Bit TRI-STATE Bidirectional Transceiver (Non-Inverting) 2-30
DP8310 Octal Latched Peripheral Driver 3-5
DP8311 Octal Latched Peripheral Driver 3-5
DP8480A 10k ECL-to-TTL Level Translator with Latch 7-5
DP8481 TTL-to-10k ECL Level Translator with Latch 7-8
DP8482A 100k ECL to TTL Level Translator with Latch 7-11
DP8483 TTL-to-100k ECL Level Translator with Latch 7-14

Alpha-Numeric Index ${ }_{\text {(Contiviced }}$

DP84240 Octal TRI-STATE MOS Driver 5-5
DP84244 Octal TRI-STATE MOS Driver 5-5
DS0025C Two Phase MOS Clock Driver 5-10
DS0026 5 MHz Two Phase MOS Clock Driver 5-14
DS0056 5 MHz Two Phase MOS Clock Driver 5-14
DS1488 Quad Line Driver 1-13
DS14C88 Quad CMOS Line Driver/Receiver 1-17
DS1489 Quad Line Receiver 1-23
DS1489A Quad Line Receiver 1-23
DS14C89A Quad CMOS Line Driver/Receiver 1-17
DS1603 TRI-STATE Dual Receiver 1-78
DS1628 Octal TRI-STATE MOS Driver 5-25
DS1630B Hex CMOS Compatible Buffer 7-17
DS1631 CMOS Dual Peripheral Driver 3-12
DS1632 CMOS Dual Peripheral Driver 3-12
DS1633 CMOS Dual Peripheral Driver 3-12
DS1634 CMOS Dual Peripheral Driver 3-12
DS1648 TRI-STATE TTL to MOS Multiplexer/Driver 5-34
DS1649 Hex TRI-STATE TTL to MOS Driver 5-39
DS1650 Quad Differential Line Receiver 1-82
DS1651 Quad High Speed MOS Sense Amplifier 5-43
DS1652 Quad Differential Line Receiver 1-82
DS1678 TRI-STATE TTL to MOS Multiplexer/Driver 5-34
DS1679 Hex TRI-STATE TTL to MOS Driver 5-39
DS1687 Negative Voltage Relay Driver 3-38
DS1691A RS-422/RS-423 Line Driver with TRI-STATE Outputs 1-90
DS1692 TRI-STATE Differential Line Driver 1-97
DS16F95 RS-485/RS-422 Differential Bus Transceiver 1-102
DS2001 High Current/Voltage Darlington Driver 3-65
DS2002 High Current/Voltage Darlington Driver 3-65
DS2003 High Current/Voltage Darlington Driver 3-65
DS2004 High Current/Voltage Darlington Driver 3-65
DS26C31C CMOS Quad TRI-STATE Differential Line Driver 1-27
DS26C32AC CMOS Quad Differential Line Receiver 1-40
DS26C32AM CMOS Quad Differential Line Receiver $1-40$
DS26F31C Quad High Speed Differential Line Driver 1-34
DS26F31M Quad High Speed Differential Line Driver 1-34
DS26F32C Quad Differential Line Receiver 1-46
DS26F32M Quad Differential Line Receiver 1-46
DS26LS31C Quad High Speed Differential Line Driver 1-37
DS26LS31M Quad High Speed Differential Line Driver 1-37
DS26LS32AC Quad Differential Line Receiver 1-50
DS26LS32C Quad Differential Line Receiver 1-50
DS26LS32M Quad Differential Line Receiver 1-50
DS26LS33AC Quad Differential Line Receiver 1-50
DS26LS33C Quad Differential Line Receiver 1-50
DS26LS33M Quad Differential Line Receiver 1-50
DS26S10C Quad Bus Transceiver 2-34
DS26S10M Quad Bus Transceiver 2-34
DS26S11C Quad Bus Transceiver 2-34
DS26S11M Quad Bus Transceiver 2-34

Alpha-Numeric Index ${ }_{\text {(Coniniues) }}$

DS3245 Quad MOS Clock Driver 5-22
DS3486 Quad RS-422/RS-423 Line Receiver 1-62
DS34C86 Quad CMOS Differential Line Receiver 1.53
DS3487 Quad TRI-STATE Line Driver $1-75$
DS34C87 CMOS Quad TRI-STATE Differential Line Driver 1-66
DS34F86 RS-422/RS-423 Quad Line Receiver with TRI-STATE Outputs 1-58
DS34F87 RS-422 Quad Line Driver with TRI-STATE Outputs $1-71$
DS35F86 RS-422/RS-423 Quad Line Receiver with TRI-STATE Outputs $1-58$
DS3587 Quad TRI-STATE Line Driver 1-75
DS35F87 RS-422 Quad Line Driver with TRI-STATE Outputs 1-71
DS3603 TRI-STATE Dual Receiver $1-78$
DS3628 Octal TRI-STATE MOS Driver 5-25
DS3630B Hex CMOS Compatible Buffer 7-17
DS3631 CMOS Dual Peripheral Driver 3-12
DS3632 CMOS Dual Peripheral Driver 3-12
DS3633 CMOS Dual Peripheral Driver 3-12
DS3634 CMOS Dual Peripheral Driver 3-12
DS3647A Quad TRI-STATE MOS Memory I/O Register 5-28
DS3648 TRI-STATE TTL to MOS Multiplexer/Driver 5-34
DS3649 Hex TRI-STATE TTL to MOS Driver 5-39
DS3650 Quad Differential Line Receiver 1-82
DS3651 Quad High Speed MOS Sense Amplifier 5-43
DS3652 Quad Differential Line Receiver 1-82
DS3654 Printer Solenoid Driver 3-17
DS3656 Quad Peripheral Driver 3-21
DS3658 Quad High Current Peripheral Driver 3-23
DS3662 Quad High Speed Trapezoidal Bus Transceiver 2-39
DS3667 TRI-STATE Bidirectional Transceiver 2-57
DS3668 Quad Fault Protected Peripheral Driver 3-26
DS3669 Quad High Current Peripheral Driver 3-29
DS3678 TRI-STATE TTL to MOS Multiplexer/Driver 5-34
DS3679 Hex TRI-STATE TTL to MOS Driver 5-39
DS3680 Quad Negative Voltage Relay Driver 3-32
DS3686 Dual Positive Voltage Relay Driver 3-35
DS3687 Negative Voltage Relay Driver 3-38
DS3691 RS-422/RS-423 Line Driver with TRI-STATE Outputs $1-90$
DS3692 TRI-STATE Differential Line Driver 1-97
DS3695 Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS3695A Multipoint RS-485/RS-422 Transceiver 1-117
DS3695AT Multipoint RS-485/RS-422 Transceiver 1-117
DS3695T Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS36F95 RS-485/RS-422 Differential Bus Transceiver 1-102
DS3696 Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS3696A Multipoint RS-485/RS-422 Transceiver 1-117
DS3696AT Multipoint RS-485/RS-422 Transceiver 1-117
DS3696T Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS3697 Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS3698 Multipoint RS-485/RS-422 Transceiver/Repeater 1-108
DS3862 Octal High Speed Trapezoidal Bus Transceiver 2-62
DS3890 BTL Octal Trapezoidal Driver 2-68
DS3892 BTL Octal TRI-STATE Repeater 2-68
Alpha-Numeric Index (coninued)
DS3893A BTL Turbotransceiver 2-74
DS3896 BTL Trapezoidal Transceiver 2-79
DS3897 BTL Trapezoidal Transceiver 2-79
DS3898 BTL Octal Trapezoidal Repeater 2-68
DS7640 Quad NOR Unified Bus Receiver 2-101
DS7641 Quad Unified Bus Transceiver 2-103
DS7800 Dual Voltage Level Translator 7-21
DS78L12 Hex TTL-MOS Inverter/Interface Gate 7-24
DS7820 Dual Line Receiver 1-189
DS7820A Dual Line Receiver 1-193
DS78C20 Dual CMOS Compatible Differential Line Receiver 1-198
MM78C29 Quad Single-Ended Line Driver 1-304
DS7830 Dual Differential Line Driver 1-202
MM78C30 Quad Differential Line Driver 1-304
DS7831 Dual TRI-STATE Line Driver 1-206
DS7832 Dual TRI-STATE Line Driver 1-206
DS7833 Quad TRI-STATE Bus Transceiver 2-106
DS7834 Quad TRI-STATE Bus Transceiver 2-110
DS7835 Quad TRI-STATE Bus Transceiver 2-106
DS7836 Quad NOR Unified Bus Receiver 2-114
DS7837 Hex United Bus Receiver 2-116
DS7838 Quad Unified Bus Transceiver 2-119
DS7839 Quad TRI-STATE Bus Transceiver 2-110
DS7880 High Voltage 7-Segment Decoder/Driver 4-28
DS78C120 Dual CMOS Compatible Differential Line Receiver 1-213
DS78LS120 Dual Differential Line Receiver (Noise Filtering and Fail Safe) 1-221
DS8614 130/225 MHz Low Power Dual Modulus Prescaler 8-6
DS8615 130/225 MHz Low Power Dual Modulus Prescaler 8-6
DS8616 130/225 MHz Low Power Dual Modulus Prescaler 8-6
DS8617 130/225 MHz Low Power Dual Modulus Prescaler 8-6
DS8627 130/225 MHz Low Power Prescaler 8-10
DS8628 130/225 MHz Low Power Prescaler 8-10
DS8640 Quad NOR Unified Bus Receiver 2-101
DS8641 Quad Unified Bus Transceiver 2-103
DS8654 8-Output Display Driver (LED, VF, Thermal Printer) 4-14
DS8669 2-Digit BCD to 7-Segment Decoder/Driver 4-18
DS8673 Low Power VHF/UHF Prescaler 8-13
DS8674 Low Power VHF/UHF Prescaler 8-13
DS8800 Dual Voltage Level Translator 7-21
DS88L12 Hex TTL-MOS Inverter/Interface Gate 7-24
DS8820 Dual Line Receiver 1-189
DS8820A Dual Line Receiver 1-193
DS88C20 Dual CMOS Compatible Differential Line Receiver 1-198
MM88C29 Quad Single-Ended Line Driver 1-304
DS8830 Dual Differential Line Driver 1-202
MM88C30 Quad Differential Line Driver 1-304
DS8831 Dual TRI-STATE Line Driver 1-206
DS8832 Dual TRI-STATE Line Driver 1-206
DS8833 Quad TRI-STATE Bus Transceiver 2-106
DS8834 Quad TRI-STATE Bus Transceiver 2-110
DS8835 Quad TRI-STATE Bus Transceiver 2-106

Alpha-Numeric Index ${ }_{\text {(Coniniuese) }}$

DS8836 Quad NOR Unified Bus Receiver 2-114
DS8837 Hex United Bus Receiver 2-116
DS8838 Quad Unified Bus Transceiver 2-119
DS8839 Quad TRI-STATE Bus Transceiver 2-110
DS8863 MOS-to-LED 8-Digit Driver 4-21
DS8870 Hex LED Digit Driver 4-24
DS8874 9-Digit Shift Input LED Driver 4-26
DS8880 High Voltage 7-Segment Decoder/Driver 4-28
DS8884A High Voltage Cathode Decoder/Driver 4-32
DS88C120 Dual CMOS Compatible Differential Line Receiver 1-213
DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail Safe) 1-221
DS8906 AM/FM Digital Phase-Locked Loop Synthesizer 8-16
DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-23
DS8908B AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-29
DS8911 AM/FM/TV Sound Up-Conversion Frequency Synthesizer 8-37
DS8913 AM/FM/TV Sound Up-Conversion Frequency Synthesizer 8-37
DS8921 Differential Line Driver and Receiver Pair 1-228
DS8921A Differential Line Driver and Receiver Pair 1-228
DS8921AT Differential Line Driver and Receiver Pair 1-228
DS8921T Differential Line Driver and Receiver Pair 1-228
DS8922 TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pair 1-233
DS8922A TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pair 1-233
DS8923 TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pair 1-233
DS8923A TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pair 1-233
DS8924 Quad TRI-STATE Differential Line Driver 1-239
DS8963 MOS-to-LED 8-Digit Driver 4-21
DS8973 9-Digit LED Driver 4-35
DS9614 Dual Differential Line Driver (See DS55114 Datasheet) 1-151
DS9615 Dual Differential Line Receiver (See DS55115 Datasheet) 1-156
DS9616H Triple Line Driver 1-242
DS9622 Dual Line Receiver 1-246
DS9627 Dual Line Receiver 1-249
DS9636A RS-423 Dual Programmable Slew Rate Line Driver 1-253
DS9637A Dual Differential Line Receiver 1-257
DS9638 RS-422 Dual High Speed Differential Line Driver 1-262
DS9639A Dual Differential Line Receiver 1-266
DS9665 High Current/Voltage Darlington Driver 3-65
DS9666 High Current/Voltage Darlington Driver 3-65
DS9667 High Current/Voltage Darlington Driver 3-65
DS9668 High Current/Voltage Darlington Driver 3-65
DS16149 Hex MOS Driver 5-49
DS16179 Hex MOS Driver 5-49
DS36149 Hex MOS Driver 5-49
DS36179 Hex MOS Driver 5-49
DS36950 Quad Differential Bus Transceiver 1-123
DS55107 Dual Line Receiver 1-132
DS55107A Dual Line Receiver (See DS55107 Datasheet) 1-132
DS55108 Dual Line Receiver 1-132
DS55110A Dual Line Driver 1-139
DS55113 Dual TRI-STATE Differential Line Driver 1-144
DS55114 Dual Differential Line Driver 1-151
Alpha-Numeric Index ${ }_{\text {(Coninuoue) }}$
DS55115 Dual Differential Line Receiver 1-156
DS55121 Dual Line Driver 1-161
DS55122 Triple Line Receiver 1-163
DS55325 Memory Driver 5-53
DS55451 Series Dual Peripheral Driver 3-41
DS55452 Series Dual Peripheral Driver 3-41
DS55453 Series Dual Peripheral Driver 3-41
DS55454 Series Dual Peripheral Driver 3-41
DS55461 Series Dual Peripheral Driver 3-57
DS55462 Series Dual Peripheral Driver 3-57
DS55463 Series Dual Peripheral Driver 3-57
DS55464 Series Dual Peripheral Driver 3-57
DS55493 Quad LED Segment Driver 4-9
DS55494 Hex Digit Driver 4-12
DS75107 Dual Line Receiver 1-132
DS75108 Dual Line Receiver 1-132
DS75110A Dual Line Driver 1-139
DS75113 Dual TRI-STATE Differential Line Driver 1-144
DS75114 Dual Differential Line Driver 1-151
DS75115 Dual Differential Line Receiver 1-156
DS75121 Dual Line Driver 1-161
DS75123 Dual Line Driver 1-166
DS75124 Triple Line Receiver 1-168
DS75128 Eight-Channel Line Receiver 1-171
DS75129 Eight-Channel Line Receiver 1-171
DS75150 Dual Line Driver 1-175
DS75154 Quad Line Receiver 1-179
DS75160A IEEE-488 GPIB Transceiver 2-93
DS75161A IEEE-488 GPIB Transceiver 2-93
DS75162A IEEE-488 GPIB Transceiver 2-93
DS75176B Multipoint RS-485/RS-422 Transceiver 1-184
DS75176BT Multipoint RS-485/RS-422 Transceiver 1-184
DS75208 Dual Line Receiver 1-132
DS75325 Memory Driver 5-53
DS75361 Dual TTL-to-MOS Driver 5-66
DS75365 Quad TTL-to-MOS Driver 5-71
DS75450 Series Dual Peripheral Driver 3-41
DS75451 Series Dual Peripheral Driver 3-41
DS75452 Series Dual Peripheral Driver 3-41
DS75453 Series Dual Peripheral Driver 3-41
DS75454 Series Dual Peripheral Driver 3-41
DS75461 Series Dual Peripheral Driver 3-57
DS75462 Series Dual Peripheral Driver 3-57
DS75463 Series Dual Peripheral Driver 3-57
DS75464 Series Dual Peripheral Driver 3-57
DS75491 MOS-to-LED Quad Segment Driver 4-6
DS75492 MOS-to-LED Hex Digit Driver 4-6
DS75493 Quad LED Segment Driver 4-9
DS75494 Hex Digit Driver 4-12
DS96172 RS-485/RS-422 Quad Differential Line Driver 1-275
DS96F172 RS-485/RS-422 Quad Differential Driver 1-270

Alpha-Numeric Index ${ }_{\text {(Conitinued) }}$

DS96173 RS-485/RS-422 Quad Differential Line Receiver 1-285
DS96F173 RS-485/RS-422 Quad Differential Receiver 1-280
DS96174 RS-485/RS-422 Quad Differential Line Driver 1-275
DS96F174 RS-485/RS-422 Quad Differential Driver 1-270
DS96175 RS-485/RS-422 Quad Differential Line Receiver 1-285
DS96F175 RS-485/RS-422 Quad Differential Receiver 1-280
DS96176 RS-485/RS-422 Differential Bus Transceiver 1-290
DS96177 RS-485/RS-422 Differential Bus Repeater 1-297
Futurebus + Arbitration Controller 2-6
Futurebus + Arbitration Transceiver 2-9
Futurebus + BTL 9-Bit Data Transceiver 2-7
Futurebus + BTL 9-Bit Latching Transceiver 2-10
Futurebus + Handshake Transceiver 2-8
MM5034 Octal 80-Bit Static Shift Register 7-27
MM5035 Octal 80-Bit Static Shift Register 7-27
MM5368 CMOS Oscillator Divider Circuit 8-46
MM5369 Series 17 Stage Oscillator/Divider 8-49
MM5437 Digital Noise Source 8-52
MM5450 LED Display Driver 4-40
MM5451 LED Display Driver 4-40
MM5452 Liquid Crystal Display Driver 4-46
MM5453 Liquid Crystal Display Driver 4-46
MM5480 LED Display Driver 4-53
MM5481 LED Display Driver 4-57
MM5483 Liquid Crystal Display Driver 4-61
MM5484 16-Segment LED Display Driver 4-64
MM5486 LED Display Driver 4-67
MM54240 Asynchronous Receiver/Transmitter Remote Controller 8-55
MM58201 Multiplexed LCD Driver 4-72
MM58241 High Voltage Display Driver 4-78
MM58242 High Voltage Display Driver 4-83
MM58248 High Voltage Display Driver 4-88
MM58341 High Voltage Display Driver 4-93
MM58342 High Voltage Display Driver 4-98
MM58348 High Voltage Display Driver 4-103
μ A9614 Dual Differential Line Driver (See DS55114 Datasheet) 1-151
μ A9615 Dual Differential Line Receiver (See DS55115 Datasheet) 1-156
$\mu \mathrm{A} 9616 \mathrm{H}$ Triple Line Driver 1-242
$\mu A 9622$ Dual Line Receiver 1-246
μ A9627 Dual Line Receiver 1-249
μ A9636A RS-423 Dual Programmable Slew Rate Line Driver 1-253
$\mu A 9637 A$ Dual Differential Line Receiver 1-257
μ A9638 RS-422 Dual High Speed Differential Line Driver 1-262
$\mu A 9639 A$ Dual Differential Line Receiver 1-266
$\mu A 55110$ A Dual Line Driver 1-139
μ A75110A Dual Line Driver 1-139
μ A96172 RS-485/RS-422 Quad Differential Line Driver 1-275
$\mu A 96173$ RS-485/RS-422 Quad Differential Line Receiver 1-285
μ A96174 RS-485/RS-422 Quad Differential Line Driver 1-275
μ A96175 RS-485/RS-422 Quad Differential Line Receiver 1-285
μ A96176 RS-485/RS-422 Differential Bus Transceiver 1-290
μ A96177 RS-485/RS-422 Differential Bus Repeater 1-297

Additional Information on
 Peripheral Products

29F68 Dynamic RAM Controller DRAM Management54F420 Parallel Check Bit/Syndrome Bit Generator .DRAM Management54F632 32-Bit Parallel Error Detection and Correction Circuit . DRAM Management54F968 1 Mbit Dynamic RAM Controller DRAM Management74F420 Parallel Check Bit/Syndrome Bit Generator .DRAM Management74F632 32-Bit Parallel Error Detection and Correction Circuit . DRAM Management74F968 1 Mbit Dynamic RAM Controller . DRAM ManagementAB-1 DP8408A/DP8409A/DP8417/DP8418/DP8419/DP8428/DP8429
Application Hints DRAM Management
AB-9 DP8408A/DP8409A Fastest DRAM Access Mode DRAM Management
AB-36 Explanation of National Semiconductor "PLAN" Software for Programming PALs DRAM Management
AB-43 Typical DP8570A Interface to the IBM PC/XT for the Purpose ofEngineering EvaluationReal Time Clock
AN-305 Precautions to Take When Driving Memories DRAM Management
AN-306 Expanding the Versatility of the DP8400 DRAM Management
AN-308 DP8400s in 64-Bit Expansion DRAM Management
AN-309 Interfacing the DP8408A/DP8409A to Various Microprocessors DRAM Management
AN-353 MM58167A Real Time Clock Design Guide Real Time Clock
AN-365 The MM58274C Adds Reliable Real-Time Keeping to Any MicroprocessorSystemReal Time Clock
AN-387 DP8400/DP8419 Error Correcting Dynamic RAM Memory System for the Series 32000 DRAM Management
AN-411 Determining the Speed of the Dynamic RAM Needed When Interfacing the DP8419-80 to Most Major Microprocessors DRAM Management
AN-436 Dual Port Interface for the DP8417/DP8418/DP8419/DP8428/DP8429DRAM ControllerDRAM Management
AN-535 A Dual Access DP8422A/68030/74F632 Error Detecting and CorrectingMemory SystemDRAM Management
AN-536 Interfacing the DP8420A/DP8421A/DP8422A to the 80386 DRAM Management
AN-537 Interfacing the DP8420A/DP8421A/DP8422A to the 68030
Microprocessor DRAM Management
AN-538 Interfacing the DP8420A/DP8421A/DP8422A to the 68000/008/010 DRAM Management
AN-539 interfacing the DP8420A/DP8421A/DP8422A to the 68020 DRAM Management
AN-540 A Dual Access NS32532 Error Detecting and Correcting Memory System DRAM Management
AN-541 Interfacing the DP8420A/DP8421A/DP8422A to the NS32532 DRAM Management
AN-542 Interfacing the DP8420A/DP8421A/DP8422A to theNS32008/NS32016/NS32C016/NS32032 and NS32132DRAM Management
AN-543 Interfacing the DP8420A/DP8421A/DP8422A to the NS32332 DRAM Management
AN-544 Interfacing the DP8420A/DP8421A/DP8422A to the 8086/186/88/188
Microprocessor DRAM Management
AN-545 Interfacing the DP8420A/DP8421A/DP8422A to the 80286 DRAM Management
AN-546 Interfacing the DP8420A/DP8421A/DP8422A to the Z280/Z80000/Z8000
Microprocessor DRAM Management
AN-576 Interfacing the NS32CG821 to the NS32CG16 DRAM Management
AN-588 Calibration of the DP8570A Family Real Time Clock
AN-589 DP8570A Timer Clock Peripheral Test Mode and Test Considerations Real Time Clock
AN-595 Flexible Timers on the DP8570A and DP8571A Real Time Clock
AN-602 Interfacing the DP8420A/DP8421A/DP8422A to the 29000 Utilizing theBurst Mode AccessDRAM Management

Additional Information on Peripheral Products (Conimeod)

AN-615 Interfacing the DP8422A to the 68000-16 (Zero Wait State Burst ModeAccess)DRAM Management
AN-616 Interfacing the DP8422A to the 68020 (Zero Wait State Burst Mode Access) .DRAM Management
AN-617 Interfacing the DP8422A to an Asynchronous Port B in a Dual 68020SystemDRAM Management
AN-618 Interfacing the DP8420A/DP8421A/DP8422A to the 80286 Above 25 MHz , Including No Wait States in Burst Mode DRAM Management
AN-619 Interfacing the DP8420A/DP8421A/DP8422A to the 80386
(Zero Wait State Burst Mode Access) .DRAM Management
AN-642 Interfacing the Dual Port DP8422A to the TMS320C30 and the VME Bus DRAM Management
DP8400-2 E2C2 Expandable Error Checker/Corrector DRAM Management
DP8402A 32-Bit Parallel Error Detection and Correction Circuits (EDAC's) DRAM Management
DP8403 32-Bit Parallel Error Detection and Correction Circuits (EDAC's) DRAM Management
DP8404 32-Bit Parallel Error Detection and Correction Circuits (EDAC's) DRAM Management
DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDAC's) DRAM Management
DP8408A Dynamic RAM Controller/Driver DRAM Management
DP8409A Multi-Mode Dynamic RAM Controller/Driver DRAM Management
DP8417 64k Dynamic RAM Controller/Driver DRAM Management
DP8418 64k Dynamic RAM Controller/Driver DRAM Management
DP8419 256k Dynamic RAM Controller/Driver DRAM Management
DP8419X 256k Dynamic RAM Controller/Driver DRAM Management
DP8420A microCMOS Programmable 256k Dynamic RAM Controller/Driver DRAM Management
DP8421A microCMOS Programmable 1M Dynamic RAM Controller/Driver DRAM Management
DP8422A microCMOS Programmable 4M Dynamic RAM Controller/Driver DRAM Management
DP8428 1 Megabit High Speed Dynamic RAM Controller/Driver DRAM Management
DP8429 1 Megabit High Speed Dynamic RAM Controller/Driver DRAM Management
DP8520A microCMOS Programmable 256k Video RAM Controller/Driver(see Graphics Databook)DRAM Management
DP8521A microCMOS Programmable 1M Video RAM Controller/Driver (see Graphics Databook) DRAM Management
DP8522A microCMOS Programmable 4M Video RAM Controller/Driver(see Graphics Databook)DRAM Management
DP8570A Timer Clock Peripheral (TCP) .Real Time Clock
DP8571A Timer Clock Peripheral (TCP) Real Time Clock
DP8572A Real Time Clock (RTC) Real Time Clock
DP8573A Real Time Clock (RTC) Real Time Clock
DP84300 Programmable Refresh Timer DRAM Management
DP84322 Dynamic RAM Controller Interface Circuit for the 68000 CPU DRAM Management
DP84412 Dynamic RAM Controller Interface Series Circuit for the Series 32000CPUDRAM Management
DP84422 Dynamic RAM Controller Interface Circuit for the 68000/008/010 CPUs DRAM Management
DP84432 Dynamic RAM Controller Interface Circuit for the
8086/8088/80186/80188 CPUs DRAM Management
DP84512 Dynamic RAM Controller Interface Circuit for the NS32332 DRAM Management
DP84522 Dynamic RAM Controller Interface Circuit for the 68020 CPU DRAM Management
DP84532 Dynamic RAM Controller Interface Circuit for the IAPX 286 CPU DRAM Management
MM58167A Microprocessor Real Time Clock Real Time Clock
MM58274C Microprocessor Compatible Real Time Clock Real Time Clock
NS32CG821 microCMOS Programmable 1M Dynamic RAM Controller/Driver DRAM Management

Additional Information on Peripheral Products (coninuea)

NS32817 64k Dynamic RAM Controller/Driver DRAM Management NS32818 64k Dynamic RAM Controller/Driver . DRAM Management NS32819 256k Dynamic RAM Controller/Driver . DRAM Management NS32819X 256k Dynamic RAM Controller/Driver . DRAM Management NS32828 1 Megabit High Speed Dynamic RAM Controller/Driver DRAM Management NS32829 1 Megabit High Speed Dynamic RAM Controller/Driver DRAM Management

Interface Cross Reference Guide

AMD to National's Interface	
AMD TO NATIONAL	
AM26LS30	
AM26LS31	DS3691
AM26LS32	DS26LS31
AM26LS33	DS26LS32A
AM26S10	DS26LS33A
AM26S11	DS26S10
AM26S12	DS26S11
AM2965	"DS8838
AM2966	"DP84240
AM8224	"DP84244
AM8228	DP8224
AM8238	DP8228
DP8303	DP8238
DP8304B	DP8303A
DP8307	DP8304B
DP8308	DP8307
DS8838	DP8308
N8T26A	DS8838
P8212	DS8T26
P8216	DP8212
P8226	DP8216

[^0]
Motorola to National's Interface

MOTOROLA TO NATIONAL	
AM26LS31	DS26LS31
DS8641	DS8641
MC12015	DS8615
MC12016	DS8616
MC12017	DS8617
MC1411	*DS2001
MC1411	*DS9665
MC1412	*DS2002
MC1412	*DS9666
MC1413	*DS2003
MC1413	*DS9667.
MC1416	*DS2004
MC1416	*DS9668
MC1488	DS1488
MC1489	DS1489A
MC3430	*DS3650
MC3431	*DS3651
MC3432	DS3652
MC3433	*DS3653
MC3437	DS8837
MC3438	DS8838
MC3450	DS3650
MC3452	DS3652
MC3486	DS3486
MC3487	DS3487
MC3488A	*DS9636A
MC6880A	DS8T26A
MC75107	DS75107
MC75108	DS75108
MC75129	DS75129
MC8T13	DS75121
MC8T23	DS75123
MC8T24	DS75124
MC8T26A	DS8834
MC8T26A	DS8T26A
SN75172	DS96172
SN75173	DS96173
SN75174	DS96174
SN75175	DS96175

[^1]Signetics to National's Interface

SIGNETICS TO NATIONAL	
$75 S 107$	"DS75107
$75 S 108$	"DS75108
$75 S 208$	DS75208
DS8820	DS8820
DS8820A	DS8820A
DS8830	DS8830
DS8880	DS8880
MC1488	DS1488
MC1489	DS1489
MC1489A	DS1489A
N8T13	DS75121
N8T15	DS75150
N8T23	DS75123
N8T24	DS75124
N8T26	DS8T26A
N8T34	DS8834
N8T37	DS8837
N8T38	DS8838
N8T380	DS8640
N8T380	DS8836
NE5601	"DS2001
NE5601	"DS9665
NE5602	"DS2002
NE5602	"DS9666
NE5603	"DS2003
NE5603	"DS9667
NE5604	"DS9664
NE5604	DS2001
ULN2001	DS9665
ULN2001	DS9667
ULN2003	DS2004
ULN2003	DS2003
ULN2003	DS9668
ULN2004	

* = National's Closest Replacement
$+=$ Improved Performance

Sprague to National's Interface

SPRAGUE TO NATIONAL	
UDN3611	"DS3631
UDN3612	"DS3632
UDN3613	"DS3633
UDN3614	"DS3634
ULN20011	DS2001
ULN2001	DS9665
ULN2002	DS2002
ULN2002	DS9666
ULN2003	DS9667
ULN2003	DS2003
ULN2004	DS2004
ULN2004	DS9668

- = National's Closest Replacement
$+=$ Improved Performance

Texas Instruments to National's Interface

TEXAS INSTRUMENTS TO NATIONAL	
AM26LS31	DS26LS31
AM26LS32A	DS26LS32A
AM26LS33A	DS26LS33A
AM26S10	DS26S10
AM26S11	DS26S11
DS3680	DS3680
DS8820A	DS8820A
DS8830	DS8830
DS8831	DS8831
DS8832	DS8832
MC1488	DS1488
MC1489	DS1489
MC1489A	DS1489A
MC3486	DS3486
MC3487	DS3487
N8T13	DS75121
N8T23	DS75123
N8T24	DS75124
N8T26	DS8T26A
SN75107A	"UA75107A
SN75107A	DS75107A
SN75107B	DS75107
SN75108A	DS75108
SN75108B	DS75108
SN75110A	UA75110A
SN75110A	DS75110A
SN75113	DS75113
SN75114	DS75114
SN75115	DS75115
SN75121	DS75121
SN75123	DS75123
SN75124	DS75124
SN75128	DS75128
SN75129	DS75129
SN75150	DS75150
SN75154	DS75154
SN75160B	DS75160A
SN75161B	DS75161A
SN75162	DS75162A
SN75162B	DS75162A
SN75172	DS96172
SN75173	DS96173
SN75174	DS96174
SN75175	

TEXAS INSTRUMENTS TO NATIONAL	
SN75176	DS75176B
SN75176	+ DS96176
SN75177	+ DS96177
SN75182	DS8820A
SN75183	DS8830
SN75188	DS1488
SN75189	DS1489
SN75189A	DS1489A
SN75369	*DS0026
SN75435	*DS3668
SN75436	*DS3658
SN75437	DS3658
SN75437A	*DS3658
SN75438	*DS3658
SN75440	DS3669
SN75451B	DS75451
SN75452B	DS75452
SN75453B	DS75453
SN75454B	DS75454
SN75461	DS75461
SN75462	DS75462
SN75463	DS75463
SN75464	DS75464
SN75471	*DS3631
SN75472	*DS3632
SN75473	*DS3633
SN75474	*DS3634
SN75477	*DS3632
SN75ALS053	+ DS3893A
SN75ALS056	+ DS3896
SN75ALS057	+ DS3897
SN75ALS176	+ DS3695
SN75ALS176	+ DS36F95
SN75ALS192	+ DS26C31
SN75ALS193	+ DS26C32A
SN75ALS194	+ DS34C87
SN75ALS195	+ DS34C86
SN75C188	DS14C88
SN75C189A	DS14C89A
UA9636A	DS9636A
UA9637A	DS9637A
UA9638	DS9638
UA9639	DS9639

[^2]
Intel to National's Interface

INTEL TO NATIONAL	
P3245	DS3245
P8212	DP8212
P8216	DP8216
P8224	DP8224
P8226	DP8226
P8228	DP8228
P8238	DP8238
P8286	DP8304B
P8287	DP8303A

* $=$ National's Closest Replacement
$+=$ Improved Performance

Section 1
Transmission Line Drivers/Receivers

Section 1 Contents

Transmission Line Drivers and Receivers-Introduction 1-4
Transmission Line Drivers and Receivers-Selection Guide . 1 .6
DS1488 Quad Line Driver 1-13
DS14C88/DS14C89A Quad CMOS Line Driver/Receiver . 1-17
DS1489/DS1489A Quad Line Receiver . 1-23
DS26C31C CMOS Quad TRI-STATE Differential Line Driver 1-27
DS26F31C/DS26F31M Quad High Speed Differential Line Driver . 1-34
DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver 1-37
DS26C32AC/DS26C32AM CMOS Quad Differential Line Receiver............................. 1 . 40
DS26F32C/DS26F32M Quad Differential Line Receiver 1-46

DS34C86 Quad CMOS Differential Line Receiver . 1 .53
DS35F86/DS34F86 RS-422/RS-423 Quad Line Receiver with TRI-STATE Outputs 1-58
DS3486 Quad RS-422/RS-423 Line Receiver . 1 .62
DS34C87 CMOS Quad TRI-STATE Differential Line Driver . 1-66
DS35F87/DS34F87 RS-422 Quad Line Driver with TRI-STATE Outputs 1-71
DS3587/DS3487 Quad TRI-STATE Line Driver. 1-75
DS1603/DS3603 TRI-STATE Dual Receivers . 1-78
DS1650/DS1652/DS3650/DS3652 Quad Differential Line Receivers . 1-82
DS1691A/DS3691 RS-422/RS-423 Line Drivers with TRI-STATE Outputs 1-90
DS1692/DS3692 TRI-STATE Differential Line Drivers . 1-97
DS16F95/DS36F95 RS-485/RS-422 Differential Bus Transceiver 1-102
DS3695/DS3695T/DS3696/DS3696T/DS3697/DS3698 Multipoint RS-485/RS-422
Transceivers/Repeaters
1-108
DS3695A/DS3695AT/DS3696A/DS3696AT Multipoint RS-485/RS-422 Transceivers 1-117
DS36950 Quad Differential Bus Transceiver ... 1-123
DS55107/DS55108/DS75107/DS75108/DS75208 Dual Line Receivers 1-132
DS55110A/ μ A55110A/DS75110A/ $\mu A 75110 A$ Dual Line Drivers . 1-139
DS55113/DS75113 Dual TRI-STATE Differential Line Drivers . 1-144

DS55115/DS75115 Dual Differential Line Receivers . 1-156
DS55121/DS75121 Dual Line Drivers 1-161
DS55122 Triple Line Receiver . 1-163
DS75123 Dual Line Driver 166
DS75124 Triple Line Receiver. 1-168
DS75128/DS75129 Eight-Channel Line Receivers . 1-171
DS75150 Dual Line Driver . 1-175
DS75154 Quad Line Receiver . 1-179
DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers . 1-184
DS7820/DS8820 Dual Line Receivers .. 1-189
DS7820A/DS8820A Dual Line Receivers . 1-193
DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receivers. 1-198
DS7830/DS8830 Dual Differential Line Drivers . 1-202
DS7831/DS8831/DS7832/DS8832 Dual TRI-STATE Line Drivers . 1-206
DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receivers 1-213
DS78LS120/DS88LS120 Dual Differential Line Receivers (Noise Filtering and Fail Safe). 1-221
DS8921/DS8921T/DS8921A/DS8921AT Differential Line Drivers and Receiver Pair 1-228
Section 1 Contents (Continued)
DS8922/DS8922A/DS8923/DS8923A TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pairs 1-233
DS8924 Quad TRI-STATE Differential Line Driver 1-239
μ A9616H/DS9616H Triple Line Drivers 1-242
μ A9622/DS9622 Dual Line Receivers 1-246
μ A9627/DS9627 Dual Line Receivers 1-249
DS9636A/ μ A9636A RS-423 Dual Programmable Slew Rate Line Drivers 1-253
DS9637A/ μ A9637A Dual Differential Line Receivers 1-257
DS9638/ μ A9638 RS-422 Dual High Speed Differential Line Drivers 1-262
DS9639A/ μ A9639A Dual Differential Line Receivers 1-266
DS96F172/DS96F174 RS-485/RS-422 Quad Differential Drivers 1-270
DS96172/ μ A96172/DS96174/ μ A96174 RS-485/RS-422 Quad Differential Line Drivers 1-275
DS96F173/DS96F175 RS-485/RS-422 Quad Differential Receivers 1-280
DS96173/ μ A96173/DS96175/ μ A96175 RS-485/RS-422 Quad Differential Line Receivers 1-285
DS96176/ μ A96176 RS-485/RS-422 Differential Bus Transceivers 1-290
DS96177/ μ A96177 RS-485/RS-422 Differential Bus Repeaters 1-297
MM78C29/MM88C29 Quad Single-Ended Line Drivers 1-304
MM78C30/MM88C30 Quad Differential Line Drivers 1-304
AN-22 Integrated Circuits for Digital Data Transmission 1-310
AN-108 Transmission Line Characteristics 1-324
AN-214 Transmission Line Drivers and Receivers for EIA Standards RS-422 and RS-423 1-330
AN-216 Summary of Electrical Characteristics of Some Well Known Digital Interface Standards 1-340
AN-409 Transceivers and Repeaters Meeting the EIA RS-485 Interface Standard 1-353
AN-438 Low Power RS-232C Driver and Receiver in CMOS 1-360
AN-457 High Speed, Low Skew RS-422 Drivers and Receivers Solve Critical System Timing Problems 1-364
AN-702 Build a Directional-Sensing Bidirectional Repeater 1-368
μ A9614/DS9614 Dual Differential Line Driver (See DS55114 Datasheet)μ A9615/DS9615 Dual Differential Line Receiver (See DS55115 Datasheet)DS55107A Dual Line Receiver (See DS55107 Datasheet)

Transmission Line Drivers/Receivers

The common purpose of transmission line drivers and receivers is to transmit data quickly and reliably through a variety of environments over electrically long distances. This task is complicated by the fact that externally introduced noise and ground shifts can severely degrade the data.
The connection between two elements in a system should be considered a transmission line if the transmitted signal takes longer than half its rise or fall time to travel from the driver to the receiver.

Single-Ended Data Transmission

In data processing systems today there are two basic means of communicating between components. One method is single-ended, which uses only one signal line for data transmission, and the other is differential, which uses two signal lines.
The Electronics Industry Association (EIA) has developed several standards to simplify the interface in data communications systems.

RS-232

The first of these, RS-232, was introduced in 1962 and has been widely used throughout the industry. RS-232 was developed for single-ended data transmission at relatively slow data rates (20 kBaud) over short distances (up to 50 ft .).

RS-423
With the need to transmit data faster and over longer distances, RS-423, a newer standard for single-ended applications, was established. RS-423 extends the maximum data rate to 100 kBaud (up to 30 ft .) and the maximum distance
to 4000 feet (up to 1 kBaud). RS-423 also requires high impedance driver outputs with power off so as not to load the transmission line.

Differential Data Transmission

When transmitting at very high data rates, over long distances and through noisy environments, single-ended transmission is often inadequate. In these applications, differential data transmission offers superior performance. Differential transmission nullifies the effects of ground shifts and noise signals which appear as common mode voltages on the transmission line.

RS-422

RS-422 was defined by the EIA for this purpose and allows data rates up to 10 MBaud (up to 40 ft .) and line lengths up to 4000 feet (up to 100 kBaud).
Drivers designed to meet this standard are well suited for party-line type applications where only one driver is connected to, and transmits on, a bus and up to 10 receivers can receive the data. While a party-line type of application has many uses, RS-422 devices cannot be used to construct a truly multipoint bus. A multipoint bus consists of multiple drivers and receivers connected to a single bus, and any one of them can transmit or receive data.

RS-485

To meet the need for truly multipoint communications, the EIA established RS-485 in 1983. RS-485 meets all the requirements of RS-422, but in addition, this new standard allows up to 32 drivers and 32 receivers to be connected to a single bus-thus allowing a truly multipoint bus to be constructed.

TL/XX/0094-1

EIA RS-423 Application

Differential Data Transmission (Continued)

TL/XX/0094-3

The key features of RS-485:

- Implements a truly multipoint bus consisting of up to 32 drivers and 32 receivers
- An extended common-mode range for both drivers and receivers in TRI-STATE and with power off (-7 V to +12 V)
- Drivers can withstand bus contention and bus faults

National Semiconductor produces a variety of drivers, receivers, and transceivers for these four very popular transmission standards and numerous other data transmission requirements.
Shown below is a table that highlights key aspects of the EIA Standards. More detailed comparisons can be found in the various application notes in Section 1.

RS-485 Application

D - Driver
R-Receiver
T-Transceiver

TL/XX/0094-4

Specification		RS-232C	RS-423	RS-422	RS-485
Mode of Operation		Single-Ended	Single-Ended	Differential	Differential
Number of Drivers and Receivers Allowed on One Line		1 Driver, 1 Receiver	1 Driver, 10 Receivers	1 Driver, 10 Receivers	32 Drivers, 32 Receivers
Maximum Cable Length		50 feet	4000 feet	4000 feet	4000 feet
Maximum Data Rate		$20 \mathrm{~kb} / \mathrm{s}$	$100 \mathrm{~kb} / \mathrm{s}$	$10 \mathrm{Mb} / \mathrm{s}$	$10 \mathrm{Mb} / \mathrm{s}$
Driver Output Maximum Voltage		$\pm 25 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	-0.25 V to +6 V	-7 V to +12 V
Driver Output Signal Level	Loaded	$\pm 5 \mathrm{~V}$	$\pm 3.6 \mathrm{~V}$	$\pm 2 \mathrm{~V}$	$\pm 1.5 \mathrm{~V}$
	Unloaded	$\pm 15 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
Driver Load Impedance		$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	450Ω min	100Ω	54Ω
Maximum Driver Output Current (High Impedance State)	Power On			- -	$\pm 100 \mu \mathrm{~A}$
	Power Off	$\mathrm{V}_{\text {MAX }} / 300 \Omega$	$\pm 100 \mu \mathrm{~A}$	$\pm 100 \mu \mathrm{~A}$	$\pm 100 \mu \mathrm{~A}$
Slew Rate		$30 \mathrm{~V} / \mu \mathrm{s}$ max	Controls Provided	-	- -
Receiver Input Voltage Range		$\pm 15 \mathrm{~V}$	$\pm 12 \mathrm{~V}$	-7 V to +7 V	-7 V to +12 V
Receiver Input Sensitivity		$\pm 3 \mathrm{~V}$	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$
Receiver Input Resistance		$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	$4 \mathrm{k} \Omega$ min	$4 \mathrm{k} \Omega$ min	$12 \mathrm{k} \Omega \mathrm{min}$

EIA RS-232 UNBALANCED LINE DRIVERS AND RECEIVERS

Device Number		Number of Drivers	$\begin{gathered} \text { Power } \\ \text { Supplies } \\ \mathbf{V}_{\mathbf{C C}} / \mathbf{V}_{\mathrm{EE}}(\mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { Max } \\ & I_{c c} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & \mathrm{I}_{\mathrm{EE}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} \text { Typical } \\ \text { Io } \\ \text { (mA) } \end{gathered}$	$\stackrel{\operatorname{Min}}{\mathbf{V}_{\mathbf{O}}(\mathbf{V})}$	Typical Prop. Delay (ns)	Slew Rate Control	Packages	Comments and Special Features	Page \#
Commercial	Military											
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$											
DS1488		4	± 9 to ± 15	25	-23	± 6	$\pm 6 / \pm 9$	230	External Cap.	N, J, M		1-13
DS14C88		4	± 5 to ± 12	0.5	-0.06	+10	$\pm 3 / \pm 9$	5000	Internal	N, J, M	Low Power	1-17
DS75150	,	2	± 12	22	-20	± 10	± 5	60	External Cap.	N, J, M		1-175
	DS9616H	3		:								1-242

Device Number		```Number of Receivers```	Power Supply Vcc (V)	$\begin{aligned} & \text { Max } \\ & \text { Icc }_{\text {Ic }} \end{aligned}$	Typical Prop. Delay (ns)	Response Control	Packages	Comments * Special Features	Page \#
Commercial	Military								
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$								
DS1489		4	5	26	28	External Cap.	N, J, M	Noise Filter, Adjustable Thresholds	1-23
DS1489A		4	5	26	28	External Cap.	N, J, M	Noise Filter, Adjustable Thresholds	1-23
DS14C89A		4	5	0.9	6500*	Internal	N, J, M	Low Power CMOS Device	1-17
DS75154		4	5 or 12	35/40	22	-	N, J, M		1-179
	DS9627	2	± 12	18/-16	250*	-	J		1-249

Note: * denotes Max prop Delay

Characteristics of an EIA RS-232 Device:

DEVICE/GENERATOR:
Minimum driver high output voltage with $3 \mathrm{k} \Omega$ load - +3 V

RECEIVERS:
Receiver input voltage range $- \pm 15 \mathrm{~V}$
Receiver input sensitivity $- \pm 3 \mathrm{~V}$
Receiver input resistance - > $\mathbf{k} \Omega$ and $<7 \mathrm{k} \Omega$

Maximum power off driver output resistance $\left(V_{O}=-2 \mathrm{~V}\right.$ to
$+2 \mathrm{~V})-300 \Omega$
Typical maximum data rate - $20 \mathrm{~kb} / \mathrm{s}$
See EIA Standard RS-232D/E for exact conditions.

DRVER/GENERATOR

receiver

EIA RS-422 BALANCED LINE DRIVERS

Device Number			\# of Drivers	Power Supply $V_{c c}(V)$	$\begin{aligned} & \text { Min } \\ & \mathrm{V}_{\mathrm{OH}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \text { Rated } \\ \mathbf{l}_{\mathbf{O H}} \\ (\mathrm{mA}) \end{gathered}$	Max V_{OL} (V)	$\begin{gathered} \text { Rated } \\ \mathrm{IOL}_{\mathrm{OL}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \text { Max } \\ & I_{\text {cc }} \\ & (\mathrm{mA}) \end{aligned}$	Typ Prop. Delay (ns)	Comments and Special Features	Page \#
Commercial	Industrial	Military										
$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
	DS26C31C		4	5	2.5	-20		20	2	6	Low Power CMOS Device	1-27
DS26F31C		DS26F31M	4	5	2.5	-20	0.5	20	50	10	N and J Package Only	1-34
DS26LS31C		DS26LS31M	4	5	2.5	-20	0.5	20	60	10		1-37
DS3487		DS3587	4	5	2.5	-20	0.5	48	80	10		1.75
	DS34C87		4	5	2.5	-20	0.5	48	2	6	Low Power CMOS Device	1-66
DS34F87		DS35F87	4	5	2.5	-20	0.5	48	50	20*	N and J Package Only	1-71
DS3691		DS1691A	2	5 or ± 5	-	-	-	-	30	120	Mode Pin Selects 422 or 423	1-90
DS8921	DS8921T		1	5	2.5	-20	0.5	20	35	10	Transceiver	1-228
DS8921A	DS8921AT		1	5	2.5	-20	0.5	20	35	10	Low Skew Transceiver	1-228
DS8922			2	5	2.5	-20	0.5	20	78	12	Dual Transceiver	1-233
DS8922A			2	5	2.5	-20	0.5	20	78	12	Low Skew Dual Transceiver	1-233
DS8923			2	5	2.5	-20	0.5	20	78	12	Dual Transceiver	1-233
DS8923A			2	5	2.5	-20	0.5	20	78	12	Low Skew Dual Transceiver	1-233
DS9638C		DS9638M	2	5	2	-40	0.5	40	65	10		1-262

Note: * denotes a Max specification. All devices available in N, J, and M packages except where noted.

Characteristics of an EIA RS-422 Line Driver:

Minimum driver output voltage with 100Ω test termination
load - Greater than $|2 \mathrm{~V}|$ or 50% of unloaded output volt-
age
Driver output resistance - Less than 50Ω
Driver output short circuit current $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right)$ - Less than

DRIVER/GENERATOR

150 mA
Driver power off current $\left(\mathrm{V}_{\mathrm{O}}=-250 \mathrm{mV}\right.$ to $\left.+6 \mathrm{~V}\right)$ - Less
than $\pm 100 \mu \mathrm{~A}$
Typical maximum data rate - $10 \mathrm{Mb} / \mathrm{s}$
See EIA Standard RS-422A for exact condition.

Transmission Line Drivers/Receivers

EIA RS-423 UNBALANCED LINE DRIVERS											
Device Number		\# of Drivers per Package	Power Supplies $\mathrm{V}_{\mathrm{Cc}} / \mathrm{V}_{\mathrm{EE}}$ (V)	Max Supply Current Icc/IEE (mA)	$\begin{aligned} & \text { Min } \\ & \mathbf{V}_{\mathbf{O}} \\ & (\mathrm{V}) \end{aligned}$	Typical los (mA)	Typical Prop. Delay (ns)	Slew Rate Control	Packages	Comments and Special Features	Page \#
Commercial	Military										
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
DS3691	DS1691A	4	± 5	30/-22	± 4	± 80	± 180	External Cap.	N, J, M		1-90
DS9636AC	DS9636AM	2	± 12	18/-18	± 4	± 60	1400	External Res.	N, J	One Resistor Sets Slew Rate	1-253

Characteristics of an EIA RS-423 line driver:

Minimum driver output voltage with 450Ω load - Greater than $|3.6 \mathrm{~V}|$
Driver output resistance - Less than 50Ω
Driver output short circuit current $\left(\mathrm{V}_{\mathrm{O}}=\mathrm{OV}\right)-$ Less than 150 mA

Maximum driver output voltage $- \pm 6 \mathrm{~V}$
Driver power off current $\left(\mathrm{V}_{\mathrm{O}}= \pm 6 \mathrm{~V}\right)$ - Less than
$\pm 100 \mu \mathrm{~A}$
See EIA Standard RS-423A for exact conditions.

EIA RS-422 / RS-423 BALANCED RECEIVERS

Device Number			\# of Drivers	Power Supply $V_{c c}(V)$	$\begin{gathered} \text { Max } \\ \text { Icc } \\ \text { (mA) } \end{gathered}$	Typ Prop. Delay (ns)	Max VCM (V)	Output Stage	Packages	Comments and Special Features	Page \#
Commercial	Industrial	Military									
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									
	DS26C32AC	.	4	5	23	19	± 14	TRI-STATE	N, J, M	Low Power CMOS Device	1-40
DS26F32C		DS26F32M	4	5	50	15	± 25	TRI-STATE	J		1-46
DS26LS32C		DS26LS32M	4	5	70	17	± 25	TRI-STATE	N, J, M		1-50
DS26LS32AC			4	5	70	23	± 25	TRI-STATE	N, J, M	Failsafe Feature	1.50
	DS34C86		4	5	23	19	± 14	TRI-STATE	N, J, M	Low Power CMOS Device	1.53
DS34F86		DS35F86	4	5	50	15	± 15	TRI-STATE	J		1.58
DS3486			4	5	85	19	± 25	TRI-STATE	N, J, M		1-62
DS88C20		DS78C20	2	5 to 15	15/30	100	± 25	Strobe	N, J	Response Control	1-198
DS88C120		DS78C120	2	5 to 15	15/30	100	± 15	Strobe	N, J	Response Control, Failsafe	1-213
DS88LS120		DS78LS120	2	5	16	38	± 15	Strobe	N, J		1-221
DS8921	DS8921T		1	5	35	14	± 10	-	N, J, M	Transceiver	1-228
DS8921A	DS8921AT		1	5	35	14	± 10	-	N, J, M	Low Skew Transceiver	1-228
DS8922			2	5	78	12	± 10	TRI-STATE	N, J, M	Dual Transceiver	1-233
DS8922A			2	5	78	12	± 10	TRI-STATE	N, J, M	Low Skew Dual Transceiver	1-233
DS8923			2	5	78	12	± 10	TRI-STATE	N, J, M	Dual Transceiver	1-233
DS8923A			2	5	78	12	± 10	TRI-STATE	N, J, M	Low Skew Dual Transceiver	1-233
DS9637AC		DS9637AM	2	5	50	15	± 15	-	N, J, M		1-257
DS9639AC			2	5	50	55	± 15	二	N		1-266

Characteristics of an EIA RS-422/423 Receiver:

Receiver common mode voltage range $- \pm 7 \mathrm{~V}$
Receiver sensitivity over $\pm 7 \mathrm{~V}$ common mode - 200 mV
Maximum differential input voltage - 12 V

recelver

Minimum receiver input impedance -4000Ω
See EIA Standard RS-422A or RS-423A for exact conditions.

Transmission Line Drivers/Receivers
EIA RS-485 BALANCED LINE DRIVERS, RECEIVERS AND TRANSCEIVERS

Device Number			Number of Drivers	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Receivers } \end{array}$	$\begin{gathered} \text { Max } \\ \mathrm{I}_{\mathrm{CC}} \\ (\mathrm{~mA}) \end{gathered}$	Typ. Driver Prop. Delay (ns)	Typ. Receiver Prop. Delay (ns)	Packages	Comments and Special Features	Page \#
Commercial	Industrial	Military								
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$								
DS36F95		DS16F95	1	1	28	12	19	J	Low Power	1-102
DS3695			1	1	60	15	25	N, J		1-108
DS3696			1	1	60	15	25	N, J	Thermal Shutdown Reporting	1-108
DS3697			1	1	60	15	25	N, J	Repeater	1-108
DS3698			1	1	60	15	25	N, J	Repeater, Thermal Shutdown Reporting	1-108
DS3695A	DS3695AT		1	1	60	15	25	M	SOIC Package	1-117
DS3696A	DS3696AT		1	1	60	15	25	M	SOIC Package, Thermal Shutdown Reporting	1-117
DS75176B	DS75176BT		1	1	55	22*	37*			1-184
DS96F172C		DS96F172M	4	0	50	12	-	N, J	Low Power, Common Enable	1-270
DS96F174C		DS96F174M	4	0	50	12	-	N, J	Low Power, Enable Pair	1-270
DS96172			4	0	70	12	-	N, J		1-275
DS96174			4	0	70	12	-	N, J		1-275
DS96F173C		DS96F173M	0	4	50	-	15	J	Low Power, Common Enable	1-280
DS96F175C		DS96F175M	0	4	50	-	15	J	Low Power, Enable Pair	1-280
DS96173			0	4	75	-	15	N, J		1-285
DS96175			0	4	75	-	15	N, J		1-285
DS96176			1	1	35	12	16	N, J	,	1-290
DS96177			1	1	35	12	16	N, J	Repeater	1-297
DS36950			4	4	90	15	14	V	QUAD Transceiver, IPI Applications	1-123

Note: * denotes a Max specification.

Characteristics of an EIA RS-485 Device:

RECEIVERS:
Receiver common mode voltage range --7 V to +12 V
Receiver sensitivity over common mode range - 200 mV
Typical receiver input impedance - greater than $12 \mathrm{k} \Omega$
See EIA Standard RS-485 for exact conditions.

DRIVERS:

Minimum driver output voltage with 54Ω load - greater than 1.5 V
Driver output short circuit current $\left(\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}\right.$ to $\left.+12 \mathrm{~V}\right)-$ $\pm 250 \mathrm{~mA}$
Maximum driver common mode output voltage - 3 V
Typical maximum data rate - $10 \mathrm{Mb} / \mathrm{s}$.

TYPICAL TRANSCEVER
TL/XX/0099-5

BALANCED AND UNBALANCED LINE DRIVERS												
Standard	Device Number		Type of Driver		Power Supply Vcc (V)	$\begin{aligned} & \text { Max } \\ & \operatorname{Icc} \\ & (\mathrm{mA}) \end{aligned}$	Output Stage	Output Voltage Min $\mathrm{V}_{\mathrm{O}}(\mathrm{V})$	Output Current $I_{0}(\mathrm{~mA})$	Typical Prop. Delay (ns)	Comments and Special Features	Page\#
	Commercial	Military										
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
188-114	DS3692	DS1692	Differential	2	5 or ± 5	30/-22	TRI-STATE	$\pm 2 / \pm 6$	± 20	190		1-97
-	DS75110A	DS55110A	Differential	2	± 5	35/-50	TRI-STATE		± 12	9	Current Mode	1-139
-	DS75113	DS55113	Differential	2	5	65	Note 2	3/0.2	± 40	13		1-144
-	DS75114	DS55114	Differential	2	5	50	Note 2	3/0.2	± 40	15		1-151
-	DS75121	DS55121	Single Ended	2	5	60	-	2.4	-100	11		1-161
IBM 360	DS75123		Single Ended	2	5	60	-	3.11	-100	12	50Ω Driver	1-166
-	DS8830	DS7830	Differential	2	5	18	-	1.8/0.5	± 40	11	50Ω Driver	1-202
-	DS8831	DS7831	Note 1	$2 / 4$	5	90	TRI-STATE	1.8/0.5	± 40	13	50Ω Driver	1-206
-	DS8832	DS7832	Note 1	2/4	5	90	TRI-STATE	1.8/0.5	± 40	13	No $\mathrm{V}_{\text {cc }}$ Clamp	1-206
-	DS8924		Differential	4	5	80	TRI-STATE	2/0.5	± 48	12		1-239
-	MM88C29	MM78C29	Single Ended	4	3 to 15		-			80		1-304
-	MM88C30	MM78C30	Differential	2	3 to 15		-					1-304
Note 1: Driv Note 2: Outp	er can be used in dif put features TRI-STA	rential or single ended mod E, Choice of open collecto	or active pull-up.									

Transmission Line Drivers/Receivers

BALANCED AND UNBALANCED RECEIVERS
$\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{\rightharpoonup}{N}}$

BALANCED AND UNBALANCED RECEIVERS												
Standard	Device Number		\# of Receivers	Input Sensitivity (mV)	Power Supply $V_{c c}(V)$	$\begin{gathered} \text { Max } \\ \mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{EE}} \\ (\mathrm{~mA}) \end{gathered}$	Rated VCM (V)	Typ. Prop. Delay (ns)	Packages	Output Stage	Comments and Special Features	Page \#
	Commercial	Military										
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
-	DS26LS33C	DS26LS33M	4	± 500	5	80	± 25	17	N, J	TRI-STATE		1-50
-	DS26LS33AC		4	± 500	5	80	± 25	23	N, J	TRI-STATE		1-50
-	DS3603	DS1603	2	± 25	± 5	40/-15	± 3	17	N, J	TRI-STATE		1-78
-	DS3650		4	± 25	± 5	60/-30	± 3	21	N, M	TRI-STATE		1-82
-	DS3652	DS1652	4	± 25	± 5	60/-30	± 3	22	N, J, M	TRI-STATE	Note 1	1-82
-	DS75107	DS55107	2	± 25	± 5	30/-15	± 3	17	N, J	Strobe		1-132
-	DS75108	DS55108	2	± 25	± 5	30/-15	± 3	19	N, J	Strobe	Note 1	1-132
-	DS75208		2	± 10	± 5	30/-15	± 3		N	Strobe		1-132
-	DS75115	DS55115	2	± 500	5	50	± 15	20	N, J	Strobe	Response Contro!	1-156
-:	-	DS55122 _	$\begin{array}{r}3 \\ \hline\end{array}$	-	5	72	6	20	J, W	Strobe		1-163
IBM 360	DS75124	.	3	-	5	72	7	20	N, J	Strobe		1-168
一	DS8820	DS7820	2	1000	5	10.2	± 15	150	N, J	Strobe	Response Control	1-189
-	DS8820A	DS7820A	2	1000	5	10.2	± 15	30	N, J	Strobe	Response Control	1-193

Note 1: Open collector output stage.

DS1488 Quad Line Driver

General Description

The DS1488 is a quad line driver which converts standard TTL input logic levels through one stage of inversion to output levels which meet EIA Standard RS-232D and CCITT Recommendation V. 24.

Features

- Current limited output $\pm 10 \mathrm{~mA}$ typ
- Power-off source impedance
$300 \Omega \mathrm{~min}$
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are TTL/LS compatible

Schematic and Connection Diagrams

Dual-In-LIne Package

Order Number DS1488J, DS1488M or DS1488N
See NS Package Number J14A, M14A or N14A

Typical Applications

RS-232C Data Transmission

TL/F/5776-3
*Optional for noise filtering

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage

V^{+}	+15 V
$\mathrm{~V}^{-}$	-15 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 7.0 \mathrm{~V}$
Output Voltage	$\pm 15 \mathrm{~V}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1364 mW
Molded DIP Package	1280 mW
SO Package	974 mW

Lead Temperature (Soldering, 4 sec .)
$260^{\circ} \mathrm{C}$
*Derate cavity package $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $10.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2 and 3) $\mathrm{V}_{\mathrm{CC}}+=9 \mathrm{~V}, \mathrm{~V}_{C C^{-}}=-9 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
ILL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			-1.0	-1.3	mA
I_{IH}	Logical "1" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=+5.0 \mathrm{~V}$			0.005	10.0	$\mu \mathrm{A}$
VOH	High Level Output Voltage	$\begin{aligned} & R_{\mathrm{IL}}=3.0 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$	6.0	7.0		V
			$\mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V}$	9.0	10.5		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & R_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=1.9 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$	-6.0	-6.8		V
			$\mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V}$	-9.0	-10.5		V
los ${ }^{+}$	High Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$		-6.0	-10.0	-12.0	mA
los ${ }^{-}$	Low Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.9 \mathrm{~V}$		6.0	10.0	12.0	mA
$\mathrm{R}_{\text {OUT }}$	Output Resistance	$\mathrm{V}+=\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$		300			Ω
ICC^{+}	Positive Supply Current (Output Open)	$\mathrm{V}_{\mathrm{IN}}=1.9 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$.	15.0	20.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		19.0	25.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		25.0	34.0	mA
		$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	$\mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		4.5	6.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		5.5	7.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		8.0	12.0	mA
ICC^{-}	Negative Supply Current (Output Open)	$\mathrm{V}_{\text {IN }}=1.9 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-13.0	-17.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		-18.0	-23.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-25.0	-34.0	mA
		$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-0.001	-0.015	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		-0.001	-0.015	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-0.01	-2.5	mA
P_{d}	Power Dissipation	$\mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$			252	333	mW
		$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$			444	576	mW

Switching Characteristics $\left(\mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logical "1"	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		230	350	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation Delay to a Logical " 0 "	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70	175	ns
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		75	100	ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range"
they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range for the DS1488.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the DS1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$
C=I_{S C}(\Delta T / \Delta V)
$$

where C is the required capacitor, ISC is the short circuit current value, and $\Delta \mathrm{V} / \Delta \mathrm{T}$ is the slew rate.

RS-232C specifies that the output slew rate must not exceed 30 V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.
See Typical Performance Characteristics.

TL/F/5776-5

Typical Applications (Continued)

DTL/TTL-to-RTL Translator

TL/F/5776-6

AC Load Circuit and Switching Time Waveforms

TL/F/5776-7
${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.

t_{r} and t_{f} are measured between 10% and 90% of the output waveform.

TL/F/5776-8

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted

TL/F/5776-9
FIGURE 1. Transfer Characteristics vs Power Supply Voltage

TL/F/5776-11
FIGURE 3. Output Slew Rate vs Load Capacitance

T, TEMPERATURE (${ }^{\circ} \mathrm{C}$)
TL/F/5776-10
FIGURE 2. Short-Circuit Output Current vs Temperature

V_{0}, OUTPUT VOLTAGE (V)
TL/F/5776-12
FIGURE 4. Output Voltage and Current-Limiting Characteristics

DS14C88／DS14C89A Quad CMOS Line Driver／Receiver

General Description

The DS14C88 and DS14C89A，pin－for－pin replacements for the DS1488／MC1488 and the DS1489／MC1489，are line drivers／receivers designed to interface data terminal equip－ ment（DTE）with data communications equipment（DCE）． These devices translate standard TTL or CMOS logic levels to／from levels conforming to RS－232－D and CCITT V． 24 standards．

Both devices are fabricated in low threshold CMOS metal gate technology．They provide very low power consumption in comparison to their bipolar equivalents； $900 \mu \mathrm{~A}$ versus 26 mA for the receiver and $500 \mu \mathrm{~A}$ versus 25 mA for the driver．
The DS14C88／DS14C89A simplify designs by eliminating the need for external capacitors．For the DS14C88，slew rate control in accordance with RS－232－D is provided on chip，eliminating the output capacitors．For the DS14C89A， noise pulse rejection circuitry eliminates the need for re－ sponse control filter capacitors．When replacing the DS1489 with DS14C89A，the response control filter pins can be tied high，low or not connected．

Features

－Meets EIA RS－232－D and CCITT V． 24 standard
－Low power consumption
－Pin－for－pin equivalent to DS1488／MC1488 and DS1489／MC1489
－Low Delay Slew
－DS14C88 Driver
－Power－off source impedance $300 \Omega \mathrm{~min}$ ．
－Wide operating voltage range： $4.5 \mathrm{~V}-12.6 \mathrm{~V}$
－TTL／LSTTL compatible
－DS14C89A
－Internal noise filter
－Inputs withstand $\pm 30 \mathrm{~V}$
－Fail－safe operating mode：High output for open input
－Internal input threshold with hysteresis

Connection Diagrams

Order Number DS14C88J，DS14C88N and DS14C88M See NS Package Number J14A，M14A or N14A

DS14C89A Dual－In－Line Package

TL／F／8508－2
Order Number DS14C89AJ，DS14C89AM or DS14C89AN See NS Package Number J14A，M14A or N14A

DS14C88 Quad CMOS Line Driver

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Input Pin Voltage at Any Output Pin
(Note 2)
$\left(V^{+}\right)+0.3 V$ to GND-0.3V
$\left|\mathrm{V}+-\mathrm{V}_{\mathrm{O}}\right| \leq 30 \mathrm{~V}$
$\left|\mathrm{V}--\mathrm{V}_{\mathrm{O}}\right| \leq 30 \mathrm{~V}$
Storage Temp.
Power Dissipation
Junction Temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

(See Note 2)
$+150^{\circ} \mathrm{C}$

Lead Temp. (Soldering 10 sec.$)$	$+260^{\circ} \mathrm{C}$
Supply Voltage V^{+}	+13 V
$\mathrm{~V}^{-}$	-13 V

This product does not meet 2000 V ESD rating. (Note 4) Operating Conditions

	Min	Max
Supply Voltage $\mathrm{V}+(\mathrm{GND}=0 \mathrm{~V})$	+4.5 V	+12.6 V
Supply Voltage $\mathrm{V}-(\mathrm{GND}=0 \mathrm{~V})$	-4.5 V	-12.6 V
Temperature Range	$0^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}+=4.5 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to -12 V unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
$l_{\text {lL }}, l_{\text {lH }}$	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V^{+}	-10	10	$\mu \mathrm{A}$
V_{IH}	High Level Input Voltage		2.0	V+	V
$V_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}^{+} \geq 7 \mathrm{~V}, \mathrm{~V}^{-} \leq-7 \mathrm{~V}$	GND	0.8	V
		$\mathrm{V}^{+} \leq 7 \mathrm{~V}, \mathrm{~V}^{-} \geq-7 \mathrm{~V}$	GND	0.6	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{I N}=V_{I L} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { or } 7 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=+4.5 \mathrm{~V}, \mathrm{~V}^{-}=-4.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=+9 \mathrm{~V}, \mathrm{~V}^{-}=-9 \mathrm{~V} \\ & \mathrm{~V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$		$\begin{aligned} & V \\ & v \\ & V \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1 \mathrm{H}} \\ & R_{\mathrm{L}}=3 \mathrm{k} \Omega \text { or } 7 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=+4.5 \mathrm{~V}, \mathrm{~V}^{-}=-4.5 \mathrm{~V} \\ & \mathrm{~V}+=+9 \mathrm{~V},-=-9 \mathrm{~V} \\ & \mathrm{~V}^{+}=+12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} -3.0 \\ -6.5 \\ -9.0 \\ \hline \end{array}$	$\begin{aligned} & V \\ & V \\ & V \\ & \hline \end{aligned}$
los ${ }^{+}$	High Level Output Short Circuit Current (Note 3)	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL }} \\ & V_{\text {OUT }}=\text { GND } \\ & V^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V} \end{aligned}$		+45	mA
los ${ }^{-}$	Low Level Output Short Circuit Current (Note 3)	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \\ & V_{\text {OUT }}=\text { GND } \\ & V+=+12 V, V-=12 V \end{aligned}$		-45	mA
Rout	Output Resistance	$\begin{aligned} & V^{+}=V-=0 V \\ & -2 V \leq V_{\text {OUT }} \leq 2 V \end{aligned}$	300		Ω
Icc +	Positive Supply Current (per package)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}, \mathrm{P}_{\mathrm{L}}=\text { open } \\ & \mathrm{V}^{+}=+4.5 \mathrm{~V}, \mathrm{~V}^{-}=-4.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=+9 \mathrm{~V}, \mathrm{~V}^{-}=-9 \mathrm{~V} \\ & \mathrm{~V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \\ & 30 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{I H}, \mathrm{R}_{\mathrm{L}}=\text { open } \\ & \mathrm{V}^{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=+9 \mathrm{~V}, \mathrm{~V}^{-}=-9 \mathrm{~V} \\ & \mathrm{~V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 50 \\ 300 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
ICC ${ }^{-}$	Negative Supply Current (per package)	$\begin{aligned} & V_{I N}=V_{I L}, R_{L}=\text { open } \\ & V^{+}=+4.5 V, V^{-}=-4.5 \mathrm{~V} \\ & V^{+}=+9 V, V^{-}=-9 V \\ & V^{+}=+12 V, V^{-}=-12 V \end{aligned}$		$\begin{array}{r} -10 \\ -10 \\ -10 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\begin{aligned} & V_{I N}=V_{I H}, R_{L}=\text { open } \\ & V^{+}=+4.5 V, V^{-}=-4.5 \mathrm{~V} \\ & V^{+}=+9 V, V^{-}=-9 V \\ & V^{+}=+12 V, V^{-}=-12 V \end{aligned}$		$\begin{aligned} & -30 \\ & -30 \\ & -60 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Power Dissipation N-Package: 1300 mW at $25^{\circ} \mathrm{C}$, J-Package: 1000 mW at $25^{\circ} \mathrm{C}$
Note 3: los+ and los - values are for one output at a time. If more than one output is shorted simultaneously, the device dissipation may be exceeded.
Note 4: For ESD level, contact the local National Semiconductor Sales Office.

DS14C88 Quad CMOS Line Driver

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}+=+4.5 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$,
$\mathrm{V}^{-}=-4.5 \mathrm{~V}$ to $-12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ unless otherwise specified (Notes 5 and 6).

Symbol	Parameter	Condlitions	Min	Typ	Max	Units
$t_{\text {pd1 }}$	Propagation Delay to a Logic "1"	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}^{-}=-4.5 \mathrm{~V} \\ & \mathrm{~V}+=+9 \mathrm{~V}, \mathrm{~V}^{-}=-9 \mathrm{~V} \\ & \mathrm{~V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
$t_{\text {pdo }}$	Propagation Delay to a Logic " 0 "	$\mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}^{-}=-4.5 \mathrm{~V}$ $V^{+}=+9 V, V^{-}=-9 V$ $\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
t_{r}, t_{f}	Output Rise and Fall Time (Note 7)		0.2			$\mu \mathrm{s}$
${ }_{\text {tSK }}$	Typical Propagation Delay Skew	$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		400		ns
S_{R}	Output Slew Rate (Note 7)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \\ & 15 \mathrm{pF} \leq \mathrm{C}_{\mathrm{L}} \leq 2.5 \mathrm{nF} \end{aligned}$			30	$\mathrm{V} / \mu \mathrm{s}$

Note 5: AC input waveforms for test purposes:

$$
\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}\left(0.6 \mathrm{~V} \text { at } \mathrm{V}^{+}=4.5, \mathrm{~V}^{-}=-4.5 \mathrm{~V}\right)
$$

Note 6: Input rise and fall times must not exceed $5 \mu \mathrm{~s}$.
Note 7: The output slew rate, rise time, and fall time are measured by measuring the time from +3.0 V to -3.0 V on the output waveforms.

AC Load Circuit

${ }^{*} C_{L}$ inclu des probe and jig capacitance.

Switching Time Waveforms

TL/F/8508-8

DS14C89A Quad CMOS Line Receiver

Absolute Maximum Ratings (Note 1)

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabllity and specifications.
Voltage at Any Input Pin
-30 V to +30 V
Voltage at Any Output Pin
$\left(V_{C C}\right)+0.3 V$ to GND $-0.3 V$
Lead Temp. (Soldering 10 sec)
$+260^{\circ} \mathrm{C}$
Supply Voltage
$+6 \mathrm{~V}$
This product does not meet 2000V ESD rating. (Note 3)

Storage Temperature
Power Dissipation
Junction Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \text { at }+75^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C}
\end{array}
$$

Operating Conditions

	Min	Max
Supply Voltage $\mathrm{V}_{\mathrm{CC}}(\mathrm{GND}=0 \mathrm{~V})$	+4.5 V	+5.5 V
Temperature Range	$0^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C},+4.5 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Condlitions	Min	Typ	Max	Units
$V_{T H}$	Input High Threshold Voltage		1.3		2.7	V
$V_{T L}$	Input Low Threshold Voltage		0.5		1.9	V
V_{H}	Typical Input Hysteresis			1.0		V
I/N	Input Current	$\begin{aligned} & V_{\text {IN }}=+25 \mathrm{~V} \\ & V_{\text {IN }}=-25 \mathrm{~V} \\ & V_{\text {IN }}=+3 \mathrm{~V} \\ & V_{\text {IN }}=-3 \mathrm{~V} \end{aligned}$	$\begin{array}{r} +3.6 \\ -3.6 \\ +0.43 \\ -0.43 \end{array}$		$\begin{aligned} & +8.3 \\ & -8.3 \\ & +1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
V OH	Output High Voltage	$\begin{aligned} & V_{I N}=V_{T L}(\min) \\ & I_{\text {OUT }}=-3.2 \mathrm{~mA} \end{aligned}$	2.8			V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & V_{I N}=V_{T H}(\max) \\ & I_{\text {OUT }}=+3.2 \mathrm{~mA} \end{aligned}$			0.4	V
ICC	Supply Current	$\begin{aligned} & R_{L}=\text { open } \\ & V_{I N}=V_{T H}(\max) \\ & \text { or } V_{T L}(\min) \end{aligned}$			$+900$	$\mu \mathrm{A}$

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{CL}=50 \mathrm{pF}$, unless otherwise specified (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {pLH }}$	Propagation Delay to a Logic " 1 "	Input pulse width $\geq 10 \mu \mathrm{~s}$			6.5	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {PHL }}$	Propagation Delay to a Logic " 0 "	Input pulse width $\geq 10 \mu \mathrm{~s}$			6.5	$\mu \mathrm{~s}$
t_{SK}	Typical Propagation Delay Skew			400		ns
t_{r}	Output Rise Time					300
t_{f}	Output Fall Time				ns	
t_{nw}	Pulse Width Assumed to be Noise				300	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $A C$ input waveform for test purposes: $t_{r}=t_{f}=200 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-3 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$.
Note 3: For ESD levels, contact the local National Semiconductor Sales Office.

DS14C89A AC Test Circuit

DS14C89A Timing Diagram

Typical Applications for DS14C88 and DS14C89A

Block Diagrams

DS14C88
($1 / 4$ circuit shown)

TL/F/8508-6

TL/F/8508-1

DS1489/DS1489A Quad Line Receiver

General Description

The DS1489/DS1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA Standard RS-232D. The DS1489/DS1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements.

Features

- Four separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode: high output for open inputs - Inputs withstand $\pm 30 \mathrm{~V}$

Schematic and Connection Diagrams

Top View
Order Number DS1489J, DS1489AJ, DS1489M, DS1489AM, DS1489N or DS1489AN See NS Package Number J14A, M14A or N14A

AC Test Circuit and Voltage Waveforms

FIGURE 1

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Power Supply Voltage	10 V
Input Voltage Range	$\pm 30 \mathrm{~V}$
Output Load Current	20 mA
Power Dissipation (Note 2)	1 W
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package 1308 mW Molded DIP Package 1207 mW SO Package 1042 mW Lead Temperature (Soldering, 4 sec.) $260^{\circ} \mathrm{C}$
-Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2, 3 and 4)
DS1489/DS1489A: The following apply for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 1 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Input High Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.45 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	DS1489	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.0	1.25	1.5	V
					0.9		1.6	V
			DS1489A	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.75	2.00	2.25	V
					1.55		2.40	V
V_{TL}	Input Low Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \geq 2.5 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=-0.5 \mathrm{~mA} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.75	1.00	1.25	V
					0.65		1.35	V
IN	Input Current	$\mathrm{V}_{\text {IN }}=+25 \mathrm{~V}$			+3.6	+5.6	+8.3	mA
		$\mathrm{V}_{\text {IN }}=-25 \mathrm{~V}$			-3.6	-5.6	-8.3	mA
		$V_{I N}=+3 V$			+0.43	$+0.53$		mA
		$V_{I N}=-3 V$			-0.43	-0.53		mA
V OH	Output High Voltage	l OUT $=-0.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IN}}=0.75 \mathrm{~V}$		2.6	3.8	5.0	V
			Input = Open		2.6	3.8	5.0	V
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{l}$ OUT $=10 \mathrm{~mA}$				0.33	0.45	V
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=0.75 \mathrm{~V}$				-3.0		mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$				14	26	mA
P_{d}	Power Dissipation	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$				70	130	mW

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{pd} 1}$	Input to Output "High" Propagation Delay	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k}$, (Figure 1)(AC Test Circuit)		28	85	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Input to Output "Low" Propagation Delay	$\mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 1) (AC Test Circuit)	\ddots	20	50	ns
t_{r}	Output Rise Time	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k}$, (Figure 1)(AC Test Circuit)		110	175	ns
t_{f}	Output Fall Time	$\mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 1)(AC Test Circuit)		9	20	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range"
they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range for the DS1489 and DS1489A.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: These specifications apply for response control $\mathrm{pin}=$ open.

Typical Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted

TL/F/5777-7
FIGURE 2. Input Current

TL/F/5777-9
FIGURE 4. DS1489A Input Threshold Voltage Adjustment

TL/F/5777-11
FIGURE 6. Input Threshold vs Power Supply Voltage

TL/F/5777-8 FIGURE 3. DS1489 Input Threshold Voltage Adjustment

TL/F/5777-10
FIGURE 5. Input Threshold Voltage vs Temperature

FIGURE 7. Noise Rejection vs Capacitance for DS1489A

Typical Application Information

*Optional for noise filtering.
TL/F/5777-5

Appllcation of DS148, DS1489A and INS8250

DS26C31C CMOS Quad TRI-STATE® Differential Line Driver

General Description

The DS26C31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26C31 meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.
The DS26C31 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the individual drivers to power down without loading down the bus. This device has enable and disable circuitry common to all four drivers. The DS26C31 is pin compatible to the AM26LS31 and the DS26LS31.

All inputs are protected against damage due to electrostatic discharge by diodes to $V_{C C}$ and ground.

Features

- TTL input compatible

■ Typical propagation delays: 6 ns
■ Typical output skew: 0.5 ns

- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Meets the requirements of EIA standard RS-422
- Operation from single 5 V supply
- TRI-STATE outputs for connection to system buses
- Low quiescent current
- Available in surface mount

Connection Diagram

Top View
Order Number DS26C31CJ, DS26C31CM or DS26C31CN See NS Package Number J16A, M16A or N16A

Truth Table

Active High Enable	Active Low Enable	Input	Non-Inverting Output	Inverting Output
L	H	X	Z	Z
All other combinations of enable inputs	L	L	H	
	H	H	L	

$\mathrm{L}=$ Low logic state
$H=$ High logic state
$X=$ Irrelevant
$Z=$ TRI-STATE (high impedance)

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC})
-0.5 V to 7.0 V
DC Input Voltage (V_{IN})
-1.5 V to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Output Voltage (VOUT)
Clamp Diode Current ($I_{\mathrm{IK}}, \mathrm{I}_{\mathrm{KK}}$)
DC Output Current, per pin (lout)
DC V ${ }_{C C}$ or GND Current, per pin (icc)
-0.5 V to 7 V $\pm 20 \mathrm{~mA}$ $\pm 150 \mathrm{~mA}$ $\pm 150 \mathrm{~mA}$
Storage Temperature Range (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max. Power Dissipation (PD) @ $25^{\circ} \mathrm{C}$ (Note 3)

Ceramic "J" Pkg.	2419 mW
Plastic "N" Pkg.	1736 mW
SOIC Pkg.	1226 mW
ead Temperature (TL) (Soldering, 4 sec.)	$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(V_{C C}\right)$	4.50	5.50	V

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 4)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Voltage			2.0			V
V_{IL}	Low Level Input Voltage					0.8	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{I N}=V_{I H} \text { or } V_{I L}, \\ & I_{\text {OUT }}=-20 \mathrm{~mA} \end{aligned}$		2.5	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{I N}=V_{I H} \text { or } V_{I L}, \\ & I_{\text {OUT }}=20 \mathrm{~mA} \end{aligned}$			0.3	0.5	V
V_{T}	Differential Output Voltage	$R_{L}=100 \Omega$ (Note 5)		2.0	3.1		V
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Difference In Differential Output	$\begin{aligned} & R_{\mathrm{L}}=100 \Omega \\ & \text { (Note 5) } \end{aligned}$				0.4	V
$\mathrm{V}_{\text {OS }}$	Common Mode Output Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \text { (Note 5) } \\ & \hline \end{aligned}$			1.8	3.0	V
$\left\|\mathrm{V}_{\mathrm{OS}}-\overline{\mathrm{V}_{\text {OS }}}\right\|$	Difference In Common Mode Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \text { (Note 5) } \end{aligned}$				0.4	V
IIN	Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}, \mathrm{GND}, \mathrm{V}_{\text {IH, }}$ or $\mathrm{V}_{\text {IL }}$				± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \text { lout }=0 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \text { (Note } 6 \text {) } \end{aligned}$			$\begin{array}{r} 200 \\ 0.8 \end{array}$	$\begin{array}{r} 500 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
loz	TRI-STATE Output Leakage Current	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or } G N D \\ & \text { ENABLE }=V_{I L} \\ & \text { ENABLE }=V_{I H} \\ & \hline \end{aligned}$			± 0.5	± 5.0	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & V_{\mathbb{I N}}=V_{C C} \text { or GND } \\ & (\text { Notes } 5,7) \end{aligned}$		-30		-150	mA
IOFF	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=6 \mathrm{~V}$			100	$\mu \mathrm{A}$
	Power Off		$\mathrm{V}_{\text {OUT }}=-0.25 \mathrm{~V}$			-100	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, all voltages are referenced to ground. All currents into device pins are positive, all currents out of device pins are negative.
Note 3: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature derate N package at $13.89 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, J package $16.13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ and M package $9.80 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 4: Unless otherwise specified, $\min /$ max limits apply across the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range. All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: See EIA Specification RS-422 for exact test conditions.
Note 6: Measured per input. All other inputs at $V_{C C}$ or GND.
Note 7: This is the current sourced when a high output is shorted to ground. Only one output at a time should be shorted.

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$ (Figures 1, 2, 3 and 4) (Note 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$, tPHL	Propagation Delays Input to Output	S1 Open		6	11	ns
Skew	(Note 8)	S1 Open		0.5	2.0	ns
${ }_{\text {tTLH, }}$ t ${ }_{\text {THL }}$	Differential Output Rise And Fall Times	S1 Open		6	10	ns
tpzH	Output Enable Time	S1 Closed		11	19	ns
tpZL	Output Enable Time	S1 Closed		13	21	ns
$t_{\text {PHZ }}$	Output Disable Time (Note 9)	S1 Closed		5	9	ns
$t_{\text {PLZ }}$	Output Disable Time (Note 9)	S1 Closed		7	11	ns
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 10)			50		pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance			6		pF

Note 8: Skew is defined as the difference in propagation delays between complementary outputs at the 50% point.
Note 9: Output disable time is the delay from ENABLE or ENABLE being switched to the output transistors turning off. The actual disable times are less than indicated due to the delay added by the RC time constant of the load.
Note 10: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{s}=C_{P D} V_{C C} f+l_{C C}$.
Comparison Table of Switching Characteristics into "LS-Type" Load
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$ (Figures 2, 4, 5 and 6) (Note 11)

Symbol	Parameter	Conditions	DS26C31		DS26LS31		Units
			Typ	Max	Typ	Max	
tPLH, $^{\text {tPHL }}$	Propagation Delays Input to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~S} 1 \text { Closed } \\ & \text { S2 Closed } \\ & \hline \end{aligned}$	6	8	10	15	ns
Skew	(Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~S} 1 \text { Closed } \\ & \text { S2 Closed } \\ & \hline \end{aligned}$	0.5	1.0	2.0	6.0	ns
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Differential Output Rise and Fall Times	$\begin{aligned} & \hline C_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~S} 1 \text { Closed } \\ & \text { S2 Closed } \\ & \hline \end{aligned}$	4	6			ns
$t_{\text {PLZ }}$	Output Disable Time (Note 9)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{~S} 1 \text { Closed } \\ & \mathrm{S} 2 \text { Open } \end{aligned}$	6	9	15	35	ns
$t_{\text {PHZ }}$	Output Disable Time (Note 9)	$C_{L}=10 \mathrm{pF}$ S1 Open S2 Closed	4	7	15	25	ns
${ }_{\text {tPZL }}$	Output Enable Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~S} 1 \text { Closed } \\ & \mathrm{S} 2 \text { Open } \end{aligned}$	14	20	20	30	ns
${ }^{\text {tPZH }}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ S1 Open S2 Closed	11	17	20	30	ns

Note 11: This table is provided for comparison purposes only. The values in this table for the DS26C31 reflect the performance of the device but are not tested or guaranteed.

Logic Diagram

TL/F/8574-2

AC Test Circuit and Switching Time Waveforms

TL/F/8574-3
Note: $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}$ (Including Probe and Jig Capacitance), R1 $=\mathrm{R} 2=50 \Omega, \mathrm{R} 3=500 \Omega$.
FIGURE 1. AC Test Circuit

TL/F/8574-4
FIGURE 2. Propagation Delays

TL/F/8574-7
Input pulse; $\mathrm{f}=1 \mathrm{MHz}, 50 \% ; \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
FIGURE 4. Differential Rise and Fall Times

FIGURE 3. Enable and Disable Times

TL/F/8574-6
FIGURE 5. Load AC Test Circuit for "LS-Type" Load

AC Test Circuit and Switching Time Waveforms (Continued)

FIGURE 6. Enable and Dlsable Times for "LS-Type" Load

Typical Applications

TL/F/8574-9

* R_{T} is optional although highly recommended to reduce reflection.

Typical Performance Characteristics

TL/F/8574-10

Typical Performance Characteristics (Continued)

Output Short Circuit Current vs Power Supply Voltage

TL/F/8574-11

DS26F31C/DS26F31M Quad High Speed Differential Line Driver

General Description

The DS26F31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26F31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
The DS26F31 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F31 features lower power, extended temperature range, and improved specifications.

The circuit provides an enable and disable function common to all four drivers. The DS26F31C/DS26F31M features TRISTATE® outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.
The DS26F31C/DS26F31M offers optimum performance when used with the DS26F32 Quad Differential Line Receiver.

Features

- Military temperature range
- Output skew-2.0 ns typical

■ Input to output delay-10 ns

- Operation from single +5.0 V supply
- 16-lead ceramic DIP Package
- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Output short circuit protection
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100Ω terminated transmission lines

Connection and Logic Diagrams

Order Number DS26F31CJ or DS26F31MJ See NS Package Number J16A

FIGURE 1. Logic Symbol

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature	
\quad Ceramic DIP (Soldering, 60 sec.$)$	$300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
\quad at $25^{\circ} \mathrm{C}$	1500 mW
Cupply Voltage	7.0 V
Input Voltage	7.0 V
Output Voltage	5.5 V
'Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Range
DS26F31C

Electrical Characteristics over operating range, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$		2.5	3.2		V
V_{OL}	Output Voltage LOW	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$			0.32	0.5	V
V_{iH}	Input Voltage HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	$V_{C C}=M a x$				0.8	V
IIL	Input Current LOW	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.10	-0.20	mA
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			0.5	20	$\mu \mathrm{A}$
liR	Input Reverse Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			0.001	0.1	mA
loz	Off State (High Impedance) Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		0.5	20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		0.5	-20	
VIC	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-0.8	-1.5	V
los	Output Short Circuit	$V_{C C}=\operatorname{Max}$ (Note 4)		-30	-60	-150	mA
ICCX	Supply Current	$V_{C C}=$ Max, All Outputs Disabled				50	mA
l CC		$\mathrm{V}_{C C}=$ Max, All Outputs Enabled				40	mA
${ }_{\text {tpLH }}$	Input to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { Load }=\text { Note } 5 \end{aligned}$			10	15	ns
${ }_{\text {tPHL }}$	Input to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { Load }=\text { Note } 5 \end{aligned}$			10	15	ns
SKEW	Output to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { Load }=\text { Note } 5 \end{aligned}$			2.0	4.5	ns
$t_{L Z}$	Enable to Output	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$			23	32	ns
$t_{H Z}$	Enable to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$			15	25	ns
t_{ZL}	Enable to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { Load }=\text { Note } 5 \end{aligned}$			20	30	ns
${ }^{\text {t }} \mathrm{H}$	Enable to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { Load }=\text { Note } 5 \end{aligned}$			23	32	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 26 F 31 M and across the $\mathrm{O}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS26F31C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{I}}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}, \mathrm{~V}_{\text {PULSE }}=0 \mathrm{~V}$ to +3 V (See AC Load Test Circuit for TRI-STATE Outputs).

Test Circuit and Timing Waveforms

FIGURE 2. AC Load Test Circuit for TRI-STATE Outputs

TL/F/9614-4
FIGURE 3. Propagation Delay (Notes 1 and 3)

TL/F/9614-5

Note 1: Diagram shown for Enable Low. Switches S1 and S2 open. Note 2: S1 and S2 of Load Circuit are closed except where shown. Note 3: Pulse Generator for all Pulses: Rate $\leq 1.0 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq$ $6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}$.
Note 4: C_{L} includes probe and jig capacitance.

Typical Application

TL/F/9614-6
FIGURE 5. Typlcal Application

DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver

General Description

The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE ${ }^{\circledR}$ outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

Features

■ Output skew-2.0 ns typical

- Input to output delay-10 ns typical
- Operation from single 5 V supply
- Outputs won't load line when $V_{C C}=0 \mathrm{~V}$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA Standard RS-422
- Pin compatible with AM26LS31
- Available in military and commercial temperature range

Logic and Connection Diagrams

TL/F/5778-1

Top View
Order Number DS26LS31CJ, DS26LS31CM,
DS26LS31CN or DS26LS31MJ
See NS Package Number J16A, M16A or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablility and specifications.
Supply Voltage
7V
Input Voltage 7V
Output Voltage
Output Voltage (Power OFF)
-0.25 to 6 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1509 mW
Molded DIP Package 1476 mW SO Package 1051 mW
*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage, $\mathrm{V}_{\text {CC }}$			
DS26LS31M	4.5	5.5	V
DS26LS31	4.75	5.25	V
Temperature, T_{A}			
DS26LS31M	-55	+125	${ }^{\circ} \mathrm{C}$
DS26LS31	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2,3 and 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{OH}	Output High Voltage	$\mathrm{IOH}^{\prime}=-20 \mathrm{~mA}$	2.5			V
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=20 \mathrm{~mA}$			0.5	V
V_{IH}	Input High Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
IIL	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		-40	-200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input High Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
1	Input Reverse Current	$\mathrm{V}_{\mathrm{IN}}=7 \mathrm{~V}$			0.1	mA
10	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-20	$\mu \mathrm{A}$
V_{CL}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-1.5	V
Isc	Output Short-Circuit Current		-30		-150	mA
ICC	Power Supply Current	All Outputs Disabled or Active		35	60	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{PLH}}$	Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	15	ns
t_{PH}	Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	15	ns
Skew	Output to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		2.0	6.0	ns
t_{LZ}	Enable to Output	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{S} 2$ Open		15	35	ns
t_{HZ}	Enable to Output	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{S} 1$ Open		15	25	ns
t_{ZL}	Enable to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{S} 2$ Open		20	30	ns
t_{ZH}	Enable to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{S} 1$ Open		20	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 726 LS 31 M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS26LS31. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

TL/F/5778-3
Note: S1 and S2 of load circuit are closed except where shown
FIGURE 1. AC Test Circuit

$f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
FIGURE 2. Propagation Delays

TL/F/5778-5 $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$

FIGURE 3. Enable and Disable Times

Typical Applications

Two-Wire Balanced System, RS-422

* R_{T} is optional although highly recommended to reduce reflection.

National Semiconductor

DS26C32AC/DS26C32AM Quad Differential Line Receiver

General Description

The DS26C32A is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS.
The DS26C32A has an input sensitivity of 200 mV over the common mode input voltage range of $\pm 7 \mathrm{~V}$. Each receiver is also equipped with input fail-safe circuitry, which causes the output to go to a logic " 1 " state when the inputs are open. The DS26C32A provides an enable and disable function common to all four receivers, and features TRI-STATE® outputs with 6 mA source and sink capability. This product is pin compatible with the DS26LS32A and the AM26LS32.

Features

- CMOS design for 10W power
- $\pm 0.2 \mathrm{~V}$ sensitivity over input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Input fail-safe circuitry
- Inputs won't load line when $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for connection to system buses
- Available in Surface Mount

Logic Diagram

TL/F/8764-1

Connection Diagram

Truth Table

ENABLE	ENABLE	Input	Output
0	1	X	$\mathrm{Hi}-\mathrm{Z}$
See Note Below			
	$\mathrm{V}_{\mathrm{ID}} \geq \mathrm{V}_{\mathrm{TH}}$ (Max)	1	
	$\mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{TH}}(\mathrm{Min})$	0	
Open		1	

Hi-Z $=$ TRI-STATE
Note: Input conditions may be any combination not defined for ENABLE and ENABLE.

TL/F/8764-2
Top View
Order Number DS26C32ACJ,
DS26C32ACM, DS26C32ACN or DS26C32AMJ
See NS Package J16A, M16A or N16A

```
Absolute Maximum Ratings (Notes 1&2)
If Milltary/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```

Supply Voltage（VCC）
Common Mode Range（ V_{CM} ）
Differential Input Voltage（VIFF）$\pm 14 \mathrm{~V}$
Enable Input Voltage（ V_{IN} ）
Storage Temperature Range（TSTG）$\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature（Soldering 4 sec ．） $260^{\circ} \mathrm{C}$
Maximum Power Dissipation at $25^{\circ} \mathrm{C}$（Note 5）

Ceramic＂J＂Pkg．	2308 mW
Plastic＂N＂Pkg．	1645 mW
SOIC Pkg．	1190 mW

```
    SOIC Pkg.
```

Maximum Current Per Output
$\pm 25 \mathrm{~mA}$
This device does not meet 2000V ESD rating．（Note 4）

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.50	5.50	V
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	-40	+85	${ }^{\circ} \mathrm{C}$
DS26C32AC	-40	+85	${ }^{\circ} \mathrm{C}$
DS26C32AM	-55	+125	${ }^{\circ} \mathrm{C}$
Enable Input Rise or Fall Times		500	ns

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$（unless otherwise specified）（Note 3）

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{T H}$	Minimum Differential Input Voltage	$\begin{aligned} & V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OH}} \text { or } \mathrm{V}_{\mathrm{OL}} \\ & -7 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+7 \mathrm{~V} \end{aligned}$	－200	35	＋200	mV
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-7 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+7 \mathrm{~V}$ （One Input AC GND）	5.8	6.8	10	$\mathrm{k} \Omega$
IN	Input Current （Under Test）	$\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ ，Other Input $=$ GND		＋1．1	＋1．5	mA
		$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$ ，Other Input＝GND		－2．0	－2．5	mA
VOH	Minimum High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{DIFF}}=+1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=-6.0 \mathrm{~mA} \end{aligned}$	3.8	4.2		V
V_{O}.	Maximum Low Level Output Voltage	$\begin{aligned} & V_{C C}=M a x, V_{D I F F}=+1 V \\ & I_{\text {OUT }}=6.0 \mathrm{~mA} \end{aligned}$		0.2	0.3	V
V_{IH}	Minimum Enable High Input Level Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Maximum Enable Low Input Level Voltage	＊			0.8	V
loz	Maximum TRI－STATE Output Leakage Current	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or } G N D, \\ & \text { ENABLE } \\ & \text { ENABLE }=V_{I L}, \\ & \hline \end{aligned}$		± 0.5	± 5.0	$\mu \mathrm{A}$
1	Maximum Enable Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND			± 1.0	$\mu \mathrm{A}$
ICC	Quiescent Power Supply Current	$\begin{aligned} & V_{C C}=M a x, \\ & V_{\text {DIFF }}=+1 V \end{aligned}$		16	23	mA
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		60		mV

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpLH, tpHL	Propagation Delay Input to Output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {DIFF }}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		19	30	ns
trise, $t_{\text {FALL }}$	Output Rise and Fall Times	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DIFF}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		4	9	ns
$\begin{aligned} & \text { tpLz, } \\ & \text { tPHZ } \end{aligned}$	Propagation Delay ENABLE to Output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=1000 \Omega \\ & V_{\text {DIFF }}=2.5 \mathrm{~V} \end{aligned}$		13	22	ns
tpzL, $\mathrm{t}_{\mathrm{PZH}}$	Propagation Delay ENABLE to Output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=1000 \Omega \\ & \mathrm{~V}_{\text {DIF }}=2.5 \mathrm{~V} \end{aligned}$		13	23	ns

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, all voltages are referenced to ground.
Note 3: Unless otherwise specified, Min/Max limits apply across the operating temperature range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: For additional details on ESD, contact National Semiconductor Interface Marketing.
Note 5: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature derate N Package $13.16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{J}$ Package $15.38 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ and M Package $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Comparison Table of Switching Characteristics into "LS-Type" Load

(Figures 4, 5, and 6) (Note 6)

Symbol	Parameter	Conditions	DS26C32A			DS26LS32A			Units
			Min	Typ	Max	Min	Typ	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Input to Output	$C_{L}=15 \mathrm{pF}$		$\begin{aligned} & 17 \\ & 19 \end{aligned}$			$\begin{aligned} & 23 \\ & 23 \end{aligned}$		ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{LZ}} \\ & t_{\mathrm{HZ}} \\ & \hline \end{aligned}$	ENABLE to Output	$C_{L}=5 \mathrm{pF}$		$\begin{aligned} & 13 \\ & 12 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{ZH}} \end{aligned}$	ENABLE to Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\begin{aligned} & 13 \\ & 13 \\ & \hline \end{aligned}$			$\begin{aligned} & 14 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note 6: This table is provided for comparison purposes only. The values in this table for the DS26C32A reflect the performance of the device, but are not tested or guaranteed.

Test and Switching Waveforms

FIGURE 1. Propagation Delay

TL/F/8764-4
C_{L} includes load and test jig capacitance.
$S_{1}=V_{C C}$ for $t_{P Z L}$, and $t_{P L Z}$ measurements.
$\mathrm{S}_{1}=$ Gnd for $\mathrm{t}_{\mathrm{PZH}}$ and $\mathrm{t}_{\mathrm{PHZ}}$ measurements.
FIGURE 2. Test CIrcuit for TRI-STATE Output Tests

Test and Switching Waveforms (Continued)

TL/F/8764-5
FIGURE 3. TRI-STATE Output Enable and Disable Waveforms

AC Test Circuit and Switching Time Waveforms

TL/F/8764-7
FIGURE 5. Propagation Delay for "LS-Type" Load (Notes 7, 9)

TL/F/8764-6
FIGURE 4. Load Test Circuit for TRI-STATE Outputs for "LS-Type" Load

TL/F/8764-8
FIGURE 6. Enable and Disable Times for "LS-Type" Load (Notes 8, 9)
Note 7: Diagram shown for ENABLE low.
Note 8: S1 and S2 of load circuit are closed except where shown.
Note 9: Pulse generator for all pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{Z}_{\mathrm{O}}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}$.

Typical Applications

Two-Wire Balanced Systems, RS-422

Differential Skew vs Power Supply Voltage

Output High Voltage vs Output High Current

Output Low Voltage vs Output Low Current

Hysteresis \& Differential Transition Voltage vs Temperature

Differentlal Skew vs Temperature

Output High Voltage vs Output High Current

Input Resistance vs Input Voltage

Hysteresis \& Differential Transition Voltage vs

Typical Performance Characteristics (Continued)

TL/F/8764-11

DS26F32C/DS26F32M

Quad Differential Line Receiver

General Description

The DS26F32 is a quad differential line receiver designed to meet the requirements of EIA Standards RS-422 and RS423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The DS26F32 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F32 features lower power, extended temperature range, and improved specifications.
The device features an input sensitivity of 200 mV over the input common mode range of $\pm 7.0 \mathrm{~V}$. The DS26F32 provides an enable function common to all four receivers and TRI-STATE ${ }^{(1)}$ outputs with 8.0 mA sink capability. Also, a fail-safe input/output relationship keeps the outputs high when the inputs are open.

The DS26F32 offers optimum performance when used with the DS26F31 Quad Differential Line Driver.

Features

- Military temperature range
- Input voltage range of $\pm 7.0 \mathrm{~V}$ (differential or common mode) $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range
- Meets all the requirements of EIA standards RS-422 and RS-423
- High input impedance (18k typical)
- 30 mV input hysteresis

■ Operation from single +5.0 V supply
■ Input pull-down resistor prevents output oscillation on unused channels

- TRI-STATE outputs, with choice of complementary enables, for receiving directly onto a data bus
- Propagation delay 15 ns typical

Connection Diagram

Function Table (Each Receiver)

Differential Inputs	Enables		Outputs
$V_{I D}=\left(V_{I N}+\right)-\left(V_{I N}-\right)$	E	\bar{E}	OUT
$V_{I D} \geq 0.2 V$	H	X	H
	X	L	H
$V_{I D} \leq-0.2 V$	H	X	L
	X	L	L
X	L	H	Z

$H=$ High Level
L = Low Level
$X=$ immaterial

Order Number DS26F32CJ or DS26F32MJ See NS Package Number J16A

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature Range
    Ceramic DIP
    -6\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to + 175}
Operating Temperature Range
    DS26F32M
    -55*}\textrm{C}\mathrm{ to + 125*}\textrm{C
    DS26F32C
    0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
Lead Temperature
    Ceramic DIP (soldering, 60 sec)
    300 C
Maximum Power Dissipation* at 25'C
    Cavity Package
                            500 mW
Supply Voltage
                            7.0V
*Derate cavity package \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).
```

Electrical Characteristics Over operating range, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{TH}	Differential Input Voltage	$\begin{aligned} & -7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}} \text { or } \mathrm{V}_{\mathrm{OH}} \end{aligned}$		-0.2	± 0.06	+0.2	V
R ${ }_{1}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V},$ One Input AC Ground		14	18		k Ω
1	Input Current (under Test)	$\begin{aligned} & V_{1}=+15 \mathrm{~V}, \\ & \text { Other Input }-15 \mathrm{~V} \leq V_{1} \leq+15 \mathrm{~V} \end{aligned}$				2.3	mA
		$\begin{aligned} & V_{1}=-15 \mathrm{~V}, \\ & \text { Other input }-15 \mathrm{~V} \leq \mathrm{V}_{1} \leq+15 \mathrm{~V} \end{aligned}$				-2.8	
V OH	Output Voltage HIGH	$\begin{aligned} & V_{C C}=\operatorname{Min}, \\ & \Delta V_{1}=+1.0 \mathrm{~V} \\ & V_{\text {ENABLE }}=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.8	3.4		V
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5	3.4		\checkmark
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW	$\begin{aligned} & V_{C C}=\text { Min, } \\ & \Delta V_{1}=-1.0 \mathrm{~V}, \\ & V_{\overline{E N A B L E}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4	V
			$\mathrm{lOL}=8.0 \mathrm{~mA}$.		0.45	
$V_{\text {IL }}$	Enable Voltage LOW					0.8	V
V_{IH}	Enable Voltage HIGH			2.0			V
V_{10}	Enable Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
l_{OZ}	Off State (High Impedance) Output Current	$V_{C C}=M a x$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	
IIL	Enable Current LOW	$V_{1}=0.4 \mathrm{~V}$			-0.2	-0.36	mA
I_{H}	Enable Current HIGH	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			0.5	10	$\mu \mathrm{A}$
1	Enable Input High Current	$V_{1}=5.5 \mathrm{~V}$,	1.0	50	$\mu \mathrm{A}$
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max},(\text { Note } 4) \\ & \Delta \mathrm{V}_{\mathrm{I}}=+1.0 \mathrm{~V} \end{aligned}$		-15	-50	-85.	mA
ICC	Supply Current	$\begin{aligned} & V_{C C}=\text { Max, All } V_{1}=G N D, \\ & \text { Outputs Disabled } \end{aligned}$			30	50	mA
$V_{\text {HYST }}$	Input Hysteresis	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}$			30		mV

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS26F32M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS26F32C. All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
tPLH	Input to Output	Figure 3	$C_{L}=15 \mathrm{pF}$ Figure 2		15	22	ns
$\mathrm{t}_{\mathrm{PHL}}$	Input to Output				15	22	ns
t_{Lz}	Enable to Output	Figure 4			14	18	ns
$t_{H Z}$	Enable to Output				15	20	ns
t_{LL}	Enable to Output				13	18	ns
t_{ZH}	Enable to Output				12	16	ns

TL/F/9615-2
FIGURE 1. Logic Symbol

FIGURE 2. Load Test Circuit for Three-State Outputs

TL/F/9615-5
FIGURE 4. Enable and Disable Times (Notes 1, 2 and 3)

FIGURE 3. Propagation Delay (Notes 1, 2 and 3)

Note 1: Diagram shown for ENABLE Low.
Note 2: S1 and S2 of Load Circuit are closed except where shown.
Note 3: Pulse Generator of all Pulses: Rate $\leq 1.0 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq$ $6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}$.
Note 4: All diodes are IN916 or IN3064.
Note 5: C_{L} includes probe and jig capacitance.

Typical Application

FIGURE 5

DS26LS32C/DS26LS32M/DS26LS32AC/DS26LS33C/ DS26LS33M/DS26LS33AC Quad Differential Line Receivers

General Description

The DS26LS32 and DS26LS32A are quad differential line receivers designed to meet the RS-422, RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The DS26LS32 and DS26LS32A have an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$ and the DS26LS33 and DS26LS33A have an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.
Both the DS26LS32A and DS26LS33A differ in function from the popular DS26LS32 and DS26LS33 in that input pull-up and pull-down resistors are included which prevent output oscillation on unused channels.
Each version provides an enable and disable function common to all four receivers and features TRI-STATE® outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commerical operating temperature ranges.

Features

- High differential or common-mode input voltage ranges of $\pm 7 \mathrm{~V}$ on the DS26LS32 and DS26LS32A and $\pm 15 \mathrm{~V}$ on the DS26LS33 and DS26LS33A
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range on the DS26LS32 and DS26LS32A, $\pm 0.5 \mathrm{~V}$ sensitivity on the DS26LS33 and DS26LS33A
- DS26LS32 and DS26LS32A meet all requirements of RS-422 and RS-423
- 6 k minimum input impedance
- 100 mV input hysteresis on the DS26LS32 and DS26LS32A, 200 mV on the DS26LS33 and DS26LS33A
- Operation from a single 5 V supply
- TRI-STATE outputs, with choice of complementary output enables for receiving directly onto a data bus

Logic Diagram

TL/F/5255-1

Connection Diagram

TL/F/5255-2

Truth Table

ENABLE	ENABLE	Input	Output
0	1	X	$\mathrm{Hi}-\mathrm{Z}$
See Note Below		$\mathrm{V}_{\text {ID }} \geq \mathrm{V}_{\mathrm{TH}}(\mathrm{Max})$	1
	$\mathrm{~V}_{I D} \leq \mathrm{V}_{\mathrm{TH}}(\mathrm{Min})$	0	

HI-Z $=$ TRI-STATE
Note: Input conditions may be any combination not defined for ENABLE and ENABLE.

Order Number DS26LS32MJ, DS26LS32CJ, DS26LS32CM, DS26LS32CN, DS26LS32ACJ, DS26LS32ACN, DS26LS32ACM, DS26LS33MJ, DS26LS33CJ, DS26LS33CN, DS26LS33ACJ or DS26LS33ACN See NS Package Number J16A, M16A or N16A

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace speciffed devices are required,
please contact the Natlonal Semiconductor Sales Office/Distributors for avallablity and specifications.
Supply Voltage
$7 V$
Common-Mode Range
Differential Input Voltage
Enable Voltage
Output Sink Current
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
433 mW
Molded Dip Package
SO Package DS26LS32
DS26LS232A
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Derate SO Package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for DS26LS32
$8.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for DS26LS32A

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage, (VCC)	Min	Max	Units
DS26LS32M, DS26LS33M	4.5	5.5	V
(MIL)			
DS26LS32C, DS26LS33C DS26LS32AC, DS26LS33AC	4.75	5.25	V
(COML)			
Temperature, (TA)			
DS26LS32M, DS26LS33M (MIL)	-55	+125	${ }^{\circ} \mathrm{C}$
DS26LS32C, DS26LS33C	0	+70	${ }^{\circ} \mathrm{C}$
DS26LS32AC, DS26LS33AC (COML)			

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential Input Voltage	$\begin{aligned} & V_{\mathrm{OUT}}=V_{\mathrm{OH}} \\ & \text { or } V_{\mathrm{OL}} \end{aligned}$	DS26LS32, DS26LS32A, $-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$		-0.2	± 0.07	0.2	V
			DS26LS33, DS26LS33A, $-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}}+15 \mathrm{~V}$		-0.5	± 0.14	0.5	V
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$ (One Input AC GND)			6.0	8.5		$\mathrm{k} \Omega$
IN	Input Current (Under Test)	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, Other Input $-15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+15 \mathrm{~V}$					2.3	mA
		$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}$, Other Input $-15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+15 \mathrm{~V}$					-2.8	mA
V_{OH}	Output High Voltage	$\begin{aligned} & V_{C C}=M I N, \Delta V_{\text {IN }}=1 \mathrm{~V}, \\ & V_{\text {ENABLE }}=0.8 \mathrm{~V}, \mathrm{IOH}=-440 \mu \mathrm{~A} \end{aligned}$		Commercial	2.7	4.2		V
				Military	2.5	4.2		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \Delta V_{I N}=-1 V, \\ & V_{\text {ENABLE }}=0.8 \mathrm{~V} \end{aligned}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
				$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IL }}$	Enable Low Voltage						0.8	V
V_{IH}	Enable High Voltage				2.0			V
V_{1}	Enable Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.5	V
lo	OFF-State (High Impedance) Output Current	$V_{C C}=\operatorname{Max}$		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
ILL	Enable Low Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$					-0.36	mA
l_{IH}	Enable High Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\operatorname{Max}, \Delta \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$			-15		-85	mA
Icc	Power Supply Current	$V_{C C}=M a x, A l l V_{I N}=G N D$ Outputs Disabled		DS26LS32, DS26LS32A		52	70	mA
				DS26LS33, DS26LS33A		57	80	mA
1	Input High Current	$V_{I N}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		DS26LS32, DS26S32A		100		mV
				DS26LS33, DS26LS33A		200		mV

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive, all currents out of device pins are shown as negative, all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 3: All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	DS26LS32/DS26LS33			DS26LS32A/DS26LS33A			Units
			Min	Typ	Max	Min	Typ	Max	
$t_{\text {PLH }}$ tphe	Input to Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	*	$\begin{array}{r} 17 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{HZ}} \\ & \hline \end{aligned}$	ENABLE to Output	$C_{L}=5 \mathrm{pF}$		$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$		$\begin{array}{r} 15 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 25 \\ & \hline \end{aligned}$	ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{ZH}} \end{aligned}$	ENABLE to Output	$C_{L}=15 \mathrm{pF}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC Test Circuit and Switching Time Waveforms

Load Test Circult for TRI-STATE Outputs

TL/F/5255-3

Propagation Delay (Notes 1 and 3)

TL/F/5255-4
Note 1: Diagram shown for ENABLE low.
Note 2: S1 and S2 of load circuit are closed except where shown.
Note 3: Pulse generator for all pulses: Rate $=1.0 \mathrm{MHz} ; \mathrm{Z}_{\mathrm{O}}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}$

Typical Applications

Two-Wire Balanced Interface-RS-422

TL/F/5255-6

Single Wire with Driver Ground Reference-RS-423

TL/F/5255-7

DS34C86

Quad CMOS Differential Line Receiver

General Description

The DS34C86 is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS. The DS34C86 has an input sensitivity of 200 mV over the common mode input voltage range of $\pm 7 \mathrm{~V}$. Hysteresis is provided to improve noise margin and discourage output instability for slowly changing input waveforms.
Separate enable pins allow independent control of receiver pairs. The TRI-STATE® outputs have 6 mA source and sink capability. The DS34C86 is pin compatible with the DS3486.

Features

- CMOS design for low power
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Inputs won't load line when $V_{C C}=O V$
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for system bus compatibility
- Available in surface mount

Logic Diagram

TL/F/8699-1

Connection Diagram

Absolute Maximum Ratings (Notes 1 \& 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC})
Input Common Mode Range (V_{CM}) $\pm 14 \mathrm{~V}$
Differential Input Voltage (VIFF) $\pm 14 \mathrm{~V}$
Enable Input Voltage (V_{IN}) 7V
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 4 sec) $260^{\circ} \mathrm{C}$
Maximum Power Dissipation at $25^{\circ} \mathrm{C}$ (Note 5)

Ceramic "J" Package	2308 mW
Plastic "N" Package	1645 mW
SOIC Package	1190 mW

Current Per Output
$\pm 25 \mathrm{~mA}$
This device does not meet 2000V ESD rating. (Note 4)

Operating Conditions

	Min	Max	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.50	5.50	V
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	-40	+85	${ }^{\circ} \mathrm{C}$
Enable Input Rise or Fall Times $::$		500	ns

DC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Minimum Differential Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OH}} \text { or } \mathrm{V}_{\mathrm{OL}} \\ & -7 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+7 \mathrm{~V} \end{aligned}$	-200	35	+200	mV
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-7 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+7 \mathrm{~V}$ (One Input AC GND)	5.8	6.8	10	$\mathrm{k} \Omega$
I_{N}	Input Current (Under Test)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}, \text { Other Input }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=-10 \mathrm{~V} \text {, Other Input }=\mathrm{GND} \end{aligned}$		$\begin{array}{r} +1.1 \\ -2.0 \end{array}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=M i n ., V_{(\mathrm{DIFF})}=+1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=-6.0 \mathrm{~mA} \end{aligned}$	3.8	4.2		V
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max}_{.,}, \mathrm{V}_{(\mathrm{DIFF})}=+1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=6.0 \mathrm{~mA} \end{aligned}$		0.2	0.3	V
V_{IH}	Minimum Enable High Input Level Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Maximum Enable Low Input Level Voltage				0.8	V
Ioz	Maximum TRI-STATE Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \text { TRI-STATE Control }=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		± 0.5	± 5.0	$\mu \mathrm{A}$
1	Maximum Enable Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND			± 1.0	$\mu \mathrm{A}$
ICC	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{\text {. }}$, $\mathrm{V}_{\text {(DIFF) }}=+1 \mathrm{~V}$		16	23	mA
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		60		mV

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$（Note 3）（Figures 1，2，and 3）

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & \text { tpLH, } \\ & \text { t }_{\text {PHL }} \end{aligned}$	Propagation Delay Input to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DIFF}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		19	30	ns
tRISE， $t_{\text {FALL }}$	Output Rise and Fall Times	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {DIF }}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		4	9	ns
$\begin{aligned} & \text { tpLZ, } \\ & t_{\text {tpHZ }} \end{aligned}$	Propagation Delay ENABLE to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \\ & \mathrm{~V}_{\text {DIFF }}=2.5 \mathrm{~V} \end{aligned}$		13	18	ns
$\begin{aligned} & \text { tpZL, } \\ & \mathrm{t}_{\mathrm{PLZH}} \end{aligned}$	Propagation Delay ENABLE to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \\ & \mathrm{~V}_{\mathrm{DIFF}}=2.5 \mathrm{~V} \end{aligned}$		13	21	ns

Note 1：Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed．They are not meant to imply that the device should be operated at these limits．The table of＂Electrical Characteristics＂provides conditions for actual device operation．
Note 2：Unless otherwise specified，all voltages are referenced to ground．
Note 3：Unless otherwise specified，Min／Max limits apply across the operating temperature range．
All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 4：For additional details on ESD，contact National Semiconductor Interface Marketing．
Note 5：Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$ ．Above this temperature derate N Package $13.16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{J}$ Package $15.38 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ and M Package $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ．

Comparison Table of Switching Characteristics into＂LS－Type＂Load

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Figures 4 and 5 ）（Note 6）

Symbol	Parameter	DS34C86		DS3486		Units
		Typ	Max	Typ	Max	
$\mathrm{t}_{\text {PHL（ }}$（ ）	Propagation Delay Time Output High to Low	17		19		ns
${ }_{\text {tPLH（ }}$（	Propagation Delay Time Output Low to High	19		19		ns
tplz	Output Low to TRI－STATE	13		23		ns
$t_{\text {PHZ }}$	Output High to TRI－STATE	12		25		ns
tpZH	Output TRI－STATE to High	13		18		ns
tpZL	Output TRI－STATE to Low	13		20		ns

Note 6：This Table is provided for comparison purposes only．The values in this table for the DS34C86 reflect the performance of the device but are not tested or guaranteed．

Test and Switching Waveforms

TL／F／8699－3
FIGURE 1．Propagation Delays

C_{L} Includes load and test jig capacitance．
$S 1=V_{C C}$ for $t_{P Z L}$ ，and $t_{P L Z}$ measurements．
S1＝GND for tpZH，and tPHZ measurements．
FIGURE 2．Test Circuit for TRI－STATE Output Tests

Test and Switching Waveforms (Continued)

FIGURE 3. TRI-STATE Output Enable and Disable Waveforms

AC Test Circuits and Switching Time Waveforms

TL/F/8699-6

Input Pulse Characteristics:
$t_{\text {TLH }}=$ t $_{\text {THL }}=6 \mathrm{~ns}(10 \%$ to $90 \%)$
PRR $=1 \mathrm{MHz}, 50 \%$ duty cycle
FIGURE 4. Propagation Delay Differential Input to Output for "LS-Type" Load

AC Test Circuits and Switching Time Waveforms (Continued)

1.5 V for $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ -1.5 V for tplz and tpZL Input Pulse Characteristics:
$t_{T L H}=t_{T H L}=6 \mathrm{~ns}(10 \%$ to $90 \%)$
PRR $=1 \mathrm{MHz}, 50 \%$ duty cycle
TL/F/8699-8

TL/F/8699-11

FIGURE 5. Propagation Delay TRI-STATE Control Unit to Output for "LS-Type" Load

National Semiconductor

DS35F86/DS34F86
 RS-422/RS-423 Quad Line Receiver with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The DS34F86/DS35F86 RS-422/3 Quad Receiver features four independent receivers, which comply with EIA Standards for the electrical characteristics of balanced/unbalanced voltage digital interface circuits. Receiver outputs are 74LS compatible TRI-STATE structures which are forced to a high impedance state when the appropriate output control lead reaches a logic zero condition. A PNP device buffers each output control lead to assure minimum loading for either logic one or logic zero inputs. In addition each receiver has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms.
The DS34F86/DS35F86 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS34F86/DS35F86 features lower power, extended temperature range, and improved specifications.

Connection Diagram

Order Number DS34F86J or DS35F86J
See NS Package Number J16A

TL/F/9616-1
Top View -

The DS34F86/DS35F86 offers optimum performance when used with the DS34F87/DS35F87 Quad Line Driver.

Features

- Military temperature range
- TRI-STATE outputs
- Fast propagation times (15 ns typical)
- TTL compatible
- 5.0 V supply

■ Lead compatible and interchangeable with MC3486 and DS3486

TL/F/9616-2
FIGURE 1. Block Diagram
Function Table (Each Receiver)

Differentlal Inputs $V_{I D}=\left(V_{I N}+\right)-\left(V_{I N}-\right)$	Enable E	Output OUT
$V_{I D} \geq 0.2 V$	H	H
$V_{I D} \leq-0.2 V$	H	L
X	L	Z

[^3]| Absolute Maximum Ratings (Note 1) | | | |
| :---: | :---: | :---: | :---: |
| If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications. | | Input Common Mode Voltage | $\pm 15 \mathrm{~V}$ |
| | | Input Differential Voltage | $\pm 25 \mathrm{~V}$ |
| | | *Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. | |
| Storage Temperature Range | | | |
| Ceramic DIP | $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ | Operating Conditions | |
| Operating Temperature Range | | DS34F86 | |
| DS35F86 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DS34F86 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Supply Voltage | 4.75 V to 5.25 V |
| Lead Temperature | | DS35F86 | |
| Ceramic DIP (soldering, 60 seconds) | $300^{\circ} \mathrm{C}$ | Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ | | Supply Voltage | 4.5 V to 5.5 V |
| Cavity Package | 1500 mW | Input Common Mode Voltage Range | -7.0 V to + 7.0 V |
| Supply Voltage | 8.0 V | Input Differential Voltage Range | 6 V |
| Input Voltage | 8.0 V | | |

Electrical Characteristics over operating range, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Input Voltage HIGH			2			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW					0.8	V
$\mathrm{V}_{\text {TH(} \mathrm{D}^{\prime}}$	Differential Input Threshold Voltage (Note 6)	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{H}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$			0.2	V
			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}}$	-0.2			
I_{IB}	Input Bias Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}$ Other inputs at 0 V	$V_{1}=-10 \mathrm{~V}$			-3.25	mA
			$V_{1}=-3 V$			-1.50	
			$V_{1}=+3 \mathrm{~V}$			+1.50	
			$\mathrm{V}_{1}=+10 \mathrm{~V}$			+3.25	
V_{OH}	Output Voltage HIGH (Note 5)	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V} \\ & \mathrm{IO}_{\mathrm{O}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{1 D}=0.4 \mathrm{~V} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.8			V
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5			
, $\mathrm{V}_{\text {OL }}$	Output Voltage LOW	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & I_{0}=8 \mathrm{~mA}, \\ & V_{I D}=0.4 \mathrm{~V} \end{aligned}$			0.5	V
Ioz	Off State (High Impedance) Output Current	$\begin{aligned} & V_{\mathrm{ID})}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & V_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$				-10	$\mu \mathrm{A}$
		$\begin{aligned} & V_{I(D)}=-3 V, V_{I L}=0.8 \mathrm{~V}, \\ & V_{O}=2.7 \mathrm{~V} \end{aligned}$				10	
los	Output Short Circuit Current (Note 4)	$\begin{aligned} & V_{I(D)}=+3 V, V_{I H}=2 V, \\ & V_{O}=0 V \end{aligned}$		-15		-100	mA
IIL	Input Current LOW (TRI-STATE Control)	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$				-100	$\mu \mathrm{A}$
$I_{\text {IH }}$	Input Current HIGH (TRI-STATE Control)		$\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$			40	
$\mathrm{V}_{\text {IC }}$	Input Clamp Diode Voltage (TRI-STATE Control)	$\mathrm{I}_{\mathrm{IC}}=-10 \mathrm{~mA}$				-1.5	V
ICC	Supply Current	$\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}$				50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS35F86 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS34F86. All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA RS-422/3 for exact conditions. Input balance and $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ levels are tested simultaneously for worse case.
Note 6: Differential input threshold voltage and guaranteed output levels are tested simultaneously for worst case.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figures 2 \& 3)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
$\mathrm{t}_{\text {PHL (D) }}$	Propagation Delay Time Differential Inputs to Outputs	Output HIGH to LOW		15	22	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{D})$		Output LOW to HIGH		15	22	ns
tLz	Propagation Delay Time Controls to Outputs	Output LOW to TRI-STATE		14	18	ns
t_{Hz}		Output HIGH to TRI-STATE		15	20	ns
t_{zH}		Output TRI-STATE to HIGH		12	16	ns
t_{ZL}		Output TRI-STATE to LOW		13	18	ns

Parameter Measurement Information

FIGURE 2. PropagatIon Delay Differential Input to Output

Parameter Measurement Information (Continued)

TL/F/9616-5
FIGURE 3. Propagation Delay TRI-STATE Control Input to Output

Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $t_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}=6.0 \mathrm{~ns}(10 \%$ to $90 \%)$, $Z_{0}=50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are IN916 or equivalent.

DS3486 Quad RS-422, RS-423 Line Receiver

General Description

National's quad RS-422, RS-423 receiver features four independent receivers which comply with EIA Standards for the electrical characteristics of balanced/unbalanced voltage digital interface circuits. Receiver outputs are 74LS compatible, TRI-STATE ${ }^{\oplus}$ structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms.

Features

m Four independent receivers

- TRI-STATE outputs
- Internal hysteresis - 140 mV (typ)
- Fast propagation times -19 ns (typ)
- TTL compatible outputs
- 5V supply
- Pin compatible and interchangeable with MC3486

Block and Connection Diagrams

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
Power Supply Voltage, V_{CC} 8 V
Input Common-Mode Voltage, VICM $\pm 25 \mathrm{~V}$
Input Differential Voltage, $V_{I D}$
TRI-STATE Control Input Voltage, V_{I}
Output Sink Current, lo
$\pm 25 \mathrm{~V}$
8 V
50 mA
Storage Temperature, TSTG $^{\text {ST }}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1433 mW
Molded Dip Package
1362 mW
SO Package

Operating Conditions

	Min	Max	Units
Power Supply Voltage, V_{CC}	4.75	5.25	V
Operating Temperature, T_{A}	0	70	${ }^{\circ} \mathrm{C}$
Input Common-Mode Voltage	-7.0	7.0	V

Electrical Characteristics

(Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges.
Typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$ and $V_{I C}=0 \mathrm{~V}$. See Note 2.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	Input Voltage-High Logic State (TRI-STATE Control)		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage-Low Logic State (TRI-STATE Control)				0.8	V
$V_{\text {TH(D) }}$	Differential Input Threshold Voltage	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IC}} \leq 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} \text { TRI-STATE }=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}} \geq 2.7 \mathrm{~V} \end{aligned}$		0.070	0.2	V
		$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \geq 0.5 \mathrm{~V}$		0.070	-0.2	V
IIB (D)	Input Bias Current	$\mathrm{V}_{C C}=0 \mathrm{~V}$ or 5.25 V , Other Inputs at 0 V				
		$V_{1}=-10 \mathrm{~V}$			-3.25	mA
		$V_{1}=-3 V$			-1.50	mA
		$\mathrm{V}_{1}=3 \mathrm{~V}$			1.50	mA
		$V_{1}=10 \mathrm{~V}$			3.25	mA
	Input Balance	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IC}} \leq 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(3 \mathrm{C})}=2 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$				
	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=0.4 \mathrm{~V}$	2.7			V
	V_{OL}	$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-0.4 \mathrm{~V}$			0.5	V
loz	Output TRI-STATE Leakage Current	$\mathrm{V}_{\mathrm{I}}(\mathrm{D})=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {l(}}(\mathrm{D})=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
los	Output Short-Circuit Current	$\begin{aligned} & V_{I(D)}=3 \mathrm{~V}, \mathrm{~V}_{1 H} \text { TRI-STATE }=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V},(\text { Note } 3) \end{aligned}$	-15		-100	mA
IIL	Input Current-Low Logic State (TRI-STATE Control)	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
IH	Input Current-High Logic State (TRI-STATE Control)	$\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IC }}$	Input Clamp Diode Voltage (TRI-STATE Control)	$\mathrm{I}_{\mathrm{IN}}=-10 \mathrm{~mA}$			-1.5	V
Icc	Power Supply Current	All Inputs $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$			85	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.
Note 3: Only one output at a time should be shorted.
Note 4: Refer to EIA RS-422/3 for exact conditions.

Switching Characteristics (Unless otherwise noted, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=22^{\circ} \mathrm{C}$.)

Symbol	Parameter	Min	Typ	Max	Units
$t_{\text {PHL }}(D)$	Propagation Delay Time-Differential Inputs to Output Output High to Low		19	35	ns
$t_{\text {PLH(D) }}$	Output Low to High		19	30	ns
$\mathrm{t}_{\text {PLZ }}$	TRI-STATE Control to Output Output Low to TRI-STATE		23	35	ns
$t_{\text {PHZ }}$	Output High to TRI-STATE		25	35	ns
$t_{\text {PZH }}$	Output TRI-STATE to High		18	30	ns
$t_{\text {PZL }}$	Output TRI-STATE to Low		20	30	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Propagation Delay Differential Input to Output

AC Test and Switching Time Waveforms (Continued)

FIGURE 2. Propagation Delay TRI-STATE Control Input to Output

DS34C87 CMOS Quad TRI-STATE® ${ }^{\circledR}$ Differential Line Driver

General Description

The DS34C87 is a quad differential line driver designed for digital data transmission over balanced lines. The DS34C87 meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.
The DS34C87 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the individual drivers to power down without loading down the bus. This device has separate enable circuitry for each pair of the four drivers. The DS34C87 is pin compatible to the DS3487.
All inputs are protected against damage due to electrostatic discharge by diodes to V_{CC} and ground.

Connection and Logic Diagrams

Order Number DS34C87J, DS34C87M or DS34C87N See NS Package Number J16A, M16A or N16A

Dual-In-Line Package

TL/F/8576-1
Top View

Features

- TTL input compatible
- Typical propagation delays: 6 ns

■ Typical output skew: 0.5 ns

- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Meets the requirements of EIA standard RS-422
- Operation from single 5 V supply
- TRI-STATE outputs for connection to system buses
- Low quiescent current
- Available in surface mount

TL/F/8576-2

Truth Table

Input	Control Input	Non-Inverting Output	Inverting Output
H	H	H	L
L	H	L	H
X	L	Z	Z

L = Low logic state
$X=$ Irrelevant
$H=$ High logic state $\quad Z=$ TRI-STATE (high impedance)

Absolute Maximum Ratings (Notes 1 \& 2)	Operating Conditions			
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales	Supply Voltage (V_{CC})	$\begin{aligned} & \text { Min } \\ & 4.50 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5.50 \end{aligned}$	Units V
Office/Distributors for availability and specifications.	DC Input or Output Voltage ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$)	0	$\mathrm{V}_{C C}$	V
Supply Voltage (V_{CC}) $\quad-0.5$ to 7.0 V	Operating Temperature Range (T_{A})	-40	+85	${ }^{\circ} \mathrm{C}$
$D C$ Voltage ($\mathrm{V}_{1 \mathrm{~N}}$) $\quad-1.5$ to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$	Input Rise or Fall Times (t_{r}, t_{t})		500	ns
DC Output Voltage (Vout) -0.5 to 7V				
Clamp Diode Current (lik, lok) $\pm 20 \mathrm{~mA}$				
DC Output Current, per pin (IOUT) $\pm 150 \mathrm{~mA}$				
DC V $\mathrm{CC}^{\text {or GND Current (lcc) }}$ ($\quad \pm 150 \mathrm{~mA}$				
Storage Temperature Range (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Maximum Power Dissipation (P_{D}) @ $25^{\circ} \mathrm{C}$ (Note 3)				
Ceramic "J" Package 2419 mW				
Plastic "N" Package 1736 mW				
SOIC Package 1226 mW				
Lead Temperature (T_{L}) (Soldering 4 sec) $260^{\circ} \mathrm{C}$				

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 4)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Voltage			2.0			V
$V_{\text {IL }}$	Low Level Input Voltage					0.8	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{\text {Ir }} \\ & \text { I OUT }=- \end{aligned}$		2.5	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{I H} \\ & \mathrm{I}_{\mathrm{OUT}}=48 \end{aligned}$			0.3	0.5	V
V_{T}	Differential Output Voltage	$R_{L}=100$ (Note 5)		2.0	3.1		V
$\left\|\mathrm{V}_{\mathrm{T}}\right\|-\left\|\overline{\mathrm{V}}_{\mathrm{T}}\right\|$	Difference In Differential Output	$R_{L}=100$ (Note 5)				0.4	V
Vos	Common Mode Output Voltage	$R_{L}=100$ (Note 5)			2.0	3.0	V
$\left\|\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {OS }}\right\|$	Difference ln Common Mode Output	$R_{L}=100$ (Note 5)				0.4	V
1 N	Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	D, $\mathrm{V}_{\text {IH }}$, or $\mathrm{V}_{\text {IL }}$			± 1.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mu \\ & V_{\text {IN }}=V_{C C} \\ & V_{\text {IN }}=2.4 V \end{aligned}$	GND $0.5 \mathrm{~V} \text { (Note 6) }$		$\begin{array}{r} 200 \\ 0.8 \end{array}$	$\begin{aligned} & 500 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
loz	TRI-STATE Output Leakage Current	$\begin{aligned} & V_{\text {OUT }}=V_{C} \\ & \text { Control }= \end{aligned}$	GND		± 0.5	± 5.0	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$V_{I N}=V_{C C}$ (Notes 5, 7		-30		-150	mA
IOFF	Power Off Output Leakage Current	$\begin{aligned} & V_{C C}=0 V \\ & (\text { Note 5) } \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=6 \mathrm{~V} \\ & V_{\text {OUT }}=-0.25 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ -100 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, all voltages are referenced to ground. All currents into device pins are positive; all currents out of device pins are negative.
Note 3: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature derate N Package $13.89 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, J Package $16.13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and N Package $9.80 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 4: Unless otherwise specified, $\min /$ max limits apply across the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: See EIA Specification RS-422 for exact test conditions.
Note 6: Measured per input. All other inputs at $V_{C C}$ or GND.
Note 7: This is the current sourced when a high output is shorted to ground. Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

TL/F/8576-3
Note: $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}$ (including Probe and Jig Capacitance), $\mathrm{R} 1=\mathrm{R} 2=50 \Omega, \mathrm{R} 3=500 \Omega$
FIGURE 1. AC Test Clrcult

TL/F/8576-4
FIGURE 2. Propagation Delays

TL/F/8576-7
Input pulse; $\mathrm{f}=1 \mathrm{MHz}, 50 \%, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
FIGURE 4. Differential Rise and Fall Times

TL/F/8576-6
FIGURE 6. Differential Rise and Fall Times Test Circuit for "LS-Type" Load

FIGURE 3. Enable and Disable Times

TL/F/8576-8
FIGURE 5. Propagation Delays Test Circuit for "LS-Type" Load

TL/F/8576-9
FIGURE 7. Load Enable and Disable Times Test Circuit for "LS-Type" Load

TL/F/8576-10
FIGURE 8. Load Propagation Delays for "LS-Type" Load

TL/F/8576-11
FIGURE 9. Load Enable and Disable Times for "LS-Type" Load

Typical Applications

Two-Wire Balanced System, RS-422

TL/F/8576-12

* R_{T} is optional although highly recommended to reduce reflection.

DS35F87/DS34F87

RS-422 Quad Line Driver with TRI-STATE® Outputs

General Description

The DS34F87/DS35F87 RS-422 Quad Line Driver features four independent drivers which comply with EIA Standards for the electrical characteristics of balanced voltages digital interface circuits. The outputs are TRI-STATE structures which are forced to a high impedance state when the appropriate output control lead reaches a logic zero condition. All input leads are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power-up and power-down.
The DS34F87/DS35F87 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS34F87/DS35F87 features lower power, extended temperature range, and improved specifications.
The DS34F87/DS35F87 offers optimum performance when used with the DS34F86/DS35F86 Quad Line Receiver.

Features

- Military temperature range
- Four independent drivers
- TRI-STATE outputs
- PNP high impedance inputs
- Fast propagation time
- TTL compatible
- 5.0 V supply
- Output rise and falls times less than 15 ns
- Lead compatible and interchangeable with MC3487 and DS3487

Block and Connection Diagrams

FIGURE 1
TL/F/9618-2

Function Table (Each Driver)

Input	Enable	Output	
		Y	Z
H	H	H	L
L	H	L	H
X	L	Z	Z

H = High Level
$\mathrm{L}=$ Low Level
$X=$ Immaterial
$Z=$ High Impedance (off)

TL/F/9618-1
Top View
Order Number DS34F87J or DS35F87J See NS Package Number J16A

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
Storage Temperature Range
```

Ceramic DIP
Lead Temperature
Ceramic DIP (soldering, 60 sec.) $300^{\circ} \mathrm{C}$
Supply Voltage 8.0V
Input Voltage
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
5.5 V

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package

1500 mW
*Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Range

DS34F87

Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	4.75 V to 5.25 V
DS35F87	
Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	4.5 V to 5.5 V

Electrical Characteristics over operating range, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW				0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH		2.0			V
IIL	Input Current LOW	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$			-200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			$+50$	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}$			+100	
VIC	Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OL}	Output Voltage LOW	$\mathrm{IOL}=48 \mathrm{~mA}$			0.5	V
V_{OH}	Output Voltage HIGH	$\mathrm{IOH}=-20 \mathrm{~mA}$	2.5			V
los	Output Short Circuit Current (Note 4)	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$	-40		-140	mA
loz	Output Leakage Current Hi-Z State	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}(\mathrm{z})=0.8 \mathrm{~V}$			± 100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}(\mathrm{z})=0.8 \mathrm{~V}$			± 100	
IOL(off)	Output Leakage Current Power Off	$\mathrm{V}_{\mathrm{OH}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			+100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{OL}}=-0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			-100	
$\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {OS }}$	Output Offset Voltage Difference (Note 5)				± 0.4	V
$V_{O D}$	Output Differential Voltage (Note 5)		2.0			V
$\Delta V_{O D}$	Output Differential Voltage Change	.			± 0.4	V
IcCX	Supply Current	Control Leads Gnd			50	mA
ICC		Control Leads 2.0 V			40	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS35F87 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS34F87. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA RS-422/3 for exact conditions.

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tPHL	Propagation Delay Times	High to Low Input			20	ns
tplH		Low to High Input			15	ns
$\mathrm{t}_{\mathrm{THL}}$	Output Transition	High to Low Input			15	ns
${ }_{\text {t }}^{\text {tiH }}$	Times-Differential	Low to High Input			15	ns
$t_{\text {PHZ }}(\mathrm{E})$	Propagation Delay	$R_{L}=200, C_{L}=50 \mathrm{pF}$			25	ns
$t_{\text {PLZ }}(\mathrm{E})$	Control to Output	$R_{L}=200, C_{L}=50 \mathrm{pF}$			25	ns
$\mathrm{tPZH}_{(\mathrm{E})}$		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
tpzL(E)		$\mathrm{R}_{\mathrm{L}}=200, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
SKEW	Output to Output	Load $=($ Note 1)			4.5	ns

Note 1: $C_{L}=50 \mathrm{pF}, \mathrm{V}_{1}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {PULSE }}=0 \mathrm{~V}$ to +3.0 V .

Parameter Measurement Information

TL/F/9618-3
FIGURE 2. TRI-STATE Enable Test Circuit and Waveforms

Parameter Measurement Information (Continued)

TL/F/9618-6

TL/F/9618-7
FIGURE 3. Propagation Delay Times Input to Output Waveforms and Test Circuit

FIGURE 4. Output Transition Times Circuit and Waveforms
Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}} \leq 5.0 \mathrm{~ns}(10 \%$ to $90 \%), \mathrm{Z}_{\mathrm{O}}$ $=50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are IN3064 or equivalent.
Note 4: All diodes are IN914 or equivalent.

DS3587/DS3487 Quad TRI-STATE® Line Driver

General Description

National's quad RS-422 driver features four independent drivers which comply with EIA Standards for the electrical characteristics of balanced voltage digital interface circuits. The outputs are TRI-STATE structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs.

Features

- Four independent drivers

■ TRI-STATE outputs

- Fast propagation times (typ 10 ns)
- TTL compatible
- 5 V supply
- Output rise and fall times less than 15 ns
- Pin compatible with DS8924 and MC3487

Block and Connection Diagrams

TL/FITF80-1

TLFF57800-2
Top View
Order Number DS3587J, DS3487J, DS3487M or DS3487N
See NS Package Number J16A, M16A or N16A

Truth Table

Input	Control Input	Non-Inverting Output	Inverting Output
H	H	H	L
L	H	L	H
X	L	Z	Z

[^4]
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
8 V
$\begin{array}{lr}\text { Input Voltage } & 5.5 \mathrm{~V} \\ \text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} & \\ \quad \text { Cavity Package } & 1509 \mathrm{~mW} \\ \text { Molded DIP Package } & 1476 \mathrm{~mW}\end{array}$
*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate DIP molded package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. Derate SO package $8.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

SO Package
1051 mW Lead Temperature (Soldering, 4 seconds)
$260^{\circ} \mathrm{C}$

	Min	Max	Units
Supply Voltage, V_{CC}			
\quad DS3587	4.5	5.5	V
DS3487	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS3587	-55	+125	${ }^{\circ} \mathrm{C}$
DS3487	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3, 4 and 5)

Symbol	Parameter	Condltions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IL }}$	Input Low Voltage					0.8	V
V_{IH}	Input High Voltage			2.0			V
ILL	Input Low Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$				-200	$\mu \mathrm{A}$
$I_{\text {IH }}$	Input High Current		$\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
V_{CL}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA}$				-1.5	V
V_{OL}	Output Low Voltage	$\mathrm{IOL}=48 \mathrm{~mA}$				0.5	V
V_{OH}	Output High Voltage	$\mathrm{IOH}^{\text {a }}$ - 20 mA		2.5			V
Ios	Output Short-Circuit Current			-40		-140	mA
loz	Output Leakage Current (TRI-STATE)		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
loff	Output Leakage Current Power OFF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	$\mathrm{V}_{0}=6 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=-0.25 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$\left\|\mathrm{V}_{\text {OS }}-\bar{V}_{\text {OS }}\right\|$	Difference in Output Offset Voltage					0.4	V
$\mathrm{V}_{\text {T }}$	Differential Output Voltage			2.0			V
$\left\|V_{T}\right\|-\bar{V}_{T} \mid$	Difference in Differential Output Voltage					0.4	V
Icc	Power Supply Current		Active		50	80	mA
			TRI-STATE		35	60	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpHL	Input to Output			10	15	ns
$t_{\text {PLH }}$	Input to Output			10	15	ns
$t_{\text {THL }}$	Differential Fall Time	,		10	15	ns
${ }_{\text {t }}^{\text {LLH }}$	Differential Rise Time			10	15	ns
$\mathrm{t}_{\mathrm{pHz}}$	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25	ns
tpLZ	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	25	ns
$t_{\text {PZH }}$	Enable to Output	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{L}=50 \mathrm{pF}, \mathrm{S} 1$ Open		11	25	ns
tpzL	Enable to Output	$R_{L}=200 \Omega, C_{L}=50 \mathrm{pF}$, S2 Open		15	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 3487 . All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive, all currents out of device pins as negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Symbols and definitions correspond to EIA RS-422, where applicable.

AC Test Circuits and Switching Time Waveforms

TL/F/5780-5

$\mathbf{S 1}=$ open for $\mathrm{t}_{\mathrm{PZH}}$
S2 $=$ open for tpZL

FIGURE 2. TRI-STATE Enable and Disable Delays

TL/F/5780-7
FIGURE 3. Differential Rise and Fall Times

DS1603/DS3603 TRI-STATE ${ }^{\circledR}$ Dual Receivers

General Description

The DS1603/DS3603 are dual differential TRI-STATE line receivers designed for a broad range of system applications. They feature a high input impedance and low input current which reduces the loading effects on a digital transmission line, making them ideal for use in party line systems and general purpose applications like transducer preamplifiers, level translators and comparators.
The receivers feature a $\pm 25 \mathrm{mV}$ input sensitivity specified over a $\pm 3 \mathrm{~V}$ common mode range. Input protection diodes are incorporated in series with the collectors of the differential stage. These diodes are useful in applications that have multiple $\mathrm{V}_{\mathrm{CC}}+$ supplies or $\mathrm{V}_{\mathrm{CC}}+$ supplies that are turned off thus avoiding signal clamping. In addition, TTL compatible strobe and control lines are provide for flexibility in the application.

The DS1603/DS3603 are pin compatible with the DS75107, DS75108 and DS75208 series of dual line receivers.

Features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- $\pm 25 \mathrm{mV}$ input sensitivity
- $\pm 3 \mathrm{~V}$ input common-mode range
\square High-input inpedance with normal V_{CC}, or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Strobes for channel selection
- TRI-STATE outputs for high speed buses

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}{ }^{+}$)
7 V
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}{ }^{-}$)
-7V
Differential Input Voltage
Common Mode Input Voltage

Strobe Input Voltage
5.5 V

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
308 mW
Molded Package 1207 mW
Lead Temperature (Soldering, 4 sec)
$260^{\circ} \mathrm{C}$
-Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	DS1603			DS3603		
Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{+}$	Min	Nom	Max	Min	Nom	Max
	4.5 V	5 V	5.5 V	4.75	5 V	5.25 V
	-4.5 V	-5 V	-5.5 V	-4.75	-5 V	-5.25 V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$	to	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	to	$+70^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ (Notes 2, 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{1} \mathrm{H}$	High Level Input Current into $1 A, 1 B, 2 A$ or $2 B$	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{ID}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			30	75	$\mu \mathrm{A}$
ILL	Low Level Input Current into $1 A, 1 B, 2 A$ or $2 B$	$\begin{aligned} & V_{C C^{+}}=\operatorname{Max}_{1} V_{C C^{-}}=\operatorname{Max}, \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
${ }_{1} \mathrm{H}$	High Level Input Current into 1 G, 2G or D	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{CC}^{-}}=\mathrm{Max} \end{aligned}$	$\mathrm{V}_{\mathrm{iH}(\mathrm{S})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=\mathrm{Max}^{\mathrm{CCC}^{+}}$			1	mA
ILI	Low Level Input Current into D	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{D})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
IIL	Low Level Input Current into 1 G or 2 G	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{CC}}^{-}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{G})}=0.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 H(\mathrm{D})}=2 \mathrm{~V}$			-40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}$			-1.6	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{C C^{+}}=\mathrm{Min}, \mathrm{~V}_{C C}-=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{LOAD}}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=25 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		2.4			V
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{+} \mathrm{Min}, \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Min}, \\ & \mathrm{ISINK}^{2}=16 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-25 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
IOD	Output Disable Current	$\begin{aligned} & V_{C C^{+}}=M a x, \\ & V_{C C^{-}}=M a x, \\ & V_{I H(D)}=2 V \end{aligned}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$V_{\text {OUT }}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & \left.\mathrm{~V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V} \text { (Note } 4\right) \end{aligned}$		-18		-70	mA
ICCH^{+}	High Logic Level Supply Current from $\mathrm{V}_{\mathrm{CC}}{ }^{+}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & \mathrm{VID}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			28	40	mA
ICCH^{-}	High Logic Level Supply Current from $\mathrm{V}_{\mathrm{CC}}{ }^{-}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}}=\text {Max, } \\ & \mathrm{V}_{\mathrm{ID}}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or D	$\begin{aligned} & V_{C C^{+}}=M i n, V_{C C^{-}}=M i n \\ & I_{N}=-12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1603 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3603. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All current into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tplh(${ }^{\text {d }}$	Propagation Delay Time, Low-toHigh Level, from Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Note 1)		17	25	ns
$\mathrm{tPHL}^{\text {(D) }}$	Propagation Delay Time, High-toLow Level, from Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Note 1)		17	25	ns
$\mathrm{tPLH}^{\text {S }}$)	Propagation Delay Time, Low-toHigh Level, from Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	15	ns
$\mathrm{tPHL}^{\text {(S) }}$	Propagation Delay Time, High-toLow Level, from Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	15	ns
$\mathrm{t}_{1 \mathrm{H}}$	Disable Low-to-High to Output High to Off	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			20	ns
$\mathrm{t}_{0} \mathrm{H}$	Disable Low-to-High to Output Low to Off	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			30	ns
$t_{H 1}$	Disable High-to-Low to Output Off to High	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
t_{HO}	Disable High-to-Low to Output Off to Low	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Typical Application
Line Receiver Used in a Party-Line or Data-Bus System receivers

Line receivers are DS75107/DS75108 or DS3603

Line drivers are SN75109/ μ A75110/DS75110 or DS8831

Schematic Diagram (Note 1)

Note 1: $1 / 2$ of the dual circuit is shown.
Note 2: "Indicates connections common to second half of dual circuit.

DS1650/DS1652/DS3650/DS3652 Quad Differential Line Receivers

General Description

The DS1650/DS3650 and DS1652/DS3652 are TTL compatible quad high speed circuits intended primarily for line receiver applications. Switching speeds have been enhanced over conventional line receivers by the use of Schottky technology, and TRI-STATE ${ }^{\circledR}$ strobing is incorporated offering a high impedance output state for bussed organizations.

The DS1650/DS3650 has active pull-up outputs and offers a TRI-STATE strobe, while the DS1652/DS3652 offers open collector outputs providing implied "AND" operation.
The DS1652/DS3652 can be used for address decoding as illustrated below. All outputs of the DS1652/DS3652 are tied together through a common resistor to 5 V . In this con-

Connection Diagram

Dual-In-Line Package

Order Number DS1650J, DS1652J, DS3650J, DS3652J, DS3650M, DS3652M, DS3650N or DS3652N
See NS Package Number J16A, M16A, or N16A

Truth Table

Input	Strobe	Output	
		DS1650/ DS3650	DS1652/ DS3652
$\mathrm{V}_{\mathrm{D}} \geq 25 \mathrm{mV}$	L	H	Open
	H	Open	Open
$-25 \mathrm{mV} \leq \mathrm{V}_{\mathrm{ID}} \leq 25 \mathrm{mV}$	L	X	X
	H	Open	Open
$\mathrm{V}_{\mathrm{ID}} \leq-25 \mathrm{mV}$	L	L	L
	H	Open	Open

[^5]figuration, the DS1652/DS3652 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.

Features

migh speed

- TTL compatible

Input sensitivity $\pm 25 \mathrm{mV}$

- TRI-STATE outputs for high speed busses
- Standard supply voltages
$\pm 5 \mathrm{~V}$
- Pin and function compatible with MC3450 and MC3452

Typical Applications

Implied "AND" Gating

Wired "OR" Data Selecting Using TRI-STATE Logic

TL/F/5782-3

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifled device please contact the National Semic Office/Distributors for availability and	ces are required, conductor Sales specifications.
Power Supply Voltages	
$V_{\text {cc }}$	+7.0 V_{DC}
$V_{\text {EE }}$	-7.0 V VC
Differential-Mode Input Signal Voltage	
Range, $\mathrm{V}_{\text {IDR }}$	$\pm 6.0 \mathrm{~V}_{\text {DC }}$
Common-Mode Input Voltage Range, $\mathrm{V}_{1} \mathrm{CR}$	A $\pm 5.0 \mathrm{~V}_{\text {DC }}$
Strobe Input Voltage, $\mathrm{V}_{\text {I(}}(\mathrm{S})$	$5.5 \mathrm{~V}_{\mathrm{DC}}$
Storage Temperature Range -	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1509 mW
Molded DIP Package	1476 mW
SO Package	1051 mW

*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}			
DS1650, DS1652	4.5	5.5	$V_{D C}$
DS3650, DS3652	4.75	5.25	$V_{D C}$
Supply Voltage, VEE			
DS1650, DS1652	-4.5	-5.5	$V_{D C}$
DS3650, DS3652	-4.75	-5.25	$V_{D C}$
Operating Temperature, $\mathrm{T}_{\text {A }}$			
DS1650, DS1652	-55	+125	${ }^{\circ} \mathrm{C}$
DS3650, DS3652	0	+70	${ }^{\circ} \mathrm{C}$
Output Load Current, IOL		16	mA
Differential-Mode Input			
Voltage Range, VIDR	-5.0	$+5.0$	$V_{D C}$
Common-Mode Input			
Voltage Range, VICR	-3.0	+3.0	$V_{D C}$
Input Voltage Range			
Input to GND, $\mathrm{V}_{\text {IR }}$	-5.0	+3.0	$V_{D C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{Min} \leq \mathrm{T}_{\mathrm{A}} \leq\right.$ Max, unless otherwise noted) (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
VIS	Input Sensitivity, (Note 5) (Common-Mode Voltage Range $=$ $-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V}$)	$\begin{aligned} & \operatorname{Min} \leq V_{C C} \leq \operatorname{Max} \\ & \operatorname{Min} \geq V_{E E} \geq \operatorname{Max} \end{aligned}$				± 25.0	mV
${ }_{1 H(1)}$	High Level Input Current to Receiver Input	(Figure 5)				75	$\mu \mathrm{A}$
$1 \mathrm{IL}(1)$	Low Level Input Current to Receiver Input	(Figure 6)				-10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}(\mathrm{S})}$	High Level Input Current to Strobe Input	(Figure 3)	$\begin{aligned} & \mathrm{V}_{1 H(S)}=2.4 \mathrm{~V} \\ & \mathrm{DS} 1650, \mathrm{DS} 1652 \end{aligned}$			100	$\mu \mathrm{A}$
			$\begin{aligned} & V_{1 H(S)}=2.4 \mathrm{~V} \\ & \mathrm{DS} 3650, \mathrm{DS} 3652 \end{aligned}$,	40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=\mathrm{V}_{\mathrm{CC}}$			1	mA
IIL(S)	Low Level Input Current to Strobe Input		$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=0.4 \mathrm{~V}$			-1.6	mA
V_{OH}	High Level Output Voltage	(Figure 1)	DS1650, DS3650	2.4			V
ICEX	High Level Output Leakage Current	(Figure 1)	DS1652, DS3652			250	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	(Figure 1)	DS3650, DS3652			0.45	V
			DS1650, DS1652			0.50	
los	Short-Circuit Output Current (Note 4)	(Figure 4)	DS1650/DS3650	-18		-70	mA
loff	Output Disable Leakage Current	(Figure 7)	DS1650			100	$\mu \mathrm{A}$
			DS3650			40	$\mu \mathrm{A}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \mathrm{DC}, \mathrm{Min} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{Max}\right.$, unless otherwise noted) (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ICCH	High Logic Level Supply Current from $V_{C C}$	(Figure 2)			45	60	mA
${ }_{\text {EEEH }}$	High Logic Level Supply Current from $V_{E E}$	(Figure 2)			-17	-30	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS} 3650, \mathrm{DS} 3652$ and the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS1650, DS1652. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.
Note 5: A parameter which is of primary concern when designing with line receivers is, what is the minimum differential input voltage required as the receiver input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, blas currents, network source resistances, and voltage gain. As a design convenience, the DS1650, DS1652 and the DS3650, DS3652 are specified to a parameter called input sensitivity ($V_{I S}$). This parameter takes into consideration input offset currents and bias currents and guarantees a minimum input differential voltage to cause a given output logic state with respect to a maximum source impedance of 200Ω at each input.

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL(D) }}$	High-to-Low Logic Level Propagation	(Figure 8)	DS1650/DS3650		21	25	ns
	Delay Time (Differential Inputs)		DS1652/DS3652		20	25	ns
${ }_{\text {PLLH(D) }}$	Low-to-High Logic Level Propagation		DS1650/DS3650		20	25	ns
	Delay Time (Differential Inputs)		DS1652/DS3652		22	25	ns
${ }^{\text {tPOH(S) }}$	TRI-STATE to High Logic Level Propagation Delay Time (Strobe)	(Figure 9)	DS1650/DS3650		16	21	ns
tPHO(S)	High Logic Level to TRI-STATE Propagation Delay Time (Strobe)		DS1650/DS3650		7	18	ns
${ }_{\text {tPOL(S) }}$	TRI-STATE to Low Logic Level Propagation Delay Time (Strobe)		DS1650/DS3650		19	27	ns
tpLO(S)	Low Logic Level to TRI-STATE Propagation Delay Time (Strobe)		DS1650/DS3650		14	29	ns
$t_{\text {PHL }}(\mathrm{S})$	High-to-Low Logic Level Propagation Delay Time (Strobe)	(Figure 10)	DS1652/DS3652		16	25	ns
${ }^{\text {tPLH(S) }}$	Low-to-High Logic Level Propagation Delay Time (Strobe)		DS1652/DS3652		13	25	ns

	V1		V2		V3		V4		l_{1}
	$\begin{gathered} \text { DS1650/ } \\ \text { DS3650 } \end{gathered}$	$\begin{gathered} \text { DS1652/ } \\ \text { DS3652 } \end{gathered}$	$\begin{gathered} \text { DS1650/ } \\ \text { DS3650 } \end{gathered}$	$\begin{gathered} \text { DS1652/ } \\ \text { DS3652 } \end{gathered}$	$\begin{gathered} \text { DS1650/ } \\ \text { DS3650 } \end{gathered}$	$\begin{gathered} \text { DS1652/ } \\ \text { DS3652 } \end{gathered}$	$\begin{aligned} & \text { DS1650/ } \\ & \text { DS3650 } \end{aligned}$	$\begin{gathered} \text { DS1652/ } \\ \text { DS3652 } \end{gathered}$	
V_{OH}	$\begin{gathered} +2.975 \mathrm{~V} \\ -3.0 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{gathered} +3.0 \mathrm{~V} \\ -2.975 \mathrm{~V} \end{gathered}$		$\begin{gathered} +3.0 \mathrm{~V} \\ \text { GND } \end{gathered}$		$\begin{gathered} \text { GND } \\ -3.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & -0.4 \mathrm{~mA} \\ & -0.4 \mathrm{~mA} \end{aligned}$
$I_{\text {CEX }}$		$\begin{gathered} +2.975 \mathrm{~V} \\ -3.0 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{r} +3.0 \mathrm{~V} \\ -2.975 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} +3.0 \mathrm{~V} \\ \text { GND } \end{gathered}$		$\begin{gathered} \text { GND } \\ -3.0 \mathrm{~V} \\ \hline \end{gathered}$	
VOL	$\begin{gathered} +3.0 \mathrm{~V} \\ -2.975 \mathrm{~V} \end{gathered}$	$\begin{gathered} +3.0 \mathrm{~V} \\ -2.975 \mathrm{~V} \end{gathered}$	$\begin{gathered} +2.975 \mathrm{~V} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} +2.975 \mathrm{~V} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { GND } \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { GND } \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} +3.0 \mathrm{~V} \\ \text { GND } \end{gathered}$	$\begin{aligned} & +3.0 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & +16 \mathrm{~mA} \\ & +16 \mathrm{~mA} \end{aligned}$

Channel A shown under test. Other channels are tested similarly.
FIGURE 1. $I_{\text {CEX }}, V_{O H}$ and $V_{O L}$
TL/F/5782-4

TL/F/5782-5
FIGURE 2. ICCH and IEEH

TL/F/5782-6
FIGURE 3. $I_{I H(S)}$ and $I_{I L(S)}$

Electrical Characteristic Test Circuits (Continued)

TL/F/5782-7
Note: Channel A shown under test, other channels are tested similiarly. Only one output shorted at a time.

FIGURE 4. Ios

TL/F/5782-9
Note: Channel $A(-)$ shown under test, other channels are tested similarly. Devices are tested with V1 from 3V to -3V.

FIGURE 6. IIL

TL/F/5782-8
Note: Channel $A(-)$ shown under test, other channels are tested similarly. Devices are tested with V 1 from 3 V to -3 V .

FIGURE 5. IIH

TL/F/5782-10
Note: Output of Channel A shown under test, other outputs are tested similarly for $\mathrm{V} 1=0.4 \mathrm{~V}$ and 2.4 V .

FIGURE 7. IOFF

AC Test Circuits and Switching Time Waveforms

Note: EIN waveform characteristics: ${ }^{\text {TLLH }}$ and $\mathrm{t}_{\mathrm{THL}} \leq 10 \mathrm{~ns}$ measured 10\% to 90%
PRR $=1 \mathrm{MHz}$
Duty Cycle $=50 \%$

Note: Output of Channel B shown under test, other channels are tested similarly.
S1 at "A" for DS1652/DS3652
S1 at "B" for DS1650/DS3650
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ total for DS1652/DS3652
$C_{L}=50 \mathrm{pF}$ total for DS1650/DS3650
FIGURE 8. Receiver Propagation Dealy $t_{\text {PLH(D) }}$ and $t_{\text {PHL(D) }}$

TL/F/5782-13
Note: Output of Channel B shown under test, other channels are tested similiarly.

	V1	V2	s1	$\mathbf{S 2}$	\mathbf{C}_{L}
$t_{\text {PLO(S) }}$	100 mV	GND	Closed	Closed	15 pF
$t_{\text {POL(S) }}$	100 mV	GND	Closed	Open	50 pF
$\mathrm{t}_{\mathrm{PHO}(\mathrm{S})}$	GND	100 mV	Closed	Closed	15 pF
$\mathrm{t}_{\mathrm{POH}(\mathrm{S})}$	GND	100 mV	Open	Closed	50 pF

C_{L} includes jig and probe capacitance.
$\mathrm{E}_{\text {IN }}$ waveform characteristics: $\mathrm{t}_{\text {TLH }}$ and $\mathrm{t}_{\mathrm{THL}} \leq 10 \mathrm{~ns}$ measured 10% to 90% PRR $=1 \mathrm{MHz}$
Duty Cycle $=50 \%$

FIGURE 9. Strobe Propagation Delay $t_{\text {PLO(}}\left(\mathbf{s}, \mathrm{t}_{\mathrm{POL}(\mathrm{S})}, \mathrm{t}_{\mathrm{PHO}(\mathrm{s})}\right.$ and $\mathrm{t}_{\mathrm{POH}}(\mathrm{s})$

AC Test Circuits and Switching Time Waveforms (Continued)

Note: Output of Channel B shown under test, other channels are tested similarly.

TL/F/5782-19
Note: E_{IN} waveform characteristics:
$t_{\text {TLH }}$ and $\mathrm{t}_{\text {THL }} \leq 10 \mathrm{~ns}$ measured 10% and 90% PRR $=1 \mathrm{MHz}$
Duty Cycle $=500 \mathrm{~ns}$

FIGURE 10. Strobe Propagation Delay $\mathrm{t}_{\mathrm{PLH}}(\mathrm{S})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{S})$

Schematic Diagrams

DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The DS1691A/DS3691 are low power Schottky TTL line drivers designed to meet the requirements of EIA standards RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. A mode control input provides a choice of operation either as 4 single-ended line drivers or 2 differential line drivers. A rise time control pin allows the use of an external capacitor to slow the rise time for suppression of near end crosstalk to other receivers in the cable. Rise time capacitors are primarily intended for waveshaping output signals in the single-ended driver mode. Multipoint applications in differential mode with waveshaping capacitors is not allowed.
With the mode select pin low, the DS1691A/DS3691 are dual-differential line drivers with TRI-STATE outputs. They feature $\pm 10 \mathrm{~V}$ output common-mode range in TRI-STATE mode and $O \mathrm{~V}$ output unbalance when operated with $\pm 5 \mathrm{~V}$ supply.

Features

- Dual RS-422 line driver with mode pin low, or quad RS423 line driver with mode pin high
\square TRI-STATE outputs in RS-422 mode
- Short circuit protection for both source and sink outputs
- Outputs will not clamp line with power off or in TRISTATE
- 100Ω transmission line drive capability
- Low ICC and IEE power consumption

RS-422	$18 \mathrm{~mA} /$ driver typ
RS-423	$28 \mathrm{~mA} /$ driver typ

■ Low current PNP inputs compatible with TTL, MOS and CMOS

- Pin compatible with AM26LS30

Connection Diagram

With Mode Select LOW
 (RS-422 Connection)

Truth Table

Operation	Inputs			Outputs	
	Mode	$\mathbf{A}(\mathbf{D})$	$\mathbf{B}(\mathbf{C})$	$\mathbf{A}(\mathbf{D})$	$\mathbf{B}(\mathbf{C})$
RS-422	0	0	0	0	1
	0	0	1	TRI-STATE	TRI-STATE
	0	1	0	1	0
	0	1	1	TRI-STATE	TRI-STATE
RS-423	$\mathbf{1}$	0	0	0	0
	1	0	1	0	1
	1	1	0	1	0
	1	1	1	1	1

Order Number DS1691AJ, DS3691J, DS3691M, DS3691N or DS3691V
See NS Package Number J16A, M16A, N16A or V20A

With Mode Select HIGH
(RS-423 Connection)

TL/F/5783-18
Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage

VCC	7 V
VEE	-7 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1509 mW
Molded DIP Package	1476 mW
SO Package	1051 mW
Input Voltage	15 V
Output Voltage (Power OFF)	$\pm 15 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$

*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. Derate SO package $8.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage DS1691A			
$V_{\text {CC }}$	4.5	5.5	V
$V_{E E}$	-4.5	-5.5	V
DS3691			
$V_{\text {CC }}$	4.75	5.25	V
$V_{E E}$	-4.75	-5.25	V
Temperature $\left(T_{A}\right)$			
DS1691A	-55	+125	${ }^{\circ} \mathrm{C}$
DS3691	0	+70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2, 3, 4 and 5)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
RS-422 CONNECTION, $\mathrm{V}_{\text {EE }}$ CONNECTION TO GROUND, MODE SELECT $\leq 0.8 \mathrm{~V}$							
$\mathrm{V}_{1} \mathrm{H}$	High Level Input Voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.8	V
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			1	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{l}_{\mathrm{N}}=-12 \mathrm{~mA}$				-1.5	V
$\frac{V_{0}}{V_{0}}$	Differential Output Voltage$V_{A, B}$	$R_{L}=\infty$	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}$		3.6	6.0	V
			$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$		-3.6	-6.0	V
$\frac{V_{T}}{V_{T}}$	Differential Output Voltage $V_{A, B}$	$\begin{aligned} & R_{L}=100 \Omega \\ & V_{C C} \geq 4.75 \mathrm{~V} \end{aligned}$	$V_{\text {IN }}=2 \mathrm{~V}$	2	2.4		V
			$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-2	-2.4		V
$\mathrm{V}_{\mathrm{OS}}, \overline{\mathrm{v}_{\text {OS }}}$	Common-Mode Offset Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$			2.5	3	V
$\left\|V_{T}\right\|-\left\|\bar{V}_{T}\right\|$	Difference in Differential Output Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$\left\|\mathrm{V}_{\mathrm{OS}}\right\|-\left\|\overline{\mathrm{V}_{O S}}\right\|$	Difference in CommonMode Offset Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$V_{\text {SS }}$	$\left\|V_{T}-\overline{V_{T}}\right\|$	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{CC}} \geq 4.75 \mathrm{~V}$		4.0	4.8		V
$V_{\text {CMR }}$	Output Voltage CommonMode Range	$\mathrm{V}_{\text {DISABLE }}=2.4 \mathrm{~V}$		± 10			V
${ }_{1 \times A}$	Output Leakage Current Power OFF	$V_{C C}=0 \mathrm{~V}$	$\mathrm{V}_{\text {CMR }}=10 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }^{\text {X }}$ X			$\mathrm{V}_{\text {CMR }}=-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
lox	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{\text {CMR }} \leq 10 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CMR }} \geq-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
ISA	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	$\mathrm{V}_{\text {OA }}=6 \mathrm{~V}$		80	150	mA
			$\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$		-80	-150	mA
$I_{\text {SB }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\mathrm{OB}}=6 \mathrm{~V}$		80	150	mA
ICC	Supply Current				18	30	mA

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RS-422 CONNECTION, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, MODE SELECT $=0.8 \mathrm{~V}$						
t_{r}	Output Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
t_{f}	Output Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
$t_{\text {PDH }}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
$t_{\text {PDL }}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
$t_{\text {PZL }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$ (Figure 4)		250	350	ns
$t_{\text {PZH }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$ (Figure 4)		180	300	ns
$t_{\text {PLZ }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$ (Figure 4)		180	300	ns
tPHZ	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$ (Figure 4)		250	350	ns

DC Electrical Characteristics (Notes 2, 3, 4 and 5)

Symbol	Parameter	Condltions		M 1 n	Typ	Max	Units
RS-423 CONNECTION, $\left\|\mathrm{V}_{\text {CC }}\right\|=\left\|\mathrm{V}_{\text {EE }}\right\|$, MODE SELECT $\geq 2 \mathrm{~V}$							
V_{IH}	High Level Input Voltage			2			V
V_{IL}	Low Level Input Voltage					0.8	V
IIH	High Level Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			1	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$				-1.5	V
V_{O}	Output Voltage	$\begin{aligned} & R_{\mathrm{L}}=\infty,(\text { Note } 6) \\ & V_{C C} \geq 4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$	4.0	4.4	6.0	V
\bar{V}_{0}			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	V
V_{T}	Output Voltage	$\begin{aligned} & R_{\mathrm{L}}=450 \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	3.6	4.1		V
$\overline{V_{T}}$			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-3.6	-4.1		V
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|V_{C C}\right\|=\left\|V_{E E}\right\|=4.75 \mathrm{~V}, \mathrm{R}_{L}=450 \Omega$			0.02	0.4	V
$1 x^{+}$	Output Leakage Power OFF	$V_{C C}=V_{E E}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
$1 x^{-}$	Output Leakage Power OFF	$V_{C C}=V_{E E}=0 V$	$V_{0}=-6 \mathrm{~V}$		-2	-100	$\mu \mathrm{A}$
IS^{+}	Output Short Circuit Current	$V_{O}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		-80	-150	mA
Is^{-}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		80	150	mA
ISLEW	Slew Control Current				± 140		$\mu \mathrm{A}$
ICC	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
IEE	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1691A and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3691. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}$ and V_{EE} as listed in operating conditions.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltagos are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Symbols and definitions correspond to EIA RS-422 and/or RS-423 where applicable.
Note 6: At $-55^{\circ} \mathrm{C}$, the output voltage is +3.9 V minimum and -3.9 V minimum.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
RS-423 CONNECTION, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EE }}-5 \mathrm{~V}, \mathrm{MODE} \mathrm{SELECT}=2.4 \mathrm{~V}$						
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$ (Figure 2)		120	300	ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$ (Figure 2)		120	300	ns
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$ (Figure 3)		3.0		$\mu \mathrm{s}$
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \mathrm{C} \mathrm{C}=50 \mathrm{pF}$ (Figure 3)		3.0		$\mu \mathrm{s}$
t_{rc}	Rise Time Coefficient	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$ (Figure 3)		0.06		$\mu \mathrm{s} / \mathrm{pF}$
tPDH	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$ (Figure 2)		180	300	ns
tpDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$ (Figure 2)		180	300	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Differential Connection

FIGURE 2. RS-423 Connection

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5783-7

TL/F/5783-8
FIGURE 3. Rise Time Control for RS-423

TL/F/5783-9
FIGURE 4. TRI-STATE Delays

Switching Waveforms

TL/F/5783-11

FIGURE 5. Typical Output Voltage

Typical Application Information

Fully Loaded RS-422 Interface

RS-422 Point to Point Application

Fully Loaded RS-423 Interface

TL/F/5783-15
Differential Application with Rise Time Control

*Note: Controlled edge allows longer stub lengths. Multiple Drivers are NOT allowed.

Typical Application Information (Continued)

Typical Rise Time Control Characteristics (RS-423 Mode)

TL/F/5783-12

National
Semiconductor

DS1692/DS3692 TRI-STATE® Differential Line Drivers

General Description

The DS1692/DS3692 are low power Schottky TTL line drivers electrically similar to the DS1691A/DS3691 but tested to meet the requirements of MIL-STD-188-114A (see Application Note AN-216). MIL-STD-188-114A type 1 driver specifications can be met by adding an external three resistor voltage divider to the output of the DS3692/1692. The DS3692/1692 feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.
With the mode select pin low, the DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature $\pm 10 \mathrm{~V}$ output common-mode range in TRI-STATE and 0 V output unbalance when operated with $\pm 5 \mathrm{~V}$ supply.

Multipoint applications in differential mode with waveshaping capacitors is not allowed.

Features

- Short circuit protection for both source and sink outputs
- 100Ω transmission line drive capability
- Low ICC and IEE power consumption

Differential mode
$28 \mathrm{~mA} /$ driver typ
m Low current PNP inputs compatible with TTL, MOS and CMOS

- Adaptable as MIL-STD-188-114A type 1 driver

Logic Diagram ($1 / 2$ Circuit Shown $)$

TL/F/5784-1

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage

VCC	7 V
VEE $_{\text {EE }}$	-7 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1509 mW
\quad Molded Package	1476 mW
Input Voltage	15 V
Output Voltage (Power OFF)	$\pm 15 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec.)	$260^{\circ} \mathrm{C}$

*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$; derate molded package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage			
DS1692			
$V_{C C}$	4.5	5.5	V
Vee	-4.5	-5.5	V
DS3692			
V_{CC}	4.75	5.25	V
$V_{\text {EE }}$	-4.75	-5.25	V
Temperature (T_{A})			
DS1692	-55	+125	${ }^{\circ} \mathrm{C}$
DS3692	0	+ 70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics DS1692/DS3692 (Notes 2, 3 and 4)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
DS1692, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \%, \mathrm{DS3692}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {EE }}$ CONNECTION TO GROUND, MODE SELECT $\leq 0.8 \mathrm{~V}$							
V_{0}	Differential Output Voltage $V_{A, B}$	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$	2.5	3.6		V
Vo			$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-2.5	-3.6		V
V_{T}	Differential Output Voltage $\mathrm{V}_{\mathrm{A}, \mathrm{B}}$	$\begin{aligned} & R_{L}=100 \Omega \\ & V_{C C} \geq 4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}$	2	2.6		V
$\overline{V_{T}}$			$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-2	-2.6		V
$\mathrm{V}_{\text {OS }}, \overline{\mathrm{V}_{\text {OS }}}$	Common-Mode Offset Voltage	$R_{L}=100 \Omega$			2.5	3	V
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Difference in Differential Output Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$\left\|\mathrm{V}_{\mathrm{OS}}\right\|-\left\|\overline{\mathrm{v}_{\mathrm{OS}}}\right\|$	Difference in CommonMode Offset Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$\mathrm{V}_{\text {SS }}$	$\left\|\mathrm{V}_{\mathrm{T}}-\overline{\mathrm{V}_{T}}\right\|$	$R_{L}=100 \Omega, V_{C C} \geq 4.75 \mathrm{~V}$		4.0	4.8		V
lox	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{O}} \leq-10 \mathrm{~V}$			-0.002	-0.15	mA
		$\mathrm{V}_{\mathrm{O}} \geq 15 \mathrm{~V}$			0.002	0.15	mA
$I_{\text {SA }}$	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	$V_{O A}=6 \mathrm{~V}$		80	150	mA
			$\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$		-80	-150	mA
$\mathrm{I}_{\text {SB }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\mathrm{OB}}=6 \mathrm{~V}$		80	150	mA
ICC	Supply Current				18	30	mA
DS $1692, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{DS} 3692, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \pm 5 \%$, MODE SELECT $\leq 0.8 \mathrm{~V}$							
V_{O}	Differential Output Voltage $\mathrm{V}_{\mathrm{A}, \mathrm{B}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	7	8.5		V
Vo			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-7	-8.5		V
$\frac{V_{T}}{V_{T}}$	Differential Output Voltage $\mathrm{V}_{\mathrm{A}, \mathrm{B}}$	$R_{L}=200 \Omega$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	6	7.3		V
			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-6	-7.3		V
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|\mathrm{V}_{\mathrm{CC}}\right\|=\left\|\mathrm{V}_{\mathrm{EE}}\right\|, \mathrm{R}_{\mathrm{L}}=200 \Omega$			0.02	0.4	V
lox	TRI-STATE Output Current		$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$		0.002	0.15	mA
			$\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		-0.002	-0.15	mA
$\begin{aligned} & \mathrm{Is}^{+} \\ & \mathrm{IS}^{-} \end{aligned}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		80	150	mA
ISLEW	Slew Control Current				± 140		$\mu \mathrm{A}$
ICC	Positive Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
$\mathrm{I}_{\text {EE }}$	Negative Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA

Electrical Characteristics (Notes 2 and 3) $\mathrm{V}_{\text {EE }} \leq \mathrm{OV}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.8	V
${ }_{\text {IIH }}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			1	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$				-1.5	V
$\begin{aligned} & I_{X A} \\ & I_{X B} \end{aligned}$	Output Leakage Current Power OFF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$		0.01	0.15	mA
			$V_{0}=-15 V$		-0.01	-0.15	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{MODE}$ SELECT $=0.8 \mathrm{~V}$						
t_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
t_{f}	Differential Output Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
tPDH	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
$t_{\text {PDL }}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		120	200	ns
$\mathrm{t}_{\mathrm{PZL}}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		180	250	ns
$\mathrm{t}_{\text {PZH }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		180	250	ns
$t_{\text {PLZ }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		80	150	ns
$\mathrm{t}_{\text {PHZ }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		80	150	ns
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{MODE}$ SELECT $=0.8 \mathrm{~V}$						
t_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		190	300	ns
t_{f}	Differential Output Fall Time	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		190	300	ns
tPDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		190	300	ns
$\mathrm{t}_{\mathrm{PDDH}}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 1)		190	300	ns
$\mathrm{t}_{\text {PZL }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		180	250	ns
$t_{\text {PZ }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		180	250	ns
tplz	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		80	150	ns
$t_{\text {PHZ }}$	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Figure 2)		80	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1692 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3692. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}$ and V_{EE} as listed in operating conditions.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

TL/F/5784-3
FIGURE 1. Differential Connection

Switching Waveforms

TL/F/5784-7

DS16F95/DS36F95

RS-485/RS-422 Differential Bus Transceiver

General Description

The DS16F95/DS36F95 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A.

The DS16F95/DS36F95 offers improved performance due to the use of state-of-the art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS16F95/DS36F95 features lower power, extended temperature range, and improved specifications.
The DS16F95/DS36F95 combines a TRI-STATE® differential line driver and a differential input line receiver, both of which operate from a single 5.0 V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.

Connection Diagram

TL/F/9629-1
Top View
Order Number DS16F95J, DS36F95J See NS Package Number J08A

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting and thermal shutdown for protection from line fault conditions.
The DS16F95/DS36F95 can be used in transmission line applications employing the DS96F172 and the DS96F174 quad differential line drivers and the DS96F173 and DS96F175 quad differential line receivers.

Features

■ Military temperature range

- Meets EIA Standard RS-422A and RS-485

Meets SCSI specifications

- Designed for multipoint transmission
- Wide positive and negative input/output bus voltage ranges
a Thermal shutdown protection
- Driver positive and negative current-limiting
- High impedance receiver input

Receiver input hysteresis of 50 mV typical

- Operates from single 5.0 V supply
- Low power 28 mA max
a Pin compatible with DS3695 and SN75176A

Function Tables

Driver			
Driver Input	Enable	Outputs	
DI	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

Receiver

Differential Inputs	Enable	Output
$\mathbf{A - B}$	$\overline{\mathbf{R E}}$	\mathbf{R}
$\mathrm{V}_{\text {ID }} \geq 0.2 \mathrm{~V}$	L	H
$\mathrm{V}_{\text {ID }} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z

$H=$ High Level
L = Low Level
$X=$ Immateria
$Z=$ High Impedance (Off)

Driver Electrical Characteristics Over recommended operating conditions, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH			2.0			V
$\mathrm{V}_{\text {LL }}$	Input Voltage LOW					0.8	v
V_{OH}	Output Voltage HIGH	$\mathrm{lOH}^{\prime}=-55 \mathrm{~mA}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	3.0			V
V_{OL}	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=55 \mathrm{~mA}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			2.0	V
$\mathrm{V}_{1 \mathrm{C}}$	Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.3	V
${ }^{\left\|V_{\text {OD1 }}\right\|}$	Differential Output Voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$				6.0	v
\|VOD2 ${ }^{\text {a }}$	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 1		2.0	2.25		v
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$, Figure 1		1.5	2.0		
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in Magnitude of Differential Output Voltage (Note 4)	$\mathrm{R}_{\mathrm{L}}=54 \Omega \text { or } 100 \Omega,$ Figure 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.2	v
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.4	
$\mathrm{V}_{\text {OC }}$	Common Mode Output Voltage (Note 5)					3.0	v
$\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$	Change in Magnitude of Common Mode Output Voltage (Note 4)					± 0.2	V
10	Output Current (Note 8) (Includes Receiver l_{1})	Output Disabled	$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}$			1.0	mA
			$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$			-0.8	
IIH	Input Current HIGH	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
IL	Input Current LOW	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current (Note 9)	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$				-250	mA
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-150	
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				150	
		$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}$				250	
Icc	Supply Current (Total Package)	No Load	Outputs Enabled			28	mA
1 ccx			Outputs Disabled			25	

Driver Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tD	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 3	8.0	15	20	ns
${ }_{\text {tTD }}$	Differential Output Transition Time		8.0	15	22	ns
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 4	6.0	12	16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output		6.0	12	16	ns
t_{ZH}	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		25	32	ns
tzL	Output Enable Time to Low Level	$R_{L}=110 \Omega$, Figure 6		25	32	ns
$t_{H Z}$	Output Disable Time from High Level	$R_{L}=110 \Omega$, Figure 5		20	25	ns
$t_{L Z}$	Output Disable Time from Low Level	$R_{L}=110 \Omega$, Figure 6		20	25	ns
tizL	Output Disable Time from Low Level with Load Resistor to GND (Note 10)	Load per Figure 5 Timing per Figure 6		300		ns
$t_{\text {SKEW }}$	Driver Output to Output	$\mathrm{R}_{\mathrm{L}}=60 \Omega$		1.0	4.0	ns

Note 10: For more information see Applications Bulletin AB100.

Receiver Electrical Characteristics

Over recommended operating conditions, unless otherwise specified

Receiver Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & V_{I D}=0 \mathrm{~V} \text { to }+3.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Figure } 7 \end{aligned}$	14	19	24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output		14	19	24	ns
t_{ZH}	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 8		10	16	ns
t_{ZL}	Output Enable Time to Low Level			12	18	ns
t_{HZ}	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 8		12	20	ns
tLz	Output Disable Time from Low Level			12	18	ns
$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$	Pulse Width Distortion (SKEW)	Figure 7		1.0	4.0	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 16 F 95 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS36F95. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: $\Delta\left|V_{O D}\right|$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}$ and $V_{O C}$, respectively, that occur when the input is changed from a high level to a low level. Note 5: In EIA Standards RS-422A and RS-485, $V_{O C}$, which is the average of the two output voltages with respect to ground, is called output offset voltage, $V_{O S}$. Note 6: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.
Note 7: Hysteresis is the difference between the positive-going input threshold voltage, $\mathrm{V}_{\mathrm{T}}+$, and the negative-going input threshold voltage, V_{T}-.
Note 8: Refer to EIA Standard RS-485 for exact conditions.
Note 9: Only one output at a time should be shorted.

Parameter Measurement Information

TL/F/9629-2
FIGURE 1. Driver $V_{O D}$ and $V_{O C}$

TL/F/9629-4

TL/F/9629-3

TL/F/9629-5
FIGURE 3. Driver Differential Output Delay and Transition Times

Parameter Measurement Information (Continued)

FIGURE 4. Driver Propagation Times

FIGURE 5. Driver Enable and Disable Times ($\mathrm{t}_{\mathrm{zH}}, \mathrm{t}_{\mathrm{HZ}}$)

TL/F/9629-10
FIGURE 6. Driver Enable and Disable Times ($\left.t_{z L}, t_{L Z}, t_{L Z L}\right)$

TL/F/9629-13

TL/F/9629-12
FIGURE 7. Receiver Propagation Delay Times

Parameter Measurement Information (Continued)

FIGURE 8. Receiver Enable and Disable Times
Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. Note 2: C_{L} includes probe and stray capacitance.
Note 3: DS16F95/DS36F95 Driver enable is Active-High
Note 4: All diodes are 1N916 or equivalent.

Typical Application

TL/F/9629-19

Note:

The line should be terminated at both ends in its characteristic impedance, typically 120Ω
Stub lengths off the main line should be kept as short as possible.

DS3695/DS3695T/DS3696/DS3696T/DS3697/DS3698 Multipoint RS485/RS422 Transceivers/Repeaters

General Description

The DS3695, DS3696, DS3697 and DS3698 are high speed differential TRI-STATE ${ }^{(1}$ bus/line transceivers/repeaters designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission.
The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12 V to -7 V . Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696 and DS3698 provide an output pin TS (thermal shutdown) which reports the occurrence of the thermal shutdown of the device. This is an "open collector" pin with an internal $10 \mathrm{k} \Omega$ pull-up resistor. This allows the line fault outputs of several devices to be wire OR-ed.
Both $A C$ and $D C$ specifications are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with. RS-422
- 15 ns driver propagation delays with 2 ns skew (typical)
- Single +5 V supply
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
■ 70 mV typical receiver hysteresis

Connection and Logic Diagrams

Top View

TL/F/10408-12
Top Vlew

TL/F/10408~14

Order Number DS3695J, DS3696J, DS3697J, DS3698J, DS3695N, DS3696N, DS3697N, DS3698N, DS3695TN, DS3696TN, DS3695TJ or DS3696TJ

See NS Package Number J08A or N08E
NOTE: TS pin was $\overline{\mathrm{FF}}$ (Line Fault) in previous datasheets.

Absolute Maximum Ratings (Note 1)					
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ N Package		1.07 W mW (Note 4)	
		Storage Temperature Range		$5^{\circ} \mathrm{C}$ to	$150^{\circ} \mathrm{C}$
Supply Voltage, VCC	7 V	Lead Temperature (Soldering,			$260^{\circ} \mathrm{C}$
Control Input Voltages	7 V				
Driver Input Voltage	7 V	Recommended 0	,		
Driver Output Voltages	+15V/-10V	Conditions			
Receiver Input Voltages (DS3695, DS3696)	+15V/-10V	Supply Voltage, VCC	$\begin{aligned} & \text { Min } \\ & 4.75 \end{aligned}$	$\begin{gathered} \text { Max } \\ 5.25 \end{gathered}$	Units
Receiver Common Mode Voltage (DS3697, DS3698)	$\pm 25 \mathrm{~V}$	Bus Voltage Operating Free	-7	+12	v
Receiver Output Voltage	5.5 V	Commercial	-	+ 70	${ }^{\circ} \mathrm{C}$
		Industrial	-40	$+85$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Notes $2 \& 3$)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$\mathrm{V}_{\text {OD1 }}$	Differential Driver Output Voltage (Unloaded)		$\mathrm{I}_{0}=0$				5	V	
$\mathrm{V}_{\text {OD2 }}$	Differential Driver Output Voltage (with Load)		(Figure 1)	$\mathrm{R}=50 \Omega$; $\mathrm{RS}-422$) (Note 5)	2			V	
			$\mathrm{R}=27 \Omega$; (RS-485)	1.5			V		
$\Delta V_{O D}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States			(Figure 1)	$R=27 \Omega$			0.2	V
$\mathrm{V}_{\text {OC }}$	Driver Common Mode Output Voltage						3.0	V	
$\Delta\left\|\mathrm{V}_{\text {OCl }}\right\|$	Change in Magnitude of Driver Common Mode Output Voltage for Complementary Output States						0.2	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage		$\begin{aligned} & \mathrm{DE}, \\ & \mathrm{E}, \mathrm{E} \end{aligned}$		2			V	
$V_{\text {IL }}$	Input Low Voltage						0.8	V	
V_{CL}	Input Clamp Voltage			$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-1.5	V	
I/L	Input Low Current			$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
$\mathrm{IH}^{\text {H }}$	Input High Current			$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$	
I_{N}	Input Current	DO/RI, $\overline{\mathrm{DO}} / \overline{\mathrm{RI}}$ RI, $\overline{R I}$	$\begin{aligned} & V_{C C}=O V \text { or } 5.25 \mathrm{~V} \\ & D E / E=O V \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$			+1.0	mA	
				$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$			-0.8	mA	
lozd	TRI-STATE Current DS3697 \& DS3698	DO, $\overline{\text { DO }}$	$\begin{aligned} & V_{C C}=O V \text { or } 5.25 \mathrm{~V}, \\ & -7 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+12 \mathrm{~V} \end{aligned}$	$E=O V$			± 100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		-0.2		+0.2	V	
$\Delta V_{\text {TH }}$	Receiver Input Hysteresis		$V_{C M}=0 \mathrm{~V}$			70		mV	
V_{OH}	Receiver Output High Voltage		$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.4			V	
V_{OL}	Output Low Voltage	RO	$\mathrm{IOL}=16 \mathrm{~mA}($ Note 5)				0.5	V	
		LF	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.45	V	
lozR	OFF-State (High Impedance) Output Current at Receiver		$\begin{aligned} & V_{C C}=M a x \\ & 0.4 V \leq V_{O} \leq 2.4 V \end{aligned}$				± 20	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		12			$\mathrm{k} \Omega$	
ICC	Supply Current		No Load (Note 5)	Driver Outputs Enabled		42	60	mA	
				Driver Outputs Disabled		27	40	mA	

Electrical Characteristics (Continued)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Notes $2 \& 3$)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
IOSD	Driver Short-Circuit Output Current	$V_{O}=-7 \mathrm{~V}($ Note 5)			-250	mA
		$V_{O}=+12 \mathrm{~V}($ Note 5)			+250	mA
IOSR	Receiver Short-Circuit Output Current	$V_{\mathrm{O}}=$ OV	-15		-85	mA

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Derate linearly at $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 570 mW at $70^{\circ} \mathrm{C}$.
Note 5: All limits for which Note 5 is applied must be derated by 10% for DS3695T and DS3696T. Other parameters remain the same for this extended temperature range device $\left(-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\right)$.
Receiver Switching Characteristics (Figures 2,3 and 4)

Symbol	Conditions	Min	Typ	Max	Units
tplH	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~S} 1 \text { and } \mathrm{S} 2 \\ & \text { Closed } \end{aligned}$	15	25	37	ns
$t_{\text {PHL }}$		15	25	37	ns
$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$		0			ns
tplz	$\mathrm{CL}=15 \mathrm{pF}$, S2 Open	5	12	16	ns
$\mathrm{t}_{\mathrm{PHZ}}$	$\mathrm{CL}=15 \mathrm{pF}, \mathrm{S} 1$ Open	5	12	16	ns
tpZL	$\mathrm{CL}=15 \mathrm{pF}$, S2 Open	7	15	20	ns
tpZH	$\mathrm{CL}=15 \mathrm{pF}$, S1 Open	7	15	20	ns

Driver Switching Characteristics (Figures 5, 6 and 7)

Symbol	Conditions	Min	Typ	Max	Units
SINGLE ENDED CHARACTERISTICS					
tpLH	$\mathrm{R}_{\text {LDIFF }}=60 \Omega$	9	15	22	ns
$\mathrm{t}_{\mathrm{pHL}}$	$\mathrm{CLL}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	9	15	22	ns
$t_{\text {SKEW }}\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$			2	8	ns
tplz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Open	7	15	30	ns
$t_{\text {PHZ }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{S} 1$ Open	7	15	30	ns
tpZL	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S2 Open	30	35	50	ns
$\mathrm{tpZH}^{\text {l }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 1$ Open	30	35	50	ns

Differential Switching Characteristics (Figures 5 and 8)

Symbol	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$R_{\mathrm{L} I F F}=60 \Omega$ $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	6	10	18	ns

AC Test Circuits and Switching Waveforms

TL/F/10408-15
FIGURE 1. Driver $V_{O D}$ and $V_{O C}$

FIGURE 2. Receiver Propagation Delay Test Circuit

TL/F/10408-4
Note: Differential input voltage may be realized by grounding $\overline{\mathrm{RI}}$ and pulsing RI between +2.5 V and -2.5 V .
FIGURE 3. Receiver Input-to-Output Propagation Delay Timing

TL/F/10408-5
FIGURE 4. Recelver Enable/Disable Propagation Delay Timing

AC Test Circuits and Switching Waveforms (Continued)

TL/F/10408-7

TL/F/10408-6
Note: Unless otherwise specified the switches are closed.
FIGURE 5. Driver Propagation Delay and Transition Time Test Circuits

TL/F/10408-8
FIGURE 6. Driver Input-to-Output Propagation Delay Timing (Single-Ended)

FIGURE 7. Driver Enable/Disable Propagation Delay Timing

FIGURE 8. Driver Differential Transition Timing

Function Tables

Inputs			Thermal Shutdown	Outputs		
$\overline{\mathrm{RE}}$	DE	DI		$\overline{\text { DO }}$	DO	$\begin{gathered} \overline{\mathrm{TS}}^{*} \\ \text { (DS3696 Only) } \end{gathered}$
X	1	1	OFF	0	1	H
X	1	0	OFF	1	0	H
X	0	x	OFF	Z	Z	H
X	1	X	ON	Z	Z	L

DS3695/DS3696 Receiving

Inputs			Outputs	
$\overline{\mathbf{R E}}$	DE	RI- $\overline{\mathbf{R I}}$	RO	$\overline{\mathbf{L F}}^{*}$ (DS3696 Only)
0	0	$2+0.2 \mathrm{~V}$	1	H
0	0	$\leq-0.2 \mathrm{~V}$	0	H
1	0	X	Z	H

DS3697/DS3698

Inputs		Thermal Shutdown	Outputs			
E	$\mathbf{R I} \cdot \overline{\mathbf{R I}}$		$\overline{\text { DO }}$	DO	$\begin{gathered} \text { RO/DI } \\ \text { (DS3697 Only) } \end{gathered}$	$\begin{gathered} \overline{\mathrm{TS}} * \\ \text { (DS3698 Only) } \end{gathered}$
1	$\geq+0.2 \mathrm{~V}$	OFF	0	1	1	H
1	$\leq-0.2 \mathrm{~V}$	OFF	1	0	0	H
0	X	OFF	Z	Z	Z	H
1	$z+0.2 \mathrm{~V}$	ON	Z	Z	1	L
1	$\leq-0.2 \mathrm{~V}$	ON	Z	Z	0	L

X-Don't care condition
Z-High impedance state
" $\overline{T S}$ is an "open collector" output with an on-chip $10 \mathrm{k} \Omega$ pull-up resistor.

Typical Application

Typical Performance Characteristics

Typical Performance Characteristics (Continuod)

Driver Short
Circult Current

Recelver V_{OL} vs $\mathrm{IOL}_{\mathrm{OL}}$ vs Temperature

blo-OUTPUT LOW CURRENT-mA

Supply Current vs Power Supply Voltage

Receiver V_{OH} vs $\mathrm{IOH}_{\mathrm{OH}}$ vs Temperature

Receiver V_{OL} vs

Receiver Short
Circuit Current vs Temperature

Driver Icc vs Switching Frequency

Receiver V_{OH} vs
$\mathrm{IOH}_{\mathrm{O}}$ vs VCC

Recelver Short
Circuit Current vs Power Supply

TL/H/10408-17

Typical Performance Characteristics (Continued)

Receiver Inverting Input Current vs Power Supply Voltage

Receiver Non-Inverting Input Current vs Power Supply Voltage

Hysteresis and Differential Transition Voltage
vs Temperature

Hysteresis and Differential Transition Voltage vs VCC

TL/H/10408-18

DS3695A/DS3695AT/DS3696A/DS3696AT Multipoint RS485/RS422 Transceivers

General Description

The DS3695A and DS3696A are high speed differential TRI-STATE ${ }^{\circledR}$ bus/line transceivers designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission. In addition they are compatible with requirements of RS-422.

The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12 V to -7 V . Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696A provides an output pin (TS) which reports the thermal shutdown of the device. TS is an "open collector" pin with an internal $10 \mathrm{k} \Omega$ pull-up resistor. This allows the TS outputs of several devices to be wire OR-ed.

Both $A C$ and DC specifications are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 10 ns driver propagation delays (typical)

■ Single +5 V supply

- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus
- Thermal shutdown protection

■ High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down

- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
■ 70 mV typical receiver hysteresis

Connection and Logic Diagram

Molded Package, Small Outline (M)

$\overline{\mathrm{TS}}$ goes low upon thermal shutdown
Note: $\overline{\mathrm{S}}$ was $\overline{\mathrm{FF}}$ (Line Fault) on previous datasheets.

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, VCC	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Free Air Temp. (T_{A})			
Commercial (DS3695AM)	0	+70	${ }^{\circ} \mathrm{C}$
Industrial (DS3695ATM)	-40	+85	${ }^{\circ} \mathrm{C}$
Commercial (DS3696AM)	0	+70	${ }^{\circ} \mathrm{C}$
Industrial (DS3696ATM)	-40	+85	${ }^{\circ} \mathrm{C}$

Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$

M Package
Storage Temp. Range
Lead Temp. (Soldering 4 seconds)

630 mW (Note 4)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, VCC
Control Input Voltages
7 V
Driver Input Voltage
$+15 \mathrm{~V}-10 \mathrm{~V}$
$+15 \mathrm{~V} /-10 \mathrm{~V}$
5.5 V

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$\mathrm{V}_{\text {OD1 }}$	Differential Driver Output Voltage (Unloaded)		$10=0$				5	V	
$\mathrm{V}_{\text {OD2 }}$	Differential Driver Output Voltage (with Load)		(Figure 1)	$R=50 \Omega ;$ (RS-422) (Note 5)	2			V	
			$R=27 \Omega$ (RS-485)	1.5			V		
$\Delta V_{O D}$	Change in Magnitude of Driver Differential Output Voltage For Complementary Output States			(Figure 1)	$R=27 \Omega$			0.2	V
$V_{O C}$	Driver Common Mode Output Voltage						3.0	V	
$\Delta \mid V_{\text {OCl }}$	Change in Magnitude of Driver Common Mode Output Voltage For Complementary Output States						0.2	V	
V_{H}	Input High Voltage		$\begin{aligned} & \mathrm{DI}, \mathrm{DE}, \\ & \mathrm{RE}, \mathrm{E} \end{aligned}$		2			V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage						0.8	V	
$V_{C L}$	Input Clamp Voltage			$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-1.5	V	
ILL	Input Low Current			$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
$\mathrm{IIH}^{\text {H}}$	Input High Current			$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$	
IN	Input Current	$\begin{aligned} & \mathrm{DO} / \mathrm{RI}, \overline{\mathrm{DO}} / \overline{\mathrm{RI}} \\ & \mathrm{RI}, \overline{\mathrm{RI}} \end{aligned}$	$\begin{aligned} & V_{C C}=O V \text { or } 5.25 \mathrm{~V} \\ & D E / E=O V \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=12 \mathrm{~V}$			+1.0	mA	
				$\mathrm{V}_{1 N}=-7 \mathrm{~V}$			-0.8	mA	
$V_{\text {TH }}$	Differential Input Threshold Voltage for Receiver		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		-0.2		+0.2	V	
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			70		mV	
V_{OH}	Receiver Output High Voltage		$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4			V	
V_{OL}	Output Low Voltage	RO	$\mathrm{IOL}=16 \mathrm{~mA}$ (Note 5)				0.5	V	
		$\overline{\text { LF }}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.45	V	
IozR	OFF-State (High Impedance) Output Current at Receiver		$\begin{aligned} & V_{C C}=M a x \\ & 0.4 V \leq V_{O} \leq 2.4 V \end{aligned}$				± 20	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		12			k Ω	
ICC	Supply Current		No Load (Note 5)	Driver Outputs Enabled		42	60	mA	
				Driver Outputs Disabled		27	40	mA	

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Notes $2 \& 3$) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
IOSD	Driver Short-Circuit Output Current	$V_{O}=-7 \mathrm{~V}($ Note 5)			-250	mA
	$V_{O}=+12 \mathrm{~V}($ Note 5)			+250	mA	
IOSR	Receiver Short-Circuit Output Current	$V_{O}=0 \mathrm{~V}$	-15	-85	mA	

Note 1: "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 337 mW at $70^{\circ} \mathrm{C}$.
Note 5: All limits for which Note 5 is applied must be derated by 10% for DS3695AT and DS3696AT. Other parameters remain the same for this extended temperature range device ($-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$).

Receiver Switching Characteristics (Figures 1, 2 and 3)

Symbol	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ S1 and S2 Closed	15	25	42	ns
$\mathrm{t}_{\text {PHL }}$		15	25	42	ns
\|tipLH-tphL		0	3		ns
tpLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Open	5	29	35	ns
tPHZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S1 Open	5	12	16	ns
$\mathrm{t}_{\text {PZL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Open	7	15	28	ns
${ }^{\text {tPZH }}$	$C_{L}=15 \mathrm{pF}, \mathrm{S} 1$ Open	7	15	20	ns

Driver Switching Characteristics (Figures 4, 5and 6)

Symbol	Conditions	Min	Typ	Max	Units
SINGLE ENDED CHARACTERISTICS					
$t_{\text {PLH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{LDIFF}}=60 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$	9	15	22	ns
${ }_{\text {tPHL }}$		9	15	22	ns
tSKEW $/ t_{\text {PLH }}-\mathrm{t}_{\text {PHL }} \mid$		0	2	8	ns
tpLz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Open	7	15	30.	ns
tphz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{S} 1$ Open	7	15	30	ns
$t_{\text {tPL }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S2 Open	30	35	50	ns
$\mathrm{t}_{\mathrm{PZH}}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 1$ Open	30	35	50	ns

Differential Switching Characteristics (Note 6, Figure 7)

Symbol	Conditions	Min	Typ	Max	Units
$\mathrm{tr}_{5}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & R_{\mathrm{LDIFF}}=60 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$	6	10	18	ns
${ }_{\text {t }}^{\text {PLHD }}$					ns
tPHLD					ns
\|t ${ }_{\text {PLHD }}-\mathrm{t}_{\text {PHLD }} \mid$					ns

Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).
The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:

$$
\mathrm{Tcr}=\frac{(\mathrm{Tfb} \times T r b)-(T r a \times T f a)}{T r b-T r a-T f a+T f b}
$$

Where: Tcr = Crossing Point
Tra, Trb, Tfa and Tfb are time measurements with respect to the input.
See figure following page.

Switching Time Waveforms

TL/F/5272-5

AC Test Circuits and Switching Waveforms

FIGURE 1. Recelver Propagation Delay Test Circuit

TL/F/5272-7
Note: Differential input voltage may be realized by grounding $\overline{\mathrm{RI}}$ and pulsing RI between +2.5 V and -2.5 V
FIGURE 2. Receiver Input-to-Output Propagation Delay Timing

FIGURE 3. Receiver Enable/Disable Propagation Delay Timing

AC Test Circuits and Switching Waveforms (Continued)

TL/F/5272-10
Note: Unless otherwise specified the switches are closed.

FIGURE 4. Driver Propagation Delay Test Circuits

TL/F/5272-11
FIGURE 5. Driver Input-to-Output Propagation Delay Timing (Single-Ended)

FIGURE 6. Driver Enable/Disable Propagation Delay Timing

FIGURE 7. Driver Differential Input-to-Output Propagation Delay and Differential Transition Timing

Function Tables

DS3695A／DS3696A Transmitting

Inputs			Line Condition	Outputs		
$\overline{\mathbf{R E}}$	DE	DI		$\overline{\text { DO }}$	DO	$\overline{\text { LF }^{*}}$（DS3696A Only）
X	$\mathbf{1}$	$\mathbf{1}$		0	1	H
X	1	0	No Fault	1	0	H
X	0	X	X	Z	Z	H
X	1	X	Fault	Z	Z	L

DS3695A／DS3696A Receiving

Inputs				Output	
$\overline{\mathbf{R E}}$	DE	RI－$\overline{\mathbf{R I}}$	RO	$\overline{\mathrm{LF}}$（DS3696A Only）	
0	0	$\geq+0.2 \mathrm{~V}$	1	H	
0	0	$\leq-0.2 \mathrm{~V}$	0	H	
0	0	Inputs Open＊＊	1	H	
1	0	X	Z	H	

x －Don＇t care condition
Z－High impedance state
Fault－Improper line conditions causing excessive power dissipation in the driver，such as shorts or bus contention situations
＊$\overline{L F}$ is an＂open collector＂output with an on－chip $10 \mathrm{k} \Omega$ pull－up resistor．
＊＊This is a fail safe condition

Typical Application

DS36950

Quad Differential Bus Transceiver

General Description

The DS36950 is a low power, space-saving quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, computer 1/O bus applications. A compact 20 -pin surface mount PCC package provides high transceiver integration and a very small PC board footprint.
Timing uncertainty across an interface using multiple devices, a typical problem in a parallel interface, is specifiedminimum and maximum propagation delay times are guaranteed.
Six devices can implement a complete IPI master or slave interface. Three transceivers in a package are pinned out for connection to a parallel databus. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.

Features

m Pinout for IPI interface

- Compact 20-pin PCC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source $/ \mathrm{sink}$
- Thermal Shutdown Protection

Pinout and Logic Diagram

TL/F/10602-
Order Number DS36950
See NS Package Number V20A

TL/F/10602-2

```
Absolute Maximum Ratings (Note 1)
```

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Control Input Voltage 5.5 V
Driver Input Voltage 5.5 V
Driver Output Voltage/Receiver Input Voltage
@ $V_{c c}=5 \mathrm{~V}$
$-8 V$ to $+13 V$
Receiver Output Voltage 5.5 V

| Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ | |
| :--- | ---: | ---: |
| V Package | 1.73 W |
| Derate V Package $13.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ | |
| Storage Temp. Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temp. (Soldering 4 Sec.) | $260^{\circ} \mathrm{C}$ |

Recommended Operating

 Conditions| Supply Voltage, VCC | 4.75 V to 5.25 V |
| :--- | ---: |
| Bus Voltage | -7 V to +12 V |
| Operating Free Air Temp. $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |

Electrical Characteristics

Over Recommended Operating Conditions, Unless Otherwise Specified (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DRIVER CHARACTERISTICS						
V ${ }_{\text {ODL }}$	Differential Driver Output Voltage (Full Load)	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	1.5	1.9		V
$V_{O D}$	Differential Driver Output Voltage (Termination Load)	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (EIA-422)	2.0	3.5		V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (EIA-485)	1.5	3.2		V
$\Delta I V_{\text {ODI }}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R_{L}=54 \Omega$ or 100Ω (Note 4) (Figure 1) (EIA-485)			0.2	V
$V_{O C}$	Driver Common Mode Output Voltage (Note 5)	$R_{L}=54 \Omega$ (Figure 1) (EIA-485)			3.0	V
$\Delta I V_{\text {OCl }}$	Change in Magnitude of Common Mode Output Voltage	(Note 4) (Figure 1) (EIA-485)			0.2	V
V_{OH}	Output Voltage HIGH	$\mathrm{l}_{\mathrm{OH}}=-55 \mathrm{~mA}$	2.7	3.2		V
V_{OL}	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=55 \mathrm{~mA}$		1.4	1.7	V
V_{IH}	Input Voltage HIGH		2.0			V
$V_{\text {IL }}$	Input Voltage LOW				0.8	V
$\mathrm{V}_{\text {CL }}$	Input Clamp Voltage	$1=-18 \mathrm{~mA}$			-1.5	V
I_{H}	Input High Current	$\mathrm{V}_{1}=2.4 \mathrm{~V}$ (Note 3)			20	$\mu \mathrm{A}$
IIL	Input Low Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$ (Note 3)			-20	$\mu \mathrm{A}$
losc	Driver Short-Circuit Output Current (Note 9)	$V_{0}=-7 \mathrm{~V} \quad$ (EIA-485)		-130	-250	mA
		$V_{0}=0 \mathrm{~V} \quad$ (EIA-422)		-90	-150	mA
		$V_{O}=+12 \mathrm{~V} \quad$ (EIA-485)		130	250	mA

RECEIVER CHARACTERISTICS

losR	Short Circuit Output Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 9)	-15	-28	-75	mA
loz	TRI-STATE ${ }^{\text {® }}$ Output Current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V			20	$\mu \mathrm{A}$
VOH	Output Voltage High	$\mathrm{V}_{\text {ID }}=0.20 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4	3.0		V
VOL	Output Voltage Low	$\mathrm{V}_{\mathrm{ID}}=-0.20 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.35	0.5	V
$V_{\text {TH }}$	Differential Input High Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA} \\ & (\mathrm{EIA}-422 / 485) \end{aligned}$		0.03	0.20	V
V_{TL}	Differential Input Low Threshold Voltage (Note 6)	$\begin{aligned} & V_{O}=V_{O L}, l_{O}=4.0 \mathrm{~mA} \\ & \text { (EIA-422/485) } \end{aligned}$	-0.20	-0.03		V
$\mathrm{V}_{\text {HST }}$	Hysteresis (Note 7)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	35	60		mV

Electrical Characteristics (Continued)
Over Recommended Operating Conditions, Unless Otherwise Specified (Note 2)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
DRIVER AND RECEIVER CHARACTERISTICS							
V_{IH}	Enable Input Voltage High			2.0			V
$\mathrm{V}_{\text {IL }}$	Enable Input Voltage Low					0.8	V
V_{CL}	Enable Input Clamp Voltage	$\mathrm{I}=-18 \mathrm{~mA}$				-1.5	V
IN	Line Input Current (Note 8)	Other Input $=0 \mathrm{~V}$	$V_{1}=+12 \mathrm{~V}$		0.5	1	mA
			$\mathrm{V}_{1}=-7 \mathrm{~V}$		-0.45	-0.8	mA
$\mathrm{IIH}^{\text {H }}$	Enable Input Current High	$\mathrm{VOH}^{\text {O }}=2.4 \mathrm{~V}$	RE4 or DE			20	$\mu \mathrm{A}$
			REC			60	$\mu \mathrm{A}$
IIL	Enable Input Current Low	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	RE4 or DE			-20	$\mu \mathrm{A}$
			REC			-60	$\mu \mathrm{A}$
ICC	Supply Current (Note 10)	No Load, Outputs Enabled			75	90	mA
ICCz	Supply Current (Note 10)	No Load, Outputs Disabled			50	70	mA

Switching Characteristics Over Recommended Operation Conditions

Symbol	Conditions		Min	Typ	Max	Units
DRIVER SINGLE-ENDED CHARACTERISTICS						
tplH	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (Figure 4)		9	15	20	ns
tPHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (Figure 4)		9	15	20	ns
tSKS	$\mid \mathrm{tPLH}^{-t_{\text {PHL }}}{ }^{\text {S }}$ Single-Ended Skew			4	6	ns
$t_{\text {PZH }}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (Figure 5)			35	40	ns
$\mathrm{t}_{\text {PZL }}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (Figure 6)			25	40	ns
tphz	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (Figure 5)			15	25	ns
$t_{\text {PLZ }}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (Figure 6)			35	40	ns
DRIVER DIFFERENTIAL CHARACTERISTICS						
t_{R}, t_{F}	Rise \& Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{D}}=15 \mathrm{pF} \\ & \text { (Figures } 3,9 \text {) } \end{aligned}$		13	16	ns
$t_{\text {PLHD }}$	Differential Propagation Delays (Note 15)		9	15	19	ns
tPHLD			9	15	19	ns
$\mathrm{t}_{\text {SKD }}$	$\left\|t_{\text {PLHD }}-t_{\text {PHLD }}\right\|$ Differential Skew			3	6	ns

Switching Characteristics Over Recommended Operation Conditions (Continued)

Symbol	Conditions		Min	Typ	Max	Units
RECEIVER CHARACTERISTICS						
tplHD	Differential Propagation Delays $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ (Figure 7)		9	14	19	ns
$\mathrm{t}_{\text {PHLD }}$			9	14	19	ns
${ }_{\text {t }}$ K ${ }^{\text {d }}$	$\mid t_{\text {PLHD }}$ - tPHLD ${ }^{\text {d }}$ Differential Receiver Skew			1	3	ns
t_{ZH}	Output Enable Time to High Level	$C_{L}=15 \mathrm{pF}$ (Figure 8)		15	22	ns
t_{ZL}	Output Enable Time to Low Level			20	30	ns
t_{HZ}	Output Disable Time from High Level			10	17	ns
tLz	Output Disable Time from Low Level			17	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.
Note 2: Current into device pins is define as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.
Note 3: $i_{I H}$ and $I_{I L}$ includes driver input current and receiver TRI-STATE leakage current.
Note 4: $\Delta I V_{O D}{ }^{\prime}$ and $\Delta I V_{O C l}$ are changes in magnitude of $V_{O D}$ and $V_{O C}$, respectively, that occur when the input changes state.
Note 5: In EIA Standards EIA-422 and EIA-485, $V_{O C}$. which is the average of the two output voltages with respect to ground, is called output offset voltage, $V_{O S}$.
Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.
Note 7: Hysteresis defined as $V_{H S T}=V_{T H}-V_{T L}$.
Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.
Note 9: Short one output at a time.
Note 10: Total package supply current.
Note 11: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter Measurement Information

TL/F/10602-3
FIGURE 1. Driver V_{OD} and V_{OC}

TL/F/10602-6
FIGURE 3. Driver Differential Propagation Delay and Transition Timing

TL/F/10602-7

FIGURE 4. Driver Single-Ended Propagation Timing

Parameter Measurement Information (Continued)

TL/F/10602-10

TL/F/10602-9
S1 to OA for $\mathrm{DI}=3 \mathrm{~V}$
S 1 to OB for $\mathrm{DI}=\mathrm{OV}$
FIGURE 5. Driver Enable and Disable TIming ($\mathbf{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PHz}}$)

TL/F/10602-12

TL/F/10602-11
Si to $O A$ for $D I=O V$
St to OB for $\mathrm{DI}=3 \mathrm{~V}$
FIGURE 6. Driver Enable and Disable Timing (tpZL, $t_{\text {PLZ }}$)

FIGURE 7. Receiver Differential Propagation Delay Timing

Note 12: The input pulse is supplied by a generator having the following characteristics:
$\mathrm{f}=1.0 \mathrm{MHz}, 50 \%$ Duty Cycle, t_{f} and $\mathrm{t}_{\mathrm{r}}<6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
Note 13: C_{L} includes probe and stray capacitance.
Note 14: Diodes are 1N916 or equivalent.
Note 15: Differential propagation delays are calculated from single-ended propagation delays measured from driver input to the 20% and 80% levels on the driver outputs (See Figure 9).

FIGURE 9. Propagation Delay Timing for Calculation of Driver Differential Propagation Delays

Typical Performance Characteristics

Driver V_{OL} vs $\mathrm{IOL}_{\mathrm{OL}}$ vs $V_{C C}$

Receiver Differential Propagation Delay

Driver Transition Time vs Temperature

Receiver Differential

 Propagation

TL/F/10602-21

Supply Current vs Temperature

Driver lcc vs Switching Frequency

Receiver V_{OL} vs l_{OL} vs Temperature

Power Supply Current vs Power Supply Voltage

DS55107/DS55108/DS75107/DS75108/DS75208 Dual Line Receivers

General Description

The products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers of MOS sensing, any of the products may effectively be used as voltage comparators, level translators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the SN55109/SN75109 and μ A75110/ DS75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems. The improved input sensitivity and delay specifications of the DS75208 make it ideal for sensing high performance MOS memories as well as high sensitivity line receivers and voltage comparators.
Input protection diodes are incorporated in series with the collectors of the differential input stage. These diodes are
useful in certain applications that have multiple $\mathrm{V}_{\mathrm{CC}}+$ supplies or $\mathrm{V}_{\mathrm{CC}}+$ supplies that are turned off.

Features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- $\pm 10 \mathrm{mV}$ or $\pm 25 \mathrm{mV}$ input sensitivity
- $\pm 3 \mathrm{~V}$ input common-mode range
- High input impedance with normal V_{Cc}, or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Strobes for channel selection
m Dual circuits
- Sensitivity gntd. over full common-mode range

■ Logic input clamp diodes-meets both " A " and " B " version specifications

- $\pm 5 \mathrm{~V}$ standard supply voltages

Connection Diagram

Top View
Order Number DS55107J, DS75107J, DS55108J, DS75108J, DS75208J, DS75107N, DS75108N or DS75208N See NS Package Number J14A or N14A

Selection Guide

Temperature \rightarrow Package \rightarrow	$\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ \text { Cavity Dip } \end{gathered}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$Cavity or Molded Dip	
Input Sensitivity \rightarrow Output Logic \downarrow	$\pm 25 \mathrm{mV}$	$\pm \mathbf{2 5 ~ m V}$	$\pm 10 \mathrm{mV}$
TTL Active Pull-Up TTL Open Collector	$\begin{aligned} & \text { DS55107 } \\ & \text { DS55108 } \end{aligned}$	$\begin{aligned} & \text { DS75107 } \\ & \text { DS75108 } \end{aligned}$	DS75208

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, $\mathrm{V}_{\mathrm{CC}}{ }^{+} 7 \mathrm{~V}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC}}{ }^{-}$-7V
Differential Input Voltage $\pm 6 \mathrm{~V}$
Common Mode Input Voltage $\pm 5 \mathrm{~V}$

Strobe Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1308 mW
Molded Package	1207 mW
Lead Temperature (Soldering, 4 sec)	$260^{\circ} \mathrm{C}$
\circ Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package 9.7 $\mathrm{~mW} / /^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	DS55107,			DS75107, DS55108		
	Min	Nom	Max	Min	Nom	Max
	4.5 V	5 V	5.5 V	4.75 V	5 V	5.25 V
Supply Voltage $\mathrm{V}_{\mathrm{CC}^{+}}$	-4.5 V	-5 V	-5.5 V	-4.75 V	-5 V	-5.25 V
Supply Voltage V_{CC}	-125^{-}	to	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	to	$+70^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$					

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2. Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS55107 and DS55108 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75107, DS75108 and DS75208. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

DS55107/DS75107, DS55108/DS75108

Electrical Characteristics $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ (Notes 2,3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{IIH}^{\text {r }}$	High Level Input Current into A1, B1, A2 or B2	$\begin{aligned} & V_{C C}=M a x, V_{C C}=M a x, \\ & V_{I D}=0.5 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			30	75	$\mu \mathrm{A}$
IIL	Low Level Input Current into A1, B1, A2 or B2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=\text { Max, } \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
I_{H}	High Level Input Current into G1 or G2	$\begin{aligned} & V_{C C+}=\operatorname{Max}, \\ & V_{C C-}=\operatorname{Max} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=2.4 \mathrm{~V}$			40	mA
			$\mathrm{V}_{\text {IH(S) }} \mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			1	mA
IIL	Low Level Input Current into G1 or G2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
IIH	High Level Input Current into S	$\begin{aligned} & V_{C C+}=\operatorname{Max}, \\ & V_{C C-}=\operatorname{Max} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			2	mA
I/L	Low Level Input Current into S	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-3.2	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C+}=M i n, V_{C C-}=M i n, \\ & I_{L O A D}=-400 \mu A, V_{I D}=25 \mathrm{mV}, \\ & V_{I C}=-3 V \text { to } 3 \mathrm{~V},(\text { Note } 3) \end{aligned}$		2.4			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\text {INK }}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-25 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
IOH	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\operatorname{Min}, \mathrm{V}_{\mathrm{CC}-}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{OH}}=\operatorname{Max} \mathrm{V}_{\mathrm{CC}+},(\text { Note } 4) \\ & \hline \end{aligned}$				250	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\text { Max, } \\ & (\text { Notes } 2 \text { and } 3) \end{aligned}$		-18		-70	mA
$\mathrm{ICCH}+$	High Logic Level Supply Current from $V_{C C}$	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x, \\ & V_{I D}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			18	30	mA
$\mathrm{I}_{\mathrm{CCH}-}$	High Logic Level Supply Current from $V_{C C}$	$\begin{aligned} & V_{C C+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{ID}}=25 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or S	$\begin{aligned} & V_{C C+}=M i n, V_{C C-}=M i n, \\ & I_{I N}=-12 m A, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

Switching Characteristics $\mathrm{v}_{\mathrm{CC}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{t}_{\text {PLH(}}$ ($)$	Propagation Delay Time, Low to High Level, from Differential Inputs A and B to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (Note 1) } \end{aligned}$	(Note 3)		17	25	ns
			(Note 4)		19	25	ns
$t_{\text {PHL(D) }}$	Propagation Delay Time, High to Low Level, from Differential Inputs A and B to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (Note 1) } \end{aligned}$	(Note 3)		17	25	ns
			(Note 4)		19	25	ns
$\mathrm{tpLH}^{\text {(S) }}$	Propagation Delay Time, Low to High Level, from Strobe Input G or S to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	(Note 3)		10	15	ns
			(Note 4)		13	20	ns
$\mathrm{t}_{\text {PHL }}(\mathrm{S})$	Propagation Delay Time, High to Low Level, from Strobe Input G or S to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	(Note 3)		8	15	ns
			(Note 4)		13	20	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Note 2: Only one output at a time should be shorted.
Note 3: DS55107/DS75107 only.
Note 4: DS55108/DS75108 only.
DS75208
Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{1 / 2}$	High Level Input Current into A1, B1, A2 or B2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x \\ & V_{I D}=0.5 \mathrm{~V}, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			30	75	$\mu \mathrm{A}$
$I_{1 / 2}$	Low Level Input Current into $\mathrm{A} 1, \mathrm{~B} 1, \mathrm{~A} 2$ or B2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x, \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
I_{H}	High Level Input Current into G1 or G2	$\begin{aligned} & V_{C C+}=\operatorname{Max} \\ & V_{C C-}=\operatorname{Max} \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{H}(\mathrm{S})}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			1	mA
IIL	Low Level Input Current into G1 or G2	$\begin{aligned} & V_{\mathrm{CC}+}=\operatorname{Max}, \mathrm{V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current into S	$\begin{aligned} & V_{C C+}=M a x \\ & V_{C C-}=M a x \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{H}(\mathrm{S})}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			2	mA
IIL	Low Level Input Current into S	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-3.2	mA
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{SINK}}=16 \mathrm{~mA}, \mathrm{~V}_{I D}=-10 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
IOH	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{Max} \mathrm{~V}_{\mathrm{CC}+} \end{aligned}$				250	$\mu \mathrm{A}$
ICCH_{+}	High Logic Level Supply Current from VCC+	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			18	30	mA
ICCH^{-}	High Logic Level Supply Current from $V_{\text {CC- }}$	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x, \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or S	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

Switching Characteristics $\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {tPLH(}}$ ($)$	Propagation Delay Time, Low-toHigh Level, from Differential Inputs A and B to Output	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$, (Note 1)			35	ns
${ }^{\text {PPHL(D) }}$	Propagation Delay Time, High-toLow Level, from Differential Inputs A and B to Output	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF},($ Note 1$)$			20	ns
${ }^{\text {tPLH(S) }}$	Propagation Delay Time, Low-toHigh Level, from Strobe Input G or S to Output	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$			17	ns
$\mathrm{t}_{\text {PHL(S) }}$	Propagation Delay Time, High-toLow Level, from Strobe Input G or S to Output	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$			17	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Typical Applications

Basic Balanced-Line Transmission System

APPLICATION

The DS55107, DS75107 dual line circuits are designed specifically for use in high speed data transmission systems that utilize balanced, terminated transmission lines such as twisted-pair lines. The system operates in the balanced mode, so that noise induced on one line is also induced on the other. The noise appears common mode at the receiver input terminals where it is rejected. The ground connection between the line driver and receiver is not part of the signal circuit so that system performance is not affected by circulating ground currents.
The unique driver output circuit allows terminated transmission lines to be driven at normal line impedances. High speed system operation is ensured since line reflections are virtually eliminated when terminated lines are used. Crosstalk is minimized by low signal amplitudes and low line impedances.
The typical data delay in a system is approximately $(30+$ 1.3 L) ns , where L is the distance in feet separating the driver and receiver. This delay includes one gate delay in both the driver and receiver.
Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The driven line is selected by appropriate driver input logic levels. The voltage difference is approximately:

$$
\begin{equation*}
V_{D I F F} \cong 1 / 2 l_{(O n)} \times R_{T} \tag{1}
\end{equation*}
$$

High series line resistance will cause degradation of the signal. The receivers, however, will detect signals as low as

25 mV (or less). For normal line resistances, data may be recovered from lines of several thousand feet in length.
Line termination resistors (R_{T}) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal amplitude will then be approximately:

$$
\begin{equation*}
V_{\text {DIFF }} \cong I_{O(o n)} \times R_{T} \tag{2}
\end{equation*}
$$

The strobe feature of the receivers and the inhibit feature of the drivers allow the DS55107, DS75107 dual line circuits to be used in data-bus or party-line systems. In these applications, several drivers and receivers may share a common transmission line. An enabled driver transmits data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time multiplexed on the transmission line. The DS55107, DS75107 device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance at minimum cost.
The DS55107, DS75107 dual line circuits may also be used in unbalanced or single line systems. Although these systems do not offer the same performance as balanced systems for long lines, they are adequate for very short lines where environment noise is not severe.
The receiver threshold level is established by applying a DC reference voltage to one receiver input terminal. The signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so that signal

Typical Applications (Continued)

swing is symmetrical about it for maximum noise margin. The reference voltage should be in the range of -3.0 V to +3.0 V . It can be provided by a voltage supply or by a voltage divider from an available supply voltage.

Unbalanced or Single-Line Systems

TL/F/9446-4
Precautions in the Use of DS1603, DS3603, DS55107, DS75107, DS75108 and DS75208 Dual Line Receivers
The following precaution should be observed when using or testing DS55107, DS75107 line circuits.
When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3.0 V and +3.0 V , preferably at ground. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers.
The DS55107, DS75107 and DS75108 line receivers feature a common mode input voltage range of $\pm 3.0 \mathrm{~V}$. This satisfies the requirements for all but the noisiest system applications. For these severe noise environments, the common mode range can be extended by the use of external input attenuators. Common mode input voltages can in this way be reduced to $\pm 3.0 \mathrm{~V}$ at the receiver input terminals. Differential data signals will be reduced proportionately. Input sensitivity, input impedance and delay times will be adversely affected.
The DS75108 line receivers feature an open-collector-output circuit that can be connected in the DOT-OR logic configuration with other DS75108 outputs. This allows a level of logic to be implemented without addtional logic delay.

Increasing Common Mode Input
Voltage Range of Receiver

TL/F/9446-6

Circuit Differences Between " A " and Standard Devices

The difference between the " A " and standard devices is shown in the following schematics of the input stage.

Typical Applications (Continued)

The input protection diodes are useful in certain party-line systems which may have multiple V+ power supplies and, in which case, may be operated with some of the $V+$ supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

TL/F/9446-9

This would be a problem in specific systems which might possibly have the transmission lines biased to some potential greater than 1.4 V . Since this is not a widespread application problem, both the " A " and standard devices will be available. The ratings and characteristic specifications of the " A " devices are the same as those of the standard devices.
The $\mu \mathrm{A} 55107 \mathrm{~A} / \mathrm{DS55107A}$ feature the " A " device input stage.

Schematic Diagrams

DS55107/DS75107, DS55108/DS75108, DS75208

TL/F/9446-11
Note 1: $1 / 2$ of the dual circuit is shown.
Note 2: *Indicates connections common to second half of dual circuit.
Note 3: Components shown with dash lines are applicable to the DS55107, DS75207 and DS75107 only.

DS55110A/ μ A55110A/DS75110A/ μ A75110A Dual Line Drivers

General Description

The DS55110A/ μ A55110A, DS75110A $/ \mu A 75110 \mathrm{~A}$ are dual line drivers with independent channels, common supply and ground terminals featuring constant current outputs. These drivers are designed for optimum performance when used with the DS55107/DS75107, DS55108/DS75108 line receivers.
The output current of the DS55110A/ $\mu \mathrm{A} 55110 \mathrm{~A}$, DS75110A/ $\mu \mathrm{A} 75110 \mathrm{~A}$ is nominally 12 mA and may be switched to either of two output terminals with the appropriate logic levels at the driver input.
Separate or common control inputs are provided for increased logic versatility. These control or inhibit inputs allow the output current to be switched off (inhibited) by applying low logic levels to the control inputs. The output current in the inhibit mode, $\mathrm{l}_{(\text {(Off) }}$, is specified so that minimum line loading is induced. This is highly desirable in system applications using party line data communications.

Connection Diagram

Features

\square Improved stability over supply voltage and temperature ranges

- Constant current, high impedance outputs
- High speed: 15 ns max propagation delay
- Standard supply voltages
a Inhibitor available for driver selection
- High common mode output voltage range (-3.0V to 10 V)
- TTL input compatibility
- Extended temperature range

Function Table

Inputs				Outputs	
Logic		Inhibitor			
1	2	A/B	$\overline{\mathrm{NH}}$	A1/B1	A2/B2
X	X	L	X	Off	Off
X	X	X	L	Off	Off
L	X	H	H	Off	On
X	L	H	H	Off	On
H	H	H	H	On	Off

$H=$ High, $L=$ Low, $X=$ Don't Care

[^6]| Absolute Maximum Ratings (Note 1) | |
| :---: | :---: |
| If Milltary/Aerospace specified please contact the National Office/Distributors for avallability | ices are required, iconductor Sales d specifications. |
| Storage Temperature Range | |
| Ceramic DIP | $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ |
| Molded DIP and SO-14 | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature | |
| Ceramic DIP (Soldering, 60 sec .) | 00° |
| Molded DIP and SO-14 | |
| (Soldering, 10 sec.) | |

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package	1360 mW
Molded Package	1040 mW
SO Package	930 mW

*Derate cavity package $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Suppy Voltage
$\pm 7.0 \mathrm{~V}$
Input Voltage (Any Input) 5.5 V
Output Voltage (Any Output)
-5.0 V to +12 V

Recommended Operating Conditions

| | DS5510A/ μ A55110A | | | DS75110A/ μ A75110A | | | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Min | Typ | Max | Min | Typ | Max | |
| Positive Supply Voltage $\left(\mathrm{V}^{+}\right)$ | 4.5 | 5.0 | 5.5 | 4.75 | 5.0 | 5.25 | V |
| Negative Supply Voltage $\left(\mathrm{V}^{-}\right)$ | -4.5 | -5.0 | -5.5 | -4.75 | -5.0 | -5.25 | V |
| Positive Common Mode Voltage $\left(\mathrm{V}_{\mathrm{CM}}{ }^{+}\right)$ | 0 | | 10 | 0 | | 10 | V |
| Negative Common Mode Voltage $\left(\mathrm{V}_{\mathrm{CM}}{ }^{-}\right)$ | 0 | | -3.0 | 0 | | -3.0 | V |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | -55 | 25 | 125 | 0 | 25 | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics

Over recommended operating temperature range, unless otherwise specified. (Notes 2 and 3)

Symbol	Parameter		Condlitions	Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage HIGH			2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW					0.8	V
$\mathrm{V}_{1} \mathrm{C}$	Input Clamp Voltage		$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$		-0.9	-1.5	V
loron)	On-State Output Current		$V_{C C}=M a x, V_{O}=10 \mathrm{~V}$		12	15	mA
			$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=-3.0 \mathrm{~V}$	6.5	12		
lo(0ff)	Off-State Output Current (Inhibited Only)		$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$			100	$\mu \mathrm{A}$
1	Input Current At Maximum Input Voltage	A, B or C Inputs	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0	mA
		D Input				2.0	
I_{H}	Input Current HIGH	A, B or C Input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
		D Input				80	
IIL	Input Current LOW	A, B or C Input	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-3.0	mA
		D Input				-6.0	
$1+(\mathrm{On})$	Positive Supply Current with Driver Enabled		$V_{C C}=M a x$ $\mathrm{A} \& \mathrm{~B}$ Inputs at 0.4 V , $\mathrm{C} \& \mathrm{D}$ Inputs at 2.0 V		23	35	mA
${ }^{-}$(On)	Negative Supply Current with Driver Enabled				-34	-50	mA
$1+(\mathrm{Off})$	Positive Supply Current with Driver Inhibited		$V_{C C}=$ Max, A, B, C \& D Inputs at 0.4 V		21		mA
$\mathrm{I}_{-(\mathrm{Off})}$	Negative Supply Current with Driver Inhibited				-17		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the $\mathrm{DS55110}$ and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75110. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

Note 1: The pulse generators have the following characteristics:
$\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns} \pm 5.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{w} 1}=500 \mathrm{~ns}$, PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w} 2}=1.0 \mu \mathrm{~s}, \operatorname{PRR}=500 \mathrm{kHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
Note 2: C_{L} includes probe and jib capacitance.
Note 3: For simplicity, only one channel and the inhibitor connections are shown.
FIGURE 2. AC Test Circult

FIGURE 3. AC Waveforms

TL/F/9619-4

FIGURE 1. Equivalent Circuit

Typical Applications

DS55113/DS75113 Dual TRI-STATE ${ }^{\circledR}$ Differential Line Driver

General Description

The DS55113/DS75113 dual differential line drivers with TRI-STATE outputs are designed to provide all the features of the DS55114/DS75114 line drivers with the added feature of driver output controls. There are individual controls for each output pair, as well as a common control for both output pairs. When an output control is low, the associated output is in a high-impedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for partyline applications.

The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins.

Features

- Each circuit offers a choice of open-collector or active pull-up (totem-pole) outputs
■ Single 5V supply
- Differential line operation
- Dual channels
- TTL/LS compatibility
- High-impedance output state for party-line applications
- Short-circuit protection
- High current outputs
- Single-ended or differential AND/NAND outputs
- Common and individual output controls
- Clamp diodes at inputs

■ Easily adaptable to DS55114/DS75114 applications

Connection Diagram

Dual-In-Line Package

Positive logic: $Y=A B$
$Z=\overline{A B}$
Output is OFF when Cor CC is low

TL/F/5785-1
Top View
Order Number DS55113J, DS75113J, DS75113M or DS75113N See NS Package Number J16A, M16A or N16A

Truth Table

Inputs				Outputs	
Output Control		Data		AND	NAND
C	CC	A	B*	Y	Z
L	X	X	X	Z	Z
X	L	X	X	Z	Z
H	H	L	X	L	H *
H	H	X	L	L	H
H	H	H	H	H	L

$H=$ high level
L = low level
$\mathrm{X}=$ irrelevant
$Z=$ high impedance (OFF) *B input and 4th line of truth table applicable only to driver number 1

Absolute Maximum Ratings (Note 1)			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
	Lead Temperature ($1 / 16^{\prime \prime}$ from case for 60 seconds): J Package		
Supply Voltage (VCC) (Note 1) 7V	Lead Temperature ($1 / 16^{\prime \prime}$ from case for		
Input Voltage 5.5V	4 seconds): N Package		$260^{\circ} \mathrm{C}$
OFF-State Voltage Applied to Open-Collector Outputs	Operating Conditions		
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	Min	Max	Units
Cavity Package 1433 mW	Supply Voltage (V_{CC})		
Molded DIP Package 1362 mW	DS55113 4.5	5.5	v
SO Package 1002 mW	DS75113 4.75	5.25	v
Operating Free-Air Temperature Range	High Level Output Current (IOH)	-40	mA
DS55113 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Low Level Output Current (loL)	40	mA
DS75113 $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Operating Free-Air Temperature (T_{A})		
-Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $225^{\circ} \mathrm{C}$; derate molded DIP pack-	DS55113 -55	125	${ }^{\circ} \mathrm{C}$
age $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (Note 2).	DS75113	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted).

Symbol	Parameter		Conditions (Note 3)			DS55113			DS75113			Units			
			Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 4) } \\ \hline \end{array}$	Max	Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 4) } \end{array}$	Max							
V_{IH}	High Level Input Voltage								2			2			V
$V_{\text {IL }}$	Low Level Input Voltage							0.8			0.8	V			
V_{IK}	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-0.9	-1.5		-0.9	-1.5	V			
V_{OH}	High Level Output Voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$		$\mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.4		2.4	3.4		V			
			$\mathrm{I}_{\mathrm{OH}}=-40 \mathrm{~mA}$	2	3.0		2	3.0							
V_{OL}	Low Level Output Voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$				0.23	0.4		0.23	0.4	V	
V_{OK}	Output Clamp Voltage		$V_{C C}=M a x, I_{O}=-40 \mathrm{~mA}$				-1.1	-1.5		-1.1	-1.5	V			
${ }^{\text {O(off) }}$	Off-State Open-Collector Output Current		$V_{C C}=M a x$	$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10				$\mu \mathrm{A}$			
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				200								
			$\mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1	10					
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$						20						
l OZ	Off-State (High-Impedance-State) Output Current			$V_{C C}=$ Max, Output Controls at 0.8 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{O}}=0$ to $\mathrm{V}_{C C}$				± 10			± 10	$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			-150			-20				
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				± 80			± 20					
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				± 80			± 20					
			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				80			20					
11	Input Current at Maximum Input Voltage	A, B, C		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1			1	mA		
		CC							2			2			
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	A, B, C		$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$					40			40	$\mu \mathrm{A}$		
		CC						80			80				
IIL	Low Level Input Current	A, B, C	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$					-1.6			-1.6	mA			
		CC						-3.2			-3.2				

Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions (Note 3)		DS55113			DS75113			Units
				Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 4) } \end{array}$	Max	Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 4) } \end{array}$	Max	
los	Short-Circuit Output Current (Note 5)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		-40	-90	-120	-40	-90	-120	mA
ICC	Supply Current (Both Drivers)	All Inputs at OV, No Load$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$		47	65		47	65	mA
			$V_{C C}=7 \mathrm{~V}$		65	85		65	85	

Note 1: All voltage values are with respect to network ground terminal.
Note 2: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curves in the Thermal information section.
Note 3: All parameters with the exception of OFF-state open-collector output current are measured with the active pull-up connected to the sink output.
Note 4: All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, with the exception of I_{CC} at 7 V .
Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	DS55113			DS75113			Unit
			Min	Typ	Max	Min	Typ	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time, Low-to High-Level Output	(Figure 1)		13	20		13	30	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High-to Low-Level Output			12	20		12	30	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=180 \Omega$, (Figure 2)		7	15		7	20	ns
$\mathrm{t}_{\mathrm{PZL}}$	Output Enable Time to Low Level	$R_{L}=250 \Omega$, (Figure 3)		14	30		14	40	ns
tPHZ	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=180 \Omega$, (Figure 2)		10	20		10	30	ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level	$\mathrm{R}_{\mathrm{L}}=250 \Omega$, (Figure 3)		17	35		17	35	ns

AC Test Circuits and Switching Time Waveforms

TL/F/5785-3
FIGURE 1. tpLH and tpHL

FIGURE 2. t $_{\text {PZH }}$ and tPHZ

FIGURE 3. $t_{\text {PZL }}$ and $t_{\text {PLZ }}$
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega, \operatorname{PRR}=500 \mathrm{kHz}, \mathrm{t}_{\mathrm{W}}=100 \mathrm{~ns}$
Note 2: C_{L} includes probe and jig capacitance.

Typical Performance Characteristics*

Typical Performance Characteristics* (Continued)

Output Voltage vs Output Control Voltage

*Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to DS55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

DS55114/DS75114 Dual Differential Line Drivers

General Description

The DS55114/DS75114 dual differential line drivers are designed to provide differential output signals with high current capability for driving balanced lines, such as twisted pair at normal line impedances, without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL compatible output levels, these devices may also be used as TTL expanders or phase splitters.

Features

- Each circuit offers a choice of open-collector or active pull-up (totem-pole) outputs
- Single 5 V supply
- Differential line operation
- Dual channels
- TTL/LS compatibility

■ Designed to be interchangeable with Fairchild 9614 line drivers

- Short-circuit protection of outputs
\pm High current outputs
n. Clamp diodes at inputs and outputs to terminate line transients
- Single-ended or differential AND/NAND outputs
- Triple inputs

Connection Diagram

Truth Table

Inputs		Outputs		
A	B	C	Y	Z
H	H	H	H	L
All Other Input	Combinations		L	H

$H=$ high level
L = low level

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablity and specifications.	
Supply Voltage (VCC	7 V
Input Voltage	5.5 V
OFF-State Voltage Applied to Open-Collector Outputs	
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1433 mW
Molded Package	1362
Operating Free-Air Temperature Range	
DS55114	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS75114	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 60 seconds): J Package	

Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 4 seconds): N Package
$260^{\circ} \mathrm{C}$
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (Note 2).

Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC})			
DS55114	4.5	5.5	V
DS75114	4.75	5.25	V
High Level Output Current (l_{OH})		-40	mA
Low Level Output Current (lou)		40	mA
Operating Free-Air			
Temperature (T_{A})			
DS55114	-55	125	${ }^{\circ} \mathrm{C}$
DS75114	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (Note 3)			DS55114			DS75114			Units
					Min	Typ (Note 4)	Max	Min	Typ (Note 4)	Max	
V_{IH}	High Level Input Voltage				2			2			V
V_{IL}	Low Level Input Voltage						0.8			0.8	
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-0.9	-1.5		-0.9	-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$		$\mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.4		2.4	3.4		,
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$		$\mathrm{l}_{\mathrm{OH}}=-40 \mathrm{~mA}$	2	3.0		2	3.0		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{IOL}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$				0.2	0.4		0.2	0.45	
V_{OK}	Output Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				6.1	6.5		6.1	6.5	
		$V_{C C}=\mathrm{Max}, \mathrm{I}_{0}=-40 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$				-1.1	-1.5		-1.1	-	
IO(off)	OFF-State Open-Collector Output Current	$V_{C C}=\operatorname{Max}$	$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$		1	100				
				$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			200				
			$\mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1	14	
				$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$						200	
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1			1	mA
$\underline{\text { IIH }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$					40			40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-1.1	-1.6		-1.1	-1.6	mA
los	Short-Circuit Output Current (Note 5)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			-40	-90	120	-40	-90	-120	mA
I_{CC}	Supply Current (Both Drivers)	Inputs Grounded, No Load,$T_{A}=25^{\circ} \mathrm{C}$		$V_{C C}=M a x$		37	50		37	50	mA
				$V_{C C}=7 \mathrm{~V}$		47	65		47	70	

Note 1: All voltage values are with respect to network ground terminal.
Note 2: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curves in the Thermal information section.
Note 3: All parameters, with the exception of OFF-state open-collector output current, are measured with the active pull-up connected to the sink output.
Note 4: All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, with the exception of I_{CC} at 7 V .
Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$									
Symbol	Parameter	Conditions	DS55114			DS75114			Units
			Min	Typ	Max	Min	Typ	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High-Level Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, (Figure 1)		15	20		15	30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low-Level Output			11	20		11	30	ns

AC Test Circuit and Switching Time Waveforms

TL/F/5786-3
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$,
$\mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$, PRR $=500 \mathrm{kHz}$.
Note 2: C_{L} includes probe and jig-capacitance.

FIGURE 1

Typical Performance Characteristics*

Supply Current (Both Drivers) vs Supply Voltage

Output Voltage vs Data
Input Voltage

Output Voltage vs Free-Air Temperature

High Level Output Voltage vs Output Current

TL/F/5786-5

Propagation Delay Times vs Free-Air Temperature

TL/F/5786-

TL/F/5786-7
*Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to DS55114 circuits only. These parameters were measured with the active pull-up connected to the sink output.
Schematic Diagram (Each Driver)

DS55115/DS75115 Dual Differential Line Receiver

General Description

The DS55115/DS75115 is a dual differential line receiver designed to sense differential signals from data transmission lines. Designed for operation over military and commercial temperature ranges, the DS55115/DS75115 can typically receive $\pm 500 \mathrm{mV}$ differential data with $\pm 15 \mathrm{~V}$ com-mon-mode noise. Outputs are open-collector and give TTL compatible signals which are a function of the polarity of the differential input signal. Active output pull-ups are also available, offering the option of an active TTL pull-up through an external connection.

Response time may be controlled with the use of an external capacitor. Each channel may be independently controlled and optional input termination resistors are also available.

Features

- Single 5 V supply
- High common-mode voltage range
- Each channel individually strobed
- Independent response time control
- Uncommitted collector or active pull-up option
- TTL compatible output

■ Optional 130Ω termination resistors

- Direct replacement for 9615

Connection Diagram

TL/F/5787-1
Top Vlew
Order Number DS55115J, DS75115J or DS75115N
See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
$\begin{array}{lr}\text { Supply Voltage, } \mathrm{V}_{\mathrm{CC}} \text { (Note 1) } & 7 \mathrm{~V} \\ \text { Input Voltage at A, B and RT Inputs } & \pm 25 \mathrm{~V} \\ \text { Input Voltage at Strobe Input } & 5.5 \mathrm{~V} \\ \text { Off-State Voltage Applied to Open-Collector Outputs } & 14 \mathrm{~V} \\ \text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} & \\ \text { Cavity Package } & 1433 \mathrm{~mW} \\ \text { Molded Package } & 1362 \mathrm{~mW} \\ \text { Operating Free-Air Temperature Range } & \\ \text { DS5515 } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { DS57115 } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}$

*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage, (VCC)			
\quad DS55115	4.5	5.5	V
DS75115	4.75	5.25	V
High Level Output Current (lOH)		-5	mA
Low Level Output Current $\left(\mathrm{l}_{\mathrm{OL}}\right)$		15	mA
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
\quad DS55115	-55	125	${ }^{\circ} \mathrm{C}$
DS75115	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3 and 5) (Continued)

Symbol	Parameter	Condltions		DS55115			DS75115			Units
				Min	Typ	Max	Min	Typ	Max	
R_{T}	Line Terminating Resistance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	77	130	167	74	130	179	Ω
los	Short-Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max, } V_{O}=0 V \\ & V_{I D}=-0.5 V \text {, (Note 4) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-15	-40	-80	-14	-40	-100	mA
ICC	Supply Current (Both Receivers)	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{ID}}=0.5 \mathrm{~V}, \\ & V_{\mathrm{IC}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		32	50		32	50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for the actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the $\mathrm{DS55115}$ and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75115. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Unless otherwise noted, $\mathrm{V}_{\text {STROBE }}=2.4 \mathrm{~V}$. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	DS55115			DS75115			Units
			Min	Typ	Max	Min	Typ	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$, (Figure 1)		18	50		18	75	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega,($ Figure 1)		20	50		20	75	ns

Schematic Diagram

TL/F/5787-2

Typical Performance Characteristics (Note 3)

Input Current vs Input Voltage

Output Voltage vs Differential Input Voltage

Output Voltage vs Temperature

T_{A}-AMBIENTTEMPERATURE (${ }^{\circ} \mathrm{C}$)

Low Level Output Voltage vs Output Current

Output Voltage vs
Strobe Input Voltage

Supply Current (Both Receivers)
 vs Temperature

| 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Output Voltage vs Common-Mode Input Voltage

VIC - COMMON-MODE INPUT VOLTAGE (V)

Output Voltage vs Differential Input Voltage

Output Voltage vs Strobe Input Voltage

Propagation Delay Times vs Temperature

Frequency Response Control

TL/F/5787-5
Note: C_{R} (response control) $>0.01 \mu \mathrm{~F}$ may cause slowing of rise and fall times of the output.

AC Test Circuit and Switching Time Waveforms

TL/F/5787-7
Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega, P R R=500 \mathrm{kHz} / \mathrm{t}_{\mathrm{W}}=100 \mathrm{~ns}$
Note 2: C_{L} includes probe and test fixture capacitance

FIGURE 1. Propagation Delay Time
TL/F/5787-8

Typical Application

Basic Party-Line or Data-Bus Differential Data Transmission

${ }^{*} Z_{O}$ is internal to the DS55115/DS75115
A capacitor may be connected in series with Z_{O} to reduce power dissipation.

DS55121/DS75121 Dual Line Drivers

General Description

The DS55121/DS75121 are monolithic dual line drivers designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines having impedances from 50Ω to 500Ω. Both are compatible with standard TTL logic and supply voltage levels.
The DS55121/DS75121 will drive terminated low impedance lines due to the low-impedance emitter-follower outputs. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.
Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

Features

- Designed for digital data transmission over 50Ω to 500Ω coaxial cable, strip line, or twisted pair transmission lines
- TTL compatible
- Open emitter-follower output structure for party-line operation
- Short-circuit protection
- AND-OR logic configuration
- High speed (max propagation delay time 20 ns)
- Plug-in replacement for the SN55121/SN75121 and the 8 T 13

Connection Diagram

Dual-In-Line Package

Top View
Order Number DS55121J, DS75121J or DS75121N See NS Package Number J16A or N16A

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generators have the following characteristics:
$Z_{\text {OUT }} \approx 50 \Omega, t_{W}=200 \mathrm{~ns}$, duty cycle $=50 \%, t_{r}=t_{f}=5.0 \mathrm{~ns}$.

Typical Performance Characteristics

Truth Table

Inputs						Output Y
A	B	C	D	E	F	
H	H	H	H	X	X	H
X	X	X	X	H	H	H
All Other Input Combinations						L

$H=$ High Level, $L=$ Low Level, $X=$ Irrelevant

Note 2: C_{L} includes probe and jig capacitance.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace speclfied devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage, V_{CC}	6.0 V
Input Voltage	6.0 V
Output Voltage	6.0 V
Output Current	-75 mA
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1371 mW
Molded Package	1280 mW
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$
*erate cavity package $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package	
10.2 mW/ $/{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Temperature, T_{A}			
DS55121	-55	+125	${ }^{\circ} \mathrm{C}$
DS75121	0	+75	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted) (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	High Level Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
11	Input Current at Max Input Voltage	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-75 \mathrm{~mA}$ (Note 4)	2.4			V
IOH	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 4) \end{aligned}$	-100		-250	mA
lOL_{2}	Low Level Output Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ (Note 4)			-800	$\mu \mathrm{A}$
IO(OFF)	Off State Output Current	$V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}$			500	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{1}=4.5 \mathrm{~V}$			40	μ
I/L	Low Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0.1		-1.6	
los	Short Circuit Output Current	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	
ICCH	Supply Current, Outputs High	$V_{C C}=5.25 \mathrm{~V}$, All Inputs at 2.0 V , Outputs Open			28	
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current, Outputs Low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs at 0.8 V , Outputs Open			60	

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$R_{L}=37 \Omega$, (See AC Test Circuit and Switching Time Waveforms)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$. 11	20	
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		22	50	1.
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output	$R_{L}=37 \Omega$, (See AC Test Circuit and Switching Time Waveforms)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		8.0	20	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		20	50	ns

Note t: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS55121 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75121. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

DS55122

Triple Line Receiver

General Description

The DS55122 is a triple line receiver designed for digital data transmission with line impedances from 50Ω to 500Ω. Each receiver has one input with built-in hysteresis which provides a large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS55122 is compatible with standard TTL logic and supply voltage levels.

Connection Diagram

Dual-In-Line Package

Top View
Order Number DS55122J See NS Package J16A

Features

- Built-in input threshold hysteresis
- High speed-typical propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0 V supply operation
- Fanout to 10 series standard loads
- Plug-in replacement for the SN55122

Truth Table

Inputs				Output
A	B †	R	\mathbf{S}	\mathbf{Y}
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
\ddagger B input and last two lines of the truth table are applicable to receivers 1 and 2 only.

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }} \approx 50 \Omega$, $\mathrm{t}_{\mathrm{W}}=200 \mathrm{~ns}$, duty cycle $=50 \%, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5.0 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

TL/F/10816-3

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (V_{CC})	6.0V
Input Voltage	
R Input	6.0 V
A, B, or S Input	5.5 V
Output Voltage	6.0 V
Output Current	$\pm 100 \mathrm{~mA}$
Maximum Power Dissipation* at $\mathbf{2 5}^{\circ} \mathrm{C}$	1433 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)	$300^{\circ} \mathrm{C}$
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	ate molded package

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	-55	+125	${ }^{\circ} \mathrm{C}$
DS55122			
High Level Output Current (loH)		-500	$\mu \mathrm{~A}$
Low Level Output Current (loL)		16	mA

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted) (Notes 2 and 3)

Symbol	Parameter		Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	A, B, R, or S		2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	A, B, R, or S				0.8	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}$, (Note 6)		0.3	0.6		V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}, \mathrm{~A}, \mathrm{~B}$, or S				-1.5	V
1	Input Clamp at Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				1.0	mA
V_{OH}	High Level Output Voltage	$\mathrm{IOH}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$, (Note 4)	2.6			V
			$\begin{aligned} & V_{1(A)}=0 V, V_{l(B)}=0 V \\ & V_{l(R)}=1.45 \mathrm{~V}, V_{l(S)}=2.0 \mathrm{~V},(\text { Note } 7) \end{aligned}$	2.6			V
V_{OL}	Low Level Output Voltage	$\mathrm{lOL}=16 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$, (Note 4)			0.4	V
			$\begin{aligned} & V_{l(A)}=0 \mathrm{~V}, V_{I(B)}=0 \mathrm{~V}, \\ & V_{I(R)}=1.45 \mathrm{~V}, V_{I(S)}=2.0 \mathrm{~V},(\text { Note } 8) \end{aligned}$			0.4	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{1}=4.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				40	
		$\mathrm{V}_{1}=3.8 \mathrm{~V}, \mathrm{R}$				$17{ }^{1}$	
IIL	Low Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S		-0.1		-	
los	Short Circuit Output Current	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 5)		-50		-	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$					

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpLH	Propagation Delay Time, Low-to-High Level Output from R Input	(See AC Test Circuit and Switching Time Waveforms)	20	30	ns	
tpHL	Propagation Delay Time, High-to-Low Level Output from R Input	(See AC Test Circuit and Switching Time Waveforms)	20	30	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: $\mathrm{Min} /$ max limits apply across the guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DS55122 and $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75122, unless otherwise specified. Typicals are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: Not more than one output should be shorted at a time.
Note 6: Hysteresis is the difference between the positive going input threshold voltage, $\mathrm{V}_{\mathrm{T}+}$, and the negative going input threshold voltage, V_{T}-.
Note 7: Receiver input was at a high level immediately before being reduced to 1.45 V .
Note 8: Receiver input was at a low level immediately before being raised to 1.45 V .

Typical Performance Characteristics

TL/F/10816-4
Typical Applications

Pulse Squaring

The high gain and built-in hystersis of the DS55122
line receiver enables it to be used as a
Schmitt trigger in squaring up pulses.

TL/F/10816-5

V

DS75123 Dual Line Driver

General Description

The DS75123 is a monolithic dual line driver designed specifically to meet the I/O interface specifications for IBM System 360. It is compatible with standard TTL logic and supply voltage levels.
The low-impedance emitter-follower outputs of the DS75123 enable driving terminated low impedance lines. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.
Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

Features

- Meet IBM System 360 I/O interface specifications for digital data transmission over 50Ω to 500Ω coaxial cable, strip line, or terminated pair transmission lines
- TTL compatible with single 5.0 V supply
a 3.11 V output at $\mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA}$
- Open emitter-follower output structure for party-line operation
- Short circuit protection
a AND-OR logic configuration
- Plug-in replacement for the SN75123 and the 8T23

Connection Diagram

Dual-In-Line Package

Top View
Order Number DS75123J or DS75123N
See NS Package Number J16A or N16A

Typical Performance Characteristics

TL/F/579

Truth Table

| INPUTS | | | | | OUTPUT | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F | Y |
| H | H | H | H | X | X | H |
| X | X | X | X | H | H | H |
| All Other Input
 Combinations | | | | | L | |

$H=$ High level, $L=$ Low level, $X=$ Irrelevant

TL/F/5790-4

Note 1: The pulse generators have the following characteristics: $Z_{O U T} \approx 50 \Omega, t_{W}=200 \mathrm{~ns}$, duty cycle
$=50 \%$.
Note 2: C_{L} includes probe and jig capacitance.

Absolute Maximum Ratings (Note 1)	
If Milltary/Aerospace specified devi please contact the Natlonal Sem Office/Distributors for avallability and	ces are required, conductor Sales specifications.
Supply Voltage, $\mathrm{V}_{\text {CC }}$	7.0V
Input Voltage	5.5 V
Output Voltage	7.0V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1371 mW
Molded Package	1280 mW
Operating Free-Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$
-Derate cavity package $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$;	rate molded package

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
High Level Output Current, IOH		-100	mA
Temperature, T_{A}	0	+75	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Voltage			2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
1	Input Current at Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA},(\text { Note } 4) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.11			V
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	2.9			V
IOH^{\prime}	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \text { (Note 4) } \end{aligned}$		-100		-250	mA
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-240 \mu \mathrm{~A},($ Note 4)				0.15	V
lo(OFF)	Off State Output Current	$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{1}=4.5 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{1}=0.4 \mathrm{~V}$		-0.1		-1.6	mA
los	Short Circuit Output Current	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-30	mA
I'CH	Supply Current, Outputs High	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs at 2.0 V , Outputs Open				28	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current, Outputs Low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs at 0.8 V , Outputs Open				60	mA

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$R_{L}=50 \Omega$, (See AC Test Circuit and Switching Time Waveforms	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		12	20	ns
			$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		20	35	ns
${ }_{\text {t }}{ }_{\text {HL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, (See AC Test Circuit and Switching Time Waveforms	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		12	20	ns
			$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		15	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75123, unless otherwise specified. Typicals are for $V_{C C}$ $=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

DS75124 Triple Line Receiver

General Description

The DS75124 is designed to meet the input/output interface specifications for IBM System 360. It has built-in hysteresis on one input on each of the three receivers to provide large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS75124 is compatible with standard TTL logic and supply voltage levels.

Features

- Built-in input threshold hysteresis
- High speed . . . typical propagation delay time 20 ns

■ Independent channel strobes

- Input gating increases application flexibility
- Single 5.0V supply operation
- Plug-in replacement for the SN75124 and the 8T24

Connection Diagram and Truth Table

Dual-In-Line Package

Order Number DS75124J or DS75124N
See NS Package Number J16A or N16A

Inputs				Output
A	B \dagger	R	S	\mathbf{Y}
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant $\dagger B$ input and last two lines of the truth table are applicable to receivers 1 and 2 only

Typical Application

TL/F/5792-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage, VCC
7.0 V

Input Voltage
R Input with V_{Cc} Applied 7.0 V
R Input with V_{CC} not Applied 6.0 V
A, B, or S Input 5.5 V
Output Voltage
Output Current
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
Molded Package

1433 mW
1362 mW

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$
Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package	
$10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
High Level Output Current,		-800	$\mu \mathrm{~A}$
IOH		16	mA
Low Level Output Current, IOL			
Operating Temperature, T_{A}	0	+75	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Voltage	A, B, or S		2.0			V
		R		1.7			V
V_{IL}	Low Level Input Voltage	A, B, or S				0.8	V
		R				0.8	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}$, (Note 6)		0.2	0.4		V
V_{1}	Input Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}, \mathrm{~A}, \mathrm{~B}$, or S				-1.5	V
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				1	mA
		R	$\mathrm{V}_{1}=7.0 \mathrm{~V}$			5.0	mA
			$V_{1}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			5.0	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\text {IH }}=V_{\text {IHMIN }}, V_{\text {IL }}=V_{\text {ILMAX }} \\ & I_{\text {OH }}=-800 \mu A,(\text { Note } 4) \end{aligned}$		2.6			V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{I H}=V_{I H M I N}, V_{I L}=V_{I L M A X}, I_{O L}=16 \mathrm{~mA} ; \\ & (\text { Note 4) } \end{aligned}$				0.4	V
IIH	High Level Input Current	$\mathrm{V}_{1}=4.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				40	$\mu \mathrm{A}$
		$V_{1}=3.11 \mathrm{~V}, \mathrm{R}$				170	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S		-0.1		-1.6	mA
los	Short Circuit Output Current	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 5)$		-50		-100	mA
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$				72	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tPLH	Propagation Delay Time, Low-to-High Level Output from R Input	(See AC Test Circuit and Switching Time Waveforms)	20	30	ns	
tPHL	Propagation Delay Time, High-to-Low Level Output from R Input	(See AC Test Circuit and Switching Time Waveforms)	20	30	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75124, unless otherwise specified. Typicals are for $V_{C C}$ $=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: Not more than one output should be shorted at a time.
Note 6: Hysteresis is the difference between the positive going input threshold voltage, $\mathrm{V}_{\mathrm{T}+}$, and the negative going input threshold voltage, $\mathrm{V}_{\mathrm{T}-}$.

AC Test Circuit and Switching Time Waveforms

TL/F/5792-3
Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }} \approx 50 \Omega, \mathrm{t}_{\mathrm{W}}=200 \mathrm{~ns}$, duty cycle $=50 \%$
Note 2: C_{L} includes probe and jig capacitance.

TL/F/5792-4

Typical Performance Characteristics

DS75128/DS75129 Eight-Channel Line Receivers

General Description

The DS75128 and DS75129 are eight-channel line receivers designed to satisfy the requirements of the input-output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The DS75128 has an active-high strobe; the DS75129 has an active-low strobe. Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The DS75128 and DS75129 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Meets IBM 360/370 I/O specification

■ Input resistance-7 k Ω to $20 \mathrm{k} \Omega$

- Output compatible with TTL
- Schottky-clamped transistors
- Operates from a single 5 V supply
- High speed-low propagation delay
- Ratio specification- $t_{p L H} / t_{\text {PLH }}$
- Common strobe for each group of four receivers
- DS75128 strobe-active-high

DS75129 strobe-active-low

Connection Diagrams

DS75129 Dual-In-Line Package

Top View
Order Number DS75129J or DS75129N
See NS Package Number J20A or N20A

Lead Temperature
 $1 / 16$ Inch from Case for 4 Seconds: N Package
 *Derate cavity package $10.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $13.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
 Recommended Operating Conditions

 $260^{\circ} \mathrm{C}$| | Min | Typ | Max | Units |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage, V_{CC} | 4.5 | 5.0 | 5.5 | V |
| High-Level Output Current, IOH | | | -0.4 | mA |
| Low-Level Output Current, IOL | | | 16 | mA |
| Operating Free-Air Temperature, T_{A} | 0 | | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free-air temperature range (Note 3)

Symbol	Parameter			Conditions	Min	Typ (Note 5)	Max	Units
V_{IH}	High-Level Input Voltage		A		1.7			V
			S		2			
$V_{\text {IL }}$	Low-Level Input Voltage		A				0.7	V
			S				0.7	
V_{OH}	High-Level Output Voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=0.4 \mathrm{~mA}$	2.4	3.1		V
V_{OL}	Low-Level Output Voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	0.5	V
V_{1}	Input Clamp Voltage		S	$V_{C C}=4.5 \mathrm{~V}, I_{1}=-18 \mathrm{~mA}$			-1.5	V
$\mathrm{IIH}^{\text {H}}$	High-Level Input Current		A	$V_{C C}=5.5 \mathrm{~V}, V_{1}=3.11 \mathrm{~V}$		0.3	0.42	mA
			S	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low-Level Input Current		A	$V_{C C}=5.5 \mathrm{~V}, V_{1}=0.15 \mathrm{~V}$			-0.24	mA
			S	$V_{C C}=5.5 \mathrm{~V}, V_{1}=0.4 \mathrm{~V}$			-0.4	
los	Short-Circuit Output Current (Note 4)			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	-18		-60	mA
r_{1}	Input Resistance			$\mathrm{V}_{C C}=4.5 \mathrm{~V}, 0 \mathrm{~V}$, or Open, $\Delta \mathrm{V},=0.15 \mathrm{~V}$ to 4.15V	7		20	$\mathrm{k} \Omega$
ICC	Supply Current	DS75128		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$, Strobe at 2.4 V , All A Inputs at 0.7 V		19	31	mA
		DS75129		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$, Strobe at 0.4 V , All A Inputs at 0.7 V		19	31	
		DS75128		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$, Strobe at 2.4 V , All A Inputs at 4 V		32	53	
		DS75129		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, Strobe at 0.4 V , All A Inputs at 4 V		32	53	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Thermal Ratings for ICs, in App Note AN-336.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output should be shorted at a time.
Note 5: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Conditlons	DS75128			DS75129			Units
				Min	Typ	Max	Min	Typ	Max	
tpLH	Propagation Delay Time, Low-to-High-Level Output	A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 1 \end{aligned}$	7	14	25	7	14	25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output			10	18	30	10	18	30	ns
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output	S			26	40		20	35	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output				22	35		16	30	ns
$\mathrm{t}_{\mathrm{PLH}}$	Ratio of Propagation Delay Times	A		0.5	0.8	1.3	0.5	0.8	1.3	
$\mathrm{t}_{\text {PHL }}$										
${ }_{\text {t }}^{\text {TLH }}$	Transition Time, Low-to-High-Level Output			1	7	12	1	7	12	ns
${ }^{\text {t }}$ HLL	Transition Time, High-to-Low-Level Output			1	3	12	1	3	12	ns

Schematic Diagram (each receiver)

AC Test Circuit and Switching Time Waveforms

TL/F/5793-4

TL/F/5793-5

Note 1: Input pulses are supplied by a generator having the following characteristics: $Z_{O}=50 \Omega, \operatorname{PRR}=5 \mathrm{MHz}$.
Note 2: Includes probe and jig capacitance.
Note 3: All diodes are 1 N3064 or equivalent.
Note 4: The strobe inputs of DS75129 are in-phase with the output.
Note 5: $V_{\text {REF1 }}=0.7 \mathrm{~V}$ and $\mathrm{V}_{\text {REF2 }}=1.7 \mathrm{~V}$ for testing data (A) inputs, $\mathrm{V}_{\text {REF1 }}=\mathrm{V}_{\text {REF2 }}=1.3 \mathrm{~V}$ for strobe inputs.
FIGURE 1

Typical Characteristics

Input Current vs Input Voltage, A Inputs

Voltage Transfer Characteristics From A Inputs

TL/F/5793-7

Low-Level Output Voltage vs Output Current

TL/F/5793-9

DS75150 Dual Line Driver

General Description

The DS75150 is a dual monolithic line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and LS families. Operation is from -12 V and +12 V power supplies.

Features

■ Withstands sustained output short-circuit to any low impedance voltage between -25 V and +25 V
■ $2 \mu \mathrm{~s}$ max transition time through the -3 V to +3 V transition region under full 2500 pF load

- Inputs compatible with most TTL and LS families
- Common strobe input
- Inverting output
- Slew rate can be controlled with an external capacitor at the output
- Standard supply voltages $\pm 12 \mathrm{~V}$

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number DS75150J-8, DS75150M or DS75150N See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage $+\mathrm{V}_{\mathrm{CC}}$

15 V
Supply Voltage $-\mathrm{V}_{\mathrm{CC}}$
Input Voltage
15 V
Applied Output Voltage +25 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package
1133 mW
Molded DIP Package 1022 mW SO Package
Lead Temperature (Soldering, 4 sec .)
655 mW
-Derate cavity package $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. Derate SO package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage ($+\mathrm{V}_{\mathrm{CC}}$)	10.8	13.2	V
Supply Voltage ($-\mathrm{V}_{\mathrm{CC}}$)	-10.8	-13.2	V
Input Voltage (V_{1})	0	+5.5	V
Output Voltage (V_{O})		± 15	V
Operating Ambient Temperature			
Range (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2, 3, 4 and 5)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage	(Figure 1)		2			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	(Figure 2)				0.8	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \text { (Figure 2) } \end{aligned}$		5	8		V
V_{OL}	Low-Level Output Voltage	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \text { (Figure 1) } \end{aligned}$			-8	-5	V
${ }_{1}{ }_{\mathbf{H}}$	High-Level Input Current	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \\ & \mathrm{~V}_{1}=2.4 \mathrm{~V} \text {, (Figure } 3 \text {) } \end{aligned}$	Data Input		1	10	$\mu \mathrm{A}$
		$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \\ & \mathrm{~V}_{1}=2.4 \mathrm{~V}, \text { (Figure } 3 \text {) } \end{aligned}$	Strobe Input		2	20	$\mu \mathrm{A}$
IIL	Low-Level Input Current	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V}, \text { (Figure } 3 \text {) } \end{aligned}$	Data Input		-1	-1.6	mA
		$\begin{aligned} & +V_{C C}=13.2 \mathrm{~V},-V_{C C}=-13.2 \mathrm{~V}, \\ & V_{1}=0.4 \mathrm{~V},(\text { Figure 3) } \end{aligned}$	Strobe Input		-2	-3.2	mA
los	Short-Circuit Output Current	$+V_{C C}=13.2 V,-V_{C C}=-13.2 V$ (Figure 4), (Note 4)	$\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}$		2	5	mA
			$\mathrm{V}_{\mathrm{O}}=-25 \mathrm{~V}$		-3	-6	mA
			$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{1}=3 \mathrm{~V}$		15	30	mA
			$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$		-15	-30	mA
$+\mathrm{ICCH}$	Supply Current From $+\mathrm{V}_{\mathrm{CC}}$, High-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \\ & R_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \text { (Figure } 5 \text {) } \end{aligned}$			10	22	mA
- ICCH	Supply Current From - V_{CC}, High-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Figure } 5) \end{aligned}$			-1	-10	mA
$+\mathrm{ICCL}$	Supply Current From $+V_{C C}$, Low-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{C C}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=3 \mathrm{~V}, \\ & R_{\mathrm{L}}=3 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \text {, (Figure } 5 \text {) } \end{aligned}$			8	17	mA
-l CCL	Supply Current From - V_{CC}, Low-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Figure } 5 \text {) } \end{aligned}$			-9	-20	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS75150}$. All typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $+\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$, $-\mathrm{V}_{\mathrm{CC}}=-12 \mathrm{~V}$.
Note 3: All current into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5 V is the maximum, the typical value is more-negative voltage.

AC Electrical Characteristics $\left(+\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {t }}$ LH	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega$ (Figure 6)	0.2	1.4	2	$\mu \mathrm{S}$
${ }^{\text {t }}$ THL.	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$, (Figure 6)	0.2	1.5	2	$\mu \mathrm{S}$
${ }_{\text {t }}^{\text {TLH }}$	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		40		ns
${ }_{\text {t }}^{\text {THL }}$	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		20		ns
${ }_{\text {PPLH }}$	Propagation Delay Time Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		60		ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		45		ns

DC Test Circuits

FIGURE 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$

TL/F/5794-5
Note: When testing $I_{I H}$, the other input is at $3 V$; when testing $I_{I L}$, the other input is open.

FIGURE 3. $I_{I H}, I_{I L}$

TL/F/5794-4
Each input is tested separately.
FIGURE 2. $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$

TL/F/5794-6
Ios is tested for both input conditions at each of the specified output conditions.

FIGURE 4. IOS

FIGURE 5. ICCH + , ICCH_{-}, ICCL+, ICCL-

AC Test Circuit and Switching Waveforms

TL/F/5794-9
Note 1: The pulse generator has the following characterstics:
duty cycle $\leq 50 \%, Z_{\text {OUT }} \approx 50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 6

Typical Performance Characteristics

DS75154 Quad Line Receiver

General Description

The DS75154 is a quad monolithic line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are in relatively short, single-line, point-to-point data transmission systems and for level translators. Operation is normally from a single 5V supply; however, a built-in option allows operation from a 12 V supply without the use of additional components. The output is compatible with most TTL and LS circuits when either supply voltage is used.
In normal operation, the threshold-control terminals are connected to the V_{CC} terminal, pin 15, even if power is being supplied via the alternate $\mathrm{V}_{\mathrm{CC} 2}$ terminal, pin 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.
For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the nega-
tive-going threshold voltage to be above zero. The positivegoing threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the failsafe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

Features

- Input resistance, $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ over full RS-232C voltage range
- Input threshold adjustable to meet 'fail-safe" requirements without using external components
- Inverting output compatible with TTL or LS
a Built-in hysteresis for increased noise immunity
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage- 5 V or 12 V

Schematic Diagram

TL/F/5795-1
Note: When using $V_{C C 1}$ (pin 15), $V_{C C 2}$ (pin 16) may be left open or shorted to $V_{C C 1}$. When using $V_{C C 2}, V_{C C 1}$ must be left open or connected to the threshold control pins.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Normal Supply Voltage (Pin 15), (VCC1)
7 V
Alternate Supply Voltage (Pin 16), (VCC2) 14V
Input Voltage $\pm 25 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package 1433 mW

Molded DIP Package 1362 mW
Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage (Pin 15), $\left(\mathrm{V}_{\mathrm{CC} 1}\right)$	4.5	5.5	V
Alternate Supply Voltage			
\quad (Pin 16), $\left(\mathrm{V}_{\mathrm{CC} 2}\right)$	10.8	13.2	V
Input Voltage		± 15	V
Temperature, $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3 and 4)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High-Level Input Voltage	(Figure 1)		3			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	(Figure 1)				-3	V
V_{T+}	Positive-Going Threshold Voltage	(Figure 1)	Normal Operation	0.8	2.2	3	V
			Fail-Safe Operation	0.8	2.2	3	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage	(Figure 1)	Normal Operation	-3	-1.1	0	V
			Fail-Safe Operation	0.8	1.4	3	V
$\mathrm{V}_{\mathrm{T}+} \mathrm{V}_{\mathrm{T}-}$	Hysteresis	(Figure 1)	Normal Operation	0.8	3.3	6	V
			Fail-Safe Operation	0	0.8	2.2	V
V_{OH}	High-Level Output Voltage	$\mathrm{IOH}^{\text {(}}=-400 \mu \mathrm{~A}$, (Figure 1)		2.4	3.5		V
V OL	Low-Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$, (Figure 1)			0.23	0.4	V
${ }^{1}$	Input Resistance	(Figure 2)	$\Delta \mathrm{V}_{1}=-25 \mathrm{~V}$ to -14 V	3	5	7	k Ω
			$\Delta V_{1}=-14 \mathrm{~V}$ to -3 V	3	5	7	$\mathrm{k} \Omega$
			$\Delta V_{1}=-3 \mathrm{~V}$ to +3 V	3	6		$\mathrm{k} \Omega$
			$\Delta \mathrm{V}_{1}=3 \mathrm{~V}$ to 14 V	3	5	7	$\mathrm{k} \Omega$
			$\Delta \mathrm{V}_{1}=14 \mathrm{~V}$ to 25 V	3	5	7	$\mathrm{k} \Omega$
$\mathrm{V}_{1(\text { OPEN }}$	Open-Circuit Input Voltage	$\mathrm{I}_{1}=0$, (Figure 3)		0	0.2	2	V
los	Short-Circuit Output Current (Note 5)	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=-5 \mathrm{~V}$, (Figure 4)		-10	-20	-40	mA
ICC1	Supply Current From $\mathrm{V}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)			20	35	mA
ICC2	Supply Current From V ${ }_{\text {CC2 }}$	$\mathrm{V}_{\mathrm{CC} 2}=13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)			23	40	mA

Switching Characteristics ($\mathrm{VCC1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		22		ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		20	ns	
$\mathrm{t}_{\text {TLH }}$	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		9	ns	
$\mathrm{t}_{\text {THL }}$	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		6	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 75154 . All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic and threshold levels only, e.g., when - 3 V is the maximum, the minimum limit is a more-negative voltage.
Note 5: Only one output at a time should be shorted.

Typical Performance Characteristics Connection Diagram

TL/F/5795-10

Dual-In-Line Package

TL/F/5795-2

Top Vlew
Order Number DS75154J, DS75154M or DS75154N See NS Package Number J16A, M16A or N16A

DC Test Circuits and Truth Tables

TL/F/5795-3

Test	Measure	A	T	Y	$\begin{gathered} V_{\mathrm{cc} 1} \\ (\operatorname{Pin} 15) \end{gathered}$	$\begin{gathered} V_{\mathrm{Cc} 2} \\ (\mathrm{PIn} 16) \end{gathered}$
Open-Circuit Input (Fail-Safe)	V_{OH} $\mathrm{VOH}_{\mathrm{OH}}$	$\begin{aligned} & \text { Open } \\ & \text { Open } \end{aligned}$	Open Open	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	4.5 V Open	$\begin{aligned} & \text { Open } \\ & 10.8 \mathrm{~V} \\ & \hline \end{aligned}$
$\begin{aligned} & V_{T+\min }, \\ & V_{T-}-\text { (Fail-Safe) } \end{aligned}$	VOH V_{OH}	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	Open Open	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \hline \text { Open } \\ & 13.2 \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\mathrm{T}+} \min$ (Normal)	V_{OH} V_{OH}	(Note 1) (Note 1)	$\begin{aligned} & \hline \text { Pin } 15 \\ & \text { Pin } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \text { and } \mathrm{T} \\ \mathrm{~T} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Open } \\ & 13.2 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\text {IL }} \max , \\ & \mathrm{V}_{\mathrm{T}-\min } \text { (Normal) } \end{aligned}$	VOH V_{OH}	$\begin{array}{r} -3 V \\ -3 V \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Pin } 15 \\ & \text { Pin } 15 \end{aligned}$	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \text { and } \mathrm{T} \\ \mathrm{~T} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Open } \\ & 13.2 \mathrm{~V} \end{aligned}$
$\begin{aligned} & V_{I H} \min , V_{T}+\max , \\ & V_{T-\max } \text { (Fail-Safe) } \end{aligned}$	V_{OL} V_{OL}	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	Open Open	$\begin{aligned} & \mathrm{lOL} \\ & \mathrm{loL} \\ & \hline \end{aligned}$	4.5 V Open	$\begin{aligned} & \text { Open } \\ & 10.8 \mathrm{~V} \\ & \hline \end{aligned}$
V_{IH} min, $\mathrm{V}_{\mathrm{T}+\mathrm{max}}$, (Normal)	V_{OL} V_{OL}	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	$\text { Pin } 15$ $\text { Pin } 15$	IOL IOL	$\begin{gathered} 4.5 \mathrm{~V} \text { and } \mathrm{T} \\ \mathrm{~T} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Open } \\ & 10.8 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{T}-\mathrm{max}}$ (Normal)	V_{OL} V_{OL}	(Note 2) (Note 2)	$\begin{aligned} & \text { Pin } 15 \\ & \text { Pin } 15 \end{aligned}$	$\begin{aligned} & \mathrm{IOL}_{\mathrm{O}} \\ & \mathrm{l}_{\mathrm{OL}} \\ & \hline \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \text { and } \mathrm{T} \\ \mathrm{~T} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Open } \\ & 13.2 \mathrm{~V} \end{aligned}$

Note 1: Momentarily apply -5 V , then 0.8 V .
Note 2: Momentarily apply 5 V , then ground.
FIGURE 1. $V_{I H}, V_{I L}, V_{T+}, V_{T-}, V_{O H}, V_{O L}$

DC Test Circuits and Truth Tables (Continued)
TL/F/5795-4

T	VCc1 (Pin 15)	VCc2 (Pin 16)
Open	5 V	Open
Open	Gnd	Open
Open	Open	Open
Pin 15	Tand 5V	Open
Gnd	Gnd	Open
Open	Open	$12 V$
Open	Open	Gnd
Pin 15	T	$12 V$
Pin 15	T	Gnd
Pin 15	\mathbf{T}	Open

$$
r_{1}=\frac{\Delta V_{1}}{\Delta l_{1}}
$$

FIGURE 2. r_{1}

\mathbf{T}	$\mathbf{V C C 1}$ (Pin 15)	VCC2 (Pin 16)
Open	5.5 V	Open
Pin 15	5.5 V	Open
Open	Open	13.2 V
Pin 15	T	13.2 V

TL/F/5795-5
FIGURE 3. $\mathrm{V}_{\text {(OPEN) }}$

Each output is tested separately.
FIGURE 4. IOS

TL/F/5795-7
All four line receivers are tested simultaneously.
FIGURE 5. Icc

AC Test Circuit and Switching Time Waveforms

TL/F/5795-9
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega, t_{w}=200 \mathrm{~ns}$, duty cycle $\leq 20 \%$. Note 2: C_{L} includes probe and jig capacitance.

FIGURE 6

DS75176B/DS75176BT

 Multipoint RS-485/RS-422 Transceivers
General Description

The DS75176B is a high speed differential TRI-STATE ${ }^{\circledR}$ bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission. In addition, it is compatible with RS-422.
The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12 V to -7 V . Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.
DC specifications are guaranteed over the 0 to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422.
- Small Outline (SO) Package option available for minimum board space.
- 22 ns driver propagation delays.
- Single +5 V supply.
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus.
- Thermal shutdown protection.
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down.
- Pin out compatible with DS3695/A and SN75176A/B.
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus.
- 70 mV typical receiver hysteresis.

Connection and Logic Diagram

Top View

TL/F/8759-1

Order Number DS75176BN, DS75176BTN, DS75176BM, DS75176BTM, DS75176BJ or DS75176BTJ See NS Package Number N08E, M08A or J08A

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{CC}
Control Input Voltages
Driver Input Voltage
Driver Output Voltages
Receiver Input Voltages (DS75176B)
Receiver Output Voltage
Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ for M Package for N Package

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 4 seconds) $\quad 260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Voltage at Any Bus Terminal	-7	+12	V
\quad (Separate or Common Mode)			
Operating Free Air Temperature T_{A}	0	+70	${ }^{\circ} \mathrm{C}$
\quad DS75176B	-40	+85	${ }^{\circ} \mathrm{C}$
\quad DS75176BT			
Differential Input Voltage, VID (Note 6)	-12	+12	V

Electrical Characteristics (Notes 2 and 3)

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$V_{\text {OD1 }}$	Differential Driver Output Voltage (Unloaded)		$10=0$				5	V	
$\mathrm{V}_{\mathrm{OD} 2}$	Differential Driver Output Voltage (with Load)		(Figure 1)	$\mathrm{R}=50 \Omega$; (RS-422) (Note 7)	2			V	
			R = 27 ; (RS-485)	1.5			V		
$\Delta \mathrm{V}_{\text {OD }}$	Change in Magnitude of Driver Differential Output Voltage For Complementary Output States							0.2	V
Voc	Driver Common Mode Output Voltage		(Figure 1)	$R=27 \Omega$			3.0	V	
$\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$	Change in Magnitude of Driver Common Mode Output Voltage For Complementary Output States						0.2	V	
V_{IH}	Input High Voltage				2			V	
V_{IL}	Input Low Voltage						0.8		
$\mathrm{V}_{\text {CL }}$	Input Clamp Voltage		RE, E	$\mathrm{IIN}=-18 \mathrm{~mA}$			-1.5		
ILL	Input Low Current			$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
$\underline{\mathrm{IIH}^{\prime}}$	Input High Current			$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$	
IN	Input	DO/RI, $\overline{\mathrm{DO}} / \overline{\mathrm{RI}}$	$\mathrm{V}_{C C}=0 \mathrm{~V}$ or 5.25 V	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$			+1.0	mA	
	Current		$D E=0 V$	$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$			-0.8	mA	
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+1$		-0.2		+0.2	V	
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			70		mV	
V_{OH}	Receiver Output High Voltage		$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.7			V	
V_{OL}	Output Low	RO	$\mathrm{lOL}^{\prime}=16 \mathrm{~mA}$ (Note				0.5	V	
	Voltage	$\overline{\mathrm{LF}}$	$\mathrm{OLL}=8 \mathrm{~mA}$				0.45	V	
IozR	OFF-State (High Impedance) Output Current at Receiver		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & 0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V} \\ & \hline \end{aligned}$				± 20	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		12			$\mathrm{k} \Omega$	
ICC	Supply Current		No Load	Driver Outputs Enabled			55	mA	
			(Note 7)	Driver Outputs Disabled			35	mA	

Electrical Characteristics (Notes 2 and 3)

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
IOSD	Driver Short-Circuit Output Current	$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}($ Note 7)			-250	mA
	$\mathrm{~V}_{\mathrm{O}}=+12 \mathrm{~V}($ Note 7)			+250	mA	
IOSR	Receiver Short-Circuit Output Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15	-85	mA	

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Derate linearly at $5.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 650 mW at $70^{\circ} \mathrm{C}$.
Note 5: Derate linearly © $6.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 400 mW at $70^{\circ} \mathrm{C}$.
Note 6: Differential - Input/Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.
Note 7: All worst case parameters for which note 7 is applied, must be increased by 10% for DS75176BT. The other parameters remain valid for $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PLL }}$	Driver Input to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{LDIFF}}=60 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$		12	22	ns
tPHL	Driver Input to Output			17	22	ns
t_{r}	Driver Rise Time	$\begin{aligned} & \mathrm{R}_{\mathrm{LDIFF}}=60 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$ (Figures 3 and 5)			18	ns
t_{f}	Driver Fall Time				18	ns
t_{ZH}	Driver Enable to Output High	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 4 and 6) S1 Open		29	100	ns
t_{ZL}	Driver Enable to Output Low	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 4 and 6) S2 Open		31	60	ns
$t_{L Z}$	Driver Disable Time from Low	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 4 and 6) S2 Open		13	30	ns
t_{HZ}	Driver Disable Time from High	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 4 and 6) S 1 Open		19	200	ns
${ }_{\text {tPLH }}$	Receiver Input to Output	$C_{L}=15 \mathrm{pF} \text { (Figures } 2 \text { and } 7 \text {) }$ S1 and S2 Closed		30	37	ns
tPHL	Receiver Input to Output			32	37	ns
t_{ZL}	Receiver Enable to Output Low	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2 and 8) S2 Open		15	20	ns
t_{ZH}	Receiver Enable to Output High	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2 and 8) S1 Open		11	20	ns
t_{LZ}	Receiver Disable from Low	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2 and 8) S2 Open		28	32	ns
t_{HZ}	Receiver Disable from High	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2 and 8) S1 Open		13	35	ns

AC Test Circuits

FIGURE 1

TL/F/8759-3
Note: S1 and S2 of load circuit are closed except as otherwise mentioned.
FIGURE 2

TL/F/8759-5
Note: Unless otherwise specified the switches are closed.
FIGURE 4

Switching Time Waveforms

FIGURE 5. Driver Propagation Delays and Transition Times

TL/F/8759-7
FIGURE 6. Driver Enable and Disable Times

TL/F/8759-8
Note: Differential input voltage may may be realized by grounding $\overline{\mathrm{RI}}$ and pulsing RI between +2.5 V and -2.5 V FIGURE 7. Receiver Propagation Delays

FIGURE 8. Receiver Enable and Disable TImes

Function Tables

Inputs			LIne Condition	Outputs	
$\overline{\mathrm{RE}}$	DE	DI		$\overline{\text { DO }}$	DO
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z
X	1	X	Fault	Z	Z

DS75176B Recelving

Inputs			Outputs
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	RI-硬	RO
0	0	$\geq+0.2 \mathrm{~V}$	$\mathbf{1}$
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open**	1
$\mathbf{1}$	0	X	\mathbf{Z}

X — Don't care condition
Z - High impedance state
Fault - Improper line conditons causing excessive power dissipation in the driver, such as shorts or bus contention situations
**This is a fail safe condition

Typical Application

TL/F/8759-11

DS7820/DS8820 Dual Line Receiver

General Description

The DS7820, specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and the DS8820, specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with TTL or LS integrated circuits.
The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820 and the DS8820 are specified, worst case, over their full operating temperature range, for ± 10-percent supply voltage variations and over the entire input voltage range.

Features

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Each channel can be strobed independently
- High input resistance
- Fan out of two with TTL integrated circuits
- Strobe low forces output to " 1 " state

Connection Diagram

TL/F/5796-2
Top View
Order Number DS7820J, DS8820J or DS8820N See NS Package Number J14A or N14A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	8.0 V
Input Voltage	$\pm 20 \mathrm{~V}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Strobe Voltage	8.0 V
Output Sink Current	25 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec.)	$260^{\circ} \mathrm{C}$

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package 1308 mW Molded Package 1207 mW
*Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Unlts
Supply Voltage (VCC)			
DS7820	4.5	5.5	V
DS8820	4.75	5.25	V
Temperature (T_{A})			
DS7820	-55	+125	${ }^{\circ} \mathrm{C}$
DS8820	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage	$V_{C M}=0 \mathrm{~V}$	-0.5	0	0.5	V
		$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$	-1.0	0	1.0	V
V_{OH}	High Output Level	IOUT $\leq 0.2 \mathrm{~mA}$	2.5		5.5	V
V_{OL}	Low Output Level	$\mathrm{I}_{\text {SINK }} \leq 3.5 \mathrm{~mA}$	0		0.4	V
R^{-}	Inverting Input Resistance		3.6	5.0		k Ω
$\mathrm{R}_{1}+$	Non-Inverting Input Resistance		1.8	2.5		k Ω
R_{T}	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	170	250	Ω
t_{r}	Response Time	$\mathrm{C}_{\text {DELAY }}=0 \mathrm{pF}$		40		ns
		$\mathrm{C}_{\text {DELAY }}=100 \mathrm{pF}$		150		ns
IST	Strobe Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}$		-1.0	-1.4	mA
		$\mathrm{V}_{\text {STROBE }}=5.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
ICC	Power Supply Current	$V_{\text {IN }}=15 \mathrm{~V}$		3.2	6.0	mA
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		5.8	10.2	mA
		$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$		8.3	15.0	mA
ln^{+}	Non-Inverting Input Current	$V_{\text {IN }}=15 \mathrm{~V}$		5.0	7.0	mA
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1.6	-1.0		mA
		$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$	-9.8	-7.0		mA
$\mathrm{I}^{(1)}$	Inverting Input Current	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		3.0	4.2	mA
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		0	-0.5	mA
		$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$	-4.2	-3.0		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: These specifications apply for $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the DS 7820 or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the DS8820 unless otherwise specified; typical values given are for $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CM}}=0$ unless stated differently.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

Typical Performance Characteristics (Note 3)

Typical Application

TL/F/5796-3

Schematic Diagram

TL/F/5796-1

DS7820A/DS8820A Dual Line Receiver

General Description

The DS7820A and the DS8820A are improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with TTL or LS integrated circuits. The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic " 1 " for both inputs open. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820A and the DS8820A are specified, worst case, over
their full operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ respectively), over the entire input voltage range, for $\pm 10 \%$ supply voltage variations.

Features

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Strobe low forces output to " 1 " state
- High input resistance
- Fanout of ten with TTL integrated circuits
@ Outputs can be wire OR'ed
- Series 54/74 compatible

Connection Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	8.0 V
Common-Mode Voltage	$\pm 20 \mathrm{~V}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Strobe Voltage	8.0 V
Output Sink Current	50 mA
Storage Temperature Range	
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Cavity Package	
Molded Package	1308 mW
Lead Temperature (Soldering, 4 sec.)	1207 mW
${ }^{*}$ Derate cavity package $8.7 \mathrm{~mW} /^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package	
9.7 mW $/^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			V
DS7820A	4.5	5.5	V
DS8820A	4.75	5.25	
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7820A	-55	+125	${ }^{\circ} \mathrm{C}$
DS8820A	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3, and 4)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{TH}	Differential Threshold Voltage	IOUT $=-400 \mu \mathrm{~A}$, $V_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$			0.06	0.5	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			0.06	1.0	V
		$\begin{aligned} & \text { IOUT }=+16 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {OUT }} \leq 0.4 \mathrm{~V} \end{aligned}$	$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$			-0.08	-0.5	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			-0.08	-1.0	V
Rl^{-}	Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			3.6	5		$\mathrm{k} \Omega$
Rl^{+}	Non-Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			1.8	2.5		$\mathrm{k} \Omega$
R_{T}	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			120	170	250	Ω
1^{-}	Inverting Input Current	$\mathrm{V}_{\text {CM }}=15 \mathrm{~V}$				3.0	4.2	mA
		$V_{C M}=0 V$				0	-0.5	mA
		$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$				-3.0	-4.2	mA
11^{+}	Non-Inverting input Current	$V_{C M}=15 \mathrm{~V}$				5.0	7.0	mA
		$V_{C M}=0 \mathrm{~V}$				-1.0	-1.6	mA
		$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$				-7.0	-9.8	mA
ICC	Power Supply Current One Side Only	lout = Logical '0"	$\mathrm{V}_{\text {DIFF }}=-1 \mathrm{~V}$	$V_{C M}=15 \mathrm{~V}$		3.9	6.0	mA
				$V_{C M}=-15 \mathrm{~V}$		9.2	14.0	mA
			$\mathrm{V}_{\text {DIFF }}=-0.5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$			6.5	10.2	mA
V_{OH}	Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$			2.5	4.0	5.5	V
V_{OL}	Logical "0" Output Voltage	$\mathrm{I}_{\text {OUT }}=+16 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$			0	0.22	0.4	V
$\mathrm{V}_{\text {SH }}$	Logical "1" Strobe Input Voltage	IoUT $=+16 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			2.1			\checkmark
$\mathrm{V}_{\text {SL }}$	Logical "0" Strobe Input Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$					0.9	V
$\mathrm{ISH}_{\text {S }}$	Logical "1" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$				0.01	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SL }}$	Logical "0" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$				-1.0	-1.4	mA
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V}$			-2.8	-4.5	-6.7	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range"' they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: These specifications apply for $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the DS 7820 A or $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the DS8820A unless otherwise specified. Typical values given are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless stated differently.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pdo }}$	Propagation Delay, Differential Input to "0" Output	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 1		30	45	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay, Differential Input to "1" Output			27	40	ns
$\mathrm{t}_{\text {pdo }}$	Propagation Delay, Strobe Input to "0" Output			16	25	ns
$t_{\text {pd } 1}$	Propagation Delay, Strobe Input to "1" Output			18	30	ns

AC Test Circuit and Waveforms

FIGURE 1

Transfer Function

Internal Power Dissipation

Temperature Sensitivity

Input Characteristics

Output Voltage Levels

Strobe Delays

TL/F/5797-1

Typical Applications

Differentlal Line Driver and Receiver

TL/F/5797-3
Single Ended (EIA-RS232C) Receiver with Hysteresis

DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.
Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.
A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a 180Ω terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and the DS88C20 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.

Features

■ Meets requirements of EIA Standards RS-232-C RS422 and RS-423, and Federal Standards 1020 and 1030

- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $1 / 2 V_{C C}$ strobe threshold for CMOS compatibility
- 5k typical input impedance
- 50 mV input hysteresis
- 200 mV input threshold

■ Operation voltage range $=4.5 \mathrm{~V}$ to 15 V

- DS7830/DS8830 or MM78C30/MM88C30 recommended driver

Connection Diagram

TL/F/5798-1
Top View
Order Number DS78C20J, DS88C20J or DS88C20N See NS Package Number J14A or N14A

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pd0(D) }}$	Differential Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		60	100	ns
$\mathrm{t}_{\text {pd1 }(\mathrm{D})}$	Differential Input to "1" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns
$\mathrm{t}_{\mathrm{pd} 0(\mathrm{~S})}$	Strobe Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	70	ns
$\mathrm{t}_{\mathrm{pd1}(\mathrm{~S})}$	Strobe Input to "1" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 C 20 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88C20. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS-422 for exact conditions

Typical Applications

RS-422/RS-423 Application

TL/F/5798-2
Note 1: (Optional internal termination resistor.)
a) Capacitor in series with internal line termination resistor, terminates the line and saves termination power. Exact value depends on line length.
b) Pin 1 connected to pin 2; terminates the line
c) Pin 2 open; no internal line termination.
d) Transmission line may be terminated elsewhere or not at all.

Note 2: Optional to control response time.
Note 3: $\mathrm{V}_{\mathrm{CC}} 4.5 \mathrm{~V}$ to 15 V for the $\mathrm{DS78C20}$. For further information on line drivers and line receivers, refer to applicaton notes AN-22, AN-83 and AN-108.

RS-232-C Application with Hysteresis

TL/F/5798-4

For signals which require fail-safe or have slow rise and fall times, use R1 and D1 as shown above. Otherwise, the positive input (pin 3 or 11) may be connected to ground.

AC Test Circuit

$t_{r}=t_{f}=\leq 10 \mathrm{~ns}$
$\operatorname{PRR}=1 \mathrm{MHz}$
*Includes probe and jig capacitance

Switching Time Waveforms

DS7830/DS8830 Dual Differential Line Driver

General Description

The DS7830/DS8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function.
TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω. The differential feature of the output eliminates troublesome ground-loop errors normally associated with sin-gle-wire transmissions.

Features

- Single 5V power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing

■ High speed

- Short circuit protection

Connection Diagram

Top View
Order Number DS7830J, DS8830J or DS8830N See NS Package Number J14A or N14A

Typical Application

Digital Data Transmission

Absolute Maximum Ratings (Note 1)		Operating Conditions			
If Military/Aerospace specified de please contact the National	ces are required, iconductor Sales	Supply Voltage (V_{CC})	Min	Max	Units
Office/Distributors for availability	d specifications.	DS8730	4.5	5.5	V
$V_{C C}$	7.0 V	DS8830	4.75	5.25	V
Input Voltage	5.5 V	Temperature (T_{A})			
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS7830	-55	+125	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec .)	$260^{\circ} \mathrm{C}$	DS8830	0	+ 70	${ }^{\circ} \mathrm{C}$
Output Short Circuit Duration ($125^{\circ} \mathrm{C}$)	1 second				
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$					
Cavity Package	1308 mW				
Molded Package	1207 mW				
*Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25° $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	derate molded package				

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage			2.0			V
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage					0.8	V
V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	IOUT $=-0.8 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}$	1.8	3.3		V
V_{OL}	Logical '0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$	$\mathrm{I}_{\text {OUT }}=32 \mathrm{~mA}$		0.2	0.4	V
			$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}$		0.22	0.5	V
${ }_{1} \mathrm{H}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$				120	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				2	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-4.8	mA
Isc	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C},(\text { Note } 4)$		-40	-100	-120	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$, (Each Driver)			11	18	mA
V_{1}	Input Clamp	$V_{C C}=M i n, I_{\mathrm{IN}}=-12 \mathrm{~mA}$			-1.0	-1.5	V

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pd1 }}$	Propagation Delay AND Gate	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 1)		8	12	ns
$t_{\text {pdo }}$				11	18	ns
$t_{\text {pd1 }}$	Propagation Delay NAND Gate	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 1)		8	12	ns
$t_{\text {pdo }}$				5	8	ns
t_{1}	Differential Delay	Load, 100Ω and 5000 pF , (Figure 2)		12	16	ns
t_{2}	Differential Delay	Load, 100Ω and 5000 pF , (Figure 2)		12	16	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7830 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8830. Typical values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

TL/F/5799-4

$$
\begin{aligned}
& f=1 \mathrm{MHz} \\
& t_{r}=t_{\text {f }} \leq 10 \mathrm{~ns}(1) \\
& \text { Duty cycle }=50 \%
\end{aligned}
$$

TL/F/5799-9

FIGURE 1

TL/F/5799-10
FIGURE 2

Typical Performance Characteristics

Differentlal Delay vs
Temperature

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right.$)

Power Dissipation (No Load) vs Data Input Frequency
 data input frequency (Mhz)

Output Low Voltage
(Logical "0") vs Output Current

Schematic Diagram

DS7831/DS8831/DS7832/DS8832 Dual TRI-STATE ${ }^{\circledR}$ Line Driver

General Description

Through simple logic control, the DS7831/DS8831, DS7832/DS8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DS7832/DS8832 does not have the VCC clamp diodes found on the DS7831/DS8831.
The DS7831 and DS7832 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The DS8831 and DS8832 are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance-high drive capability
- 40 mA sink and source currents
- Gating control to allow either single-ended or differential operation
- High impedance output state which allows many outputs to be connected to a common bus line

Connection and Logic Diagram

Dual-In-Line Package

Order Number DS7831J, DS8831J, DS7832J, DS8832J, DS8831N or DS8832N See NS Package Number J16A or N16A

Truth Table (Shown for A Channels Only)

"A"	able	Differential/ Single-Ended Mode Control		Input A1	Output A1	Input A2	Output A2
0	0	0	0	Logical "1" or Logical "0"	Same as Input A1	Logical "1" or Logical "0"	Same as Input A2
0	0	$\begin{aligned} & X \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & x \end{aligned}$	Logical "1" or Logical "0"	Opposite of Input A1	Logical " 1 " or Logical "0"	Same as Input A2
1 \times	$\begin{aligned} & X \\ & 1 \end{aligned}$	X	X	X	High Impedance State	X	High Impedance State

[^7]$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Military/Aerospace specifled devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for avallability and specifications. } \\ \text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V} \\ \text { Output Voltage } & 5.5 \mathrm{~V} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 4 \mathrm{sec} .) & 260^{\circ} \mathrm{C} \\ \text { Maximum Power Dissipation }{ }^{*} \text { at } 25^{\circ} \mathrm{C} & \\ \text { Cavity Package } & 1433 \mathrm{~mW} \\ \text { Molded Package } & 1362 \mathrm{~mW}\end{array}$
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
DS7831/DS7832	4.5	5.5	V
DS8831/DS8832	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7831/DS7832	-55	+125	${ }^{\circ} \mathrm{C}$
DS8831/DS8832	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage	$V_{C C}=M i n$			2.0		-	V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=\operatorname{Min}$					0.8	V
V_{OH}	Logical "1" Output Voltage	DS7831/DS7832	$V_{C C}=\operatorname{Min}$	$\mathrm{I}_{0}=-40 \mathrm{~mA}$	1.8	2.3		V
				$\mathrm{I}_{0}=-2 \mathrm{~mA}$	2.4	2.7		V
		DS8831/DS8832		$\mathrm{l}_{0}=-40 \mathrm{~mA}$	1.8	2.5		V
				$\mathrm{I}_{0}=-5.2 \mathrm{~mA}$	2.4	2.9		V
V_{OL}	Logical "0" Output Voltage	DS7831/DS7832	$V_{C C}=M i n$	$10=40 \mathrm{~mA}$		0.29	0.50	V
				$\mathrm{I}_{0}=32 \mathrm{~mA}$			0.40	V
		DS8831/DS8832		$\mathrm{I}_{0}=40 \mathrm{~mA}$		0.29	0.50	V
				$\mathrm{I}_{0}=32 \mathrm{~mA}$			0.40	V
Ith	Logical "1" Input Current	$V_{C C}=\operatorname{Max}$	DS7831/DS7832, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
			DS8831/DS8832, $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$V_{C C}=M a x, V_{\text {IN }}=0.4 \mathrm{~V}$				-1.0	-1.6	mA
IOD	Output Disable Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$ or 0.4 V			-40		40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$V_{C C}=$ Max, (Note 4)			-40	-100	-120	mA
ICC	Supply Current	$V_{C C}=$ Max in TRI-STATE				65	90	mA
$\mathrm{V}_{\text {CLI }}$	Input Diode Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$					-1.5	V
$\mathrm{V}_{\text {CLO }}$	Output Diode Clamp Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	lout $=-12 \mathrm{~mA}$	$\begin{array}{\|l\|l} \text { DS7831/DS8831 } \\ \text { DS7832/DS8832 } \end{array}$			-1.5	V
			$\mathrm{I}_{\text {OUT }}=12 \mathrm{~mA}$	DS7831/DS8831			$V_{C C}+1.5$	V

Switching Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pdo }}$	Propagation Delay to a Logical " 0 " from Inputs A1, A2, B1, B2 Differential Single-ended Mode Control to Outputs	(See Figures 4 and 5)		13	25	ns
$t_{\text {pd } 1}$	Propagation Delay to a Logical " 1 " from Inputs A1, A2, B1, B2 Differential Single-ended Mode Control to Outputs			13	25	ns
$\mathrm{t}_{1} \mathrm{H}$	Delay from Disable Inputs to High Impedance State (from Logical " 1 " Level)			6	12	ns
t_{OH}	Delay from Disable Inputs to High Impedance State (from Logical " 0 " Level)			14	22	ns
$\mathrm{t}_{\mathrm{H} 1}$	Propagation Delay from Disable Inputs to Logical "1" Level (from High Impedance State)			14	22	ns
t_{HO}	Propagation Delay from Disable Inputs to Logical "0" Level (from High Impedance State)		:	18	27	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7831 and DS7832 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8831 and DS8832. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Applies for $T_{A}=125^{\circ} \mathrm{C}$ only. Only one output should be shorted at a time.

Mode of Operation

To operate as a quad single-ended line driver apply logical " 0 "s to the output disable pins (to keep the outputs in the normal low impedance mode) and apply logical " 0 " s to both Differential/Single-ended Mode Control inputs. All four channels will then operate independently and no signal inversion will occur between inputs and outputs.
To operate as a dual differential line driver apply logical " 0 "s to the Output Disable pins and apply at least one logical "1" to the Differential/Single-ended Mode Control inputs.
The inputs to the A channels should be connected together and the inputs to the B channels should be connected together.
In this mode the signals applied to the resulting inputs will pass non-inverted on the A_{2} and B_{2} outputs and inverted on the A_{1} and B_{1} outputs.
When operating in a bus-organized system with outputs tied directly to outputs of other DS7831/DS8831's, DS7832/ DS8832's (Figure 1), all devices except one must be placed
in the "high impedance" state. This is accomplished by ensuring that a logical " 1 " is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/ DM7442, BCD-to-decimal decoders, to decode as many as 100 DS7831/DS8831's, DS7832/DS8832's (Figure 2).
The unique device whose Disable inputs receive two logical " 0 " levels assumes the normal low impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical " 0 " to logical " 1 " state. The other outputs-in the high impedance state-take only a small amount of leakage current from the low impedance outputs. Since the logical "1" output current from the selected device is 100 times that of a conventional Series $54 / 74$ device (40 mA vs. $400 \mu \mathrm{~A}$), the output is easily able to supply that leakage current for several hundred other DS7831/DS8831's, DS7832/DS8832's and still have available drive for the bus line (Figure 3).

FIGURE 2

TL/F/5800-4
FIGURE 3

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/F/5800-6

Switching Time Waveforms

Input characteristic:
Amplitude $=3.0 \mathrm{~V}$
Frequency $=1.0 \mathrm{MHz}, 50 \%$ duty cycle
$t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathrm{ns}(10 \%$ to $90 \%)$

DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C120 and DS88C120 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.
Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.
The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and a $\pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.
Circuit features include hysteresis and response control for applications where controlled rise and fall times and/or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes a 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78C120 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the DS88C120 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Full compatibility with EIA Standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $1 / 2 V_{C C}$ strobe threshold for CMOS compatibility
- 5 k typical input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V
- Separate fail-safe mode

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
18 V

Input Voltage	$\pm 25 \mathrm{~V}$
Strobe Voltage	18 V
Output Sink Current	50 mA
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
\quad Cavity Package	1433 mW
Molded Package	1362 mW

-Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Condltions		Min	Typ	Max	Units
$V_{\text {TH }}$	Differential Threshold Voltage	$\begin{aligned} & \text { louT }=-200 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V} \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.06	0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		0.06	0.3	V
$V_{T L}$	Differential Threshold Voltage	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.08	-0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		-0.08	-0.3	V
$\mathrm{V}_{\text {TH }}$	Differential Threshold Voltage Fail-Safe Offset $=5 \mathrm{~V}$	$\begin{aligned} & \text { lout }=-200 \mu \mathrm{~A}, \\ & \text { V OUT } \geq \mathrm{V}_{\text {CC }}-1.2 \mathrm{~V} \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.47	0.7	V
$\mathrm{V}_{T L}$		$\mathrm{l}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$	0.2	0.42		V
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 15 \mathrm{~V}$		4	5		$\mathrm{k} \Omega$
R_{T}	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	Ω
R_{0}	Offset Control Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			56		$\mathrm{k} \Omega$
IIND	Data Input Current (Unterminated)	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CC}} \leq 15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}$		2	3.1	mA
			$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		0	-0.5	mA
			$\mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}$		-2	-3.1	mA
$\mathrm{V}_{\text {THB }}$	Input Balance (Note 5)	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=200 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq \\ & \mathrm{V}_{\text {CC }}-1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=500 \Omega \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.1	0.4	V
		$\begin{aligned} & \text { lout }=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
$\mathrm{VOH}^{\text {O }}$	Logical "1" Output Voltage	IOUT $=-200 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$		$V_{C C}-1.2$	$V_{C C}-0.75$		V
V_{OL}	Logical "0" Output Voltage	IOUT $=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$			0.25	0.5	V
$I_{C C}$	Power Supply Current	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq-15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DIFF }}=-0.5 \mathrm{~V} \text { (Both Receivers) } \end{aligned}$	$V_{C C}=5.5 \mathrm{~V}$		8	15	mA
			$V_{C C}=15 \mathrm{~V}$		15	30	mA
$\mathrm{I}_{\operatorname{IN}(1)}$	Logical "1" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			15	100	$\mu \mathrm{A}$
$\operatorname{IN}(0)$	Logical "0" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			-0.5	-100	$\mu \mathrm{A}$
V_{IH}	Logical "1" Strobe Input Voltage	$\mathrm{V}_{\text {OL }} \leq 0.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$	$V_{\mathrm{CC}}=5 \mathrm{~V}$	3.5	2.5		V
			$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	8.0	5.0		V
			$V_{C C}=15 \mathrm{~V}$	12.5	7.5		V

Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Strobe Input Voltage	$\begin{aligned} & V_{O H} V_{C C}-1.2 \mathrm{~V} \\ & l_{\text {OUT }}=-200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2.5	1.5	V
			$V_{C C}=10 \mathrm{~V}$		5.0	2.0	V
			$V_{C C}=15 \mathrm{~V}$		7.5	2.5	V
los	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$	OV, (Note 4)	-5	-20	-40	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 C 120 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 88 C 120 . All typical values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS422 for exact conditions.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{pd} 0(\mathrm{D})}$	Differential Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		60	100	ns
$\mathrm{t}_{\mathrm{pd} 1(\mathrm{D})}$	Differential Input to " 1 " Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns
$\mathrm{t}_{\text {pdo(S) }}$	Strobe Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	70	ns
$\mathrm{t}_{\mathrm{pd1}(\mathrm{~S})}$	Strobe Input to "1" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns

AC Test Circuit and Switching Time Waveforms

PRR $=1 \mathrm{MHz}$
Note: Optimum switching response is obtained by minimizing stray capacitance on Response Control pin (no external connection).

Application Hints

TL/F/5801-5

TL/F/5801-6

The DS78C120/DS88C120 may be used as a level transistor to interface between $\pm 12 \mathrm{~V}$ MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to $1 / 2$ the voltage of the input signal, and the other input to the driving gate.

Application Hints (Continued)

LINE DRIVERS

Line drivers which will interface with the DS78C120/ DS88C120 are listed below.

Balanced Drivers

DS26LS31	Quad RS-422 Line Driver
DS7830, DS8830	Dual TTL
DS7831, DS8831	Dual TRI-STATE® TTL
DS7832, DS8832	Dual TRI-STATE TTL
DS1691A, DS3691	Quad RS-423/Dual RS-422 TTL
DS1692, DS3692	Quad RS-423/Dual TRI-STATE
	RS-422 TTL
DS3587, DS3487	Quad TRI-STATE RS-422
Unbalanced Drivers	
DS1488	Quad RS-232
DS14C88	Quad RS-232
DS75150	Dual RS-232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS-232/RS-423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78C120/DS88C120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a line receiver due to the input signal slowly varying about the threshold level for extended periods of time.
High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78C120/ DS88C120, a high impedance response control pin in the input amplifier is available to filter the input signal without affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in Figures 1 and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/crosstalk. A 180Ω termination resistor is provided in the DS78C120/DS88C120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.
The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns) the capacitor value should be 1852 pF . For additional application details, refer to application notes AN-22 and $\mathrm{AN}-108$.

FIGURE 1. Noise Pulse Width vs Response Control Capacitor

TL/F/5801-10

FIGURE 2

Application Hints (Continued)

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or shorted. To facilitate the detection of input opens or shorts, the DS78C120/ DS88C120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.
Given that the receiver input threshold is $\pm 200 \mathrm{mV}$, an input signal greater than $\pm 200 \mathrm{mV}$ insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, the input thresholds are offset from 200 mV to 700 mV , referred to the non-inverting input, or -200 mV to -700 mV , referred to the inverting input. Therefore, if the input is open or shorted, the input will be greater than the input threshold and the receiver will remain in a specified logic state.
The input circuit of the receiver consists of a 5 k resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with com-mon-mode input voltages greater than $\pm 15 \mathrm{~V}$. The offset control input is actually another input to the attenuator, but its resistor value is 56 k . The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5 V the input amplifier will see $\mathrm{V}_{\text {IN(INVERTING) }}+0.45 \mathrm{~V}$ or $\mathrm{V}_{\text {IN(INVERTING) }}+0.9 \mathrm{~V}$ when the control input is connected to 10 V . The offset control input will not significantly affect the differential
performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver.
It is recommended that the receiver be terminated (500Ω or less) to insure it will detect an open circuit in the presence of noise.
The offset control can be used to insure fail-safe operation for unbalanced interface (RS-423) or for balanced interface (RS-422) operation.
For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to 5 V offsets the receiver threshold 0.45 V . The output is forced to a logic zero state if the input is open or shorted.
For balanced operation with inputs shorted or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector. Another method of fail-safe detection consists of filtering the output of the NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.
In a communications system, only the control signals are required to detect input fault condition. Advantages of a balanced data transmission system over an unbalanced transmission system are:

1. High noise immunity
2. High data ratio
3. Long line lengths

TL/F/5801-13

Truth Table (For Balanced Fail-Safe)

Input	Strobe	A-OUT	B-OUT	C-OUT	D-OUT
0	1	0	1	0	0
1	1	1	0	1	0
X	1	0	0	X	1
0	0	1	1	0	0
1	0	1	1	0	0
X	0	1	1	0	0

DS78LS120/DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe)

General Description

The DS78LS120 and DS88LS120 are high performance, dual differential, TTL compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.
The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and $\mathrm{a} \pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.
Circuit features include hysteresis and response control for applications where controlled rise and fall times and/or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes an optional 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78LS120 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the DS88LS120 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagram

Order Number DS78LS120J, DS88LS120J, DS88LS120N or DS88LS120M See NS Package Number J16A, M16A or N16A

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.

Features

- Meets EIA standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- 5k typical input impedance

■ Optional 180Ω termination resistor

- 50 mV input hysteresis
- 200 mV input threshold
- Separate fail-safe mode

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	$\pm 25 \mathrm{~V}$
Strobe Voltage	7 V
Output Sink Current	50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
\quad Cavity Package	1433 mV
\quad Molded Package	1362 mW
Lead Temperature (Soldering, 4 sec)	$260^{\circ} \mathrm{C}$

*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
\quad DS78LS120	-55	+125	${ }^{\circ} \mathrm{C}$
\quad DS88LS120	0	+70	${ }^{\circ} \mathrm{C}$
Common-Mode Voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$	-15	+15	V

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential Threshold Voltage	lout $=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.06	0.2	V
			$-15 \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		0.06	0.3	V
V_{TL}	Differential Threshold Voltage	$\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.08	-0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		-0.08	-0.3	V
$\begin{aligned} & \mathrm{V}_{\mathrm{TH}} \\ & \mathrm{~V}_{\mathrm{TL}} \end{aligned}$	Differential Threshold Voltage with Fail-Safe Offset $=5 \mathrm{~V}$	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.47	0.7	V
		$\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$	-0.2	-0.42		V
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 7 \mathrm{~V}$		4	5		$\mathrm{k} \Omega$
R_{T}	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	Ω
R_{O}	Offset Control Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	56	70	$\mathrm{k} \Omega$
IIND	Data Input Current (Unterminated)	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}$	$\mathrm{V} \leq \mathrm{V}_{\mathrm{CC}} \leq 7 \mathrm{~V}$		2	3.1	mA
		$V_{C M}=0 \mathrm{~V}$			0	-0.5	mA
		$\mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}$			-2	-3.1	mA
$V_{\text {THB }}$	Input Balance (Note 5)	$\begin{aligned} & \text { IOUT }=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} 7 \mathrm{~V}$		0.1	0.4	V
		$\begin{aligned} & \mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
V_{OH}	Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.5 \mathrm{~V}$		2.5	3		V
V_{OL}	Logical "0' Output Voltage	$\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.5 \mathrm{~V}$			0.35	0.5	V
Icc	Power Supply Current	$\begin{array}{\|l\|} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DIFF}}=-0.5 \mathrm{~V}, \text { (Both Receivers) } \end{array}$	$V_{C M}=15 \mathrm{~V}$		10	16	mA
			$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$		10	16	mA
$\operatorname{IN}(1)$	Logical "1" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			1	100	$\mu \mathrm{A}$
IN (0)	Logical "0" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			-290	-400	$\mu \mathrm{A}$
V_{IH}	Logical "1" Strobe Input Voltage	$\mathrm{V}_{\mathrm{OL}} \leq 0.5, \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}$		2.0	1.12		V
$\mathrm{V}_{\text {IL }}$	Logical "0" Strobe Input Voltage	$\mathrm{V}_{\mathrm{OH}} \geq 2.5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }},=-400 \mu \mathrm{~A}$			1.12	0.8	V
los	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V}$, (Note 4)		-30	-100	-170	mA

[^8]Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pdo(}}$ ($)$	Differential Input to "0" Output	Response Pin Open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		38	60	ns
$\mathrm{t}_{\text {pd1 (} \mathrm{D})}$	Differential Input to "1" Output			38	60	ns
$t_{\text {pdo }}(\mathrm{S})$	Strobe Input to "0" Output			16	25	ns
$\mathrm{t}_{\mathrm{pd} 1(\mathrm{~S})}$	Strobe Input to "1" Output			12	25	ns

AC Test Circuit and Switching Time Waveforms

Application Hints

Balanced Data Transmission

TL/F/7499-5

Application Hints (Continued)

TL/F/7499-6

TL/F/7499-7
The DS78LS120/DS88LS120 may be used as a level translator to interface between $\pm 12 \mathrm{~V}$ MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to $1 / 2$ the voltage of the input signal, and the other input to the driving gate.

LINE DRIVERS

Line drivers which will interface with the DS78LS120/ DS88LS120 are listed below.

Balanced Drivers

DS26LS31
Quad RS-422 Line Driver Dual CMOS Dual TTL
DS7831, DS8831
DS7832, DS8832
DS1691A, DS3691
DS1692, DS3692
DS3487
Unbalanced Drivers
DS1488
Quad RS-232
DS75150
Dual RS-232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS-232/RS-423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78LS120/DS88LS120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a line receiver due to the input signal slowly varying about the threshold level for extended periods of time.
High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78LS120/ DS88LS120, a high impedance response control pin in the input amplifier is available to filter the input signal without

affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in Figures 1 and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

TL/F/7499-9
FIGURE 1. Noise Pulse Width vs Response Control Capacitor

TL/F/7499-10
FIGURE 2

Application Hints (Continued)

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/crosstalk. A 180Ω termination resistor is provided in the DS78LS120/DS88LS120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.
The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns), and the termination resistor value is 180Ω, the capacitor value should be 1852 pF . For additional application details, refer to application notes AN-22 and AN-108.

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or shorted. To facilitate the detection of input opens or shorts, the DS78LS120/ DS88LS120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.
Given that the receiver input threshold is $\pm 200 \mathrm{mV}$, an input signal greater than $\pm 200 \mathrm{mV}$ insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, the input thresholds
are offset from 200 mV to 700 mV , referred to the non-inverting input, or -200 mV to -700 mV , referred to the inverting input. Therefore, if the input is open or shorted, the input will be greater than the input threshold and the receiver will remain in a specified logic state.
The input circuit of the receiver consists of a 5 k resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with com-mon-mode input voltages greater than $\pm 15 \mathrm{~V}$. The offset control input is actually another input to the attenuator, but its resistor value is 56 k . The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5 V the input amplifier will see $\mathrm{V}_{\text {IN(INVERTING) }}+0.45 \mathrm{~V}$ or $\mathrm{V}_{\text {IN(INVERTING) }}+0.9 \mathrm{~V}$ when the control input is connected to 10 V . The offset control input will not significantly affect the differential performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver. It is recommended that the receiver be terminated (500Ω or less) to insure it will detect an open circuit in the presence of noise.
The offset control can be used to insure fail-safe operation for unbalanced interface (RS-423) or for balanced interface (RS-422) operation.
For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the fail-safe offset pin to 5 V , offsets the receiver threshold to 0.45 V . The output is forced to a logic zero state if the input is open or shorted.

Application Hints (Continued)

TL/F/7499-13

TL/F/7499-14

For balanced operation with inputs open or shorted, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the open or short condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector. Another method of fail-safe detection consists of filtering the output of NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.

In a communications system, only the control signals are required to detect input fault conditions. Advantages of a balanced data transmission system over an unbalanced transmission system are:

1. High noise immunity
2. High data ratio
3. Long line lengths

Truth Table (For Balanced Fail-Safe)

Input	Strobe	A-Out	B-Out	C-Out	D-Out
0	1	0	1	0	0
1	1	1	0	1	0
X	1	0	0	X	1
0	0	1	1	0	0
1	0	1	1	0	0
X	0	1	1	0	0

DS8921/DS8921T/DS8921A/DS8921AT Differential Line Driver and Receiver Pair

General Description

The DS8921, DS8921 are Differential Line Driver and Receiver pairs designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, these devices meet the requirements of the EIA Standard RS-422.
The DS8921 receiver offers an input sensitivity of 200 mV over a $\pm 7 \mathrm{~V}$ common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms.
The DS8921A driver is designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns.
The DS8921A is designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay

■ Output skew - 0.5 ns typical

- Meet the requirements of EIA Standard RS-422
- Complementary Driver Outputs

■ High differential or common-mode input voltage ranges of $\pm 7 \mathrm{~V}$

- $\pm 0.2 \mathrm{~V}$ receiver sensitivity over the input voltage range

■ Receiver input hysteresis- 70 mV typical

- DS8921T/DS8921AT industrial temperature operation $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Connection Diagram

TL/F/8512-1
Order Number DS8921M, DS8921N, DS8921AM, DS8921AN, DS8921J, DS8921AJ, DS8921TM, DS8921TN, DS8921TJ, DS8921ATM, DS8921ATN or DS8921ATJ

See NS Package Number J08A, M08A or N08E

Truth Table

Receiver		Driver		
Input	$V_{\text {OUT }}$	Input	$\mathbf{V}_{\text {OUT }}$	$\overline{V_{\text {OUT }}}$
$V_{\text {ID }} \geq \mathrm{V}_{\text {TH }}(M A X)$	1	1	1	0
$\mathrm{~V}_{\text {ID }} \leq \mathrm{V}_{\text {TH }}(\mathrm{MIN})$	0	0	0	1
Open	1			

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Dlstributors for availability and specifications.
Supply Voltage
7 V
Driver Input Voltage
-0.5 V to +7 V
$\begin{array}{lr}\text { Output Voltage } & 5.5 \mathrm{~V} \\ \text { Receiver Output Sink Current } & 50 \mathrm{~mA} \\ \text { Receiver Input Voltage } & \pm 10 \mathrm{~V} \\ \text { Differential Input Voltage } & \pm 12 \mathrm{~V}\end{array}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec.$)$	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage 4.5 5.5	V		
Temperature $\left(T_{A}\right)$			
(DS8921/DS8921A)	0	70	${ }^{\circ} \mathrm{C}$
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
(DS8921T/DS8921AT)	-40	+85	${ }^{\circ} \mathrm{C}$

DS8921/DS8921A Electrical Characteristics (Notes 2, 3 and 4)

Symbol	Conditions	Min	Typ	Max	Units
RECEIVER					
$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	-200	± 35	+200	mV
$\mathrm{V}_{\text {HYST }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	15	70		mV
$\mathrm{R}_{\text {IN }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	4.0	6.0		k Ω
IN	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$			3.25	mA
	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$			-3.25	mA
V_{OH}	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.5			V
V_{OL}	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.5	V
ISC	$V_{C C}=M A X, V_{\text {OUT }}=O V$	-15		-100	mA

DRIVER

$\mathrm{V}_{\text {IH }}$		2.0			V
V_{IL}				0.8	V
1 IL	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		-40	-200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
1	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$V_{C L}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$			-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.5			V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=+20 \mathrm{~mA}$			0.5	V
loff	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\left\|V_{T}\right\|-\|\overline{V T}\|$				0.4	V
V_{T}		2.0			V
$\left\|V_{O S}-\overline{v_{O S}}\right\|$				0.4	V
ISC	$V_{C C}=M A X, V_{\text {OUT }}=0 V$	-30		-150	mA

ORIVER and RECEIVER

I_{CC}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OUT}}=$ Logic 0			35	mA

Receiver Switching Characteristics (Figures 1 and 2)

Symbol	Conditions	Min	Typ	Max				Units
				8921	8921A	$8921 T$	8921AT	
$\mathrm{T}_{\text {pLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 1, 2)		14	22.5	20	22.5	20	ns
$\mathrm{T}_{\mathrm{pHL}}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 1, 2)		14	22.5	20	22.5	20	ns
$\left\|T_{\text {pLH }}-T_{p H L}\right\|$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 1, 2)		0.5	5	3.5	5	5	ns

Driver Switching Characteristics (Figures 3 and 4)

SINGLE ENDED CHARACTERISTICS

Symbol	Conditions	Min	Typ	Max				Units
				8921	8921A	89215	8921AT	
$\mathrm{T}_{\mathrm{pLH}}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 3, 4)		10	15	15	15	15	ns
$\mathrm{T}_{\mathrm{pHL}}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 3, 4)		10	15	15	15	15	ns
$T_{\text {TLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 7, 8)		5	8	8	9.5	9.5	ns
$\mathrm{T}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Figures 7, 8)		5	8	8	9.5	9.5	ns
Skew	$\mathrm{CL}=30 \mathrm{pF}$ (Figures 3, 4)		1	5	3.5	5	3.5	ns

Driver Switching Characteristics (Figures 3 and 5)
DIFFERENTIAL CHARACTERISTICS (Note 6)

Symbol	Conditions	Min	Typ	Max				Units
				8921	8921A	8921T	8921AT	
$\mathrm{T}_{\mathrm{pLH}}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { (Figures } 3,5,6 \text {) } \end{aligned}$		10	15	15	15	15	ns
$\mathrm{T}_{\mathrm{pHL}}$	$C_{L}=30 \mathrm{pF}$ (Figures 3, 5, 6)		10	15	15	15	15	ns
$\left\|T_{p L H}-T_{p H L}\right\|$	$C_{L}=30 \mathrm{pF}$ (Figures 3, 5, 6)		0.5	6	2.75	6	2.75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.
Note 3: All typical values are $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Only one output at a time should be shorted.
Note 5: Difference between complementary outputs at the 50% point.
Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).
The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:
$T_{c r}=\frac{\left(T_{f b} \times T_{r b}\right)-\left(T_{r a} \times T_{f a}\right)}{T_{r b}-T_{r a}-T_{f a}+T_{f b}}$
Where: $T_{c r}=$ Crossing Point
$\mathrm{T}_{\mathrm{ra}}, \mathrm{T}_{\mathrm{rb}}, \mathrm{T}_{\mathrm{fa}}$ and T_{fb} are time measurements with respect to the input. See Figure 6.

AC Test Circuits and Switching Diagrams

Typical Applications

TL/F/8512-9

DS8922/DS8922A/DS8923/DS8923A TRI-STATE ${ }^{\circledR}$ RS-422 Dual Differential Line Driver and Receiver Pairs

General Description

The DS8922/22A and DS8923/23A are Dual Differential Line Driver and Receiver pairs. These devices are designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, the devices meet the requirements of the EIA Standard RS-422.
These devices offer an input sensitivity of 200 mV over a $\pm 7 \mathrm{~V}$ common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms. An input fail-safe circuit is provided such that if the receiver inputs are open the output assumes the logical one state.
The DS8922A and DS8923A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns .
Both devices feature TRI-STATE outputs. The DS8922/22A have independent control functions common to a driver and receiver pair. The DS8923/23A have separate driver and receiver control functions.

Power up/down circuitry is featured which will TRI-STATE the outputs and prevent erroneous glitches on the transmission lines during system power up or power down operation. The DS8922/22A and DS8923/23A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew $- \pm 0.5$ ns typical
- Meets the requirements of EIA Standard RS-422
a Complementary Driver Outputs
- High differential or common-mode input voltage ranges of $\pm 7 \mathrm{~V}$
- $\pm 0.2 \mathrm{~V}$ receiver sensitivity over the input voltage range
- Receiver input fail-safe circuitry
- Receiver input hysteresis- $\pm 70 \mathrm{mV}$ typical
- Glitch free power up/down
- TRI-STATE outputs

Connection Diagrams

TL/F/8511-1
Order Number DS8922N, J, M, DS8922AN, AJ, AM
See NS Package Number N16A, J16A or M16A

TL/F/8511-2
Order Number DS8923N, J, M DS8923AN, AJ, AM
See NS Package Number N16A, J16A or M16A

Truth Tables

DS8922/22A

EN1	$\overline{\text { EN2 }}$	RO1	RO2	DO1	DO2
0	0	ACTIVE	ACTIVE	ACTIVE	ACTIVE
1	0	HI-Z	ACTIVE	HI-Z	ACTIVE
0	1	ACTIVE	HI-Z	ACTIVE	HI-Z
1	1	HI-Z	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the Natlonal Semiconductor Sales	
Office/Distributors for avallability and specifications.	
Supply Voltage	7 V
Drive Input Voltage	-0.5 V to +7 V
Output Voltage	5.5 V
Receiver Output Sink Current	50 mA
Receiver Input Voltage	$\pm 10 \mathrm{~V}$

DS8922/22A and DS8923/23A Electrical Characteristics (Notes 2, 3, and 4)

Symbol	Conditions	Min	Typ	Max	Units
RECEIVER	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	-200	± 35	+200	mV
V_{TH}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	15	50		mV
$\mathrm{V}_{\mathrm{HYST}}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	4.0	6.0		$\mathrm{k} \Omega$
R_{IN}	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$			3.25	mA
I_{IN}	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$			-3.25	mA
	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.5			V
$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{IOL}=8 \mathrm{~mA}$			0.5	V
$\mathrm{ISC}_{\mathrm{SC}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	-15		-100	mA

DRIVER

V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.5		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=+20 \mathrm{~mA}$		0.5	V
loff	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
$\|\mathrm{VT}\|-\|\overline{\mathrm{V} T}\|$			0.4	V
VT		2.0		V
$\left\|\mathrm{V}_{\mathrm{OS}}-\overline{\mathrm{V}_{\mathrm{OS}}}\right\|$			0.4	V
ISC	$V_{C C}=M A X, V_{\text {OUT }}=O V$	-30	-150	mA

DRIVER and ENABLE INPUTS

$V_{I H}$		2.0			V
$V_{I L}$				0.8	V
$I_{I L}$	$V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V}$		-40	-200	$\mu \mathrm{~A}$
$I_{I H}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$			20	$\mu \mathrm{~A}$
I_{I}	$V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
$V_{C L}$	$V_{C C}=M I N, I_{I N}=-18 \mathrm{~mA}$			-1.5	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.
Note 3: All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Only one output at a time should be shorted.

Receiver Switching Characteristics (Figures 1, 2 and)

Parameter	Conditions	Min	Typ	Max		Units
				8922/23	8922A/23A	
TpLH	$\mathrm{CL}=30 \mathrm{pF}$		12	22.5	20	ns
$\mathrm{T}_{\text {PHL }}$	$\mathrm{CL}=30 \mathrm{pF}$		12	22.5	20	ns
$\left\|T_{\text {PLLH }}-T_{\text {PHL }}\right\|$	$\mathrm{CL}=30 \mathrm{pF}$		0.5	5	3.5	ns
Skew (Channel to Channel)	$\mathrm{CL}=30 \mathrm{pF}$		0.5	3.0	2.0	ns
TpLz	$\mathrm{CL}=15 \mathrm{pF}$ S2 Open		15			ns
$\mathrm{T}_{\mathrm{pHz}}$	$\mathrm{CL}=15 \mathrm{pFS} 1$ Open		15			ns
TpZL	$\mathrm{CL}=30 \mathrm{pFS} 2$ Open		20			ns
TpZH	$\mathrm{CL}=30 \mathrm{pF} \mathrm{S1}$ Open		20			ns

Driver Switching Characteristics (Figures 4,5 and 6)

Parameter	Conditions	Min	Typ	Max		Units
				8922/23	8922A/23A	
SINGLE ENDED CHARACTERISTICS						
$\mathrm{T}_{\text {pLH }}$	$\mathrm{CL}=30 \mathrm{pF}$		12	15	15	ns
$\mathrm{T}_{\text {pHL }}$	$\mathrm{CL}=30 \mathrm{pF}$		12	15	15	ns
T ${ }_{\text {TLH }}$	$\mathrm{CL}=30 \mathrm{pF}$		5	10	10	ns
$\mathrm{T}_{\text {THL }}$	$\mathrm{CL}=30 \mathrm{pF}$		5	10	10	ns
$\left\|T_{p L H}-T_{p H L}\right\|$	$\mathrm{CL}=30 \mathrm{pF}$		0.5			ns
Skew	$\mathrm{CL}=30 \mathrm{pF}$ (Note 5)		0.5	5	3.5	ns
Skew (Channel to Channel)			0.5	3.0	2.0	ns
TpLz	$\mathrm{CL}=30 \mathrm{pF}$		15			ns
$\mathrm{T}_{\mathrm{pHz}}$	$\mathrm{CL}=30 \mathrm{pF}$		15			ns
$\mathrm{T}_{\mathrm{pzL}}$	$\mathrm{CL}=30 \mathrm{pF}$		20			ns
TpzH	$\mathrm{CL}=30 \mathrm{pF}$		20			ns

Differential Switching Characteristics (Note 6, Figure 才)

Parameter	Conditions	Min	Typ	Max		Units
				$8922 / 23$	$8922 \mathrm{~A} / 23 \mathrm{~A}$	
$\mathrm{~T}_{\mathrm{pLH}}$	$\mathrm{CL}=30 \mathrm{pF}$		12	15	\mathbf{n}	ns
$\mathrm{~T}_{\mathrm{pHL}}$	$\mathrm{CL}=30 \mathrm{pF}$		12	15	15	ns
$\left\|T_{\mathrm{pLH}}-\mathrm{T}_{\mathrm{pHL}}\right\|$	$\mathrm{CL}=30 \mathrm{pF}$		0.5	6.0	2.75	ns

Note 5: Difference between complementary outputs at the 50% point.
Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).
The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:

$$
T c r=\frac{(T f b \times T r b)-(T r a \times T f a)}{T r b-T r a-T f a+T f b}
$$

Where: Tcr $=$ Crossing Point
Tra, Trb, Tfa and Tfb are time measurements with respect to the input.

Switching Time Waveforms

TL/F/8511-3

TL/F/8511-4
FIGURE 1

TL/F/8511-5
FIGURE 2

TL/F/8511-6
FIGURE 3

NOTE: $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=30 \mathrm{pF}, \mathrm{R1}=\mathrm{R} 2=50 \Omega, \mathrm{R} 3=500 \Omega$
FIGURE 4

TL/F/8511-8
FIGURE 5

FIGURE 6

TL/F/8511-10
FIGURE 7

ST504 and ST412 Applications

DS8924 Quad TRI-STATE ${ }^{\circledR}$ Differential Line Driver

General Description

The DS8924 is a quad differential line driver designed for digital data transmission over balanced lines. The outputs are TRI-STATE ${ }^{\circledR}$ structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down.
The DS8924 is pin and functionally compatible with DS3487. It features improved performance over 3487-type circuit as outputs can source and sink 48 mA . In addition, outputs are not significantly affected by negative line reflections that can occur when the transmission line is unterminated at the receiver end.

Features

- Four independent driver chains
- TRI-STATE outputs
- PNP high impedance inputs
- Power up/down protection
- Fast propagation times (typ 12 ns)
- TTL compatible
- Single 5 V supply voltage
- Output rise and fall times less than 20 ns (typ 10 ns)
- Pin compatible with DS3487 and MC3487
- Output skew-2 ns typ

Block and Connection Diagrams

Dual-In-Line Package

TL/F/8507-2

Top View
Order Number DS8924J or N See NS Package J16A or N16A

Truth Table

Input	Control Input	Non-Inverter Output	Inverter Output
H	H	H	L
L	H	L	H
X	L	Z	Z

[^9]
Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Supply Voltage
 7 V
 Input Voltage 5.5 V
 Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Lead Temperature (Soldering, 4 sec.$) \quad 260^{\circ} \mathrm{C}$

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1550 mW
Molded Package	1560 mW

*Derate cavity package $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	Min	Max	Units
DS8924	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ DS 8924	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3, 4 and 5)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IL }}$	Input Low Voltage					0.8	V
V_{IH}	Input High Voltage	,		2.0			V
IIL	Input Low Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$				-200	$\mu \mathrm{A}$
${ }_{1 / \mathrm{H}}$	Input High Current		$\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
V_{CL}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA}$				-1.5	V
V_{OL}	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$				0.5	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$		2.5			V
$\mathrm{VOH}^{\text {O }}$	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-48 \mathrm{~mA}$		2.0			V
los	Output Short-Circuit Current			-80		-260	mA
loz	Output Leakage Current (TRI-STATE)		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
loff	Output Leakage Current Power OFF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=-0.25 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$\left\|\mathrm{V}_{\mathrm{OS}}-\overline{\mathrm{V}}_{\mathrm{OS}}\right\|$	Difference in Output Offset Voltage					0.4	V
V_{T}	Differential Output Voltage			2.0			V
$\left\|V_{T}\right\|-\left\|\bar{V}_{T}\right\|$	Difference in Differential Output Voltage					0.4	V
ICC	Power Supply Current		Active		50	80	mA
			TRI-STATE		35	60	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PHL }}$	Input to Output			12	20	ns
$t_{\text {PLH }}$	Input to Output			12	20	ns
Skew	Output to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		2.0	5.0	ns
$\mathrm{t}_{\text {THL }}$	Differential Fall Time			10	20	ns
$\mathrm{t}_{\text {TLH }}$	Differential Rise Time			10	20	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25	ns
$t_{\text {PLZ }}$	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	30	ns
$t_{\text {PZH }}$	Enable to Output	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{S} 1$ Open		13	25	ns
$t_{\text {PZL }}$	Enable to Output	$R_{L}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, S2 Open		17	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8924. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Symbols and definitions correspond to EIA RS-422, where applicable.

Test Circuits and Switching Time Waveforms

Input pulse: $\mathrm{f}=1 \mathrm{MHz}, 50 \% ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}$.

FIGURE 1. Propagation Delays

TL/F/8507-4
FIGURE 2. TRI-STATE Enable and Disable Delays

FIGURE 3. Differential Rise and Fall Times

$\mu A 9616 \mathrm{H} / \mathrm{DS} 9616 \mathrm{H}$ Triple Line Driver

General Description

The $\mu \mathrm{A} 9616 \mathrm{H} / \mathrm{DS} 9616 \mathrm{H}$ is a triple line driver which meets the electrical interface specifications of EIA RS-232-C and CCITT V. 24 and/or MIL-STD-188C. Each driver converts TTL/DTL logic levels to EIA/CCIT and/or MIL-STD-188C logic levels for transmission between data terminal equipment and data communications equipment. The output slew rate is internally limited and can be lowered by an external capacitor; all output currents are short circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH on the inhibit terminal interrupts signal transfer and forces the output to a $V_{O L}$ (EIA/CCITT MARK) state.
For the complementary function, see the μ A9627DM/ DS9627MJ Dual EIA RS-232-C and MIL-STD-188C Line Receiver.

Features

- Internal slew rate limiting
- Meets EIA RS-232-C and CCITT V. 24 and/or MIL-STD-188C
- Logic true inhibit function
- Output short circuit current-limiting
- Output voltage levels independent of supply voltages

Connection Diagrams

TL/F/10815-2 Top View

Order Number DS9616HE/883 (μ A9616HLMQB Equivalent) See NS Package Number E20A

Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Dlstributors for avallability and specifications.

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds) $300^{\circ} \mathrm{C}$
Internal Power Dissipation (Note 4)
DIP and CCP

$\mu A 9616 H Q B$

Electrical Characteristics $\pm 10.8 \mathrm{~V} \leq \mathrm{V}_{C C} \leq \pm 13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$, unless otherwise specified

Symbol	Characteristlc	Condition	Min	Max	Unit
V OH	Output Voltage HIGH	$\begin{aligned} & V_{11} \text { and/or } \\ & V_{12}=V_{\text {INHIBIT }}=0.8 \mathrm{~V} \end{aligned}$	5.0	7.0	V
VOL	Output Voltage LOW	$\mathrm{V}_{11}=\mathrm{V}_{\text {I2 }}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$	-7.0	-5.0	V
V_{OH} to V_{OL}	Output Voltage HIGH to Output Voltage LOW Magnitude Matching Error			± 10	\%
los+	Positive Output Short Circuit Current	$\begin{aligned} & R_{\mathrm{L}}=0 \Omega, \mathrm{~V}_{11} \text { and } / o r \\ & \mathrm{~V}_{12}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V} \end{aligned}$	-45	-12	mA
los-	Negative Output Short Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & \mathrm{~V}_{11}=\mathrm{V}_{12}=\mathrm{V}_{I \text { NHIBIT }}=2.0 \mathrm{~V} \end{aligned}$	12	60	mA
V_{IH}	Input Voltage HIGH (Note 1)		2.0		V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW (Note 1)			0.8	V
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$V_{11}=V_{12}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
		$\mathrm{V}_{11}=\mathrm{V}_{12}=5.5 \mathrm{~V}$		1.0	mA
1 LL	Input Current LOW	$\mathrm{V}_{11}=\mathrm{V}_{12}=0.4 \mathrm{~V}$	-1.6		mA
I+	Positive Supply Current	$\mathrm{V}_{11}=\mathrm{V}_{12}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$		25	mA
		$\mathrm{V}_{11}=\mathrm{V}_{12}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$		15	mA
1-	Negative Supply Current	$\mathrm{V}_{11}=\mathrm{V}_{12}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$	-1.0		mA
		$\mathrm{V}_{11}=\mathrm{V}_{12}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$	-25		mA
R_{0}	Output Resistance, Power Off (Note 2)	$-2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 0.5 \mathrm{~V}$	300		Ω
SR+	Positive Slew Rate (Note 3)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega \\ & \text { (See Figure 1) } \end{aligned}$	4.0	30	$\mathrm{V} / \mu \mathrm{s}$
			4.0	30	$\mathrm{V} / \mu \mathrm{s}$
SR-	Negative Slew Rate (Note 3)	$\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$ (See Figure 1)	-30	-4.0	$\mathrm{V} / \mu \mathrm{s}$
			-30	-4.0	$\mathrm{V} / \mu \mathrm{s}$

FIGURE 1. Switching Time Test CIrcult and Waveforms

Primary Burn-In Circuit

TL/F/10815-5

Equivalent Circuit (1/3 of circuit)

TL/F/10815-6

μ A9622/DS9622 Dual Line Receiver

General Description

The μ A9622/DS9622 is a dual line receiver designed to discriminate a worst case logic swing of 2 V from a $\pm 10 \mathrm{~V}$ common mode noise signal or ground shift. A 1.5 V threshold is built into the differential amplifier to offer a TTL compatible threshold voltage and maximum noise immunity. The offset is obtained by use of current sources and matched resistors.

The μ A9622/DS9622 allows the choice of output states with the input open, without affecting circuit performance by use of S3. A 130Ω terminating resistor is provided at the input of each line receiver. An enable is also provided for each line receiver. The output is TTL compatible. The output
high level can be increased to 12 V by tying it to a positive supply through a resistor. The output circuits allow wired-OR operation.

Features

- TTL compatible threshold voltage
- Input terminating resistors
- Choice of output state with inputs open
- TTL compatible output
- High common mode
- Wired-OR capability
- Enable inputs
- Logic compatible supply voltages

Connection Diagram

* For most current package information, contact product marketing.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range
Lead Temperature (Soldering, 60 sec .)
Internal Power Dissipation (Note 5)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{F}+$ to GND
Input Voltage

Voltage Applied to Outputs for Output High State
-0.5 V to +13.2 V
V- to GND
-0.5 V to -12 V
Enable to GND
-0.5 V to +15 V

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.5	5.5	V
Temperature, T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2,3)

Symbol	Parameter	Conditions		Min	Max	Units
V_{OL}	Output Voltage LOW	$\begin{aligned} & \mathrm{V}^{+}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~V}^{-}=-11 \mathrm{~V}, \\ & \mathrm{~V} \text { DIFF }=2.0 \mathrm{~V}, \mathrm{loL}=12.4 \mathrm{~mA}, \\ & \mathrm{EN}=\text { Open } \end{aligned}$			0.4	V
V_{OH}	Output Voltage HIGH	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V}, \\ & \mathrm{~S} 3=0 \mathrm{~V}, \mathrm{~V} \text { DIFF }=1.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}, \mathrm{EN}=\text { Open } \end{aligned}$		2.8		V
ICEX	Output Leakage Current	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-11 \mathrm{~V}, \\ & \mathrm{~S}_{3}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DIFF}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}, \mathrm{EN}=\text { Open } \end{aligned}$			200	$\mu \mathrm{A}$
los	Output Short Circuit Current (Note 4)	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V} \\ & \mathrm{~V} \text { DIFF }=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{S} 3=0 \mathrm{~V}, \\ & \mathrm{EN}=\text { Open } \end{aligned}$		-3.1	-1.4	mA
$I_{R}(E N)$	Enable Input Leakage Curent	$\begin{aligned} & \mathrm{V}+=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~V}-=-11 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{N}}=\text { Open, } \mathrm{EN}=4.0 \mathrm{~V} \end{aligned}$			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{F}}(\mathrm{EN}$	Enable Input Forward Current	$\begin{aligned} & V+=5.5 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & V_{1}=\text { Open, } \mathrm{EN}=\mathrm{S} 3=0 \mathrm{~V} \end{aligned}$		-1.5		mA
$\mathrm{I}_{\mathrm{F}}(+\mathbb{N})$	+ Input Forward Current	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=\mathrm{GND}, \\ & \mathrm{EN}=\mathrm{S} 3=\text { Open } \end{aligned}$		-2.3		mA
$I_{F}(-1 N)$	- Input Forward Curent	$\begin{aligned} & \mathrm{V}^{+}=\mathrm{S3}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{1}+=\mathrm{GND}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V}, \\ & \mathrm{EN}=\text { Open } \end{aligned}$		-2.6		mA
$V_{\text {IL }}(\mathrm{EN})$	Input Voltage LOW	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}+\leq 5.5 \mathrm{~V}, \\ & -11 \mathrm{~V} \leq \mathrm{V}-\leq-9.0 \mathrm{~V}, \\ & \mathrm{EN}=\text { Open } \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.0	V
			$+125^{\circ} \mathrm{C}$		0.7	V
			$-55^{\circ} \mathrm{C}$		1.3	V
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage	$\begin{aligned} & 4.5 \mathrm{~V}, \leq \mathrm{V}+\leq 5.5 \mathrm{~V}, \\ & -11 \mathrm{~V} \leq \mathrm{V}-\leq-9.0 \mathrm{~V}, \\ & \mathrm{EN}=\text { Open } \\ & \hline \end{aligned}$		1.0	2.0	V
V_{CM}	Common Mode Voltage	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}, \\ & 1.0 \mathrm{~V} \leq \mathrm{V}_{\text {DIFF }} \leq 2.0 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	-10	+10	V
R_{T}	Terminating Resistance		$25^{\circ} \mathrm{C}$	91	215	Ω
$1+$	Positive Supply Current	$\begin{aligned} & V+=S 3=V_{1}^{+}=5.5 \mathrm{~V} \\ & V^{-}=11 \mathrm{~V}, V_{1}^{-}=0 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		22.9	mA
1^{-}	Negative Supply Current			-11.1		mA

SWITCHING CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$

$t_{\text {PLH }}$	Propagation Delay to High Level	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V}, \\ & \mathrm{~V}-=-10 \mathrm{~V}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { (See Figure 1) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$	50	ns
$t_{\text {PHL }}$	Propagation Delay to Low Level		$R_{L}=390 \Omega$	50	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Rating applies to ambient temperatures up to $+125^{\circ} \mathrm{C}$. Above $125^{\circ} \mathrm{C}$ ambient, derate linearity at $120^{\circ} \mathrm{C} / \mathrm{W}$.

Switching Time Test Circuit and Waveforms

TL/F/9760-4

TL/F/9760-5

FIGURE 1
Equivalent Circuit

Typical Applications

When S 3 is connected to $\mathrm{V}-$, open inputs cause output to be high. When $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}$ and S 3 is connected to ground, open inputs cause output to be low.

μ A9627/DS9627 Dual Line Receiver

General Description

The μ A9627/DS9627 is a dual-line receiver which meets the electrical interface specifications of EIA RS-232C and MIL-STD-188C. The input circuitry accommodates $\pm 25 \mathrm{~V}$ input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The μ A9627/DS9627 provides both a selectable hysteresis range and selectable receiver input resistance. When pin 1 is tied to V^{-}, the typical switching points are at 2.6 V and -2.6 V , thus meeting RS-232-C requirements. When pin 1 is open, the typical switching points are at $50 \mu \mathrm{~A}$ and $-50 \mu \mathrm{~A}$, thus satisfying the requirements of MIL-STD-188C LOW level interface. Connecting the RA and/or RB pins to the (-) input yields an input impedance in the range of $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ and satisfies RS-232-C requirements; leaving RA and/or RB pins unconnected, the input resistance will be greater than $6 \mathrm{k} \Omega$ to satisfy MIL-STD-188C.

The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wired-OR function. A TTL/DTL strobe is also provided for each receiver.

Features

- EIA RS-232-C input standards
- MIL-STD-188C input standards
- Variable hysteresis control
- High common mode rejection
- R control ($5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$)
- Wired-OR capability
m Choice of inverting and non-inverting inputs
- Outputs and strobe TTL compatible

Connection Diagram

*For most current package information, contact product marketing.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 60 sec .)
Internal Power Dissipation (Note 5)
$\mathrm{V}+$ to GND
V- to GND
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
400 mW
0 V to +15 V

Input Voltage Referred to GND
$\pm 25 \mathrm{~V}$
Strobe to GND
-0.5 V to +5.5 V
Applied Output Voltage
-0.5 V to +15 V

Operating Conditions

Electrical Characteristics

Hysteresis, -IN A, -IN B, RA and RB Open for MIL-STD-188C, unless otherwise specified (Notes 2 and 3)

Symbol	Characteristics	Conditions		Min	Max	Units
V_{OL}	Output Voltage LOW	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=-13.2 \mathrm{~V} \\ & \mathrm{~V}_{1}^{+}=0.6 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=6.4 \mathrm{~mA} \end{aligned}$			0.4	V
V_{OH}	Output Voltage HIGH	$\begin{aligned} & \mathrm{V}^{+}=10.8 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V} \\ & \mathrm{~V}_{1}^{+}=0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \end{aligned}$		2.4		V
los	Output Short Circuit Current (Note 4)	$\begin{aligned} & \mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-10.8 \mathrm{~V}, \\ & \mathrm{~V}_{1}^{+}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$		-3.0		mA
$\mathrm{I}_{\mathrm{H}}(\mathrm{ST}$)	Input Current HIGH (Strobe)	$\begin{aligned} & V^{+}=10.8 \mathrm{~V} \\ & V^{-}=-13.2 \mathrm{~V}, V_{1}+^{\prime}=0.6 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{S T}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
			$\mathrm{V}_{S T}=5.5 \mathrm{~V}$		1.0	mA
R_{1}	Input Resistance	$\begin{aligned} & \mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V} \\ & -3.0 \mathrm{~V} \leq \mathrm{V}_{1}^{+} \leq 3.0 \mathrm{~V} \\ & \hline \end{aligned}$		6.0		$\mathrm{k} \Omega$
ITH^{+}	Positive Threshold Current	$\begin{aligned} & \pm 10.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq \pm 13.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
${ }^{\text {TH }}{ }^{-}$	Negative Threshold Current	$\begin{aligned} & \pm 10.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq \pm 13.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$		-100		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{IL}}(\mathrm{ST})$	Input Voltage LOW (Strobe)	$\mathrm{V}_{1}+=-0.6 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\mathbb{H}}(\mathrm{ST})$	Input Voltage HIGH (Strobe)	$\begin{aligned} & \mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-10.8 \mathrm{~V} \\ & \mathrm{~V}_{1}+=-0.6 \mathrm{~V} \end{aligned}$		2.0		V
$1+$	Positive Supply Current	$\begin{aligned} & \pm 10.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq \pm 13.2 \mathrm{~V} \\ & \mathrm{~V}_{1}+=-0.6 \mathrm{~V} \end{aligned}$			18	mA
1^{-}	Negative Supply Current	$\begin{aligned} & \pm 10.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq \pm 13.2 \mathrm{~V} \\ & \mathrm{~V}_{1}+=0.6 \mathrm{~V} \end{aligned}$		-16		mA

Electrical Characteristics $+\mathbb{I N} A$ and $-\mathbb{I N} B$ connected to ground, RA and RB connected to $-\mathbb{I N} A$ and $-\operatorname{INB}$ and Hysteresis connected to V - for RS-232C, unless otherwise specified

Symbol	Characteristics	Conditions	Min	Max	Units
R_{1}	Input Resistance	$3.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$	3.0	7.0	$\mathrm{k} \Omega$
		$-3.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq-25 \mathrm{~V}$	3.0	7.0	$\mathrm{k} \Omega$
V_{1}	Input Voltage		-2.0	2.0	V
$\mathrm{~V}_{\mathrm{TH}+}$	Positive Threshold Voltage			3.0	V
$\mathrm{~V}_{\mathrm{TH}-}$	Negative Threshold Voltage		-3.0		V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{Min} / \mathrm{Max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Rating applies to ambient temperatures up to $+125^{\circ} \mathrm{C}$. Above $125^{\circ} \mathrm{C}$ ambient, derate linearity at $120^{\circ} \mathrm{C} / \mathrm{W}$.

FIGURE 1. Switching Time Test Circuit and Waveforms

MA9627／DS9627

DS9636A/ μ A9636A RS-423 Dual Programmable Slew Rate Line Driver

General Description

The DS9636A/ μ A9636A is a TTL/CMOS compatible, dual, single ended line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423. The DS9636A/ μ A9636A is suitable for use in digital data transmission systems where signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control lead (WS) and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Currentlimiting is provided in both output states. The DS9636A/ $\mu \mathrm{A} 9636 \mathrm{~A}$ is designed for nominal power supplies of $\pm 12 \mathrm{~V}$.

Inputs are TTL compatible with input current loading low enough ($1 / 10 \mathrm{UL}$) to be also compatible with CMOS logic. Clamp diodes are provided on the inputs to limit transients below ground.

Features

- Programmable slew rate limiting
- Meets EIA Standard RS-423
- Commercial or extended temperature range
- Output short circuit protection
- TTL and CMOS compatible inputs

Connection Diagram

Order Number DS9636ACJ, μ A9636ARC, DS9636AMJ, μ A9636ARM or DS9636ACN, μ A9636ATC See NS Package Number J08A or N08E

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
Ceramic DIP (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$
Molded DIP (Soldering, 10 seconds)	$265^{\circ} \mathrm{C}$

Maximum Power Dissipation* at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (Note 5)	
Cavity Package	1560 mW
Molded Package	1300 mW
V+ Lead Potential to Ground Lead	$\mathrm{V}-\mathrm{to}+15 \mathrm{~V}$
V- Lead Potential to Ground Lead	+0.5 V to -15 V
V+ Lead Potential to V - Lead	0 V to +30 V
Output Potential to Ground Lead	$\pm 15 \mathrm{~V}$
Output Source Current	-150 mA
Output Sink Current	150 mA

Recommended Operating Conditions

Characteristics	DS9636AM/ μ A9636AM			DS9636AC/ μ A9636AC			Units
	Min	Typ	Max	Min	Typ	Max	
Positive Supply Voltage (V+)	10.8	12	13.2	10.8	12	13.2	V
Negative Supply Voltage (V-)	-13.2	-12	-10.8	-13.2	-12	-10.8	V
Operating Temperature (T_{A})	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$
Wave Shaping Resistance (R $\mathrm{R}_{\text {WS }}$)	10		500	10		1000	$\mathrm{k} \Omega$

Electrical Characteristics Over recommended operating temperature, supply voltage and wave shaping resistance ranges unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{OH} 1}$	Output Voltage HIGH	R_{L} to GND ($\mathrm{R}_{\mathrm{L}}=\infty$)	5.0	5.6	6.0	V
$\mathrm{V}_{\mathrm{OH} 2}$		R_{L} to GND ($\left.R_{L}=3.0 \mathrm{k} \Omega\right)$	5.0	5.6	6.0	V
$\mathrm{V}_{\mathrm{OH} 3}$		R_{L} to GND ($R_{L}=450 \Omega$)	4.0	5.5	6.0	V
$\mathrm{V}_{\mathrm{OL} 1}$	Output Voltage LOW	R_{L} to GND ($R_{L}=\infty$)	-6.0	-5.7	-5.0	V
$\mathrm{V}_{\mathrm{OL} 2}$		R_{L} to GND ($\left.R_{L}=3.0 \mathrm{k} \Omega\right)$	-6.0	-5.6	-5.0	V
$\mathrm{V}_{\mathrm{OL} 3}$		R_{L} to GND ($R_{L}=450 \Omega$)	-6.0	-5.4	-4.0	V
R_{0}	Output Resistance	$450 \Omega \leq \mathrm{R}_{\mathrm{L}}$		25	50	Ω
los+	Output Short Circuit Current (Note 4)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$	-150	-60	-15	mA
los-		$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$	15	60	150	mA
$l_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}= \pm 6.0 \mathrm{~V}$, Power-Off	-100		+100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW				0.8	V
$V_{\text {IC }}$	Input Clamp Diode Voltage	$\mathrm{I}_{1}=15 \mathrm{~mA}$	-1.5	-1.1		V
ILL	Input Current LOW	$V_{1}=0.4 \mathrm{~V}$	-80	-16		V
1 IH	Input Current HIGH	$V_{1}=2.4 \mathrm{~V}$		1.0	10	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=5.5 \mathrm{~V}$		10	100	
1+	Positive Supply Current	$\begin{aligned} & V_{C C}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \\ & R_{W S}=100 \mathrm{k} \Omega, V_{1}=0 \mathrm{~V} \end{aligned}$		13	18	mA
1-	Negative Supply Current	$\begin{aligned} & V_{C C}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \\ & R_{\mathrm{WS}}=100 \mathrm{k} \Omega, \mathrm{~V}_{1}=0 \mathrm{~V} \end{aligned}$	-18	-13		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 9636 AM and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS9636AC. All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate J and N packages $10.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 12 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see AC Test Circuit

Symbol	Parameter	Condition	Min	Typ	Max	Units
t_{r}	Rise Time	$R_{\text {WS }}=10 \mathrm{k} \Omega$	0.8	1.1	1.4	$\mu \mathrm{s}$
		$R_{\text {WS }}=100 \mathrm{k} \Omega$	8.0	11	14	
		$\mathrm{R}_{W} \mathrm{SS}=500 \mathrm{k} \Omega$	40	55	70	
		$R_{W S}=1000 \mathrm{k} \Omega$	80	110	140	
$t_{\text {f }}$	Fall Time	$R_{\text {WS }}=10 \mathrm{k} \Omega$	0.8	1.1	1.4	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{WS}}=100 \mathrm{k} \Omega$	8.0	11	14	
		$\mathrm{R}_{\text {WS }}=500 \mathrm{k} \Omega$	40	55	70	
		$R_{\text {WS }}=1000 \mathrm{k} \Omega$	80	110	140	

Typical Performance Characteristics

FIGURE 1. AC Test Circuit and Waveforms

FIGURE 2. RS-423 System Application

DS9637A/ μ A9637A

Dual Differential Line Receiver

General Description

The DS9637A/ μ A9637A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the DS9637A/ μ A9637A satisfies the requirements of MIL-STD 188-114 and is compatible with the International Standard CCITT recommendations. The DS9637A/ μ A9637A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5 V power supply and has Schottky TTL compatible outputs. The DS9637A/ $\mu \mathrm{A} 9637 \mathrm{~A}$ has an operational input common mode range of $\pm 7 \mathrm{~V}$ either differentially or to ground.

Features

- Dual channel
- Single 5V supply
- Satisfies EIA standards RS-422 and RS423
- Built-in $\pm 35 \mathrm{mV}$ hysteresis
- High input common mode voltage range
- High input impedance
- TTL compatible outputs
- Schottky technology
- Extended temperature range

Connection Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature
Ceramic DIP (Soldering, 30 seconds)
$300^{\circ} \mathrm{C}$
Molded DIP and SO Package
(Soldering, 10 seconds) $265^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package	1300 mW
Molded Package	930 mW
SO Package	810 mW

*Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
VCC Lead Potential to Ground
Input Potential to Ground
Differential Input Voltage
Output Potential to Ground
Output Sink Current
Recommended Operating
Conditions

DS9637AM $/ \mu \mathrm{A} 9637 \mathrm{AM}$	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	-55	+125	${ }^{\circ} \mathrm{C}$
DS9637AC $/ \mu \mathrm{A} 9637 \mathrm{AC}$			
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over recommended operating temperature and supply voltage ranges, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage (Note 5)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.2		+0.2	V
$\mathrm{V}_{\text {TH(R) }}$	Differential Input Threshold Voltage (Note 6)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.4		+0.4	V
1	Input Current (Note 7)	$\mathrm{V}_{1}=10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$		1.1	3.25	mA
		$\mathrm{V}_{1}=-10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$		-1.6	-3.25	
V OL	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.35	0.5	V
V_{OH}	Output Voltage HIGH	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	2.5	3.5		V
los	Output Short Circuit Current (Note 4)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$	-40	-75	-100	mA
ICC	Supply Current	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{1}+=0.5 \mathrm{~V} \\ & V_{1}-=G N D \end{aligned}$		35	50	mA
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}= \pm 7.0 \mathrm{~V}$ (See Curves)		70		mV

Note 1: "Absofute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for DS 9637 AM and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS9637ASC. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: $\mathrm{V}_{\mathrm{DIFF}}$ (Differential Input Voltage) $=\left(\mathrm{V}_{1}+\right)-\left(\mathrm{V}_{1}-\right) . \mathrm{V}_{\mathrm{CM}}$ (Common Mode Input Voltage) $=\mathrm{V}_{1}+$ or $\mathrm{V}_{1}-$.
Note 6: $500 \Omega \pm 1 \%$ in series with inputs.
Note 7: The input not under test is tied to ground.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditlons	Mln	Typ	Max	Units
tpLH $^{\text {Propagation Delay Time }}$Low to High	See AC Test Circuit		15	25	ns	
Propagation Delay Time High to Low	See AC Test Circuit		13	25	ns	

Typical Input/Output Transfer Characteristics

TL/F/9621-3

TL/F/9621-4

AC Test Circuit and Waveforms

Notes:
C_{L} includes jig and probe capacitance.
All diodes are FD700 or equivalent.
FIGURE 2

TL/F/9621-6
V_{1}
Amplitude: 1.0 V
Offset: 0.5V
Pulse Width: 100 ns
PRR: 5.0 MHz
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5.0 \mathrm{~ns}$
FIGURE 2a

Typical Applications

FIGURE 3. RS-422 System Application (FIPS 1020) Differential Simplex Bus Transmission
Notes:
$\mathrm{R}_{\mathrm{T}} \geq 50 \Omega$ for RS-422 operation.
R_{T} combined with input impedance of receivers must be greater than 90Ω.

DS9638/ μ A9638
RS-422 Dual High Speed Differential Line Driver

General Description

The DS9638/ μ A9638 is a Schottky, TTL compatible, dual differential line driver designed specifically to meet the EIA Standard RS-422 specifications. It is designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. The inputs are TTL compatible. The outputs are similar to totem pole TTL outputs, with active pullup and pull-down. The device features a short circuit protected active pull-up with low output impedance and is specified to drive 50Ω transmission lines at high speed. The miniDIP provides high package density.

Features

- Single 5V supply
- Schottky technology
- TTL and CMOS compatible inputs
- Output short circuit protection
- Input clamp diodes
- Complementary outputs
- Minimum output skew (<1.0 ns typical)
- 50 mA output drive capability for 50Ω transmission lines
- Meets EIA RS-422 specifications
- Propagation delay of less than 10 ns

■ "Glitchless" differential output

- Delay time stable with $V_{C C}$ and temperature variations (<2.0 ns typical) (Figure 3)
- Extended temperature range

Connection Diagram

Order Number DS9638MJ, μ A9638RM, DS9638CJ or μ A9638RC See NS Package Number J08A*

Order Number DS9638CN or μ A9638TC See NS Package Number N08E
*For most current package information: contact product marketing.

Top View

Recommended Operating Conditions

	DS9638M/ μ A9638M			DS9638C/ μ A9638C			Units
	Min	Typ	Max	Min	Typ	Max	
Supply Voltage (V_{CC})	4.5	5.0	5.5	4.75	5.0	5.25	V
Output Current HIGH (lOH)			-50			-50	mA
Output Current LOW (loL)			50	40		50	mA
Operating Temperature (T_{A})	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Input Voltage HIGH			2.0			V
VIL	Input Voltage LOW	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				0.8	V
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.5	
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.0	-1.2	V
V_{OH}	Output Voltage HIGH	$\begin{aligned} & V_{C C}=M i n, \\ & V_{I H}=V_{I H M i n}, \\ & V_{I L}=V_{I L M a x} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.5	3.5		V
			$\mathrm{IOH}=-40 \mathrm{~mA}$	2.0			
V_{OL}	Output Voltage LOW	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{I H}=V_{I H M i n}, \\ & V_{\mathrm{IL}}=V_{\mathrm{IL}} \text { Max }, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$				0.5	V
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 \text { Max }}=5.5 \mathrm{~V}$				50	$\mu \mathrm{A}$
I_{H}	Input Current HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
I_{IL}	Input Current LOW	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{iL}}=0.5 \mathrm{~V}$				-200	$\mu \mathrm{A}$
los	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=\mathrm{OV}$ (Note 4)		-50		-150	mA
V_{T}, \bar{V}_{T}	Terminated Output Voltage	See Figure 1		2.0			V
$\mathrm{V}_{\mathrm{T}}-\bar{V}_{T}$	Output Balance					0.4	V
$\mathrm{V}_{\text {OS }}, \bar{V}_{\text {OS }}$	Output Offset Voltage					3.0	V
$\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {OS }}$	Output Offset Balance					0.4	V
${ }^{1} \mathrm{X}$	Output Leakage Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & -0.25 \mathrm{~V}<\mathrm{V}_{\mathrm{X}}<5.5 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
${ }^{\text {l Cc }}$	Supply Current (Both Drivers)	$V_{C C}=5.5 \mathrm{~V}$ All input at 0 V , No Load			45	65	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 9638 M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS9638C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PHL }}$	Propagation Delay	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=100 \Omega, \text { See Figure } 2 \end{aligned}$		10	20	ns
$t_{\text {PLH }}$				10	20	ns
t_{f}	Fall Time, 90\%-10\%			10	20	ns
t_{r}	Rise Time, 10\%-90\%			10	20	ns
$\mathrm{t}_{\mathrm{PO}}-\mathrm{t}_{\text {PO }}$	Skew Between Outputs A / \bar{A} and B / \bar{B}			1.0		ns

FIGURE 1. Equivalent Circuit

DC Test Circuit

TL/F/9622-4
The pulse generator has the following characteristics:
PRR $=500 \mathrm{kHz}, \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$,
$\mathrm{t}_{\mathrm{r}} \leq 5.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
C_{L} includes probe and jig capacitance.
FIGURE 3. AC Test Circuit and Voltage Waveform

TL/F/9622-6
FIGURE 4. Typical Delay Characteristics

TL/F/9622-5
FIGURE 3a

DS9639A/ μ A9639A
 Dual Differential Line Receiver

General Description

The DS9639A/ μ A9639A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422, RS-423 and RS-232C. In addition, the DS9639A/ μ A9639A satisfies the requirements of MIL-STD 188-114 and is compatible with the International Standard CCITT recommendations. The DS9639A/ μ A9639A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5.0 V power supply and has Schottky TTL compatible outputs. The DS9639A/ μ A9639A has an operational input common mode range of $\pm 7.0 \mathrm{~V}$ either differentially or to ground.

Features

- Dual channel

■ Single 5.0V supply
■ Satisfies EIA Standards RS-422, RS-423 and RS-232C

- Built-in $\pm 35 \mathrm{mV}$ hysteresis
- High input common mode voltage range
- High input impedance
- TTL compatible outputs
- Schottky technology

Connection Diagram

Top View
Order Number DS9639ACN/ μ A9639ATC See NS Package Number N08E

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.

Storage Temperature Range
Operating Temperature Range
Lead Temperature
Molded DIP (soldering, 10 sec .)
$V_{C C}$ Lead Potential to Ground Input Potential to Ground Lead Differential Input Voltage
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$265^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
$\pm 25 \mathrm{~V}$
$\pm 25 \mathrm{~V}$
Output Differential to Ground Lead $\quad-0.5 \mathrm{~V}$ to 5.5 V

Output Sink Current
50 mA
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Molded Package

930 mW
-Derate molded DIP package $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage $\left(V_{C C}\right)$	4.75	5.0	5.25	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	25	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions (Note 1)	Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage (Note 5)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.2		+ 0.2	V
$\mathrm{V}_{\mathrm{TH}(\mathrm{R})}$	Differential Input Threshold Voltage (Note 6)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.4		+0.4	V
1	Input Current (Note 7)	$\mathrm{V}_{1}=10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		1.1	3.25	mA
		$V_{1}=-10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$		-1.6	-3.25	
V_{OL}	Output Voltage LOW	$\mathrm{IOL}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.35	0.5	V
V_{OH}	Output Voltage HIGH	$\mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	2.5	3.5		V
los	Output Short Circuit Current (Note 4)	$V_{O}=0 V, V_{C C}=M a x$	-40	-75	-100	mA
Icc	Supply Current	$\begin{aligned} & V_{C C}=M a x, V_{1}+=0.5 \mathrm{~V}, \\ & V_{1}-=G N D \end{aligned}$		35	50	mA
$\mathrm{V}_{\mathrm{HYST}}$	Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}= \pm 7.0 \mathrm{~V}$ (See Curves)		70		mV

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpLH	Propagation Delay Time Low to High	See AC Test Circuit		55	85	ns
tpHL	Propagation Delay Time High to Low	See AC Test Circuit		50	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS9639A. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4. Only one output at a time should be shorted.
Note 5: $\mathrm{V}_{\text {DIFF }}$ (Differential Input Voltage) $=\left(\mathrm{V}_{1+}\right)-\left(\mathrm{V}_{1-}\right) . \mathrm{V}_{\mathrm{CM}}($ Common Mode Input Voltage $)=\mathrm{V}_{1+}$ or V_{1-}.
Note 6: $500 \Omega \pm 1 \%$ in series with inputs.
Note 7: The input not under test is tied to ground.

Equivalent Circuit

Typical Input/Output Transfer Characteristics

FIGURE 2

TL/F/9623-4
FIGURE 2a

TL/F/9623-5
Notes:
C_{L} includes jig and probe capacitance.
All diodes are FD700 or equivalent.
FIGURE 3. AC Test Circuit and Waveforms

V_{1}
Amplitude: 1.0 V
Offset: 0.5 V
Pulse Width: 500 ns
PRR: 1 MHz
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5.0 \mathrm{~ns}$

Typical Applications

TL/F/9623-7

Notes:

$R_{t} \geq 50 \Omega$ for RS-422 operation.
R_{t} combined with input impedance of receivers must be greater than 90Ω.
FIGURE 4. RS-422 System Appllcation (FIPS 1020) Differentlal SImplex Bus Transmission

DS96F172/DS96F174
 RS-485/RS-422 Quad Differential Drivers

General Description

The DS96F172 and the DS96F174 are high speed quad differential line drivers designed to meet EIA Standard RS485. The DS96F172 and the DS96F174 offer improved performance due to the use of new, state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS96F172 and the DS96F174 feature lower power, extended temperature range, improved RS-485 specifications.
The DS96F172 and the DS96F174 have TRI-STATE® outputs and are optimized for balanced multipoint data bus transmission at rates up to 15 Mbps . The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions over a +12 V to -7.0 V common mode range. A thermal shutdown feature is also provided. The DS96F172 features an active high and active low Enable, common to all four drivers. The DS96F174 features separate active high Enables for each driver pair.

Compatible RS-485 receivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96F173, DS96F175 and DS36F95.

Features

- Military temperature range available

■ Meets EIA Standard RS-485 and RS-422A

- Monotonic differential output switching
- TRI-STATE outputs
- Designed for multipoint bus transmission

■ Common mode output voltage range: -7.0 V to +12 V
■ Operates from single +5.0 V supply

- Low power
- Thermal shutdown protection

■ DS96F172 and DS96F174 are lead and function compatible with the SN75172/174 or the AM26LS31/ MC3487

Connection Diagrams

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature Range
Ceramic DIP
Lead Temperature
Ceramic DIP (Soldering, 60 sec.)
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
$\quad-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Cavity Package
Supply Voltage
Enable Input Voltage
-Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Electrical Characteristics Over recommended operating conditions, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{IH}	Input Voltage HIGH			2.0			V
$V_{\text {IL }}$	Input Voltage LOW		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			0.8	V
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.7	
V_{OH}	Output Voltage HIGH	$\mathrm{IOH}^{\prime}=-33 \mathrm{~mA}$		3.0			V
V_{OL}	Output Voltage LOW	$\mathrm{IOL}=33 \mathrm{~mA}$				2.0	V
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\underline{\left\|V_{\text {OD1 }}\right\|}$	Differential Output Voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$				6.0	V
\|VOD2	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=54 \Omega$, Figure 1		1.5	2.0		V
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 1		2.0	2.3		
$\mathrm{V}_{\text {OD }}$	Differential Output Voltage	Figure 1a	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1.0			V
$\mathrm{V}^{\Delta\left\|V_{\text {OD }}\right\|}$	Change in Magnitude of Differential Output Voltage (Note 4)	$R_{L}=54 \Omega \text { or } 100 \Omega,$ Figure 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.2	V
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.4	V
V_{OC}	Common Mode Output Voltage (Note 5)					3.0	V
$\Delta \mid \mathrm{V}_{\text {OCl }}$	Change in Magnitude of Common Mode Output Voltage (Note 4)					± 0.2	V
10	Output Current with Power Off	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to +12 V				± 50	$\mu \mathrm{A}$
loz	High Impedance State Output Current	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to +12 V			± 20	± 50	$\mu \mathrm{A}$
$\mathrm{IH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L	Input Current LOW	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current (Note 6)	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$				-250	mA
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-150	
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				150	
		$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}$				250	
ICC	Supply Current (All Drivers)	No Load	Outputs Enabled			50	mA
Iccx			Outputs Disabled			30	

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {D }}$	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 2		15	20	ns
${ }^{\text {t }}$ D	Differential Output Transition Time			15	22	ns
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 3		12	16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output			12	16	ns
t_{ZH}	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Flgure 4		25	32	ns
t_{LL}	Output Enable Time to Low Level	$R_{L}=110 \Omega$, Figure 5		25.	32	ns
$t_{H Z}$	Output Disable Time from High Level	$R_{L}=110 \Omega$, Figure 4		25	30	ns
tLz	Output Disable Time from Low Level	$R_{L}=110 \Omega$, Figure 5		20	25	ns
tLZL	Output Disable Time from Low Level with Load Resistor to GND (Note 7)	Load per Figure 4 Timing per Figure 5		300		ns
tSKEW	Driver Output to Output	$\mathrm{R}_{\mathrm{L}}=60 \Omega$		1.0	4.0	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS96F172M/DS96F174M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS96F172C/DS96F174C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: $\Delta\left|V_{O D}\right|$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}$ and $V_{O C}$ respectively, that occur when the input is changed from a high level to a low level.
Note 5: In EIA Standards RS-422A and RS-485, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage, Vos.
Note 6: Only one output at a time should be shorted.
Note 7: For more information see Applications Bulletin AB100.

Parameter Measurement Information

TL/F/9625-3
FIGURE 1. Differential and Common Mode Output Voltage

TL/F/9625-13
FIGURE 1a. Differential Output Voltage with Varying Common Mode Voltage

TL/F/9625-5
FIGURE 2. Differential Output Delay and Transition Times

Parameter Measurement Information (Continued)

TL/F/9625-7
FIGURE 3. Propagation Delay Times

FIGURE 4. t_{zH} and t_{Hz}

TL/F/9625-10
FIGURE 5. $\mathrm{t}_{\mathrm{LL}}, \mathrm{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{LzL}}$
Note 1: The input pulse is supplied by a generator having the following characteristics: PRR $=1.0 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{t}_{\mathrm{r}} \leq 5.0 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 5.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
Note 3: DS96F172 with active high and active low Enables is shown here. DS96F174 has active high Enable only.
Note 4: To test the active low Enable \bar{E} of DS96F172 ground E and apply an inverted waveform to \bar{E}. DS96F174 has active high Enable only.

Note:
TL/F/9625-12
The line length should be terminated at both ends in its characteristic impedance.
Stub lengths off the main line should be kept as short as possible.
FIGURE 6
Function Tables (Each Driver)

Input	Enables		Outputs	
A	E	$\overline{\text { E }}$	Y	Z
H	H	X	H	L
L	H	X	L	H
H	X	L	H	L
L	X	L	L	H
X	L	H	Z	Z

DS96F174

Input	Enable	Outputs	
		Y	Z
H	H	H	L
L	H	L	H
X	L	Z	Z

$H=$ High Level	$X=$ Immaterial
$L=$ Low Level	$Z=$ High Impedance (Off)

DS96172/ μ A96172/DS96174/ μ A96174 RS-485/RS-422 Quad Differential Line Drivers

General Description

The DS96172/ μ A96172 and DS96174/ μ A96174 are high speed quad differential line drivers designed to meet EIA Standard RS-485. The devices have TRI-STATE ${ }^{*}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps . The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative cur-rent-limiting is provided which protects the drivers from line fault conditions over a +12 V to -7.0 V common mode range. A thermal shutdown feature is also provided and occurs at junction temperature of approximately $160^{\circ} \mathrm{C}$. The DS96172/ μ A96172 features an active high and active low Enable, common to all four drivers. The DS96174/ μ A96174 features separate active high Enables for each driver pair. Compatible RS-485 receivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96173/ μ A96173, DS96175/ $\mu A 96175$, DS96176/ μ A96176, DS96177/ μ A96177 and DS96178/ μ A96178.

Features

■ Meets EIA Standard RS-485 and RS-422A

- Monotonic differential output switching
- Transmission rate to 10 Mbs
- TRI-STATE outputs
- Designed for multipoint bus transmission

■ Common mode output voltage range: -7 V to +12 V

- Operates from single +5 V supply
- Thermal shutdown protection
- DS96172/ μ A96172/DS96174/ μ A96174 are lead and function compatible with the SN75172/75174 or the AM26LS31/MC3487 respectively

Connection Diagrams

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

Ceramic DIP

$$
-65^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 sec .)
Molded DIP (soldering, 10 sec .) $265^{\circ} \mathrm{C}$
Supply Voltage
Enable Input Voltage
Maximum Power Dissipation*
Cavity Package
Molded Package

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$300^{\circ} \mathrm{C}$ 7 V
5.5 V

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$25^{\circ} \mathrm{C}$
1500 mW 1040 mW

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5	5.25	V
Common Mode Output				
\quad Voltage $\left(\mathrm{V}_{\mathrm{OC}}\right)$	-7		+12	V
Output Current HIGH $\left(\mathrm{I}_{\mathrm{OH}}\right)$	\ddots		-60	mA
Output Current LOW $\left(\mathrm{I}_{\mathrm{OL}}\right)$			60	mA
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	25	70	${ }^{\circ} \mathrm{C}$

*Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics

over recommended temperature and supply voltage ranges, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage HIGH			2			V
$V_{\text {IL }}$	Input Voltage LOW					0.8	V
V_{OH}	Output Voltage HIGH	$\mathrm{l}_{\mathrm{OH}}=-20 \mathrm{~mA}$			3.1		V
V_{OL}	Output Voltage LOW	$1 \mathrm{LL}=20 \mathrm{~mA}$			0.8		V
V_{16}	Input Clamp Voltage	$l_{1}=-18 \mathrm{~mA}$				-1.5	V
$\left\|V_{O D 1}\right\|$	Differential Output Voltage	$\mathrm{l}_{0}=0 \mathrm{~mA}$				6	V
\|VOD2	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=54 \Omega$, Figure 1		1.5	2		V
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 1		2	2.3		V
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in Magnitude of Differential Output Voltage (Note 4)	$R_{L}=54 \Omega$ or 100Ω, Figure 1				± 0.2	V
Voc	Common Mode Output Voltage (Note 5)	$R_{L}=54 \Omega$, Figure 1				3	V
$\Delta\|\mathrm{Voc}\|$	Change in Magnitude of Common Mode Output Voltage (Note 4)					± 0.2	V
10	Output Current with Power Off	$\mathrm{V}_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to 12 V				± 100	$\mu \mathrm{A}$
loz	High Impedance State Output Current	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to 12 V			± 50	± 200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL.	Input Current LOW	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-100	$\mu \mathrm{A}$
los	Short Circuit Output Current (Note 6)	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$				-250	mA
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-150	
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{C C}$				150	
		$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$				250	
Icc	Supply Current (All Drivers)	No Load	Outputs Enabled		50	70	mA
			Output Disabled		50	60	

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {D }}$	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 2		15	25	ns
${ }_{\text {t }}$ D	Differential Output Transition Time			15	25	ns
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 3		12	20	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output			12	20	ns
tpZH	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 4		30	45	ns
tpzL	Output Enable Time to Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		30	45	ns
tPHZ	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 4		25	35	ns
tplz	Output Disable Time from Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		30	45	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS} 96172 / \mu \mathrm{A} 96172 / \mathrm{DS} 96174 / \mu \mathrm{A} 96174$. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: $\Delta\left|V_{O D}\right|$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}$ and $V_{O C}$ respectively, that occur when the input is changed from a high level to a low level.
Note 5: In EIA Standards RS-422A and RS-485, V V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, VOS.
Note 6: Only one output at a time should be shorted.
Parameter Measurement Information

FIGURE 1. Differentlal and Common Mode Output Voltage

FIGURE 2. Differential Output Delay and Transition Times

Parameter Measurement Information (Continued)

FIGURE 3. Propagation Delay Times

TL/F/9626-9
FIGURE 4. $t_{\text {PZH }}$ and $t_{\text {PHZ }}$

TL/F/9626-11
FIGURE 5. $t_{\text {PZL }}$ and tpLZ
Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{t}_{\mathrm{r}} \leq 5.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 5.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. Note 2: C_{L} includes probe and jig capacitance.
Note 3: DS96172/ μ A96172 with active high and active low Enables is shown here. DS96174/ μ A96174 has active high Enable only.
Note 4: To test the active low Enable E of DS96172/ $\mu \mathrm{A} 96172$, ground E and apply an inverted waveform to $\overline{\mathrm{E}}$. DS96174/ μ A96174 has active high Enable only.

Function Tables

DS96172/ μ A96172				
	Enables		Outputs	
	E	E	Y	Z
	H	X	H	L
L	H	X	L	H
H	X	L	H	L
L	X	L	L	H
X	L	H	Z	Z

DS96174/ μ A96174			
Input	Enable	Outputs	
		Y	Z
H	H	H	L
L	H	L	H
X	L	Z	Z

$$
\begin{array}{ll}
H=\text { High Level } & X=\text { Immaterial } \\
L=\text { Low Level } & Z=\text { High Impedance (off) }
\end{array}
$$

Typical Application

TL/F/9626-13
FIGURE 6
Note: The line length should be terminated at both ends in its characteristic impedance.
Stub lengths off the main line should be kept as short as possible

DS96F173/DS96F175

RS-485/RS-422 Quad Differential Receivers

General Description

The DS96F173 and the DS96F175 are high speed quad differential line receivers designed to meet EIA Standard RS-485. The DS96F173 and the DS96F175 offer improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS96F173 and the DS96F175 feature lower power and an extended temperature range.
The DS96F173 and the DS96F175 have TRI-STATE ${ }^{\text {© }}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 15 Mbps . The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -7 V to +12 V . The receivers are therefore suitable for multipoint applications in noisy environments. The DS96F173 features an active high and active low Enable, common to all four receivers. The DS96F175 features separate active high Enables for each receiver pair.

Compatible RS-485 drivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96F172, DS96F174 and DS36F95.

Features

- Military temperature range available
- Meets EIA Standard RS-485, RS-422A, RS-423A
- Designed for multipoint bus applications
- TRI-STATE outputs
- Common mode input voltage range: -7 V to +12 V
- Operates from single +5.0 V supply
- Lower power version
- Input sersitivity of $\pm 200 \mathrm{mV}$ over common mode range
- Input hysteresis of 50 mV typical
- High input impedance
- DS96F173 and DS96F175 are lead and function compatible with SN75173/175 or the AM26LS32/MC3486

Connection Diagrams

16-Lead Ceramic Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range Ceramic DIP

Lead Temperature Ceramic DIP (Soldering, 60 sec .)
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package

1500 mW
Supply Voltage
Input Voltage, A or B Inputs
Differential Input Voltage
Enable Input Voltage
Low Level Output Current
*Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage (V_{CC})				
DS96F173C/DS96F175C	4.75	5.0	5.25	V
DS96F173M/DS96F175M	4.50	5.0	5.50	
Common Mode Input Voltage V_{CM}	-7		+12	V
Differential Input Voltage (Note 2) (VID)	-7		+12	V
Output Current HIGH (IOH)			-400	$\mu \mathrm{A}$
Output Current LOW (loL)			16	mA
Operating Temperature (T_{A})				
DS96F173C/DS96F175C	0	25	70	${ }^{\circ} \mathrm{C}$
DS96F173M/DS96F175M	-55	25	125	O

Electrical Characteristics over recommended operating conditions, unless otherwise specified (Notes 2, 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential-Input High Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$				0.2	V
V_{TL}	Differential-Input (Note 4) Low Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}}$		-0.2			V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis (Note 5)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			50		mV
V_{IH}	Enable Input Voltage HIGH			2.0			V
$\mathrm{V}_{\text {IL }}$	Enable Input Voltage LOW					0.8	V
$V_{\text {IC }}$	Enable Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	Output Voltage HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.8			V
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5			
V_{OL}	Output Voltage LOW	$\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV}$	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.45	V
			$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.50	
l_{OZ}	High-Impedance State Output	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V				± 20	$\mu \mathrm{A}$
1	Line Input Current (Note 6)	Other Input $=0 \mathrm{~V}$	$V_{1}=12 \mathrm{~V}$			1.0	mA
			$V_{1}=-7.0 \mathrm{~V}$			-0.8	
I_{H}	Enable Input Current HIGH	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Enable Input Current LOW	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
R_{1}	Input Resistance	(Note 7)		14	18	22	$\mathrm{k} \Omega$
los	Short Circuit Output Current			-15		-85	mA
ICC	Supply Current	No Load	Outputs Enabled			50	mA
ICCX			Outputs Disabled			50	

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level Output	$\mathrm{V}_{\mathrm{ID}}=-2.5 \mathrm{~V}$ to +2.5 V, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 1	5.0	15	22	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High to Low Level Output		5.0	15	22	ns
t_{ZH}	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 2		12	16	ns
t_{ZL}	Output Enable Time to Low Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 3		13	18	ns
t_{HZ}	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 2		14	20	ns
t_{LZ}	Output Disable Time from Low Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 3		14	18	ns
$\left\|\mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\mathrm{PHL}}\right\|$	Pulse Width Distortion (SKEW)	Figure 1		1.0	3.0	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range the $\mathrm{DS} 96 \mathrm{~F} 173 \mathrm{M} / \mathrm{DS} 96 \mathrm{~F} 175 \mathrm{M}$ and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS96F173C/DS96F175C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: The algebraic convention, when the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.

Note 5: Hysteresis is the difference between the positive-going input threshold voltage. $\mathrm{V}_{\mathrm{T}+}$, and the negative going input threshold voltage, $\mathrm{V}_{\mathrm{T}-}$.
Note 6: Refer to EIA Standards RS-485 for exact conditions.
Note 7: Only one output at a time should be shorted.
Function Tables
(Each Receiver) DS96F173

Differential Inputs	Enables		Outputs
A-B	E	$\overline{\text { E }}$	V
$V_{I D}>0.2 \mathrm{~V}$	H	X	H
	X	L	H
$V_{I D}<-0.2 V$	H	X	L
	X	L	L
	H	Z	

[^10](Each Receiver) DS96F175

Differential Inputs $\mathbf{A - B}$	Enable	Output \mathbf{Y}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	H	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	L
X	L	Z

Parameter Measurement Information

TL/F/9627-3
FIGURE 1. tplh t PHL $^{(N o t e ~ 3) ~}$

TL/F/9627-5
FIGURE 2. $\mathrm{t}_{\mathrm{HZ}}, \mathrm{t}_{\mathrm{ZH}}$ (Note 3)

FIGURE 3. $\mathrm{t}_{\mathrm{ZL}}, \mathrm{t}_{\mathrm{LZ}}$ (Note 3)
Note 1: The input pulse is supplied by a generator having the following characteristics: $\operatorname{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{ZO}=50 \Omega$. Note 2: C_{L} includes probe and stray capacitance.
Note 3: DS96F173 with active high and active low Enables is shown here. DS96F175 has active high Enable only.
Note 4: All diodes are 1N916 or equivalent.
Note 5: To test the active low Enable \vec{E} of DS96F173, ground E and apply an inverted input waveform to \bar{E}. DS96F175 has active high enable only.

Typical Application

FIGURE 4
Note: The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

DS96173/ μ A96173/DS96175/ μ A96175 RS-485/RS-422 Quad Differential Line Receivers

General Description

The DS96173/ μ A96173 and DS96175/ μ A96175 are high speed quad differential line receivers designed to meet EIA Standard RS-485. The devices have TRI-STATE ${ }^{(1)}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps . The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -7 V to +12 V . The receivers are therefore suitable for multipoint applications in noisy environments. The DS96173/ μ A96173 features an active high and active low Enable, common to all four receivers. The DS96175/ μ A96175 features separate active high Enables for each receiver pair. Compatible RS-485 drivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96172/ μ A96172, DS96174/ μ A96174, DS96176/ μ A96176, DS96177/ μ A96177 and DS96178/ μ A96178.

Features

- Meets EIA Standard RS-485, RS-422A, RS-423A
- Designed for multipoint bus applications
- TRI-STATE Outputs
- Common mode input voltage range: -7 V to +12 V
- Operates from single +5 V supply
- Input sensitivity of $\pm 200 \mathrm{mV}$ over common mode range
- Input hysteresis of 50 mV typical
- High input impedance
- DS96173/ μ A96173/DS96175/ μ A96175 are lead and function compatible with SN75173/75175 or the AM26LS32/MC3486 respectively.

Connection Diagrams

Order Number DS96173J, μ A96173DC, DS96175J, μ A96175DC See NS Package Number J16A*
Order Number DS96173N, μ A96173PC, DS96175N, μ A96175PC See NS Package Number N16A

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallablility and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
Ceramic DIP (soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Molded DIP (soldering, 10 sec.)	$265^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1500 mW
Molded Package	1040 mW

Supply Voltage
Input Voltage, A or B Inputs $\pm 25 \mathrm{~V}$

Differential Input Voltage $\pm 25 \mathrm{~V}$
Enable Input Voltage . 7V
Low Level Output Current 50 mA
-Derate cavity package $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage (V_{CC})	4.75	5	5.25	V
Common Mode Input Voltage (VCM)	-7		+12	V
Differential Input Voltage (VID)	-7		+12	V
Output Current High (loH)			-400	$\mu \mathrm{A}$
Output Current LOW (loL)			16	mA
Operating Temperature (T_{A})	0	25	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified (Notes $2 \& 3$)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$V_{\text {TH }}$	Differential Input High Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=-0.4 \mathrm{~mA}$				0.2	V
V_{TL}	Differential Input (Note 4) Low Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=16 \mathrm{~mA}$		-0.2			V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis (Note 5)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			50		mV
V_{IH}	Enable Input Voltage HIGH			2.0			V
$\mathrm{V}_{\text {IL }}$	Enable Input Voltage LOW					0.8	V
$\mathrm{V}_{\text {IC }}$	Enable Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, \mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.7			V
V_{OL}	Output Voltage LOW	$V_{I D}=-200 \mathrm{mV}$	$\mathrm{lOL}=8 \mathrm{~mA}$			0.45	V
			$\mathrm{IOL}=16 \mathrm{~mA}$			0.50	
loz	High Impedance State Output	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V				± 20	$\mu \mathrm{A}$
1	Line Input Current (Note 6)	Other Input = OV	$V_{1}=12 \mathrm{~V}$			1.0	mA
			$V_{1}=-7 \mathrm{~V}$			-0.8	
IH_{H}	Enable Input Current HIGH	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{12}	Enable Input Current LOW	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
R_{1}	Input Resistance			12	15		$\mathrm{k} \Omega$
los	Short Circuit Output Current	(Note 7)		-15		-85	mA
ICC	Supply Current	Outputs Disabled				75	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS96173/ $\mu \mathrm{A} 96173 /$ DS96175/ $\mu \mathrm{A} 96175$. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 4: The algebraic convention, when the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.
Note 5: Hysteresis is the difference between the positive-going input threshold voltage, $\mathrm{V}_{\mathrm{T}+}$, and the negative going input threshold voltage, V_{T}..
Note 6: Refer to EIA Standards RS-485 for exact conditions.
Note 7: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Figure } 1 \end{aligned}$		15	25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output			15	25	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 2		15	22	ns
$\mathrm{t}_{\mathrm{PZL}}$	Output Enable Time to Low Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 3		15	22	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 2		14	30	ns
tplz	Output Disable Time from Low Level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 3		24	40	ns

Function Tables
(Each Receiver) DS96173/ μ A96173

Differential Inputs	Enables		Outputs
$A-B$	E	\bar{E}	V
$V_{I D}>0.2 \mathrm{~V}$	H	X	H
	X	L	H
$V_{I D}<-0.2 V$	H	X	L
	X	L	L
X	L	H	Z

$H=$ High Level
$\mathrm{L}=$ Low Level
$X=$ Immaterial
$Z=$ High Impedance (off)
(Each Receiver) DS96175/ μ A96175

Differential Inputs $\mathbf{A - B}$	Enable	Output \mathbf{Y}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	H	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	L
X	L	Z

Parameter Measurement Information

TL/F/9628-4
TL/F/9628-3
FIGURE 1. t $_{\text {PLH }}$, t $_{\text {PHL }}$ (Note 3)

TL/F/9628-5
FIGURE 2. $\mathbf{t}_{\text {PHZ }}$, $\mathbf{t P Z H}$ (Note 3)

FIGURE 3. $\mathrm{t}_{\text {PZL, }} \mathrm{t}_{\text {PLZ }}$ (Note 3)
Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. Note 2: C_{L} includes probe and stray capacitance.
Note 3: DS96173/ μ A96173 with active high and active low Enables is shown here. DS96175/ μ A96175 has active high Enable only.
Note 4: All diodes are 1 N916 or equivalent.
Note 5: To test the active low Enable $\overline{\mathrm{E}}$ of DS96173/ $\mu \mathrm{A} 96173$, ground E and apply an inverted input waveform to $\overline{\mathrm{E}}$. DS96175/ $\mu \mathrm{A} 96175$ has active high Enable only.

TL/F/9628-9
FIGURE 4
Note: The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

DS96176/ μ A96176 RS-485/RS-422 Differential Bus Transceiver

General Description

The DS96176/ μ A96176 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A.
The DS96176/ μ A96176 combines a TRI-STATE ${ }^{\circledR}$ differential line driver and a differential input line receiver, both of which operate from a single 5.0 V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.
The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately $160^{\circ} \mathrm{C}$. The receiver features a typical input impedance of $15 \mathrm{k} \Omega$, an input sensitivity of $\pm 200 \mathrm{mV}$, and a typical input hysteresis of 50 mV .

The DS96176/ μ A96176 can be used in transmission line applications employing the DS96172/ μ A96172 and the DS96174/ μ A96174 quad differential line drivers and the DS96173/ μ A96173 and DS96175/ μ A96175 quad differential line receivers.

Features

- Bidirectional transceiver
- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission
- TRI-STATE driver and receiver enables
- Individual driver and receiver enables
- Wide positive and negative input/output bus voltage ranges
- Driver output capability $\pm 60 \mathrm{~mA}$ Maximum
- Thermal shutdown protection
- Driver positive and Negative current-limiting
- High impedance receiver input
- Receiver input sensitivity of $\pm 200 \mathrm{mV}$
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0 V supply
- Low power requirements

Connection Diagram

TL/F/9630-1

Order Number DS96176J, μ A96176RC See NS Package Number J08A*

Order Number DS96176N, μ A96176TC See NS Package Number N08E

Function Table

Driver			
Input	Enable	Outputs	
DI	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

Receiver

Differential Inputs	Enable	Output
$\mathbf{A - B}$	$\overline{\mathbf{R E}}$	\mathbf{R}
$V_{I D} \geq 0.2 \mathrm{~V}$	L	H
$\mathrm{V}_{I D} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z

[^11][^12]| Absolute Maximum Ratings (Note 1) | |
| :---: | :---: |
| If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. | |
| Storage Temperature Range | |
| Ceramic DIP | $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ |
| Molded DIP | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature | |
| Ceramic DIP (soldering, 60 sec .) | $300^{\circ} \mathrm{C}$ |
| Molded DIP (soldering, 10 sec.) | 265° |
| Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ | |
| Cavity Package | 1300 mW |
| Molded Package | 930 m |
| Supply Voltage | 7.0 |
| Differential Input Voltage | +15V/-10V |
| Enable Input Voltage | 5.5V |
| crate cavity package $8.7 \mathrm{~mW} /{ }^{\text {C }}$ abo | ate molded DIP package |

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage (V_{CC})	4.75	5.0	5.25	V
Voltage at Any Bus Terminal (Separately or Common Mode)	-7.0		12	\checkmark
Differential Input Voltage ($\mathrm{V}_{\text {ID }}$)			± 12	V
Output Current HIGH (lOH)				
Driver			-60	mA
Receiver			-400	$\mu \mathrm{A}$
Output Current LOW (loL)				
Driver			60	mA
Receiver			16	mA
Operating Temperature (T_{A})	0	25	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified (Notes 2 and 3)
DRIVER SECTION

Symbol	Parameter			Min	Typ	Max	Units
V_{IH}	Input Voltage HIGH	Conditions		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW					0.8	V
V_{OH}	Output Voltage HIGH	$\mathrm{IOH}=-20 \mathrm{~mA}$			3.1		V
V_{OL}	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$			0.85		V
$V_{\text {ic }}$	Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\left\|V_{\text {ODI }}\right\|$	Differential Output Voltage	$1 \mathrm{O}=0 \mathrm{~mA}$				6.0	V
$\left\|\mathrm{V}_{\text {OD2 }}\right\|$	Differential Output Voltage			2.0	2.25		V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$, Figure 1 and 2		1.5	2.0		
$\Delta\left\|\mathrm{V}_{\text {OD2 }}\right\|$	Change in Magnitude of Differential Output Voltage (Note 4)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { Figure } 1 \text { and 2 } \end{aligned}$				± 0.2	V
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$ Figure 1					
V_{OC}	Common Mode Output Voltage (Note 5)	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 1				3.0	V
$\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$	Change in Magnitude of Common Mode Output Voltage (Note 4)					± 0.2	V
10	Output Current (Note 4) (Includes Receiver I)	Output Disabled	$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$			1.0	mA
			$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$			-0.8	
IH_{H}	Input Current HIGH	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Input Current LOW	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
los	Short Circuit Output Current (Note 9)	$V_{0}=-7.0 \mathrm{~V}$				-250	
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-150	mA
		$\mathrm{V}_{0}=\mathrm{V}_{C C}$				150	
		$V_{0}=12 \mathrm{~V}$				250	
Icc	Supply Current	No Load	Outputs Enabled			35	mA
			Outputs Disabled			40	

Electrical Characteristics (Continued)
Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified RECEIVER SECTION

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{TH}	Differential Input High Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$				0.2	V
$V_{T L}$	Differential Input Low Threshold Voltage (Note 6)	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8.0 \mathrm{~mA}$		-0.2			V
$V_{T+}-V_{T-}$	Hysteresis (Note 7)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			50		mV
V_{IH}	Enable Input Voltage HIGH			2.0			V
V_{IL}	Enable Input Voltage LOW					0.8	V
$\mathrm{V}_{\text {IC }}$	Enable Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ Figure 3		2.7			V
V_{OL}	Output Voltage LOW	$V_{I D}=-200 \mathrm{mV},$ Figure 3	$\mathrm{l}_{\mathrm{OL}}=8,0 \mathrm{~mA}$			0.45	V
			$\mathrm{OL}=16 \mathrm{~mA}$			0.50	
l_{OZ}	High Impedance State Output	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$ to 2.4 V				± 20	$\mu \mathrm{A}$
1	Line Input Current (Note 8)	Other Input $=0 \mathrm{~V}$	$\mathrm{V}_{1}=12 \mathrm{~V}$			1.0	mA
			$V_{1}=-7.0 \mathrm{~V}$			0.8	
I_{H}	Enable Input Current HIGH	$\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{IL}	Enable Input Current LOW	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
R_{1}	Input Resistance			12	15		$\mathrm{k} \Omega$
los	Short Circuit Output Current	(Note 9)		-15		-85	mA
Icc	Supply Current (Total Package)	No Load	Outputs Enabled			40	mA
			Outputs Disabled				

Driver Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	M 1 n	Typ	Max	Units
$t_{D D}$	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 4		15	25	ns
${ }^{\text {t }}$	Differential Output Transition Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 4		15	25	ns
tpLH	Propagation Delay Time, Low-to-High Level Output	$R_{L}=27 \Omega$, Figure 5		12	20	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$R_{L}=27 \Omega$, Figure 5		12	20	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		25	35	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 7		25	35	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		20	25	ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level	$R_{L}=110 \Omega$, Figure 7		29	35	ns

Receiver Switching Characteristics $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
tplH	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Figure } 8 \end{aligned}$		16	25	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output			16	25	ns
tpZH	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 9		15	22	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level			15	22	ns
tphz	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 9		14	30	ns
tplz	Output Disable Time from Low Level			24	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS} 96176 / \mu \mathrm{A} 96176$. All typicals are given for $V_{\mathrm{CC}}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: $\Delta\left|V_{O D}\right|$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}$ and $V_{O C}$, respectively, that occur when the input is changed from a high level to a low level. Note 5: In EIA Standards RS-422A and RS-485, $V_{O C}$, which is the average of the two output voltages with respect to ground, is called output offset voltage, $V_{O S}$.
Note 6: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.
Note 7: Hysteresis is the difference between the positive-going input threshold voltage $\mathrm{V}_{\mathrm{T}+}$, and the negative-going input threshold voltage, $\mathrm{V}_{\mathrm{T}-}$.
Note 8: Refer to EIA Standard RS-485 for exact conditions.
Note 9: Only one output at a time should be shorted.

Parameter Measurement Information

TL/F/9630-2
FIGURE 1. Driver $\mathrm{V}_{O D}$ and $\mathrm{V}_{O C}$

TL/F/9630-3

FIGURE 2. Driver VOD with Varying Common Mode Voltage

TL/F/9630-4
FIGURE 3. Receiver V_{OH} and V_{OL}

Parameter Measurement Information (Continued)

TL/F/9630-6
FIGURE 4. Driver Differential Output Delay and Transition Times

TL/F/9630-7

TL/F/9630-8

FIGURE 5. Driver Propagation Times

FIGURE 6. Driver Enable and Disable Times ($\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHz}}$)

TL/F/9630-11
FIGURE 7. Driver Enable and Disable Times (tpzL, tplz)

Parameter Measurement Information (Continued)

TL/F/9630-13
FIGURE 8. Receiver Propagation Delay Times

TL/F/9630-15

TL/F/9630-16

TL/F/9630-19
FIGURE 9. Receiver Enable and Disable Times
Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
Note 2: C_{L} Includes probe and stray capacitance.
Note 3: DS96176/ μ A96176 Driver enable is Active-High.
Note 4: All diodes are 1N916 or equivalent.

Typical Application

FIGURE 10
Note:
The line length should be terminated at both ends of its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

DS96177/ μ A96177
 RS-485/RS-422 Differential Bus Repeater

General Description

The DS96177/ $\mu \mathrm{A} 96177$ Differential Bus Repeater is a monolithic integrated device designed for one-way data communication on multipoint bus transmission lines. This device is designed for balanced transmission bus line applications and meets EIA Standard RS-485 and RS-422A. The device is designed to improve the performance of the data communication over long bus lines. The DS96177/ $\mu \mathrm{A} 96177$ is an active high Enable.
The DS96177/ μ A96177 features positive and negative current limiting and TRI-STATE ${ }^{\circledR}$ outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12 V to +12 V . The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately $160^{\circ} \mathrm{C}$. The driver is designed to drive current loads up to 60 mA maximum.
The DS96177/ μ A96177 is designed for optimum performance when used on transmission buses employing the DS96172/ μ A96172 and DS96174/ μ A96174 differential line drivers, DS96173/ μ A96173 and DS96175/ μ A96175 differential line receivers, or DS96176/ μ A96176 differential bus transceivers.

Features

- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission on long bus lines in noisy environments
- TRI-STATE outputs

■ Bus voltage range -7.0 V to +12 V

- Positive and negative current limiting
- Driver output capability $\pm 60 \mathrm{~mA} \max$
- Driver thermal shutdown protection
- Receiver input high impedance
- Receiver input sensitivity of $\pm 200 \mathrm{mV}$
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0 V supply
- Low power requirements

Connection Diagram

8-Lead Dual-In-Line Package

Top View
Order Number DS96177J, μ A96177RC See NS Package Number J08A*
Order Number DS96177N, μ A96177TC See NS Package Number N08E

Function Table

Differential Inputs	Enable	Outputs		
$\mathbf{A - B}$	\mathbf{E}	\mathbf{T}	\mathbf{Y}	\mathbf{Z}
$\mathrm{V}_{I D} \geq 0.2 \mathrm{~V}$	H	H	H	L
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	L	L	H
X	L	Z	Z	Z

[^13]Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

$$
\begin{array}{ll}
\text { Ceramic DIP } & -65^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\text { Molded DIP } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Ceramic DIP (Soldering, 60 sec.$) \quad 300^{\circ} \mathrm{C}$
Molded DIP (Soldering, 10 sec .) $265^{\circ} \mathrm{C}$
$\begin{array}{lr}\text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} & \\ \text { Cavity Package } & 1300 \mathrm{~mW} \\ \text { Molded Package } & 930 \mathrm{~mW}\end{array}$
Supply Voltage 7.0 V
Input Voltage 5.5 V
*Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating

 Conditions| | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| Supply Voltage (VCC) | 4.75 | 5.0 | 5.25 | V |
| Voltage at any Bus Terminal (Separately or Common Mode) (VI or $V_{C M}$) | -7.0 | | 12 | V |
| Differential Input Voltage $\left(V_{I D}\right)$ | | | ± 12 | V |
| Output Current HIGH (IOH) Driver Receiver | | | -60 -400 | $m A$ $\mu \mathrm{~A}$ |
| Output Current LOW (loL) Driver
 Receiver | | | 60 16 | mA |
| Operating Temperature (T_{A}) | 0 | 25 | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified (Notes 2 and 3)
DRIVER SECTION

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Input Voltage HIGH			2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW					0.8	V
$V_{\text {IC }}$	input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\left\|V_{\text {OD1 }}\right\|$	Differential Output Voltage	$10=0 \mathrm{~mA}$				6.0	V
$\left\|\mathrm{V}_{\text {OD2 }}\right\|$	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 1		2.0	2.25		V
		$R_{L}=54 \Omega$, Figure 1 and 2		1.5	2.0		
$\Delta\left\|\mathrm{V}_{\text {OD2 }}\right\|$	Change in Magnitude of Differential Output Voltage (Note 4)	$R_{L}=100 \Omega$, Figure 1				± 0.2	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ Figure 1 and 2	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$				
$\mathrm{V}_{O C}$	Common Mode Output Voltage (Note 5)	$R_{L}=54 \Omega \text { or } 100 \Omega$ Figure 1				3.0	V
$\Delta \mid \mathrm{V}_{\text {OCl }}$	Change in Magnitude of Common Mode Output Voltage (Note 4)					± 0.2	V
10	Output Current with Power Off	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to +12 V				± 100	$\mu \mathrm{A}$
102	High Impedance State Output Current	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$ to +12 V			± 50	± 200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	Input Current HIGH	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L	Input Current LOW	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-100	$\mu \mathrm{A}$
los	Short Circuit Output Current (Note 9)	$\mathrm{V}_{0}=-7.0 \mathrm{~V}$				-250	mA
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-150	
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				150	
		$V_{0}=12 \mathrm{~V}$				250	
${ }^{\text {cc }}$	Supply Current	No Load	Outputs Enabled			35	mA
			Outputs Disabled			40	

RECEIVER SECTION

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {TH }}$	Differential Input High Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$			0.2	V
$V_{T L}$	Differential Input Low Threshold Voltage (Note 6)	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{l}_{0}=8.0 \mathrm{~mA}$	-0.2			V
$V_{T+}-V_{T-}$	Hysteresis (Note 7)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		50		mV
V_{IH}	Enable Input Voltage HIGH		2.0			V
$\mathrm{V}_{\text {IL }}$	Enable Input Voltage LOW				0.8	V
$V_{\text {IC }}$	Enable Input Clamp Voltage	$1=-18 \mathrm{~mA}$			-1.5	V

Electrical Characteristics (Continued)

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified
RECEIVER SECTION (Continued)

Drive Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {tDD }}$	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 4		15	25	ns
${ }^{\text {tTD }}$	Differential Output Transition Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 4		15	25	ns
${ }_{\text {tpLH }}$	Propagation Delay Time, Low-to-High Level Output	$R_{L}=27 \Omega$, Figure 5		12	20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output	$R_{L}=27 \Omega$, Figure 5		12	20	ns
tpZH	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		25	45	ns
$\mathrm{t}_{\mathrm{PZL}}$	Output Enable Time to Low Level	$R_{L}=110 \Omega$, Figure 7		25	40	ns
tPHZ	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		20	25	ns
tplz	Output Disable Time from Low Level	$R_{L}=110 \Omega$, Figure 7		29	35	ns

Receiver Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {tpLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V} \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Figure } 8 \end{aligned}$		16	25	ns
tPHL	Propagation Delay Time, High-to-Low Level Output			16	25	ns
$t_{\text {PZH }}$	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 9		15	22	ns
$\mathrm{t}_{\mathrm{PZL}}$	Output Enable Time to Low Level			15	22	ns
tPHZ	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 9		14	30	ns
tplz	Output Disable Time from Low Level			24	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS} 96177 / \mu \mathrm{A} 96177$. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative, All voltages are referenced to ground unless otherwise specified.
Note 4: $\Delta\left|V_{O D}\right|$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}, V_{O C}$ respectively, that occur when the input is changed from a high level to a low level.
Note 5: In EIA Standards RS-422A and RS-485, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage, VOS.
Note 6: The algebraic convention, when the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.
Note 7: Hysteresis is the difference between the positive-going input threshold voltage, V_{T}, and the negative going input threshold voltage, $\mathrm{V}_{\mathrm{T}-\text { - }}$.
Note 8: Refer to EIA Standards RS-485 for exact conditions.
Note 9: Only one output at a time should be shorted.

Parameter Measurement Information

TL/F/9644-4
FIGURE 2. Driver VOD2 with Varying Common Mode Voltage

TL/F/9644-3
FIGURE 3. Recelver V_{OH} and V_{OL}

TL/F/9644~6
FIGURE 4. Driver Differential Output Delay and Transition Times

FIGURE 5. Drive Propagation Times

FIGURE 6. Driver Enable and Disable TImes ($\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$)

TL/F/9644-11
FIGURE 7. Driver Enable and Disable TImes ($\mathrm{t}_{\text {PLL }}, \mathrm{t}_{\text {PLZ }}$)

TL/F/9644-13
FIGURE 8. Recelver Propagation Delay Times

Parameter Measurement Information (Continued)

TL/F/9644-15

$\mathbb{I N}$

TL/F/9644-17

FIGURE 9. Recelver Enable and Disable Times

Note 1: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}$, duty cycle $\approx 50 \%, \mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
Note 2: C_{L} includes probe and stray capacitance.
Note 3: DS96177/ μ A96177 Enable is active high.
Note 4: All diodes are 1N916 or equivalent.

Typical Application

Notes:
The line length should be terminated at both ends in its characteristic impedance.
Stub lengths off the main line should be kept as short as possible.
FIGURE 10

MM78C29/MM88C29 Quad Single-Ended Line Driver MM78C30/MM88C30 Dual Differential Line Driver

General Description

The MM78C30/MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to V_{CC} in the input protection circuitry of the MM78C30/MM88C30 al lows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a $V_{C C}$ voltage greater than the $V_{C C}$ voltage of the MM78C30 line driver. The differential output of the MM78C30/MM88C30 eliminates ground-loop errors.

The MM78C29/MM88C29 is a non-inverting single-wire transmission line driver. Since the output ON resistance is a low 20Ω typ., the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.

Features

■ Wide supply voltage range	3 V to 15 V
■ High noise immunity	$0.45 \mathrm{~V}_{\mathrm{CC}}$ (typ.)
■ Low output ON resistance	20Ω (typ.)

■ Wide supply voltage range
$0.45 \mathrm{~V}_{\mathrm{CC}}$ (typ.)
20Ω (typ.)

Logic Diagrams

1/4 MM78C29/MM88C29

TL/F/5908-1

1/2 MM78C30/MM88C30

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Pin (Note 1)
Operating Temperature Range
MM78C29/MM78C30
MM88C29/MM88C30
Storage Temperature
Power Dissipation (PD)
Dual-In-Line
Small Outline

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+16 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Operating V_{CC} Range
$3 V$ to 15 V
Absolute Maximum VCc
Average Current at Output MM78C30/MM88C30 50 mA MM78C29/MM88C29 25 mA
Maximum Junction Temperature, $\mathrm{T}_{\mathbf{j}} \quad 150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10 seconds) $260^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 8 \end{gathered}$			$\begin{aligned} & v \\ & v \end{aligned}$
$V_{\text {IN(0) }}$	Logical "0" Input Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{gathered} 1.5 \\ 2 \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
$\underline{1 N(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N}(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
Icc	Supply Current	$V_{C C}=5 \mathrm{~V}$		0.05	100	mA

OUTPUT DRIVE

Isource	Output Source Current MM78C29/MM78C30	$\begin{aligned} & V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}, \\ & V_{C C} \geq 4.5 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -57 \\ & -32 \end{aligned}$	$\begin{aligned} & -80 \\ & -50 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MM88C29/MM88C30	$\begin{aligned} & V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}, \\ & V_{C C} \geq 4.75 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -47 \\ & -32 \end{aligned}$	$\begin{aligned} & -80 \\ & -60 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MM78C29/MM88C29 MM78С30/MM88С30	$\begin{aligned} & V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}-0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$	-2	-20		mA
ISINK	Output Sink Current MM78C29/MM78C30	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 11 \\ 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 14 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MM88C29/MM88C30	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 9.5 \\ 8 \end{gathered}$	$\begin{aligned} & 22 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \text { VOUT }=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 19 \\ 15.5 \end{gathered}$	$\begin{aligned} & 40 \\ & 33 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Isource	Output Source Resistance MM78C29/MM78C30	$\begin{aligned} & V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 32 \end{aligned}$	$\begin{aligned} & 28 \\ & 50 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
	MM88C29/MM88C30	$\begin{aligned} & V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}, \\ & V_{C C} \geq 4.75 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 20 \\ & 27 \end{aligned}$	$\begin{aligned} & 34 \\ & 50 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

DC Electrical Characteristics

Min/Max limits apply across temperature range, unless otherwise noted (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
OUTPUT DRIVE (Continued)						
IsINK	Output Sink Resistance MM78C29/MM78C30	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.50 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 20 \\ & 28 \end{aligned}$	$\begin{aligned} & 36 \\ & 50 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \text { Vout }=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 18 \\ & 25 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
	MM88C29/MM88C30	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 18 \\ & 22 \end{aligned}$	$\begin{aligned} & 41 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 \\ & 26 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
	Output Resistance Temperature Coefficient Source Sink			$\begin{aligned} & 0.55 \\ & 0.40 \end{aligned}$		$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	Thermal Resistance MM78C29/MM78C30 (D-Package)			100		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	MM88C29/MM88C30 (N-Package)			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

AC Electrical Characteristics* $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{pd}	Propagation Delay Time to Logical " 1 " or " 0 " MM78C29/MM88C29	$\begin{aligned} & \text { (See Figure 2) } \\ & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 80 \\ & 35 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
	MM78C30/MM88C30	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 110 \\ 50 \end{gathered}$	$\begin{aligned} & 350 \\ & 150 \end{aligned}$	ns ns
t_{pd}	Differential Propagation Delay Time to Logical " 1 " or " 0 " MM78C30/MM88C30	$R_{L}=100 \Omega, C_{L}=5000 \mathrm{pF}$ (See Figure 1) $\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance MM78C29/MM88C29 MM78C30/MM88С30	(Note 3) (Note 3)		$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance MM78C29/MM88C29 MM78C30/MM88C30	(Note 3) (Note 3)		$\begin{array}{r} 150 \\ 200 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

*AC Parameters are guaranteed by DC correlated testing.
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{P D}$ determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90 (CMOS Logic Databook).

Connection Diagrams

Dual-In-LIne Package
MM78C29/MM88C29

Dual-In-Line Package MM78С30/MM88С30

Top View
Order Number MM78C30J or MM88C30J

Typical Performance Characteristics

MM78C30/MM88C30 Typical Propagation Delay vs Load Capacitance

Typical Sink Current vs Output Voltage

MM78C30/MM88C30
Typical Propagation Delay vs Load Capacitance

Typical Source Current vs Output Voltage

AC Test Circuits

FIGURE 1

TL/F/5908-8
FIGURE 2

Typical Applications

TL/F/5908-9

Typical Applications (Continued)

TL/F/5908-11

TL/F/5908-12
Note 1: V_{CC} is 3 V to 15 V
Typlcal Data Rate vs Transmission Line Length

Note 1: The transmission line used was \# 22 gauge unshielded twisted pair (40k termination).
Note 2: The curves generated assume that both drivers are driving equal lines, and that the maximum power is $500 \mathrm{~mW} /$ package.

Integrated Circuits for Digital Data Transmission

INTRODUCTION

It is frequently necessary to transmit digital data in a highnoise environment where ordinary integrated logic circuits cannot be used because they do not have sufficient noise immunity. One solution to this problem, of course, is to use high-noise-immunity logic. In many cases, this approach would require worst case logic swings of 30 V , requiring high power-supply voltages. Further, considerable power would be needed to transmit these voltage levels at high speed. This is especially true if the lines must be terminated to eliminate reflections, since practical transmission lines have a low characteristic impedance.
A much better solution is to convert the ground referred digital data at the transmission end into a differential signal and transmit this down a balanced, twisted-pair line. At the receiving end, any induced noise, or voltage due to groundloop currents, appears equally on both ends of the twistedpair line. Hence, a receiver which responds only to the differential signal from the line will reject the undesired signals even with moderate voltage swings from the transmitter.
Figure 1 illustrates this situation more clearly. When ground is used as a signal return as in Figure 1a, the voltage seen at the receiving end will be the output voltage of the transmitter plus any noise voltage induced in the signal line.

Hence, the noise immunity of the transmitter-receiver combination must be equal to the maximum expected noise from both sources.
The differential transmission scheme diagrammed in Figure $1 b$ solves this problem. Any ground noise or voltage induced on the transmission lines will appear equally on both inputs of the receiver. The receiver responds only to the differential signal coming out of the twisted-pair line and delivers a single-ended output signal referred to the ground at the receiving end. Therefore, extremely high noise immunities are not needed; and the transmitter and receiver can be operated from the same supplies as standard integrated logic circuits.
This article describes the operation and use of a line driver and line receiver for transmission systems using twisted-pair lines. The transmitter provides a buffered differential output from a DTL or TTL input signal. A four-input gate is included on the input so that the circuit can also perform logic. The receiver detects a zero crossing in the differential input voltage and can directly drive DTL or TTL integrated circuits at the receiving end. It also has strobe capability to blank out unwanted input signals. Both the transmitter and the receiver incorporate two independent units on a single silicon chip.

b. Difference System

FIGURE 1. Comparing Differential and Single-Ended Data Transmission

LINE DRIVER

Figure 2 shows a schematic diagram of the line transmitter. The circuit has a marked resemblance to a standard TTL buffer. In fact, it is possible to use a standard dual buffer as a transmitter. However, the DS7830 incorporates additional features. For one, the output is current limited to protect the driver from accidental shorts in the transmission lines. Secondly, diodes on the output clamp sever voltage transients that may be induced into the transmission lines. Finally, the circuit has internal inversion to produce a differential output signal, reducing the skew between the outputs and making the output state independent of loading.
As can be seen from the upper half of Figure 2, a quadrupleemitter input transistor, Q9, provides four logic inputs to the transmitter. This transistor drives the inverter stage formed by Q10 and Q11 to give a NAND output. A low state logic input on any of the emitters of Q9 will cause the base drive to be removed from Q10, since Q9 will be saturated by current from R8, holding the base of Q10 near ground. Hence,

Q10 and Q11 will be turned off; and the output will be in a high state. When all the emitters of Q9 are at a one logic level, Q10 receives base drive from R8 through the forward biased collector-base junction of Q9. This saturates Q10 and also Q11, giving a low output state. The input voltage at which the transition occurs is equal to the sum of the emit-ter-base turn on voltages of Q10 and Q11 minus the saturation voltage of Q9. This is about 1.4 V at $25^{\circ} \mathrm{C}$.
A standard "totem-pole" arrangement is used on the output stage. When the output is switched to the high state, with Q10 and Q11 cut off, current is supplied to the load by Q13 and Q14 which are connected in a modified Darlington configuration. Because of the high compound current gain of these transistors, the output resistance is quite low and a large load current can be supplied. R10 is included across the emitter-base junction of Q13 both to drain off any collec-tor-base leakage current in Q13 and to discharge the collec-tor-base capacitance of Q13 when the output is switched to

FIGURE 2. Schematic Diagram of the DS7830 Line Driver
the low state. In the high state, the output level is approximately two diode drops below the positive supply, or roughly 3.6 V at $25^{\circ} \mathrm{C}$ with a 5.0 V supply.

With the output switched into the low state, Q10 saturates, holding the base of Q14 about one diode drop above ground. This cuts off Q13. Further, both the base current and the collector current of Q10 are driven into the base of Q11 saturating it and giving a low-state output of about 0.1 V . The circuit is designed so that the base of Q11 is supplied 6 mA , so the collector can drive considerable load current before it is pulled out of saturation.
The primary purpose of R12 is to provide current to remove the stored charge in Q11 and charge its collector-base capacitance when the circuit is switched to the high state. Its value is also made less than R9 to prevent supply current transients which might otherwise occur* when the power supply is coming up to voltage.
The lower half of the transmitter in Figure 2 is identical to the upper, except that an inverter stage has been added. This is needed so that an input signal which drives the output of the upper half positive will drive the lower half negative, and vice versa, producing a differential output signal. Transistors Q2 and Q3 produce the inversion. Even though the current gain is not necessarily needed, the modified Darlington connection is used to produce the proper logic transition voltage on the input of the transmitter. Because of the low load capacitance that the inverter sees when it is completely within the integrated circuit, it is extremely fast, with a typical delay of 3 ns . This minimizes the skew between the outputs.
One of the schemes used when dual buffers are employed as a differential line driver is to obtain the NAND output in the normal fashion and provide the AND output by connecting the input of the second buffer to the NAND output. Using an internal inverter has some distinct advantages over this: for one, capacitive loads which slow down the response of the NAND output will not introduce a time skew between the two outputs; secondly, line transients on the NAND output will not cause an unwanted change of state on the AND output.
Clamp diodes, D1 through D4, are added on all inputs to clamp undershoot. This undershoot and ringing can occur in TTL systems because the rise and fall times are extremely short.
Output-current limiting is provided by adding a resistor and transistor to each of the complementary outputs. Referring again to Figure 2, when the current on the NAND output increases to a value where the voltage drop across R11 is sufficient to turn on Q12, the short circuit protection comes into effect. This happens because further increases in output current flow into the base of Q12 causing it to remove base drive from Q14 and, therefore, Q13. Any substantial increase in output current will then cause the output voltage to collapse to zero. Since the magnitude of the short circuit depends on the emitter base turn-on voltage of Q12, this current has a negative temperature coefficient. As the chip temperature increases from power dissipation, the available short circuit current is reduced. The current limiting also serves to control the current transient that occurs when the output is going through a transition with both Q11 and Q13 turned on.
*J. Kalb, "Design Considerations for a TTL Gate", National Semiconductor TP-6, May, 1968.

The AND output is similarly protected by R6 and Q5, which limits the maximum output current to about 100 mA , preventing damage to the circuit from shorts between the outputs and ground.
The current limiting transistors also serve to increase the low state output current capability under severe transient conditions. For example, when the current into the NAND output becomes so high as to pull Q11 out of saturation, the output voltage will rise to two diode drops above ground. At this voltage, the collector-base junction of Q12 becomes forward biased and supplies additional base drive to Q11 through Q10 which is saturated. This minimizes any further increase in output voltage.
When either of the outputs are in the high state, they can drive a large current towards ground without a significant change in output voltage. However, noise induced on the transmission line which tries to drive the output positive will cut it off since it cannot sink current in this state. For this reason, D6 and D8 are included to clamp the output and keep it from being driven much above the supply voltage, as this could damage the circuit.
When the output is in a low state, it can sink a lot of current to clamp positive-going induced voltages on the transmission line. However, it cannot source enough current to eliminate negative-going transients so D5 and D7 are included to clamp those voltages to ground.
It is interesting to note that the voltage swing produced on one of the outputs when the clamp diodes go into conduction actually increases the differential noise immunity. For example with no induced common mode current, the lowstate output will be a saturation voltage above ground while the high output will be two diode drops below the positive supply voltage. With positive-going common mode noise on the line, the low output remains in saturation; and the high output is clamped at a diode drop above the positive supply. Hence, in this case, the common mode noise increases the differential swing by three diode drops.

TL/F/7188-4
FIGURE 3. High State Output Voltage as a Function of Output Current
Having explained the operation of the line driver, it is appropriate to look at the performance in more detail. Figure 3 shows the high-state output characteristics under load. Over the normal range of output currents, the output resistance is about 10Ω. With higher output currents, the short circuit protection is activated, causing the output voltage to drop to zero. As can be seen from the figure, the short-circuit current decreases at higher temperatures to minimize the possibility of over-heating the integrated circuit.

TL/F/7188-5

FIGURE 4. Low-State Output Current as a Function of Output Current

Figure 4 is a similar graph of the low-state output characteristics. Here, the output resistance is about 5Ω with normal values of output current. With larger currents, the output transistor is pulled out of saturation; and the output voltage increases. This is more pronounced at $-55^{\circ} \mathrm{C}$ where the transistor current gain is the lowest. However, when the output voltage rises about two diode drops above ground, the collector-base junction of the current-limit transistor becomes forward biased, providing additional base drive for the output transistor. This roughly doubles the current available for clamping positive common-mode transients on the twisted-pair line. It is interesting to note that even though the output level increases to about 2 V under this condition, the differential noise immunity does not suffer because the high-state output also increases by about 3 V with positive going common-mode transients.
It is clear from the figure that the low state output current is not effectively limited. Therefore, the device can be damaged by shorts between the output and the 5 V supply. However, protection against shorts between outputs or from the outputs to ground is provided by limiting the high-state current.

The curves in Figures 3 and 4 demonstrate the performance of the line driver with large, capacitively-coupled commonmode transients, or under gross overload conditions. Figure 5 shows the ability of the circuit to drive a differential load: that is, the transmission line. It can be seen that for output currents less than 35 mA , the output resistance is approximately 15Ω. At both temperature extremes, the output falls off at high currents. At high temperatures, this is caused by current limiting of the high output state. At low temperatures, the fall off of current gain in the low-state output transistor produces this result.
Load lines have been included on the figure to show the differential output with various load resistances. The output swing can be read off from the intersection of the output characteristic with the load line. The figure shows that the driver can easily handle load resistances greater than 100Ω. This is more than adequate for practical, twisted-pair lines. Figure 6 shows the no load power dissipation, for one-half of the dual line driver, as a function of frequency. This information is important for two reasons. First, the increase in

TL/F/7188-6
FIGURE 5. Differential Output Voltage as a Function of Differential Output Current

TL/F/7188-7
FIGURE 6. Power Dissipation as a Function of Switching Frequency
power dissipation at high frequencies must be added to the excess power dissipation caused by the load to determine the total package dissipation. Second, and more important, it is a measure of the "glitch" current which flows from the positive supply to ground through the output transistors when the circuit is going through a transition. If the output stage is not properly designed, the current spikes in the power supplies can become quite large; and the power dissipation can increase by as much as a factor of five between 100 kHz and 10 MHz . The figure shows that, with no capacitive loading, the power increases with frequencies as high as 10 MHz is almost negligible. However, with large capacitive loads, more power is required.
The line receiver is designed to detect a zero crossing in the differential output of the line driver. Therefore, the propagation time of the driver is measured as the time difference between the application of a step input and the point where the differential output voltage crosses zero. A plot of the propagation time over temperature is shown in Figure 7. This delay is added directly to the propagation time of the transmission line and the delay of the line receiver to determine the total data-propagation time. However, in most cases, the delay of the driver is small, even by comparison to the uncertainties in the other delays.

TL/F/7188-8

FIGURE 7. Propagation Time as a Function of Temperature

To summarize the characteristics of the DS7830 line driver, the input interfaces directly with standard TTL circuits. It presents a load which is equivalent to a fan out of 3 to the circuit driving it, and it operates from the $5.0 \mathrm{~V}, \pm 10 \%$ logic supplies. The output can drive low impedance lines down to 50Ω and capacitive loads up to 5000 pF . The time skew between the outputs is minimized to reduce radiation from the twisted-pair lines, and the circuit is designed to clamp common mode transients coupled into the line. Short circuit protection is also provided. The integrated circuit consists of two independent drivers fabricated on a 41×53 mil-square die using the standard TTL process. A photomicrograph of the chip is shown in Figure 8.

TL/F/7188-9
FIGURE 8. Photomicrograph of the DS7830 Dual Line Driver

LINE RECEIVER

As mentioned previously, the function of the line receiver is to convert the differential output signal of the line driver into a single ended, ground-referred signal to drive standard digital circuits on the receiving end. At the same time it must reject the common mode and induced noise on the transmission line.

Normally this would not be too difficult a task because of the large signal swings involved. However, it was considered important that the receiver operate from the +5 V logic supply without requiring additional supply voltages, as do most other line receiver designs. This complicates the situation because the receive must operate with $\pm 15 \mathrm{~V}$ input signals which are considerably greater than the operating supply voltage.
The large common mode range over which the circuit must work can be reduced with an attenuator on the input of the receiver. In this design, the input signal is attenuated by a factor of 30 . Hence, the $\pm 15 \mathrm{~V}$ common mode voltage is reduced to $\pm 0.5 \mathrm{~V}$, which can be handed easily by circuitry operating from a 5 V supply. However, the differential input signal, which can go down as low as $\pm 2.4 \mathrm{~V}$ in the worst case, is also reduced to $\pm 80 \mathrm{mV}$. Hence, it is necessary to employ a fairly accurate zero crossing detector in the receiver.
System requirements dictated that the threshold inaccuracy introduced by the zero crossing detector be less than 17 mV . In principle, this accuracy requirement should not pose insurmountable problems because it is a simple matter to make well matched parts in an integrated circuit.
Figure 9 shows a simplified schematic diagram of the circuit configuration used for the line receiver. The input signal is attenuated by the resistive dividers R1-R2 and R8-R3. This attenuated signal is fed into a balanced DC amplifier, operating in the common base configuration. This input amplifier, consisting of Q1 and Q2, removes the common mode component of the input signal. Further, it delivers an output signal at the collector of Q2, which is nearly equal in amplitude to the original differential input signal. this output signal is buffered by Q6 and drives an output amplifier, Q8. The output stage drives the logic load directly.
An understanding of the circuit can be obtained by first considering the input stage. Assuming high current gains and neglecting the voltage drop across R3, the collector current of Q1 will be:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE} 1}-V_{\mathrm{BE} 3}-V_{\mathrm{BE} 4}}{R 11} \tag{1}
\end{equation*}
$$

With equal emitter-base voltages for all transistors, this becomes:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}^{+}-3 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 11} \tag{2}
\end{equation*}
$$

The output voltage at the collector of Q2 will be:

$$
\begin{equation*}
V_{\mathrm{C} 2}=\mathrm{V}^{+}-\mathrm{I}_{\mathrm{C} 2} R 12 \tag{3}
\end{equation*}
$$

When the differential input voltage to the receiver is zero, the voltages presented to the emitters of Q1 and Q2 will be equal. If Q1 and Q2 are matched devices, which is easy to arrange when they are fabricated close together on a single silicon chip, their collector currents will be equal with zero input voltage. Hence, the output voltage from Q2 can be determined by substituting (2) into (3):

$$
\begin{equation*}
V_{C 2}=V^{+}-\frac{R 12}{R 11}\left(V^{+}-3 V_{B E}\right) \tag{4}
\end{equation*}
$$

For R11 = R12, this becomes:

$$
V_{C 2}=3 V_{B E}
$$

FIGURE 9. Simplified Schematic of the Line Receiver

The voltage on the base of $Q 6$ will likewise be $3 V_{B E}$ when the output is on the verge of switching from a zero to a one state. A differential input signal which causes Q2 to conduct more heavily will then make the output go high, while an input signal in the opposite direction will cause the output to saturate.
It should be noted that the balance of this circuit is not affected by absolute values of components-only by how well they match. Nor is it affected by variations in the positive supply voltage, so it will perform well with standard logic supply voltages between 4.5 V and 5.5 V . In addition, component values are chosen so that the collector currents of Q4 and Q6 are equal. As a result, the base currents of Q4 and Q6 do not upset the balance of the input stage. This means that circuit performance is not greatly affected by production or temperature variations in transistor current gain.
A complete schematic of the line receiver, shown in Figure 10 , shows several refinements of the basic circuit which are needed to secure proper operation under all conditions. For one, the explanation of the simplified circuit ignores the fact that the collector current of Q1 will be affected by common mode voltage developed across R3. This can give a 0.5 V threshold error at the extremes of the $\pm 15 \mathrm{~V}$ common
mode range. To compensate for this, a separate divider, R9 and R10, is used to maintain a constant collector current in Q1 with varying common mode signals. With an increasing common mode voltage on the non-inverting input, the voltage on the emitter of Q1 will increase. Normally, this would cause the voltage across R11 to decrease, reducing the collector current of Q1. However, the increasing common mode signal also drives the top end of R11 through R9 and R10 so as to hold the voltage drop across R11 constant.
In addition to improving the common mode rejection, R9 also forces the output of the receiver into the high state when nothing is connected to the input lines. This means that the output will be in a pre-determined state when the transmission cables are disconnected.
A diode connected transistor, Q5, is also added in the complete circuit to provide strobe capability. With a logic zero on the strobe terminal, the output will be high no matter what the input signal is. With the strobe, the receiver can be made immune to any noise signals during intervals where no digital information is expected. The output state with the strobe on is also the same as the output state with the input terminals open.

FIGURE 10. Complete Schematic of One Half of the DS7820 LIne Recelver

The collector of Q2 is brought out so that an external capacitor can be used to slow down the receiver to where it will not respond to fast noise spikes. This capacitor, which is connected between the response-time-control terminal and ground, does not give exactly-symmetrical delays. The delay for input signals which produce a positive-going output will be less than for input signals of opposite polarity. This happens because the impedance on the collector of Q2 drops as Q6 goes into saturation, reducing the effectiveness of the capacitor.
Another difference in the complete circuit is that the output stage is improved both to provide more gain and to reduce the output resistance in the high output state. This was accomplished by adding Q9 and Q10. When the output stage is operating in the linear region, that is, on the verge of switching to either the high or the low state, Q9 and Q10 form sort of an active collector load for Q8. The current through R15 is constant at approximately 2 mA as the output voltage changes through the active region. Hence, the percentage change in the collector current of Q8 due to the voltage change across R17 is made smaller by this pre-bias current; and the effective stage gain is increased.
With the output in the high state (Q8 cut off), the output resistance is equal to R15, as long as the load current is less than 2 mA . When the load current goes above this value, Q9 turns on; and the output resistance increases to 1.5 k , the value of R17.

This particular output configuration gives a higher gain than either a standard DTL or TTL output stage. It can also drive enough current in the high state to make it compatible with TTL, yet outputs can be wire OR'ed as with DTL.
Remaining details of the circuit are that Q7 is connected as an emitter follower to make the circuit even less sensitive to transistor current gains. R16 limits the base drive to Q7 with the output saturated, while R17 limits the base drive to the output transistor, Q8. A resistor, R7, which can be used to terminate the twisted-pair line is also included on the chip. It is not connected directly across the inputs. Instead, one end is left open so that a capacitor can be inserted in series with the resistor. The capacitor significantly reduces the power dissipation in both the line transmitter and receiver, especially in low-duty-cycle applications, by terminating the line at high frequencies but blocking steady-state current flow in the terminating resistor.
Since line receivers are generally used repetitively in a system, the DS7820 has been designed with two independent receivers on a single silicon chip. The device is fabricated on a 41×49 mil-square die using the standard six mask planar-epitaxial process. The processing employed is identical to that used on TTL circuits, and the design does not impose any unusual demands on the processing. It is only required that various parts within the circuit match well, but this is easily accomplished in a monolithic integrated circuit without any special effort in manufacturing. A photomicrograph of the integrated circuit chip is shown in Figure 11.

TL/F/7188-12
FIGURE 11. Photomicrograph of the DS7820 Dual Line Recelver
The only components in the circuit which see voltages higher than standard logic circuits are the resistors used to attenuate the input signal. These resistors, R1, R7, R8 and R9, are diffused into a separate, floating, N-type isolation tub, so that the higher voltage is not seen by any of the transistors. For a $\pm 15 \mathrm{~V}$ input voltage range, the breakdown voltages required for the collector-isolation and collectorbase diodes are only 15 V and 19 V , respectively. These breakdown voltages can be achieved readily with standard digital processing.
The purpose of the foregoing was to provide some insight into circuit operation. A more exact mathematical analysis of the device is developed in Appendix A.

RECEIVER PERFORMANCE

The characteristics of the line receiver are described graphically in Figures 12 through 18. Figure 12 illustrates the effect of supply voltage variations on the threshold accuracy. The upper curve gives the differential input voltage required to hold the output at 2.5 V while it is supplying $200 \mu \mathrm{~A}$ to the digital load. The lower curve shows the differential input needed to hold the output at 0.4 V while it sinks 3.5 mA from the digital load. This load corresponds to a worst case fanout of 2 with either DTL or TTL integrated circuits. The data shows that the threshold accuracy is only affected by $\pm 60 \mathrm{mV}$ for a $\pm 10 \%$ change in supply voltage. Proper operation can be secured over a wider range of supply voltages, although the error becomes excessive at voltages below 4V.

TL/F/7188-13
FIGURE 12. Differential Input Voltage Required for High or Low Output as a Function of Supply Voltage

Figure 13 is a similar plot for varying common mode input voltage. Again the differential input voltages are given for high and low states on the output with a worst case fanout of 2 . With precisely matched components within the integrated circuit, the threshold voltage will not change with common mode voltage. The mismatches typically encountered give a threshold voltage change of $\pm 100 \mathrm{mV}$ over a $\pm 20 \mathrm{~V}$ common mode range. This change can have either a positive slope or a negative slope.

TL/F/7188-14
FIGURE 13. Differentlal Input Voltage Required for High or Low Output as a Function of Common Mode Voltage

TL/F/7188-15
FIGURE 14. Voltage Transfer Function
The transfer function of the circuit is given in Figure 14. The loading is for a worst case fanout of 2 . The digital load is not linear, and this is reflected as a non-linearity in the transfer function which occurs with the output around 1.5 V . These transfer characteristics show that the only significant effect of temperature is a reduction in the positive swing at $-55^{\circ} \mathrm{C}$. However, the voltage available remains well above the 2.5 V required by digital logic.

TL/F/7188-16
FIGURE 15. Response Time with and without an External Delay Capacitor

Figure 15 gives the response time, or propagation delay, of the receiver. Normally, the delay through the circuit is about 40 ns . As shown, the delay can be increased, by the addition of a capacitor between the response-time terminal and ground, to make the device immune to fast noise spikes on the input. The delay will generally be longer for negative going outputs than for positive going outputs.
Under normal conditions, the power dissipated in the receiver is relatively low. However, with large common mode input voltages, dissipation increases markedly, as shown in Figure 16. This is of little consequence with common mode transients, but the increased dissipation must be taken into account when there is a DC difference between the grounds of the transmitter and the receiver. It is important to note that Figure 16 gives the dissipation for one half the dual receiver. The total package dissipation will be twice the values given when both sides are operated under identical conditions.

TL/F/7188-17
FIGURE 16. Internal Power Dissipation as a Function of Common Mode Input Voltage
Figure 17 shows that the power supply current also changes with common mode input voltage due to the current drawn out of or fed into the supply through R9. The supply current reaches a maximum with negative input voltages and can actually reverse with large positive input voltages. The figure also shows that the supply current with the output switched into the low state is about 3 mA higher than with a high output.

TL/F/7188-18
FIGURE 17. Power Supply Current as a Function of Common Mode Input Voltage

The variation of the internal termination resistance with temperature is illustrated in Figure 18. Taking into account the initial tolerance as well as the change with temperature, the termination resistance is by no means precise. Fortunately, in most cases, the termination resistance can vary appreciably without greatly affecting the characteristics of the transmission line. If the resistor tolerance is a problem, however, an external resistor can be used in place of the one provided within the integrated circuit.

TL/F/7188-19
FIGURE 18. Variation of Termination Resistance with Temperature

DATA TRANSMISSION

The interconnection of the DS7830 line driver with the DS7820 line receiver is shown in Figure 19. With the exception of the transmission line, the design is rather straightforward. Connections on the input of the driver and the output or strobe of the receiver follow standard design rules for DTL or TTL integrated logic circuits. The load presented by the driver inputs is equal to 3 standard digital loads, while the receiver can drive a worst-case fanout of 2 . The load presented by the receiver strobe is equal to one standard load.
The purpose of $C 1$ on the receiver is to provide $D C$ isolation of the termination resistor for the transmission line. This capacitor can both increase the differential noise immunity, by reducing attenuation on the line, and reduce power dissipation in both the transmitter and receiver. In some applications, C1 can be replaced with a short between Pins 1 and 2, which connects the internal termination resistor of the DS7820 directly across the line. C2 may be included, if necessary, to control the response time of the receiver, making it immune to noise spikes that may be coupled differentially into the transmission lines.

The effect of termination mismatches on the transmission line is shown in Figure 20. The line was constructed of a twisted pair of No. 22 copper conductors with a characteristic impedance of approximately 170Ω. The line length was about 150 ns and it was driven directly from a DS7830 line driver. The data shows that termination resistances which are a factor of two off the nominal value do not cause significant reflections on the line. The lower termination resistors do, however, increase the attenuation.

TL/F/7188-20
FIGURE 20. Transmission Line Response with Various Termination Resistances
Figure 21 gives the line-transmission characteristics with various termination resistances when a DC isolation capacitor is used. The line is identical to that used in the previous example. It can be seen that the transient reponse is nearly the same as a DC terminated line. The attenuation, on the other hand, is considerably lower, being the same as an unterminated line. An added advantage of using the isolation capacitor is that the DC signal current is blocked from the termination resistor which reduces the average power drain of the driver and the power dissipation in both the driver and receiver.

TL/F/7188-22
FIGURE 21. Line Response for Various Termination Resistances with a DC Isolation Capacitor
The effect of different values of DC isolation capacitors is illustrated in Figure 22. This shows that the RC time constant of the termination resistor/isolation capacitor combination should be 2 to 3 times the line delay. As before, this data was taken for a 150 ns long line.

TL/F/7188-23
FIGURE 22. Response of Terminated Line with Different DC Isolation Capacitors

In Figure 23, the influence of a varying ground voltage between the transmitter and the receiver is shown. The difference in the characteristics arises because the source resistance of the driver is not constant under all conditions. The high output of the transmitter looks like an open circuit to voltages reflected from the receiving end of the transmission line which try to drive it higher than its normal DC state. This condition exists until the voltage at the transmitting end becomes high enough to forward bias the clamp diode on the 5 V supply. Much of the phenomena which does not follow simple transmission-line theory is caused by this. For example, with an unterminated line, the overshoot comes from the reflected signal charging the line capacitance to where the clamp diodes are forward biased. The overshoot then decays at a rate determined by the total line capacitance and the input resistance of the receiver.
When the ground on the receiver is 15 V more negative than the ground at the transmitting end, the decay with an unterminated line is faster, as shown in Figure 23b. This occurs because there is more current from the input resistor of the receiver to discharge the line capacitance. With a terminated line, however, the transmission characteristics are the same as for equal ground voltages because the terminating resistor keeps the line from getting charged.
Figure 23c gives the transmission characteristics when the receiver ground is 15 V more positive than the transmitter ground. When the line is not terminated, the differential voltage swing is increased because the high output of the driver will be pulled against the clamp diodes by the common mode input current of the receiver. With a DC isolation capacitor, the differential swing will reach this same value with a time constant determined by the isolation capacitor and the input resistance of the receiver. With a DC coupled termination, the characteristics are unchanged because the
differential load current is large by comparison to the common mode current so that the output transistors of the driver are always conducting.
The low output of the driver can also be pulled below ground to where the lower clamp diode conducts, giving effects which are similar to those described for the high output. However, a current of about 9 mA is required to do this, so it does not happen under normal operating conditions.
To summarize, the best termination is an RC combination with a time constant approximately equal to 3 times the transmission-line delay. Even though its value is not precisely determined, the internal termination resistor of the integrated circuit can be used because the line characteristics are not greatly affected by the termination resistor.
The only place that an RC termination can cause problems is when the data transmission rate approaches the line delay and the attenuation down the line (terminated) is greater than 3 dB . This would correspond to more than 1000 ft . of twisted-pair cable with No. 22 copper conductors. Under these conditions, the noise margin can disappear with low-duty-cycle signals. If this is the case, it is best to operate the twisted-pair line without a termination to minimize transmission losses. Reflections should not be a problem as they will be absorbed by the line losses.

CONCLUSION

A method of transmitting digital information in high-noise environments has been described. The technique is a much more attractive solution than high-noise-immunity logic as it has lower power consumption, provides more noise rejection, operates from standard 5V supplies, and is fully compatible with almost all integrated logic circuits. An additional advantage is that the circuits can be fabricated with integrated circuit processes used for standard logic circuits.

APPENDIX A

LINE RECEIVER

Design Analysis

The purpose of this appendix is to derive mathematical expressions describing the operation of the line receiver. It will be shown that the performance of the circuit is not greatly affected by the absolute value of the components within the integrated circuit or by the supply voltage. Instead, it depends mostly on how well the various parts match.
The analysis will assume that all the resistors are well matched in ratio and that the transistors are likewise matched, since this is easily accomplished over a broad temperature range with monolithic construction. However, the effects of component mismatching will be discussed where important. Further, large transistor current gains will be assumed, but it will be pointed out later that this is valid for current gains greater than about 10.
A schematic diagram of the DS7820 line receiver is shown in Figure A-1. Referring to this circuit, the collector current of the input transistor is given by

$$
\begin{align*}
I_{C 1}= & \frac{V^{+}-V_{B E 1}-V_{B E 3}-V_{B E 4}}{R 9 / / R 10+R 11+R 3 / / R 8} \\
& -\frac{\frac{R 3}{R 4+2 R 6+R 3} V_{B E 1}-\frac{R 3 / / R 11}{R 8+R 3 / / R 1} V_{I N}}{R 9 / / R 10+R 11+R 3 / / R 8} \\
& +\frac{\left(V_{I N}-V^{+}\right) \frac{R 10 / / R 11}{R 9+R 10 / / R 11}}{R 9 / / R 10+R 11+R 3 / / R 8} \tag{A.1}
\end{align*}
$$

where V_{iN} is the common mode input voltage and $\mathrm{R}_{\mathrm{a}} / / \mathrm{R}_{\mathrm{b}}$ denotes the parallel connection of the two resistors. In Equation (A.1), R8 $=$ R9, R3 $=$ R10, R10 < R11, R9 $>$ R10, R3 $<$ R11, R8 $>$ R3 and

$$
\frac{R 3}{R 4+2 R 6+R 3}<3
$$

so it can be reduced to

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}^{+}-3 \mathrm{~V}_{\mathrm{BE}}-\frac{\mathrm{R} 10}{\mathrm{R} 9} v^{+}}{\mathrm{R} 10+\mathrm{R} 11+\mathrm{R} 3} \tag{A.2}
\end{equation*}
$$

which shows that the collector current of Q1 is not affected by the common mode voltage.
The output voltage on the collector of Q 2 is

$$
\begin{equation*}
V_{C 2}=V^{+}-I_{C 2} R 12 \tag{A.3}
\end{equation*}
$$

For zero differential input voltage, the collector currents of Q1 and Q2 will be equal so Equation (A.3) becomes

$$
\begin{equation*}
v_{C 2}=v^{+}-\frac{R 12\left(v^{+}-3 V_{B E}-\frac{R 10}{R 9} v^{+}\right)}{R 10+R 11+R 3} \tag{A.4}
\end{equation*}
$$

It is desired that this voltage be $3 \mathrm{~V}_{\mathrm{BE}}$ so that the output stage is just on the verge of switching with zero input. Forcing this condition and solving for R12 yields

$$
\begin{equation*}
R 12=(R 10+R 11+R 3) \frac{V^{+}-3 V_{B E}}{V^{+}-3 V_{B E}-\frac{R 10}{R 9} V^{+}} \tag{A.5}
\end{equation*}
$$

This shows that the optimum value of R12 is dependent on supply voltage. For a 5 V supply it has a value of $4.7 \mathrm{k} \Omega$. Substituting this and the other component values into (A.4),

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C} 2}=2.83 \mathrm{~V}_{\mathrm{BE}}+0.081 \mathrm{~V}^{+} \tag{A.6}
\end{equation*}
$$

FIGURE A-1. Schematic Diagram of One Half of the DS7820 Line Receiver
which shows that the voltage on the collector of Q 2 will vary by about 80 mV for a 1 V change in supply voltage.
The next step in the analysis is to obtain an expression for the voltage gain of the input stage.
An equivalent circuit of the input stage is given in Figure A-2. Noting that $\mathrm{R} 6=\mathrm{R} 7=\mathrm{R} 8$ and $\mathrm{R} 2 \cong 0.1$ ($\mathrm{R} 6+\mathrm{R} 7 / / \mathrm{R} 8$), the change in the emitter current of Q1 for a change in input voltage is

$$
\begin{equation*}
\Delta l_{\mathrm{E} 2}=\frac{0.9 R 2}{R 1\left(0.9 R 2+R_{\mathrm{E} 2}\right)} \Delta \mathrm{V}_{\mathrm{IN}} \tag{A.7}
\end{equation*}
$$

Hence, the change in output voltage will be

$$
\begin{align*}
\Delta \mathrm{V}_{\mathrm{OUT}} & =\alpha \mathrm{I}_{\mathrm{E} 2} \mathrm{R} 12 \\
& =\frac{0.9 \alpha \mathrm{R} 2 \mathrm{R} 12}{\mathrm{R} 1\left(0.9 \mathrm{R} 2+\mathrm{R}_{\mathrm{E} 2}\right.} \Delta \mathrm{V}_{\mathrm{IN}} \tag{A.8}
\end{align*}
$$

Since $\alpha \cong 1$, the voltage gain is

$$
\begin{equation*}
A_{V 1}=\frac{0.9 R 2 R 12}{R 1\left(0.9 R 2+R_{E 2}\right)} \tag{A.9}
\end{equation*}
$$

The emitter resistance of Q2 is given by
where

$$
\begin{equation*}
\mathrm{R}_{\mathrm{E} 2}=\frac{\mathrm{kT}}{\mathrm{ql} \mathrm{l}_{\mathrm{C} 2}} \tag{A.10}
\end{equation*}
$$

so

$$
\begin{equation*}
I_{C 2}=\frac{v^{+}-3 V_{B E}}{R 12} \tag{A.11}
\end{equation*}
$$

$$
\begin{equation*}
R_{E 2}=\frac{k T R 12}{q\left(V^{+}-3 V_{B E}\right)} \tag{A.12}
\end{equation*}
$$

Therefore, at $25^{\circ} \mathrm{C}$ where $\mathrm{V}_{\mathrm{VE}}=670 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=$ 26 mV , the computed value for gain is 0.745 . The gain is not greatly affected by temperature as the gain at $-55^{\circ} \mathrm{C}$ where $\mathrm{V}_{\mathrm{BE}}=810 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=18 \mathrm{mV}$ is 0.774 , and the gain at $125^{\circ} \mathrm{C}$ where $\mathrm{V}_{\mathrm{BE}}=480 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=34 \mathrm{mV}$ is 0.730 .
With a voltage gain of 0.75 , the results of Equation (A.6) show that the input referred threshold voltage will change by 0.11 V for a 1 V change in supply voltage. With the standard ± 10-percent supplies used for logic circuits, this means that the threshold voltage will change by less than $\pm 60 \mathrm{mV}$.
Finally, the threshold error due to finite gain in the output stage can be considered. The collector current of Q7 from the bleeder resistor R14, is large by comparison to the base current of Q8, if Q8 has a reasonable current gain. Hence, the collector current of Q7 does not change appreciably when the output switches from a logic one to a logic zero. This is even more true for Q6, an emitter follower which drives Q7. Therefore, it is safe to presume that Q6 does not
load the output of the first-stage amplifier, because of the compounded current gain of the three transistors, and that Q8 is driven from a low resistance source.
It follows that the gain of the output stage can be determined from the change in the emitter-base voltage of Q8 required to swing the output from a logic one state to a logic zero state. The expression

$$
\begin{equation*}
\Delta V_{B E}=\frac{k T}{q} \log _{e} \frac{l_{\mathrm{C} 1}}{l_{\mathrm{C} 2}} \tag{A.13}
\end{equation*}
$$

describes the change in emitter-base voltage required to vary the collector current from one value, $\mathrm{I}_{\mathrm{C} 1}$, to a second, $I_{\mathrm{C} 2}$. With the output of the receiver in the low state, the collector current of Q8 is

$$
\begin{align*}
\mathrm{l}_{\mathrm{OL}} & =\frac{\mathrm{V}^{+}-V_{\mathrm{OL}}-V_{\mathrm{BE9}}-v_{\mathrm{BE} 10}}{R 17} \\
& +\frac{V_{\mathrm{BE9}}}{\mathrm{R} 15}-\frac{V_{\mathrm{BE}}}{\mathrm{R} 14}+\frac{V_{\mathrm{BE7}}}{\mathrm{R} 13}+\mathrm{I}_{\mathrm{SINK}} \tag{A.14}
\end{align*}
$$

where $V_{O L}$ is the low state output voltage and $I_{\text {SINK }}$ is the current load from the logic that the receiver is driving. Noting that R13 $=2$ R14 and figuring that all the emitter-base voltages are the same, this becomes

$$
\begin{gather*}
\mathrm{I}_{\mathrm{OL}}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{OL}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 17}+\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 15} \\
-\frac{\mathrm{V}_{\mathrm{BE}}}{2 \mathrm{R} 14}+\mathrm{I}_{\mathrm{SINK}} \tag{A.15}
\end{gather*}
$$

Similarly, with the output in the high state, the collector current of Q8 is

$$
\begin{align*}
\mathrm{l}_{\mathrm{OH}} & =\frac{\mathrm{V}^{+}-V_{\mathrm{OH}}-V_{\mathrm{BE9}}-V_{\mathrm{BE} 10}}{R 17} \\
& +\frac{V_{\mathrm{BE9}}}{R 15}-\frac{V_{\mathrm{BEB}}}{R 14} \\
& +\frac{V_{\mathrm{BE7}}}{R 13}-I_{\text {SOURCE }} \tag{A.16}
\end{align*}
$$

where $V_{O H}$ is the high-level output voltage and ISOURCE is the current needed to supply the input leakage of the digital circuits loading the comparator.
With the same conditions used in arriving at (A.15), this becomes

$$
\begin{align*}
& \mathrm{I}_{\mathrm{OH}}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{OH}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 17}+\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 15} \\
& \tag{A.17}\\
& -\frac{\mathrm{V}_{\mathrm{BE}}}{2 \mathrm{R} 14}-\mathrm{I}_{\text {SOURCE }}
\end{align*}
$$

FIGURE A-2. Equivalent Circuit Used to Calculate Input Stage Gain

From (A.13) the change in the emitter-base voltage of Q8 in going from the high output level to the low output level is

$$
\begin{equation*}
\Delta V_{B E}=\frac{k T}{q} \log _{\mathrm{e}} \frac{\mathrm{IOL}}{\mathrm{IOH}} \tag{A.18}
\end{equation*}
$$

providing that $Q 8$ is not quite in saturation, although it may be on the verge of saturation.
The change of input threshold voltage is then

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{TH}}=\frac{\mathrm{kT}}{\mathrm{q} \mathrm{~A}_{\mathrm{v} 1}} \log _{\mathrm{e}} \frac{\mathrm{I}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OH}}} \tag{A.19}
\end{equation*}
$$

where $A_{v 1}$ is the input stage gain. With a worst case fanout of 2 , where $\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=40 \mu \mathrm{~A}$ and $\mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$, the calculated change in threshold is 37 mV at $25^{\circ} \mathrm{C}, 24 \mathrm{mV}$ at $-55^{\circ} \mathrm{C}$ and 52 mV at $125^{\circ} \mathrm{C}$.
The measured values of overall gain differ by about a factor of two from the calculated gain. This is not too surprising because a number of assumptions were made which introduce small errors, and all these errors lower the gain. It is also not too important because the gain is high enough where another factor of two reduction would not cause the circuit to stop working.
The main contributors to this discrepancy are the non-ideal behavior of the emitter-base voltage of Q8 due to current crowding under the emitter and the variation in the emitter base voltage of Q7 and Q8 with changes in collector-emitter voltage (h_{RE}).
Although these parameters can vary considerably with different manufacturing methods, they are relatively fixed for a given process. The $\Delta V_{B E}$ errors introduced by these quanti-
ties, if known, can be added directly into Equation (A.18) to give a more accurate gain expression.
The most stringent matching requirement in the receiver is the matching of the input stage divider resistors: R1 with R8 and R2 with R3. As little as 1% mismatch in one of these pairs can cause a threshold shift of 150 mV at the extremes of the $\pm 15 \mathrm{~V}$ common mode range. Because of this; it is necessary to make the resistors absolutely identical and locate them close together. In addition, since R1 and R8 do dissipate a reasonable amount of power, they have to be located to minimize the thermal gradient between them. To do this, R9 was located between R1 and R8 so that it would heat both of these resistors equally. There are not serious heating problems with R2 and R3; however, because of their low resistance value, it was necessary even to match the lengths of the aluminum interconnects, as the resistance of the aluminum is high enough to cause intolerable mismatches. Of secondary importance is the matching of Q1 and Q2 and the matching of ratios between R11 and R12. A 1 mV difference in the emitter-base voltages of Q1 and Q2 causes a 30 mV input offset voltage as does a 1% mismatch in the ratio of R11 to R12.
The circuit is indeed insensitive to transistor current gains as long as they are above 10. The collector currents of Q4 and Q6 are made equal so that their base currents load the collectors of Q1 and Q2 equally. Hence, the input threshold voltage is affected only by how well the current gains match. Low current gain in the output transistor, Q8, can cause a reduction in gain. But even with a current gain of 10, the error produced in the input threshold voltage is less than 50 mV .

Transmission Line Characteristics

INTRODUCTION

Digital systems generally require the transmission of digital signals to and from other elements of the system. The component wavelengths of the digital signals will usually be shorter than the electrical length of the cable used to connect the subsystems together and, therefore, the cables should be treated as a transmissions line. In addition, the digital signal is usually exposed to hostile electrical noise sources which will require more noise immunity than required in the individual subsystems environment.
The requirements for transmission line techniques and noise immunity are recognized by the designers of subsystems and systems, but the solutions used vary considerably. Two widely used example methods of the solution are shown in Figure 1. The two methods illustrated use unbalanced and balanced circuit techniques. This application note will delineate the characteristics of digital signals in transmission lines and characteristics of the line that effect the quality, and will compare the unbalanced and balanced circuits performance in digital systems.

TL/F/8826-1
FIGURE 1

NOISE

The cables used to transmit digital signals external to a subsystem and in route between the subsystem, are exposed to external electromagnetic noise caused by switching transients from actuating devices of neighboring control systems. Also external to a specific subsystem, another subsystem may have a ground problem which will induce noise on the system, as indicated in Figure 2.
The signals in adjacent wires inside a cable may induce electromagnetic noise on other wires in the cable. The induced electromagnetic noise is worse when a line terminated at one end of the cable is near to a driver at the same end, as shown in Figure 3. Some noise may be induced from relay circuits which have very large transient voltage swings compared to the digital signals in the same cable. Another source of induced noise is current in the common ground wire or wires in the cable.

induced noise along cable route
ground problems in associated equipment
TL/F/8826-2
FIGURE 2. External Noise Sources

TL/F/8826-3
FIGURE 3. Internal Noise Sources

DISTORTION

The objective is the transmission and recovery of digital intelligence between subsystems, and to this end, the characteristics of the data recovered must resemble the data transmitted. In Figure 4 there is a difference in the pulse width of the data and the timing signal transmitted, and the corresponding signal received. In addition there is a further difference in the signal when the data is "AND"ed with the timing signal. The distortion of the signal occurred in the transmission line and in the line driver and receiver.

FIGURE 4. Effect of Distortion

A primary cause of distortion is the effect the transmission line has on the rise time of the transmitted data. Figure 5 shows what happens to a voltage step from the driver as it travels down the line. The rise time of the signal increases as the signal travels down the line. This effect will tend to affect the timing of the recovered signal.

TL/F/8826-5
FIGURE 5. Signal Response at Receiver

TL/F/8826-6
FIGURE 6. Signal Rise Time
The rise time in a transmission line is not an exponential function but a complementary error function. The high frequency components of the step input are attenuated and delayed more than the low frequency components. This attenuation is inversely proportional to the frequency. Notice in Figure 6 particularly that the signal takes much longer to reach its final DC value. This effect is more significant for fast risetimes.
The Duty Cycle of the transmitted signal also causes distortion. The effect is related to the signal rise time as shown in Figure 7. The signal doesn't reach one logic level before the signal changes to another level. If the signal has a $1 / 2(50 \%)$ Duty Cycle and the threshold of the receiver is halfway between the logic levels, the distortion is small. But if the Duty Cycle is $1 / 8$ as shown in the second case the signal is considerably distorted. In some cases, the signal may not reach the receiver threshold at all.

TL/F/8826-7
FIGURE 7. Signal Distortion Due to Duty Cycle

In the previous example, it was assumed that the threshold of the receiver was halfway between the ONE and ZERO logic levels. If the receiver threshold isn't halfway the receiver will contribute to the distortion of the recovered signal. As shown in Figure 8, the pulse time is lengthened or shortened, depending on the polarity of the signal at the receiver. This is due to the offset of the receiver threshold.

TL/F/8826-8
FIGURE 8. Slicing Level Distortion

UNBALANCED METHOD

Another source of distortion is caused by the IR losses in the wire. Figure 9 shows the IR losses that occur in a thousand feet of no. 22 AWG wire. Notice in this example that the losses reduce the signal below the threshold of the receiver in the unbalanced method. Also that part of the IR drop in the ground wire is common to other circuits-this ground signal will appear as a source of noise to the other unbalanced line receivers in the system.

FIGURE 9. Unbalanced Method
Transmission lines don't necessarily have to be perfectly terminated at both ends, (as will be shown later) but the termination used in the unbalanced method will cause additional distortion. Figure 10 shows the signal on the transmission line at the driver and at the receiver. In this case the receiver was terminated in 120Ω, but the characteristic impedance of the line is much less. Notice that the wave forms have significant steps due to the incorrect termination of the line. The signal is subject to misinterpretation by the line receiver during the period of this signal transient because of the distortion caused by Duty Cycle and attenuation. In addition, the noise margin of the signal is reduced.

TL/F/8826-10
FIGURE 10. LM75451, DM7400 Line Voltage Waveforms
The signal waveforms on the transmission line can be estimated before hand by a reflection diagram. Figure 11 shows the reflection diagram of the rise time wave forms. The voltage versus current plot on left then is used to predict the transient rise time of the signal shown on the right. The initial condition on the transmission line is an IR drop across the line termination. The first transient on the line traverses from this initial point to zero current. The path it follows corresponds to the characteristic impedance of the line. The second transient on the diagram is at the line termination. As shown, the signal reflects back and forth until it reaches its final DC value.
Figure 12 shows the reflection diagram of the fall time. Again the signal reflects back and forth between the line termination until it reaches its final DC value. In both the rise and fall time diagrams, there are transient voltage and current signals that subtract from the particular signal and add to the system noise.

FIGURE 11. Line Reflection Diagram of Rise Time

TL/F/8826-12
FIGURE 12. LIne Reflection Dlagram of Fall Time

BALANCED METHOD

In the balanced method shown in Figure 13, the transient voltages and currents on the line are equal and opposite and cancel each others noise. Also unlike the unbalanced
method, they generate very little ground noise. As a result, the balanced circuit doesn't contribute to the noise pollution of its environment.

the ground loop current is much less than signal current
TL/F/8826-13
FIGURE 13. Cross Talk of Signals
The circuit used for a line receiver in the balanced method is a differential amplifier. Figure 14 shows a noise transient induced equally on lines A and line B from line C. Because the signals on line A and B are equal, the signals are ignored by the differential line receiver.
Likewise for the same reason, the differential signals on lines A and B from the driver will not induce transients on line C. Thus, the balanced method doesn't generate noise and also isn't susceptible to noise. On the other hand the unbalanced method is more sensitive to noise and also generates more noise.

FIGURE 14. Cross Talk of Signals
The characteristic impedance of the unbalanced transmission line is less than the impedance of the balanced transmission line. In the unbalanced method there is more capacitance and less inductance than in the balanced method. In the balanced method the Reactance to adjacent wires is almost cancelled (see Figure 15). As a result a transmission line may have a 60Ω unbalanced impedance and a 90Ω balanced impedance. This means that the unbalanced
method, which is more susceptible to IR drop, must use a smaller value termination, which will further increase the IR drop in the line.

FIGURE 15. Z_{O} Unbalanced $<Z_{O}$ Balanced
The impedance measurement of an unbalanced and balanced line must be made differently. The balanced impedance must be measured with a balanced signal. If there is any unbalance in the signal on the balanced line, there will be an unbalance reflection at the terminator. Therefore, the lines should also be terminated for unbalanced signals. Figure 16 shows the perfect termination configuration of a balanced transmission line. This termination method is primarily required for accurate impedance measurements.

TL/F/8826-16
FIGURE 16. Impedance Measurement

MEASURED PERFORMANCE

The unbalanced method circuit used in this application note up to this point is the unbalanced circuit shown in Figure 1. The termination of its transmission line was greater than the characteristic impedance of the unbalanced line and the
circuit had considerable threshold offset. The measured performance of the unbalanced circuit wasn't comparable to the balanced method. Therefore, for the following comparison of unbalanced and balanced circuits, an improved termination shown in Figure 17 will be used. This circuit terminates the line in 60Ω and minimized the receiver threshold offset.

TL/F/8826-17
FIGURE 17. Improved Unbalanced Method
A plot of the Absolute Maximum Data Rate versus cable type is shown in Figure 18. The graph shows the different performances of the DM7820A line receiver and the DM7830 line driver circuits with a worse case $1 / 8$ Duty Cycle in no. 22 AWG stranded wire cables. In a single twisted pair cable there is less reactance than in a cable having nine twisted pairs and in turn this cable has less reactance than shielded pairs. The line length is reduced in proportion to the increased line attenuation which is proportional to the line reactance. The plot shows that the reactance and attenuation has a significant effect on the cable length. Absolute Maximum Data Rate is defined as the Data Rate at which the output of the line receiver is starting to be degraded. The roll off of the performance above 20 mega baud is due to the circuit switching response limitation.

TL/F/8826-18
FIGURE 18. Data Rate vs Cable Type

FIGURE 19. Data Rate vs Duty Cycle

FIGURE 20. Data Rate vs Line Termination

TL/F/8826-19
FIGURE 21. Data Rate vs Distortion of LM75452, DM7400

Figure 19 shows the reduction in Data Rate caused by Duty Cycle. It can be observed that the Absolute Maximum Duty Rate of $1 / 8$ Duty Cycle is less than $1 / 2$ Duty Cycle. The following performance curves will use $1 / 8$ Duty Cycle since it is the worst case.

Absolute Maximum Duty Rate versus the Line Termination Resistance for two different lengths of cable is shown in Figure 20. It can be seen from the figure that the termination doesn't have to be perfect in the case of balanced circuits. It is better to have a termination resistor to minimize the extra transient signal reflecting between the ends of the line. The reason the Data Rate increases with increased Termination Resistance is that there is less IR drop in the cable.
The graphs in Figure 21 show the Data Rate versus the Line Length for various percentages of timing distortion using the unbalanced LM75452 and DM7400 circuits shown in Figure 17. The definition of Timing Distortion is the percentage difference in the pulse width of the data sent versus the data received.

TL/F/8826-20
FIGURE 22. Data Rate vs Distortion of DM7820A, DM7830
Data Rate versus the Line Length for various percentage of timing distortion using the balanced DM7820A and DM7830 circuit is shown in Figure 22. The distortion of this method is improved over the unbalanced method, as was previously theorized.
The Absolute Maximum Data Rate versus Line Lengths shown in the previous two figures didn't include any induced signal noise. Figure 23 shows the test configuration of the unbalanced circuits which was used to measure near end cross talk noise. In this configuration there are eight line drivers and one receiver at one end of the cable. The performance of the receiver measured in the presence of the driver noise is shown in Figure 24.
Figure 24 shows the Absolute Maximum Duty Rate of the unbalanced method versus line length and versus the number of line drivers corresponding to the test configuration delineated in Figure 23. In the noise measurement set-up there was a ground return for each signal wire. If there is only one ground return in the cable the performance is worse. The graph shows that the effective line length is
drastically reduced as additional Near End Drivers are added. When this performance is compounded by timing distortion the performance is further reduced.

TL/F/8826-21
FIGURE 23. Signal Cross Talk Experiment Using DM75452, DM7400

TL/F/8826-22
FIGURE 24. Data Rate vs Signal Cross Talk of LM75452, DM7400
Figure 25 shows the test configuration of the balanced circuit used to generate worst case Near End cross talk noise similar to the unbalance performance shown in the previous figure. Unlike the unbalanced case, there was no measurable degradation of the circuits Data Rate or distortion.

FIGURE 25. Signal Cross Talk Experiment Using DS7830, DS7820A

CONCLUSION

National has a full line of both Balanced and Unbalanced Line Drivers and Receivers. Both circuit types work well
when used within their limitation. This application note shows that the balanced method is preferable for long lines in noisy electrical environments. On the other hand the unbalanced circuit works perfectly well with shorter lines and reduced data rates.

DEFINITION OF BAUD RATE

The data in this note was plotted versus Baud Rate. The minimum unit interval reflected the worse case conditions and also normalized the diagrams so that the diagrams were independent of duty cycle. If the duty cycle is 50% then the Baud Rate is twice the Bit Rate.

REFERENCES

IC's for Digital Data Transmission, Widlar and Kubinec, National Semiconductor Application Note AN-22.
RADC TR73-309, Experimental Analysis of the Transmission of Digital Signals over Twisted Pair Cable, Hendrickson and Evanowski, Digital Communication Section Communications and Navigation Division, Rome Air Development Center, Griffis Air Force Base, New York.
Fast Pulse Techniques, Thad Dreher, E-H Research Laboratories, Inc., The Electronic Engineer, Aug. 1969.
Transient Analysis of Coaxial Cables, Considering Skin Effects, Wigingtom and Nahmaj, Proceedings of the IRE, Feb. 1957.

Relection and Crosstalk in Logic, Circuit Interconnection, John De Falco, Honeywell, Inc., IEEE Spectrum, July 1970.

Transmission Line Drivers and Receivers for EIA Standards RS-422 and RS-423

With the advent of the microprocessor, logic designs have become both sophisticated and modular in concept. Frequently the modules making up the system are very closely coupled on a single printed circuit board or cardfile. In a majority of these cases a standard bus transceiver will be adequate. However because of the distributed intelligence ability of the microprocessor, it is becoming common practice for the peripheral circuits to be physically separated from the host processor with data communications being handled over cables (e.g. plant environmental control or security system). And often these cables are measured in hundreds or thousands of feet as opposed to inches on a backplane. At this point the component wavelengths of the digital signals may become shorter than the electrical length of the cable and consequently must be treated as transmission lines. Further, these signals are exposed to electrical noise sources which may require greater noise immunity than the single chassis system.
It is the object of this application note to underscore the more important design requirements for balanced and unbalanced transmission lines, and to show that National's DS1691 driver and DS78LS120 receiver meet or exceed all of those requirements.

THE REQUIREMENTS

The requirements for transmission lines and noise immunity have been adequately recognized by National Semiconduc-

National Semiconductor Application Note 214 John Abbott

tor's application note AN-108 and EIA standards RS-422 (balanced) and RS-423 (unbalanced). A summary review of these notes will show that the controlling factors in a voltage digital interface are:

1) The cable length
2) The modulation rate
3) The characteristic of the interconnection cable
4) The rise time of the signal

RS-422 and RS-423 contain several useful guidelines relative to the choice of balanced circuits versus unbalanced circuits. Figures $1 a$ and $1 b$ are the digital interface for balanced (1a) and unbalanced (1b) circuits.
Even though the unbalanced interface circuit is intended for use at lower modulation rates than the balanced circuit, its use is not recommended where the following conditions exist:

1) The interconnecting cable is exposed to noise sources which may cause a voltage sufficient to indicate a change of binary state at the load.
2) It is necessary to minimize interference with other signals, such as data versus clock.
3) The interconnecting cable is too long electrically for unbalanced operation (Figure 2).

FIGURE 1b. RS-423 Unbalanced Digital Interface Circuit

CABLE LENGTH

While there is no maximum cable length specified，guide－ lines are given with respect to conservative operating dis－ tances as a function of modulation rate．Figure 2 is a com－ posite of the guidelines provided by RS－422 and RS－423 for data modulation versus cable length．The data is for 24 AWG twisted pair cable terminated for worst case（due to IR drop）in a 100Ω load，with rise and fall times equal to or less than one half unit interval at the applied modulation rate．
The maximum cable length between driver and load is a function of the baud rate．But it is influenced by：
1）A maximum common noise range of ± 7 volts
A）The amount of common－mode noise
Difference of driver and receiver ground potential plus driver offset voltage and coupled peak random noise．
B）Ground potential differences between driver and load．
C）Cable balance
Differential noise caused by imbalance between the signal conductor and the common return（ground）
2）Cable termination
At rates above 200 kilobaud or where the rise time is 4 times the one way propagation delay time of the cable （RS－422 Sec 7．1．2）
3）Tolerable signal distortion

TL／F／5854－3

FIGURE 2．Data Modulation Rate vs Cable Length

MODULATION RATE

Section 3 of RS－422 and RS－423 states that the unbalanced voltage interface will normally be utilized on data，timing or control circuits where the modulation rate on these circuits is below 100 kilobauds，and balanced voltage digital inter－ face on circuits up to 10 megabauds．The voltage digital
interface devices meeting the electrical characteristics of this standard need not meet the entire modulation range specified．They may be designed to operate over narrower ranges to more economically satisfy specific applications， particularly at the lower modulation rates．
As pointed out in AN－108，the duty cycle of the transmitted signal contributes to the distortion．The effect is the result of rise time．Due to delay and attenuation caused by the cable， it is possible due to $A C$ averaging of the signal，to be unable to reach one binary level before it is changed to another．If the duty cycle is $1 / 2(50 \%)$ and the receiver threshold is midway between logic levels，the distortion is small．Howev－ er if the duty cycle were $1 / 8(12.5 \%)$ the signal would be considerably distorted．

CHARACTERISTICS

Driver Unbalanced（RS－423）

The unbalanced driver characteristics as specified by RS－423 Sec 4.1 are as follows：
1）A driver circuit should be a low impedance（ 50Ω or less） unbalanced voltage source that will produce a voltage applied to the interconnecting cable in the range of 4 V to 6 V ．
2）With a test load of 450Ω connected between the driver output terminal and the driver circuit ground，the magni－ tude of the voltage（VT）measured between the driver output and the driver circuit ground shall not be less than 90% of the magnitude for either binary state．
3）During transitions of the driver output between alternating binary states，the signal measured across a 450Ω test load connected between the driver output and circuit ground should be such that the voltage monotonically changes between 0.1 and 0.9 of $\mathrm{V}_{\text {SS }}$ ．Thereafter，the sig－ nal shall not vary more than 10% of $V_{S S}$ from the steady state value，until the next binary transition occurs，and at no time shall the instantaneous magnitude of VT and $\overline{\mathrm{VT}}$ exceed 6 V ，nor be less than $4 \mathrm{~V} . \mathrm{V}_{S S}$ is defined as the voltage difference between the 2 steady state values of the driver output．

Driver Balanced（RS－422）

The balanced driver characteristics as specified by RS－422 Sec 4.1 are as follows：
1）A driver circuit should result in a low impedance（ 100Ω or less）balanced voltage source that will produce a differ－ ential voltage applied to the interconnecting cable in the range of 2 V to 6 V ．

FIGURE 4. Unbalanced Driver Output Signal Waveform
2) With a test load of 2 resistors, 50Ω each, connected in series between the driver output terminals, the magnitude of the differential voltage (VT) measured between the 2 output terminals shall not be less than either 2.0 V or 50% of the magnitude of V_{0}, whichever is greater. For the opposite binary state the polarity of VT shall be reversed $(\overline{\mathrm{VT}})$. The magnitude of the difference in the magnitude of VT and VT shall be less than 0.4 V . The magnitude of the driver offset voltage (VOS) measured between the center point of the test load and driver circuit ground shall not be greater than 3.0 V . The magnitude of the difference in the magnitude of V_{OS} for one binary state and $\overline{V_{O S}}$ for the opposing binary state shall be less than 0.4 V .
3) During transitions of the driver output between alternating binary states, the differential signal measured across a 100Ω test load connected between the driver output terminals shall be such that the voltage monotonically changes between 0.1 and 0.9 of $\mathrm{V}_{\text {SS }}$ within 0.1 of the unit interval or 20 ns , whichever is greater. Thereafter the signal voltage shall not vary more than 10% of $V_{S S}$ from the
steady state value, until the next binary transition occurs, and at no time shall the instantaneous magnitude of VT or $\overline{\mathrm{VT}}$ exceed 6 V , nor less than 2 V .

Interconnecting Cable

The characteristics of the interconnecting cable should result in a transmission line with a characteristic impedance in the general range of 100Ω to frequencies greater than 100 kHz , and a DC series loop resistance not exceeding 240Ω. The cable may be composed of twisted or untwisted pair (flat cable) possessing the characteristics specified in RS-422 Sec 4.3 as follows:

1) Conductor size of the 2 wires shall be 24 AWG or larger with wire resistance not to exceed 30Ω per 1000 feet per conductor.
2) Mutual pair capacitance between 1 wire in the pair to the other shall not exceed 20 pF per foot.
3) Stray capacitance between 1 wire in the pair with all other wires connected to ground, shall not exceed 40 pF per foot.

$t_{b}=$ Time duration of the unit interval at the applicable modulation rate．
$t_{t} \leq 0.1 t_{b}$ when $t_{b} \geq 200 \mathrm{~ns}$
$t_{r} \leq 20 \mathrm{~ns}$ when $\mathrm{t}_{\mathrm{b}}<200 \mathrm{~ns}$
$\mathrm{V}_{\mathrm{SS}}=$ Difference in steady state voltages
$V_{S S}=\left|V_{t}-V_{t}\right|$

FIGURE 5．Balanced Driver Output Signal Waveform

Recelver

The load characteristics are identical for both balanced（RS－ 422）and unbalanced（RS－423）circuits．Each consists of a receiver and optional termination resistance as shown in Figure 1．The electrical characteristics single receiver with－ out termination or optional fail－safe provisions are specified in RS－422／423 Sec 4.2 as follows：
1）Over an entire common－mode voltage range of -7 V to +7 V ，the receiver shall not require a differential input voltage of more than 200 mV to correctly assume the intended binary state．The common－mode voltage（ V_{CM} ） is defined as the algebraic mean of the 2 voltages ap－ pearing at the receiver input terminals with respect to the receiver circuit ground．Reversing the polarity of VT shall cause the receiver to assume the opposite binary state． This allows for operations where there are ground differ－ ences caused by IR drop and noise of up to $\pm 7 \mathrm{~V}$ ．
2）To maintain correct operation for differential input signal voltages ranging between 200 mV and 6 V in magnitude．
3）The maximum voltage present between either receiver input terminal and receiver circuit ground shall not ex－ ceed 10 V （ 3 V signal plus 7 V common－mode）in magni－ tude nor cause the receiver to operationally fail．Addition－ ally，the receiver shall tolerate a maximum differential sig－ nal of 12 V applied across its input terminals without being damaged．
4）The total load including up to 10 receivers shall not have a resistance greater than 90Ω for balanced，and 400Ω for unbalanced at its input points and shall not require a dif－ ferential input voltage of greater than 200 mV for all re－ ceivers to assume the correct binary state．
5）Fail－safe operation per RS－423 Sec 4．2．5 states that oth－ er standards and specifications using the electrical char－ acteristics of the unbalanced interface circuit may require that specific interchange leads be made fail－safe to cer－ tain fault conditions．Where fail－safe operation is required by such referencing standards and specifications，provi－

FIGURE 6．Recelver Input Sensitivlty Measurement
Note：Designers of terminating hardware should be aware that slow signal transitions with superimposed noise present may give rise to instabill－ ty or oscillations in the recelving device，and therefore appropriate techniques should be implemented to prevent such behavior．For ex－ ample，adequate hysteresis and response control may be incorporat－ ed into the receiver to prevent such conditions．
sions shall be incorporated in the load to provide a steady binary condition（either＂ 1 ＂or＂ 0 ＂）to protect against cer－ tain fault conditions（open or shorted cable）．
The designer should be aware that in circuits employing pull－up resistors，the resistors used become part of the termination．

SIGNAL RISE TIME

The signal rise time is a high frequency component which causes interference（near end cross－talk）to be coupled to adjacent channels in the interconnecting cable．The near－ end crosstalk is a function of both rise time and cable length，and in considering wave shaping，both should be considered．Since in the balanced voltage digital interface the output is complementary，there is practically no cross－ talk coupled and therefore wave shaping is limited to unbal－ anced circuits．
Per RS－423 Sec 4．1．6，the rise time of the signal should be controlled so that the signal has reached 90% of $V_{\text {SS }}$ be－ tween 10% and 30% of the unit interval at the maximum modulation rate．Below 1 kilobaud the time to reach 90% $V_{S S}$ shall be between $100 \mu \mathrm{~S}$ and $300 \mu \mathrm{~s}$ ．If a driver is to operate over a range of modulation rates and employ a fixed amount of wave shaping which meets the specification for the maximum modulation rate of the operating range，the wave shaping is considered adequate for all lesser modula－ tion rates．
However a major cause of distortion is the effect the trans－ mission line has on the rise time of the transmitted signal． Figure 7 shows the effect of line attenuation and delay to a voltage step as it progresses down the cable．The increase of the rise time with distance will have a considerable effect on the distortion at the receiver．Therefore in fixing the amount of wave shaping employed，caution should be taken not to use more than the minimum required．

FIGURE 7. Signal Rise Time on Transmission Line vs Line Length
DS1691A, DS78LS120

The Driver

The DS1691A/DS3691 are low power Schottky TTL line drivers designed to meet the above listed requirements of EIA standard RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. The DS1691/DS3691 employ a mode selection pin which allows the circuit to become either a pair of balanced drivers (Figure 8) or 4 independent unbalanced drivers (Figure 9). When configured for unbalanced operation (Figure 10) a rise time control pin allows the use of an external capacitor to control rise time for sup-
pression of near end cross-talk to adjacent channels in the interconnect cable. Figure 11 is the typical rise time vs external capacitor used for wave shaping.
The DS3691 configured for RS-422 is connected $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$, and contigured for RS-423 connected $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$. For applications outside RS-422 conditions and for greater cable lengths the DS1691/DS3691 may be connected with a $V_{C C}$ of 5 volts and $V_{E E}$ of -5 volts. This will create an output which is symmetrical about ground, similar to Mil Standard 188-114.
When configured as balanced drivers (Figure 8), each of the drivers is equipped with an independent TRI-STATE ${ }^{\circledR}$ control pin. By use of this pin it is possible to force the driver into its high impedance mode for applications using party line techniques.
If the common-mode voltage, between driver 1 and all other drivers in the circuit, is small then several line drivers (and receivers) may be incorporated into the system. However, if the common-mode voltage exceeds the TRI-STATE com-mon-mode range of any driver, then the signal will become attenuated by that driver to the extent the common-mode voltage exceeds its common-mode range (see Figure 12, top waveform).
It is important then to select a driver with a common-mode range equal to or larger than the common-mode voltage requirement of the system. In the case of RS-422 and RS423 the minimum common-mode range would be $\pm 7 \mathrm{~V}$. The DS1692/DS3692 driver is tested to a common-mode range of $\pm 10 \mathrm{~V}$ and will operate within the requirements of such a system (see Figure 12, bottom waveform).

FIGURE 8. DS3691 Connected for Balanced Mode Operation

TL／F／5854－13
FIGURE 9．DS3691 Connected for Unbalanced Mode Operation

FIGURE 10．Using an External Capacitor to Control Rise Time of DS3691

FIGURE 12. Comparison of Drivers without TRI-STATE Common-Mode Output Range (top waveforms) to DS3691 (bottom waveforms)

FIGURE 13. DS78LS120/DS88LS120 Dual Differential Line Recelver

DS78LS120／DS88LS120

The Receiver

The DS78LS120／DS88LS120 are high peformance，dual differential TTL compatible line receivers which meet or ex－ ceed the above listed requirements for both balanced and unbalanced voltage digital interface．
The line receiver will discriminate a ± 200 millivolt input sig－ nal over a full common－mode range of ± 10 volts and a ± 300 millivolt signal over a full common－mode range of ± 15 volts．
The DS78LS120／DS88LS120 include response control for applications where controlled rise and fall times and／or high
frequency noise rejection are desirable．Switching noise which may occur on the input signal can be eliminated by the 50 mV （referred to input）of hysteresis built into the out－ put gate（Figure 14）．The DS78LS120／DS88LS120 makes use of a response control pin for the addition of an external capacitor，which will not affect the line termination imped－ ance of the interconnect cable．Noise pulse width rejection versus the value of the response control capacitor is shown in Figure 15．The combination of the filter followed by hys－ teresis will optimize performance in a worst case noise envi－ ronment．The DS78C120／DS88C120 is identical in perform－ ance to the DS78LS120／DS88LS120，except it＇s compati－ ble with CMOS logic gates．

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the loss of signals in the transmission lines. And it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or short. To facilitate the detection of input opens or shorts, the DS78LS120/ DS88LS120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault condition exists.
The receiver input threshold is $\pm 200 \mathrm{mV}$ and an input signal greater than $\pm 200 \mathrm{mV}$ insures the receiver will be in a specific logic state. When the offset control input is connected to a $V_{C C}=5 \mathrm{~V}$, the input thresholds are offset from 200 mV to 700 mV , referred to the non-inverting input, or -200 mV to -700 mV , referred to the inverting input. Therefore, if
the input is open or short, the input will remain in a specific state (see Figure 16).
It is recommended that the receiver be terminated in 500Ω or less to insure it will detect an open circuit in the presence of noise.
For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to +5 V , offsets the receiver threshold 0.45 V . The output is forced to a logic zero state if the input is open or short.
For balanced operation with inputs short or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open fault condition. The "strobe" input will disable the A and B receivers and therefore may be used to "sample" the fail-safe detector (see Figure 17).

TL/F/5854-22

FIGURE 16. Fail-Safe Using the DS88LS120 Threshold Offset for Unbalanced Lines

FIGURE 17．Fail－Safe Using the DS88LS120 Threshold Offset for Balanced Lines

The balanced or differential scheme of data transmission is preferred for applica－ tions incorporating high data rates and long transmission lines in the presence of high common－mode noise．Induced signals appear as common－mode levels and are rejected by the differential line receiver．

FIGURE 18．EIA RS－422 Cable Length vs Data Rate Curve

[^14]

TL／F／5854－30

FIGURE 19．EIA RS－423 Cable Length vs Data Rate Curve

Summary of Electrical Characteristics of Some Well Known Digital Interface Standards

FOREWORD

Not the least of the problems associated with the design or use of data processing equipment is the problem of providing for or, actually interconnecting the differing types and models of equipment to form specific processing systems.
The magnitude of the problem becomes apparent when one realizes that every aspect of the electrical, mechanical and architectural format must be specified. The most common of the basic decisions confronting the engineer include:

- Type of logic (negative or positive)
- Threshold levels
- Noise immunity
- Form of transmission
- Balanced/unbalanced, terminated/unterminated
- Unidirectional/bidirectional, simplex/multiplexed
- Type of transmission line
- Connector type and pin out
- Bit or byte oriented
- Baud rate

If each make and/or model of equipment presented a unique interface at its I/O ports, "interface" engineering would become a major expenditure associated with the use of data processing equipment.
Fortunately, this is not the case as various interested or cognizant groups have analyzed specific recurring interface areas and recommended "official" standards around which common I/O ports could be structured. Also, the I/O specifications of some equipment with widespread popularity such as the IBM 360/370 computer and DEC minicomputer

National Semiconductor
Application Note 216
Don Tarver
have become "defacto" standards because of the desire to provide/use equipment which interconnect to them.
Compliance with either the "official" or "defacto" standards on the part of equipment manufacturers is voluntary. However, it is obvious that much can be gained and little lost by providing equipment that offers either the "official" or "defacto" standard I/O ports.
As can be imagined, the entire subject of interface in data processing systems is complicated and confusing, particularly to those not intimately involved in the day-to-day aspects of interface engineering or management. However, at the component level the questions simplify to knowing what standards apply and what circuits or components are available to meet the standards.
This application note summarizes the important electrical characteristics of the most commonly accepted interface standards and offers recommendations on how to use Na tional Semiconductor integrated circuits to meet those standards.

1.0 INTRODUCTION

The interface standards covered in this application note are listed in Table I. The body of the text expands upon the scope and application of each listed standard and summarizes important electrical parameters.
Table II summarizes the National Semiconductor IC's applicable to each standard.

TABLE I. Common LIne Driver/Recelver Interface Standards Summary

Interface Area	Application	Standard	Origin	Comments
Data Communications Equipment (DCE*) to Data Terminal Equipment (DTE)	U.S.A. Industrial	RS-232C RS-422 RS-423 RS-449 RS-485	EIA EIA EIA EIA EIA	Unbalanced, Short Lines Balanced, Long Lines Unbalanced, RS-232 Up-Grade System Standard Covering Use of RS-422, RS-423 Balanced, Long Line Multipoint
	International	CCITT Vol. VIII V. 24 CCITT No. 97 X. 26 CCITT No. 97 X. 27	International Telephone and Telegraph Consultative Committee	Similar to RS-232 Similar to RS-423 Similar to RS-422
	U.S.A. Military	MIL-STD-188C MIL-STD-188-114 MIL-STD-1397 (NTDS-Slow) MIL-STD-1397 (NTDS-Fast)	D.O.D. D.O.D. Navy Navy	Unbalanced, Short Lines Similar to RS-422, RS-423 42k bits/sec. 250k bits/sec
	U.S. Government, Non-Military	$\begin{aligned} & \text { FED-STD-1020 } \\ & \text { FED-STD-1030 } \end{aligned}$	$\begin{aligned} & \text { GSA } \\ & \text { GSA } \end{aligned}$	Identical to RS-423 Identical to RS-422

TABLE I. Common LIne Driver/Receiver Interface Standards Summary (Continued)

Interface Area	Application	Standard	Origin	Comments
Computer to Peripheral	IBM 360/370	System 360/370 Channel I/O DEC Unibus	IBM	DEC

- Changed to "Data Circuit-Terminating Equipment"

TABLE II. LIne Driver/Recelver Integrated CIrcult Selection Guide for Digital Interface Standards

Standard Designation	Part Number			
	Line Driver		Line Recelver	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
U.S. INDUSTRIAL STANDARDS				
RS-232C	$\begin{aligned} & \hline \text { DS1488 } \\ & \text { DS75150 } \end{aligned}$	Not Applicable Not Applicable	$\begin{aligned} & \text { DS1489 (A) } \\ & \text { DS75154 } \end{aligned}$	Not Applicable Not Applicable
RS-357	See RS-232C			
RS-366	See RS-232C			
RS-408	$\begin{aligned} & \text { DS75453 } \\ & \text { DS75454 } \end{aligned}$	$\begin{aligned} & \text { DS55454 } \\ & \text { DS55454 } \end{aligned}$	$\begin{aligned} & \text { DS7820A } \\ & \text { DS75115 } \end{aligned}$	$\begin{aligned} & \text { DS7820A } \\ & \text { DS55115 } \\ & \hline \end{aligned}$
RS-422	$\begin{aligned} & \hline \text { DS3691 } \\ & \text { DS26LS31C } \\ & \text { DS3487 } \end{aligned}$	DS1691A DS26LS31M DS3587	DS88LS120 DS26LS32C DS3486 DS26LS33C DS88C20 DS88C120	DS78LS120 DS26LS32M DS26LS33M DS78C20 DS78C120
RS-423	$\begin{aligned} & \text { DS3691 } \\ & \text { DS3692 } \end{aligned}$	$\begin{aligned} & \text { DS1691A } \\ & \text { DS1692 } \end{aligned}$	DS88LS120 DS88C20 DS88C120	$\begin{aligned} & \text { DS78LS120 } \\ & \text { DS78C20 } \\ & \text { DS78C120 } \end{aligned}$
RS-449	See RS-422, RS-4			
RS. 485 Transceivers	$\begin{aligned} & \text { DS3695 } \\ & \text { DS3696 } \\ & \text { DS3697 } \\ & \text { DS3698 } \\ & \text { DS75176A } \end{aligned}$	-	DS3695 DS3696 DS3697 DS3698 DS75176A	
IEEE 488	$\begin{aligned} & \text { DS3666 } \\ & \text { DS75160A } \\ & \text { DS75161A } \\ & \text { DS75162A } \end{aligned}$		$\begin{aligned} & \text { DS3666 } \\ & \text { DS75160A } \\ & \text { DS75161A } \\ & \text { DS75162A } \end{aligned}$	
CAMAC	See RS-232C, RS-422, RS-423 or IEEE 488			
IBM 360/370 I/O Port	DS75123	Not Applicable	DS75124	Not Applicable

2.2.1 EIA RS-232

dard, it provides for one-way/non-reversible, single ended (unbalanced) non terminated line, serial digital data transmission. Figure 1 shown below illustrates a typical applicaSummary

* Positive logic ($\pm 5 \mathrm{~V}$ min to $\pm 15 \mathrm{~V}$ max)
otection
* 50 feet recommended cable length
* 20k bits per second data rate

RS-232C is the oldest and most widely known DTE/DCE interface standard. Viewed by many as a complete stan-

FIGURE 1. EIA RS-232C Application

2.2.2 EIA RS-422, RS-423 and RS-485

In a move to upgrade system capabilities by using state-of-the-art devices and technology the EIA in 1975, introduced two new specifications covering RS-422 balanced and RS-423 unbalanced data transmission. Both of these standards offered major advantages over the popular RS-232C interface. Understanding the advantages of the balanced interface RS-422, the EIA introduced in 1983 the RS-485 Multipoint Systems standard that eliminates several limitations of RS-422.

2.2.2.1 RS-423

RS-423 closely resembles RS-232C in that, it too specifies a one-way/non-reversible, data transmission. Several key advantages of the standard include a 100 k Baud data rate at 30 feet and a balanced receiver offering an input voltage common mode (VCM) of $\pm 7 \mathrm{~V}$. As shown in Figure 2 the receiver input is referenced to the driver ground permitting ground differences between the driver and receiver. See Table IV for Specification Summary.
Important features are:

* Positive logic ($\pm 4 \mathrm{~V}$ min to $\pm 6 \mathrm{~V}$ max)
* Fault protected driver outputs
* Controlled Slew-rate reduces crosstalk and reflections
* 30 feet maximum cable length at 100 k Baud
* Differential receiver with $\pm 7 \mathrm{~V}$ VCM and $\pm 200 \mathrm{mV}$ sensitivity

2.2.2.2 RS-422

RS-422 provides for balanced data tranmission with unidi-rectional/non-reversible, terminated or non-terminated transmission lines. Several key advantages offered by this standard include the differential receiver defined in RS-423, a differential driver and data rates as high as 10M Baud at 40 feet. Figure 3 shows a typical interconnect application. See Table V for Specification Summary.

2.2.2.3 RS-485

RS-485 standards accommodates the requirements on a balanced transmission line used in party-line circuit configurations. This standard is similar to RS-422 and is considered to be an extension permitting multipoint applications where multiple drivers and receivers share the same line in data transmission.
Several key characteristics of the standard that differentiate it from RS-422 are; the expanded common mode range of both the driver and receiver, (VCM range +12 to -7 V), and characteristics that permit 32 drivers and receivers on the line. Figure 4 shows a typical party-line application. Note that the transmission line which is intended to be 120Ω twisted pair is terminated at both ends. See Table VI for Specifications Summary.

TL/F/5855-2

FIGURE 2. EIA RS-423 Application

TL/F/5855-3
FIGURE 3. EIA RS-422 Application
Note: The termination resistor is defined as optional by RS-422. However this termination resistor is highly recommended to reduce the possibility of line reflections caused by mis-matched impedance between the cable and the driver.

FIGURE 4. A Typical RS-485 Party-LIne Configuration

TL/F/5855-4

TABLE III. EIA RS-232C Specification Summary

Symbol	Parameter	Conditions	EIA RS-232C			Units
			Min	Typ	Max	
V_{OH}	Driver Output Voltage Open				25	V
V_{OL}	Circuit		-25			V
V_{OH}	Driver Output Voltage Loaded	$3 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 7 \mathrm{k} \Omega$	5		15	V
V_{OL}	Output		-15		-5	V
R_{0}	Driver Output Resistance Power Off	$-2 \mathrm{~V} \leq \mathrm{V}_{0} \leq 2 \mathrm{~V}$			300	Ω
los	Driver Output Short-Circuit Current Driver Output Slew Rate All Interchange Circuits Control Circuits Rate and Timing Circuits	\% of Unit Interval	$\begin{gathered} -500 \\ \\ 6 \\ 6 \\ 4 \\ \hline \end{gathered}$		$\begin{aligned} & 500 \\ & 30 \end{aligned}$	mA $\mathrm{V} / \mu \mathrm{s}$ V / ms V / ms \%
R_{IN}	Receiver Input Resistance Receiver Open Circuit Input Bias Voltage Receiver Input Threshold Output $=$ MARK Output $=$ SPACE	$3 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq 25 \mathrm{~V}$	$\begin{gathered} 3000 \\ -2 \\ -3 \end{gathered}$		$\begin{gathered} 7000 \\ 2 \end{gathered}$ 3	$\begin{aligned} & \Omega \\ & \vee \end{aligned}$

TABLE IV. EIA RS-423 Specification Summary

Symbol	Parameter	Conditions	EIA RS-423			Units
			Min	Typ	Max	
$\frac{V_{0}}{V_{0}}$	Driver Unloaded Output Voltage		$\begin{gathered} 4 \\ -4 \end{gathered}$		$\begin{gathered} 6 \\ -6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\frac{V_{T}}{V_{T}}$	Driver Loaded Output Voltage	$\mathrm{R}_{\mathrm{L}}=450 \Omega$	$\begin{gathered} \hline 3.6 \\ -3.6 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
R_{S}	Driver Output Resistance				50	Ω
los	Driver Output Short-Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			± 150	mA
	Driver-Output Rise and Fall Time	Baud Rate $\leq 1 \mathrm{k}$ Baud Baud Rate $\geq 1 \mathrm{k}$ Baud			$\begin{gathered} 300 \\ 30 \end{gathered}$	$\mu \mathrm{s}$ \% Unit Interval
lox	Driver Power OFF Current	$\mathrm{V}_{\mathrm{O}}= \pm 6 \mathrm{~V}$			± 100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Sensitivity	$\mathrm{V}_{\mathrm{CM}} \leq \pm 7 \mathrm{~V}$			± 200	mV
V_{CM}	Receiver Common-Mode Range				± 10	V
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance Receiver Common-Mode Input Offset		4000		± 3	$\begin{aligned} & \Omega \\ & \vee \end{aligned}$

TABLE V. EIA RS-422 Specification Summary

Symbol	Parameter	Conditions	EIA RS-422			Units
			Min	Typ	Max	
$\frac{V_{0}}{V_{0}}$	Driver Unloaded Output Voltage				$\begin{gathered} 6 \\ -6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\frac{V_{T}}{V_{T}}$	Driver Loaded Output Voltage	$\mathrm{R}_{\mathrm{T}}=100 \Omega$	$\begin{gathered} 2 \\ -2 \end{gathered}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {S }}$	Driver Output Resistance	Per Output			50	Ω
los	Driver Output Short-Circuit Current Driver Output Rise Time	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			$\begin{gathered} 150 \\ 10 \end{gathered}$	mA \% Unit Interval
lox	Driver Power OFF Current	$-0.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 6 \mathrm{~V}$			± 100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Sensitivity	$\mathrm{V}_{\mathrm{CM}}= \pm 7 \mathrm{~V}$			200	mV
$V_{C M}$	Receiver Common-Mode Voltage Receiver Input Offset		$\begin{gathered} -12 \\ \pm 3 \\ \hline \end{gathered}$		12	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance		4000			Ω

TL/F/5855-6
FIGURE 6. MIL-STD-188-114 (Balanced Applications)

2.4.2 MIL-STD-188-114 Balanced

This standard is similar to RS-422 with the exception that the driver offset voltage level is limited to $\pm 0.4 \mathrm{~V}$ vs $\pm 3 \mathrm{~V}$ allowed in RS-422.

2.4.3 MIL-STD-188-114 Unbalanced.

This standard is similar to RS-423 with the exception that loaded circuit driver output voltage at $R_{L}=450 \Omega$ must be 90% of the open circuit output voltage vs $\pm 2 \mathrm{~V}$ at $\mathrm{R}_{\mathrm{S}}=$ 100Ω for RS-422.

2.4.4 MIL-STD-1397 (Slow and Fast)

2.5 FED-STD-1020/1030

U.S. Government (non-military) standards FED-STD-1020 and 1030 are identical without exception to EIA RS-423 and RS-422, respectively.

3.0 COMPUTER TO PERIPHERAL INTERFACE STANDARDS

To date, the only standards dealing with the interface between processors and other equipment are the "defacto" standards in the form of specifications issued by IBM and DEC covering the models 360/370 I/O ports and the Unibus, respectively.

3.1 GA-22-6974-0

IBM specification GA-22-6974-0 covers the electrical characteristics, the format of information and the control sequences of the data transmitted between 360/370's and up to 10 I/O ports.
The interface is an unbalanced bus using 95Ω, terminated, coax cables. Devices connected to the bus should feature short-circuit protection, hysteresis in the receivers, and open-emitter drivers. Careful attention should be paid to line lengths and quality in order to limit cable noise to less than 400 mV .

TABLE VIII. MIL-STD-1397 Specification Summary

Symbol	Parameter	Conditions	Comparison Limits (MIL-STD)		Units
			$\begin{gathered} 1397 \\ \text { (Siow) } \end{gathered}$	$\begin{aligned} & 1397 \\ & \text { (Fast) } \end{aligned}$	
	Data Transmission Rate		42	250	k Bits/Sec
V_{OH} V_{OL}	Driver Output Voltage		$\begin{gathered} \pm 1.5 \\ -10 \text { to }-15.5 \end{gathered}$	$\begin{gathered} 0 \\ -3 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{lOL} \\ & \hline \end{aligned}$	Driver Output Current		$\begin{gathered} \geq-4 \\ 1 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
RS	Driver Power OFF Impedance		≥ 100		$\mathrm{k} \Omega$
$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	Receiver Input Voltage	Fail-Safe Open Circuit	$\begin{gathered} \leq 4.5 \\ \geq-7.5 \end{gathered}$	$\begin{aligned} & \leq-1.1 \\ & \geq-1.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

FIGURE 7. IBM 360/370 I/O Application

TABLE IX. IBM 360/370 Specification Summary

Symbol	Parameter	Conditions	IBM 360/370			Units
			Min	Typ	Max	
V_{OH} VOH V_{OH} V_{OL}	Driver Output Voltage	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=123 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=30 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=59.3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=-240 \mu \mathrm{~A} \end{aligned}$	3.11		$\begin{gathered} 7 \\ 5.85 \\ \\ 0.15 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Receiver Input Threshold Voltage		0.7		1.7	$\begin{aligned} & V \\ & v \end{aligned}$
I_{IH}	Receiver Input Current	$\begin{aligned} & V_{I N}=3.11 \mathrm{~V} \\ & V_{I N}=0.15 \mathrm{~V} \end{aligned}$	0.24		-0.42	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & V_{I N} \\ & V_{\mathbb{N}} \end{aligned}$	Receiver Input Voltage Range Power ON Power OFF		$\begin{aligned} & -0.15 \\ & -0.15 \end{aligned}$		$\begin{aligned} & 7 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & V_{\text {IN }} \\ & V_{\text {IN }} \end{aligned}$	Power ON Power OFF		$\begin{aligned} & -0.15 \\ & -0.15 \end{aligned}$		$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Receiver Input Impedance	$0.15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.9 \mathrm{~V}$	7400			Ω
IN	Receiver Input Current	$\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}$			240	$\mu \mathrm{A}$
Z_{0}	CABLE Impedance		83		101	Ω
R_{O}	CABLE Termination Line Length (Specified as Noise on Signal and Ground Lines)	$\mathrm{P}_{\mathrm{D}} \geq 390 \mathrm{~mW}$	90		$\begin{aligned} & 100 \\ & 400 \end{aligned}$	$\begin{gathered} \Omega \\ \mathrm{mV} \end{gathered}$

TL/F/5855-8
FIGURE 8. DEC Unibus Application

TABLE X. DEC Unlbus Specification Summary

Symbol	Parameter	Conditions	DEC Unibus			Units
			Min	Typ	Max	
$V_{\text {OL }}$ V_{0}	Driver Output Voltage	$\mathrm{I}_{\mathrm{OL}}=50 \mathrm{~mA}$ Absolute Maximum			$\begin{gathered} 0.7 \\ 7 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Receiver Input Voltage		1.7		1.3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	Receiver Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V} \text { Power OFF } \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

3.2 DEC UNIBUS

Another example of an unofficial industry standard is the interface to a number of DEC minicomputers. This interface, configured as a 120Ω double-terminated data bus is given the name Unibus. Devices connected to the bus should feature hysteresis in the receivers and open-collector driver outputs. Cable noise should be held to less than 600 mV .

4.0 INSTRUMENTATION TO COMPUTER INTERFACE STANDARDS

4.1 INTRODUCTION

The problem of linking instrumentation to processors to handle real-time test and measurement problems was largely a custom interface problem. Each combination of instruments demanded unique interfaces, thus inhibiting the wide spread usage of small processors to day-to-day test, measurement and control applications.
Two groups addressed the problem for specific environments. The results are:
a) IEEE 488 bus standard based upon proposals made by HP, and
b) The CAMAC system pioneered by the nuclear physics community.

4.2 IEEE 488

IEEE 488 covers the functional, mechanical and electrical interface between laboratory instrumentation (i.e., signal generators, DPM's, counters, etc.) and processors such as programmable calculators and minicomputers. Equipment with IEEE 488 I/O ports can be readily daisy chained in any combination of up to 15 equipments (including processor) spanning distances of up to 60 feet. 16 lines (3 handshake, 5 control and 8 data lines) are required.

4.3 CAMAC

The CAMAC system is the result of efforts by those in the nuclear physics community to standardize the interface between laboratory instruments and computers before the introduction of IEEE 488.
It allows either serial or parallel interconnection of instruments via a "crate" controller.
The electrical requirements of the interfaces are compatible with DTL and TTL logic levels.

5.0 MICROPROCESSOR SYSTEMS INTERFACE STANDARDS

5.1 Microprocessor Systems

Microprocessor systems are bus organized systems with two types of bus requirements:
a) Minimal system: for data transfer over short distances (usually on 1 PC board), and,
b) Expanded system: for data transfer to extend the memory or computational capabilities of the system.

5.2 MInImal Systems and Microbus

Microbus considers the interface between MOS/LSI microprocessors and interfacing devices in close physical proximity which communicate over 8 -bit parallel unified bus systems. It specifies both the functional and electrical characteristics of the interface and is modeled after the 8060, 8080 and 8090 families of microprocessors as shown in Figures 10,11 and 12.
The electrical characteristics of Microbus are shown in Table XII.

TABLE XI. IEEE 488 Specification Summary

Symbol	Parameter	Conditions	IEEE 488			Units
			Min	Typ	Max	
V_{OH} V_{OL}	Driver Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA} \end{aligned}$	2.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{IOH} \end{aligned}$	Driver Output Current TRI-STATE® Open Collector	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \pm 40 \\ & 250 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\begin{aligned} & V_{\mathrm{IH}} \\ & V_{\mathrm{IL}} \end{aligned}$	Receiver Input Voltage	0.4V Hysteresis Recommended	2.0		0.8	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{LL}} \end{aligned}$	Receiver Input Current	$\begin{aligned} & V_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & V_{\mathrm{IN}}=0.4 \mathrm{~V} \end{aligned}$		\because	$\begin{gathered} 40 \\ -1.6 \end{gathered}$	$\mu \mathrm{A}$ mA
	Receiver Clamp Current	$\mathrm{V}_{\text {IN }}=-1.5 \mathrm{~V}$			12	mA
$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1} \\ & \mathrm{R}_{\mathrm{L} 2} \\ & \hline \end{aligned}$	Termination Resistor	$\begin{aligned} & V_{C C}=5 V(\pm 5 \%) \\ & V=\text { Gnd } \end{aligned}$	$\begin{array}{r} 2850 \\ 5890 \\ \hline \end{array}$		$\begin{array}{r} 3150 \\ 6510 \\ \hline \end{array}$	

TL/F/5855-11
FIGURE 11.8080 System Model for the Basic Microbus Interface

5.3 Expanded Microprocessor System Interfaces

Since the outputs of most microprocessor devices are limited to a loading of one relative to a TTL load, expanded system will require buffers on both their address and data lines.
To date, no formal standards exist which govern this interface. However, "defacto" standards are emerging in the form of the specifications for "recommended devices" which are mentioned in the data sheets and application notes for the widely sourced microprocessor devices. Here, the answer to the question of how to provide a "standard" interface is simplified to that of proper usage of recommended devices.
Table XIII summarizes the important electrical characteristics of recommended bus drivers for expanded microprocessor systems.

TL/F/5855-12
FIGURE 12. 8900 System Model

6.0 OTHER INTERFACE STANDARDS

Some other commonly occurring interfaces which have become standardized are:
a) Interface between facsimile terminals and voice frequency communication terminals,
b) Interface between terminals and automatic calling equipment used for data communications, and
c) Interface between numerically controlled equipment and data terminals.

TABLE XIII. Recommended Specification of Bus Drivers for Expanded Microprocessor Systems

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}			2			V
$\mathrm{~V}_{\mathrm{IL}}$				0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Driver Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$		$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.5	V
l_{OS}	Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			-150	mA
C_{L}	Bus Drive Capability		300		pF	

6.1 EIA RS-357

RS-357 defines the electrical, functional and mechanical characteristics of the interface between analog facsimile equipment to be used for telephone data transmission and the data sets used for controlling/transmitting the data.
Figure 13 summarizes the functional and electrical characteristics of RS-357.
6.2 EIA RS-366

RS-366 defines the electrical, functional and mechanical characteristics of the interface between automatic calling equipment for data communications and data terminal equipment.
The electrical characteristics are encompassed by RS. 232 C.

FIGURE 13. Functional and Electrical Characteristics RS-357

6.3 EIA RS-408

RS-408 recommends the standardization of the 2 interfaces shown in Figure 14.
The electrical characteristics of NCE to DTE interface are, in summary, those of conventional TTL drivers (series 7400) with:

$$
\mathrm{V}_{\mathrm{OL}} \leq 0.4 \mathrm{~V} \text { at } \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}
$$

$\mathrm{V}_{\mathrm{OH}} \geq 2.4 \mathrm{~V}$ at $\mathrm{IOH}_{\mathrm{OH}} \leq-1.2 \mathrm{~mA}$, and
$\mathrm{C}_{\mathrm{L}} \leq 2000 \mathrm{pF}$.
Short circuit protection should be provided.

FIGURE 14. EIA RS-408 Interface Applications

Transceivers and Repeaters Meeting the EIA RS-485 Interface Standard

National Semiconductor

Application Note 409
Sivakumar Sivasothy

INTRODUCTION

The Electronics Industries Association (EIA), in 1983, approved a new balanced transmission standard called RS485. The EIA RS-485 standard addresses the problem of data transmission, where a balanced transmission line is used in a party-line configuration. It is similar in many respects to the popular EIA RS-422 standard; in fact RS-485 may be considered the outcome of expanding the scope of RS-422 to allow multipoint-multiple drivers and receivers sharing the same line-data transmission. The RS-485 standard, like the RS-422 standard, specifies only the electrical characteristics of the driver and the receiver to be used at the line interface; it does not specify or recommend any protocol. The protocol is left to the user.
The EIA RS-485 standard has found widespread acceptance and usage since its ratification. Users are now able to configure inexpensive local area networks and multi-drop communication links using twisted pair wire and the protocol of their choice. They also have the flexibility to match cable quality, signalling rate and distance to the specific application and thus obtain the best tradeoff between cost and performance. The acceptance of the RS-485 standard is also reflected by the fact that other standards refer to it when specifying multipoint data links. The ANSI (American National Standards Institute) standards IPI (Intelligent Peripheral Interface) and SCSI (Small Computer Systems Interface) have used the RS-485 standard as the basis for their voltage mode differential interface class. The IPI standard specifies the interface between disc drive controllers and host adapters and requires a data rate of 2.5 megabaud over a 50 meters NRZ data link. The SCSI standard speci-
fies the interface between personal computers, disc drives and printers at data rates up to a maximum of 4 megabaud over 25 meters.
It is not possible to use standard gate structures and meet the requirements of RS-485. The modifications necessary to comply with the DC requirements of the standard, tend to exact a heavy toll on speed and other AC characteristics like skew. However, it is possible to vastly improve the ac performance by employing special design techniques. The DS3695 family of chips made by National Semiconductor meets all the requirements of EIA RS-485, and still provides ac performance comparable with most existing RS-422 devices. The chip set consists of four devices; they are the DS3695/DS3696 transceivers and the DS3697/DS3698 repeaters. National's RS-485 devices incorporate several features in addition to those specified by the RS-485 standard. These features provide greater versatility, easier use and much superior performance. This article discusses the requirements of a multi-point system, and the way in which RS-485 addresses these requirements. It also explains the characteristics necessary and desirable in the multi-point drivers and receivers, so that these may provide high performance and comply with generally accepted precepts of data transmission practice.

WHY RS-485?

Until the introduction of the RS-485 standard, the RS-422 standard was the most widely accepted interface standard for balanced data transmission. The RS-422 drivers and re-

TL/F/8579-2
FIGURE 1b. A Typical RS-485 Party-Line Configuration
ceivers were intended for use in the configuration shown in Figure 1a. The driver is at one end of the line; the termination resistor (equal to 100Ω) and up to 10 receivers reside at the other end of the line. This approach works well in simplex (unidirectional) data transmission applications, but creates problems when data has to be transmitted back and forth between several pieces of equipment. If several Data Terminal Equipments (DTEs) have to communicate with one another over long distances using RS-422 links, two such balanced lines have to be established between each pair of DTEs. The hardware cost associated with such a solution would normally be unacceptable.
A party line is the most economical solution to the above problem. RS-422 hardware could conceivably be used to implement a party line if the driver is provided with TRI-STATE ${ }^{\circledR}$ capability, but such an implementation would be subjected to severe restrictions because of inadequacies in the electrical characteristics of the driver. The biggest problem is caused by ground voltage differences. The common mode voltage on a balanced line is established by the enabled driver. The common mode voltage at the receiver is the sum of the driver offset voltage and the ground voltage difference between the driver and the receiver. In simplex systems only the receiver need have a wide common mode range. Receiver designs that provide a wide common mode range are fairly straightforward. In a party-line network several hundred feet long, in which each piece of equipment is earthed at a local ac outlet, the ground voltage difference between two DTEs could be as much as a few volts. In such a case both the receiver and the driver must have a wide common mode range. Most RS-422 drivers are not designed to remain in the high impedance state over a wide enough common mode range, to make them immune to even small ground drops.
Classical line drivers are vulnerable to ground drops because of their output stage designs. A typical output stage is shown in Figure 2a. Two such stages driven by complementary input signals, may be used to provide the complementary outputs of a differential line driver. Transistors Q1 and Q4 form a Darlington pull up for the totem pole output stage; Q2 is the pull down transistor. The phase splitter Q3 switches current between the upper and lower transistors to obtain the desired output state. DSUB is the diode formed by the collector of Q2 and the grounded substrate of the integrated circuit. The output in Figure $2 a$ can be put into the high impedance state by pulling down the bases of transistors Q3 and Q4. Unfortunately, the high impedance state cannot be maintained if the output is pulled above the power supply voltage or below ground voltage. In party-line applications, where ground voltage differences of a few volts will be common, it is essential that the drivers be able to hold the high impedance state while their outputs are taken above $V_{C C}$ and below ground.

The output in Figure 2a can be taken high until the emitterbase junction of Q1 breaks down. Thereafter, the output will be clamped to a zener voltage plus a base-collector diode voltage above $V_{C C} ; V_{C C}$ could be zero if the device is powered off. If the output is taken below ground, it will cause the substrate diode, DSUB, associated with Q2 to turn on and clamp the output voltage at a diode drop below ground. If a disabled driver turns on and clamps the line, the signal put out by the active driver will get clipped and distorted. It is also possible for ground drops to cause dangerously large substrate currents to flow and damage the devices as illustrated in Figure $2 b$. Figure $2 b$ depicts two drivers A and B; it shows the pull down transistors (Q2A and Q2B) and their associated substrate diodes (DSUB-A and DSUB-B) for the two drivers A and B. Here driver A is $O N$ in the low output state; driver B is disabled, and therefore, should neither source nor sink current. The ground of driver A is 3 volts lower than that of driver B . Consequently, the substrate diode DSUB-B sees a forward bias voltage of about 2.7 V (the collector-emitter voltage of Q2A will be about 0.3 V), which causes hundreds of milliamperes of current to flow out of it.

FIGURE 2b. Two DCEs Separated by a Ground Drop

DRIVER A
ON HIGH

FIGURE 2c. Bus Contention

Another problem is line contention, i.e. two drivers being 'ON' simultaneously. Even if the protocol does not allow two drivers to be on at the same time, such a contingency could arise as a result of a fault condition. A line contention situation, where two drivers are on at the same time, is illustrated in Figure 2c. Here, drivers A and B are 'ON' simultaneously; driver A is trying to force a high level on the line whereas driver B is trying to force a low level. Transistors Q1A and Q2B are 'ON' while transistors Q2A and Q1B are 'OFF'. As a result, a large current is sourced by Q1A and sunk by Q2B; the magnitude of this current is limited only by the parasitic resistances of the two devices and the line. The problem is compounded by any ground drop that may exist between the two contending drivers. This large contention current can cause damage to one or both of the contending drivers. Most RS-422 drivers are not designed to handle line contention.
A multi-point driver should also be capable of providing more drive than a RS-422 driver. The RS-422 driver is only required to drive one 100Ω termination resistor, and ten receivers each with an input impedance no smaller than $4 \mathrm{k} \Omega$. A party-line, however, would have to be terminated at both ends; it should also be able to drive more devices to be useful and economical.
Because of the above limitations, it is quite impractical to use RS-22 hardware to interconnect systems on a partyline. Clearly, a new standard had to be generated to meet
the more stringent hardware requirements of muti-point data links.

THE RS-485 STANDARD

The RS-485 standard specifies the electrical characteristics of drivers and receivers that could be used to implement a balanced milti-point transmission line (party-line). A data exchange network using these devices will operate properly in the presence of reasonable ground drops, withstand line contention situations and carry 32 or more drivers and receivers on the line. The intended transmission medium is a 120Ω twisted pair line terminated at both ends in its characteristic impedance. The drivers and receivers can be distributed between the termination resistors as shown in Figure $1 b$.
The effects of ground voltage differences are mitigated by expanding the common mode voltage $\left(V_{C M}\right)$ range of the driver and the receiver to $-7 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+12 \mathrm{~V}$. A driver forced into the high impedance state, should be able to have its output taken to any voltage in the common mode range and still remain in the high impedance state, whether powered on or powered off. The receiver should respond properly to a 200 mV differential signal super-imposed on any common mode voltage in this range. With a 5 V power supply, the common mode voltage range specified by RS485 has a 7 V spread from either supply terminal. The system will therefore perform properly in the presence of ground drops and longitudinally coupled extraneous noise, provided that the sum of these is less than 7 volts.

The output drive capability of the driver and the input impedance of the receiver are increased to accommodate two termination resistors and several devices (drivers, receivers and transceivers) on the line. The RS-485 standard defines a 'unit load' so that the load presented to the line by each device can be expressed in terms of unit loads (a $12 \mathrm{k} \Omega$ resistor, with one end tied to any voltage between ground and $\mathrm{V}_{\mathrm{Cc}} / 2$, will satisfy the requirements of a unit load). It was anticipated that most manufacturers would design their drivers and receivers such that the combined load of one receiver and one disabled driver would be less than one unit load. This would require the RS-485 receiver to have three times the input resistance of a RS-422 receiver. The required receiver sensitivity is $\pm 200 \mathrm{mV}$-the same as for RS422. The driver is required to provide at least 1.5 V across its outputs when tied to a terminated line populated with 32 transceivers. Although this output voltage is smaller than the 2.0 V specified for RS-422, a careful design of the driver, with special regard to ac performance, can allow the user to operate a multi-point network at data rates and distances comparable to RS-422.
RS-485 has additional specifications to guarantee device safety in the event of line contention or short circuits. An enabled driver whose output is directly shorted to any voltage in the common mode range, is required to limit its current output to $\pm 250 \mathrm{~mA}$. Even with such a current limit, it is possible for a device to dissipate as much as 3 Watts (if the device draws 250 mA while shorted to 12 volts). Power dissipation of such a magnitude will damage most ICs; therefore, the standard requires that manufacturers include some additional safeguard(s) to protect the devices in such situations.
The $\pm 250 \mathrm{~mA}$ current limit also serves another purpose. If a contending driver is abruptly turned off, a voltage transient, of magnitude $\mathrm{I}_{\mathrm{C}} \mathrm{Z} / 2$, is reflected along the line as the line discharges its stored energy (I_{c} is the contention current and Z is the characteristic impedance of the line). This voltage transient must be small enough to avoid breaking down the output transistors of the drivers on the line. If the contention current is limited to 250 mA , the magnitude of this voltage transient, on a 120Ω line, is limited to 15 V , a value that is a good compromise between transistor breakdown voltage and speed.

AC PERFORMANCE

To achieve reliable transmission at high data rates over long distances, the driver should have optimum ac characteristics. The response should be fast and the output transients sharp and symmetrical.
(1) Propagation Delay: The propagation delay through the driver should be small compared to the bit interval so that the data stream does not encounter a bottle-neck at the driver. If the propagation delay is comparable to the bit interval, the driver will not have time to reach the full voltage swing it is capable of. In lines a few hundred feet long, the line delay would impose greater limits on data throughput than the driver propagation delay. However, a fast driver would be desirable for short haul networks such as those in automobile vehicles or disc drives; in the latter case high data throughput would be essential. Driver propagation delays less than 20 ns would be very good for a wide range of applications.
(2) Transition Time: For distortion free data transmission, the signal at the farthest receiver must have rise and fall times much smaller than the bit interval. Signal distortion results from driver imbalance, receiver threshold offset
and skew. RS-485 limits the DC imbalance in the driver output to $\pm 0.2 \mathrm{~V}$ i.e., 13% of worst-case signal amplitude. Usually, the greatest distortion is caused by offset in the receiver threshold. In a long line in which a 1.5 V driver output signal amplitude is attenuated by the loop resistance to about 0.4 V , a 200 mV offset in the receiver threshold can cause severe pulse width distortion if the rise time is comparable to the bit interval. For lines longer than about five hundred feet, the rise time would be dominated by the line and not the driver. In short-haul networks, the transient response of the driver can significantly affect signal distortion; a faster transient creates less distortion and hence permits a smaller bit interval and a higher baud rate. A rise time less than 20 ns will be a good target spec., for it will permit a baud rate of 10 Meg over 50^{\prime} of standard twisted pair wire with less than 5\% distortion.
The driver should provide the above risetime and propagation delay numbers while driving a reasonable capacitance, say 100 pF from each output, in addition to the maximum resistive load of 54Ω. A properly terminated transmission line appears purely resistive to the driver. Most manufacturers take this into account and specify their driver delays with 15 pF loads. However, if any disabled transceivers are situated close to the driver (such that the round trip delay is less than the rise time), the input capacitances of these transceivers will appear as lumped circuit loads to the driver. The driver output rise time will then be affected by all other devices in such close proximity. In the case of high speed short-haul networks, where rise time and propagation delay are critical, several devices could be clustered in a short span. In such an instance, specifying propagation delays with 15 pF loads is quite meaningless. A 100 pF capacitive load is more reasonable; even if we allocate a generous 20 pF per transceiver, it allows up to six transceivers to be clustered together in an eight foot span (the eight foot span is the approximate round trip distance travelled by the wavefront in one rise time of 20 ns).
(3) Skew: The ideal differential driver will have the following waveform characteristics: the propagation delay times from the input to the high and low output states will be equal; the rise and fall times of the complementary outputs will be equal and the output waveforms will be perfectly symmetrical.
If the propagation delay to the low output state is different from the propagation delay to the high output state, there is said to be 'propagation skew' between output states. If a square wave input is fed into a driver with such skew; the output will be distorted in that it will no longer have a 50% duty cycle.
If the mid-points of the waveforms from the two complementary driver outputs are not identical, there is said to be SKEW between the complementary outputs. This type of skew is undesirable because it impairs the noise immunity of the system and increases the amount of electromagnetic emission.
Figure 3a shows the differential signal from a driver that has no skew. Figure $3 b$ shows the case when there is 80 ns of skew. The first signal makes its transition uniformly and passes rapidly through OV . The second waveform flattens out for tens of nanoseconds near OV. Unfortunately, this flat region occurs near the receiver threshold. A common mode noise spike hitting the inputs of a slightly unbalanced receiver would create a small differential noise pulse at the receiver inputs. If this noise

TL/F/8579-6
FIGURE 3a. Transients with no Skew

Individual Output Signals
Differential Signal

FIGURE 3b. Skewed Transients
pulse occurs when the driver transition is flat near $O V$, there will be a glitch at the receiver output. A glitch could also occur if a line reflection reaches the receiver input when the driver transition is temporarily flat. Skew is insidious in that it can cause erroneous outputs to occur at random. It can also increase the amount of electromagnetic interference (EMI) generated by the transmission system. If the complementary outputs are perfectly symmetrical, and the twisted pair medium is perfectly balanced, the radiation from one wire is cancelled exactly by the radiation from the other wire. If there is skew between the outputs, there will be net radiation proportional to the skew.
(4) Balance: The impedance seen looking into each of the complementary inputs of the transceiver should be identical. If there is any imbalance at these nodes, the common mode rejection will be degraded. Any DC imbalance, due to a mismatch in the receiver input resistances, will manifest itself as an offset in the receiver threshold, and can be easily detected during testing. AC imbalance is more difficult to detect, but it can hurt noise immunity at high frequencies. A sharp common mode noise spike striking an unbalanced receiver will cause a spurious differential signal. If the receiver is fast enough (as it is bound to be in most cases), it will respond to this noise signal. It is best to keep the imbalance below 4 pF . This number is reasonable to achieve; in addition, the combined imbalance of 32 transceivers will still provide sufficient immunity from h.f. interference.

DESIGN CONSIDERATIONS

The driver poses the greatest design challenge. Its speed, drive and common mode voltage requirements are best met using a bipolar process. National Semiconductor uses an established Schottky process with a 5μ deep epitaxial layer. NPN transistors are fabricated with LVCEO values greater than 15 V to satisfy the breakdown requirements. It will be
seen that lateral PNP transistors are crucial to the driver. The 5μ EPI process provides adequate lateral PNP transistors, and NPN transistors of sufficient speed.
Figure 4 shows the driver output circuit used by National. It is a standard totem pole output circuit modified to provide a common mode range that exceeds the supply limits. If the driver output is to be taken to -7 V while the driver is in TRISTATE, precautions must be taken to prevent the substrate diodes from turning on. This is achieved in the lower output transistor Q1 by including Schottky diode S1 in series. The only way to isolate the upper half of the totem pole from the substrate is by using a lateral PNP transistor. In Figure 4, a lateral PNP transistor is used to realize current source IG. Lateral PNP transistors are, however, notoriously slow; the trick therefore is not to use the PNP transistor in the switching path. In the circuit shown, the PNP transistor is a current source which feeds NPN transistor Q2 and therefore, does not participate in the switching function. This allows National's driver to have 15 ns propagation delays and 10 ns rise times. A Darlington stage cannot be used instead of Q2 because it would reduce the voltage swing below the 1.5 V specification. Consequently, the rise time is bound to be significantly larger than the fall time, resulting in a large skew. National's driver uses a patented circuit with a plurality of discharge paths, to slow down the fall time so that it matches the rise time, and to keep the two transition times on track over temperature. This keeps the skew small (2 ns typical at $25^{\circ} \mathrm{C}$) over the entire operating temperature range. The symmetry of the complementary outputs of National's DS3695 driver can be seen from the photographs in Figure 5. The lateral PNP transistor which has been kept out of the switching path has nevertheless got to be turned on or off when the driver is respectively enabled or disabled. Another patented circuit is used to hasten turn-on and turn-off of the lateral PNP transistors so that these switch in 25 ns instead of in 100 ns . Consequently, the driver can be enabled or disabled in 35 ns .

FIGURE 4

FIGURE 5

The devices must be protected in fault conditions and contention situations. One way of doing this is by sensing current and voltage to determine power, and then if necessary, turning the device off or limiting its output current to prevent damage. This method has the advantage of fast detection of a fault and rapid recovery from one. However, too many contingencies have to be accounted for; the corresponding circuitry will increase the die size and the cost beyond what would be acceptable in many low cost applications. National preferred the simpler and inherently more reliable thermal shutdown protection scheme. Here, the device is disabled when the die temperature exceeds a certain value. This method is somewhat slower (order of milliseconds), but fast enough to protect the part. A fault would usually result from a breakdown in network protocol or from a hardware failure. In either case it is immaterial how long the device takes to shut down or recover as long as it stays undamaged. It would be useful to be notified of the occurrence of a fault in any particular channel, so that remedial action may be tak-
en. Two of National's devices, the DS3696 receiver and the DS3698 repeater, provide a fault reporting pin which can flag the processor or drive an alarm LED in the event of a fault. National also decided to make its devices as single transceivers housed in 8 pin mini DIP packages. If thermal shutdown protection is employed, it is pointless to have dual or quad versions because a faulty channel will shut down a good one. Since most RS-485 applications will employ single channel serial data, the 8 pin package will give optimum flexibility, size and economy.
The receiver has 70 mV (typical) hysteresis for improved noise immunity. Hysteresis can contribute some distortion, especially in short lines, if the rise and fall times are different. However, this is more than adequately compensated for by the noise immunity it provides with long lines where rise times are slow. The matched rise and fall times with National's drivers assure low pulse width distortion even at short distances and high data rates.

Low Power RS-232C Driver and Receiver in CMOS

This article sets out to describe the new innovative low power CMOS RS-232C driver and receiver IC's introduced by National Semiconductor with particular reference to the EIA RS-232C standard. Comparison will also be made with existing bipolar driver and receiver circuits.
The DS14C88 and DS14C89A are monolithic MOS circuits utilizing a standard CMOS process. Important features are a wide operating voltage range ($4.5 \mathrm{~V}-12.6 \mathrm{~V}$), together with ESD and latch up protection and proven reliability.
The Electronics Industries Association released Data Terminal Equipment (DTE) to Data Communications Equipment (DCE) interface standards to cover the electrical, mechanical and functional interface between/among terminals (i.e. teletypewriters, CRT's etc.) and communications equipment (i.e. modems, cryptographic sets etc.).

The EIA RS-232C is the oldest and most widely known DTE/DCE standard. Its European version is CCITT V. 24 specification. It provides for one-way/non-reversible, single ended (unbalanced) non-terminated line, serial digital data transmission.
The DS14C88 quad CMOS driver and its companion circuit, the DS14C89A quad CMOS receiver, combine to provide an efficient low power system for RS-232C or CCITT V. 24 applications.

FIGURE 1. EIA RS-232C Application

National Semiconductor
Application Note 438
Gordon W. Campbell

THE DRIVER

The DS14C88 quad CMOS line driver is a pin replacement of the existing bipolar circuit DS1488/MC1488.
The DS14C88 is fabricated in CMOS technology and therefore has an inherent advantage over the bipolar DS1488/ MC1488 line driver in terms of current consumption. Under worst case static conditions, the DS14C88 is a miser when it comes to current consumption. In comparison with the DS1488/MC1488 line driver, a current consumption reduction to $500 \mu \mathrm{~A}$ max versus 25 mA can be achieved.
The RS-232C specification states that the required driver output voltage is defined as being between +5 V and +15 V and is positive for a logic " 0 " (+5 V to +15 V) and negative for a logic " 1 " (-5 V to -15 V). These voltage levels are defined when driver is loaded ($3000 \Omega<\mathrm{R}_{\mathrm{L}}<7000 \Omega$). The DS14C88 meets this voltage requirement by converting HC or TTL/LSTTL levels into RS-232C levels through one stage of inversion.
In applications where strict compliance to RS-232C voltage levels is not essential, a $\pm 5 \mathrm{~V}$ power supply to the driver may be used. The output voltage of the DS14C88 will be high enough to be recognized by either the 1489 or 14C89A receiver as valid data.
The RS-232C specification further states that, during transitions, the driver output slew rate must not exceed $30 \mathrm{~V} / \mu \mathrm{s}$. The inherent slew rate of the equivalent bipolar circuit DS14C88/MC1488 is much too fast and requires the connection of one external capacitor ($330-400 \mathrm{pF}$) to each driver output in order to limit the slew rate to the specified value. However, the DS14C88 does not require any external components. The DS14C88 has a novel feature in that unique internal slew rate control circuitry has been incorporated which eliminates the need for external capacitors; to be precise, a saving of four capacitors per package. The 14C88 minimizes RFI and transition noise spikes by typically setting the slew rate at $5 \mathrm{~V}-6 \mathrm{~V} / \mu \mathrm{s}$. This will enable optimum noise performance, but will restrict data rates to below 40k baud.
The DS14C88 can also withstand an accidental short circuit from a conductor in the interconnecting cable to any one of four outputs in a package without sustaining damage to itself or its associated equipment.

TL/F/8681-2
FIGURE 2. DS14C88 Line Driver Block Diagram

THE RECEIVER

The DS14C89A quad CMOS line receiver is a pin replacement of the existing bipolar circuit DS1489/MC1489/ DS1489A/MC1489A.
The DS14C89A is fabricated in CMOS technology giving it an inherent advantage over the bipolar DS1489/MC1489/ DS1489A/MC1489A circuits in terms of power consumption. Under worst case static conditions a power consumption reduction of 97% ($900 \mu \mathrm{~A}$ against 26 mA) is achieved. The RS-232C specification states that the required receiver input impedance as being between 3000Ω and 7000Ω for input signals between 3.0 V and 25.0 V . Furthermore, the receiver open circuit bias voltage must not be greater than +2 V .
The DS14C89A meets these requirements and is able to level shift voltages in the range of -30 V to +30 V to HC or TTL/LSTTL logic levels through one stage of inversion. A voltage of between -3.0 V and -25.0 V is detected as a logic " 1 " and a voltage of between +3.0 V and +25.0 V is detected as logic " 0 ".
The RS-232C specification states that the receiver should interpret an open circuit or power off condition (source impedance of driver must be 300Ω or more to ground) as an OFF condition. In order to meet this requirement the input threshold of the DS14C89A is positive with respect to ground resulting in an open circuit or "power off" condition being interpreted as a logic " 0 " at the input.
Although the DS14C89A is pin replacement for the bipolar circuits DS1489/MC1489/DS1489A/MC1489A, its performance characteristics are modeled on the DS1489A/ MC1489A.
The response control input on each of the bipolar circuits facilitates the rejection of noise signals by means of an external capacitor between each response control pin and ground.
When communicating between components of a data processing system in a hostile environment, spurious data such as ground shifts and noise signals may be introduced and it can become difficult to distinguish between a valid data signal and those signals introduced by the environment.
The DS14C89A eliminates the need for external response control capacitors and overcomes the effects of spurious data by means of unique internal noise filtering circuitry. Figure 4 shows typical turn on threshold versus response control capacitance for existing bipolar devices. Note the curve for the DS14C89A CMOS device. The DS14C89A will not recognize any input signal whose pulse width is less than $1 \mu \mathrm{~s}$, regardless of the voltage level of that input signal. Noise rejection in the bipolar parts depends on the voltage level of the noise transients. Therefore, in hostile environments the CMOS parts offer improved noise rejection properties. The DS14C89A has an internal comparator which provides input hysteresis for noise rejection. The

($1 / 4$ circuit shown)
TL/F/8681-3
FIGURE 3. DS14C89A Line Receiver Block Diagram

DS14C89A has a typical turn-on voltage of 2.0 V and a typical turn-off voltage of 1.0 V resulting in 1.0 V of hysteresis.

TL/F/8681-4
FIGURE 4

TYPICAL APPLICATIONS

Obviously the major advantage of these CMOS devices is that with the large reduction of operating current, it is now possible to implement the "FULL" RS-232 interface in remote or portable equipment. Imagine that previously a designer, using a CMOS $\mu \mathrm{P}$, RAM, ROM, and peripherals, could implement a complete system that consumes between 200 and 300 mW , but just adding the RS-232 interface (one driver, and one receiver) would add another 450 to 700 mW to the total system power consumption. This would severely shorten the battery life. The CMOS driver and receiver would only add about 40-50 mW.
In addition, the CMOS devices provide better noise rejection in harsh EMI environments, thus better data integrity. At the same time the internal slew rate limiting of the driver reduces the output transition time along the cable interface, hence reducing RFI emission, and easing the ability for portable (or non-portable) systems to meet FCC noise emission regulations. Also, since space is a premium in remote and portable systems, by integrating the function of the external capacitors on-chip (eliminating 8 capacitors), and designing these into S.O. packages, significant reduction in board space can be achieved.
For example, Figure 5 shows a small CMOS system utilizing a CMOS NSC800 microprocessor, NSC858 CMOS UART, CMOS RAM/ROM, and a clock timer. This system runs off a 9 V battery so a $\mathrm{DC}-\mathrm{DC}$ converter is used to generate -9 V for the RS-232 interface. In this design a standard DC-DC convert IC is used to generate a -9 V supply from the single +9 V battery.
As a second example, a "cheater" RS-232 interface is sometimes implemented. This interface is compatible with the current RS-232 driver/receiver products, but rather than using a $\pm(9-15) \mathrm{V}$ supply, a $\pm 5 \mathrm{~V}$ supply is used. The drivers will not meet the RS-232 output voltage level specifications, but will correctly drive either the CMOS or bipolar receivers. The DC-DC converter circuit in Figure 5 may be used to implement this. While for non-portable applications this can be done with the old bipolar 1488/89s, the DC-DC
converter is somewhat simpler with the CMOS parts due to the much reduced current consumption.
The RS-232 driver/receivers are also useful in non-power sensitive multi-user computers. Imagine a 16 terminal cluster controller for a multi-user computer system, Figure 6. This controller would require 16 drivers and 16 receivers
with a total power of 8 watts when using the bipolar devices. The CMOS devices need only 400 mW .
Also proper noise rejection for receivers and slew rate limiting for the driver would require 128 capacitors for the bipolar parts, but they are unnecessary in the CMOS implementation.

TL/F/8681-5
FIGURE 5. Typical portable system application using CMOS $\mu \mathrm{P}$, ROM, RAM, and UART. RS-232 interface is shown using $\mathbf{7 6 6 0}$ supply inverter and CMOS Receiver/Driver.

FIGURE 6. A multi-terminal application showing a comparison of Blpolar vs CMOS solutions.

High Speed, Low Skew RS-422 Drivers and Receivers Solve Critical System Timing Problems

There are three major controlling factors in balanced voltage digital interface:

1. The cable length
2. The modulation rate
3. The characteristics of the Driver and Receiver

CABLE LENGTH

There is no maximum cable length specified in the RS-422 standard. Guidelines are given with respect to conservative operating distances as a function of modulation rate. Figure 2 below is the guideline provided by RS-422 for data modulation rate versus cable length.

TL/F/8837-2
FIGURE 2. Data Modulation Rate vs Cable Length
The curve is based on empirical data using a 24 AWG, copper conductor, twisted pair cable terminated for worst case in a 100Ω load, with rise and fall time equal or less than one half unit interval at the applied modulation rate.
Even though the maximum cable length between driver and load is a function of data signaling rate, it is also influenced by the tolerable signal distortion, the amount of longitudinally coupled noise and ground potential difference introduced between the generator and load circuit grounds.

Legend:
$R_{t}=$ Optional cable transmission resistance/receiver input impedance.
$V_{G R O U N D}=$ Ground potential difference
$A, B=$ Driver interface
$A^{\prime}, B^{\prime}=$ Load Interface
$C=$ Driver circuit ground
$\mathrm{C}^{\prime}=$ Load circuit ground

FIGURE 1. RS-422 Balanced Digital Interface Circult

MODULATION RATE

The balanced (or differential) voltage mode interface will normally be utilized on data, timing or control circuits operating at up to 10 Mbauds. The voltage digital interface devices meeting the electrical characteristics of this standard need not meet the entire modulation range specified. They may be designed to operate over narrower ranges to more economically satisfy specific applications, particularly at the lower modulation rates. The DS8921 family of devices meets or exceeds all of the recommended RS-422 performance specifications.

RS-422 CHARACTERISTICS

A. The Drlver

The balanced driver characteristics are specified in RS-422 as follows:

1. A driver circuit should result in a low impedance (100Ω or less) balanced voltage source that will produce a differential voltage to the interconnecting cable in the range of 2 V to 6 V .
2. With a test load of 2 resistors, 50Ω each, connected in series between the driver output terminals, the magnitude of the differential voltage (VT) measured between the two output terminals shall be equal to or greater than 2 V , or 50% of the magnitude of V_{O}, whichever is greater. For the opposite binary state the polarity of VT is reversed (VT).
3. During transitions of the driver output between alternating binary states, the differential voltage measured across 100Ω load shall monotonically change between 0.1 and 0.9 of $\mathrm{V}_{S S}$ within 0.1 of the unit interval or 20 ns , whichever is greater. Thereafter, the signal voltage shall not change more than 10% of V_{SS} from the steady state value until the binary state occurs.

B. The Receiver

The electrical characteristics of the receiver are specified in RS-422 as follows:

1. The receiver shall not require a differential input voltage more than 200 mV to correctly assume the intended binary state, over an entire common-mode voltage range of -7 to +7 V . The common-mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ is defined
as the algebraic mean of the 2 voltages appearing at the receiver input terminals with respect to the receiver circuit ground. This allows for operations where there are ground differences caused by IR drop and noise of up to $\pm 7 \mathrm{~V}$.
2. The receiver shall maintain correct operation for a differential input signal ranging between 200 mV and 6 V in magnitude.
3. The maximum voltage between either receiver input terminal and receiver circuit ground shall not exceed 10 V (3 V signal +7 V common-mode) in magnitude. Also, the receiver shall tolerate a maximum differential signal of 12 V applied across its input terminals without being damaged.
4. The total load (up to 10 receivers) shall not have a resistance more than 90Ω at its input points.

DS8921, DS8922 AND DS8923

The DS8921 is a single differential line driver and receiver pair. Whereas, the DS8922 and DS8923 are dual differential line driver and receiver pairs. The difference between the DS8922 and DS8923 is in the TRI-STATE ${ }^{\text {® }}$ control (Figure 3).

These devices are designed to meet the full specifications of RS-422. The driver features high source and sink current capability.
The receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a full common-mode range of $\pm 7 \mathrm{~V}$. Switching noise which may occur on input signal can be eliminated by the built-in hysteresis (50 mV typical, and 15 mV min.). An input failsafe circuit is provided so that if the receiver inputs are open, the output will assume the logical one state.
These devices have power up/down circuitry that will TRISTATE the outputs and prevent erroneous glitches on the transmission lines during system power up or down operation.

The most attractive feature of these devices is the small skew beween the complementary outputs of the driver, typically about 0.5 ns . This small skew specification is often necessary to meet tight system timing requirements.

FIGURE 3. DS8921A, DS8922A and DS8923A Connection Dlagrams

TL/F/8837-6
Note 1. All times in ns measured at I/O connector of the drive. T is the period of the clock signals and is the inverse of the reference or read clock frequency.
Note 2. Similar period symmetry shall be in $\pm 4 \mathrm{~ns}$ between any two adjacent cycles during reading and writing.
Note 3. Except during a head change or PLO synchronization the clock variances for spindle speed and circuit tolerances shall not vary more than -5.5% to $+5.0 \%$. Phase relationship between reference clock and NRZ write data or write clock is not defined.
Note 4. The write clock must be the same frequency as the drive supplied reference clock (i.e., the write clock is the controller received and retransmitted drive reference clock).
Note 5. Reference clock is valid when read gate is inactive. Read clock is valid when read gate is active and PLO synchronization has been established.
FIGURE 4. ESDI Timing Diagrams

DM74AS74 Switching Characteristics

over recommended operating free air temperature range (Note 1). All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	From	To	Conditions	DM74AS74			Units
				Min	Typ	Max	
$F_{\text {MAX }}$		$\begin{gathered} \text { Q or } \\ Q \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	105			MHz
TPLH	Preset or clear			3.3		7.5	ns
TPHL				3.5		10.5	ns
TPLH	Clock	$\begin{gathered} \text { Q or } \\ Q \end{gathered}$		3.5		8	ns
TPHL				4.5		9	ns

Note 1: See Section 1 for test waveforms and output load.
FIGURE 5. 1 ns Clock Skew

ESDI ENHANCED SMALL DEVICE INTERFACE

The ESDI specification requires that the read and Reference Clock must meet the symmetry shown in Figure 4. This necessitates the use of National's DS8921A/22A/23A series of transceivers.

All specifications are in \% T, where $T=\frac{1}{F}$, the ESDI specification is assumed to be a $10 \mathrm{Mbits} /$ second standard, $\mathrm{T}=$ 100 ns .
Given this, the negative pulse width measured at the drive connector must equal $0.5 \mathrm{~T} \pm 0.05 \mathrm{~T}$ ($50 \mathrm{~ns} \pm 5 \mathrm{~ns}$). The best available RS-422 driver, other than the DS8921A Family, is specified at $\pm 4 \mathrm{~ns}$ differential skew. If the clock is from a high speed 74AS74 device, shown in Figure 5, it will have a typical skew of 1 ns .
This combination of $4 \mathrm{~ns}+1$ ns uses all of the ESDI specified 5 ns and leaves no margin for noise. Use of the DS8921A, 22A, or 23A, specified at $\pm 2.75 \mathrm{~ns}$ max. differential skew would allow up to ± 2.25 ns for clock skew and noise. This is as close a guarantee to meeting the $\pm 5 \mathrm{~ns}$ spec. of ESDI, as is possible with todays advanced testing systems.
One other consideration is the relationship between Read Clock and Read Data. Figure 4 shows that the positive edge
of Read Clock must be 0.31 T (31 ns) after the leading edge of Read Data, and 0.31T (31 ns) before the trailing edge of Read Data.
The Read Clock positive edges will be used to strobe Read Data into the controller after both signals go through their respective cable lines and receivers. Use of the DS8922A/ 23A assures minimum skew between these two signals. Because both drivers, or both receivers, are on the same piece of silicon an optimum match is achieved.
The above is applicable to an ESDI controller as well as the Drive itself. The controller receives the Reference Clock and uses both positive and negative edges to generate WRITE CLOCK. The negative edge of WRITE CLOCK is used to strobe out WRITE DATA and the positive edge will strobe WRITE DATA into the Drive.
The WRITE CLOCK positive edge has to be centered within WRITE DATA after it is received by the Drive. The transmitted WRITE CLOCK and WRITE DATA must be as closely matched as possible.
National's DS8921A, 22A, and DS8923A devices offer the combination of tightly spec'd parameters and drivers and receivers on one chip to meet various system timing constraints.

Build a Direction-Sensing Bidirectional Repeater

National Semiconductor Application Note 702 Gary Murdock John Goldie

Controlling the switching can be a cumbersome task. One way to handle it is to generate a repeater-reversing signal at the slave location and carry it over a dedicated control line to the repeaters. The catch is that the repeater control line needs to be very long-the length of the cable segment, in fact. Handling direction control remotely introduces delays and increases the possibility of errors. Ideally, control of the repeater switching would occur locally, at the repeaters themselves. Designers can achieve this local control and get rid of repeater lines by building a smart, direction-sensing repeater.

CONTROLLING REPEATERS

To see the advantages of direction-sensing repeaters, look at a design that uses repeater control lines (Figure 2). Based on the repeater control circuit used by the Intel Bitbus, this design is for twisted-pair cable. (Sometimes ribbon cable can be used instead). The differential line drivers and receivers are designed for multipoint applications and meet the EIA-485 standard.

FIGURE 1. Repeaters Extend the Length of the Twisted-Pair Bus by Transmitting the Signal on to the Next Cable Segment

FIGURE 2. Repeater Direction Can Be Switched from the
Slave's End with a Blased Repeater-Control Line

[^15]Bias resistors on the control line typically enable the repeater in the direction away from the master. In this case, the master is the talker and the data flows in the master-toslave direction. When a slave responds to a poll from the master, it drives its direction control line-DE/ $\overline{\mathrm{RE}}$-high. This drives the slave's repeater control line high, overriding the low state normally imposed by the bias resistors. The orientation of each repeater between the slave and the master is switched to the slave-to-master direction. All other repeaters stay enabled in the direction away from the mas-ter-letting slaves talk to any other slave, if the protocol allows it. The repeater control line is actively driven to only one state (high), so that if more than one slave tries to drive the control line at the same time, contention current is minimized.
Eliminating the repeater control line in the network greatly simplifies the circuit (Figure 3). Here, a local data directionsensing control circuit switches repeater direction. The circuit switches the repeater in the right direction by sensing which side of the data line is active first. If the master side is active first, the repeater is enabled in the master-to-slave direction, and vice versa. If the master and slave are active simultaneously, neither direction is enabled.

Two line-sense circuits work in the local control circuit. One monitors the master side of the data line, the other the slave side. The data line is active when driven to a differential high or low. The data line is inactive when all drivers connected to it are in TRI-STATE ${ }^{\oplus}$. Resistors bias the sense circuit receiver inputs to produce high receiver outputs when the data line is inactive. When the data line is driven, the bias is overridden and the receivers respond to the signals on the data line. One output switches to the same state as the data line, and the other output switches to the complementary state. An active line sends complementary inputs to the AND gate and switches the sense circuit output low. An inactive data line produces high inputs to the AND gate (because of the resistor bias) and switches the output high. Data direction is determined by detecting which sense-circuit output (master or slave) goes low first.
The direction-sensing repeater design divides into six functional blocks (Figure 4). The first block-block a-is a bidirectional repeater. Block b senses the state of the data line on each side of the repeater. It checks for either a driven state (active) or a high impedance state (inactive). Block c determines the enable signals according to the line states. Block d generates pulses used for masking, clocking, and error signals. Block e filters, generates a pulse, and detects a valid line state change. Block f latches in the most current line state information and generates the enable signals to the repeaters.

TL/F/10876-3
FIGURE 3. Switching Repeater Direction Locally Avoids a Cumbersome and Costly Repeater Control Line

FIGURE 4. Direction-Sensing Circuity Switches the Repeater in the Direction that Data Is Being Transmilted

The bidirectional repeater consists of two standard-pinout EIA-485 transceivers. The inverter inverts the enable line on one of the transceivers, so that two standard transceivers can be used. The "active-low" receiver enables are permanently enabled by hard-wiring them to ground. The driver enables are set by the output of the LS00 and LS08 gates. Data lines must be terminated on each side of the repeater to bias the line for the line-sense circuits. The termination resistor should be selected to match the transmission line's characteristic impedance-100 to 120Ω is typical for twisted pair.
In block b, an EIA-485 quad receiver senses the line to determine whether it's active or inactive. Each receiver pair monitors one side of the transmission line. The quad receiver's enable should be hard-wired ON. Resistors bias the receiver input to a positive differential voltage that produces a high ouptut when all drivers are in TRI-STATE mode. The receiver outputs are combined with an AND gate. A falling edge at the AND gate output indicates an active line, and a rising edge indicates a return to the Z line state.
The logic in block c-standard gates and the LS132 NAND gate-prevents the repeater from being enabled in case of collision. If both data lines become active at the same time, logic will disable transmission in both directions. In addition to the NAND function, the LS132 gate's inputs have hysteresis to increase noise immunity. This yields a jitter-free output from a slow input signal.
When drivers on each side of the repeater drive the line simultaneously, a collision occurs. To prevent this, the logic in block c keeps both repeater drivers off until the lines on both sides have returned to the inactive state. When a collision occurs, a low appears at signal locations 1 and 2. The logic sets the D flip-flop inputs high, however, so repeater disables-instead of enables-are generated.
When signals 1 and 2 are high, the D flip-flop inputs are high, and both repeater drivers are disabled. If either 1 or 2 is low while the other is high, an enable signal travels to one of the repeater drivers, depending upon which line is low. A valid line state change causes block d to generate a clock pulse that will latch the D flip-flops. After the repeater has turned on, signals 1 and 2 go low, since data is passing through the repeater. Because data transitions don't change the line state-it stays active-no new clock pulse is generated and the enables aren't updated.

TRIGGERING ONE-SHOTS

Block dincludes four retriggerable LS123 one-shots for timing functions. The first one-shot is triggered when a valid line state change is detected. Its output trips the second and third one-shots on the same edge. The second oneshot's output is used as an enable mask, while the output of the third generates the clock pulse that latches in the latest enable bits. The fourth one-shot senses errors. It is activated when a collision occurs.
The one-shot's output pulse widths are set by external capacitors and resistors. Standard 74123 one-shots shouldn't be substituted for the LS123 devices, because the LS123 IC's clear pin is also a trigger. Also, the resistor and capacitor should be as close to the device pins as possible, to minimize stray capacitance and noise pickup. In this application, these can affect the one-shots' time constants.

The first one-shot's resistor value is adjustable with a 50 K trim pot to adjust the output pulse width. This one-shot is triggered on power-up, or by a valid line state change. Its output triggers the next two one-shots. The one-shot's output pulse is set wide enough to mask out the second pulse, caused when the data line on the other side of the repeater becomes active. When one side becomes active, a pulse is genered at point 5 , triggering the first one-shot. When the repeater is enabled, the repeater drives the other side of the line. The newly active side of the line generates a second pulse, as it has changed from inactive to active. The second pulse at point 5 retriggers the first one-shot, preventing a new clock pulse. Consequently, the second and third oneshots aren't triggered.
The output of the second one-shot disables both repeater enable lines for about 200 ns . This disable inserts a minimum inactive state between every repeater direction switch, preventing it from toggling. After the minimum interval, however, the repeater can change direction. The third one-shot generates the D flip-flop clock pulse upon a valid line state change. The fourth one-shot sends an error signal to disable the repeater. The error occurs when the repeater isn't enabled between the time that one side of the transmission line becomes active and the time the other side becomes active. This scenario is also a collision, and is related to the propagation delay of the local control circuit. In this case, the enables to the repeater are kept off.
Block e filters and converts a valid line state change into a pulse, which triggers the first one-shot. The first low-pass filter cleans up spikes from the output of the line-sense circuits. Spikes appear from the difference in switching thresholds between receivers in the sense circuit. For a short time, receiver outputs are in the same state, causing a glitch at points 1 and 2 on every other signal transition. The width of the spikes depends on the data line signal transition time. For a short line, the data line capacitance is small, the signal transitions are fast, and the pulses out of the LS08 are very narrow. In most applications, though, the data line between repeaters is long, so transition time is much slower. In this case, the pulses at the LS08 output are wider. These pulses must be filtered out before they mislead the repeater into switching direction.
The first low-pass filter performs this function, with component values for a repeater linking two 1000-meter cable segments and a data rate of 200 kbaud. This filter also controls the length of time required to enable and disable the repeater . The difference between these two times is the delay of the low-pass filter. The enable time- 375 ns from LS04 output to LS132 output-is shorter than the disable timeabout $3.5 \mu \mathrm{~s}$-because during enable, the capacitor charges through the diode (Figure 5).
The final block masks the enable bits to the repeater when the second one-shot is triggered by the first. A latch holds the repeater direction enable bits when a valid line change has occurred. The enable lines are automatically masked for 200 ns , guaranteeing return to the inactive state and disabling the repeater when the D flip-flops are changing states.

FIGURE 5. Signals at different points in the circuit vary according to the data line conditions. There are five possible cases: Master Enable, Master Disable, Slave Enable, Slave Disable, and Collision (master and slave attempting to enable simultaneously).

To understand the timing in the master enable case, assume the master is located on the left side of the repeater and the slave on the right (Figure 4, again). First, both lines on either side of the repeater are inactive. The line-sense circuit outputs are high and Enables 6 and 7 are low. Next, the master drives the line high. The rising-edge line ME is the driving master's enable line. As soon as the master drives the line high, the sense circuit on the master side detects an active line state. The output of the LS08 gate pulls low, indicating the inactive-to-active state change. Lines 3 and 4 show the D flip-flop input signals. When 4 is low, the repeater is enabled in the master-to-slave direction. On line 5, two pulses appear. The first occurs when the master side of the line changes from inactive to active. The first one-shot is triggered, generating a clock pulse. The D flip-flop latches its inputs and one repeater driver is enabled. Line 7 stays low, disabling the repeater in the direction towards the master. Line 6 becomes enabled, as a result of the master side becoming active first. The pulse created when the slave side becomes active is the second pulse on line 5. The second pulse doesn't generate a clock
pulse; it retriggers the first one-shot. This one-shot can be adjusted so that the second pulse occurs within the output pulse of the first trigger. This guarantees that a new clock pulse won't be generated and keeps the repeater enabled in the same direction.
When the master has completed transmission, it is disabled and lets go of the line. The line-sense circuit detects the state change, data is latched into the D flip-flops, and enable lines 6 and 7 are pulled low.
In the slave enable case the same timing cycle takes place, with the roles of sense lines 1 and 2 and enable lines 6 and 7 reversed. When collision occurs, lines 3 and 4 stay high and neither direction is enabled. The line-sense circuits on both sides of the repeater detect a state change-from inactive to active-upon collision. The logic in block c , however, keeps the repeater disabled. The second pulse usually seen on line 5 doesn't occur, because the repeater is disabled in both directions. Both sides must return to the inactive state before the repeater can be enabled again in either direction.

Section 2
Bus Transceivers
Section 2 Contents
Bus Transceivers Including Futurebus + -Introduction 2-3
Bus Transceivers-Selection Guide 2-4
Futurebus + Arbitration Controller 2-6
Futurebus + BTL 9-Bit Data Transceiver 2-7
Futurebus + Handshake Transceiver 2-8
Futurebus + Arbitration Transceiver 2-9
Futurebus + BTL 9-Bit Latching Transceiver 2-10
AN-671 IEEE 896 Futurebus + -A Solution to the Bus Driving Problem 2-11
DP8303A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-16
DP7304B/DP8304B 8-Bit TRI-STATE Bidirectional Transceivers (Non-Inverting) 2-21
DP8307A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting) 2-26
DP7308/DP8308 8-Bit TRI-STATE Bidirectional Transceivers (Non-Inverting) 2-30
DS26S10C/DS26S10M/DS26S11C/DS26S11M Quad Bus Transceivers 2-34
DS3662 Quad High Speed Trapezoidal Bus Transceiver 2-39
AN-259 DS3662-The Bus Optimizer 2-43
AN-337 Reducing Noise on Microcomputer Buses 2-50
DS3667 TRI-STATE Bidirectional Transceiver 2-57
DS3862 Octal High Speed Trapezoidal Bus Transceiver 2-62
DS3890 BTL Octal Trapezoidal Driver 2-68
DS3892 BTL Octal TRI-STATE Repeater 2-68
DS3898 BTL Octal Trapezoidal Repeater 2-68
DS3893A BTL Turbotransceiver 2-74
DS3896/DS3897 BTL Trapezoidal Transceivers 2-79
AN-514 Timing Analysis of Synchronous and Asynchronous Buses 2-86
DS75160A/DS75161A/DS75162A IEEE-488 GPIB Transceivers 2-93
DS7640/DS8640 Quad NOR Unified Bus Receivers 2-101
DS7641/DS8641 Quad Unified Bus Transceivers 2-103
DS7833/DS8833/DS7835/DS8835 Quad TRI-STATE Bus Transceivers 2-106
DS7834/DS8834/DS7839/DS8839 Quad TRI-STATE Bus Transceivers 2-110
DS7836/DS8836 Quad NOR Unified Bus Receiver 2-114
DS7837/DS8837 Hex United Bus Receivers 2-116
DS7838/DS8838 Quad Unified Bus Transceivers 2-119

Bus Transceivers Including Futurebus +

A bus is a common communication medium, such as a cable or a printed circuit trace, that is time shared by several elements of a system. Single-ended bus circuits are listed in this section and these may be further categorized into opencollector circuits and TRI-STATE circuits.
When not transmitting, a bus driver should be capable of presenting a high impedance output in order to allow other drivers to freely use the bus. This is achieved by using either an open-collector or TRI-STATE output.
Open-collector drivers may be connected in a wired-or configuration which is very useful for polling and bus arbitration. These devices require pull-up resistors, which can also serve as bus terminators.
TRI-STATE drivers, on the other hand, do not require bus termination for short bus runs on PC boards. In addition, TRI-STATE devices provide improved rise time characteristics with low power dissipation. Hence, they are popular in high-speed microcomputer systems.
A single-ended bus is highly susceptible to noise, including ground noise and crosstalk. For this reason the bus should not be extended beyond the subsystem's enclosure without special care. Line lengths in excess of 10 feet are not recommended without the use of noise reduction techniques, such as slew rate control, high receiver thresholds andnoise filtering. Devices such as National Semiconductor's DS3662 and DS3862 Trapezoidal bus transceivers and DS3896 and DS3897 BTL transceivers are specifically designed for reducing crosstalk and noise susceptibility on high-speed buses.

BTL TRANSCEIVERS

The DS3893, DS3896, and DS3897 are devices designed for driving high-speed microcomputer backplane buses. These devices use BTL (Backplane Transceiver Logic) technology and incorporate low output capacitance, tight receiver thresholds, and small signal swings with the ability to drive a bus with a loaded impedance of less than 18Ω. This excellent drive capability is achieved while still maintaining high levels of noise immunity.

FUTUREBUS + DEVICES

The Data Transceiver (latched and non-latched), the Handshake Transceiver, the Arbitration Transceiver, and the Arbitration Controller are devices designed for Futurebus+. All of the devices comply fully with the proposed IEEE P896 Futurebus + standard and handle all of the transceiving and arbitration functions of a Futurebus + system. All of the transceivers use BTL technology as required by the Futurebus + specification.

POWER UP/DOWN GLITCH FREE PROTECTION

Powering a device up or down, or simply connecting or disconnecting a device from an active bus, has frequently presented the design engineer with the problem of invalid data glitches being transmitted onto the bus. National Semiconductor is the industry leader in offering bus transceivers incorporating glitch-free power up/down protection. For more detailed information on National Semiconductor's line of bus transceivers, refer to the following Selection Guide and application notes within this section.

BUS CIRCUITS

Data bus circuits are not transmission line circuits in the normal interpretation where the transmission line is electrically long ($1 / 4$ wavelength) with respect to the baud rate. Like unbalanced transmission lines, the data transmission is susceptible to common-mode noise, such as ground IR noise and induced reactive noise from crosstalk. A bus is a communications method where many elements of a system time share the same signal (address or data) bus. A bus shouldn't extend out of its subsystem's electronic enclosure without special care. Line length in excess of 10 feet is not recommended without slew rate control. Cables should be in the form of twisted pair or flat cable where a signal wire is alternated with a ground wire.

OPEN-COLLECTOR BUS CIRCUITS

Device Number		Circuitsf Package	Driver/ Receiver/ Transceiver	Bus Driver		Bus Recelver				Comments	Page No.
Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{array}{c\|} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$			Propagation Delay (ns)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{OL}}(\mathrm{~V}) \mathrm{I} \\ \mathrm{l}_{\mathrm{OL}}(\mathrm{~mA}) \\ \hline \end{array}$	Propagation Delay (ns)	$\begin{aligned} & \mathbf{V}_{\mathrm{IL}}(\mathrm{~V}) / \\ & \mathrm{I}_{\mathrm{IL}}(\mu \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{I H}}(\mathbf{V}) \\ & \mathbf{I}_{\mathbf{I H}}(\mu A) \end{aligned}$	Hysteresis (V)		
DS26S10	DS26S10M	4	Transceiver	10	0.8/100	10	1.75/-100	2.25/100			2-34
DS26S11	DS26S11M	4	Transceiver	10	0.8/100	10	1.75/-100	2.25/100		Input to Bus is Non-Inverting	2-34
DS3662		4	Transceiver	20	0.9/100	25	1.50/400	1.9/100		Trapezoidal Transceiver	2-39
DS3862		8	Transceiver	12	0.9/100	15	1.50/10	1.9/10		Trapezoidal Transceiver	2-62
DS3890		8	Driver	9	1.2/43					Octal BTL Driver	2-68
DS3892		8	Receiver			12	1.47/	1.62/		Octal BTL Receiver	2-68
DS3893A		4	Transceiver	3.5	1.2/100	5	1.47/	1.62/		Quad BTL TURBOTRANSCEIVER	2-74
DS3896		8	Transceiver	9	1.2/43	12	1.47/	1.62/		Octal BTL Transceiver	2-79
DS3897		4	Transceiver	9	1.2/43	12	1.47/	1.62/		Quad BTL Transceiver	2-79
DS3898		8	Repeater	20	1.2/43		1.47/	1.62/		Octal BTL Repeater	2-68
DS75450		2	Driver	20	0.7/300					AND Separate Output Transistors	3-41
DS75451	DS55451	2	Driver	18	0.7/300					AND	3-41
DS75452	DS55452	2	Driver	26	0.7/300					NAND	3-41
DS75453	DS55453	2	Driver	18	0.7/300					OR	3-41
DS75454	DS55454	2	Driver	27	0.7/300					NOR	3-41
DS8640	DS7640	4	Receiver			23	1.2/-50	1.8/50		Quad NOR Receiver	2-101
DS8641	DS7641	4	Transceiver	30	0.7/50	30	1.2/-100	1.8/100			2-103
DS8836	DS7836	4	Receiver			20	1.05/-50	2.65/50	1	Quad NOR Receiver	2-114
DS8837	DS7837	6	Receiver			20	1.05/-50	2.65/50	1		2-116
DS8838	DS7838	4	Transceiver	25	0.8/50	30	1.05/-100	2.65/100	1		2-119

TRI-STATE® BUS CIRCUITS

	Device Number		Circuits/ Package	Driver/ Receiver/ Transceiver	Bus Driver			Bus Receiver				Comments	PageNo.
			Propagation Delay Typ (ns)		$\begin{aligned} & \mathrm{v}_{\mathrm{OL}}(\mathrm{~V}) / \\ & \mathrm{l}_{\mathrm{OL}}(\mathrm{~mA}) \end{aligned}$	$\left\|\begin{array}{l} \mathrm{V}_{\mathrm{OH}}(\mathrm{~V}) / \\ \mathrm{I}_{\mathrm{OH}}(\mathrm{~mA}) \end{array}\right\|$	Propagation Delay Typ (ns)	$\mathrm{V}_{\mathrm{IL}}(\mathrm{V}) /$ $I_{\text {IL }}(\mu \mathrm{A})$	$\left\|\begin{array}{l} \mathrm{V}_{\mathrm{IH}}(\mathrm{~V}) \\ \mathrm{I}_{\mathrm{HH}}(\mu \mathrm{~A}) \end{array}\right\|$	Hysteresis (mV)			
	Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{array}$											
	DM74S240	DM54S240	4 or 8	Transceiver	4.5	0.55/64	2.4/-3	4.5	0.8/-400	2/50	400	Non-Inverting	Logic
	DM74S241	DM54S241	4 or 8	Transceiver	6	0.55/64	2.4/-3	6	0.8/-400	2/50	400	Inverting	Logic
	DM74S941	DM54S941	8	Transceiver	6	0.55/64	2.4/-3	6	0.8/-400	2/50	400	Inverting	Logic
	DP8212	DP8212M	8	Driver	20	0.45/15	3.6/-1					8080 MPU Data Latch and Service Request f/f	
	DP8216	DP8216M	4	Transceiver	20	0.6/55	3.6/-1	15	0.95/-250	2/10		8080 MPU Non-Inverting	6-13
	DP8226	DP8226M	4	Transceiver	16	0.6/50	3.6/-1	15	0.95/-250	2/10		8080 MPU Inverting	6-13
	DP8228	DP8228M	8	Transceiver	30	0.45/10	2.4/-1	20	0.8/-250	2/20		8080 MPU System Bus Controller and Bus Driver	6-24
	DP8238	DP8238M	8	Transceiver	30	0.45/10	2.4/-1	20	0.8/-250	2/20		8080 MPU System Bus Controller and Bus Driver	6-24
	DP8303A		8	Transceiver	10	0.5/50	3.6/-5	10	0.8/-250	2/80		Bidirectional Inverting	2-16
	DP8304B	DP7304B	8	Transceiver	10	0.5/50	$3.6 /-5$	15	0.8/-250	2/80		Bidirectional Non-Inverting IEEE 488	2-21
	DP8307A		8	Transceiver	10	0.5/50	3.6/-5	10	0.8/-250	2/80		Bidirectional Inverting	2-26
	DP8308	DP7308	8	Transceiver	11	0.5/50	3.6/-5	15	0.8/-250	2/80		Bidirectional Non-Inverting	2-30
	DS3647		4	Transceiver	8	0.5/50	2.4/-5	7	0.8/-500	2/100		Quad Bidirectional I/O Register	5-28
	DS3667		8	Transceiver	20	0.5/48	2.5/-5.2	20	0.8/-100	2/20	400		2-57
	DS75160A		8	Transceiver	20	0.5/48	2.5/-5.2	20	0.8/-100	2/20	400	IEEE 488 GPIB	2-93
	DS75161A		8	Transceiver	20	0.5/48	2.5/-5.2	20	0.8/-100	2/20	400	IEEE 488 GPIB	2-93
	DS75162A		8	Transceiver	20	0.5/48	2.5/-5.2	20	0.8/-100	2/20	400	IEEE 488 GPIB	2-93
	DS8833	DS7833	4	Transceiver	14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Non-Inverting TRI-STATE Receiver	2-106
	DS8834	DS7834	4	Transceiver	14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Inverting	2-110
	DS8835	DS7835	4	Transceiver	14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Inverting TRI-STATE Receiver	2-106
	DS8839	DS7839	4	Transceiver	14	0.5/50	2.4/-10	20	0.8/-40	$2 / 80$	400	Non-Inverting	2-110

Note: Unless otherwise specified, bus circuits listed above are TTL compatible and use 5 V supplies.

Futurebus + Arbitration Controller

General Description

The Futurebus+ Arbitration Controller is a member of the chipset that National Semiconductor has designed for the IEEE P896.1 Futurebus + standard. This device implements in a single chip the Arbitration function set specified by Acquisition, Allocation \& Alignment protocol. This Controller interfaces with Futurebus + through the NSC designed Futurebus + Arbitration Transceiver and Handshake Transceiver. NSC's Futurebus+ Arbitration Transceiver transceives all the Arbitration Bus lines, $A B<7: 0>^{*}$, $A B P^{*}$. The Handshake Transceiver transceives the Arbitration Se quencing and Arbitration Condition signal lines. Also included in the chipset to support the parallel protocol, are two other Handshake Transceivers which transceive the Address Synchronization and Data Synchronization lines. The BTL 9-bit Data Transceiver or the Latched Data Transceiver transceives the Address/Data, Data, Bus Parity, Command, Command Parity and Status signal lines.

Features

- The controller implements the complete requirements of the IEEE 896.1 specification
- Supports arbitration message passing and the two modes of ROUND ROBIN operation (RESTRICTED/ UNRESTRICTED)
■ Software configurable double/single pass operation, slow/fast and restricted/unrestricted arbitration
- Built in timer of $1 \mu \mathrm{~s}$ for use in phase 2 and phase 4 of the arbitration cycle
- 16 user selectable arbitration delay values (8 slow and 8 fast)

■ Built-in PLL for accurate delays. The PLL accepts clocks of up to 40 MHz .
■ Signal to unlock slave modules on transfer of tenure. Auto unlock through a dummy cycle if the current master locked resources.

- Programmable delay for releasing ar* after decision has been made to compete. This is to compensate for chip-to-chip skew. These delays are $0 \mathrm{~ns}, 10 \mathrm{~ns}, 15 \mathrm{~ns}$ and 20 ns.
- Read/Write facility with data acknowledge for the host to load arbitration numbers, control registers and emergency messages
- On board parity generator unloads the CPU of additional parity generation function
- Separate interrupts to indicate error occurrence and arbitration message received. Interrupts cleared on a write to a register. Error status is available in a separate status register.
- A special output pin to indicate that a POWERFAIL message was received
- FIFO strobe provided to store more than one arbitration message externally to prevent overrun, if desired
- Hardwired registers contain arbitration numbers for dummy cycle and the first word of the arbitration message
- Bus initialization, system reset and Live-insertion supported. The logic to detect these conditions must be implemented externally.
- Testability in the form of read/write access to key registers which include the bus state and internal timers
- Supports idle bus arbitration
- 68-pin PLCC package

National Semiconductor Futurebus + Transceivers and Arbitration Controller

Futurebus + BTL 9-Bit Data Transceiver

General Description

The BTL 9-Bit Data Transceiver is a member of the chipset that National Semiconductor has designed for the IEEE 896.1 Futurebus + standard. It typically transceives the Address/Data, Data, Bus Parity, Command, Command Parity and Status signals. For example, for a 64-bit data path with parity, 8 of these transceivers would be needed where each transceiver transceives a byte of data and its associated parity bit. To transceive the Command and Command Parity lines, one transceiver would be needed. Also, only one transceiver would be needed to transceive the Status lines. NSC provides transceivers for all the Futurebus + signals and an Arbitration Controller. The Handshake Transceiver transceives signals that require glitch filtering due to the wire-oring of bus lines. The Handshake Transceiver is used to transceive the Arbitration Synchronization, Address Synchronization and Data Synchronization signals. The Arbitration Transceiver transceives the Arbitration Bus lines, $A B$ <8:0>*. NSC's Futurebus + Arbitration Controller works with the Arbitration Transceiver and the Handshake Transceiver to handle the Arbitration protocol.

Features

- Backplane Transceiver Logic (BTL) levels (1V logic swing)
■ Supports IEEE 896.1 Futurebus + standard
- High impedance TTL compatible inputs
- Built-in bandgap reference provides accurate receiver threshold
- Glitch free power up/down protection on all outputs
- 44-pin PLCC
- 44-pin CLCC
- 40-pin Tapepak
- Lower performance 28 pin PLCC package option available
- Separate bus ground returns for each driver to minimize ground noise

Futurebus + Handshake Transceiver

General Description

The Futurebus + Handshake Transceiver is a member of the chipset that National Semiconductor has designed for the IEEE 896.1 Futurebus + standard. It transceives signals that require glitch filtering due to the wire-oring of bus lines. Both filtered and non-filtered receiver outputs are available to allow optimum performance for broadcast as well as single slave transactions. The Handshake Transceiver is intended to transceive the Arbitration Synchronization, Address Synchronization and Data Synchronization signals. NSC provides transceivers for all the Futurebus + signals and an Arbitration Controller. The BTL 9-bit Data Transceiver or the Latched Data Transceiver can transceive the Address/Data, Data, Bus Parity, Command, Command Parity and Status signals. The Arbitration Transceiver transceives the Arbitration Bus lines, $\mathrm{AB}<8: 0>^{*}$. NSC's Futurebus + Arbitration Controller works with the Arbitration Transceiver and the Handshake Transceiver to handle the Arbitration protocol.

Features

■ Backplane Transceiver Logic (BTL) levels (1V logic swing)
■ Supports IEEE 896.1 Futurebus + standard - Handles all handshake signals

- High impedance TTL compatible inputs
- Built-in bandgap reference provides accurate receiver threshold

■ Glitch free power up/down protection on all outputs

- Glitch filtered and non-filtered receiver outputs available
- Glitch reject selectable filtered outputs
- 44-pin PLCC
- 44-pin CLCC
- 40-pin Tapepak

■ Separate bus ground returns for each driver to minimize ground noise

Block Diagram

Connection Diagrams

Futurebus + Arbitration Transceiver

General Description

The Futurebus + Arbitration Transceiver is a member of the chipset that National Semiconductor has designed for the IEEE P896.1 Futurebus+ standard. The Arbitration Transceiver supports the Arbitration Protocol. It transceives all the Arbitration Bus lines, $A B<8: 0>{ }^{*}$. This transceiver is designed to be used in conjunction with a Futurebus + Arbitration Controller. NSC's Futurebus + Arbitration Controller is recommended for this function. Also, NSC provides tranceivers to transceive all the other Futurebus + lines. The BTL 9-Bit Data Transceiver or the Latched Data Transceiver can transceive the Address/Data, Data, Bus Parity, Command, Command Parity and Status signal lines. The Handshake Transceiver transceives signals that require glitch filtering due to the wire-oring of bus lines. The Handshake Transceiver can drive/receive the Arbitration Synchronization, Address Synchronization and Data Synchronization signals.

Features

- Backplane Transceiver Logic (BTL) levels (1V logic swing), open collector
- Supports IEEE P896.1 Futurebus + Arbitration Protocol
- High impedance TTL compatible inputs
- Built in bandgap reference provides accurate receiver threshold
- Glitch free power up/down protection on all outputs
- Parity check
- Detects bus status of all asserted
- Performs comparison of arbitration bus numbers and board arbitration numbers
- 44-pin PLCC
- 44-pin CLCC
- 40-pin Tapepak

National Semiconductor

Futurebus + BTL 9-Bit Latching Transceiver

General Description

The BTL 9-Bit Latching Transceiver is a member of the chipset that National Semiconductor has designed for the IEEE 896.1 Futurebus + standard. It typically transceives the Address/Data, Data, Bus Parity, Command, Command Parity and Status signals. For example, for a 64 -bit data path with parity, 8 of these transceivers would be needed where each transceiver transceives a byte of data and its associated parity bit. To transceive the Command and Command Parity lines, one transceiver would be needed. Also only one transceiver would be needed to transceive the Status lines. NSC provides transceivers for all the Futurebus + signals and an Arbitration Controller. The Handshake Transceiver transceives signals that require glitch filtering due to the wire-oring of bus lines. The Handshake Transceiver is used to transceive the Arbitration Synchronization, Address Synchronization and Data Synchronization signals. The Arbitration Transceiver transceives the Arbitration Bus lines, AB $<8: 0>^{*}$. NSC's Futurebus + Arbitration Controller works with the Arbitration Transceiver and the Handshake Transceiver to handle the Arbitration protocol.

Features

- Backplane Transceiver Logic (BTL) levels
(1V logic swing)
■ Supports IEEE 896.1 Futurebus+ standard
- High impedance TTL compatible inputs

■ Built-in bandgap reference provides accurate receiver threshold

- Selectable transparent mode in both directions
- Positive edge triggered flip-flop to transmit data from An to Bn
- Latch option in both directions of data flow
- Glitch free power up/down protection on all outputs
- 44-pin PLCC
- 44-pin CLCC
- 40-pin TapePak

Connection Diagram

IEEE 896 Futurebus-A Solution to the Bus Driving Problem

The IEEE 896 Futurebus is a general-purpose bus standard for high-performance microcomputer systems. With a strong emphasis on speed and reliability, IEEE 896 offers a number of innovative features that are not found in other backplane buses.
A major contribution to its performance comes from its electrical specifications. Futurebus solves, for the first time, the fundamental problems associated with driving a densely populated backplane-as a result, it provides significant improvements in both speed and data integrity. Two years of effort by the IEEE 896 committee have culminated in a deeper understanding of the physics of the backplane bus, leading to an ingenious solution to the bus problem.
Speed is probably the most important feature of any bus standard. This is especially true for Futurebus, since its totally asynchronous protocol permits continuous speed enhancements through advances in technology. In fact, the maximum data transfer rate between any two plug-in cards is determined simply by the sum of the response times of the two cards and the bus delay. Ultimately, as logic devices get faster, bus delay will be the dominating factor limiting bus speed.
There are two components to the bus delay in a typical system, namely, the settling time and the propagation delay. The settling time is the time needed for reflections and crosstalk to subside before data are sampled; it is usually several times longer than the backplane propagation delay. As will be shown later, the settling time is the price the user pays for not driving the bus properly.
By using a new technology, BTL = Backplane Transceiver Logic, Futurebus not only eliminates the settling time delay but also reduces the propagation delay of the loaded backplane to provide maximum possible bus throughput.

THE PHYSICS OF THE BACKPLANE BUS

For high-speed signals the bus acts like a transmission line with an associated characteristic impedance and propagation delay whose unloaded values, Z_{o} and t_{po}, are given by

$$
\begin{aligned}
& Z_{0}=\sqrt{L / C} \\
& t_{p o}=\sqrt{L / C}
\end{aligned}
$$

$L=$ distributed inductance per unit length, and $C=$ distributed capacitance per unit length.(1)
These values can be calculated for a typical microstrip backplane (Figure 1) by means of the following equations:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{o}}= & \left(87 / \sqrt{\epsilon_{\mathrm{r}}+1.41}\right) \\
& \bullet \ln [5.98 \mathrm{~h} /(0.8 \mathrm{w}+\mathrm{t})] \Omega \\
\mathrm{t}_{\mathrm{po}}= & 1.017 \sqrt{0.475 \epsilon_{\mathrm{r}}+0.67} \mathrm{~ns} / \mathrm{ft}
\end{aligned}
$$

where $\epsilon_{\mathrm{I}}=$ relative dielectric constant of the board material (typically $\epsilon_{\mathrm{r}}=4.7$ for fiberglass and $\mathrm{w}, \mathrm{h}, \mathrm{t}=$ the dimensions indicated in Figure 1. For a typical backplane, $t=1.4$ mils, $\mathrm{w}=25$ mils, $\mathrm{h}=1 / 1 \mathrm{~s}$ inch, and $\epsilon_{\mathrm{r}}=4.7$. By substituting these values we get $Z_{o}=100 \Omega$ and $t_{p o}=1.7 \mathrm{~ns} / \mathrm{ft}$.

National Semiconductor
Application Note 671
R. V. Balakrishnan/Joel Martinez

These values correspond to an unloaded backplane. When the backplane is uniformly loaded with the capacitance of plug-in cards and connectors at frequent intervals, the loaded values of the impedance, Z_{L}, and the propagation delay, t_{pL}, are given by

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{L}} & =\mathrm{Z}_{\mathrm{o}} / \sqrt{\left.1+\mathrm{C}_{\mathrm{L}} / \mathrm{C}\right)} \\
\mathrm{t}_{\mathrm{pL}} & =\mathrm{t}_{\mathrm{po}} / \sqrt{1+\mathrm{C}_{\mathrm{L}} / \mathrm{C}}
\end{aligned}
$$

where $\mathrm{C}_{\mathrm{L}}=$ the distributed load capacitance per unit length.(1)
The distributed capacitance, C of the unloaded backplane can be measured in the lab. For our microstrip, it is $20 \mathrm{pF} / \mathrm{ft}$. This does not include, however, the capacitance of the connectors mounted on the backplane and the associated plat-ed-through holes, which can amount to 5 pF per card slot.

TL/F/10782-1
FIGURE 1. Cross Section of a Microstrip Bus Line
The loading capacitance of the plug-in card, however, is dominated by the loading capacitance of the transceiver, which can be 12-20 pF for TTL devices. Allowing another $3-5 \mathrm{pF}$ for printed-circuit traces and the connector, the total loading per card slot can add up to 30 pF . For a system such as IEEE 896, which has 12 slots per foot, $C_{L}=360$ $\mathrm{pF} / \mathrm{ft}$. Therefore,

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{L}}=100 / \sqrt{1+(360 / 20)}=23 \Omega \\
& \mathrm{t}_{\mathrm{pL}}=1.7 \sqrt{1+(360 / 20)}=7.41 \mathrm{~ns} / \mathrm{ft}
\end{aligned}
$$

As can be seen above, the capacitive loading drastically alters both the impedance and the propagation delay of the bus. This reduces the bus throughput in two ways. One obvious impact is the increased propagation delay. But the not so obvious and even more serious problem is the reduced bus impedance, which is much harder to drive.
For example, to drive the loaded bus properly with a TTL driver which has a 3 V nominal swing, the required drive current, I_{D}, must be

$$
I_{D}=3 V /\left(Z_{L} / 2\right)
$$

The impedance seen by the driver is half of Z_{L}, since from a given board two transmission lines are being driven, one towards each terminator (Figure 2). Therefore,

$$
I_{D}=3 /(23 / 2)=260 \mathrm{~mA}
$$

TL/F/10782-2
FIGURE 2. The Loaded Bus—Each Driver Sees Two Loaded Line Impedances in Parallel $\left(Z_{L} \| \mathbf{Z}_{L}=\mathbf{Z}_{\mathbf{L} / 2}\right)$.

This is much higher than the standard TTL's drive capability of 50 to 100 mA . Figure 3 shows the effect of using a 50 mA driver, in this situation, on the bus waveform. The voltage swing on the bus has its first transition at 0.5 V , the product of the drive current and $Z_{L} / 2$. This value falls well below the upper threshold limit of the TTL receiver. Therefore, several round-trip delays to the nearest termination are required for the waveform to cross the receiver threshold region. In our example, one round-trip delay is $2 \mathrm{t}_{\mathrm{pL}}=14.8 \mathrm{~ns} / \mathrm{ft}$. Therefore the settling times can exceed 100 ns even for relatively short buses. This long settling time drastically affects bus throughput at high speeds. Even worse, the voltage steps in the threshold region can cause multiple triggering in the cases of the clock and strobe signals.
One way to solve these problems is to use 100 mA drivers with precision receivers that have a narrow threshold region such that the first transition crosses well over the threshold. This technique is widely used for clock lines to avoid multiple triggering. Its use on data/address lines is limited because of the significantly higher power requirement arising from the large number of lines involved (32 address/data lines).
Even if power is not a limitation, switching to higher current drivers provides only a marginal improvement. The reason for this is quite simple. A higher current driver unfortunately has a higher output capacitance, which reduces the bus impedance further. This in turn requires an even higher current drive for proper operation.

The Futurebus Transceiver

A more elegant solution-one that is now a part of IEEE 896-directly attacks the root of the problem, namely, the large output capacitance of the transceiver. By simply adding a Schottky diode in series with an open-collector driver output, the capacitance of the drive transistor is isolated by the small reverse-biased capacitance of the diode in the non-transmitting state (Figure 4). The Schottky diode capac-
itance is typically less than 2 pF and is relatively independent of the drive current. Allowing for a receiver input capacitance of another 2 pF , the total loading of the Futurebus transceiver can be kept under 5 pF. IEEE 896 specifies a maximum plug-in card capacitance of 10 pF to accommodate the 5 pF trace and connector capacitances.
In addition to reducing the loading on the bus, the Futurebus transceiver features several other enhancements over a conventional TTL transceiver that drastically reduce power consumption and improve system reliability.
A major portion of the power savings comes from a reduced voltage swing-1V-on the bus. Contrary to popular belief, the lower swing does not reduce crosstalk immunity (provided the receiver threshold is tightly controlled).(2) The induced crosstalk from other lines on the bus scales down with the amplitude of the signal transistion causing it. Consequently, if a line receiver has a precision threshold, the noise margin, expressed as a percentage of signal amplitude, remains the same, as does the crosstalk immunity. However, the absolute noise margin, with reference to a noise source external to the bus, does shrink linearly with amplitude. Fortunately, the low impedance and the relatively short length of the bus make this externally generated noise component insignificant in high-speed backplanes. Nevertheless, it is recommended that the backplane be shielded from strong noise sources external to the bus.

Noise Immunity and EMI

The Futurebus transceiver has a precision receiver threshold centered between the low and high bus levels of 1 and 2.1 V , respectively (Figure 5). Confined to a narrow region of $1.55 \mathrm{~V} \pm 75 \mathrm{mV}(1.47 \mathrm{~V}$ to 1.62 V$)$, the threshold voltage is independent of V_{CC} and temperature. This tight threshold control is achieved by using an internal bandgap reference at the receiver input (Figure 4). And with the smaller 1V swing, EMI is also reduced threefold compared with TTL.

DRIVE CURRENT

The backplane impedance in IEEE 896 is specified as 50Ω minimum and 62Ω maximum with the connectors mounted. In our microstrip example, due to the connector and the plated-through holes, a 50Ω minimum impedance translates into a maximum allowable capacitance of 4 pF per slot. This can be easily attained with some care in printed-circuit board design. A fully loaded Futurebus backplane therefore, has an impedance whose worst-case value is given by

$$
\begin{aligned}
Z_{\min } & =50 / \sqrt{1+\frac{10 \cdot 10}{20+4 \cdot 10} \Omega} \\
& =31 \Omega
\end{aligned}
$$

The drive current required for a 1 V swing is

$$
I_{D}=1 /(31 / 2)
$$

However, with a precision receiver threshold it is possible for the driver to swing past the threshold with a comfortable margin even if the first step climbs to only 75 percent of the final amplitude under worst-case loading (see again Figure

FIGURE 3. TTL Bus Waveforms50 mA Driver vs 300 mA Driver

FIGURE 5. IEEE 896 Signaling Levels and the Worst-Case Bus Waveform
5). Therefore, the drive current can be reduced by 25 percent to save power, without affecting performance:

$$
I_{D}=\frac{1}{31 / 2} 0.75=48 \mathrm{~mA}
$$

FIGURE 6. The Futurebus Termination Circuit

OTHER HIGHLIGHTS

Bus Propagation Delay

There is an additional benefit resulting from reducing the capacitive loading on the bus. This benefit arises from the reduced propagation delay, which further improves the bus speed.
Recalculating the loaded propagation delay for the Futurebus transceiver yields

$$
\begin{aligned}
\mathrm{t}_{\mathrm{PL}} & =\mathrm{t}_{\mathrm{po}} \sqrt{1+\left(\mathrm{C}_{\mathrm{L}} / \mathrm{C}\right)} \\
& =1.7 \sqrt{1+\frac{(10+4) 10}{20}} \\
& =4.81 \mathrm{~ns} / \mathrm{ft}
\end{aligned}
$$

This is a 30-percent improvement over the TTL example. It should be noted that this is the worst-case delay per foot and that the asynchronous nature of the Futurebus protocol will take full advantage of lower propagation delays in a typical system, either due to lower loading levels or due to the closer spacing of two plug-in boards that are in communication.

Termination

The drive current and the signal swing determine the termination resistors. If the drive current is derived properly, the termination will match the bus impedance under the given loading. For IEEE 896, the value of each of the two termination resistors, R_{T}, is

$$
R_{\mathrm{T}}=\left(\frac{1 \mathrm{~V}}{48 \mathrm{~mA}}\right) 2=42 \Omega \approx 39 \Omega
$$

This value is greater than the loaded impedance of the Futurebus, because the drive current is only 75 percent of that required for a full swing on the first transition. However, in a practical bus the impedance varies with various load conditions, and therefore the above termination value is a good compromise between the worst-case values of the bus impedances of 31 and 50Ω.
The P896 draft requires that the bus be terminated at both ends, with a single resistor of 39Ω connected to an active voltage source of 2 V (Figure 6). This arrangement has a significantly lower power dissipation than a "Thévenin-
equivalent" two-resistor termination connected to ground and the 5 V rail. The 2 V source is derived from the 5 V supply using a potential divider followed by a buffer; the source can be shared among all the bus lines as long as it is properly bypassed for alternating current close to each resistor.

Wire-OR Glitch

One of the advantages of an open-collector bus is a wireOR capability. This feature is fully exploited in the IEEE 896 bus, particularly in its sophisticated arbitration protocol and broadcast mechanism. Unfortunately, due to the fundamental nature of transmission lines, wire-ORing on the bus can cause erroenous glitches having pulse widths of up to the round-trip delay of the bus. The analysis of the wire-OR glitch is covered well by Theus and Gustavson.(5)
To overcome the wire-OR glitch, the broadcast acknowledge lines (Al^{*} and DI^{*}) and the three arbitration control lines are required to have integrators at the output of the receiver capable of rejecting pulses having widths of up to the maximum round-trip delay of the bus.

And More

Geographic addressing and live insertion and withdrawal capability are some of the other highlights of Futurebus.
The reader is encouraged to read the draft proposal,(6) and the article by Theus and Borrill in this issue, for more details.
The electrical specification of Futurebus is based on a thorough knowledge of backplane operation. A combination of theoretical analysis and bench measurements has been used to create an electrically clean bus environment. Significant improvements have been made in favor of higher per-formance-at the expense of only a slight increase in today's cost and complexity-to assure a long design lifetime for the standard. The result is a proposed standard that has the performance, in terms of both speed and reliability, to justify the name, "Futurebus".

ACKNOWLEDGEMENT

I would like to thank Paul Borrill for his help and encouragement in finding this solution to the bus driving problem.

REFERENCES

1. Motorola MECL System Design Handbook, Motorola, Inc., Phoenix, AZ.
2. R. V. Balakrishnan, "Reducing Noise on Microcomputer Buses", IEOCN 82-Professional Workshop Record on Microcomputer Realities, Nov. 1982.
3. R. V. Balakrishnan, "Cut Bus Reflections, Crosstalk with a Trapezoidal Transceiver", EDN, Aug. 4, 1983, pp. 151156.
4. R. V. Balakrishnan, "Eliminating Crosstalk Over LongDistance Busing". Computer Design, Mar. 1982, pp. 155-162.
5. John Theus and David B. Gustavson, "Wire-OR Logic on Transmission Lines', IEEE Micro, Vol. 3, No. 3, June 1983, pp. 51-55.

DP8303A 8-Bit TRI-STATE ${ }^{\circledR}$
 Bidirectional Transceiver (Inverting)

General Description

This family of high speed Schottky 8-bit TRI-STATE bidirectional transceivers are designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.
DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/X) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 are featured with Transmit ($\overline{\mathrm{T}}$) and Receive ($\overline{\mathrm{R}}$) control inputs.

Features

m 8-bit directional data flow reduces system package count
■ Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems

- PNP inputs reduce input loading

■ Output high voltage interfaces with TTL, MOS, and CMOS

- $48 \mathrm{~mA} / 300 \mathrm{pF}$ bus drive capability
- Pinouts simplify system interconnections
- Transmit/ $\overline{\text { Receive }}$ and chip disable simplify control logic
- Compact 20 -pin dual-in-line package
- Bus port glitch free power up/down

Logic and Connection Diagrams

TL/F/5856-1

TL/F/5856-2
Top View
Order Number DP8303AJ or DP8303AN
See NS Package Number J20A, N20A

Logic Table

Inputs		Resulting Conditions	
Chip Disable	Transmit/促ecelve	A Port	B Port
0	0	OUT	IN
0	1	IN	OUT
1	X	TRI-STATE	TRI-STATE

X = Don't care

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1667 mW
Molded Package	1832 mW
•Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package	
$14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.	

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 4 seconds) $260^{\circ} \mathrm{C}$
Recommended Operating Conditions

Supply Voltage ($\left.\mathrm{V}_{\mathrm{CC}}\right)$	Min	Max	Units
DP8303A	4.75	5.25	V
Temperature $\left(T_{A}\right)$ DP8303A	0	70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
A PORT (A0-A7)							
$\mathrm{V}_{\text {IH }}$	Logical '1" Input Voltage	$C D=V_{1 L}, T / \bar{R}=2.0 \mathrm{~V}$		2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage	$C D=V_{\text {IL }}, T / \bar{R}=2.0 \mathrm{~V}$				0.7	V
VOH	Logical "1" Output Voltage	$\begin{aligned} & C D=T / \bar{R}=V_{I L} \\ & V_{I L}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$V_{C C}-0.7$		V
			$\mathrm{IOH}^{\text {a }}=-3 \mathrm{~mA}$	2.7	3.95		V
V_{OL}	Logical "0" Output Voltage	$\begin{aligned} & C D=T / \bar{R}=V_{I L} \\ & V_{I L}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{IOL}=16 \mathrm{~mA}$		0.35	0.5	V
			$\mathrm{IOL}^{\text {a }}=8 \mathrm{~mA}$		0.3	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{\mathrm{IL}}, T / \bar{R}=V_{\mathrm{IL}}, V_{O}=0 V, \\ & V_{\mathrm{CC}}=\operatorname{Max},(\text { Note 4) } \end{aligned}$		-10	-38	-75	mA
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$C D=V_{\mid L}, T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{I H}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1	mA
IIL	Logical "0" Input Current	$\mathrm{CD}=\mathrm{V}_{\mathrm{IL}}, \mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
IOD	Output/Input TRI-STATE Current	$C D=2.0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$
B PORT (B0-B7)							
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical '0" Input Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$				0.7	V
V OH	Logical "1" Output Voltage	$\begin{aligned} & C D=V_{I L}, T / \bar{R}=2.0 V \\ & V_{I L}=0.5 V \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$V_{C C}-0.8$		V
			$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		V
			$\mathrm{IOH}^{\text {O }}=-10 \mathrm{~mA}$	2.4	3.6		V
V_{OL}	Logical "0" Output Voltage	$C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}, V_{O}=0 \mathrm{~V}, \\ & V_{C C}=\text { Max, (Note 4) } \end{aligned}$		-25	-50	-150	mA
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$C D=V_{I L}, T / \bar{R}=V_{I L}, V_{I H}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1	mA
I/L	Logical "0" Input Current	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}, V_{\text {IN }}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
IOD	Output/Input TRI-STATE Current	$C D=2.0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			+200	$\mu \mathrm{A}$

DC Electrical Charcateristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CONTROL INPUTS CD, T/R						
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage				0.7	V
I_{H}	Logical "1" Input Current	$\mathrm{V}_{I H}=2.7 \mathrm{~V}$		0.5	20	$\mu \mathrm{A}$
1	Maximum Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=5.25 \mathrm{~V}$			1.0	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$		-0.1	-0.25	mA
				-0.25	-0.5	mA
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$		-0.8	-1.5	V
POWER SUPPLY CURRENT						
Icc	Power Supply Current	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		70	100	mA
		$C D=0.4 V, V_{I N A}=T / \bar{R}=2 V, V_{C C}=M a x$		100	150	mA

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A PORT DATA/MODE SPECIFICATIONS						
$t_{\text {PDHLA }}$	Propagation Delay to a Logical " 0 " from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		8	12	ns
tpolha	Propagation Delay to a Logical "1" from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		11	16	ns
tplZA	Propagation Delay from a Logical " 0 " to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure } C \text {) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		10	15	ns
${ }^{\text {t }}$ PHZA	Propagation Delay from a Logical " 1 " to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
${ }_{\text {tPZLA }}$	Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{C}) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		20	30	ns
${ }^{\text {tPZHA }}$	Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		19	30	ns
B PORT DATA/MODE SPECIFICATIONS						
${ }^{\text {t }}$ PDHLB	Propagation Delay to a Logical " 0 " from A Port to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{gathered} 12 \\ 7 \end{gathered}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PDLHE }}$	Propagation Delay to a Logical " 1 " from A Port to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } A \text {) } \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}^{\text {PLZB }}$	Propagation Delay from a Logical " 0 " to TRI-STATE from CD to B Port	$\begin{aligned} & A 0 \text { to } A 7=2.4 \mathrm{~V}, T / \bar{R}=2.4 \mathrm{~V}(\text { Figure } C) \\ & S 3=1, R 5=1 \mathrm{k}, C 4=15 \mathrm{pF} \end{aligned}$		13	18	ns
${ }^{\text {t }}$ PHZB	Propagation Delay from a Logical " 1 " to TRI-STATE from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{C}) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
${ }^{\text {tPLZB }}$	Propagation Delay from TRI-STATE to a Logical "0" from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=1, \mathrm{R} 5=100 \Omega, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=1, \mathrm{R} 5=667 \Omega, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$		25 16	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZHB }}$	Propagation Delay from TRI-STATE to a Logical " 1 " from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{C}) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=0, \mathrm{R} 5=5 \mathrm{k} \Omega, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$		22 14	35 25	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
TRANSMIT/RECEIVE MODE SPECIFICATIONS						
${ }^{\text {t }}$ TRL	Propagation Delay from Transmit Mode to Receive a Logical " 0 ", T / \bar{R} to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V}(\text { Figure } B) \\ & S 1=1, R 4=100 \Omega, C 3=5 \mathrm{pF} \\ & S 2=1, R 3=1 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \end{aligned}$		23	35	ns
${ }^{\text {t TRH }}$	Propagation Delay from Transmit Mode to Receive a Logical " 1 ", T / \bar{R} to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 1=0, \mathrm{R} 4=100 \Omega, \mathrm{C} 3=5 \mathrm{pF} \\ & \mathrm{~S} 2=0, \mathrm{R} 3=5 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \end{aligned}$		23	35	ns
$\mathrm{t}_{\text {RTL }}$	Propagation Delay from Receive Mode to Transmit a Logical " 0 ", T / \bar{R} to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure } B) \\ & \mathrm{S} 1=1, \mathrm{R} 4=100 \Omega, \mathrm{C} 3=300 \mathrm{pF} \\ & \mathrm{~S} 2=1, \mathrm{R} 3=300 \Omega, \mathrm{C} 2=5 \mathrm{pF} \end{aligned}$		23	35	ns
$t_{\text {RTH }}$	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R̄ to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 1=0, \mathrm{R} 4=1 \mathrm{k}, \mathrm{C} 3=300 \mathrm{pF} \\ & \mathrm{~S} 2=0, \mathrm{R} 3=300 \Omega, \mathrm{C} 2=5 \mathrm{pF} \end{aligned}$		27	35	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specitied, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

TL/F/5856-4
Note: C1 includes test fixture capacitance.
FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (Continued)

FIGURE B. Propagation Delay from T / \bar{R} to A Port or B Port

TL/F/5856-7

TL/F/5856-8
Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC table.
FIGURE C. Propagation Delay to/from TRI-STATE from CD to A Port or B Port

DP7304B／DP8304B 8－Bit TRI－STATE ${ }^{\circledR}$
 Bidirectional Transceiver（Non－Inverting）

General Description

The DP73048B／DP8304B are high speed Schottky 8－bit TRI－STATE bidirectional transceivers designed to provide bidirectional drive for bus oriented microprocessor and digi－ tal communications systems．They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports（bus ports）． PNP inputs for low input current and an increased output high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ level allow compatibility with MOS，CMOS，and other technologies that have a higher threshold and less drive capabilities．In addition，they all feature glitch－free power up／down on the B port preventing erroneous glitches on the system bus in power up or down．
DP7304B／DP8304B are featured with Transmit／$\overline{\text { Receive }}$ （T／伿）and Chip Disable（CD）inputs to simplify control logic．

Features

■ 8－bit bidirectional data flow reduces system package count
■ Bidirectional TRI－STATE inputs／outputs interface with bus oriented systems
－PNP inputs reduce input loading
－Output high voltage interfaces with TTL，MOS，and CMOS
－ $48 \mathrm{~mA} / 300 \mathrm{pF}$ bus drive capability
■ Pinouts simplify system interconnections
－Transmit／Receive and chip disable simplify control logic
－Compact 20－pin dual－in－line package
－Bus port glitch free power up／down

Logic and Connection Diagrams

Logic Table

Inputs		Resulting Conditions	
Chip Disable	Transmit／Receive	A Port	B Port
0	0	OUT	IN
0	1	IN	OUT
1	X	TRI－STATE	TRI－STATE

[^16]| Absolute Maximum Ratings (Note 1) | |
| :--- | ---: |
| If Milltary/Aerospace specifled devices are required, | |
| please contact the National Semiconductor Sales | |
| Office/Distributors for avallabllity and specifications. | |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Output Voltage | 5.5 V |
| Storage Temperature | |
| Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ | |
| Cavity Package | |
| Molded Package | 1667 mW |
| Lead Temperature (soldering, 4 sec.) | 1832 mW |
| ${ }^{\circ}$ Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package | |
| 14.7 mW/ ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. | |

Recommended Operating Conditions

	Min	Max	Unlts
Supply Voltage $\left(V_{C C}\right)$ DP7304B 4.5 5.5 DP8304B 4.75 5.25 Temperature $\left(T_{A}\right)$ DP7304B -55 125 DP8304B 0 70${ }^{\circ} \mathrm{C}$			
		C	

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units

A PORT (A0-A7)							
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$\mathrm{CD}=\mathrm{V}_{\mathrm{IL},}, \mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}$	DP8304B			0.8	V
			DP7304B			0.7	V
V_{OH}	Logical "1" Output Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$V_{C C}-0.7$		V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.7	3.95		V
VOL	Logical " 0 ' Output Voltage	$C D=T / \bar{R}=V_{\text {IL }}$	$\mathrm{IOL}^{\prime}=16 \mathrm{~mA}(8304 \mathrm{~B})$		0.35	0.5	V
			$\mathrm{IOL}=8 \mathrm{~mA}$ (both)		0.3	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{I L}, T / \bar{R}=V_{I L}, V_{O}=0 V, \\ & V_{C C}=\operatorname{Max}(\text { Note 4) } \end{aligned}$		-10	-38	-75	mA
$\mathrm{IIH}^{\text {H}}$	Logical "1" Input Current	$C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1	mA
ILL	Logical "0" Input Current	$C D=\mathrm{V}_{\mathrm{IL}}, \mathrm{T} / \overline{\mathrm{A}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
Iod	Output/Input TRI-STATE Current	$C D=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$

B PORT (B0-B7)

V_{IH}	Logical "1" Input Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$		2.0			V
$V_{\text {IL }}$	Logical " 0 " Input Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$	DP8304B			0.8	V
			DP7304B			0.7	V
V_{OH}	Logical "1" Output Voltage	$C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\mathrm{CC}}-0.8$		V
			$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		V
			$\mathrm{IOH}^{\text {O }}=-10 \mathrm{~mA}$	2.4	3.6		V
V_{OL}	Logical "0" Output Voltage	$C D=V_{1 L}, T / \bar{R}=2.0 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{CD}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\operatorname{Max}(\text { Note } 4) \end{aligned}$		-25	-50	-150	mA

DC Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
B PORT (B0-B7) (Continued)							
I_{H}	Logical "1" Input Current	$C D=V_{\text {IL }}, T / \overline{\mathrm{A}}=\mathrm{V}_{\text {IL }}, \mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}^{\prime} \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1	mA
I/L	Logical "0" Input Current	$C D=V_{\text {IL }}, \mathrm{T} / \overline{\mathrm{A}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
Iod	Output/Input	$C D=2.0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
	TRI-STATE Current		$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			+200	$\mu \mathrm{A}$

CONTROLINPUTS CD, T/ $\overline{\text { R }}$							
V_{H}	Logical "1" Input Voltage			2.0			V
V_{IL}	Logical "0" Input Voltage		DP8304B			0.8	V
			DP7304B			0.7	V
$\mathrm{IIH}^{\text {H}}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.5	20	$\mu \mathrm{A}$
1	Maximum Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1.0	mA
ILL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	T/ $\overline{\text { R }}$		-0.1	-0.25	mA
			$C D$		-0.25	-0.5	mA
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-12$			-0.8	-1.5	V
POWER SUPPLY CURRENT							
Icc	Power Supply Current	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max}$			70	100	mA
		$C D=V_{\text {INA }}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max}$			90	140	mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A PORT DATA/MODE SPECIFICATIONS						
$t_{\text {PDHLA }}$	Propagation Delay to a Logical "0" from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		14	18	ns
$t_{\text {PDLLA }}$	Propagation Delay to a Logical " 1 " from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		13	18	ns
$t_{\text {PLZA }}$	Propagation Delay from a Logical "0" to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure } \mathrm{C} \text {) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		11	15	ns
${ }_{\text {t }}^{\text {PHZA }}$	Propagation Delay from a Logical "1" to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{CR}=15 \mathrm{pF} \end{aligned}$		8	15	ns
tpZLA	Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure C) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		27	35	ns
$t_{\text {PZHA }}$	Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		19	25	ns
B PORT DATA/MODE SPECIFICATIONS						
$t_{\text {PDHLB }}$	Propagation Delay to a Logical " 0 " from A Port to B Port	$\begin{gathered} \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } A \text {) } \\ \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{gathered}$		$\begin{aligned} & 18 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPDLHB }}$	Propagation Delay to a Logical " 1 " from A Port to B Port	$\begin{gathered} \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } A \text {) } \\ \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
B PORT DATA/MODE SPECIFICATIONS (Continued)						
tplzb	Propagation Delay from a Logical " 0 " to TRI-STATE from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } C \text {) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		13	18	ns
${ }^{\text {tPHZB }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
tPZLB	Propagation Delay from TRI-STATE to a Logical " 0 " from CD to B Port	$\begin{gathered} \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V} ; \mathrm{T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure C) } \\ \mathrm{S} 3=1, \mathrm{R} 5=100 \Omega, \mathrm{C} 4=300 \mathrm{pF} \\ \mathrm{~S} 3=1, \mathrm{R} 5=667 \Omega, \mathrm{C} 4=45 \mathrm{pF} \end{gathered}$		$\begin{aligned} & 32 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tPZHB $^{\text {d }}$	Propagation Delay from TRI-STATE to a Logical "1" from CD to B Port	$\begin{gathered} \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } C) \\ \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=300 \mathrm{pF} \\ \mathrm{~S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=45 \mathrm{pF} \end{gathered}$		$\begin{aligned} & 26 \\ & 14 \end{aligned}$	$\begin{aligned} & 35 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TRANSMIT/RECEIVE MODE SPECIFICATIONS						
$t_{\text {triL }}$	Propagation Delay from Transmit Mode to 	$\begin{aligned} & C D=0.4 \mathrm{~V}(\text { Figure } B) \\ & S 1=0, \mathrm{R} 4=100 \Omega, C 3=5 \mathrm{pF} \\ & S 2=1, \mathrm{R} 3=1 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \end{aligned}$		30	40	ns
${ }_{\text {t }}$	Propagation Delay from Transmit Mode to Receive a Logical "1", T//̄ to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V},(\text { Figure } B) \\ & \mathrm{S} 1=1, \mathrm{R} 4=100 \Omega, \mathrm{C} 3=5 \mathrm{pF} \\ & \mathrm{~S} 2=0, \mathrm{R} 3=5 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \end{aligned}$		28	40	ns
$t_{\text {RTH }}$	Propagation Delay from $\overline{\text { Receive }}$ Mode to Transmit a Logical "1", T/ \bar{R} to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}(\text { Figure } B) \\ & S 1=0, R 4=1 \mathrm{k}, \mathrm{C} 3=300 \mathrm{pF} \\ & \mathrm{~S} 2=1, \mathrm{R} 3=300 \Omega, \mathrm{C} 2=5 \mathrm{pF} \end{aligned}$		28	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} / \mathrm{max}$ limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

Note: C1 includes test fixture capacitance.
FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (Continued)

Note: C2 and C3 include test fixture capacitance.
TL/F/8793-6
FIGURE B. Propagatlon Delay from T/̄̄ to A Port or B Port

Note: C4 includes test fixture capacitance.
Port input is in a fixed logical
condition. See AC table.
FIGURE C. Propagation Delay to/from TRI-STATE from CD to A Port or B Port

DP8307A 8-Bit TRI-STATE ${ }^{\circledR}$
 Bidirectional Transceiver (Inverting)

General Description

The DP8307A is a high speed Schottky 8-bit TRI-STATE bidirectional transceiver designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. It is capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (V OH) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, it features glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.
DP8303A and DP7304B/DP8304B are featured with Trans$\mathrm{mit} / \overline{\text { Receive }}(\mathrm{T} / \overline{\mathrm{R}}$) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 is featured with Transmit (T) and $\overline{\text { Receive }}(\overline{\mathrm{R}})$ control inputs.

Features

- 8-bit bidirectional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading

■ Output high votlage interfaces with TTL, MOS, and CMOS

- $48 \mathrm{~mA} / 300 \mathrm{pF}$ bus drive capability
- Pinouts simplify system interconnections
- Independent \bar{T} and $\overline{\mathrm{R}}$ controls for versatility
- Compact 20 -pin dual-in-line package
- Bus port glitch free power up/down

Logic and Connection Diagrams

TL/F/8794-1

Logic Table

Control Inputs		Resulting Conditions	
$\overline{\text { Transmit }}$	$\overline{\text { Receive }}$	A Port	B Port
1	0	OUT	IN
0	1	IN	OUT
1	1	TRI-STATE	TRI-STATE
0	0	Both Active*	

"This is not an intended logic condition and may cause oscillations.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
\quad Cavity Package	1667 mW
Molded Package	1832 mW

*Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Lead Temperature (soldering, 4 sec .)
$260^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
A PORT (A0-A7)							
V_{IH}	Logical "1" Input Voltage	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}$				0.7	V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$\mathrm{V}_{\mathrm{CC}}-0.7$		V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.7	3.95		V
V_{OL}	Logical "0" Output Voltage	$\begin{aligned} & \overline{\mathrm{T}}=2.0 \mathrm{~V}, \\ & \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.35	0.5	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.3	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & \bar{T}=2.0 \mathrm{~V}, \overline{\mathrm{~B}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{O}}=\mathrm{OV}, \\ & \mathrm{~V}_{\mathrm{CC}}=\operatorname{Max},(\text { Note } 4) \end{aligned}$		-10	-38	-75	mA
I_{IH}	Logical "1" Input Current	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\overline{\mathrm{R}}=\overline{\mathrm{T}}=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=5.25 \mathrm{~V}$				1	mA
ILL	Logical '0"' Input Current	$\overline{\mathrm{T}}=\mathrm{V}_{\text {IL }}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
Iod	Output/Input TRI-STATE Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$
B PORT (B0-B7)							
V_{IH}	Logical " 1 " Input Voltage	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$				0.7	V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \hline \overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\mathrm{CC}}-0.8$		V
			$\mathrm{IOH}=-5 \mathrm{~mA}$	2.7	3.9		V
			$\mathrm{IOH}^{\text {O }}=-10 \mathrm{~mA}$	2.4	3.6		V
V_{OL}	Logical "0" Output Voltage	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{IOL}^{\prime}=20 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & \overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \text { (Note 4) } \end{aligned}$		-25	-50	-150	mA
${ }_{1}$	Logical "1" Input Current	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\overline{\mathrm{T}}=\overrightarrow{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1	mA
IIL	Logical "0" Input Current	$\bar{T}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\bar{T}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
IOD	Output/Input TRI-STATE Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}$			+200	$\mu \mathrm{A}$

DC Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
CONTROL INPUTS $\overline{\mathbf{T}}, \overline{\mathrm{R}}$							
V_{IH}	Logical "1" Input Voltage			2.0			V
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage					0.7	V
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.5	20	$\mu \mathrm{A}$
1	Maximum Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1.0	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	$\overline{\mathrm{R}}$		-0.1	-0.25	mA
			\bar{T}		-0.25	-0.5	mA
VCLAMP	Input Clamp Voltage	$\mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$			-0.8	-1.5	V

POWER SUPPLY CURRENT

ICC	Power Supply Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$		70	100	mA
		$\overline{\mathrm{~T}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INA}}=\overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$		100	150	mA

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A PORT DATA/MODE SPECIFICATIONS						
$t_{\text {PDHLA }}$	Propagation Delay to a Logical "0" from B Port to A Port	$\begin{aligned} & \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		8	12	ns
tpdLHA	Propagation Delay to a Logical " 1 " from B Port to A Port	$\begin{aligned} & \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		11	16	ns
$t_{\text {PLIA }}$	Propagation Delay from a Logical " 0 " to TRI-STATE from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		10	15	ns
${ }_{\text {tPHZA }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
$t_{\text {PZLA }}$	Propagation Delay from TRI-STATE to a Logical " 0 " from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T}=2.4 \mathrm{~V}(\text { Figure } \mathrm{B}) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		25	35	ns
$t_{\text {PZHA }}$	Propagation Delay from TRI-STATE to a Logical " 1 " from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{B}) \\ & \mathrm{S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		24	35	ns
B PORT DATA/MODE SPECIFICATIONS						
$t_{\text {PDHLB }}$	Propagation Delay to a Logical " 0 " from A Port to B Port	$\begin{aligned} & \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{gathered} 12 \\ 8 \end{gathered}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PDLHB }}$	Propagation Delay to a Logical " 1 " from A Port to B Port	$\begin{aligned} & \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{aligned} & 23 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t PLZB }}$	Propagation Delay from a Logical " 0 " to TRI-STATE from \bar{T} to B Port	$\begin{aligned} & A 0 \text { to } A 7=2.4 \mathrm{~V}, \overline{\mathrm{~A}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & S 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		13	18	ns
${ }_{\text {tPHZB }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from \bar{T} to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
${ }_{\text {tPZLB }}$	Propagation Delay from TRI-STATE to a Logical " 0 " from T to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=1, \mathrm{R} 5=100 \Omega, \mathrm{C} 4=300 \mathrm{pF} \\ & \text { S3 }=1, R 5=667 \Omega, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 32 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PZHB }}$	Propagation Delay from TRI-STATE to a Logical " 1 " from \bar{T} to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min /max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

TL/F/8794-3

Note: C1 includes test fixture capacitance.
FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

TL/F/8794-5

TL/F/8794-6
Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC Table
FIGURE B. Propagation Delay to/from TRI-STATE from $\overline{\mathrm{R}}$ to A Port and $\overline{\mathbf{T}}$ to B Port

DP7308/DP8308 8-Bit TRI-STATE ${ }^{\circledR}$ Bidirectional Transceiver (Non-Inverting)

General Description

The DP7308/DP8308 are high speed Schottky 8-bit TRISTATE bidirectional transceivers designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.
DP7308/DP8308 are featured with $\overline{\text { Transmit }}(\overline{\mathrm{T}}$) and Receive ($\overline{\mathrm{R}}$) control inputs.

Features

- 8-bit bidirectional data flow reduces system package count
■ Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading

■ Output high voltage interfaces with TTL, MOS, and CMOS

- $48 \mathrm{~mA} / 300 \mathrm{pF}$ bus drive capability
- Pinouts simplify system interconnections
- Independent \bar{T} and $\overline{\mathrm{R}}$ controls for versatility

■ Compact 20 -pin dual-in-line package
■ Bus port glitch free power up/down

Logic and Connection Diagrams

TL/F/8795-1

Logic Table

Control Inputs		Resulting Conditions	
Transmit	$\overline{\text { Receive }}$	A Port	B Port
1	0	OUT	IN
0	1	IN	OUT
1	1	TRI-STATE	TRI-STATE
0	0	Both Active*	

*This is not an intended logic condition and may cause oscillations.

TL/F/8795-2
Top View
Order Number DP7308J, DP8308J or DP8308N
See NS Package Number J20A or N20A

Absolute Maximum Ratings (Note 1)	
If Milltary/Aerospace specifled d please contact the National Se Office/Distributors for avallabllity	ces are required, Iconductor Sales d speclfications.
Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1667 mW
Molded Package	1832 mW
Lead Temperature (soldering, 4 sec.)	$260^{\circ} \mathrm{C}$
*Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC})			
DP7308	4.5	5.5	V
DP8308	4.75	5.25	V
Temperature (T_{A})			
DP7308	-55	+125	${ }^{\circ} \mathrm{C}$
DP8308	0	+70	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
A PORT (A0-A7)							
V_{IH}	Logical "1" Input Voltage	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}$		2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}$	DP8308			0.8	V
			DP7308			0.7	V
V_{OH}	Logical "1" Output Voltage	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$V_{C C}-0.7$		V
			$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.7	3.95		V
V ${ }_{\text {OL }}$	Logical "0" Output Voltage	$\begin{aligned} & \bar{T}=2.0 \mathrm{~V}, \\ & \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}(8308)$		0.35	0.5	V
			$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$ (both)		0.3	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & \overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\operatorname{Max}(\text { Note } 4) \end{aligned}$		-10	-38	-75	mA
${ }_{1 / \mathrm{H}}$	Logical "1" Input Current	$\overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\overrightarrow{\mathrm{R}}=\overline{\mathrm{T}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1	mA
IIL	Logical '0" Input Current	$\overline{\mathrm{T}}=\mathrm{V}_{\text {IL }}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
lod	Output/Input TRI-STATE Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$
B PORT (B0-B7)							
V_{IH}	Logical "1" Input Voltage	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$	DP8308			0.8	V
			DP7308			0.7	V
V_{OH}	Logical "1" Output Voltage	$\bar{T}=V_{l L}, \bar{A}=2.0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{C C}-0.8$		V
			$\mathrm{IOH}=-5 \mathrm{~mA}$	2.7	3.9		V
			$\mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.6		V
V_{OL}	Logical "0" Output Voltage	$\bar{T}=V_{1 L}, \bar{R}=2.0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$		0.4	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & \overline{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max (Note 4) } \end{aligned}$		-25	-50	-150	mA
$\mathrm{IIH}^{\text {H}}$	Logical "1" Input Current	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1	mA
I/L	Logical '0" Input Current	$\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$			-0.7	-1.5	V
IOD	Output/Input TRI-STATE Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}$			+200	$\mu \mathrm{A}$

DC Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
CONTROL INPUTS $\overline{\mathbf{T}}, \overline{\mathbf{R}}$							
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage			2.0			V
VIL	Logical "0" Input Voltage		DP8308			0.8	V
			DP7308			0.7	\checkmark
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{1 H}=2.7 \mathrm{~V}$			0.5	20	$\mu \mathrm{A}$
11	Maximum Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IH }}=5.25 \mathrm{~V}$				1.0	mA
ILL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	$\overline{\mathrm{R}}$		-0.1	-0.25	mA
			$\overline{\mathrm{T}}$		-0.25	-0.5	mA
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{l}_{\mathrm{N}}=-12 \mathrm{~mA}$			-0.8	-1.5	V
POWER SUPPLY CURRENT							
Icc	Power Supply Current	$\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$			70	100	mA
		$\overline{\mathrm{T}}=\mathrm{V}_{\text {INA }}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}$			90	140	mA

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A PORT DATA/MODE SPECIFICATIONS						
$t_{\text {POHLA }}$	Propagation Delay to a Logical " 0 " from B Port to A Port	$\begin{aligned} & \bar{T}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		14	18	ns
tpdLha	Propagation Delay to a Logical " 1 " from B Port to A Port	$\begin{aligned} & \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		13	18	ns
tplza	Propagation Delay from a Logical "0" to TRI-STATE from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{B}) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		11	15	ns
${ }_{\text {t }}^{\text {PHZA }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{BO} \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
${ }^{\text {t PZLA }}$	Propagation Delay from TRI-STATE to a Logical " 0 " from $\overline{\mathrm{R}}$ to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B} \text {) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		24	35	ns
${ }_{\text {t }}^{\text {PZHA }}$	Propagation Delay from TRI-STATE to a Logical " 1 " from $\overline{\mathrm{R}}$ to A Port	BO to $\mathrm{B} 7=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}$ (Figure B) $\mathrm{S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF}$		21	30	ns

B PORT DATA/MODE SPECIFICATIONS

tPDHLB	Propagation Delay to a Logical "0" from A Port to B Port	$\begin{aligned} & \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } A \text {) } \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 18 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PDLL }}$	Propagation Delay to a Logical "1" from A Port to B Port	$\begin{aligned} & \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}$ PLZB	Propagation Delay from a Logical " 0 " to TRI-STATE from T to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$	13	18	ns
${ }^{\text {tPHZB }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from T to B Port	$\begin{aligned} & \mathrm{AO} \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$	8	15	ns
${ }_{\text {tpZLB }}$	Propagation Delay from TRI-STATE to a Logical " 0 " from T to B Port	$\begin{aligned} & A 0 \text { to } A 7=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure B) } \\ & \mathrm{S} 3=1, \mathrm{R} 5=100 \Omega, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=1, \mathrm{R} 5=667 \Omega, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {tPZHB }}$	Propagation Delay from TRI-STATE to a Logical " 1 " from T to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } B) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC Electrical Characteristics (Continued)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min /max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

TL/F/8795-4
Note: C1 Includes test fixture capacitance.
FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

TL/F/8795-6
Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC Table.
FIGURE B. Propagation Delay to/from TRI-STATE from $\overline{\mathbf{R}}$ to A Port and $\overline{\mathrm{T}}$ to B Port

DS26S10C/DS26S10M/DS26S11C/DS26S11M

Quad Bus Transceivers

General Description

The DS26S10 and DS26S11 are quad Bus Transceivers consisting of 4 high speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 V and 4 high speed bus receivers. Each driver output is connected internally to the high speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving 10 Schottky TTL unit loads.
An active low enable gate controls the 4 drivers so that outputs of different device drivers can be connected together for party-line operation.
The bus output high-drive capability in the low state allows party-line operation with a line impedance as low as 100Ω. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2 V .

The DS26S10 and DS26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has 2 ground pins to improve ground current handling and allow close decoupling between $V_{C C}$ and ground at the package. Both GND 1 and GND 2 should be tied to the ground bus external to the device package.

Features

- Input to bus is inverting on DS26S10
- Input to bus is non-inverting on DS26S11
- Quad high speed open-collector bus transceivers

■ Driver outputs can sink 100 mA at 0.8 V maximum

- Advanced Schottky processing
m PNP inputs to reduce input loading

Logic and Connection Diagrams

 DS26S10

TL/F/5802-1 Dual-In-Line Package

TL/F/5802-3
Top View
Order Number DS26S10CJ, DS26S10MJ
or DS26S10CN
See NS Package Number J16A or N16A

DS26S11

TL/F/5802-2
Dual-In-Line Package

TL/F/5802-4
Top View
Order Number DS26S11CJ, DS26S11MJ or DS26S11CN
See NS Package Number J16A or N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Temperature (Ambient) Under Bias
Supply Voltage to Ground Potential
DC Voltage Applied to Outputs for
High Output State
DC Input Voltage
Output Current, Into Bus
Output Current, Into Outputs (Except Bus) 30 mA
DC Input Current $\quad-30 \mathrm{~mA}$ to +5 mA

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1433 mW
Molded Package 1362 mW
-Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(V_{C C}\right)$			
DS26S10C, DS26S11C	4.75	5.25	V
DS26S10M, DS26S11M	4.5	5.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS26S10C, DS26S11C	0	+70	${ }^{\circ} \mathrm{C}$
DS26S10M, DS26S11M	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Unless otherwise noted)

Symbol	Parameter	Conditions (Note 1)		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{OH}	Output High Voltage (Receiver Outputs)	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Military	2.5	3.4		V
			Commercial	2.7	3.4		V
V_{OL}	Output Low Voltage (Receiver Outputs)	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$				0.5	V
V_{IH}	Input High Level (Except Bus)	Guaranteed Input Logical High for All Inputs		2.0			V
$V_{\text {IL }}$	Input Low Level (Except Bus)	Guaranteed Input Logical Low for All inputs				0.8	V
V_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$				-1.2	V
IIL	Input Low Current (Except Bus)	$V_{C C}=M a x, V_{I N}=0.4 \mathrm{~V}$	Enable			-0.36	mA
			Data			-0.54	mA
I_{H}	input High Current (Except Bus)	$V_{C C}=\operatorname{Max}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	Enable			20	$\mu \mathrm{A}$
			Data			30	$\mu \mathrm{A}$
1	Input High Current (Except Bus)	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{Max},($ Note 3)	Military	-20		-55	mA
			Commercial	-18		-60	mA
ICCL	Power Supply Current (All Bus Outputs Low)	$\mathrm{V}_{\mathrm{CC}}=$ Max, Enable $=$ GND	DS26S10		45	70	mA
			DS26S11			80	mA

Bus Input/Output Characteristics

Symbol	Parameter	Conditions (Note 1)			Min	Typ (Note 2)	Max	Units
V_{OL}	Output Low Voltage	$V_{C C}=M i n$	Military	$\mathrm{l}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.33	0.5	V
				$\mathrm{l}_{\mathrm{OL}}=70 \mathrm{~mA}$		0.42	0.7	
				$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.51	0.8	
			Commercial	$\mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.33	0.5	
				$\mathrm{I}_{\mathrm{OL}}=70 \mathrm{~mA}$		0.42	0.7	
				$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.51	0.8	
lo	Bus Leakage Current	$V_{C C}=$ Max		$\mathrm{V}_{\mathrm{O}}=0.8 \mathrm{~V}$			-50	$\mu \mathrm{A}$
			Military	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			200	
			Commercial	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$V_{\text {TH }}$	Receiver Input High Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$		Military	2.4	2.0		V
				Commercial	2.25	2.0		
V_{TL}	Receiver Input Low Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$		Military		2.0	1.6	V
				Commercial		2.0	1.75	

Note 1: For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type.
Note 2: Typical limits are at $V_{C C}=5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
Note 3: Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
tPLH	Data Input to Bus	$\mathrm{R}_{\mathrm{B}}=50 \Omega, \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}($ Note 1)	DS26S10		10	15	ns
tPHL	Data Input to Bus				10	15	ns
tpLH	Data Input to Bus		DS26S11		12	19	ns
$\mathrm{t}_{\text {PHL }}$	Data Input to Bus				12	19	ns
$\mathrm{t}_{\text {PLH }}$	Enable Input to Bus		DS26S10		14	18	ns
$\mathrm{t}_{\mathrm{PHL}}$	Enable Input to Bus				13	18	ns
$\mathrm{t}_{\mathrm{PLH}}$	Enable Input to Bus		DS26S11		15	20	ns
$\mathrm{t}_{\text {PHL }}$	Enable Input to Bus				14	20	ns
tPLH	Bus to Receiver Out	$\begin{aligned} & \mathrm{R}_{\mathrm{B}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}(\text { Note } 1), \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$			10	15	ns
$t_{\text {PHL }}$	Bus to Receiver Out				10	15	ns
t_{r}	Bus	$\mathrm{R}_{\mathrm{B}}=50 \Omega, \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}($ Note 1)		4.0	10		ns
$t_{\text {f }}$	Bus			2.0	4.0		ns

Note 1: Includes probe and jig capacitance.

Truth Tables

DS26S10				DS26S11			
Inputs		Outputs		Inputs		Outputs	
\bar{E}	1	\bar{B}	Z	\bar{E}	1	\bar{B}	Z
L	L	H	L	L	L	L	H
L	H	L	H	L	H	H	L
H	X	Y	\bar{Y}	H	X	Y	\bar{Y}

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Y=$ Voltage level of bus (assumes control by another bus transceiver)

Typical Application

TL/F/5802-5
AC Test Circuit and Switching Time Waveforms

TL/F/5802-6
Note 1: Includes probe and jig capacitance.

TL/F/5802-7

Typical Performance Characteristics

TL/F/5802-8
TL/F/5802-9

Schematic Diagram

TL/F/5802-10

DS3662 Quad High Speed Trapezoidal ${ }^{\text {TM }}$ Bus Transceiver

General Description

The DS3662 is a quad high speed Schottky bus transceiver intended for use with terminated 120Ω impedance lines. It is specifically designed to reduce noise in unbalanced transmission systems. The open collector drivers generate precise trapezoidal waveforms with rise and fall times of 15 ns (typical), which are relatively independent of capacitive loading conditions on the outputs. This reduces noise coupling to the adjacent lines without any appreciable impact on the maximum data rate obtainable with high speed bus transceivers. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity. Tightly controlled threshold levels on the receiver provide equal rejection to both negative and positive going noise pulses on the bus.
The external termination is intended to be a 180Ω resistor from the bus to 5 V logic supply, together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. A two input NOR gate is provided to disable all drivers in a package simultaneously.

Features

- Pin to pin functional replacement for DS8641
- Guaranteed AC specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Temperature insensitive receiver thresholds track bus logic level
- Trapezoidal bus waveforms reduce noise coupling to adjacent lines
- Precision receiver thresholds provide maximum noise immunity and symmetrical response to positive and negative going pulses
- Open collector driver output allows wire-OR connection
- High speed Schottky technology
- $15 \mu \mathrm{~A}$ typical bus termination current with normal V_{CC} or with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Glitch free power up/down protection on the driver output
- TTL compatible driver and disable inputs, and receiver outputs

Block and Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifled devices are required,	
please contact the National Semlconductor Sales	
Office/Distributors for avallablilty and specifications.	
Supply Voltage	7 V
Input and Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1509 mW
Molded Package	1476 mW
Lead Temperature (Soldering, 4 sec.$)$	$260^{\circ} \mathrm{C}$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablility and specifications.

Input and Output Voltage
5.5

Storage Temperature Range
1509 mW
1476 mW
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	70	${ }^{\circ} \mathrm{C}$

*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Condltions	MIn	Typ	Max	Unlts
DRIVER AND DISABLE INPUTS						
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage				0.8	V
1	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
I_{H}	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-1	-1.6	mA
$\mathrm{V}_{\text {CL }}$	Input Diode Clamp Voltage	$\mathrm{ICLAMP}=-12 \mathrm{~mA}$		-0.8	-1.5	V
DRIVER OUTPUT/RECEIVER INPUT						
V ${ }^{\text {OLB }}$	Low Level Bus Voltage	$\mathrm{V}_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\text {BUS }}=100 \mathrm{~mA}$		0.6	0.9	V
$\mathrm{IIHB}^{\text {a }}$	Maximum Bus Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{~V}_{C C}=5.25 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
IILB	Maximum Bus Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Receiver Threshold	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=16 \mathrm{~mA}$	1.90	1.70		V
$\mathrm{V}_{\text {IL }}$	Low Level Receiver Threshold	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IOH}=-400 \mu \mathrm{~A}$		1.70	1.50	V
RECEIVER OUTPUT						
V OH	Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	3.2		V
VOL	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.35	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DIS}}=0.8 \mathrm{~V}, \mathrm{~V}_{I \mathrm{~N}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V},(\text { Note 4) } \end{aligned}$	-40	-70	-100	mA
ICC	Supply Current	$\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$		50	90	mA

Switching Characteristics (Notes 2 and 3)

Symbol	Parameter	Condlitons	Min	Typ	Max	Units
PROPAGATION DELAYS						
$t_{\text {PLHD }}$	Disable to Bus "1"	Figure 1		25	35	ns
tPHLD	Disable to Bus " 0 "			25	35	ns
tPLHB	Driver Input to Bus "1"	Figure 2		20	30	ns
$t_{\text {PHLB }}$	Driver Input to Bus " 0 "			20	30	ns
$t_{\text {PLHR }}$	Bus to Logical "1" Receiver Output	Figure 3		25	40	ns
tPHLR	Bus to Logical "0" Receiver Output			25	40	ns
NOISE IMMUNITY						
$\mathrm{t}_{\mathrm{rB}} \mathrm{t}_{\mathrm{fB}}$	Rise and Fall Times (10\%-90\%) of the Driver Output	Figure 2	10	15	20	ns
$t_{n R}$	Receiver Noise Rejection Pulse Width	No Response at Receiver Output as per Figure 4		20	10	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" and "Recommended Operating Conditions" provide conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the supply and temperature range listed in the table of "Recommended Operating Conditions". All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

AC Test Circuits and Switching Waveforms

TL/F/5803-3
Note: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$. Pulse width $=500 \mathrm{~ns}$ measured between .1 .5 V levels. $\mathrm{f}=1 \mathrm{MHz}$.
FIGURE 1. Disable Delays

Note: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$. Puise width $=500 \mathrm{~ns}$ measured between 1.5 V levels. $\mathrm{f}=1 \mathrm{MHz}$.
FIGURE 2. Driver Propagation Delays

TL/F/5803-7
Note: $t_{f}=t_{f}=15 \mathrm{~ns}$. Pulse width $=500 \mathrm{~ns}$ measured between 1.7 V levels. $\mathrm{f}=1 \mathrm{MHz}$.
FIGURE 3. Receiver Propagation Delays

TL/F/5803-8

TL/F/5803-9

$$
\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}
$$

(a) Recelver Output (V_{O}) to

Remain Greater than 2.2 V

TL/F/5803-10
$t_{r}=t_{f}=2.5 \mathrm{~ns}$
(b) Receiver Output (VO) to Remain Less than 0.7 V

FIGURE 4. Receiver Nolse Immunity: "No Response at Output" Input Waveforms

DS3662-The Bus Optimizer

I. INTRODUCTION

A single ended Bus is an unbalanced Data Transmission medium, which is timeshared by several system elements. Like any unbalanced system, it is highly susceptible to com-mon-mode noise, such as ground noise and crosstalk. In general, the latter determines the maximum physical length of the Bus that can be incorporated with acceptable reliability. Crosstalk is a major problem in high speed computer Buses which employ Schottky Transceivers for increased data rate capability. It is therefore highly desirable to minimize crosstalk noise in Bus circuits to allow for longer Buses and to provide higher system reliability.
This article describes the operation of the DS3662 Quad High Speed Trapezoidal Bus Transceiver, which has been specially designed to minimize crosstalk problems. The Driver generates precise Trapezoidal waveforms that reduce noise coupling to adjacent Bus channels. The Receiver uses a low pass filter, whose time constant is matched to the Driver slew rate to provide maximum noise rejection with acceptable signal delay characteristics. Precision high speed circuitry optimizes noise immunity without sacrificing the high data rate capability of Schottky Transceivers.

II. THE PROBLEM

Conventional Bus Drivers are designed to provide high output currents for charging and discharging relatively large Bus capacitances quickly. These high speed transitions are characterized by peak slew rates of up to $5 \mathrm{~V} / \mathrm{ns}$ around the mid-region of the transition. This can cause considerable noise coupling to adjacent lines, commonly referred to as crosstalk. Crosstalk also includes noise induced by sources

National Semiconductor
Application Note 259
R. V. Balakrishnan

external to the Bus. Additional noise may be generated due to reflections at imperfect terminations.
Bus Receviers are designed to respond to high speed transitions and to provide low propagation delays. Unfortunately, their fast response results in high noise sensitivity. The combined effect of the noise on the Bus and the sensitivity of the Receiver to the noise severely limits the Bus performance.

III. THE SOLUTION

The above situation can be considerably improved by employing noise reduction techniques in both the Driver and the Receiver circuits. Slew rate control can be used in the Driver to reduce crosstalk, and Receiver noise sensitivity can be reduced by using a low pass filter at its input. These techniques are commonly used in line transmission circuits where the associated data rates in general are considerably lower. However, these techniques do present some difficulties in high speed Bus circuits. Increased rise and fall times, resulting from slew rate control, can affect data rates unless care is taken to limit the maximum rise and fall times to minimum pulse width requirements. With any appreciable slew rate control, the rise and fall times of the resulting Driver output waveform will be comparable to the pulse widths at maximum data rates. This condition dictates high fidelity of the transmitted waveform and precise Receiver thresholds at the middle of the Bus voltage swing in order to minimize pulse width distortion. Figure 1 illustrates the different sources of pulse width distortion due to the trapezoidal nature of the signal.

distortion due to off centered RECEIVER THRESHOLDS (VTH)

distortion due to non symmetrical thapezoidal driver output waveform

FIGURE 1. Pulse Width Distortion

The low pass filter in the Receiver should provide optimum noise rejection without introducing excessive delay in passing the signal waveform. In addition, the Receiver should have a symmetrical response to positive and negative going transitions in order to maintain a low level of pulse width distortion, as well as equal noise rejection to positive and negative going noise pulses. The response of an ideal low pass filter to signal and noise pulses is shown in Figure 2.
The DS3662 overcomes these and other problems by using high speed linear circuitry with on-chip capacitors for controlling slew rate and low pass filtering. The Driver is of open collector type intended for use with terminated 120Ω Buses. The external termination consists of a 180Ω resistor from the Bus to +5 V logic supply with a 390Ω resistor from the Bus to ground. Such a termination results in a Bus logic high level of 3.4 V with V_{CC} at 5 V (See Figure 2). The Bus can be terminated at one or both ends as shown in Figure 3.

IV. THE DRIVER

Using a Miller integrator circuit, the Driver generates a linearly rising and falling waveform with a constant slew rate of $0.2 \mathrm{~V} / \mathrm{ns}$ (typical) during the entire period of transition. This corresponds to typical rise and fall times of 15 ns . Figure 4 compares the output waveform of a typical Schottky Driver and the DS3662 under different capacitive loads. It should be noted that even under heavy loading, the regular Drivers have peak slew rates that are considerably higher than the average. In contrast, the trapezoidal waveform provides considerably lower slew rate with slightly higher rise and fall times. Such an increase in rise and fall time has very little effect on data rates. In fact, the high fidelity of the transmitted waveform allows pulse widths as low as 20 ns to be transmitted on the Bus, as shown in Figure 5.
The block diagram of the Driver is shown in Figure 6 and 7. When a high to low transition is applied to the input, switch ' S ' opens and node ' A ' is pulled low by the current source ' 1 '. This switches the amplifier output to a high state. The slew rate of the output transition is limited by the charging current through the capacitor, a constant value equal to I/C volts/sec.

TL/F/5857-3
FIGURE 2. Ideal Receiver Low Pass Filter Response

FIGURE 3. Bus Termination

(1)-Typical High Speed Driver Output Unloaded
(2)-Typical High Speed Driver Output Loaded
(3)-Typical Output of Controlled Slew Rate Driver Which is Load Independent

$$
\begin{array}{ll}
\text { (1) } t_{\mathrm{r}}=t_{\mathrm{f}} \sim 3 \mathrm{~ns} & \text { Note: } \text { The word "loading" here } \\
\text { refers to capacitive } \\
\text { (2) } t_{\mathrm{r}}=t_{\mathrm{f}} \sim 10 \mathrm{~ns} & \text { loading only. } \\
\text { (3) } t_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}} \sim 15 \mathrm{~ns} &
\end{array}
$$

FIGURE 4. Waveform Comparison

FIGURE 6. Driver

TL/F/5857-7

TL/F/5857-8

FIGURE 7. Driver

Likewise, when a low to high transition is applied to the input, switch ' S ' closes and node ' A ' is pulled up by the ' 21 ' current source, switching the amplifier output to a low state. The capacitor now has an equal but opposite charging current which once again limits the slew rate to -I/C volts/ sec. The inherent tracking ability of I.C. current sources provide equal rise and fall times resulting in a symmetrical output waveform.
The on-chip capacitors are fabricated using back to back junction diodes. The use of junction capacitors reduces die area and the back to back connection allows operation with either polarity. The capacitor terminal, connected to the amplifier input, remains at $V_{\text {th }} \cong 1.6 \mathrm{~V}$ during the output transition. This voltage, being close to the middle of the output swing, reduces the effect of the capacitor voltage sensitivity on the output waveshape.

V. THE RECEIVER

The Receiver consists of a low pass filter followed by a high speed comparator with a typical threshold of 1.7 V (see Figure 8). This threshold value corresponds to the mid-point voltage of the 0 to 3.4 V Bus swing. It is derived from a potential divider allowing the Bus logic levels to track with $V_{C C}$ variations. If the low pass filter capacitor is voltage insensitive, this circuit will provide equal propagation delay for positive and negative going signal transitions on the Bus. In addition, it will also provide equal noise rejection to a posi-
tive and negative going pulse (see Figure 2). However, the junction capacitors, being voltage sensitive, will exhibit nonsymmetrical response in the above circuit. This problem is overcome in the DS3662 Receiver by using a back to back junction capacitor with the ground end biased at 1.7 V (see Figure 9). Although the capacitor still varies with the voltage at node ' A ', the variation is symmetrical about 1.7 V (the middle of the Bus swing) and therefore will provide an identical response to transitions of either polarity.

VI. TRANSCEIVER PERFORMANCE

The characteristics of the trapezoidal Transceiver are fully detailed in the device data sheet. Some of the more important specifications are discussed below. Both AC and DC specifications are guaranteed over a $0-70^{\circ} \mathrm{C}$ temperature range and a supply range of $4.75-5.25 \mathrm{~V}$.
The Driver typically has a propagation delay of 15 ns with a maximum of 30 ns . The Receiver propagation delays are specified at 25 ns typical and 40 ns maximum. The Driver output rise and fall times are guaranteed to be within 10 to 20 ns with a typical of 15 ns . The noise immunity of the Receiver is specified in terms of the width of a 2.5 V pulse that is guaranteed to be rejected by the Receiver (see Figure 10). The Receiver typically rejects a 20 ns pulse going positive from ground level or going negative from a 3.4 V logic 1 level. Worst case rejection is specified at 10 ns.

TL/F/5857-11
Rejects positive or negative going noise pulses of pulse widths up to 20 ns typical. Detects and propagates trapezoidal signal pulses in 20 ns typical.

FIGURE 10. Receiver Noise Immunity

The AC response of the DS3662 Driver and Receiver are depicted in Figures 11 and 12 respectively. Figure 11 shows the typical Driver output waveform as compared to a standard high speed Transceiver output. Oscillograms in Figure 12 demonstrate the ability of the Receiver to distinguish the trapezoidal signal from the noise. Here the Receiver rejects a noise pulse of 19 ns width, while accepting a narrower signal pulse ($=16 \mathrm{~ns}$) of the same amplitude (The signal is triangular since the pulse width is smaller than the rise and fall time of the Trapezoidal Driver output).
The performance of the Transceiver under actual operating condition is demonstrated in Figures 13 through 15. Oscillograms in Figure 13 clearly show the capability of the DS3662 in real life situations. Here it is compared with the DS8834 under identical conditions. The Transceivers drive a minicomputer Bus (fiat ribbon cable) 100 feet long, terminated at the far end with taps at various lengths for connecting to the Receiver input. The cable is randomly folded to generate crosstalk between the various parts. In addition a noise pulse is induced on the signal line by driving an adjacent line with a pulse generator. This corresponds to the second dominant pulse in the Bus waveforms at approximately 600 ns from the main signal pulse. As can be seen, the DS8834 with fast rise and fall times on the. Driver output generates more crosstalk and its Receiver easily responds to this crosstalk and to the externally induced noise (even though it has hysteresis!), limiting the useful Bus length to
less than 10 feet. In contrast, the DS3662's Driver generates much less crosstalk and its Receiver is immune to the induced noise even when the noise amplitude exceeds the signal amplitude as seen in the oscillogram at 50 feet. When the same experiment was repeated with the DS8641, it responded to the noise even at 10 feet as shown in Figure 14. Figure 15 shows the plots of maximum data rate versus line length for the three Transceivers discussed above under two different conditions. The graph in Figure 15a is obtained with no consideration to the pulse width distortion whereas the one in Figure $15 b$ is obtained for a maximum allowable puise width distortion of $\pm 10 \%$. A square waveform is used so that the pulse width distortion criteria will apply to both positive and negative going pulses. These graphs clearly show that the DS3662 can be used at considerably higher data rates with lower distortion for longer distances than the other two Transceivers (Figure 15b) although the others have a slightly higher data rate capability at short distances with high timing distortion (Figure 15a).

VII. CONCLUSION

The DS3662, with its combination of a trapezoidal Driver and a noise rejecting Receiver utilizing on chip capacitors, represents a significant improvement in high speed Bus circuits and a solution to Bus noise problems commonly encountered in Mini and Microcomputer systems.

TL/F/5857-14

TL/F/5857-15

TL/F/5857-16

TL/F/5857-19
FIGURE 15. Data Rate vs. Line Length

Reducing Noise on Microcomputer Buses

Abstract

This paper focuses on the noise components that have a significant impact on the performance of a high speed microcomputer bus. An overview of their nature is followed by ways to minimize their contribution by suitable design of the PC board backplane, the termination network and the bus transceiver. The DS3662 trapezoidal bus transceiver, which is specifically designed to minimize such noise on high speed buses, is presented along with its performance data. And to conclude, some possible new transceiver designs for further improvement of the bus performance are explored.

INTRODUCTION

As the microcomputer bus bandwidth is extended to handle ever increasing clock rates, the noise susceptibility of a sin-gle-ended bus poses a serious threat to the overall system integrity. Thus, it is mandatory that the various noise contributions be taken into account in the design of the bus transceiver, the PC board backplane and the bus terminations to avoid intermittent or total failure of the system.
Although noise such as crosstalk and reflections are inevitable in any practical bus configuration, their impact on the system can be determined and minimized by careful design of all three components mentioned above. The combined contribution of the noise under worst-case conditions should be within the noise margin for reliable bus operation. The design of the transceiver plays a significant role in minimizing crosstalk and reflection. The bus can be optimized for minimum noise at a given bandwidth by using a trapezoidal driver having suitable rise and fall times along with a matched low pass filtered receiver which provides a symmetrical noise margin. The DS3662 is one such transceiver, the first member in the family of trapezoidal bus transceviers available from National Semiconductor Corporation. This device represents a significant improvement in high speed bus circuit design and provides a solution to commonly encountered bus noise problems.

THE MICROCOMPUTER BUS

A typical microcomputer bus usually consists of a printed circuit board backplane with signal and ground traces on one side and a ground plane on the other. The length ranges from a few inches to several feet with as many as 32 closely spaced ($0.6^{\prime \prime}$ typical) card edge connectors. Each signal line interacts with the ground plane to form a transmission line with characteristic impedance ' Z ' in the range of $90 \Omega-120 \Omega$ typical. It is desirable to have as large

National Semiconductor
Application Note 337
R. V. Balakrishnan

a ' Z ' as possible in order to reduce the drive requirement of the bus driver and to reduce the power dissipated at the terminations. But much larger values of ' Z ' translate to significantly larger physical dimensions and therefore are not very practical.
The bus appears like a transmission line to any signal having a transition time ' $t r$ ' less than the round trip delay ' $2 \mathrm{~T}_{\mathrm{L}}$ ' of the bus. The bus delay ' T_{L} ' is given by:

$$
\begin{equation*}
T_{L}=L \sqrt{L 1 C 1} \tag{1}
\end{equation*}
$$

where $L=$ length of the bus
L1 = distributed inductance per unit length
C1 = distributed capacitance per unit length
For a typical unloaded 100Ω microstrip line, $\mathrm{C} 1 \cong 20 \mathrm{pF} / \mathrm{ft}$ and $\mathrm{L} 1 \cong 0.2 \mu \mathrm{H} / \mathrm{ft}$. Therefore, $\mathrm{T}_{\mathrm{L}}=2.0 \mathrm{~ns} / \mathrm{ft}$. This corresponds to approximately half the speed of light. However, the capacitive loading at each connector on the backplane increases the delay time significantly. The loaded delay time ' $T_{\text {LL' }}$ ' is given by:

$$
\begin{equation*}
T_{L L}=T_{L} \sqrt{1+\left(C_{L} / C_{1}\right.} \tag{2}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{L}}=$ distributed load capacitance/unit length
Given a 10 pF loading at each connector (connector + transceiver capacitance) and a $0.6^{\prime \prime}$ spacing between connectors, $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} / \mathrm{ft}$ and $\mathrm{T}_{\mathrm{LL}}=6.6 \mathrm{~ns} / \mathrm{ft}$. So even a $6^{\prime \prime}$ long bus has a $2 T_{L L}=6.6 \mathrm{~ns}$, which is higher than the transition time (t_{r}) of many high speed bus drivers. When in doubt, it is always better to use the transmission line approach than the lumped circuit approach as the latter is an approximation of the former. Also, the transmission line analysis gives more pessimistic (worst-case) values of crosstalk and reflection and is, hence, safer.

CROSSTALK REDUCTION

The crosstalk is due to the distributed capacitive coupling C_{C} and the distributed inductive coupling L_{C} between two lines. When crosstalk is measured on an undriven sense line next to a driven line (both terminated at their characteristic impedances), the near end crosstalk and the far end crosstalk have quite distinct features, as shown in Figure 1. Their respective peak amplitudes are:

$$
\begin{array}{ll}
V_{N E}=K_{N E}\left(2 T_{L}\right)\left(V_{l} / t_{r}\right) & \text { for } t_{r}>2 T_{L} \\
V_{N E}=K_{N E}\left(V_{1}\right) & \text { for } t_{r}<2 T_{L} \\
V_{F E}=K_{F E}(L)\left(V_{l} / t_{r}\right) & \tag{5}\\
\text { where } V_{l}=\text { signal swing on the drive line. }
\end{array}
$$

The coupling constants are given by the expressions:

$$
\begin{align*}
& K_{N E}=\frac{L_{(}\left(C_{C} Z+L_{C} / Z\right)}{4 T_{L}} \tag{6}\\
& K_{F E}=\frac{C_{C} Z-L_{C} / Z}{2} n s / f t \tag{7}
\end{align*}
$$

The near end component reduces to zero at the far end and vice versa. At any point in between, the crosstalk is a fractional sum of near and far end crosstalk waveforms shown. It should be noted from expressions 6 and 7 that the far end crosstalk can have either polarity whereas the near end crosstalk always has the same polarity as the signal causing it. In microstrip backplanes the far end crosstalk pulse is usually the opposite polarity of the original signal.
Although the real world bus is far from the ideal situation depicted in Figure 1, several useful observations that apply to a general case can be made:

1. The crosstalk always scales with the signal amplitude.
2. Absolute crosstalk amplitude is proportional to slew rate V_{1} / t_{r}, not just $1 / t_{r}$.
3. Far end crosstalk width is always t_{r}.
4. For $t_{r}<2 T_{L}$, the near end crosstalk amplitude $V_{N E}$ expressed as a fraction of signal amplitude V_{I} is a function of physical layout only.
5. The higher the value of ' t_{r} ' the lower the percentage of crosstalk (relative to signal amplitude).
The corresponding design implications are:
6. The noise margin expressed as a percentage of the signal swing is what's important, not the absolute noise margin. Therefore, to improve noise immunity, the percentage noise margin has to be maximized. This is achieved by reducing the receiver threshold uncertainty region and by centering the threshold between the high and low levels.
7. Smaller signal amplitude with the same transition time reduces bus drive requirements without reducing noise immunity.
8. Far end crosstalk is eliminated if the receiver is designed to reject pulses having pulse widths less than or equal to t_{r}.
9. When $t_{r}<2 T_{L}$, the near end crosstalk immunity for a given percentage noise margin has to be built into the backplane PC layout. Since $\left(\mathrm{V}_{\mathrm{NE}} / \mathrm{V}_{\mathrm{I}}\right)=\mathrm{K}_{\mathrm{NE}}$ for this case, K_{NE} should be kept lower than the available worst-case noise margin. K KE may be reduced by either increasing the spacing between lines or by introducing a ground line in between. The ground line, in addition to increasing the spacing between the signal lines, forces the electric field lines to converge on it, significantly reducing crosstalk.
10. For minimum crosstalk the rise and fall times of the signal waveform should be as large as possible consistent with the minimum pulse width requirements of the bus. A driver that automatically limits the slew rate of the transition can go a long way in reducing crosstalk.

CROSSTALK MEASUREMENT

When multiple lines on either side of the sense lines switch simultaneously the crosstalk is considerably larger, typically 3.5 times the single line switching case for microstrip backplanes. Also, the location of the drivers on the driven lines and the receiver on the sense line for worst-case crosstalk differs for the near end and far end cases as shown in Figure 2 and 3 for a uniformly loaded bus. But if the far end crosstalk is not of the opposite polarity, then the combined effect of far end and near end crosstalk could have a larger amplitude and pulse width at a point near the middle of the sense line in Figure 2. So in a general case, or in the case of a non-uniformly loaded bus, it is advisable to check the sense line at several locations along the length of the bus to determine the worst-case crosstalk. The measurement should be made for both the positive and the negative transition of the drive signal.

THE TERMINATION

A properly terminated transmission line has no reflections. But a practical microcomputer bus is neither a perfect transmission line nor is it properly terminated under all conditions. The capacitive loading at discrete locations, such as a used card slot, act as sources of reflection. However, in the limiting case when the bus is uniformly populated with a large number of modules, the bus behaves like a lower impedance transmission line. The loaded impedance ' Z_{L} ' of the bus is given by the expression:

$$
\begin{equation*}
Z_{L}=\frac{Z}{\sqrt{1+C_{L} / C_{1}}} \tag{8}
\end{equation*}
$$

where $Z=$ unloaded line impedance
Unfortunately, uniform loading of the bus is not guaranteed at all times and even if it were (by dummy loading of

TL/F/5281-2
Note: All lines terminated at both ends (not shown)
FIGURE 2. Worst-Case Far End Crosstalk Measurement

TL/F/5281-3
Note: All lines terminated at both ends (not shown)
FIGURE 3. Worst-Case Near End Crosstalk Measurement
the unused slots) Z_{L} is usually too low for proper termination of the bus. For example, a 10 pF per module loading of the 100Ω microstrip bus at $0.6^{\prime \prime}$ spacing results in a $Z_{L}=30 \Omega$. One such termination at each end will require a 200 mA drive capacity on the bus driver for a nominal 3 V swing. Such large drive currents and low value terminations increase the power dissipation of the system significantly in addition to causing other problems such as increased ground drop, inductive drops in traces due to large current being switched, etc. As a compromise the bus is usually terminated at an impedance higher than Z_{L} but less than or equal to Z. Consequently, there is always some amount of reflection present. For a perfect transmission line the reflection coefficient ' Γ ' is given by the well known expression:

$$
\begin{equation*}
\Gamma=\frac{z-R_{t}}{Z+R_{t}} \tag{9}
\end{equation*}
$$

where $Z=$ impedance of the bus

$$
\mathrm{R}_{\mathrm{t}}=\text { termination resistance }
$$

The net effect, in the general case of a nonuniformly loaded bus, is that it may take several round trip bus delays after a bus driver output transition, before the quiescent voltage level is established. However, this delay is avoided by using a bus driver that has sufficient drive to generate a large enough voltage step during the first transition to cross well beyond the receiver threshold region under the worst-case load conditions.
Figure 4 illustrates the driver output waveform under such a condition. Here the fully loaded bus (with $Z_{L}=30 \Omega$), of the previous example, is driven by the DS3662 bus transceiver at the mid point. The driver is actually driving two transmission lines of $Z_{L}=30 \Omega$ in either direction from the middle and hence the initial step is given by:

$$
\begin{equation*}
V_{1}=\left(\frac{Z_{L}}{2}\right) 2 I_{S} \tag{10}
\end{equation*}
$$

where $I_{S}=$ Standing current on the bus due to each termination
For the DS3662, the termination can be designed for 21s $=$ 100 mA and therefore:
$\mathrm{V} 1=(30 / 2) 100=1.5 \mathrm{~V}$

This value of the initial swing is large enough to cross the narrow threshold region of the receiver as shown and therefore no waiting period is required for the reflections to build up the output high level. On the negative transition the problem is less critical due to the much higher sink capability of the DS3662 during pull down.
Reflections can also be caused by resistive loading of the bus by the DC input current of the receiver. The resulting reflectoin coefficient (Γ) is given by the expression:

$$
\begin{equation*}
\Gamma=-1 / 2\left(\frac{I_{\mathrm{R}}}{I_{\mathrm{S}}}\right) \tag{11}
\end{equation*}
$$

where $I_{R}=$ receiver input current
Having a receiver with a high input impedance not only makes this component of reflection insignificant but also reduces the DC load on the driver, allowing the use of lower value termination resistors. This is particularly true when a large number of modules are connected to the bus.
The design implications of the above discussion may be summarized as follows:

1. If the driver has adequate drive to produce the necessary voltage swing under the worst-case loading ($Z_{L} / 2$), reflections do not restrict the bus performance. This translates to a 100 mA minimum drive requirement for a typical microstrip bus.
2. If the drive is insufficient, time should be allowed for the reflections to build up the voltage level before the data is sampled.
3. For signals such as clock, strobe, etc., wherein the edge is used for triggering events, it is mandatory that the driver meet the above drive requirements if delayed or multiple triggering is to be avoided.
4. An ideal TTL bus transceiver should have at least a 100 mA drive, a high input impedance receiver with a narrow threshold uncertainty region.

TL/F/5281-4
FIGURE 4. Worst-Case DS3662 Output Transition for $Z_{L}=15 \Omega$ and $R_{T}=50 \Omega$

THE DS3662 TRANSCEIVER

The DS3662 quad trapezoidal bus transceiver has been designed specifically to minimize the noise problems discussed previously. The driver generates precise trapezoidal waveforms that reduce crosstalk and the receiver uses a low pass filter to reject noise pulses having pulse widths up to the maximum driver output transition times. Precision output circuitry optimizes noise immunity without sacrificing the high data rate capability of Schottky transceivers.
Figure 5 shows the recommended configuration for microcomputer buses. The use of a 3.4 V source with a single termination resistor at each end reduces the average power dissipation of the bus. However, a two resistor termination connected between the line and the power rails, having the same Thevenin's equivalent, can be substituted for lower cost.

Using a Miller integrator circuit, the driver generates a linearly rising and falling waveform with a constant slew rate of $0.2 \mathrm{~V} / \mathrm{ns}$ (Figure 6). This corresponds to a nominal transition time of 15 ns . Figure 7 compares the output waveform of a typical high speed driver to that of DS3662 under different load conditions. It should be noted that even under heavy loading, the regular drivers have peak slew rates that are much higher than the average. On the other hand, the trapezoidal waveform has a much lower slew rate with only a slight increase in the transition time. Such an increase in the transition time has little or no effect on the data rates. In fact, the high fidelity of the DS3662 driver output waveform allows pulse widths as low as 20 ns to be transmitted on the bus.

$\mathrm{R}_{\mathrm{T}}=50 \Omega$ to 90Ω
TL/F/528i-5
FIGURE 5. Recommended Bus Termination for Heavily Loaded Microstrip Backplanes

TL/F/5281-7
FIGURE 6. DS3662 Driver

TL/F/5281-6
Note 1: Typical high speed driver output unloaded; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \approx 3 \mathrm{~ns}$
Note 2: Typical high speed driver output loaded; $t_{r}=t_{f} \approx 10 \mathrm{~ns}$
Note 3: Typical outupt of controlled slew rate driver which is load independent; $\mathrm{t}_{\mathrm{r}}=\mathbf{t}_{\mathrm{f}} \approx 15 \mathrm{~ns}$
FIGURE 7. Waveform Comparison

The receiver consists of a low pass filter followed by a high speed comparator, with a typical threshold of 1.7 V (Figure 8). The noise immunity of the receiver is specified in terms of the width of a 2.5 V pulse that is guaranteed to be rejected by the receiver. The receiver typically rejects a 20 ns pulse going positive from the ground level or going negative from the 3.4 V logic 1 level. The receiver threshold lies within a specified 400 mV region over the supply and temperature range and is centered between the low and high levels of the bus for a symmetrical noise margin.

TL/F/5281-8
FIGURE 8. DS3662 Receiver
Other features of the device include a $100 \mu \mathrm{~A}$ maximum DC bus loading specification under power ON or OFF condition and a glitch-free power up/down protection on the bus output.

Waveforms in Figure 9 demonstrate the ability of the receiver to distinguish the trapezoidal signal from noise. Here the receiver rejects a noise pulse of 19 ns width, while accepting a narrower signal pulse (16 ns) of the same peak amplitude (the signal is triangular because of the pulse width which is smaller than the transition time).
The real-world performance of the DS3662 transceiver shows an order of magnitude improvement in noise immunity over conventional transceivers under actual operating conditions (Reference \#3). The controlled rise and fall times on the driver output significantly reduces both near end and the far end crosstalk. As expected, the pulse discrimination at the receiver input virtually eliminates the far end crosstalk, even on extremely long buses (over 100 feet). The near end crosstalk, which is particularly severe on the state of the art backplanes due to the tight spacing between the signal lines, is easily accommodated by the large percentage noise margin ($>75 \%$) provided by the receiver. Field reports indicate that the DS3662 not only solves those mysterious intermittent failure problems in mini and microcomputer systems, but also helps them meet the new FCC emission requirements due to the reduced RF radiation from the bus.

WHAT NEXT?

Since crosstalk scales with the signal amplitude, reducing the signal swing has not effect on the noise immunity as long as the percentage noise margin remains the same. On the other hand, there are several advantages in having lower signal swing. It reduces the drive current requirement of the driver thus reducing its output capacitance. Lower capacitive loading on the bus decreases its impedance reducing the drvie requirement even further. Having a lower current drive not only reduces the power dissipated at the terminations but also allows better matching of the termination due to the increased line impedance. In the ideal limiting case the driver has negligible loading effect on the bus and thus allows perfect termination under all load conditions. In practice however, there are some obvious limitations. The receiver thresholds have to be maintained within tighter limits at lower signal swings to maintain the same percentage noise margin. Also, the capacitive loading is difficult to reduce beyond a certain point, due to the diminishing return in the way of lower current rating, as the loaded bus impedance approaches the unloaded impedance. However, the capacitance of an open collector driver output can be reduced significantly by using a Schottky diode as shown in Figure 10. The diode isolates the driver capacitance when the output is disabled. Using reduced signal swings and precise receiver thresholds, such a transceiver can provide sig-
nificant improvements in microcomputer bus performance. The transceiver design presented in Figure 10 is being considered for incorporation into the Futurebus standard by the IEEE.

CONCLUSION

A well designed bus transceiver goes a long way in improving the noise immunity of a single-ended TTL bus. Further improvements in bus performance may come from the use of reduced voltage swings and better transceiver designs for lower bus loading and tighter receiver threshold limits. Although such approaches may not be TTL compatible, the improvement in performance gained may indeed justify a new standard for bus transceivers.

REFERENCES

1) Bill Fowler, "Transmission Line Characteristics," National Semiconductor-Application Note 108, May 1974.
2) A. Feller, H. P. Kaupp, and J. J. Digiacomo, "Crosstalk And Reflections In High Speed Digital Systems," proceed-ings-Fall Joint Computer Conference, pp. 511-525, 1965
3) R. V. Balakrishnan, "Bus Optimizer," National Semicon-ductor-Application Note 259, April 1981
4) David Montgomery, "Borrowing RF Techniques For Digital Design," Computer Design, pp. 207-217, May 1982
5) R. V. Balakrishnan, "Eliminating Crosstalk Over Long Distance Busing, ' Computer Design, pp. 155-162, March 1982

DS3667 TRI-STATE® Bidirectional Transceiver

General Description

The DS3667 is a high-speed Schottky 8-channel bidirectional transceiver designed for digital information and communication systems. Pin selectable totem-pole/open collector outputs are provided at all driver outputs. This feature, together with the Dumb Mode which puts both driver and receiver outputs in TRI-STATE at the same time, means higher flexibility of system design. PNP inputs are used at all driver inputs for minimum loading, and hysteresis is provided at all receiver inputs for added noise margin. A power up/down protection circuit is included at all outputs to provide glitch-free operation during $V_{C C}$ power up or down.

Features

- 8-channel bidirectional non-inverting transceivers
- Bidirectional control implemented with TRI-STATE output design
- High speed Schottky design
- Low power consumption
- High impedance PNP inputs (drivers)
- Pin selectable totem-pole/open collector outputs (drivers)
m 500 mV (typ) input hysteresis (receivers)
- Power up/down protection (glitch-free)
- Dumb Mode capability

Connection Diagram

Logic Diagram

Note 1:-D Denotes driver
Note 2: \rightarrow Denotes recelver

Functional Truth Table

Control Input Level		Data Transcelvers			
TE	PE	Mode	Bus Port	Terminal Port	
H	H	T	Totem-Pole Output	Input	
H	L	T	Open Collector Output	Input	
L	H	R	Input	Output	
L	L	D	TRI-STATE	TRI-STATE	

H: High Level Input
L: Low Level Input
T : Transmitting Mode
R: Receiving Mode
D: Dumb Mode

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devic please contact the Natlonal Semic Offlce/Dlstributors for avallabllity and	ces are required, iconductor Sales d specifications.
Supply Voltage (V_{CC})	7.0 V
Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Molded Package	1832 mW
Lead Temperature (Soldering, 4 seconds)	s) $260^{\circ} \mathrm{C}$
Derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Unlts
$V_{\text {CC, Supply Voltage }}$	4.75	5.25	V
$\mathrm{~T}_{\mathrm{A}}$, Ambient Temperature	0	70	${ }^{\circ} \mathrm{C}$
lol, Output Low Current			
\quad Bus		48	mA
Terminal		16	mA

Symbol	Parameter		Conditions	Min	Typ	Max	Unlts
V_{IH}	High Level Input Voltage			2			V
$V_{\text {IL }}$	Low Level Input Voltage					0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$1=-18 \mathrm{~mA}$		-0.8	-1.5	V
$\mathrm{V}_{\text {HYS }}$	Input Hysteresis	Bus		400	500		mV
V OH	High Level Output Voltage	Terminal	$\mathrm{l}_{\mathrm{OH}}=-800 \mu \mathrm{~A}$	2.7	3.5		V
		Bus	$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	2.5	3.4		
VOL	Low Level Output Voltage	Terminal	$\mathrm{IOL}=16 \mathrm{~mA}$		0.3	0.5	V
		Bus	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	
I_{H}	High Level Input Current	TE, PE	$V_{1}=5.5 \mathrm{~V}$		0.2	100	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$		0.1	20	
		Terminal and Bus	$\mathrm{V}_{1}=4 \mathrm{~V}$			200	
IIL	Low Level Input Current	Terminal and TE, PE	$V_{1}=0.5 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
		Bus			-0.4	-1.0	mA
los	Short Circuit Output Current	Terminal	$V_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 4)	-15	-35	-75	mA
		Bus		-50	-120	-200	
ICC	Supply Current		Transmit, $\mathrm{TE}=2 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$		75	100	mA
			Receive, $\mathrm{TE}=0.8 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$		65	90	
$\mathrm{C}_{\text {IN }}$	Bus-Port Capacitance	Bus	$\begin{aligned} & V_{C C}=0 \mathrm{~V}, V_{1}=0 \mathrm{~V}, \\ & f=10 \mathrm{kHz}(\text { Note } 5) \end{aligned}$		20	30	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operations.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: This parameter is guaranteed by design. It is not a tested parameter.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	From	To	Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level Output	Terminal	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output					14	20	ns
tPLH	Propagation Delay Time, Low to High Level Output	Bus	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=5.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=240 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$		15	20	ns
${ }_{\text {t }}{ }^{\text {HL }}$	Propagation Delay Time, High to Low Level Output					10	20	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level	TE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (Figure 1) } \\ & \hline \end{aligned}$		19	30	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time to High Level					15	20	ns
${ }_{\text {t }}$	Output Enable Time to Low Level			$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$(Figure 1)		24	40	ns
tplz	Output Disable Time to Low Level					17	30	ns
tpzH	Output Enable Time to High Level	TE, PE (Notes 2 and 3)	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		19	35	ns
tPHZ	Output Disable Time to High Level					17	25	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level			$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		27	40	ns
tplz	Output Disable Time to Low Level					17	30	ns
${ }^{\text {tPZH }}$	Output Pull-Up Enable Time	PE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
$t_{\text {PHZ }}$	Output Pull-Up Disable Time					10	20	ns

Note 1: All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 2: Refer to Functional Truth Table for control input definition.
Note 3: Test configuration should be connected to only one transceiver at a time due to the high current stress caused by the V_{I} voltage source when the output connected to that input becomes active.

Switching Load Configurations

TL/F/5245-3
V_{C} logic high $=3.0 \mathrm{~V}$
V_{C} logic low $=0 \mathrm{~V}$

* C_{L} includes jig and probe capacitance

FIGURE 1

TL/F/5245-4

- C_{L} includes ig and probe capacitance

FIGURE 2

TL/F/5245-7

DS3862 Octal High Speed Trapezoidal Bus Transceiver

General Description

The DS3862 is an octal high speed schottky bus transceiver intended for use with terminated 120Ω impedance lines. It is specifically designed to reduce noise in unbalanced transmission systems. The open collector drivers generate precise trapezoidal waveforms with rise and fall times of 9 ns (typical), which are relatively independent of capacitive loading conditions on the outputs. This reduces noise coupling to the adjacent lines without any appreciable impact on the maximum data rate obtainable with high speed bus transceivers. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity. Tightly controlled threshold levels on the receiver provide equal rejection to both negative and positive going noise pulses on the bus.
The external termination is intended to be a 180Ω resistor from the bus to 5 V logic supply, together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends.

Features

■ Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range

- Temperature insensitive receiver thresholds track bus logic level and respond symmetrically to positive and negative going pulses
- Trapezoidal bus waveforms reduce noise coupling to adjacent lines
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs, and receiver outputs
- Control logic is the same as the DS3896

Logic and Connection Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifled devices are required,	
please contact the National Semlconductor	Sales
Office/Distributors for avallabillty and specificatlons.	
Supply Voltage	6 V
Control Input Voltage	5.5 V
Driver Input and Receiver Output	5.5 V
Receiver Input and Driver Output	5.5 V
Power Dissipation	1400 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Operating Free Air Temperature	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver and Control Inputs:						
$V_{\text {IH }}$	Logical "1" Input Voltage		2.0			V
V_{IL}	Logical "0" Input Voltage				0.8	V
1	Logical "1" Input Current	$A n=V_{C C}$			1	mA
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{An}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$\mathrm{An}=0.4 \mathrm{~V}$		-1	-1.6	mA
IIL	CD \& T/ $\overline{\mathrm{R}}$ Logical " 0 " Input Current	$\mathrm{CD}=\mathrm{T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}$		-180	-400	$\mu \mathrm{A}$
V_{CL}	Input Diode Clamp Voltage	Iclamp $=-12 \mathrm{~mA}$		-0.9	-1.5	V
Driver Output/Receiver Input						
$\mathrm{V}_{\text {OLB }}$	Low Level Bus Voltage	$\mathrm{An}=\mathrm{T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{lbus}=100 \mathrm{~mA}$		0.6	0.9	V
IIHB	Logical "1" Bus Current	$\mathrm{An}=0.8 \mathrm{~V}, \mathrm{Bn}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ and OV		10	100	$\mu \mathrm{A}$
IILB	Logical "0' Bus Current	$\mathrm{An}=0.8 \mathrm{~V}, \mathrm{Bn}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ and 0 V			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$.	Input Threshold	$V_{C C}=5 \mathrm{~V}$	1.5	1.7	1.9	V
Receiver Output						
V_{OH}	Logical "1" Output Voltage	$\mathrm{Bn}=0.9 \mathrm{~V}, \mathrm{l}_{\text {oh }}=-400 \mu \mathrm{~A}$	2.4	3.2		V
V_{OL}	Logical " 0 " Output Voltage	$\mathrm{Bn}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{Ol}}=16 \mathrm{~mA}$		0.35	0.5	V
los	Output Short Circuit Current	$\mathrm{Bn}=0.9 \mathrm{~V}$	-20	-70	-100	mA
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		90	135	mA

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver:						
toli	An to Bn	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V} \quad$ (Figure 1)		12	20	ns
${ }_{\text {t }}$				12	20	ns
$\mathrm{t}_{\text {DLHC }}$	$C D$ to Bn	$\mathrm{An}=\mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \quad$ (Figure 1)		12	20	ns
$t_{\text {DHLC }}$				15	25	ns
tolht	T//̄ to Bn	$\begin{aligned} & \mathrm{VCl}=\mathrm{An}, \mathrm{VC}=5 \mathrm{~V}, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{RC}=390 \Omega, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RL} 1=91 \Omega, \mathrm{RL} 2=200 \Omega, \mathrm{VL}=5 \mathrm{~V} \end{aligned}$		20	30	ns
${ }^{\text {t }}$ DHLT				25	40	ns
t_{R}	Driver Output Rise Time	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V} \quad$ (Figure 1)	4	9	20	ns
t_{F}	Driver Output Fall Time		4	9	20	ns
Receiver:						
$\mathrm{t}_{\text {RLH }}$	Bn to An	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V} \quad$ (Figure 3)		15	25	ns
$t_{\text {RHL }}$				15	25	ns
$\mathrm{t}_{\text {RLZC }}$	$C D$ to An	$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=5 \mathrm{pF} \\ & \mathrm{RL} 1=390 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{VL}=5 \mathrm{~V} \quad \text { (Figure 4) } \end{aligned}$		15	25	ns
$t_{\text {RZLC }}$		$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RL} 1=390 \Omega, \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{VL}=5 \mathrm{~V}(\text { Figure } 4) \end{aligned}$		10	20	ns
$\mathrm{t}_{\mathrm{RHZC}}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V} \\ & \mathrm{RL} 1=390 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF}(\text { Figure 4) } \end{aligned}$		5	10	ns
$t_{\text {RZHC }}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \\ & \mathrm{RL} 1=\mathrm{NC}, \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF}(\text { Figure } 4) \end{aligned}$		8	15	ns
$t_{\text {RLZT }}$	$T / \overline{\mathrm{A}}$ to An	$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=3.4 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 2)		20	30	ns
$t_{\text {RZLT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=3.4 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 2)		30	45	ns
$t_{\text {RHZT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 2)		5	10	ns
$t_{\text {RZHT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL} 1=\mathrm{NC} \\ & \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 2)		10	20	ns
$t_{N R}$	Receiver Noise Rejection Pulse Width	(Figure 5)	9	12		ns

Note: NC means open

Switching Waveforms

Note: $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$ from 10% to 90%
FIGURE 1. Driver Propagation Delays

TL/F/8539-3
Note: $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$ from 10% to 90%
FIGURE 2. Propagation Delay From T / \bar{R} PIn to An or Bn.

Switching Waveforms (Continued)

Note: $t_{R}=t_{F} \leq 10$ ns from 10% to 90%
FIGURE 3. Receiver Propagation Delays

Note: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$ from 10% to 90%
FIGURE 4. Propagation Delay From CD Pin to An

FIGURE 5. Receiver Noise Immunity: No Response at Output Input Waveform.

Typical Application

DS3890 BTLTM Octal Trapezoidal Driver DS3892 BTLTM Octal TRI-STATE® Receiver DS3898 BTL $^{\text {TM }}$ Octal Trapezoidal Repeater

General Description

The DS3890, DS3892 and DS3898 are designed specifically to overcome problems associated with driving densely populated backplanes. These products provide significant improvement in both speed and data integrity in comparison to conventional bus drivers and receivers. Their low output capacitance, low voltage swing and noise immunity features make them ideal for driving low impedance busses with minimum power dissipation.
The DS3890 and DS3898 feature open collector outputs that generate precise trapezoidal waveforms with typical rise and fall times of 6 ns which are relatively independent of capacitive loading conditions. These controlled output characteristics significantly reduce noise coupling to adjacent lines.
To minimize bus loading, the DS3890 and DS3898 also feature a schottky diode in series with the open collector outputs that isolates the driver output capacitance in the disabled state. With this type of configuration the output low
voltage is typically " 1 V ". The output high level is intended to be 2 volts. This is achieved by terminating the bus with a pull up resistor. Both devices can drive an equivalent DC load of 18.5Ω (or greater) in the defined configuration.
(General Description to be continued)

Features

- Driver output capacitance less than 5 pF
- 1 volt bus signal reduces power consumption
- Trapezoidal driver waveforms ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$, typically 6 ns) reduces noise coupling to adjacent lines
- Precise receiver threshold track the bus logic high level to maximize noise immunity in both logic high ahd low states
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology

■ Glitch free power up/down protection

- TTL compatible driver and control inputs and receiver output
- BTL compatible

Logic and Connection Diagrams

DS3892 Electrical Characteristics (Notes 2 and 3)

CONTROL INPUTS					
Symbol	Conditions	Min	Typ	Max	Units
V_{IH}		2.0			V
$V_{\text {IL }}$				0.8	V
ILL	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-180	-400	$\mu \mathrm{A}$
1 IH	$\mathrm{V}_{\text {CC }}=\operatorname{Max} \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
1	$\mathrm{V}_{\text {CC }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$			1	mA
$V_{C L}$	$V_{C C}=\operatorname{Min} \mathrm{I}_{\text {I }}=-12 \mathrm{~mA}$		-0.9	-1.5	V
RECEIVER					
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \mathrm{l}_{\text {OL }}=16 \mathrm{~mA}$		0.35	0.5	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	3.2		V
los	$\mathrm{V}_{\text {CC }}=$ Max $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	-70	-100	mA
$\mathrm{V}_{\text {TH }} \mathrm{Rec}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	1.47	1.55	1.62	V
$\mathrm{I}_{1 / \mathrm{Hec}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \mathrm{V}_{\text {IN }}=2 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
1 IRec	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$			100	$\mu \mathrm{A}$
$1 / L \mathrm{Rec}$	$\mathrm{V}_{\text {CC }}=\operatorname{Max} \quad \mathrm{V}_{\text {IN }}=0.75 \mathrm{~V}$			100	$\mu \mathrm{A}$
Icc Low	$\mathrm{V}_{\text {cc }}=$ Max			80	mA
Icc High				60	mA

DS3898 Electrical Characteristics (Notes 2 and 3)

CONTROL INPUTS

Symbol	Condltions	Min	Typ	Max	Units
$V_{I H}$		2.0			V
$V_{I L}$				0.8	V
$I_{I L}$	$V_{C C}=\operatorname{Max} V_{I N}=0.4 \mathrm{~V}$		-180	-400	$\mu \mathrm{~A}$
I_{IH}	$V_{C C}=\operatorname{Max} \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{~A}$
I_{I}	$V_{C C}=\operatorname{Max~} \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$			1	mA
V_{CL}	$V_{C C}=\operatorname{Min~} \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-0.9	-1.5	V

RECEIVER INPUT

$V_{T H} R e c$	$V_{C C}=5 \mathrm{~V}$	1.47	1.55	1.62	V
I_{IH} Rec	$V_{C C}=\operatorname{Max} V_{I N}=2 \mathrm{~V}$		10	100	$\mu \mathrm{~A}$
I_{I} Rec	$\mathrm{V}_{C C}=0 \mathrm{~V} V_{I N}=2 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL} Rec	$V_{C C}=\operatorname{Max} V_{I N}=0.75 \mathrm{~V}$			100	$\mu \mathrm{~A}$

DRIVER OUTPUT

V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \quad \mathrm{R}_{\mathrm{L}}=18.5 \Omega$	0.75	1.0	1.2	V
$\mathrm{lOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \quad \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$	-20	10	100	$\mu \mathrm{A}$
10	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V} \quad \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$			100	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\text {CC }}=$ Max $\mathrm{V}_{\text {OUT }}=0.75 \mathrm{~V}$		-100	-250	mA
ICC Low	$V_{C C}=$ Max		90	135	mA
ICC High			95	140	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis and apply to the full operating temperature and $V_{C C}$ range.
Note 3: All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
DS3890 Switching Characteristics (Figure 1)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}\right.$ unless otherwise specified)

Symbol	Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\text {dLH }}$	An to Bn		9	15	ns
$\mathrm{T}_{\mathrm{dHL}}$			9	15	ns
$\mathrm{T}_{\text {dLH }}$	Dis to Bn		10	18	ns
$\mathrm{T}_{\mathrm{dHL}}$			12	20	ns
T_{r} \& T_{f}	Bn rise and fall time	3	6	10	ns

DS3892 Switching Characteristics (Figures 2, 3 and 4)

Symbol	Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\text {dLH }}$	Bn to An		12	18	ns
$\mathrm{T}_{\mathrm{pHL}}$			10	18	ns
$\mathrm{T}_{\mathrm{dLZ}}$	Dis to An		10	18	ns
$\mathrm{T}_{\mathrm{dZL}}$			8	15	ns
$\mathrm{T}_{\mathrm{dHZ}}$			4	8	ns
$\mathrm{T}_{\mathrm{dZH}}$			7	12	ns
TNR	Receiver noise rejection	3	6		ns

DS3898 Switching Characteristics (Figures 4and 5)

Symbol	Conditlons	Min	Typ	Max	Units
$\mathrm{T}_{\mathrm{dLH}}$	Bi to BO		20	30	ns
$\mathrm{T}_{\mathrm{dHL}}$			20	$\because 30$	ns
$\mathrm{T}_{\text {dLH }}$	Dis to BOn		10	18	ns
$\mathrm{T}_{\mathrm{dHL}}$			12	20	ns
T_{r} \& T_{f}	Bn rise and fall time	3	6	10	ns
TNR	Receiver noise rejection	3	6		ns

General Descriptions (Continued)

The DS3892 and DS3898 receiver inputs incorporate a low pass filter in conjunction with high speed comparator to further enhance the noise immunity. Both devices provide equal rejection to both positive and negative noise pulses (typically 6 ns) on the bus.
The DS3890 features TTL compatible inputs while both the DS3892 and DS3898 inputs are BTL compatible. The control inputs on all devices are TTL compatible.
BTL "Backplane Transceiver Logic" is a new logic signaling method developed by IEEE P896 Future Bus Stan-
dards Committee. This standard was adopted to enhance the performance of Backplane Busses. BTL compatible bus interface circuits feature low capacitance drivers to minimize bus loading, a 1 V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. This new standard overcomes some of the fundamental limitations of TTL bus transceivers in heavily loaded backplane bus applications. Devices designed to this standard provide significant improvements in switching speed and data integrity.

AC Switching Waveforms

AC Switching Waveforms (Continued)

FIGURE 2. Receiver Propagation Delays

Note: $t_{R}=t_{F}<5 n$ from 10% to 90%
FIGURE 3. Propagation Delay from Disable Pin to An

AC Switching Waveforms (Continued)

DS3893A BTL $^{\text {TM }}$ TURBOTRANSCEIVER ${ }^{\text {TM }}$

General Description

The TURBOTRANSCEIVER is designed for use in very high speed bus systems. The bus terminal characteristics of the TURBOTRANSCEIVER are referred to as "Backplane Transceiver Logic" (BTL). BTL is a new logic signaling standard that has been developed to enhance the performance of backplane buses. BTL compatible transceivers feature low output capacitance drivers to minimize bus loading, a 1V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. This new standard eliminates the settling time delays, that severely limit the TTL bus performance, to provide significantly higher bus transfer rates.
The TURBOTRANSCEIVER is compatible with the requirements of the proposed IEEE 896 Futurebus draft standard. It is similar to the DS3896/97 BTL TRAPEZOIDAL Transceivers but the trapezoidal feature has been removed to improve the propagation delay. A stripline backplane is therefore required to reduce the crosstalk induced by the faster rise and fall times. This device can drive a 10Ω load with a typical propagation delay of 3.5 ns for the driver and 5 ns for the receiver.
When multiple devices are used to drive a parallel bus, the driver enables can be tied together and used as a common control line to get on and off the bus. The driver enable delay is designed to be the same as the driver propagation delay in order to provide maximum speed in this configuration. The low input current on the enable pin eases the drive required for the common control line.

The bus driver is an open collector NPN with a Schottky diode in series to isolate the transistor output capacitance from the bus when the driver is in the inactive state. The active output low voltage is typically 1 V . The bus is intended to be operated with termination resistors (selected to match the bus impedance) to 2.1V at both ends. Each of the resistors can be as low as 20Ω.

Features

- Fast single ended transceiver (typical driver enable and receiver propagation delays are 3.5 ns and 5 ns)
■ Backplane Transceiver Logic (BTLTM) levels (1V logic swing)
- Less than 5 pF bus-port capacitance
- Drives densely loaded backplanes with equivalent load impedances down to 10Ω
- 4 transceivers in 20 pin PCC package
- Specially designed for stripline backplanes
- Separate bus ground returns for each driver to minimize ground noise
■ High impedance, MOS and TTL compatible inputs
- TRI-STATE ${ }^{\circledR}$ control for receiver outputs
- Built-in bandgap reference provides accurate receiver threshold
- Glitch free power up/down protection on all outputs
- Oxide isolated bipolar technology

Connection and Logic Diagram

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage	6.5 V
Control Input Voltage	5.5 V
Driver Input and Receiver Output	5.5 V
Driver Output Receiver Input Clamp Current	$\pm \mathbf{1 5 ~ m A}$
Power Dissipation at $70^{\circ} \mathrm{C}$	900 mW

$\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 3 \text { sec.) } & 260^{\circ} \mathrm{C}\end{array}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.5	5.5	V
Bus Termination Voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$	2.0	2.2	V
Operating Free Air Temperature	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3 and 4) $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DRIVER AND CONTROL INPUT: (DE, $\overline{\mathbf{R E}}$; Dn)						
V_{IH}	Input High Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
1	Input Leakage Current	$\mathrm{DE}=\overline{\mathrm{RE}}=\mathrm{Dn}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
$\mathrm{IIH}_{\mathrm{H}}$	Input High Current	$\mathrm{DE}=\overline{\mathrm{RE}}=\mathrm{Dn}=2.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
I_{1}	Dn Input Low Current	$\mathrm{Dn}=0.5 \mathrm{~V}, \mathrm{DE}=\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-200	$\mu \mathrm{A}$
	DE Input Low Current	$D E=0.5 \mathrm{~V}, \mathrm{Dn}=\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-500	$\mu \mathrm{A}$
	$\overline{\mathrm{RE}}$ Input Low Current	$\overline{\mathrm{RE}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$			-100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CL }}$	Input Diode Clamp Voltage	$\mathrm{I}_{\text {clamp }}=-12 \mathrm{~mA}$			-1.2	V
DRIVER OUTPUT/RECEIVER INPUT: (Bn)						
V OLB	Output Low Bus Voltage	$\begin{aligned} & \mathrm{Dn}=\mathrm{DE}=\mathrm{V}_{\mathrm{IH}}(\text { (Figure 2) } \\ & R_{T}=10 \Omega, \mathrm{~V}_{\mathrm{T}}=2.2 \mathrm{~V} \end{aligned}$	0.75	1.0	1.2	V
		$\begin{aligned} & D n=D E=V_{i H}(\text { Figure 2) } \\ & R_{T}=18.5 \Omega, V_{T}=2.14 \end{aligned}$	0.75	1.0	1.1	V
IILB	Output Bus Current (Power On)	$\begin{aligned} & \mathrm{Dn}=\mathrm{DE}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{Bn}=0.75 \mathrm{~V} \end{aligned}$	-250		100	$\mu \mathrm{A}$
IIHB	Output Bus Current (Power Off)	$\begin{aligned} & \mathrm{Dn}=\mathrm{DE}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{Bn}=1.2 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
$V_{\text {OCB }}$	Driver Output Positive Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ or $\mathrm{OV}, \mathrm{Bn}=1 \mathrm{~mA}$			2.9	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ or $\mathrm{OV}, \mathrm{Bn}=10 \mathrm{~mA}$			3.2	V
$\mathrm{V}_{\text {OHB }}$	Output High Bus Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{Dn}=0.8 \mathrm{~V} \text { (Figure } 2 \text {) } \\ & \mathrm{V}_{\mathrm{T}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega \end{aligned}$	1.90			V
$\mathrm{V}_{\text {TH }}$	Receiver Input Threshold		1.47	1.55	1.62	V
RECEIVER OUTPUT: (Rn)						
V_{OH}	Voltage Output High	$\mathrm{Bn}=1.2 \mathrm{~V}, \mathrm{l}_{\mathrm{oh}}=-3 \mathrm{~mA}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}$	2.5 V			V
V_{OL}	Voltage Output Low	$\mathrm{Bn}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}$		0.35	0.5	V
Ioz	TRI-STATE Leakage	$\mathrm{V}_{0}=2.5 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=0.5 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$			-20	$\mu \mathrm{A}$
los	Output Short Circuit Current (Note 5)	$\begin{aligned} & \mathrm{Bn}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=0 \mathrm{~V} \\ & \overrightarrow{\mathrm{RE}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$	-80	-120	-200	mA
ICC	Supply Current	$\mathrm{Dn}=\mathrm{DE}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		70	95	mA

Note 1: "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Unused inputs should not be left floating. Tie unused inputs to either $V_{C C}$ or GND thru a resistor.
Note 5: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DRIVER: (Figures 3 and 6)						
tPHL	Driver Input to Output	$V_{T}=2 \mathrm{VR} \mathrm{R}_{T}=10 \Omega, \mathrm{C}_{L}=30 \mathrm{pF}, \mathrm{DE}=3 \mathrm{~V}$	1	3.5	7	ns
tplH	Driver Input to Output	$\mathrm{V}_{T}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{DE}=3 \mathrm{~V}$	1	3.5	7	ns
t_{r}	Output Rise time	$\mathrm{V}_{\mathrm{T}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{DE}=3 \mathrm{~V}$	1	2	5	ns
t_{f}	Output Fall Time	$\mathrm{V}_{\mathrm{T}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{DE}=3 \mathrm{~V}$	1	2	5	ns
$\mathrm{t}_{\text {skew }}$	Skew Between Drivers in Same Package	(Note 1)		1		ns
DRIVER ENABLE: (Figures 3 and 6)						
${ }_{\text {tPHL }}$	Enable Delay	$\mathrm{V}_{\mathrm{T}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{Dn}=3 \mathrm{~V}$	1	3.5	7	ns
tpLH	Disable Delay	$\mathrm{V}_{T}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \mathrm{C}_{L}=30 \mathrm{pF}, \mathrm{Dn}=3 \mathrm{~V}$	1	3.5	7	ns
RECEIVER: (Figures 4 and 7)						
$t_{\text {PHL }}$	Receiver Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \overline{\mathrm{RE}}=\mathrm{DE}=0.3 \mathrm{~V}, \mathrm{S3}$ Closed	2	5	8	ns
${ }_{\text {tPLH }}$	Receiver Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \overline{\mathrm{RE}}=\mathrm{DE}=0.3 \mathrm{~V}, \mathrm{~S} 3$ Open	2	5	8	ns
$\mathrm{t}_{\text {skew }}$	Skew Between Receivers in Same Package	(Note 1)		1		ns

RECEIVER ENABLE: (Figures 5 and 8)

t_{ZL}	Receiver Enable to Output Low	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500, \mathrm{DE}=0.3 \mathrm{~V}$ $\mathrm{~S} 2 \mathrm{Open} \mathrm{Bn}=2 \mathrm{~V}$	2	6	12	ns
t_{ZH}	Receiver Enable to Output High	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500, \mathrm{DE}=0.3 \mathrm{~V}$ S 1 Open $\mathrm{Bn}=1 \mathrm{~V}$	2	5	12	ns
t_{LZ}	Receiver Disable From Output Low	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500, \mathrm{DE}=0.3 \mathrm{~V}$ S 2 Open $\mathrm{Bn}=2 \mathrm{~V}$	1	5	8	ns
t_{HZ}	Receiver Disable From Output High	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500, \mathrm{DE}=0.3 \mathrm{~V}$ S 1 Open $\mathrm{Bn}=1 \mathrm{~V}$	1	4	8	ns

Note 1: t_{D} and t_{R} skew is an absolute value, defined as differences seen in propagation delays between each of the drivers or receivers in the same package of the same delay, $V_{C C}$, temperature and load conditions.

TL/F/8698-12
FIGURE 1. Equivalent Bus Output

FIGURE 2. Driver Output Voltage

AC Test Circuits

TL/F/8698-3
FIGURE 3

TL/F/8698-4
FIGURE 4

Switching Time Waveforms

TL/F/8698-7
FIGURE 7. Receiver Propagation Delay

Switching Time Waveforms (Continued)

Note: $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 4$ ns From 10% to 90%
Note: $\mathrm{n}=1,2,3,4$
TL/F/8698-8
FIGURE 8. Receiver Enable and Disable Times
Typical Application

TL/F/8698-9

Application Information

Due to the high current and very high speed capability of the TURBOTRANSCEIVER's driver output stage, circuit board layout and bus grounding are critical factors that affect the system performance.
Each of the TURBOTRANSCEIVER's bus ground pins should be connected to the nearest backplane ground pin with the shortest possible path. The ground pins on the connector should be distributed evenly through its length.
Although the bandgap reference receiver threshold provides sufficient DC noise margin (Figure 9), ground noise and ringing on the data paths could easily exceed this margin if the series inductance of the traces and connectors are not kept to a minimum. The bandgap ground pin should be returned to the connector through a separate trace that does not carry transient switching currents. The transceivers should be mounted as close as possible to the connector. It should be noted that even one inch of trace can add a significant amount of ringing to the bus signal.

TL/F/8698-10
FIGURE 9. Noise Margin

FIGURE 10

DS3896/DS3897 BTLTM Trapezoidal| ${ }^{\text {TM }}$ Transceivers

General Description

These advanced transceivers are specifically designed to overcome problems associated with driving a densely populated backplane, and thus provide significant improvement in both speed and data integrity. Their low output capacitance, low output signal swing and noise immunity features make them ideal for driving low impedance buses with minimum power consumption.
The DS3896 is an octal high speed schottky bus transceiver with common control signals, whereas the DS3897 is a quad device with independent driver input and receiver output pins. The DS3897 has a separate driver disable for each driver and is, therefore, suitable for arbitration lines. On the other hand, the DS3896 provides high package density for data/address lines.
The open collector drivers generate precise trapezoidal waveforms, which are relatively independent of capacitive loading conditions on the outputs. This significantly reduces noise coupling to adjacent lines. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity and provide equal rejection to both negative and positive going noise pulses on the bus.
To minimize bus loading, these devices also feature a schottky diode in series with the open collector output that isolates the driver output capacitance in the disabled state. The output low voltage is typically " 1 V " and the output high level is intended to be 2 V . This is achieved by terminating the bus with a pull up resistor to 2 V at both ends. The device can drive an equivalent DC load of 18.5Ω (or greater) in the above configuration.

These signalling requirements, including a 1 volt signal swing, low output capacitance and precise receiver thresholds are referred to as Bus Transceiver Logic (BTLTM).

Features

- 8 bit DS3896 transceiver provides high package density
- 4 bit DS3897 transceiver provides separate driver input and receiver output pins
- BTL compatible
- Less than 5 pF output capacitance for minimal bus loading
- 1 Volt bus signal swing reduces power consumption
- Trapezoidal driver waveforms ($t_{r}, t_{f} \cong 6$ ns typical) reduce noise coupling to adjacent lines
- Temperature insensitive receiver thresholds track the bus logic high level to maximize noise immunity in both high and low states
- Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs and receiver outputs

Logic Diagrams

TL/F/8510-1

TL/F/8510-2

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for avallability and specifications.	
Supply Voltage	6 V
Control Input Voltage	5.5 V
Driver Input and Receiver Output	5.5 V
Receiver Input and Driver Output	2.5 V
Power Dissipation at $70^{\circ} \mathrm{C} \mathrm{N} \mathrm{Package}$	1480 mW
	1250 mW
J Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, VCC	4.75	5.25	V
Bus Termination Voltage	1.90	2.10	V
Operating Free Air Temperature	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics: (Note 2 and 3) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}\right.$ unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver and Control Inputs: (An, Dn, En, CD, T/ $\overline{\mathbf{R}, ~ \overline{R E}, ~ T E) ~}$						
$\mathrm{V}_{1 H}$	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage				0.8	V
I_{1}	Logical "1" Input Current	$A n=D n=E n=V_{C C}$			1	mA
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$A n=D n=E n=2.4 V$			40	$\mu \mathrm{A}$
ILL	Logical "0' Input Current	$\mathrm{An}=\mathrm{Dn}=\mathrm{En}=0.4 \mathrm{~V}$		-1	-1.6	mA
ILC	Logical "0" Input Current	$\mathrm{CD}=\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{RE}}=\overline{\mathrm{TE}}=0.4 \mathrm{~V}$		-180	-400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CL }}$	Input Diode Clamp Voltage	Iclamp $=-12 \mathrm{~mA}$		-0.9	-1.5	V

Driver Output/Receiver Input: (Bn)

$V_{\text {OLB }}$	Low Level Bus Voltage	$\begin{aligned} & \mathrm{An}=\mathrm{Dn}=\mathrm{En}=\mathrm{T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V} \\ & \mathrm{RL}=18.5 \Omega, \mathrm{CD}=\overline{\mathrm{TE}}=0.8 \mathrm{~V}(\text { Figure } 1) \end{aligned}$	0.75	1.0	1.2	V
IIHB	Maximum Bus Current (Power On)	$\begin{aligned} & \mathrm{An}=\mathrm{Dn}=\mathrm{En}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{Bn}=2 \mathrm{~V} \end{aligned}$		10	100	$\mu \mathrm{A}$
I/LB	Maximum Bus Current (Power Off)	$\begin{aligned} & \mathrm{An}=\mathrm{Dn}=\mathrm{En}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{Bn}=2 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{T H}$	Receiver Input Threshold	$V_{C C}=5 \mathrm{~V}$	1.47	1.55	1.62	V
Recelver Output: (An, Rn)						
V OH	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{Bn}=1.2 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{CD}=\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{RE}}=0.8 \mathrm{~V} \end{aligned}$	2.4	3.2		V
V_{OL}	Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{Bn}=2 \mathrm{~V}, 1 \mathrm{OL}=16 \mathrm{~mA} \\ & C D=\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{RE}}=0.8 \mathrm{~V} \end{aligned}$		0.35	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & B n=1.2 \mathrm{~V} \\ & C D=T / \bar{R}=\overline{R E}=0.8 \mathrm{~V} \end{aligned}$	-20	-70	-100	mA
ICC	Supply Current (DS3896)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		90	135	mA
ICC	Supply Current (DS3897)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		50	80	mA

Note 1. "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be
operated at these limits. The table of "Electrical Characteristic" provide conditions for actual device operation.
Note 2. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.

DS3896 Switching Characteristics

($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver:						
$\mathrm{t}_{\text {DLH }}$	An to Bn	CD $=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V} \quad$ (Figure 2)	5	9	15	ns
$\mathrm{t}_{\mathrm{DHL}}$			5	9	15	ns
$t_{\text {DLHC }}$	$C D$ to Bn	$\mathrm{An}=\mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V} \quad$ (Figure 2)	5	10	18	ns
$t_{\text {DHLC }}$			5	12	20	ns
$\mathrm{t}_{\text {DLHT }}$	$\mathrm{T} / \overline{\mathrm{R}}$ to Bn	$\begin{aligned} & \mathrm{VCl}=\mathrm{An}, \mathrm{VC}=5 \mathrm{~V}, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{RC}=390 \Omega, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RL} 1=18 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{VL}=2 \mathrm{~V} \end{aligned}$	5	15	25	ns
${ }^{\text {t }}$ DHLT			5	22	35	ns
t_{R}	Driver Output Rise Time	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V} \quad$ (Figure 2)	3	6	10	ns
$\mathrm{t}_{\text {F }}$	Driver Output Fall Time		3	6	10	ns
Receiver:						
$\mathrm{t}_{\text {RLH }}$	Bn to An	$C D$	5	12	18	ns
$\mathrm{t}_{\text {RHL }}$			5	10	18	ns
$t_{\text {RLZC }}$	CD to An	$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=5 \mathrm{pF} \\ & \mathrm{RL} 1=390 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{VL}=5 \mathrm{~V} \quad(\text { Figure } 4) \end{aligned}$	5	10	18	ns
$\mathrm{t}_{\text {RZLC }}$		$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RLt}=390 \Omega, \mathrm{RL} 2=1.6 \mathrm{k}, \mathrm{VL}=5 \mathrm{~V}(\text { Figure } 4) \end{aligned}$	5	8	15	ns
$\mathrm{t}_{\text {RHZC }}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \widetilde{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \\ & \mathrm{RL} 1=390 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF}(\text { Figure } 4) \end{aligned}$	2	4	8	ns
$t_{\text {RZHC }}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \\ & \mathrm{RL} 1=\mathrm{NC}, \mathrm{RL} 2=1.6 \mathrm{k}, \mathrm{CL}=30 \mathrm{pF}(\text { Figure 4) } \end{aligned}$	3	7	12	ns
$t_{\text {RLZ }}$	T/石 to An	$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=2 \mathrm{~V}, \mathrm{RC}=18 \Omega, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL1}=390 \Omega \\ & \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 5)	5	10	18	ns
$t_{\text {RZLT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=2 \mathrm{~V}, \mathrm{RC}=18 \Omega, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL1}=390 \Omega \\ & \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 5)	14	24	40	ns
$t_{\text {RHZ }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=18 \Omega, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL1}=390 \Omega \\ & \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 5)	2	4	8	ns
$t_{\text {RZHT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=18 \Omega, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL} 1=\mathrm{NC} \\ & \mathrm{RL} 2=1.6 \mathrm{k}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 5)	2	8	15	ns
${ }^{\text {t }}$ NR	Receiver Noise Rejection Pulse Width	(Figure 6)	3	6		ns

Note: NC means open

DS3897 Switching Characteristics

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}\right.$ unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver:						
${ }_{\text {t }}{ }_{\text {DLH }}$	Dn, En to Bn	$\overline{\mathrm{TE}}=0.8 \mathrm{~V}, \overline{\mathrm{RE}}=2.0 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V}$	5	9	15	ns
$\mathrm{t}_{\mathrm{DHL}}$			5	9	15	ns
t DLHT	$\overline{\mathrm{TE}}$ to Bn	$\begin{aligned} & \mathrm{An}=\overline{\mathrm{RE}}=2.0 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V}, \quad(\text { Figure } 2) \\ & \mathrm{RL} 1=18 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{VL}=2 \mathrm{~V}(\text { Figure } 5) \end{aligned}$	5	10	18	ns
$t_{\text {DHLT }}$			5	12	20	ns
t_{R}	Driver Output Rise Time	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{VL}=2 \mathrm{~V}$	3	6	10	ns
tF	Driver Output Fall Time		3	6	10	ns

DS3897 Switching Characteristics (Continued)
($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified)

FIGURE 1. Driver Output Low Voltage Test

TL/F/8510-4
Note: $t_{f}=t_{f} \leq 5$ ns from 10% to 90%
FIGURE 2. Driver Propagation Delays

Note: $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 10$ ns from 10% to 90%
FIGURE 3. Receiver Propagation Delays

FIGURE 4. Propagation Delay from CD pin to An

Note: $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$ from 10% to 90%
FIGURE 5. Propagation Delay from T / \bar{R} pin to An or Bn

[^17]FIGURE 6. Receiver Noise Immunity: "No Response at Output" Input Waveforms

TL/F/8510-9
Note: $t_{r}=t_{f} \leq 5 \mu$ sfom 10% to 90%
FIGURE 7. Driver Plus Recelver Delays

Typical Application

Timing Analysis of Synchronous and Asynchronous Busses

The low output capacitance of BTL transceivers allows the total capacitive loading of a card in a backplane to be kept under 10 pF . This doubles the impedance of a loaded bus to almost 30Ω. BTL also specifies a reduced signal swing of 1 V , which allows a properly terminated bus to be driven cleanly at under 75 mA . Consequently, there are no reflections, and the settling time is zero. A BTL driver can be guaranteed to cross the threshold of every receiver on the backplane with the incident edge of a signal wavefront.
The propagation delay of a bus is also a strong function of the capacitive loading. In the TTL case, the capacitive loading increases the signal propagation delay by a factor of 3 to 5 over an unloaded bus. In a $20^{\prime \prime}$ bus, BTL can reduce this delay from a value of 13 ns in the TTL case to less than 9 ns , increasing the potential bus bandwidth significantly.

SYNCHRONOUS BUS TIMING

For our first example, let's consider burst data transfers on a synchronous bus. In many backplane systems, burst transfers provide the highest performance, because the overhead associated with the address cycle can be spread out over a number of data cycles. Although other types of transactions may be more complex and require more time (clock cycles), it is likely that many systems will be optimized for burst transfers.
In this example, we are making some simplifying assumptions which ignore some of the penalties associated with a general-purpose synchronous bus. One of these is that the entire interface is synchronized to the bus clock. In general, each card in a backplane will be running off of its own internal high-speed clock. This results in resynchronization metastability problems at both the master and slave interfaces, as well as a clock latency penalty of typically 50% of the clock period. We are also ignoring the return of status from the slave on each data transfer, by assuming all status can be generated before the data is clocked. This would not be true, for example, if parity had to be verified before the next data transfer could take place.

Clock Skew

In this example, the system clock is being distributed to each board through a clock line on the backplane. Since the clock line is being driven from a single point, the loaded capacitance on it is considerably less than on most other lines, and the settling time is typically zero, even in a TTLbased backplane. Due to the finite propagation delay across the bus, however, the clock edge still arrives at each board at different times, creating a relative edge inaccuracy commonly referred to as clock skew.
The worst-case skew can be cut in half by locating the clock source centrally on the backplane, rather than at one end. Additional clock skew will be introduced by the propagation delay differences in the receiver and logic gates that process the clock signal between boards. For a typical 20"

FIGURE 1. Settling Times
bus, with the clock driver located at the midpoint, total skew can easily exceed 10 ns ; in our case, 5 ns for the bus, plus 7 ns for the receiver and a transparent latch used to implement bus wait states.

Synchronous Data Transfer Timing

In this example (Figure 3), the worst case data propagation delay from the master to the slave is simply the sum of the delays of the individual components of the data path. This path travels through the master's edge-triggered flip-flop and bus driver, across the length of the bus, and then through the slave's bus receiver and flip-flop, where the incoming data is latched. However, because this is a synchronous system, the data can be "pipelined" to some extent within the intervening logic. This means that the minimum clock cycle possible under this configuration is the sum of the logic skews, plus the maximum bus propagation delay, the set-up and hold times of the receiver, and the clock skew (Figure 4).
The advantage of a synchronous system is that the absolute timing requirements are set by the clock; the entire system can be optimized with this constraint in mind. This can become a disadvantage as technology advances beyond the point at which the synchronous bus was designed. A synchronous system must be continually redesigned for higher clock rates in order to take advantage of improvements in technology. Synchronous busses are therefore more suited to specific applications than to general-purpose, extended lifespan products.

Synchronous Timing Calculations

The first set of calculations assumes a TTL bus with AS transceivers and logic. As can be seen, the bus settling time overwhelms all the other skews and delays in the system. The upper limit of a discrete TTL synchronous bus implementation is roughly 15 MT (megatransfers/second). No particular advantage is gained by using FAST devices because, while the maximum propagation delays specified for that family are shorter than for AS, the maximum skews are generally greater. The effect of skew specifications is another subtlety of system performance analysis.
Two types of BTL transceivers are currently available, the BTL Trapezoidal and the BTL Turbo. The Trapezoidal transceivers have controlled rise and fall times on their drivers of 6 ns (nominal) to reduce crosstalk interference and switching noise within the backplane. In addition, the receivers incorporate crosstalk filters that practically eliminate far-end crosstalk problems on the bus. The Turbo transceivers eliminate these Trapezoidal features, but are much faster as a result. Switching noise problems are overcome by the use of individual ground return lines for each driver. Stripline backplane construction and careful layout techniques are required to minimize crosstalk.
Although the BTL Trapezoidal transceiver delays are much greater than those of the TTL devices, the absence of settling time results in a smaller overall clock cycle time. A maximum transfer rate of 18 MT becomes possible. When the Turbo devices are used, system throughput increases to 24 MT in this discrete implementation.

$$
z_{0} \approx 75 \Omega
$$

Unloaded Bus Impedance
$\mathrm{C}_{0} \approx 20 \mathrm{pF} / \mathrm{ft}$. Distributed Capacitance of Unloaded Bus
$T_{0} \approx 1.8 \mathrm{~ns} / \mathrm{ft}$. Unloaded Bus Propagation Delay
$Z_{L}=Z_{O} / \sqrt{1+\left(C_{L} / C_{O}\right)} \quad$ Loaded Bus Impedance
$T_{L}=L \times T_{O} \times \sqrt{1+\left(C_{L} / C_{O}\right)} \quad$ Loaded Propagation Delay

TL/F/9633-3

FIGURE 2. Effects of Capacitive Loading

FIGURE 3. Synchronous Bus Logic for Burst Data Transfers

FIGURE 4. Synchronous Burst Data Transfer Timing

FIGURE 5. Asynchronous Bus Logic for Burst Data Transfers

DELAY 1	TTL	BTL	BTL
1) Max XOR Delay	AS	Trap	Turbo
2) Max '374 Delay	6.5	6.5	6.5
3) Max Data Driver Delay	9.0	9.0	9.0
4) <Min '533 Delay>	-4.0	15.0	7.0
5) <Min Sync Driver Delay>	-2.0	-5.0	-4.0
TOTAL (ns)	16.0	21.5	16.5

DELAY 2	TTL	BTL	BTL
	AS	Trap	Turbo
1) Max XOR Delay	6.5	6.5	6.5
2) Max '374 Hold Time	3.0	3.0	3.0
3) Delay 3	5.5	14.0	7.0
4) <Min '373 Delay>	-3.5	-3.5	-3.5
5) <Min Ack Driver Delay>	-2.0	-5.0	-2.0
5) <Min Data Receiver Delay>	-2.0	-5.0	-2.0
TOTAL (ns)	7.5	10.0	9.0

TL/F/9633-6

TL/F/9633-7

TTL	BTL	BTL
AS	Trap	Turbo
6.5	18.0	8.0
2.0	2.0	2.0
-2.0	-5.0	-2.0
-1.0	-1.0	-1.0
5.5	14.0	7.0

FIGURE 7. Asynchronous Burst Data Transfer Timing (Worst Case)

The largest cycle time delay in the final BTL Turbo example is clock skew. Bus skews can be reduced by distributing the clock to each board independently, using a dedicated trace on the backplane such that all lines are of equal length. This makes the clock propagation delay from the driver to each board the same, and thus practically eliminates the bus skew. In addition, better tolerances on driver, receiver, and logic propagation delays (smaller skews) will improve both the clock skew and the effect of transceiver delays on the cycle time.

ASYNCHRONOUS BUS TIMING

Our second example is also of a burst transfer, but this time using asynchronous bus timing. In this system, the master issues a strobe along with the data, and waits for an acknowledgement from the slave before removing the current data from the bus lines. All timing is controlled by the two participants in the data transfer. (Once again, we are assuming that new status does not have to be generated on each data transfer.)
The greatest advantage of an asynchronous bus protocol is its ability to adapt the speed of the bus to the speed of any two communicating boards. The most flexibility is achieved when no technology dependencies are introduced into the protocol. Unlike a synchronous system, where every board is designed with the same timing constraints in mind, a tech-nology-independent module is designed with no assumptions about the timing of the rest of the system. Instead, each transmitting board simply guarantees that its data is valid on the bus at least zero nanoseconds before it issues its synchronization signal, and each receiving board is responsible for ensuring that its data has been successfully latched before issuing an acknowledge. The protocol itself imposes no artificial set-up or hold time limitations.

The result of this lack of timing constraints is that a board built today, using today's technology, is guaranteed to work in a system designed perhaps twenty years from now. That system will be forced to slow down whenever necessary to accommodate the greater internal delays and skews of the older module. However, if two future modules are communicating, they will transfer data at the maximum rate allowed by the future technology. The new IEEE Futurebus standard implements this type of protocol.

ASYNCHRONOUS DATA TRANSFER TIMING

The requirement that boards generate their own data synchronization and acknowledge signals, and the likelihood of zero set-up and hold times on the bus, make the timing of the asynchronous system more complicated than the previous example (Figure 5). Also, we are maximizing the performance of the sync/ack handshake by transferring data on each signal transition. This is known as a two-edge handshake.

On the master side, the board must guarantee that its data is valid on the bus before issuing the synchronization signal. This means that a delay must be inserted in the sync signal path (Delay 1) which includes the maximum propagation delays through the XOR clock generation circuit, edge-triggered flip-flop, and data bus driver. This is excessive, however, because the minimum delays through the sync latch and bus driver can be subtracted (Figure 6).
On the slave side, delays are required to guarantee that both the set-up and hold time specifications of the data latch are met. The set-up time delay (Delay 3) ensures that the sync signal, which may have minimum propagation delays through the sync bus receiver and XOR clock generator, arrives at the edge-triggered data flip-flop a set-up time after the data, which may have a maximum delay through

	TTL	BTL	BTL
	AS	Trap	Turbo
1) Min Ack Receiver Delay	2.0	5.0	2.0
2) Min '533 Delay	4.0	4.0	4.0
3) Delay 1	16.0	21.5	16.5
4) Min Sync Driver Delay	2.0	5.0	2.0
5) Min Bus Delay + Skew	35.0	1.0	1.0
6) Min Sync Receiver Delay	2.0	5.0	2.0
7) Min '373 Delay	3.5	3.5	3.5
8) Delay 2	7.5	10.0	9.0
9) Min Ack Driver Delay	2.0	5.0	2.0
10) Min Bus Delay	35.0	0.0	0.0
TOTAL (ns)	109.0	60.0	42.0
MTransfers/second	9.2	16.7	23.8

FIGURE 8. Asynchronous Burst Data Transfer Timing (Best Case)

the data bus receiver. The hold time delay (Delay 2) ensures that the data remains at the data flip-flop a hold time after the sync signal, which this time may have a maximum propagation delay through the XOR and the set-up time delay element just introduced. Since the removal of data is controlled by the ack signal, the hold time delay can be reduced by the minimum delays through the ack latch and bus driver, and the minimum propagation delay of the data bus receiver.

This is all very confusing at first, but these delay elements now in place in our circuit guarantee the receiver set-up and hold time requirements while maintaining the technology independence of the bus protocol. Now we can calculate the burst data transfer rate on this asynchronous bus.
The critical path is now the sync/ack handshake. The circuit delays are in place to make sure that data is transferred successfully. To calculate the transfer rate, simply add up all the propagation delays through the sync/ack loop (Figures 7 and 8): on the master, the ack receiver, the sync latch, Delay 1 , and the sync driver; a bus propagation delay; on the slave, the sync receiver, the ack latch, Delay 2, and the ack driver; and another bus propagation delay.
Should you use worst-case values throughout your evaluation? The beauty of a technology-independent asynchronous protocol is that is will adapt to the speed of the individual logic elements in the sync/ack handshake path. If all the devices happen to have worst-case characteristics, then yes. If they are all fast parts, however, then data transfer will take place under best-case conditions. Both calculations are included, providing the expected operating range of the circuit.

ASYNCHRONOUS TIMING CALCULATIONS

Once again, the TTL design is overwhelmed by the settling time of the bus. Since the sync/ack signal pair are acting as clocks in this system, glitches that may occur during the signal settling time are intolerable. This means that the 35 ns bus settling time must be hard-wired into the receiver logic, and cannot be reduced under best-case conditions. The performance of an asynchronous TTL backplane, from 7.5 to 9.2 MT, cannot approach that of a similar synchronous backplane.
The BTL Trapezoidal system has very similar performance to a TTL backplane under worst-case conditions. However, because there is no settling time penalty associated with BTL signals, the effect of improvements in device operation have a far more pronounced effect. In the best case, the performance is close to that of the equivalent synchronous system. Also, since the bus signal propagation delay is a function only of the distance between the two boards, modules placed in adjacent slots will experience almost no backplane delays.
A BTL. Turbo board benefits from the same clean electrical environment that a Trapezoidal one does, except with a 40$50 \%$ overall improvement in performance. In the best case, the performance is the same as that of the equivalent synchronous system. Of course, as device parameters improve, with lower propagation delays and skews, the performance of the asynchronous system will continue to improve. The largest reductions in the transfer cycle time will come as interfaces for asynchronous busses such as Futurebus are integrated onto a single piece of silicon, where skews and delays can be more tightly controlled.

CONCLUSION

The use of transceivers designed specifically for the trans-mission-line environment typical in today's high-speed backplanes provides advantages in both the performance and electrical integrity of a system. The advantages of BTL only become obvious after a careful analysis of data transfer timing considerations. The Trapezoidal and Turbo options provide a designer with the opportunity to make the appropriate application-dependent cost/performance tradeoffs. A sometimes controversial issue is the appropriateness of a synchronous versus an asynchronous design. The former will usually provide an immediate performance advantage in a fully synchronized environment, but a carefully-designed general-purpose asynchronous protocol will often have a longer useful product life.

REFERENCES

1. R.V. Balakrishnan, "The Proposed IEEE 896 Future-bus-A Solution to the Bus Driving Problem," IEEE Micro, August 1984.
2. R.V. Balakrishnan, "Physical Layer Timing Design Considerations for High Speed Backplane Busses," Buscon/ 87 West, January 1987.
3. D.B. Gustavson and J. Theus, "Wire-OR Logic on Transmission Lines," IEEE Micro, June 1983, pp. 51-55.
4. Interface Databook, National Semiconductor Corp., Santa Clara, CA, 1986.
5. ALS/AS Logic Databook, National Semiconductor Corp., Santa Clara, CA, 1987.
6. IEEE P896 D7.5a, "Futurebus: A Bus Standard for Multiprocessing Architectures", IEEE, June 1987.

TABLE I. Device Parameters

Device	Parameter (Transition)	Minimum Prop. Delay	Maximum Prop. Delay	Maximum Skew	Setup/Hold
DM74AS374 Edge-Triggered Flip-Flop	$\begin{aligned} & \mathrm{LH} \\ & \mathrm{HL} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	2.0/3.0
DM74AS373 Transparent Latch	$\begin{aligned} & \mathrm{LH} \\ & \mathrm{HL} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	2.0/3.0
DM74AS533 Inverting Transparent Latch	$\begin{aligned} & \mathrm{LH} \\ & \mathrm{HL} \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	2.0/3.0
DM74AS86 2-Input XOR	Other Input L Other Input H	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	
DM74AS240 Bus Driver/Receiver	$\begin{aligned} & \mathrm{LH} \\ & \mathrm{HL} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.7 \end{aligned}$	
DM74AS242 Bus Transceiver	$\begin{aligned} & \mathrm{LH} \\ & \mathrm{HL} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 6.5 \\ 5.7 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.7 \end{aligned}$	
DS3896 BTL Trapezoidal Transceiver	$\begin{aligned} & R x \\ & \mathrm{Tx} \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.0 \end{array}$	$\begin{aligned} & 18.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	
DS3893 BTL Turbo Transceiver	$\begin{aligned} & R x \\ & \mathrm{Tx} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	

Note: Values in boldface are those used in the preceding calculations.

DS75160A/DS75161A/DS75162A

IEEE-488 GPIB Transceivers

General Description

This family of high-speed-Schottky 8 -channel bi-directional transceivers is designed to interface TTL/MOS logic to the IEEE Standard 488-1978 General Purpose Interface Bus (GPIB). PNP inputs are used at all driver inputs for minimum loading, and hysteresis is provided at all receiver inputs for added noise margin. The IEEE-488 required bus termination is provided internally with an active turn-off feature which disconnects the termination from the bus when $V_{C C}$ is removed.
The General Purpose Interface Bus is comprised of 16 signal lines - 8 for data and 8 for interface management. The data lines are always implemented with DS75160A, and the management lines are either implemented with DS75161A in a single-controller system, or with DS75162A in a multicontroller system.

Features

- 8-channel bi-directional non-inverting transceivers
- Bi-directional control implemented with TRI-STATE ${ }^{\text {® }}$ output design
- Meets IEEE Standard 488-1978
- High-speed Schottky design
- Low power consumption
- High impedance PNP inputs (drivers)

■ 500 mV (typ) input hysteresis (receivers)

- On-chip bus terminators
- No bus loading when $V_{C C}$ is removed
- Pin selectable open collector mode on DS75160A driver outputs
- Accommodates multi-controller systems

Connection Diagrams

Operating Conditions

	Min	Max	Units
$V_{C C}$, Supply Voltage	4.75	5.25	V
$\mathrm{~T}_{\mathrm{A}}$, Ambient Temperature	0	70	${ }^{\circ} \mathrm{C}$
IOL, Output Low Current			
Bus		48	mA
Terminal	16	mA	

*Derate molded package $15.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter			Conditions	Min	Typ	Max	Units
V_{IH}	High-Level Input Voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage						0.8	V
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage		$1=-18$			-0.8	-1.5	V
$\mathrm{V}_{\text {HYS }}$	Input Hysteresis	Bus			400	500		mV
V_{OH}	High-Level Output Voltage	Terminal	$\mathrm{l}_{\mathrm{OH}}=-800 \mu \mathrm{~A}$		2.7	3.5		V
		Bus (Note 5)	$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$		2.5	3.4		
V_{OL}	Low-Level Output Voltage	Terminal	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.3	0.5	V
		Bus	$\mathrm{IOH}=48 \mathrm{~mA}$			0.4	0.5	
IIH	High-Level Input Current	Terminal and TE, PE, DC, SC Inputs	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.2	100	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$			0.1	20	
IIL	Low-Level Input Current		$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-10	-100	$\mu \mathrm{A}$
V ${ }_{\text {BIAS }}$	Terminator Bias Voltage at Bus Port	Bus	Driver Disabled	$\mathrm{I}_{\text {(bus) }}=0$ (NoLoad)	2.5	3.0	3.7	V
ILOAD	Terminator Bus Loading Current		Driver Disabled	$\mathrm{V}_{1 \text { (bus) }}=-1.5 \mathrm{~V}$ to 0.4 V	-1.3			mA
				$\mathrm{V}_{1 \text { (bus) }}=0.4 \mathrm{~V}$ to 2.5 V	0		-3.2	
				$V_{l(\text { bus })}=2.5 \mathrm{~V}$ to 3.7 V			$\begin{gathered} 2.5 \\ -3.2 \end{gathered}$	
				$\mathrm{V}_{1 \text { (bus) }}=3.7 \mathrm{~V}$ to 5 V	0		2.5	
				$\mathrm{V}_{\text {(bus) }}=5 \mathrm{~V}$ to 5.5 V	0.7		2.5	
			$\mathrm{V}_{C C}=0 \mathrm{~V}, \mathrm{~V}_{1 \text { (bus) }}=0 \mathrm{~V}$ to 2.5 V				40	$\mu \mathrm{A}$
los	Short-Circuit Output Current	Terminal	$V_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 4)		-15	-35	-75	mA
		Bus (Note 5)			-35	-75	-150	
ICC	Supply Current	DS75160A	Transmit, $\mathrm{TE}=2 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$			85	125	mA
			Receive, $\mathrm{TE}=0.8 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$			70	100	
		DS75161A	$\mathrm{TE}=0.8 \mathrm{~V}, \mathrm{DC}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$			84	125	
		DS75162A	$\mathrm{TE}=0.8 \mathrm{~V}, \mathrm{DC}=0.8 \mathrm{~V}, \mathrm{SC}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$			85	125	
C_{IN}	Bus-Port Capacitance	Bus	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MH} \end{aligned}$	$V, V_{1}=0 V \text { to } 2 V,$		20	30	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: This characteristic does not apply to outputs on DS75161A and DS75162A that are open collector.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	From	To	Conditions	DS75160A			DS75161A			DS75162A			Units
					Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time, Low to High Level Output	Terminal	Bus	$\begin{aligned} & V_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ Figure 1		10	20		10	20		10	20	ns
$t_{\text {PHL }}$	Propagation Delay Time, High to Low Level Output					14	20		14	20		14	20	ns
${ }^{\text {tPLH }}$	Propagation Delay Time, Low to High Level Output	Bus	Terminal	$\begin{aligned} & V_{\mathrm{L}}=5.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=240 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ Figure 2		14	20		14	20		14	20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output					10	20		10	20		10	20	ns
${ }^{\text {tPZH }}$	Output Enable Time to High Level	TE, DC, or SC (Note 2) (Note 3)	Bus	$\begin{aligned} & V_{\mathrm{I}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ Figure 1		19	32		23	40		23	40	ns
$t_{\text {PHZ }}$	Output Disable Time From High Level					15	22		15	25		15	25	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level			$\begin{aligned} & V_{1}=0 \mathrm{~V} \\ & V_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ Figure 1		24	35		28	48		28	48	ns
tplz	Output Disable Time From Low Level					17	25		17	27		17	27	ns
${ }_{\text {t }}$	Output Enable Time to High Level	TE, DC, or SC (Note 2) (Note 3)	Terminal	$\begin{aligned} & V_{1}=3.0 \mathrm{~V} \\ & V_{L}=0 \mathrm{~V} \\ & R_{\mathrm{L}}=3 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ Figure 1		17	33		18	40		18	40	ns
$t_{\text {PHZ }}$	Output Disable Time From High Level					15	25		22	33		22	33	ns
${ }^{\text {tPZL }}$	Output Enable Time to Low Level			$\begin{aligned} & V_{I}=0 V \\ & V_{L}=5 \mathrm{~V} \\ & R_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ Figure 1		25	39		28	52		28	52	ns
$t_{\text {PLZ }}$	Output Disable Time From Low Level					15	27		20	35		20	35	ns
$t_{\text {PZ }}$	Output Pull-Up Enable Time (DS75160A Only)	PE (Note 2)	Bus	$\begin{aligned} & V_{1}=3 V \\ & V_{L}=0 V \\ & R_{L}=480 \Omega \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ Figure 1		10	17		NA			NA		ns
$t_{\text {PHZ }}$	Output Pull-UP Disable Time (DS75160A Only)					10	15		NA			NA		ns

Note 1: Typical values are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and are meant for reference only.
Note 2: Refer to Functional Truth Tables for control input definition.
Note 3: Test configuration should be connected to only one transceiver at a time due to the high current stress caused by the V_{1} voltage source when the output connected to that input becomes active.

Switching Load Configurations

V_{C} logic high $=3.0 \mathrm{~V}$
V_{C} logic low $=0 V$
${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes jig and probe capacitance
FIGURE 1

TL/F/5804-9

* C_{L} includes jig and probe capacitance

FIGURE 2

Top View

Functional Description

DS75160A

This device is an 8-channel bi-directional transceiver with one common direction control input, denoted TE. When used to implement the IEEE-488 bus, this device is connected to the eight data bus lines, designated $\mathrm{DIO}_{1}-\mathrm{DIO}_{8}$. The port connections to the bus lines have internal terminators, in accordance with the IEEE-488 Standard, that are deactivated when the device is powered down. This feature guarantees no bus loading when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The bus port outputs also have a control mode that either enables or disables the active upper stage of the totem-pole configuration. When this control input, denoted PE, is in the high state, the bus outputs operate in the high-speed totem-pole mode. When PE is in the low state, the bus outputs operate as open collector outputs which are necessary for parallel polling.

DS75161A

This device is also an 8 -channel bi-directional transceiver which is specifically configured to implement the eight management signal lines of the IEEE-488 bus. This device, paired with the DS75160A, forms the complete 16 -line interface between the IEEE-488 bus and a single controller instrumentation system. In compliance with the system organization of the management signal lines, the SRQ, NDAC, and NRFD bus port outputs are open collector. In contrast to the DS75160A, these open collector outputs are a fixed configuration. The direction control is divided into three groups. The DAV, NDAC, and NRFD transceiver directions are controlled by the TE input. The ATN, SRQ, REN, and IFC transceiver directions are controlled by the DC input. The EOI transceiver direction is a function of both the TE and DC inputs, as well as the logic level present on the ATN channel. The port connections to the bus lines have internal terminators identical to the DS75160A.

DS75162A

This device is identical to the DS75161A, except that an additional direction control input is provided, denoted SC. The SC input controls the direction of the REN and IFC transceivers that are normally controlled by the DC input on the DS75161A. This additional control function is instrumental in implementing multiple controller systems.

Table of Signal Line Abbreviations

Slgnal Line Classification	Mnemonic	Definition	Device
Control Signals	DC	Direction Control	$\begin{array}{\|l} \hline \text { DS75161A/ } \\ \text { DS75162A } \\ \hline \end{array}$
	PE	Pull-Up Enable	DS75160A
	TE	Talk Enable	All
	SC	System Controller	DS75162A
Data I/O Ports	B1-B8	Bus Side of Device	DS75160A
	D1-D8	Terminal Side of Device	
Management Signals	ATN	Attention	$\begin{aligned} & \text { DS75161A/ } \\ & \text { DS75162A } \end{aligned}$
	DAV	Data Valid	
	EOI	End or Identify	
	IFC	Interface Clear	
	NDAC	Not Data Accepted	
	NRFD	Not Ready for Data	
	REN	Remote Enable	
	SRQ	Service Request	

Logic Diagrams

Note 3: Driver and recelver outputs are totem-pole configurations
Note 4: The driver outputs of DS75160A can have their active pull-ups disabled by switching the PE input (pin 11) to the logic low state. This mode configures the outputs as open coliector.

Logic Diagrams (Continued)

TL/F/5804-6

Note 3: Symbol "OC" specifies open collector output
Note 4: Driver and receiver outputs that are not specified "OC" are totem-pole configurations

Bus Enable/Disable Times

TL/F/5804-13

Performance Characteristics

TL/F/5804-14

DS75160A

Control Input Level		Data Transceivers		
TE	PE	Direction	Bus Port Configuration	
H	H	T	Totem-Pole Output	
H	L	T	Open Collector Output	
L	X	R	Input	

DS75161A

Control Input Level				Transceiver Signal Direction						
TE	DC	ATN*		EOI	REN	IFC	SRQ	NRFD	NDAC	DAV
H	H		R		R	R	T	R	R	T
H	L		T		T	T	R	R	R	T
L	H		R		R	R	T	T	T	R
L	L		T		T	T	R	T	T	R
H	X	H		T						
L	X	H		R						
X	H	L		R					,	
X	L	L		T						

DS75162A

Control Input Level				Transceiver Signal Direction											
SC	TE	DC	ATN*	EOI	REN	IFC	SRQ	NRFD	NDAC	DAV					
H	H	H		R		T	T	T	R	R	T				
H	H	L		T		T	T	R	R	R	T				
H	L	H		R		T	T	T	T	T	R				
H	L	L		T		T	T	R	T	T	R				
L	H	H		R		R	R	T	R	R	T				
L	H	L		T		R	R	R	R	R	T				
L	L	H		R		R	R	T	T	T	R				
L	L	L		T		R	R	R	T	T	R				
X	H	X	H		T										
X	L	X	H		R										
X	X	H	L		R										
X	X	L	L		T										

$H=$ High level input
$L=$ Low level input
$X=$ Don't care
$T=$ Transmit, i.e., signal outputted to bus
$R=$ Receive, i.e., signal outputted to terminal
*The ATN signal level is sensed for internal multiplex control of EOI transmission direction logic.

DS7640/DS8640 Quad NOR Unified Bus Receiver

General Description

The DS7640 and DS8640 are quad 2 -input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input threshold providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus.

Features
■ Low input current with normal V_{CC} or $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$ ($30 \mu \mathrm{~A}$ typ)

- High noise immunity (1.1V typ)
- Temperature-insensitive input thresholds track bus logic levels
- TTL compatible output
- Matched, optimized noise immunity for " 1 " and " 0 " levels
- High speed (19 ns typ)

Connection Diagram
Dual-In-Line Package

Order Number DS7640J, DS8640J or DS8640N See NS Package Number J14A or N14A

Typical Application

120Ω Unified Data Bus

TL/F/5805-2
$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Milltary/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for avallability and specifications. } \\ \text { Supply Voltage } & 7.0 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} & \\ \text { Cavity Package } & 1308 \mathrm{~mW} \\ \text { Molded Package } & 1207 \mathrm{~mW} \\ \text { Lead Temperature (Soldering, } 4 \text { seconds) } & 260^{\circ} \mathrm{C} \\ { }^{\text {Derate cavity package }} 8 . \mathrm{mW}^{\circ} \mathrm{C} \text { above } 25^{\circ} \mathrm{C} \text {; derate molded package } \\ 9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above } 25^{\circ} \mathrm{C} \text {. }\end{array}$

Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC})			
DS7640	4.5	5.5	V
DS8640	4.75	5.25	V
Temperature (T_{A})			
DS7640	-55	+125	${ }^{\circ} \mathrm{C}$
DS8640	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

The following apply for $\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{C C} \leq \mathrm{V}_{\text {MAX }}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High Level Input Threshold	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL }}$	DS7640	1.80	1.50		V
			DS8640	1.70	1.50		V
VIL	Low Level Input Threshold	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH }}$	DS7640		1.50	1.20	V
			DS8640		1.50	1.30	V
$\mathrm{IIH}^{\text {H}}$	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {MAX }}$		30	80	$\mu \mathrm{A}$
			$V_{C C}=0 \mathrm{~V}$		1.0	50	$\mu \mathrm{A}$
IIL	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}$			1.0	50	$\mu \mathrm{A}$
V_{OH}	Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$		2.4			V
V_{OL}	Output Voltage	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$			0.25	0.4	V
los	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}$, (Note 4)		-18		-55	mA
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$, (Per Package)			25	40	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {pd }}$	Propagation Delays	(Notes 5 and 6)	Input to Logic "1" Output	10	23	35	ns
			Input to Logic "0" Output	10	15	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7640 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8640. All typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $\mathrm{V}_{I N}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3 V pulse.
Note 6: Apply to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DS7641/DS8641 Quad Unified Bus Transceiver

General Description

The DS7641 and DS8641 are quad high speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$. The receivers incorporate tight thresholds for better bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously.

Features

- 4 separate driver/receiver pairs per package
- Guaranteed minimum bus noise immunity of $0.6 \mathrm{~V}, 1.1 \mathrm{~V}$ typ
- Temperature insensitive receiver thresholds track bus logic levels
- $30 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $V_{C C}=O V$
■ Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

Connection Diagram

Dual-In-Line Package

Top View
TL/F/5806-1

Order Number DS7641J, DS8641J or DS8641N
See NS Package Number J16A or N16A

Typical Application

120Ω Unified Data Bus

Absolute Maximum Ratings（Note 1）	
If Military／Aerospace specified devices are required，	
please contact the National Semiconductor Sales	
Office／Distributors for availability and specifications．	
Supply Voltage	7 V
Input and Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation＊at $25^{\circ} \mathrm{C}$	
Cavity Package	1433 mW
Molded Package	1362 mW
Lead Temperature（Soldering， 4 seconds）	$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage，（ V_{CC} ）			
DS7641	4.5	5.5	V
DS8641	4.75	5.25	V
Temperature Range，（ T_{A} ）			
DS7641	－55	＋125	${ }^{\circ} \mathrm{C}$
DS8641	0	$+70$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

The following apply for $\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\text {MAX }}, T_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified（Notes 2 and 3 ）

Symbol	Parameter	Condlitions	Min	Typ	Max	Units
DRIVER AND DISABLE INPUTS						
$\mathrm{V}_{\text {IH }}$	Logical＂1＂Input Voltage		2.0			V
V_{IL}	Logical＂0＂Input Voltage				0.8	V
1	Logical＂1＂Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
I_{H}	Logical＂1＂Input Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
I_{LL}	Logical＂0＂Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			－1．6	mA
$V_{C L}$	Input Diode Clamp Voltage	$\begin{aligned} & I_{D I S}=-12 \mathrm{~mA}, I_{I N}=-12 \mathrm{~mA}, I_{B U S}=-12 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		－1	－1．5	V

$\mathrm{V}_{\text {OLB }}$	Low Level Bus Voltage	$\mathrm{V}_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{l}_{\text {BUS }}=50 \mathrm{~mA}$			0.4	0.7	V
$\mathrm{I}_{\mathrm{IHB}}$	Maximum Bus Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}$			30	100	$\mu \mathrm{A}$
IILB	Maximum Bus Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			2	100	$\mu \mathrm{A}$
V_{IH}	High Level Receiver Threshold	$\mathrm{V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=16 \mathrm{~mA}$	DS7641	1.80	1.50		V
			DS8641	1.70	1.50		V
$V_{\text {IL }}$	Low Level Receiver Threshold	$\mathrm{V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=-400 \mu \mathrm{~A}$	DS7641		1.50	1.20	V
			DS8641		1.50	1.30	V

RECEIVER OUTPUT						
V_{OH}	Logical＂1＂Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
V_{OL}	Logical＂ 0 ＂Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & V_{D I S}=0.8 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}, \text { (Note 4) } \end{aligned}$	－18		－55	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{DIS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$ ，（per Package）		50	70	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ，unless otherwise indicated

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpD	Propagation Delays（Note 7）	（Note 5）				
	Disable to Bus＂1＂			19	30	ns
	Disable to Bus＂0＂			15	30	ns
	Driver Input to Bus＂1＂		17	25	ns	
	Driver Input to Bus＂0＂			17	25	ns
	Bus to Logical＂1＂Receiver Output	（Note 6）		20	30	ns
	Bus to Logical＂0＂Receiver Output			18	30	ns

[^18]
DS7833/DS8833/DS7835/DS8835 Quad TRI-STATE ${ }^{\circledR}$ Bus Transceivers

General Description

This family of TRI-STATE bus transceivers offers extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated DC or AC, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DS7833/ DS8833 and DS7835/DS8835 employ TRI-STATE outputs on the receiver also.
The DS7833/DS8833 are non-inverting quad transceivers with a common inverter driver disable control and common inverter receiver disable control.
The DS7835/DS8835 are inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

Features

- Receiver hysteresis 400 mV typ
1.4 V typ
$80 \mu \mathrm{~A} \max$
- Bus terminal current for normal $V_{C C}$ or $V_{C C}=0 V$
- Receivers

Sink
Source

- Drivers

Sink $\quad 50 \mathrm{~mA}$ at 0.5 V max
32 mA at 0.4 V max
Source
$10.4 \mathrm{~mA}(\mathrm{Com})$ at 2.4 V min
5.2 mA (Mil) at 2.4 V min

- Drivers have TRI-STATE outputs
- DS7833/DS8833, DS7835/DS8835 receivers have TRI-STATE outputs
- Capable of driving 100Ω DC-terminated buses
- Compatible with Series 54/74

Connection Diagram

Dual-In-Line Package

Top Vlew
Order Number DS7835J, DS8835J
or DS8835N
See NS Package Number J16A or N16A

Operating Conditions

	Min	Max	Units
Supply Voltage, $\mathrm{V}_{\text {CC }}$			
DS7833/DS7835	4.5	5.5	V
DS8833/DS8835	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7833/DS7835	-55	+125	${ }^{\circ} \mathrm{C}$
DS8833/DS8835	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
DISABLE/DRIVER INPUT							
V_{IH}	High Level Input Voltages	$V_{C C}=$ Min		2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$V_{C C}=\mathrm{Min}$	DS7833, DS8833, DS8835			0.8	V
			DS7835			0.7	
I_{IH}	High Level Input Current	$V_{C C}=M a x$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1.0	mA
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-1.0	-1.6	mA
V_{CL}	Input Clamp Diode	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-0.8	-1.5	\checkmark
I_{IT}	Driver Low Level Disabled Input Current	Driver Disable Input $=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$				-40	$\mu \mathrm{A}$

RECEIVER INPUT/BUS OUTPUT

V_{TH}	High Level Threshold Voltage			DS7833, DS7835	1.4	1.75	2.1	V
				DS8833, DS8835	1.5	1.75	2.0	V
$\mathrm{V}_{T L}$	Low Level Threshold Voltage			DS7833, DS7835	0.8	1.35	1.6	V
				DS8833, DS8835	0.8	1.35	1.5	V
Is	Bus Current, Output Disabled or High	$V_{\text {BUS }}=4.0 \mathrm{~V}$	$V_{C C}=M a x$			25	80	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$			5.0	80	$\mu \mathrm{A}$
		$V_{C C}=M a x, V_{B U S}=0.4 \mathrm{~V}$				-2.0	-40	$\mu \mathrm{A}$
V_{OH}	Logic "1" Output Voltage	$V_{C C}=\operatorname{Min}$	I OUT $=-5.2 \mathrm{~mA}$	DS7833, DS7835	2.4	2.75		V
			$\mathrm{l}_{\text {OUT }}=-10.4 \mathrm{~mA}$	DS8833, DS8835	2.4	2.75		V
$\mathrm{V}_{\text {OL }}$	Logic "0" Output Voltage	$V_{C C}=M i n$	l OUT $=50 \mathrm{~mA}$			0.28	0.5	V
			$\mathrm{lout}=32 \mathrm{~mA}$				0.4	V
los	Output Short Circuit Current	$V_{C C}=$ Max, (Note 4)			-40	-62	-120	mA
RECEIVER OUTPUT								
VOH	Logic "1" Output Voltage	$V_{C C}=\operatorname{Min}$	IOUT $=-2.0 \mathrm{~mA}$	DS7833, DS7835	2.4	3.0		V
			IOUT $=-5.2 \mathrm{~mA}$	DS8833, DS8835	2.4	2.9		V
$\mathrm{V}_{\text {OL }}$	Logic "0" Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$				0.22	0.4	V
I_{OT}	Output Disabled Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, Disable } \\ & \text { Inputs }=2.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$				-40	$\mu \mathrm{A}$

Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
RECEIVER OUTPUT (Continued)							
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, ((ote 4)	DS7833, DS7835	28	-40	-70	mA
			DS8833, DS8835	-30		-70	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	DS7833, DS8833		84	116	mA
			DS7835, DS8835		75	95	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7833, DS7835 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8833, DS8835. All typicals are given for $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{t}_{\text {pd0 }}$	Propagation Delay to a Logic " 0 " from Input to Bus	(Figure 1)	DS7833/DS8833		14	30	ns
			DS7835/DS8835		10	20	ns
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logic "1" from Input to Bus	(Figure 1)	DS7833/DS8833		14	30	ns
			DS7835/DS8835		11	30	ns
$t_{\text {pdo }}$	Propagation Delay to a Logic " 0 " from Bus to Input	(Figure 2)	DS7833/DS8833		24	45	ns
			DS7835/DS8835		16	35	ns
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logic "1" from Bus to Input	(Figure 2)	DS7833/DS8833		12	30	ns
			DS7835/DS8835		18	30	ns
$t_{\text {PHZ }}$	Delay from Disable Input to High Impedance State (from Logic "1" Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ (Figures 1 and 2)	Driver		8.0	20	ns
			Receiver		6.0	15	ns
tplz	Delay from Disable Input to High Impedance State (from Logic "0" Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF},$ (Figures 1 and 2)	Driver		20	35	ns
			Receiver		13	25	ns
${ }_{\text {tPZH }}$	Delay from Disable Input to Logic " 1 " Level (from High Impedance State)	$C_{L}=5.0 \mathrm{pF},$ (Figures 1 and 2)	Driver		24	40	ns
			Receiver		16	35	ns
${ }_{\text {tPZL }}$	Delay from Disable Input to Logic " 0 " Level (from High Impedance State)	$C_{L}=5.0 \mathrm{pF},$ (Figures 1 and 2)	Driver		19	35	ns
			Receiver DS7833/DS8833		15	30	ns
			Receiver DS7835/DS8835		33	50	ns

AC Test Circuits

FIGURE 1. Driver Output Load

TL/F/5808-4
FIGURE 2. Receiver Output Load

Switching Time Waveforms

TL/F/5808-6
$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}} \leq 10 \mathrm{~ns}$ (10\% to 90%)
DUTY CYCLE $=50 \%$

National
semiconductor
DS7834/DS8834/DS7839/DS8839 Quad TRI-STATE ${ }^{\circledR}$ Bus Transceivers

General Description

This family of TRI-STATE bus transceivers offers extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated DC or AC, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low, allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The receiver incorporates hysteresis to provide greater noise immunity. Both devices utilize a high current TRI-STATE output driver. The DS7834/ DS8834 and DS7839/DS8839 employ TTL outputs on the receiver.
The DS7839/DS8839 are non-inverting quad tranceivers with two common inverter driver disable controls.
The DS7834/DS8834 are inverting quad transceivers with two common inverter driver disable controls.

Features

- Receiver hysteresis
- Receiver noise immunity
- Bus terminal current for normal V_{CC} or $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$
- Receivers

Sink
16 mA at 0.4 V max
Source

- Drivers

Sink
Source

- Drivers have TRI-STATE outputs
- Receivers have TRI-STATE outputs
- Capable of driving 100Ω DC-terminated Buses
- Compatible with Series 54/74

Connection Diagrams

Dual-In-Line Package

Top View
Order Number DS7834J, DS8834J or DS8834N See NS Package Number J16A or N16A

Dual-In-Line Package

Top View
Order Number DS7839J, DS8839J or DS8839N See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7.0 V

Input Voltage
Output Voltage 5.5V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1509 mW Molded Package 1476 mW
*Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$		Max	Units
DS7834, DS7839	4.5	5.5	V
DS8834, DS8839	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7834, DS7839	-55	+125	${ }^{\circ} \mathrm{C}$
DS8834, DS8839	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
DISABLE/DRIVER INPUT							
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$				0.8	V
$\mathrm{I}_{1 /}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-1.0	-1.6	mA
IIND	Driver Diasbled Input Low Current	Driver Disable Input $=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$				-40	$\mu \mathrm{A}$
V_{CL}	Input Clamp Diode	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-0.8	-1.5	V

RECEIVER INPUT/BUS OUTPUT

$\mathrm{V}_{\text {TH }}$	High Level Threshold Voltage	$V_{C C}=\operatorname{Max}$		DS7834, DS7839	1.4	1.75	2.1	V
				DS8834, DS8839	1.5	1.75	2.0	V
$V_{T L}$	Low Level Threshold Voltage	$V_{C C}=M i n$		DS7834, DS7839	0.8	1.35	1.6	V
				DS8834, DS8839	0.8	1.35	1.5	V
I_{BH}	Bus Current, Output Disabled or High	$\mathrm{V}_{\mathrm{BUS}}=4.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Disable Input $=2.0 \mathrm{~V}$			25	80	$\mu \mathrm{A}$
			$V_{C C}=0 \mathrm{~V}$			5.0	80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {SUS }}=0.4 \mathrm{~V}$, Disable Input $=2.0 \mathrm{~V}$					-40	$\mu \mathrm{A}$
V OH	Logic "1" Output Voltage	$V_{C C}=\operatorname{Min}$	I OUT $=-5.2 \mathrm{~mA}$	DS7834, DS7839	2.4	2.75		V
			$\mathrm{l}_{\text {OUT }}=-10.4 \mathrm{~mA}$	DS7834, DS8839	2.4	2.75		V
V OL	Logic "0" Output Voltage	$V_{C C}=\operatorname{Min}$	$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$			0.28	0.5	V
			IOUT $=32 \mathrm{~mA}$				0.4	V
los	Output Short Circuit Current	$V_{C C}=$ Max, (Note 4)			-40	-62	-120	mA

RECEIVER OUTPUT

V OH	Logic "1" Output Voltage	$V_{C C}=\operatorname{Min}$	$\mathrm{I}_{\text {OUT }}=-2.0 \mathrm{~mA}$	DS7834, DS7839	2.4	3.0		V
			I OUT $=-5.2 \mathrm{~mA}$	DS8834, DS8839	2.4	2.9		V
VOL	Logic "0" Output Voltage	$V_{C C}=$ Min, IOUT $=16 \mathrm{~mA}$				0.22	0.4	V
los	Output Short Circuit Current	$\mathrm{V}_{\text {cC }}=$ Max, (Note 4)		DS7834, DS7839	-28	-40	-70	mA
				DS8834, DS8839	-30		-70	mA
ICC	Supply Current	$V_{C C}=M a x$				75	95	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7834, DS7839 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8834, DS8839. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter Propagation Delay to a Logic "0" from Input to Bus	Conditions		Min	$\frac{\text { Typ }}{14}$	$\frac{\text { Max }}{30}$	$\frac{\text { Units }}{\text { ns }}$
		(Figure 1)	DS7839/DS8839				
			DS7834/DS8834		10	20	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay to a Logic " 1 " from Input to Bus	(Figure 1)	DS7839/DS8839		14	30	ns
			DS7834/DS8834		11	30	ns
$t_{\text {pdo }}$	Propagation Delay to a Logic " 0 " from Bus to Output	(Figure 2)	DS7839/DS8839		24	45	ns
			DS7834/DS8834		16	35	ns
$t_{\text {pd1 }}$	Propagation Delay to a Logic " 1 " from Bus to Output	(Figure 2)	DS7839/DS8839		12	30	ns
			DS7834/DS8834		18	30	ns
$t_{\text {tpHz }}$	Delay from Disable Input to High Impedance State (from Logic "1" Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, (Figures 1 and 2) Driver Only			8	20	ns
$t_{\text {plz }}$	Delay from Disable Input to High Impedance State (from Logic "0" Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, (Figures 1 and 2) Driver Only			20	35	ns
tpzH	Delay from Disable Input to Logic "1" Level (from High Impedance State)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 1 and 2) Driver Only			24	40	ns
tpzL	Delay from Disable Input to Logic "0" Level (from High Impedance State)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 1 and 2) Driver Only			19	35	ns

AC Test Circuit

FIGURE 1. Driver Output Load

Switching Time Waveforms

Switching Time Waveforms (Continued)

Truth Table

Disable Input	Driver Input $\left(1 \mathrm{~N}_{\mathrm{X}}\right)$	Receiver Input/ Bus Output (BUSX)	Receiver Output (OUTX)	Mode of Operation
DS7834/DS8834				
1	X		BUS	Receive Bus Signal
0	1	0	1	Drive Bus
0	0	1	0	Drive Bus
DS7839/DS8839				
1	X		BUS	Receive Bus Signal
0	1	1	1	Drive Bus
0	0	0	0	Drive Bus

[^19]
DS7836/DS8836 Quad NOR Unified Bus Receiver

General Description

The DS7836/DS8836 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. Performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

Features

- Low input current with normal V_{CC} or $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$ ($15 \mu \mathrm{~A}$ typ)
- Built-in input hysteresis (1V typ)
- High noise immunity (2V typ)
- Temperature-insensitive input thresholds track bus logic levels
- TTL compatible output
- Matched, optimized noise immunity for " 1 " and " 0 " levels
- High speed (18 ns typ)

Typical Application

120Ω Unified Data Bus

TL/F/5810-1

Connection Diagram

Order Number DS7836J, DS8836J or DS8836N
See NS Package Number J14A or N14A

Absolute Maximum Ratings
 If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Supply Voltage
 Current Voltage
 7.0 V
 Storage Temperature Range
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
 Cavity Package
 1308 mW
 Molded Package 1207 mW
 Lead Temperature (Soldering, 4 seconds)
 $260^{\circ} \mathrm{C}$
 -Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package 9.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
\quad DS7836	4.5	5.5	V
DS8836	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7836	-55	+125	${ }^{\circ} \mathrm{C}$
DS8836	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

The following apply for $V_{M I N} \leq V_{C C} \leq V_{M A X}, T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$V_{\text {TH }}$	High Level Input Threshold	$V_{C C}=M a x$		DS7836	1.65	2.25	2.65	V
				DS8836	1.80	2.25	2.50	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Threshold	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		DS7836	0.97	1.30	1.63	V
				DS8836	1.05	1.30	1.55	V
IN	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			15	50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$			1	50	$\mu \mathrm{A}$
V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$, $\mathrm{IOUT}=-400 \mu \mathrm{~A}$			2.4			V
VOL	Logical "0" Output Voltage	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$				0.25	0.4	V
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$, (Note 4)			-18		-55	mA
Icc	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$, (Per Package)				25	40	mA
$\mathrm{V}_{C L}$	Input Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1	-1.5	V

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise speciied

Symbol	Parameter	Conditions		Min	Typ	Max	Units
t_{pd}	Propagation Delays	(Notes 4 and 5)	Input to Logical "1" Output		20	30	ns
			Input to Logical "0" Ouptut		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7836 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8836. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Fan-out of 10 load, $C_{L O A D}=15 \mathrm{pF}$ total, measured from $V_{I N}=1.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3 V pulse.
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $V_{\mathbb{I N}}=2.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$ to 3 V pulse.

DS7837/DS8837 Hex Unified Bus Receiver

General Description

The DS7837/DS8837 are high speed receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The receiver design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. Disable inputs provide time discrimination. Disable inputs and receiver outputs are TTL compatible. Performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

Features

- Low receiver input current for normal V_{CC} or $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$ ($15 \mu \mathrm{~A}$ typ)
- Six separate receivers per package
- Built-in receiver input hysteresis (1V typ)
- High receiver noise immunity (2 V typ)
- Temperature insensitive receiver input thresholds track bus logic levels
- TTL compatible disable and output
- Molded or cavity dual-in-line or flat package

■ High speed

Typical Application

TL/F/5811-9

Connection Diagram

Dual-In-Line Package

TL/F/5811-2

Top View

Order Number DS7837J, DS8837J, DS8837M or DS8837N
See NS Package Number J16A, M16A or N16A

Absolute Maximum Ratings (Note 1)	
If Milltary/Aerospace specified devic please contact the Natlonal Semic Office/Distributors for availability and	ces are required, conductor Sales d speciflcations.
Supply Voltage	V
Input Voltage	5.5 V
Operating Temperature Range DS7837 DS8837	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1433 mW
Molded DIP Package	1362 mW
SO Package	1002 mW
Lead Temperature (Soldering, 4 seconds)) $\quad 260^{\circ} \mathrm{C}$
-Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Electrical Characteristics

The following apply for $\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{C C} \leq \mathrm{V}_{\text {MAX }}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{TH}	High Level Receiver Threshold	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	DS7837	1.65	2.25	2.65	V
			DS8837	1.80	2.25	2.50	V
V_{TL}	Low Level Receiver Threshold	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	DS7837	0.97	1.30	1.63	V
			DS8837	1.05	1.30	1.55	V
$\mathrm{IIH}^{\text {H }}$	Maximum Receiver Input Current	$V_{i N}=4 V$	$V_{C C}=V_{\text {MAX }}$		15.0	50.0	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		1.0	50.0	$\mu \mathrm{A}$
$1 /{ }_{\text {IL }}$	Logical "0" Receiver Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}$			1.0	50.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		Disable	2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage		Disable			0.8	V
I_{H}	Logical "1" Input Current	Disable Input	$\mathrm{V}_{\text {IND }}=2.4 \mathrm{~V}$			80.0	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IND }}=5.5 \mathrm{~V}$			2.0	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0.4 \mathrm{~V}$, Disable Input				-3.2	mA
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IND}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$		2.4			V
V_{OL}	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IND}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=16 \mathrm{~mA}$			0.25	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX},}(\text { Note 4) } \end{aligned}$		-18.0		-55.0	mA
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0 \mathrm{~V}$, (Per Package)			45.0	60.0	mA
V_{CL}	Input Clamp Diode	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IND}}=-12 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-1.0	-1.5	V

Switching Characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions		Min	Typ	Max	Units
t_{pd}	Propagation Delays	$V_{I N D}=0 V,$ Receiver	Input to Logical "1" Output, (Note 5)		20	30	ns
			Input to Logical "0" Output, (Note 6)		18	30	ns
		$\begin{aligned} & \text { Input = OV, } \\ & \text { Disable, (Note 7) } \end{aligned}$	Input to Logical "1" Output		9	15	ns
			Input to Logical "0" Output		4	10	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7837 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8837. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{\mathbb{I N}}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.
Note 6: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $V_{I N}=2.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3 V pulse.
Note 7: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.

DS7838/DS8838 Quad Unified Bus Transceiver

General Description

The DS7838/DS8838 are quad high speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

Features

- 4 totally separate driver/receiver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load

■ Guaranteed minimum bus noise immunity of $1.3 \mathrm{~V}, 2 \mathrm{~V}$ typ.

- Temperature-insensitive receiver thresholds track bus logic levels
■ $20 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $V_{C C}=0 \mathrm{~V}$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

Typical Application

TL/F/5812-1

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input and Output Voltage
5.5 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, (Soldering, 4 sec .)
$260^{\circ} \mathrm{C}$
*Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.01 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package	1433 mW
Molded DIP Package	1362 mW
SO Package	1002 mW
Operating Temperature Range	
DS7838	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS8838	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics

DS7838/DS8838: The following apply for $\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{C C} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DRIVER AND DISABLE INPUTS						
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage				0.8	\checkmark
1	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
IIH	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Logical " 0 " Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-1.6	mA
$V_{C L}$	Input Diode Clamp Voltage	$\begin{aligned} & I_{D I S}=-12 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, I_{\mathrm{BUS}}=-12 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-1.5	V

DRIVER OUTPUT/RECEIVER INPUT

V OLB	Low Level Bus Voltage	$V_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\text {BUS }}=50 \mathrm{~mA}$			0.4	0.7	V
IIHB	Maximum Bus Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}$			20	100	$\mu \mathrm{A}$
ILLB	Maximum Bus Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			2	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Receiver Threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{IND}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$	DS7838	1.65	2.25	2.65	V
			DS8838	1.80	2.25	2.50	V
$\mathrm{V}_{\text {IL }}$	Low Level Receiver Threshold	$\begin{aligned} & V_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	DS7838	0.97	1.30	1.63	V
			DS8838	1.05	1.30	1.55	V

RECEIVER OUTPUT

V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
VOL	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DIS}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}},(\text { Note 4) } \end{aligned}$	-18		-55	mA
ICC	Supply Current	$\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}$, (Per Package)		50	70	mA

Electrical Characteristics

DS7838/DS8838: The following apply for $V_{\text {MIN }} \leq V_{C C} \leq V_{M A X}, T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$, unless otherwise specified (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RECEIVER OUTPUT (Continued)						
$t_{\text {pd }}$	Propagation Delays (Note 8) Disable to Bus " 1 "	(Note 5)		19	30	ns
	Disable to Bus "0"	(Note 5)		15	23	ns
	Driver Input to Bus "1"	(Note 5)		17	25	ns
	Driver Input to Bus "0"	(Note 5)		9	15	ns
	Bus to Logical "1" Receiver Output	(Note 6)		20	30	ns
	Bus to Logical "0" Receiver Output	(Note 7)		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7838 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8838. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=1.5 \mathrm{~V}$ to $V_{B U S}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3.0 V pulse .
Note 6: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $V_{I N}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$ to 3.0V pulse.
Note 7: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $V_{I N}=2.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.0V pulse
Note 8: These apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise speicified.

Section 3

Peripheral Power Drivers

Section 3 Contents
Peripheral Power Drivers-Introduction 3-3
Peripheral Power Drivers-Selection Guide 3-4
DP7310/DP8310/DP7311/DP8311 Octal Latched Peripheral Drivers 3-5
DS1631/DS3631/DS1632/DS3632/DS1633/DS3633/DS1634/DS3634 CMOS Dual Peripheral Drivers 3-12
DS3654 Printer Solenoid Driver 3-17
DS3656 Quad Peripheral Driver 3-21
DS3658 Quad High Current Peripheral Driver 3-23
DS3668 Quad Fault Protected Peripheral Driver 3-26
DS3669 Quad High Current Peripheral Driver 3-29
DS3680 Quad Negative Voltage Relay Driver 3-32
DS3686 Dual Positive Voltage Relay Driver 3-35
DS1687/DS3687 Negative Voltage Relay Drivers 3-38
DS55451/2/3/4, DS75450/1/2/3/4 Series Dual Peripheral Drivers 3-41
DS55461/2/3/4, DS75461/2/3/4 Series Dual Peripheral Drivers 3-57
DS2001/DS9665/DS2002/DS9666/DS2003/DS9667/DS2004/DS9668 High Current/Voltage Darlington Drivers 3-65
AN-213 Safe Operating Areas for Peripheral Drivers 3-70

Peripheral/power drivers is a broad definition given to interface power devices. The devices generally have open-collector output transistors that can switch hundreds of milliamps at high voltage and are driven by standard logic gates. They serve many applications including relay drivers, printer hammer drivers, lamp drivers, bus drivers, core memory drivers, voltage level translators, stepper motor drivers and solenoid drivers.
Unlike standard logic devices, peripheral drivers have many varied load situations depending on the application. This requires the design engineer to interpret device specifications in greater detail. Designers at National Semiconductor have incorporated many technically advanced and useful features into their broad line of peripheral driver devices.

Some of these features include:

- Short circuit protection at individual outputs
- Glitch-free power up/down
- Fail-safe operation
- Inductive fly-back protection
- Negative transient protection
- High input impedance for CMOS/NMOS compatibility

For further information on National Semiconductor's broad line of peripheral drivers, refer to the selection guide to follow and application notes within this section.

	PERIPHERAL/POWER DRIVERS																				
	Device Number and Temperature Range	Drivers/ Package	Logic Function (Driver On)	Input Compatibility (Logic)	Output High Voltage (V)	Latch-Up Voltage (Note 3) (V)	Output Low Voltage (V)	Output Low Current (mA)	$\begin{aligned} & \text { Propagation } \\ & \text { Delay } \\ & \text { Typ (ns) } \\ & \hline \end{aligned}$	On Power Supply Current (mA)	Page No.										
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$																				
	$\begin{aligned} & \hline \text { DP7310 } \\ & \text { DP7311 } \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	(Note 5) (Note 6)	$\begin{aligned} & \text { TTL } \\ & \text { TTL } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 152 \\ & 125 \end{aligned}$	$\begin{aligned} & 3-5 \\ & 3-5 \end{aligned}$										
		7	NAND	TTL	50		1.6	350	5000		3-65										
				PMOS							$3-65$ $3-65$										
	$\begin{aligned} & \text { DS2002M } \\ & \mu \mathrm{A} 9666 \mathrm{M} \end{aligned}$	7	NAND	PMOS	50		1.6	350	5000		$3-65$ $3-65$										
	DS2003M	7	NAND	TTL/CMOS	50		1.6	350	5000		3-65										
	$\mu \mathrm{A9667M}$										3-65										
	DS2004M	7	NAND	CMOS/PMOS	50		1.6	350	5000		3-65										
	$\mu \mathrm{A9668M}$										3-65										
	DS1631	2	AND	CMOS	56	40	1.4	300	150	8	3-12										
	DS1632	2	NAND	cMOS	56	40	1.4	300	150	8	3-12										
	DS1633	2	OR	CMOS	56	40	1.4	300	150	8	3-12										
	DS1634	2	NOR	cMOS	56	40	1.4	300	150	8	3-12										
		10	(Note 2)	(Note 2)	(Note 1)	45	1.6	250	1000	70	3-17										
		4	NAND	TTL/LS	65	30	1.5	600		65	3-21										
		4	NAND	TTL/LS	70	35	0.7	600	2430	65	3-23										
		4	NAND	TTL/LS	70	(Note 7)	1.5	600	2000	80	3-26										
		4	AND	TTL/LS	70	35	0.7	600		65	3-29										
		4	(Note 4)	TTL/CMOS	-2.1	-60	-60	-50	10,000	4.4	3-32										
		2	NAND	TLL/CMOS	(Note 1)	56	1.3	300	1000	28	3-35										
	DS1687	2	NAND	TTL/CMOS	(Note 1)	-56	-1.3	300	1000	2.8	3-38										
		2	AND	TTL	30	20	0.7	300	31	55	3-41										
	DS55451	2	AND	TTL	30	20	0.7	300	31	55	3-41										
	DS55452	2	NAND	TTL	30	20	0.7	300	31	55	3-41										
	DS55453	2	OR	TTL	30	20	0.7	300	31	55	3-41										
	DS55.454	2	NOR	TLL	30	20	0.7	300	31	55	3-41										
	DS55461	2	AND	TTL	35	30	0.7	300	33	55	3-57										
	DS55462	2	NAND	TTL	35	30	0.7	300	33	55	3-57										
	DS55463	2	OR	TTL	35	30	0.7	300	33	55	3-57										
	DS55464	2	NOR	TLL	35	30	0.7	300	33	55	3-57										
		2	AND	CMOS	13.5	15	$\mathrm{V}_{\mathrm{CC}}-1.8$	300	150	0.015	CMOS CMOS										
	Note 1: The DS3686, DS3687 and DS3654 contain an internal inductive fly-back clamp circuit connected from the output to ground. As an example, DS3686 driving a relay solenoid connected to 28 V would clamp the output voltage flyback transient at 56 V caused by the solenoid's stored inductive current. This clamp protects the circuit output and quenches the fly-back.																				
	Note 2: The DS3654 is a 10 -bit shift register followed by 10 enabled drivers. The input circuit is equivalent to a 4 k resistor to ground, and the logic input thresholds are 2.8 V and 0.8 V . The recommended power supply voltage is 7.5 V to 9.5 V . The circuit can be cascaded to be a 20 or 30 -bit shift register.																				
	Note 3: Latch-up voltage is the maximum voltage the output can sustain when switching an inductive load.																				
	Note 4: DS3680 has a differential input circuit.																				
	Note 5: DS8310 inverting, positive edge latching.																				
	Note 6: DS8311 inverting, fall through latch. Note 7: DS3668 35V, latch-up with output fault protection.																				

National Semiconductor

DP7310／DP8310／DP7311／DP8311 Octal Latched Peripheral Drivers

General Description

The DP7310／8310，DP7311／8311 Octal Latched Peripheral Drivers provide the function of latching eight bits of data with open collector outputs，each driving up to 100 mA DC with an operating voltage range of 30 V ．Both devices are designed for low input currents，high input／output voltages， and feature a power up clear（outputs off）function．
The DP7310／8310 are positive edge latching．Two active low write／enable inputs are available for convenient data bussing without external gating．
The DP7311／8311 are positive edge latches．The active low strobe input latches data or allows fall through operation when held at logic＂ 0 ＂．The latches are cleared（outputs off） with a logic＂ 0 ＂on the clear pin．

Features

－High current，high voltage open collector outputs
－Low current，high voltage inputs

■ All outputs simultaneously sink rated current＂DC＂with no thermal derating at maximum rated temperature
－Parallel latching or buffering
－Separate active low enables for easy data bussing
－Internal＂glitch free＂power up clear
－ $10 \% V_{C C}$ tolerance

Applications

－High current high voltage drivers
－Relay drivers
－Lamp drivers
－LED drivers
－TRIAC drivers
－Solenoid drivers
－Stepper motor drivers
－Level translators
－Fiber－optic LED drivers

Connection Diagrams

TL／F／5246－1
Top View

TL／F／5246－2

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7.0 V

Input Voltage 35 V
Output Voltage
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package
DP8310/DP8311
Storage Temperature Range
Lead Temperature (Soldering, 4 sec .)
*Derate cavity package $12.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $16.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Temperature			
DP7310/DP7311	-55	+125	${ }^{\circ} \mathrm{C}$
\quad DP8310/DP8311	0	+70	${ }^{\circ} \mathrm{C}$
Input Voltage		30	V
Output Voltage		30	V

DC Electrical Characteristics DP7310/DP8310, DP7311/DP8311 (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage				0.8	V
V_{OL}	Logical " 0 " Output Voltage DP7310/DP7311 DP8310/DP8311	Data outputs latched to $\begin{gathered} \text { logical " } 0 \text { "', } \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ \mathrm{l}_{\mathrm{OL}}=75 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA} \\ \hline \end{gathered}$		0.35	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IOH	Logical " 1 " Output Current DP7310/DP7311 DP8310/DP8311	Data outputs latched to $\begin{gathered} \text { logical " } 1 \text { ", } V_{C C}=\text { Min. } \\ V_{O H}=25 \mathrm{~V} \\ V_{O H}=30 \mathrm{~V} \\ \hline \end{gathered}$		2.5	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}$		0.1	25	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$		1	250	$\mu \mathrm{A}$
I/L.	Logical "0" Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max}$		-215	-300	$\mu \mathrm{A}$
$\mathrm{V}_{\text {clamp }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=12 \mathrm{~mA}$		-0.8	-1.5	V
ICCO	Supply Current, Outputs On DP7310 DP8310 DP7311 DP8311	Data outputs latched to a logical " 0 ". All Inputs are at logical " 1 ", $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.		$\begin{gathered} 100 \\ 100 \\ 88 \\ 88 \end{gathered}$	$\begin{aligned} & 125 \\ & 152 \\ & 117 \\ & 125 \end{aligned}$	mA mA mA mA
ICC1	Supply Current, Outputs Off DP7310 DP8310 DP7311 DP8311	Data outputs latched to a logic " 1 ". Other conditions same as lcco.		$\begin{aligned} & 40 \\ & 40 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 47 \\ & 57 \\ & 34 \\ & 36 \end{aligned}$	mA mA mA mA

AC Electrical Characteristics DP7310／DP8310： $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {pd0 }}$	High to Low Propagation Delay Write Enable Input to Output	（Figure 1）		40	120	ns
$\mathrm{t}_{\text {pd1 }}$	Low to High Propagation Delay Write Enable Input to Output	（Figure 1）		70	150	ns
$\mathrm{t}_{\text {SETUP }}$	Minimum Set－Up Time Data in to Write Enable Input	$\mathrm{t}_{\text {HoLD }}=0 \mathrm{~ns}$ （Figure 1）	45	20		ns
$\mathrm{t}_{\mathrm{pWH}}$, $\mathrm{t}_{\mathrm{pWL}}$	Minimum Write Enable Pulse Width	（Figure 1）	60	25		ns
$\mathrm{t}_{\text {THL }}$	High to Low Output Transition Time	（Figure 1）		16	35	ns
$\mathrm{t}_{\text {TLH }}$	Low to High Output Transition Time	（Figure 1）		38	70	ns
C_{IN}	＂N＂Package（Note 4）			5	15	pF

AC Electrical Characteristics DP7311／DP8311： $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pd0 }}$	High to Low Propagation Delay Data In to Output	（Figure 2）		30	60	ns
$\mathrm{t}_{\text {pd1 }}$	Low to High Propagation Delay Data to Output	（Figure 2）		70	100	ns
$\mathrm{t}_{\text {SETUP }}$	Minimum Set－Up Time Data in to Strobe Input	$\mathrm{t}_{\text {HOLD }}=0 \mathrm{~ns}$ （Figure 2）	0	-25		ns
$\mathrm{t}_{\mathrm{pWL}}$	Minimum Strobe Enable Pulse Width	（Figure 2）	60	35		ns
$\mathrm{t}_{\text {pdC }}$	Propagation Delay Clear to Data Output	（Figure 2）		70	135	ns
$\mathrm{t}_{\mathrm{pWC}}$	Minimum Clear Input Pulse Width	（Figure 2）	60	25		ns
$\mathrm{t}_{\mathrm{THL}}$	High to Low Output Transition Time	（Figure 2）		20	35	ns
$\mathrm{t}_{\mathrm{TLH}}$	Low to High Output Transition Time	（Figure 2）		38	60	ns
C_{TN}	Input Capacitance－Any Input	（Note 4）		5	15	pF

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Temperature Range＂ they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂provides conditions for actual device operation．
Note 2：Unless otherwise specified min／max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．temperature range for the DP7310／DP7311 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DP8310／DP8311．All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3：All currents into device pins shown as positive，out of device pins as negative，all voltages referenced to ground unless otherwise noted．
Note 4：Input capacitance is guaranteed by periodic testing． $\mathrm{f}_{\mathrm{TEST}}=10 \mathrm{kHz}$ at $300 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

Logic Table

DP7310/DP8310			
Write Enable 1 $\overline{W E}_{1}$	Write Enable 2 $\overline{W E}_{2}$	Data Input Dl $_{1-8}$	Data Output DO $_{1-8}$
0	0	X	Q
0	-	0	1
0	-	1	0
\sim	0	0	1
0	0	1	0
1	1	X	Q
1	0	X	Q
\sim	1	X	Q

DP7311/DP8311				
Clear	Strobe $\overline{\text { STR }}$	Data Input DI_{1-8}	Data Output DO $_{1-8}$	
1	1	X	Q	
1	0	0	1	
1	0	1	0	
0	X	X	1	

X = Don't Care
$1=$ Outputs Off
$0=$ Outputs On
$Q=\operatorname{Pre}-$ existing Output
$\boldsymbol{\sigma}=$ Positive Edge Transition

Block Diagrams

TL/F/5246-4

Switching Time Waveforms

Typical Applications DP8310/11 Buffering High Current Device (Notes 1 and 2)

Eight Output/Four Output Fiber Optic LED Driver

TL/F/5246-14

Typical Applications (Continued)

TL/F/5246-16

200 mA Drive for a 4 Phase Bifilar Stepper Motor
${ }^{+} V_{\text {StePPER }}$

TL/F/5246-17

Reading the State of the Latched Peripherals

DS1631/DS3631/DS1632/DS3632/DS1633/DS3633/ DS1634/DS3634 CMOS Dual Peripheral Drivers

General Description

The DS1631 series of dual peripheral drivers was designed to be a universal set of interface components for CMOS circuits.
Each circuit has CMOS compatible inputs with thresholds that track as a function of V_{CC} (approximately $1 / 2 \mathrm{~V}_{\mathrm{CC}}$). The inputs are PNPs providing the high impedance necessary for interfacing with CMOS.
Outputs have high voltage capability, minimum breakdown voltage is 56 V at $250 \mu \mathrm{~A}$.
The outputs are Darlington connected transistors. This allows high current operation (300 mA max) at low internal V_{CC} current levels since base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply.
Typical $V_{C C}=5 \mathrm{~V}$ power is 28 mW with both outputs ON . $V_{C C}$ operating range is 4.5 V to 15 V .
The circuit also features output transistor protection if the $V_{C C}$ supply is lost by forcing the output into the high impe-
dance OFF state with the same breakdown levels as when $V_{C C}$ was applied.
Pin-outs are the same as the respective logic functions found in the following popular series of circuits: DS75451, DS75461. This feature allows direct conversion of present systems to the MM74C CMOS family and DS1631 series circuits with great power savings.
The DS1631 series is also TTL compatible at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Features

- CMOS compatible inputs
- High impedance inputs
- High output voltage breakdown

PNP's 56 V min

- High output current capability 300 mA max
- Same pin-outs and logic functions as DS75451 and DS75461 series circuits
■ Low VCC power dissipation (28 mW both outputs "ON" at 5 V)

Connection Diagrams (Dual-In-Line and Metal Can Packages)

Top View
Order Number DS1631J-8, DS3631J-8 or DS3631N

TL/F/5816-5
Top View
(Pin 4 is electrically connected to the case.)

Order Number
DS1631H or DS3631H

Order Number DS1632J-8, DS3632J-8 or DS3632N

TL/F/5816-6
Top View
(Pin 4 is electrically connected to the case.)

Order Number
DS1632H or DS3632H

Top View See NS Package Number J08A or N08E

Top View
Order Number DS1633J-8, DS3633J-8 or DS3633N

TL/F/5816-7
Top View
(Pin 4 is electrically connected to the case.)

Order Number
DS1633H or DS3633H
See NS Package Number H08C

Top View
Order Number DS1634J-8, DS3634J-8 or DS3634N

TL/F/5816-8
Top View
(Pin 4 is electrically connected to the case.)

Order Number DS1634H or DS3634H

Absolute Maximum Ratings (Note 1)	Operating Conditions			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	Supply Voltage, $\mathrm{V}_{\text {CC }}$	Min	Max	Units
Office/Distributors for availability and specifications.	DS1631/DS1632/	4.5	15	V
Supply Voltage 16 V	DS1633/DS1634			
Voltage at Inputs $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$				
Output Voltage 56 V	DS3631/DS3632/	4.75	15	V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS3633/DS3634			
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package $\quad 1133 \mathrm{~mW}$	Temperature, T_{A}			
Molded Package 1022 mW	DS1631/DS1632/	-55	+125	${ }^{\circ} \mathrm{C}$
TO-5 Package 787 mW	DS1633/DS1634			
Lead Temperature (Soldering, $4 \mathrm{sec} . \quad 260^{\circ} \mathrm{C}$				
*Derate cavity package $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate TO-5 package $5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	DS3631/DS3632/ DS3633/DS3634	0	$+70$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ALL CIRCUITS							
V_{IH}	Logical "1" Input Voltage	(Figure 1)	$V_{C C}=5 \mathrm{~V}$	3.5	2.5		V
			$\mathrm{V}_{C C}=10 \mathrm{~V}$	8.0	5		V
			$V_{C C}=15 \mathrm{~V}$	12.5	7.5		V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	(Figure 1)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2.5	1.5	V
			$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$		5.5	2.0	V
			$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		7.5	2.5	V
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$, (Figure 2)			0.1	10	$\mu \mathrm{A}$
I/L	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$, (Figure 3)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		-50	-120	$\mu \mathrm{A}$
			$V_{C C}=15 \mathrm{~V}$		-200	-360	$\mu \mathrm{A}$
V_{OH}	Output Breakdown Voltage	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=250 \mu \mathrm{~A},($ Figure 1)		56	65		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, (Figure 1), DS1631, DS1632, DS1633, DS1634	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.85	1.1	V
			$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		1.1	1.4	V
		$V_{C C}=$ Min, (Figure 1), DS3631, DS3632, DS3633, DS3634	$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.85	1.0	V
			$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		1.1	1.3	V

DS1631/DS3631

ICC(0)	Supply Currents	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},($ Figure 4)	$V_{C C}=5 \mathrm{~V}$	Output Low Both Drivers	7	11	mA
			$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		14	20	mA
$\mathrm{ICC}(1)$		(Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$	Output High Both Drivers	2	3	mA
			$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		7.5	10	mA
$t_{\text {PD1 }}$	Propagation to "1"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)			500		ns
tpDo	Propagation to " 0 "	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)			750		ns

DS1632/DS3632

ICC(0)	Supply Currents	(Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$	Output Low	8	12	mA
			$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$.		18	23	mA
$\mathrm{ICC}(1)$		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},($ Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	Output High	2.5	3.5	mA
			$V_{C C}=15 \mathrm{~V}$		9	14	mA
tPD1	Propagation to "1"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$ (Figure 5)			500		ns
tpDo	Propagation to " 0 "	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$, (Figure 5)			750		ns

Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
DS1633/DS3633								
$\mathrm{I} \mathrm{CC}(0)$	Supply Currents	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, (Figure 4)	$V_{C C}=5 \mathrm{~V}$	Output Low		7.5	12	mA
			$V_{C C}=15 \mathrm{~V}$			16	23	mA
$\operatorname{ICC}(1)$		(Figure 4)	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output High		2	4	mA
			$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=15 \mathrm{~V}$			7.2	15	mA
$t_{\text {PD1 }}$	Propagation to "1"	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$, (Figure 5)				500		ns
$\mathrm{t}_{\text {PDO }}$	Propagation to " 0 "	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$ (Figure 5)				750		ns
DS1634/DS3634								
$\operatorname{lcc}(0)$	Supply Currents	(Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output Low		7.5	12	mA
			$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 N}=15 \mathrm{~V}$			18	23	mA
$\operatorname{lcC}(1)$		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, (Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	Output High		3	5	mA
			$V_{C C}=15 \mathrm{~V}$			11	18	mA
$t_{\text {PD1 }}$	Propagation to "1"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)				500		ns
tpDo	Propagation to "0"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)				750		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1631, DS1632, DS1633 and DS1634 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3631, DS3632, DS3633 and DS3634. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Test Circuits

Circuit	Input Under Test	Other Input	Output	
			Apply	Measure
DS3631	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}^{2} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	V_{OH} VOL
DS3632	$\begin{aligned} & V_{\mathrm{IH}} \\ & V_{\mathrm{IL}} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{I H} \\ & V_{C C} \end{aligned}$	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	V_{OL} V_{OH}
DS3633	$\begin{aligned} & V_{\mathrm{IH}} \\ & V_{\mathrm{IL}} \end{aligned}$	GND V_{IL}	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL}^{2} \\ & \hline \end{aligned}$	V_{OH} V_{OL}
DS3634	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	GND V_{IL}	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	v_{OL} VOH

Note: Each input is tested separately.
FIGURE 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$

Test Circuits (Continued)

Note A: Each input is tested separately.
Note B: When testing DS1633 and DS1634 input not under test is grounded. For all other circuits it is at V_{Cc}.

FIGURE 3. IIL

Schematic Diagram (Equivalent Circuit)

Switching Time Waveforms

TL/F/5816-14
Note 1: The pulse generator has the following characteristics: $\mathrm{PRR}=500 \mathrm{kHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$
Note 2: C_{L} includes probe and jig capacitance
FIGURE 5. Switching Times

DS3654 Printer Solenoid Driver

General Description

The DS3654 is a serial-to-parallel 10-bit shift register with a clock and data input, a data output from the tenth bit, and 10 open-collector clamped relay driver outputs suitable for driving printer solenoids.
Timing for the circuit is shown in Figure 1. Data input is sampled on the positive clock edge. Data output changes
on the negative clock edge, and is always active. Enable transfers data from the shift register to the open-collector outputs. Internal circuitry inhibits output enable for power supply voltage less than 6 V .
Each output sinks 250 mA and is internally clamped to ground at 50 V to dissipate energy stored in inductive loads.

Connection Diagram

Logic Diagram

TL/F/5817-2

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage, VCC
Input Voltage
Output Supply, Vp-p
Storage Temperature Range
Output Current (Single Output)
Ground Current
Peak Power Dissipation $\mathrm{t}<10 \mathrm{~ms}$, Duty Cycle < 5\%
9.5V Max
-0.5 V Min. 9.5 V Max

45V Max
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
0.4A
4.0A
4.5W Max

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
1635 mW

Molded Package	1687 mW
$60^{\circ} \mathrm{C}$	

Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
-Derate cavity package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $13.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(V_{C C}\right)$	7.5	9.5	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$
Output Supply $(\mathrm{V} p-\mathrm{p})$		40	V

Electrical Characteristics (Notes 2, 3 and 4) $\mathrm{V} p-\mathrm{p}=30 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Units
Logical "1" Input Voltage		2.6			V
Logical "0" Input Voltage				0.8	V
Logical "1" Output Voltage Clamp	$\mathrm{I}_{\text {CLAMP }}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	45	50	65	V
Logical "1" Output Current	$\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$			1.0	mA
Logical "0' Output Voltage	$\mathrm{l}_{\mathrm{OL}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=2.6 \mathrm{~V}$			1.6	V
Logical "1" Input Current Clock Enable Data Clock Enable Data	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CL}}=2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}=2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CL}}=2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}=2.6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=2.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.57 \\ & 0.33 \\ & 0.33 \\ & 0.57 \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ 0.75 \\ \hline \end{gathered}$	mA mA mA mA mA mA
Logical "0' Input Current Clock Enable Data	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CL}}=1 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}=1 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 125 \\ & 125 \\ & 220 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Pull-Down Resistance Clock Enable Data	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CL}}<\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}<\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$		$\begin{gathered} 8 \\ 8 \\ 4.5 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Supply Current (I_{CC}) Outputs Disabled Outputs Enabled	$\begin{aligned} & T_{A} \geq 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0 \mathrm{~V}, \\ & V_{C C}=9.5 \mathrm{~V} \\ & T_{A} \geq 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{EN}}=2.6 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=250 \mathrm{~mA} \end{aligned}$ Each Bit		$\begin{aligned} & 27 \\ & 55 \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	mA mA
Data Output Low ($\mathrm{V}_{\text {DOL }}$)	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=0 \mathrm{~V}$		0.01	0.5	V
Data Output High ($\mathrm{V}_{\mathrm{DOH}}$)	$\mathrm{V}_{\mathrm{D}}=2.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.75 \mathrm{~mA}$	2.6	3.4		V
Data Output Pull-Down Resistance	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=1 \mathrm{~V}$		14		$\mathrm{k} \Omega$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 7.5 V to 9.5 V power supply range. All typical values given are for $V_{C C}=8.5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Units
Clk, Data and Enable Inputs t_{FC} $t_{\text {RC }}$ tclk tclk thold tsET-UP $t_{\text {RE }}$, trdin n $\mathrm{t}_{\text {FE, }} \mathrm{t}_{\text {FDIN }}$	(Figure 1) $t_{\text {BIT }} \geq 10 \mu \mathrm{~s}$	$\begin{gathered} 2 \\ 3.5 \end{gathered}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$
$\begin{gathered} \text { Output } 1-10 \\ \text { t RO } \\ \text { t }_{\text {FO }} \\ \text { tpDEH }^{\text {tPDE. }} \\ \text { t }^{2} \\ \hline \end{gathered}$	$\begin{aligned} & V p-p=20 V \\ & R_{L}=100 \Omega, C_{L}<100 \mathrm{pF} \\ & R_{L}=100 \Omega, C_{L}<100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.2 \\ & 3.5 \\ & 3.0 \end{aligned}$		$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \end{gathered}$
Data Output tpDh, $^{\text {tpDL }}$ $t_{R D}$ $t_{F D}$	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	2.5	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Clock to Enable Delay tce		$2 \mathrm{t}_{\text {BIT }}$			$\mu \mathrm{s}$
Enable to Clock Delay		${ }_{\text {t BIT }}$			$\mu \mathrm{S}$

Switching Time Waveforms

FIGURE 1. Shift Timing

Definition of Terms

Vp-p: Output power supply voltage. The return for open-col- $\overline{\mathbf{t}_{\text {CLK }}}$: The portion of $t_{\text {BIT }}$ when $\mathrm{V}_{\text {CLK }} \leq 0.8 \mathrm{~V}$ lector relay driver outputs.
$t_{\text {BIT: }}$ Period of the incoming clock.
$V_{\text {CLK }}$: The voltage at the clock input.
$t_{\text {CLK }}$: The portion of $\mathrm{t}_{\text {BIT }}$ when $\mathrm{V}_{\text {CLK }} \geq 2.6 \mathrm{~V}$
$\mathbf{t}_{\text {SET-UP: }}$ The time prior to the end of $\overline{\mathrm{t}_{\mathrm{CLK}}}$ required to insure valid data at the shift register input for subsequent clock transitions.
$t_{\text {HOLD }}$: The time following the start of tclk required to transfer data within the shift register.

DS3656 Quad Peripheral Driver

General Description

The DS3656 is a quad peripheral driver designed for use in automotive applications. Logically it is an open collector NAND function with all inputs compatible with 74LS and CMOS series products. An enable input is provided that is common to each driver. When taken to a logic zero level all outputs will turn off. Also, overvoltage is detected.
The DS3656 has features associated with the output structure that make it highly versatile to many applications. Each output is capable of 600 mA sink currents and offers 65 V standoff voltage in non-inductive applications. A clamp network capable of handling 800 mA is incorporated in each output which eliminates the need of an external network to quench the high voltage backswing caused when switching inductive loads up to 30 V (reference AN-213).
The DS3656 is intended to operate from a 12 V automotive battery. Internal to the device is its own voltage regulator which permits the device to operate during the wide voltage variation seen in many automotive applications. An over-voltage-protection circuit is incorporated that will cause the outputs to turn off when the supply exceeds 30 V . The circuit is designed to withstand worst case fault conditions that occur in automotive applications, such as high voltage tran-
sients and reverse battery connection. In this type of environment an external 100Ω resistor must be connected in series with the V_{CC} line.
The molded package is specifically constructed to allow increased power dissipation over conventional packages. The four ground pins are directly connected to the device chip with a special copper lead frame. When the quad driver is soldered into a copper PC board the power rating of the device will significantly improve.

Features

- Quad automotive peripheral driver
- 600 mA output current capability

■ High voltage outputs-65V

- Clamp diode provided for inductive loads
- Built in regulator
- Overvoltage failsafe
- TTL/LS/CMOS compatible diode clamped inputs
- High power dissipation package
- Guaranteed to withstand worst case fault conditions

Connection Diagram

Dual-In-Line Package

Truth Table

Enable	In X	Out X
H	H	L
H	L	Z
L	X	Z

[^20]| Absolute Maximum Ratings (Note 1) | |
| :--- | ---: |
| If Military/Aerospace specified devices are required, | |
| please contact the National Semiconductor Sales | |
| Office/Distributors for availability and specifications. | |
| Supply Voltage, VCC (Note 2) | 65 V |
| Input Voltage | 7 V |
| Output Voltage | 65 V |
| Continuous Output Current | 1.2 A |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Thermal Resistance (Junction to Ambient) | |
| DS3656N Plugged in a Socket | $60^{\circ} \mathrm{C} / \mathrm{W}$ |
| DS3656N Soldered in a PC Board | $35^{\circ} \mathrm{C} / \mathrm{W}$ |
| DS365 Soldered in a PC Board | $20^{\circ} \mathrm{C} / \mathrm{W}$ |
| with 6 in2 Cn Foil | $260^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, Office/Distributors for avallability and specifications.
Supply Voltage, VCC (Note 2) 65 V
Input Voltage 65 V
Continuous Output Current 1.2A
Junction Temperature
$\begin{array}{ll}\text { DS3656N Plugged in a Socket } & 60^{\circ} \mathrm{C} / \mathrm{W} \\ \text { DS } 3656 \mathrm{~N} \text { Soldered in a PC Board } & 35^{\circ} \mathrm{C} / \mathrm{W}\end{array}$
DS3656N Soldered in a PC Board
Lead Temperature (Soldering, 4 seconds)
$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	10.5	17.0	V
Temperature	-40	105	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Condlitions	Min	Max	Units
$V_{C C}$	Power Supply Voltage		10.5	17	\checkmark
$l_{\text {cc }}$	Power Supply Current			65	mA
V_{IH}	High Level Input Voltage		2.0		V
$V_{\text {IL }}$	Low Level Input Voltage			0.8	V
I_{H}	High Level Input Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		-360	$\mu \mathrm{A}$
$V_{\text {ICL }}$	Input Clamp Voltage	$\mathrm{l}_{\mathrm{N}}=-10 \mathrm{~mA}$		-1.5	V
VOL	Low Level Output Voltage	$\mathrm{L}_{\mathrm{L}}=600 \mathrm{~mA}, \mathrm{~V}_{C C}=10.5 \mathrm{~V}$		1.5	V
IOH	High Level Leakage Current	$\mathrm{V}_{\mathrm{OH}}=65 \mathrm{~V}$		1.0	mA
V_{F}	Output Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}$		2.5	\checkmark
I_{R}	Output Diode Reverse Leakage	$\mathrm{V}_{\mathrm{R}}=65 \mathrm{~V}$		1.0	mA
Bycer	$\mathrm{V}_{\mathrm{OH} 1}$ Switching Capacitive or Resistive Load			65	V
LvCEO	$\mathrm{V}_{\mathrm{OH} 2}$ Switching Inductive Clamped Load			30	V

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$V_{C C}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		10	$\mu \mathrm{S}$
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$V_{C C}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		10	$\mu \mathrm{s}$
${ }_{\text {t }}^{\text {TLH }}$	Transition Time Low to High Level Output	$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		500	ns
${ }_{\text {t }}^{\text {THL }}$	Transition Time High to Low Level Output	$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		500	ns
$t_{\text {PLH }}$	Enable to Output	$V_{C C}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		10	$\mu \mathrm{S}$
$\mathrm{t}_{\text {PHL }}$	Enable to Output	$V_{C C}=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$		10	$\mu \mathrm{S}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
Note 3: Unless otherwise specified min/max limits apply across the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range.

DS3658 Quad High Current Peripheral Driver

General Description

The DS3658 quad peripheral driver is designed for those applications where low operating power, high breakdown voltage, high output current and low output ON voltage are required. A unique input circuit combines TTL compatibility with high impedance. In fact, its extreme low input current allows it to be driven directly by a CMOS device.
The outputs are capable of sinking 600 mA each and offer a 70 V breakdown. However, for inductive loads the output should be clamped to 35 V or less to avoid latch-up during turn off (inductive fly back protection-refer AN-213). An onchip clamp diode capable of handling 800 mA is provided at each output for this purpose. In addition, the DS3658 incorporates circuitry that guarantees glitch-free power up or down operation and a fail-safe feature which puts the output in a high impedance state when the input is open.
The molded package is specifically constructed to allow increased power dissipation over conventional packages. The four ground pins are directly connected to the device chip with a special copper lead frame. When the quad driver is soldered into a PC board, the power rating of the device improves significantly.

Applications

- Relay drivers
- Lamp drivers
- Solenoid drivers
- Hammer drivers
- Stepping motor drivers
- Triac drivers

LED drivers

- High current, high voltage drivers
- Level translators
- Fiber optic LED drivers

Features

- Single saturated transistor outputs
- Low standby power, 10 mW typical
- High impedance TTL compatible inputs
- Outputs may be tied together for increased current capacity
- High output current

600 mA per output
2.4A per package

- No output latch-up at 35 V
- Low output ON voltage (350 mV typ @ 600 mA)
- High breakdown voltage (70V)
- Open collector outputs
- Output clamp diodes for inductive fly back protection

■ NPN inputs for minimal input currents ($1 \mu \mathrm{~A}$ typical)
■ Low operating power

- Standard 5V power supply
- Power up/down protection
- Fail safe operation
- 2W power package
- Pin-for-pin compatible with SN75437

Connection Diagram

Dual-In-Line Package

TL/F/5819-1
Top View
Order Number DS3658N
See NS Package Number N16A

Truth Table

IN	EN	OUT
H	H	L
L	H	Z
H	L	Z
L	L	Z

$\mathrm{H}=$ High state
$\mathrm{L}=$ Low state
Z $=$ High impedance state

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage 15 V
Output Voltage 70V
Output Current 1.5A

Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ Free-Air (Note 5) 2075 mW
Storage Temperature Range Lead Temperature (Soldering, 4 sec .)

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	Input High Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
$\mathrm{IIH}_{\mathrm{H}}$	Input High Current	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		1.0	10	$\mu \mathrm{A}$
I_{LL}	Input Low Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage	$\mathrm{I}_{1}=-12 \mathrm{~mA}$		-0.8	-1.5	V
V_{OL}	Output Low Voltage	$\mathrm{IL}_{\mathrm{L}}=300 \mathrm{~mA}$		0.2	0.4	V
		$\mathrm{I}_{\mathrm{L}}=600 \mathrm{~mA}$ (Note 4)		0.35	0.7	V
$l_{\text {cex }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{CE}}=70 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$			100	$\mu \mathrm{A}$
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}$		1.0	1.6	V
I_{R}	Diode Leakage Current	$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$			100	$\mu \mathrm{A}$
Icc	Supply Current	All Inputs High		60	85	mA
		All inputs Low		2	4	mA

Switching Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PHL }}$	Turn On Delay	$R_{L}=60 \Omega, V_{L}=30 \mathrm{~V}$		226	500	ns
$\mathrm{t}_{\text {PLH }}$	Turn Off Delay	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}$		2430	8000	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, \min / max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: All sections of this quad circuit may conduct rated current simultaneously; however, power dissipation averaged over a short interval of time must fall within specified continuous dissipation ratings.
Note 5: For operation over $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to $1328 \mathrm{~mW} @ 70^{\circ} \mathrm{C} @$ the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

AC Test Circuit

TL/F/5819-2
*includes probe and jig capacitance

Switching Waveforms

TL/F/5819-3

Typical Applications

TL/F/5819-4
*L1, L2, L3, L4 are the windings of a bifilar stepping motor
${ }^{*} V_{\text {MOTOR }}$ is the supply voltage of the motor

Lamp Driver

TL/F/5819-5

National Semiconductor

DS3668 Quad Fault Protected Peripheral Driver

General Description

The DS3668 quad peripheral driver is designed for those applications where low operating power, high breakdown voltage, high output current and low output ON voltage are required. Unlike most peripheral drivers available, a unique fault protection circuit is incorporated on each output. When the load current exceeds 1.0A (approximately) on any output for more than a built-in delay time, nominally $12 \mu \mathrm{~s}$, that output will be shut off by its protection circuitry with no effect on other outputs. This condition will prevail until that protection circuitry is reset by toggling the corresponding input or the enable pin low for at least $1.0 \mu \mathrm{~s}$. This built-in delay is provided to ensure that the protection circuitry is not triggered by turn-on surge currents associated with certain kinds of loads.
The DS3668's inputs combine TTL compatibility with high input impedance. In fact, its extreme low input current allows it to be driven directly by a MOS device. The outputs are capable of sinking 600 mA each and offer a 70 V breakdown. However, for inductive loads the output should be clamped to 35 V or less to avoid latch up during turn off (inductive fly-back protection - refer AN-213). An on-chip clamp diode capable of handling 800 mA is provided at each output for this purpose. In addition, the DS3668 incorporates circuitry that guarantees glitch-free power up or down operation and a fail-safe feature which puts the output in a high impedance state when the input is open.
The molded package is specifically constructed to allow increased power dissipation over conventional packages. The four ground pins are directly connected to the device chip with a special copper lead frame. When the quad driver is soldered into a PC board, the power rating of the device improves significantly.

Applications

- Relay drivers
- Solenoid drivers
- Hammer drivers
- Stepping motor drivers
- Triac drivers
- LED drivers
- High current, high voltage drivers
- Level translators
- Fiber optic LED drivers

Features

- Output fault protection
- High impedance TTL compatible inputs
- High output current-600 mA per output
- No output latch-up at 35 V

■ Low output ON voltage (550 mV typ @ 600 mA)

- High breakdown voltage (70V)

■ Open collector outputs

- Output clamp diodes for inductive fly-back protection
- NPN inputs for minimal input currents ($1 \mu \mathrm{~A}$ typical)
- Low operating power
- Standard 5V power supply
- Power up/down protection
- Fail-safe operation

■ 2W power package

- Pin-for-pin compatible with SN75437

Connection Diagram

Dual-In-Line Package

Truth Table

IN	EN	OUT
H	H	L
L	H	Z
H	L	Z
L	L	Z

$H=H i g h$ state
$\mathrm{L}=$ Low state
$z=$ High impedance state
Order Number DS3668N
See NS Package Number N16A

Absolute Maximum Ratings (Note 1)	Operating Conditions			
If Military/Aerospace specified devices are required,		Min	Max	Units
please contact the National Semiconductor Sales	Supply Voltage	4.75	5.25	V
Office/Distributors for avallability and specifications.	Ambient Temperature	0	70	${ }^{\circ} \mathrm{C}$
Supply Voltage 7.0V	Ambient Tertperature	0	70	
Input Voltage 15V				
Output Voitage 70V				
Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ Free-Air(5) 2075 mW				
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 4 seconds) 260				

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{I H}$	Input High Voltage		2.0			V
$V_{\text {IL }}$	Input Low Voltage				0.8	V
$\mathrm{IIH}^{\text {H }}$	Input High Current	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.25 \mathrm{~V}$		1.0	20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$V_{\text {IK }}$	Input Clamp Voltage	$I_{1}=-12 \mathrm{~mA}$		-0.8	-1.5	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{L}}=300 \mathrm{~mA}$		0.2	0.7	V
		$\mathrm{I}_{\mathrm{L}}=600 \mathrm{~mA} \mathrm{(Note} \mathrm{4)}$		0.55	1.5	V
$I_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{CE}}=70 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$			100	$\mu \mathrm{A}$
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}$		1.2	1.6	V
$l_{\text {R }}$	Diode Leakage Current	$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$			100	$\mu \mathrm{A}$
ICC	Supply Current	All Inputs High		62	80	mA
		All Inputs Low		20		mA
$\mathrm{I}_{\text {TH }}$	Protection Circuit Threshold Current			1	1.4	A

Switching Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{P H L}$	Turn On Delay	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}$		0.3	1.0	$\mu \mathrm{~s}$
$t_{\text {PLH }}$	Turn Off Delay	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}$		2	10.0	$\mu \mathrm{~s}$
t_{FZ}	Protection Enable Delay (after Detection of Fault)		6	12		$\mu \mathrm{~s}$
t_{RL}	Input Low Time for Protection Circuit Reset		1.0			$\mu \mathrm{~s}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.

Note 4: All sections of this quad circuit may conduct rated current simultaneously; however, power dissipation averaged over a short interval of time must fall within specified continuous dissipation ratings.
Note 5: For operation over $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to $1328 \mathrm{~mW} @ 70^{\circ} \mathrm{C}$ @ the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

AC Test Circuit

Switching Waveforms

*Includes probe and jig capacitance.

Typical Application

Stepping Motor Driver

*L1, L2, L3, L4 are the windings of a bifilar stepping motor.
** $V_{\text {MOTOR }}$ is the supply voltage of the motor.

Protection Circuit Block Diagram

TL/F/5225-5

National
Semiconductor

DS3669 Quad High Current Peripheral Driver

General Description

The DS3669 is a non-inverting quad peripheral driver similar to the DS3658. These drivers are designed for those applications where low operating power, high breakdown voltage, high output current and low output ON voltage are required. A unique input circuit combines TTL compatibility with high impedance. In fact, its extreme low input current allows it to be driven directly by a CMOS device.
The outputs are capable of sinking 600 mA each and offer a 70 V breakdown. However, for inductive loads the output should be clamped to 35 V or less to avoid latch-up during turn off (inductive fly back protection-refer AN-213). An onchip clamp diode capable of handling 800 mA is provided at each output for this purpose. In addition, the DS3669 incorporates circuitry that guarantees glitch-free power up or down operation.
The molded package is specifically constructed to allow increased power dissipation over conventional packages. The four ground pins are directly connected to the device chip with a special copper lead frame. When the quad driver is soldered into a PC board, the power rating of the device improves significantly.

Applications

- Relay drivers
- Lamp drivers
- Solenoid drivers
- Hammer drivers
- Stepping motor drivers
- Triac drivers
- LED drivers
- High current, high voltage drivers
- Level translators
- Fiber optic LED drivers

Features

■ Single saturated transistor outputs

- Low standby power, 10 mW typical
- High impedance TTL compatible inputs
- Outputs may be tied together for increased current capacity
- High output current

600 mA per output
2.4A per package

- No output latch-up at 35 V
- Low output ON voltage (350 mV typ @600 mA)
- High breakdown voltage (70V)
- Open collector outputs

■ Output clamp diodes for inductive fly back protection

- NPN inputs for minimal input currents ($1 \mu \mathrm{~A}$ typical)
- Low operating power
- Standard 5V power supply
- Power up/down protection
- 2W power package

Connection Diagram

Dual-In-Line Package

Truth Table

IN	EN	OUT
L	H	L
H	H	Z
L	L	Z
H	L	Z

$H=$ High state
L= Low state
$Z=$ High impedance state

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablility and specifications.
Supply Voltage
7.0 V

Input Voltage 15 V
Output Voltage
Output Current
1.5A

Continuous Power Dissipation
@ $25^{\circ} \mathrm{C}$ Free-Air (Note 5)
2075 mW
$\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 4 \text { seconds) } & 260^{\circ} \mathrm{C}\end{array}$
Operating Conditions

	Min	Max	Units
Supply Voltage	4.75	5.25	V
Ambient Temperature	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0			V
$V_{\text {IL }}$	Input Low Voltage				0.8	V
I_{H}	Input High Current	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		1.0	10	$\mu \mathrm{A}$
1 IL	Input Low Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage	$I_{1}=-12 \mathrm{~mA}$		-0.8	-1.5	V
$V_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{L}}=300 \mathrm{~mA}$		0.2	0.4	V
		$\mathrm{I}_{\mathrm{L}}=600 \mathrm{~mA}$ (Note 4)		0.35	0.7	V
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=70 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}$		1.0	1.6	V
I_{R}	Diode Leakage Current	$V_{R}=70 \mathrm{~V}$			100	$\mu \mathrm{A}$
ICC	Supply Current	All Inputs Low $\mathrm{EN}=2.0 \mathrm{~V}$		60	80	mA
		All Inputs High		2	4	mA

Switching Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Unlts
$t_{\text {PHL }}$	Turn On Delay	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}$		226	500	ns
$\mathrm{t}_{\text {PLH }}$	Turn Off Delay	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}$		2430	8000	ns

Note 1: "Absolute Maximium Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: All sections of this quad circuit may conduct rated current simultaneously; however, power dissipation averaged over a short interval of time must fall within specified continuous dissipation ratings.
Note 5: For operation over $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to $1328 \mathrm{~mW} @ 70^{\circ} \mathrm{C}$ @ the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

AC Test Circuit

TL/F/5820-2
*Includes probe and jig capacitance

Typical Applications

TL/F/5820-4
*L1, L2, L3, L4 are the windings of a bifilar stepping motor.
${ }^{* *} V_{\text {MOTOR }}$ is the supply voltage of the motor.

Switching Waveforms

TL/F/5820-3

TL/F/5820-5

DS3680 Quad Negative Voltage Relay Driver

General Description

The DS3680 is a quad high voltage negative relay driver designed to operate over wide ranges of supply voltage, common-mode voltage, and ambient temperature, with 50 mA sink capability. These drivers are intended for switching the ground end of loads which are directly connected to the negative supply, such as in telephone relay systems.
Since there may be considerable noise and IR drop between logic ground and negative supply ground in many applications, these drivers are designed to operate with a high common-mode range ($\pm 20 \mathrm{~V}$ referenced to negative supply ground). Each driver has a common-mode range separate from the other drivers in the package, which pemits input signals from more than one element of the system.
With low differential input current requirements (typically $100 \mu \mathrm{~A}$), these drivers are compatible with TTL, LS and CMOS logic. Differential inputs permit either inverting or non-inverting operation.

The driver outputs incorporate transient suppression clamp networks, which eliminate the need for external networks when used in applications of switching inductive loads. A fail-safe feature is incorporated to insure that, if the +IN input or both inputs are open, the driver will be OFF.

Features

- -10 V to -60 V operation
- Quad 50 mA sink capability
- TTL/LS/COMS or voltage comparator input
- High input common-mode voltage range
- Very low input current
- Fail-safe disconnect feature
- Built-in output clamp diode

Connection Diagram

Dual-In-Line Package

TL/F/5821-1
Top View
Order Number DS3680J, DS3680M or DS3680N
See NS Package Number J14A, M14A, N14A

Logic Diagram

TL/F/5821-2

Truth Table

Differential Inputs	Outputs
$\mathrm{V}_{\mathrm{ID}} \geq 2 \mathrm{~V}$	On
$\mathrm{V}_{\mathrm{ID}} \leq 0.8 \mathrm{~V}$	Off
Open	Off

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availabillty and specifications.
Supply Voltage (GND to $\mathrm{V}_{\mathrm{EE}}-$, and Any Pin)
$-70 \mathrm{~V}$
Positive Input Voltage (Input to GND) 20 V
Negative Input Voltage (Input to $\mathrm{V}_{\mathrm{EE}}-$) $\quad-5 \mathrm{~V}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (GND to $\mathrm{V}_{\mathrm{EE}}{ }^{-}$)	-10	-60	V
Input Voltage (Input to GND)	-20	20	V
Logic ON Voltage (+IN)			
Referenced to -IN	2	20	V
Logic OFF Voltage (+ IN)			
Referenced to -IN	-20	0.8	V
Temperature Range	-25	$+85$	${ }^{\circ} \mathrm{C}$

Differential Voltage (+IN to -IN)
Inductive Load

Output Current
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package 1433 mW
Molded Dip Package 1398 mW
SO Package 1002 mW

Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$

* Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded dip package $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $8.02 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. pack-
$\pm 20 \mathrm{~V}$
$\mathrm{L}_{\mathrm{L}} \leq 5 \mathrm{~h}$ lı $\leq 50 \mathrm{~mA}$ - 100 mA

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	Logic "1" Input Voltage		2.0	1.3		V
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage			1.3	0.8	V
IINH	Logic "1" Input Current	$\begin{aligned} & V_{I N}=2 V \\ & V_{I N}=7 \mathrm{~V} \end{aligned}$		$\begin{gathered} 40 \\ 375 \end{gathered}$	$\begin{gathered} 100 \\ 1000 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IINL	Logic ' 0 ' Input Current	$\begin{aligned} & V_{I N}=0.4 \mathrm{~V} \\ & V_{I N}=-7 \mathrm{~V} \end{aligned}$		$\begin{gathered} -0.01 \\ -1 \end{gathered}$	$\begin{gathered} -5 \\ -100 \\ \hline \end{gathered}$	$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \end{array}$
V_{OL}	Output ON Voltage	$1 \mathrm{OL}=50 \mathrm{~mA}$		-1.6	-2.1	V
IOFF	Output Leakage	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{EE}}-$		-2	-100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FS }}$	Fail-Safe Output Leakage	$V_{\text {OUT }}=V_{E E}-$ (Inputs Open)		-2	-100	$\mu \mathrm{A}$
LLC	Output Clamp Leakage Current	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		2	100	$\mu \mathrm{A}$
V_{C}	Output Clamp Voltage	$I_{\text {CLAMP }}=-50 \mathrm{~mA}$ Referenced to $\mathrm{V}_{\mathrm{EE}}-$		-2	-1.2	V
V_{P}	Positive Output Clamp Voltage	ICLAMP $=50 \mathrm{~mA}$ Referenced to GND		0.9	1.2	V
IEE(ON)	ON Supply Current	All Drivers ON		-2	-4.4	mA
IEE(OFF)	OFF Supply Current	All Drivers OFF		-1	-100	$\mu \mathrm{A}$
${ }^{\text {tPD (ON }}$)	Propagation Delay to Driver ON	$\begin{aligned} & \mathrm{L}=1 \mathrm{~h}, R_{\mathrm{L}}=1 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V} \text { Pulse } \end{aligned}$		1	10	$\mu \mathrm{s}$
tPD(OFF)	Propagation Delay to Driver OFF	$\begin{aligned} & \mathrm{L}=1 \mathrm{~h}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{IN}}=3 V \text { Pulse } \end{aligned}$		1	10	$\mu \mathrm{S}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range",
they are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, the min/max limits of the table of "Electrical Characteristics" apply within the range of the table of "Operating Conditions". All typical values are given for $\mathrm{V}_{E E^{-}}=52 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All current into device pins shown as positive, out of the device as negative. All voltages are referenced to ground unless otherwise noted.

DS3686 Dual Positive Voltage Relay Driver

General Description

The DS3686 is a high voltage/current positive voltage relay driver having many features not available in present relay drivers.
PNP inputs provide both TTL/LS compatibility and high input impedance for low input loading.
Output leakage is specified over temperature at an output voltage of 54V. Minimum output breakdown (ac/latch breakdown) is specified over temperature at 5 mA . This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.
The outputs are Darlington connected transistors, which allow high current operation at low internal $V_{C C}$ current
levels-base drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical V_{CC} power with both outputs "ON" is 90 mW .
The circuit also features output transistor protection if the $V_{C C}$ supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when $V_{C C}$ was applied.

Features

- TTL/LS/CMOS compatible inputs
- High impedance inputs (PNP's)
- High output voltage breakdown (65 V typ)
- High output current capability (300 mA max)
- Internal protection circuit eliminates need for output protection diode
- Output breakdown protection if V_{CC} supply is lost
- Low VCC power dissipation (90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications

Connection Diagrams

Pin 4 is in electrical contact with the case
Order Number DS3686H
See NS Package Number H08C
Truth Table
Positive logic: $\overline{A B}=X$

A	B	Output X
0	0	1
1	0	1
0	1	1
1	1	0

Order Number DS3686J-8 or DS3686N See NS Package Number J08A or N08E

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1133 mW
Molded Package	1022 mW
TO-5 Package	787 mW
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$
"Derate cavity package $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package 8.2	
mW $/{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate $\mathrm{TO}-5$ package $5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Temperature, T_{A}	0	± 70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage	$R_{L}=180 \Omega, \mathrm{~V}_{\mathrm{L}}=54 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$			2.0			V
I_{H}	Logical "1" Input Current	$V_{C C}=M a x, V_{\text {IN }}=5.5 \mathrm{~V}$				0.01	40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\mathrm{R}_{\mathrm{L}}=180 \Omega, \mathrm{~V}_{\mathrm{L}}=54 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \leq 53.8 \mathrm{~V}$					0.8	\checkmark
IIL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$				-150	-250	$\mu \mathrm{A}$
$\mathrm{V}_{C D}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\text {CLAMP }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.0	-1.5	V
V_{OH}	Output Breakdown	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}$			56	65		V
IOH	Output Leakage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=54 \mathrm{~V}$				0.5	250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output ON Voltage	$\begin{aligned} & V_{C C}=\mathrm{Min}, \\ & V_{I N}=2.4 V \end{aligned}$	DS3686	$\mathrm{IOL}=100 \mathrm{~mA}$		0.85	1.0	V
				$\mathrm{IOL}^{2}=300 \mathrm{~mA}$		1.0	1.2	V
$\mathrm{ICC}_{\mathrm{C}}(1)$	Supply Current (Both Drivers)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Outputs Open				2	4	mA
$\operatorname{ICC}(0)$	Supply Current (Both Drivers)	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, Outputs Open				18	28	mA
tPDO	Propagation Delay to a Logical " 0 " (Output Turn ON)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				50		ns
$t_{\text {PD1 }}$	Propagation Delay to a Logical " 1 " (Output Turn OFF)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				1		$\mu \mathrm{S}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS3686}$. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Schematic Diagram

TL/F/5822-3

AC Test Circuit and Switching Time Waveforms

TL/F/5822-4
Note 1: The pulse generator has the following characteristics: PRR $=100 \mathrm{kHz}, 50 \%$ duty cycle, $Z_{\text {OUT }}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

DS1687/DS3687 Negative Voltage Relay Driver

General Description

The DS1687/DS3687 is a high voltage/current negative voltage relay driver having many features not available in present relay drivers.
PNP inputs provide both TTL/LS compatibility and high input impedance for low input loading.
Output leakage is specified over temperature at an output voltage of -54 V . Minimum output breakdown (ac/latch breakdown) is specified over temperature at -5 mA . This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which allow high current operation at low internal V_{CC} current lev-els-base drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical $V_{C C}$ power with both outputs "ON" is 90 mW .
The circuit also features output transistor protection if the $V_{C C}$ supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when $V_{C C}$ was applied.

Features

- TTL/LS/CMOS compatible inputs
- High impedance inputs (PNP's)

■ High output voltage breakdown (-65 V typ)
■ High output current capability (300 mA max)

- Internal protection circuit eliminates need for output protection diode
- Output breakdown protection if V_{CC} supply is lost
- Low V_{CC} power dissipation (90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications

Connection Diagrams

Truth Table

Positive logic: $\overline{\mathbf{A B}}=\mathbf{X}$

\mathbf{A}	\mathbf{B}	Output \mathbf{X}
0	0	1
1	0	1
0	1	1
1	1	0

Logic " 0 " output "ON"
Logic "1" output "OFF"

Top View

Order Number DS1687J-8, DS3687J-8 or DS3687N
See NS Package Number J08A or N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
7V

Output Voltage
15 V
Output Voltage 56 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1133 mW
Molded Package
1022 mW
TO-5 Package 787 mW
Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
*Derate cavity package $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate TO-5 package $5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage, $\mathrm{V}_{\text {CC }}$			
DS1687	4.5	5.5	V
DS3687	4.75	5.25	V
Temperature, T_{A}			
DS1687	-55	$+125$	${ }^{\circ} \mathrm{C}$
DS3687	0	$+70$	${ }^{\circ} \mathrm{C}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperture range for the DS1687 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3687. All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min or absolute value basis.

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics:
PRR $=M H z, 50 \%$ duty cycle, $Z_{\text {OUT }} \cong 50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

Schematic Diagram

National
 Semiconductor

DS55451/2/3/4, DS75450/1/2/3/4 Series Dual Peripheral Drivers

General Description

The DS75450 series of dual peripheral drivers is a family of versatile devices designed for use in systems that use TTL logic. Typical applications include high speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, bus drivers and memory drivers.
The DS75450 is a general purpose device featuring two standard Series 54/74 TTL gates and two uncommitted, high current, high voltage NPN transistors. The device offers the system designer the flexibility of tailoring the circuit to the application.
The DS55451/DS75451, DS55452/DS75452, DS55453/ DS75453 and DS55454/DS75454 are dual peripheral AND, NAND, OR and NOR drivers, respectively, (positive logic)
with the output of the logic gates internally connected to the bases of the NPN output transistors.

Features

- 300 mA output current capability
- High voltage outputs
- No output latch-up at 20 V
- High speed switching
- Choice of logic function
- TTL compatible diode-clamped inputs
- Standard supply voltages
- Replaces TI " A " and " B " series

Connection Diagrams (Dual-In-Line and Metal Can Packages)

[^21]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, (V_{CC}) (Note 2) 7.0 V

Input Voltage 5.5 V

Inter-Emitter Voltage (Note 3)
$\mathrm{V}_{\text {CC }}$-to-Substrate Voltage
DS75450 35V
Collector-to-Substrate Voltage DS75450 35 V
Collector-Base Voltage DS75450 35 V
Collector-Emitter Voltage (Note 4) DS75450 30 V
Emitter-Base Voltage DS75450
Output Voltage (Note 5) DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454
Collector Current (Note 6) DS75450
Output Current (Note 6) DS55451/DS75451, DS55452/DS75452, 300 mA

DS75450 Maximum Power (Note 6)	
Dissipation* at $25^{\circ} \mathrm{C}$	1308 mW
Cavity Package	1207 mW
\quad Molded Package	
DS75451/2/3/4 Maximum Power (Note 6)	
Dissipation ${ }^{\dagger}$ at $25^{\circ} \mathrm{C}$	1090 mW
Cavity Package	957 mW
Molded DIP Package	760 mW
TO-5 Package	632 mW
SO Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$

Operating Conditions (Note 7)

	Min	Max	Units
Supply Voltage, $\left(\mathrm{V}_{\mathrm{CC}}\right)$			\ddots
DS5545X	4.5	5.5	V
DS7545X	4.75	5.25	V
Temperature, $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS5545X	-55	+125	${ }^{\circ} \mathrm{C}$
DS7545X	0	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Derate cavity package $7.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate TO-5 package $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate SO package $7.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
See App Note AN-336 for further information on Understanding Package Power Dissipation.

Connection Diagrams (Dual-n-Line and Metal Can Packages) (Continued)

TL/F/5824-6
Top View
Order Number DS55451H or DS75451H

TL/F/5824-7
Top View
(Pin 4 is in Electrical Contact with the Case)
Order Number DS55452H or DS75452H

TL/F/5824-8
Top View
Order Number
DS55453H or DS75453H

TL/F/5824-9
Top View
Order Number DS55454H or DS75454H

Electrical Characteristics DS75450 (Notes 8 and 9)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
TTL GATES							
V_{IH}	High Level Input Voltage	(Figure 1)		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	(Figure 2)				0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$, (Figure 3)				-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{IOH}=-400 \mu \mathrm{~A}$, (Figure 2)		2.4	3.3		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ (Figure 1)			0.22	0.4	V
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$, (Figure 4)	Input A			1	mA
			Input G			2	mA

Electrical Characteristics DS75450 (Notes 8 and 9) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
TTL GATES (Continued)							
$\mathrm{I}_{1 H}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, (Figure 4)	Input A			40	$\mu \mathrm{A}$
			Input G			80	$\mu \mathrm{A}$
IIL.	Low Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$, (Figure 3)	Input A			-1.6	mA
			Input G			-3.2	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, (Figure 5), (Note 10)		-18		-55	mA
ICCH	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0 \mathrm{~V}$, Outputs High, (Figure 6)			2	4	mA
ICCL	Supply Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5 \mathrm{~V}$, Outputs Low, (Figure 6)			6	11	mA

OUTPUT TRANSISTORS

$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0 \mu \mathrm{~A}$			35			V
$V_{\text {(BR)CER }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$			30			V
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0 \mu \mathrm{~A}$			5			V
$\mathrm{h}_{\text {FE }}$	Static Forward Current Transfer Ratio	$V_{C E}=3 \mathrm{~V},($ Note 11)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	25			
				$\mathrm{IC}_{\mathrm{C}}=300 \mathrm{~mA}$	30			
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	$\mathrm{IC}_{\mathrm{C}}=100 \mathrm{~mA}$	20			
				$\mathrm{IC}_{\mathrm{C}}=300 \mathrm{~mA}$	25			
$V_{B E}$	Base-Emitter Voltage	(Note 11)		$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		0.85	1	V
				$\mathrm{l}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$		1.05	1.2	V
$\mathrm{V}_{\text {CE(SAT }}$	Collector-Emitter Saturation Voltage	(Note 11)		$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		0.25	0.4	V
				$\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$		0.5	0.7	V

Electrical Characteristics (Continued)
DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 (Notes 8 and 9)

Symbol	Parameter	Conditions				Min	Typ	Max	Units
V_{IH}	High-Level Input Voltage	(Figure 7)				2			V
V_{IL}	Low-Level Input Voltage							0.8	V
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$						-1.5	V
V_{OL}	Low-Level Output Voltage	$V_{C C}=M i n,$ (Figure 7)	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	DS55451, DS55453		0.25	0.5	V
					DS75451, DS75453		0.25	0.4	V
				$\mathrm{loL}=300 \mathrm{~mA}$	DS55451, DS55453		0.5	0.8	V
					DS75451, DS75453		0.5	0.7	V
			$\mathrm{V}_{1 H}=2 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$	DS55452, DS55454		0.25	0.5	V
					DS75452, DS75454		0.25	0.4	V
				$\mathrm{l}_{\mathrm{OL}}=300 \mathrm{~mA}$	DS55452, DS55454		0.5	0.8	V
					DS75452, DS75454		0.5	0.7	V
IOH	High-Level Output Current	$V_{C C}=M i n$ (Figure 7)	$\mathrm{VOH}=30 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$	DS55451, DS55453			300	$\mu \mathrm{A}$
					DS75451, DS75453			100	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	DS55452, DS55454			300	$\mu \mathrm{A}$
					DS75452, DS75454			100	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$, (Figure 9)						1	mA

Electrical Characteristics (Continued)
DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 (Notes 8 and 9) (Continued)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$\mathrm{IIH}^{\text {r }}$	High-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, (Figure 9)					40	$\mu \mathrm{A}$
IIL	Low-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$, (Figure 8)				-1	-1.6	mA
ICCH	Supply Current, Outputs High	$V_{C C}=\operatorname{Max}$ (Figure 10)	$V_{1}=5 \mathrm{~V}$	DS55451/DS75451		7	11	mA
			$V_{1}=0 V$	DS55452/DS75452		11	14	mA
			$V_{1}=5 \mathrm{~V}$	DS55453/DS75453		8	11	mA
			$V_{1}=0 \mathrm{~V}$	DS55454/DS75454		13	17	mA
ICCL	Supply Current, Outputs Low	$V_{C C}=\operatorname{Max},$ (Figure 10)	$V_{1}=0 \mathrm{~V}$	DS55451/DS75451		52	65	mA
			$V_{1}=5 \mathrm{~V}$	DS55452/DS75452		56	71	mA
			$V_{1}=0 \mathrm{~V}$	DS55453/DS75453		54	68	mA
			$V_{1}=5 \mathrm{~V}$	DS55454/DS75454		61	79	mA

Switching Characteristics $\mathrm{DS75450}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$, TTL Gates, (Figure 12)		12	22	ns
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{I}_{\mathrm{C}} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		20	30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output	$C_{L}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$, TTL Gates, (Figure 12)		8	15	ns
			$R_{L}=50 \Omega, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		20	30	ns
${ }^{\text {t }}$ LLH	Transition Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{I}_{\mathrm{C}} \approx 200 \mathrm{~mA}, \text { Gates and } \\ & \text { Transistors Combined, (Figure 14) } \end{aligned}$			7	12	ns
${ }_{\text {t }}$	Transition Time, High-to-Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{I}_{\mathrm{C}} \approx 200 \mathrm{~mA} \text {, Gates and } \\ & \text { Transistors Combined, (Figure 14) } \end{aligned}$			9	15	ns
V_{OH}	High-Level Output Voltage after Switching	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}} \approx 300 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$, (Figure 15)		$V_{S}-6.5$			mV
t_{D}	Delay Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B}}=-40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}(\mathrm{OFF})}=-1 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { (Figure 13), (Note 12) } \end{aligned}$			8	15	ns
$t_{\text {R }}$	Rise Time				12	20	ns
ts	Storage Time				7	15	ns
t_{F}	Full Time				6	15	ns

Switching Characteristics (Continued)

DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 (VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{l}_{\mathrm{O}} \approx 200 \mathrm{~mA},(\text { Figure 14) } \end{aligned}$	DS55451/DS75451		18	25	ns
			DS55452/DS75452		26	35	ns
			DS55453/DS75453		18	25	ns
			DS55454/DS75454		27	35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{I}_{\mathrm{O}} \approx 200 \mathrm{~mA},(\text { Figure 14) } \end{aligned}$	DS55451/DS75451		18	25	ns
			DS55452/DS75452		24	35	ns
			DS55453/DS75453		16	25	ns
			DS55454/DS75454		24	35	ns
${ }^{\text {t }}$ LTH	Transition Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, 1_{0} \approx 200 \mathrm{~mA}, \\ & \text { (Figure 14) } \end{aligned}$			5	8	ns
${ }_{\text {t }}^{\text {THL }}$	Transition Time, High-to-Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{l}_{\mathrm{O}} \approx 200 \mathrm{~mA}, \\ & \text { (Figure 14) } \end{aligned}$			7	12	ns
V_{OH}	High-Level Output Voltage after Switching	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{l}_{\mathrm{O}} \approx 300 \mathrm{~mA}$, (Figure 15)		$\mathrm{V}_{S}-6.5$			mV

Switching Characteristics (Continued)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
Note 3: The voltage between two emitters of a multiple-emitter transistor.
Note 4: Value applies when the base-emitter resistance (R_{BE}) is equal to or less than 500Ω.
Note 5: The maximum voltage which should be applied to any output when it is in the "OFF" state.
Note 6: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
Note 7: For the DS75450 only, the substrate (pin 8) must always be at the most-negative device voltage for proper operation.
Note 8: Unless otherwise specitied $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS55450 series and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75450 series. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 10: Only one output at a time should be shorted.
Note 11: These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{W}}=300 \mu \mathrm{~s}$, duty cycle $<2 \%$.
Note 12: Applies to output transistors only.
Truth Tables $(H=$ high level, $L=$ low level)
DS55451/DS75451

A	B	Y
L	L	L (ON State)
L	H	L(ON State)
H	L	L (ON State)
H	H	H (OFF State)

DS55453/DS75453		
A	B	Y
L	L	L (ON State)
L	H	H (OFF State)
H	L	H (OFF State)
H	H	H (OFF State)

DS55452/DS75452		
A	B	Y
L	L	H (OFF State)
L	H	H (OFF State)
H	L	H (OFF State)
H	H	L (ON State)

DS55454/DS75454		
A	B	Y
L	L	H (OFF State)
L	H	L (ON State)
H	L	L (ON State)
H	H	L (ON State)

Schematic Diagrams

Resistor values shown are nominal.
TL/F/5824-11
DS55452/DS75452

Schematic Diagrams (Continued)

DC Test Circuits

Both inputs are tested simultaneously.
FIGURE 1. V_{IH}, V_{OL}

TL/F/5824-18
Each input is tested separately. FIGURE 4. I, I, IH

TL/F/5824-16
Each input is tested separately.
FIGURE 2. $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$

TL/F/5824-19
Each input is tested separately. FIGURE 5. IOS

TL/F/5824-17
Each input is tested separately. FIGURE 3. VI, ILL

TL/F/5824-20
Both gates are tested simultaneously. FIGURE 6. $\mathbf{I C C H}^{\mathbf{I C C L}}$

FIGURE 7. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$

DC Test Circuits (Continued)

Note A: Each input is tested separately.
Note B: When testing DS55453/DS75453, DS55454/DS75454, input not under test is grounded. For all other circuits it is at 4.5 V .

FIGURE 8. $V_{1}, V_{I L}$.

Each input is tested separately. TL/F/5824-23 FIGURE 9. $I_{1}, I_{I H}$

Both gates are tested simultaneously. FIGURE 10. ICCH, ICCL for AND, NAND

Both gates are tested simultaneously.

FIGURE 11. Iссн, Iccl for OR, NOR Circuits

AC Test Circuits and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics: $\mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 12. Propagation Delay Times, Each Gate (DS75450 Only)

AC Test Circuits and Switching Time Waveforms (Continued)

Note 1: The pulse generator has the following characteristics: duty cycle $\leq 1 \%, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 13. Switching Times, Each Transistor (DS75450 Only)

Note 1: The pulse generator has the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$.
TL/F/5824-30
Note 2: C_{L} includes probe and jig capacitance.
Note 3: When testing DS75450, connect output V to transistor base and ground the substrate terminal.

TL/F/5824-31
FIGURE 14. Switching Times of Complete Drivers

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5824-32

Note 1: The pulse generator has the following characteristics: $\mathrm{PRR}=12.5 \mathrm{kHz}, Z_{\text {OUT }} \approx 50 \Omega$.
TL/F/5824-33
Note 2: When testing DS75450, connect output V to transistor base with a 600Ω resistor from there to ground and ground the substrate terminal. Note 3: C_{L} includes probe and jig capacitance.

FIGURE 15. Latch-UP Test of Complete Drivers

Typical Performance Characteristics

TL/F/5824-34
FIGURE 16. DS75450 TTL Gate High-Level Output Voltage vs High-Level Output Current

TL/F/5824-35
FIGURE 17. DS75450 Transistor Static Forward Current Transfer Ratio vs Collector Current

Typical Performance Characteristics (Continued)

TL/F/5824-36
FIGURE 18. DS75450 Transistor Base-Emitter Voltage vs Collector Current

TL/F/5824-37
FIGURE 19. Transistor Collector-Emitter Saturation Voltage vs Collector Current

Typical Applications

FIGURE 20. Gated Comparator

TL/F/5824-39
FIGURE 21.500 mA Sink

TL/F/5824-40

Typical Applications (Continued)

TL/F/5824-43
FIGURE 25. Dual TTL-to-MOS Driver

TL/F/5824-44
FIGURE 26. Dual MOS-to-TTL Driver

FIGURE 27. Balanced Line Driver

Typical Applications (Continued)

TL/F/5824-46
FIGURE 28. Dual Lamp or Relay Driver

TL/F/5824-47
FIGURE 29. Complementary Driver

TL/F/5824-52 FIGURE 33. In-Phase Detector

FIGURE 34. Multifunction Logic-Signal Comparator
DS55451/DS55452/DS55453/DS55454/DS75450/DS75451/DS75452/DS75453/DS75454
Typical Applications (Continued)

TL/F/5824-54
FIGURE 35. Alarm Detector

2
 National
 Semiconductor

DS55461/2/3/4, DS75461/2/3/4 Series Dual Peripheral Drivers

General Description

The DS55461/2/3/4 series of dual peripheral drivers are functionally interchangeable with DS55451/2/3/4 series peripheral drivers, but are designed for use in systems that require higher breakdown voltages at the expense of slightly slower switching speeds. Typical applications include power drivers, logic buffers, lamp drivers, relay drivers, MOS drivers, line drivers and memory drivers.
The DS55461/DS75461, DS55462/DS75462, DS55463/ DS75463 and DS55464/DS75464 are dual peripheral AND, NAND, OR and NOR drivers, respectively, (positive logic) with the output of the logic gates internally connected to the bases of the NPN output transistors.

Features

■ 300 mA output current capability

- High voltage outputs
- No output latch-up at 30 V
- Medium speed switching
- Circuit flexibility for varied applications and choice of logic function
- TTL compatible diode-clamped inputs
- Standard supply voltages

Connection Diagrams (Dual-ln-Line and Metal Can Packages)

Top View
Order NumberDS55461J-8, DS75461J-8 or DS75461N

TL/F/5825-5
Top View
Pin 4 is in electrical contact with the case.

Order Number DS55461H or DS75461H

Top View
Order Number DS55462J-8, DS75462J-8 or DS75462N

Top View
Order NumberDS55463J-8,
DS75463J-8 or DS75463N See NS Package Numbers J08A or N08E

Top View
Order NumberDS55464J-8, DS75464J-8 or DS75464N

TL/F/5825-8
Top View
Pin 4 is in electrical contact with the case.

Order Number DS55464H or DS75464H

Absolute Maximum Ratings (Note 1)

If MIlltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (Note 2)
Input Voltage
5.5 V

Inter-emitter Voltage (Note 3) 5.5V
Output Voltage (Note 4)
DS55461/DS75461, DS55462/DS75462, 35V DS55463/DS75463, DS55464/DS75464
Output Current (Note 5)
DS55461/DS75461, DS55462/DS75462,
300 mA DS55463/DS75463, DS55464/DS75464
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package	1090 mW
Molded Package	957 mW
TO-5 Package	760 mW

*Derate cavity package $7.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package 7.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate TO-5 package $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			V
DS5546X	4.5	5.5	V
DS7546X	4.75	5.25	
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS5546X	-55	+125	${ }^{\circ} \mathrm{C}$
DS7546X	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 (Notes 6 and 7)

Electrical Characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 (Notes 6 and 7) (Continued)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$, (Figure 3)					1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M_{\text {ax }} V_{1}=2.4 \mathrm{~V}$, (Figure 3)					40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$, (Figure 2)				-1	-1.6	mA
ICCH	Supply Current	$V_{C C}=$ Max, Outputs High, (Figures 4 and 5)	$V_{1}=5 \mathrm{~V}$	DS55461/ DS75461, DS55463/ DS75463		8	11	mA
			$V_{1}=0 \mathrm{~V}$	$\begin{aligned} & \text { DS55462/ } \\ & \text { DS75462 } \\ & \hline \end{aligned}$		13	17	mA
				$\begin{aligned} & \text { DS55464/ } \\ & \text { DS75464 } \end{aligned}$		14	19	mA
${ }^{\text {ICCL }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, Outputs Low, (Figures 4 and 5)	$V_{1}=0 \mathrm{~V}$	$\begin{aligned} & \text { DS55461/ } \\ & \text { DS75461 } \end{aligned}$		61	76	mA
				$\begin{aligned} & \hline \text { S55463/ } \\ & \text { DS75463 } \\ & \hline \end{aligned}$		63	76	mA
			$V_{1}=5 \mathrm{~V}$	$\begin{aligned} & \text { DS55462/ } \\ & \text { DS75462 } \end{aligned}$		65	76	mA
				$\begin{aligned} & \text { DS55464/ } \\ & \text { DS75464 } \\ & \hline \end{aligned}$		72	85	mA

Switching Characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low-To-High Level Output	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \text { (Figure 6) } \end{aligned}$	DS55461/ DS75461, DS55463/ DS75463		45	55	ns
			DS55462/ DS75462, DS55464/ DS75464		50	65	ns
$t_{\text {PHL }}$	Propagation Delay Time High-To-Low Level Output	$\begin{aligned} & \mathrm{I}_{\mathrm{o}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { (Figure 6) } \end{aligned}$	DS55461/ DS75461, DS55463/ DS75463		30	40	ns
			DS55462/ DS75462, DS55464/ DS75464		40	50	ns

Switching Characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }^{\text {tTiLH }}$	Transition Time, Low-ToHigh Level Output	$\begin{aligned} & \mathrm{I}_{0} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { (Figure 6) } \end{aligned}$	$\begin{aligned} & \text { DS55461/ } \\ & \text { DS75461 } \end{aligned}$		8	20	ns
			$\begin{aligned} & \text { DS55462/ } \\ & \text { DS75462 } \end{aligned}$		12	25	ns
			$\begin{aligned} & \text { DS55463/ } \\ & \text { DS75463 } \end{aligned}$		8	25	ns
			$\begin{aligned} & \text { DS55464/ } \\ & \text { DS75464 } \end{aligned}$		12	20	ns
${ }_{\text {t }}$	Transition Time, High-ToLow Level Output	$I_{0}=\approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega,$ (Figure 6)	$\begin{aligned} & \text { DS55461/ } \\ & \text { DS75461 } \end{aligned}$		10	20	ns
			DS55462/ DS75462, DS55464/ DS75464		15	20	ns
			$\begin{aligned} & \text { DS55463/ } \\ & \text { DS75463 } \end{aligned}$		10	25	ns
V_{OH}	High-Level Output Voltage After Switching	$\mathrm{V}_{S}=30 \mathrm{~V}, \mathrm{I}_{0} \approx 300 \mathrm{~mA}$, (Figure 7)		$V_{S}-10$			mV

Note 1: "Absoulte Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
Note 3: This is the voltage between two emitters of a multiple-emitter transistor.
Note 4: This is the maximum voltage which shoud be applied to any output when it is in the "OFF" state.
Note 5: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
Note 6: Unless otherwise specified $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 44 XXX series and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75XXX series. All typicals are given for $\mathrm{V}_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 7: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless othewise noted. All values shown as max or min on absolute value basis.

Schematic Diagrams

Schematic Diagrams (Continued)

TL/F/5825-12
Resistor values shown are nominal.
Truth Tables ($H=$ high level, $\mathrm{L}=$ low level)

DS55461/DS75461		
A	B	Y
L	L	L (ON State)
L	H	L (ON State)
H	L	L (ON State)
H	H	H (OFF State)

DS55462/DS75462

A	B	Y
L	L	H (OFF State)
L	H	H (OFF State)
H	L	H (OFF State)
H	H	L (ON State)

DS55463/DS75463
A B Y L L L (ON State) L H H (OFF State) H L H (OFF State) H H H (OFF State)

DS55464/DS75464

A	B	Y
L	L	H (OFF State)
L	H	L (ON State)
H	L	L (ON State)
H	H	L (ON State)

DC Test Circuits

Clircuit	Input Under Test	Other Input	Output	
			Apply	Measure
DS55461	V_{IH}	$\mathrm{V}_{\text {IH }}$	V_{OH}	IOH
	$\mathrm{V}_{\text {IL }}$	V_{CC}	IOL	$\mathrm{V}_{\text {OL }}$
DS55462	$\mathrm{V}_{\text {IH }}$	V_{IH}	loL	V_{OL}
	$V_{\text {IL }}$	$V_{C C}$	V_{OH}	IOH
DS55463	$V_{\text {IH }}$	Gnd	VOH	${ }^{\mathrm{IOH}}$
	$V_{\text {IL }}$	$V_{\text {IL }}$	lol	V_{OL}
DS55464	V_{IH}	Gnd	lol	V_{OL}
	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V OH	l_{OH}

Each input is tested separately.
FIGURE 1. $\mathrm{V}_{\mathbf{I H}}, \mathrm{V}_{\mathrm{IL}}$, IOH, V_{OL}

TL/F/5825-14
Note 1: Each input is tested separately.
Note 2: When testing DS55463/DS75463 and DS75464, input not under test is grounded. For all other circuits it is at 4.5 V . FIGURE 2. $V_{I}, I_{I L}$

TL/F/5825-15
Each input is tested separately.
FIGURE 3. I, $I_{1} H$

DC Test Circuits (Continued)

TL/F/5825-16
Both gates are tested simultaneously.
FIGURE 4. ICCH, ICCL for AND, NAND CIrcuits

TL/F/5825-17
Both gates are tested simultaneously.
FIGURE 5. ICCH, ICCL for OR, NOR Circults

Switching Characteristics

TL/F/5825-18
Note 1: The pulse generator has the following characteristics:
PRA $=1 \mathrm{MHz}, Z_{\text {OUT }} \approx 50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.

FIGURE 6. Switching TImes of Complete Drlvers

FIGURE 7. Latch-Up Test of Complete Drivers

DS2001/DS9665/DS2002/DS9666 DS2003/DS9667/DS2004/DS9668 High Current/Voltage Darlington Drivers

General Description

The DS2001/DS9665/DS2002/DS9666/DS2003/DS9667 DS2004/DS9668 are comprised of seven high voltage, high current NPN Darlington transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emitter base resistors for leakage.
The DS2001/DS9665 is a general purpose array which may be used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor to each input.
The DS2002/DS9666 version does away with the need for any external discrete resistors, since each unit has a resistor and a Zener diode in series with the input. The DS2002/ DS9666 was specifically designed for direct interface from PMOS logic (operating at supply voltages from 14 V to 25 V) to solenoids or relays.
The DS2003/DS9667 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5.0 V .

The DS2004/DS9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating from supply voltages of 6.0 V to 15 V .
The DS2001/DS9665/DS2002/DS9666/DS2003/DS9667 DS2004/DS9668 offer solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

Features

- Seven high gain Darlington pairs
- High output voltage ($\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}$)

■ High output current ($1 \mathrm{C}=350 \mathrm{~mA}$)

- DTL, TTL, PMOS, CMOS compatible
- Suppression diodes for inductive loads
- Extended temperature range

Connection Diagram

16-Lead DIP

TL/F/9647-1
Top View
Order Number DS2001CN, DS9665CN, DS2002CN, DS9666CN, DS2003CN, DS9667CN or DS2004CN, DS9668CN See NS Package Number N16A
Order Number DS2001CJ, DS2001MJ, DS9665CJ, DS9665MJ, DS2002CJ, DS2002MJ, DS9666CJ, DS9666MJ, DS2003CJ, DS2003MJ, DS9667CJ, DS9667MJ or DS2004CJ, DS2004MJ, DS9668CJ, DS9668MJ See NS Package Number J16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
DS2001M/DS9665M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS2002M/DS9666M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS2003M/DS9667M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS2004M/DS9668M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS2001C/DS9665C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DS2002C/DS9666C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DS2003C/DS9667C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DS2004C/DS9668C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature
Ceramic DIP (Soldering, 60 seconds)
$300^{\circ} \mathrm{C}$ $265^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package 2016 mW Molded Package 1838 mW
*Derate cavity package $16.13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded DIP package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Input Voltage 30V
Output Voltage 55 V
Emitter-Base Voltage . 6.0V
Continuous Collector Current 500 mA
Continuous Base Current 25 mA

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified (Note 2)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ICEX	Output Leakage Current	$\begin{aligned} & T_{A}=70^{\circ} \mathrm{C} \text { for Commercial } \\ & V_{C E}=50 \mathrm{~V} \text { (Figure 1a) } \\ & \hline \end{aligned}$				100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~V}_{1}=6.0 \mathrm{~V}$ (Figure 1b)	DS2002/DS9666			500	
		$\mathrm{V}_{C E}=50 \mathrm{~V}, \dot{V}_{1}=1.0 \mathrm{~V}$ (Figure 1b)	DS2004/DS9668			500	
$V_{\text {CE(Sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$ (Figure 2) (Note 3)			1.25	1.6	V
		$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$ (Figure 2)			1.1	1.3	
		$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$ (Figure 2)			0.9	1.1	
$\mathrm{I}_{\text {(ON) }}$	Input Current	$\mathrm{V}_{1}=17 \mathrm{~V}$ (Figure 3)	DS2002/DS9666		0.85	1.3	mA
		$\mathrm{V}_{1}=3.85 \mathrm{~V}$ (Figure 3)	DS2003/DS9667		0.93	1.35	
		$\mathrm{V}_{1}=5.0 \mathrm{~V}$ (Figure 3)	DS2004/DS9668		0.35	0.5	
		$\mathrm{V}_{1}=12 \mathrm{~V}$ (Figure 3)			1.0	1.45	
$I_{\text {(OFF) }}$	Input Current (Note 4)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \text { for Commercial } \\ & \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A} \text { (Figure 4) } \end{aligned}$		50	65		$\mu \mathrm{A}$
$\mathrm{V}_{1(\mathrm{ON})}$	Input Voltage (Note 5)	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$ (Figure 5)	DS2002/DS9666			13	V
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$ (Figure 5)	DS2003/DS9667			2.4	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$ (Figure 5)				2.7	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$ (Figure 5)				3.0	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$ (Figure 5)	DS2004/DS9668			5.0	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$ (Figure 5)				6.0	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$ (Figure 5)				7.0	
		$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$ (Figure 5)				8.0	
$\mathrm{h}_{\text {FE }}$	DC Forward Current Transfer Ratio	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$ (Figure 2)	DS2001/DS9665	1000			
C_{1}	Input Capacitance				15	30	pF
$\mathrm{t}_{\mathrm{pLH}}$	Turn-On Delay	$0.5 \mathrm{~V}_{1}$ to $0.5 \mathrm{~V}_{0}$			1.0	5.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PHL }}$	Turn-Off Delay	$0.5 \mathrm{~V}_{1}$ to $0.5 \mathrm{~V}_{0}$			1.0	5.0	$\mu \mathrm{s}$
I_{R}	Clamp Diode Leakage Current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$ (Figure 6)				50	$\mu \mathrm{A}$
V_{F}	Clamp Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$ (Figure 7)			1.7	2.0	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All limits apply to the complete Darlington series except as specified for a single device type.
Note 3: Under normal operating conditions these units will sustain 350 mA per output with V_{CE} (Sat) $=1.6 \mathrm{~V}$ at $70^{\circ} \mathrm{C}$ with a pulse width of 20 ms and a duty cycle of 30%.
Note 4: The $I_{(O F F)}$ current limit guaranteed against partial furn-on of the output.
Note 5: The $\mathrm{V}_{1(\mathrm{ON})}$ voltage limit guarantees a minimum output sink current per the specified test conditions.

Typical Performance Characteristics

DS2003/DS9667
Input Current vs Input Voltage

Collector Current vs Input Current

DS2004/DS9668 Input Current vs Input Voltage

Peak Collector Current vs Duty Cycle and Number of Outputs (Ceramic Package)

TL/F/9647-19

Equivalent Circuits

TL/F/9647-2

TL/F/9647-5

Test Circuits

FIGURE 1a

FIGURE 1b

FIGURE 2

FIGURE 3

FIGURE 4

TL/F/9647-13

FIGURE 6

TL/F/9647-15

Buffer for Higher Current Loads

TL/F/9647-16

TL/F/9647-17

Safe Operating Areas for Peripheral Drivers

Peripheral Drivers is a broad definition given to Interface Power devices. The devices generally have open-collector output transistors that can switch hundreds of milliamps at high voltage, and are driven by standard Digital Logic gates. They serve many applications such as: Relay Drivers, Printer Hammer Drivers, Lamp Drivers, Bus Drivers, Core Memory Drivers, Voltage Level Transistors, and etc. Most IC devices have a specified maximum load such as one TTL gate can drive ten other TTL gates. Peripheral drivers have many varied load situations depending on the application, and requires the design engineer to interpret the limitations of the device vs its application. The major considerations are Peak Current, Breakdown Voltage, and Power Dissipation.

OUTPUT CURRENT AND VOLTAGE CHARACTERISTICS

Figure 1 shows the circuit of a typical peripheral driver, the DS75451. The circuit is equivalent to a TTL gate driving a 300 mA output transistor. Figure 2 shows the characteristics of the output transistor when it is ON and when it is OFF. The output transistor is capable of sinking more than one amp of current when it is ON , and is specified at a $\mathrm{V}_{\mathrm{OL}}=$ 0.7 V at 300 mA . The output transistor is also specified to operate with voltages up to 30 V without breaking down, but there is more to that as shown by the breakdown voltages labeled BVCES, BVCER, and LVCEO.

FIGURE 1. Typical Peripheral Driver DS75451
BVCES corresponds to the breakdown voltage when the output transistor is held off by the lower output transistor of the TTL gate, as would happen if the power supply (V_{CC}) was 5V. BVCER corresponds to the breakdown voltage when the output transistor is held off by the 500 resistor, as would happen if the power supply ($V_{C C}$) was off (OV). LVCEO corresponds to the breakdown voltage of the output transistor if it could be measured with the base open. LVCEO can be measured by exceeding the breakdown voltage BVCES and measuring the voltage at output currents of 1 to 10 mA on a transistor curve tracer (LVCEO is some-

National Semiconductor

Bill Fowler

times measured in an Inductive Latch-Up Test). Observe that all breakdown voltages converge on LVCEO at high currents, and that destructive secondary breakdown voltage occurred (shown as dotted line) at high currents and high voltage corresponding to exceeding the power dissipation of the device. The characteristics of secondary breakdown voltage vary with the length of time the condition exists, device temperature, voltage, and current.

TL/F/5860-2
FIGURE 2. Output Characterlstlcs ON and OFF

OUTPUT TRANSFER CHARACTERISTICS VS INDUCTIVE AND CAPACITIVE LOADS

Figure 3 shows the switching transfer characteristics superimposed on the DC characteristics of the output transistor for an inductive load. Figure 4 shows the switching transfer characteristics for a capacitor load. In both cases in these examples, the load voltage (V_{B}) exceeds LVCEO. When the output transistor turns on with an inductive load the initial current through the load is 0 mA , and the transfer curve switches across to the left ($V_{O L}$) and slowly charges the inductor. When the output transistor turns off with an inductive load, the initial current is lol, which is sustained by the inductor and the transistor curve switches across to the right $\left(V_{B}\right)$ through a high current and high voltage area which exceeds LVCEO and instead of turning off (shown as dotted line) the device goes into secondary breakdown. It is generally not a good practice to let the output transistor's voltage exceed LVCEO with an inductive load.
In a similar case with a capacitive load shown in Figure 4, the switching transfer characteristics rotate counter-clockwise through the DC characteristics, unlike the inductive load which rotated clockwise. Even though the switching transfer curve exceeds LVCEO, it didn't go into secondary breakdown. Therefore, it is an acceptable practice to let the output transistor voltage exceed LVCEO, but not exceed BVCER with a capacitive load.

TL/F/5860-3
FIGURE 3. Inductive Load Transfer Characteristics

TL/F/5860-4
FIGURE 4. Capacitlve Load Transfer Characteristics
Figure 5 shows an acceptable application with an inductive load. The load voltage $\left(V_{B}\right)$ is less than LVCEO, and the inductive voltage spike caused by the initial inductive current is quenched by a diode connected to V_{B}.

TL/F/5860-5
FIGURE 5. Inductive Load Transfer Characteristics Clamped by Diode

Figure 6 shows the switching transfer characteristics of a capacitive load which leads to secondary breakdown. This condition occurs due to high sustained currents, not breakdown voltage. In this example, the large capacitor prevented the output transistor from switching fast enough through the high current and high voltage region; in turn the power dissipation of the device was exceeded and the output transistor went into secondary breakdown.

FIGURE 6. Capacitive Load Transfer Characteristics
Figure 7 shows another method of quenching the inductive voltage spike caused by the initial inductive current. This method dampens the switching response by the addition of R_{D} and C_{D}. The values of R_{D} and C_{D} are chosen to critically dampen the values of R_{L} and L_{L}; this will limit the output voltage to $2 \times \mathrm{V}_{\mathrm{B}}$.

$$
\frac{L_{L}}{\left(R_{L}+R_{D}\right)} \times \sqrt{\frac{1}{L_{L} C_{D}}} \leq 0.5
$$

TL/F/5860-7
FIGURE 7. Inductive Load Dampened by Capacitor
Figure 8 shows a method of reducing high sustaining currents in a capacitive load. R_{D} in series with the capacitor $\left(C_{L}\right)$ will limit the switching transistor without affecting final amplitude of the output voltage, since the IR drop across R_{D} will be zero after the capacitor is charged.
As an additional warning, beware of parasitic reactance. If the driver's load is located some distance from the driver (as an example: on the inclosure panel or through a con-
necting cable) there will be additional inductance and capacitance which may cause ringing on the driver output which will exceed LVCEO or transient current that exceeds the sustaining current of the driver. A 300 mA current through a small inductor can cause a good size transient voltage, as compared with 20 mA transient current observed with TTL gates. For no other reason than to reduce the noise associated with these transients, it is good practice to dampen the driver's output.
In conclusion, transient voltage associated with inductive loads can damage the peripheral driver, and transient currents associated with capacitive loads can also damage the driver. In some instances the device may not exhibit failure with the first switching cycle, but its conditions from ON to OFF will worsen after many cycles. In some cases the device will recover after the power has been turned off, but its long term reliability may have been degraded.

POWER DISSIPATION

Power Dissipation is limited by the IC Package Thermal Reactance and the external thermal reactance of the environment (PC board, heat sink, circulating air, etc.). Also, the power dissipation is limited by the maximum allowable junction temperature of the device. There are two contributions to the power: the internal bias currents and voltage of the
device, and the power on the output of the device due to the Driver Load.

POWER LIMITATIONS OF PACKAGE

Figure 9 shows the equivalent circuit of a typical power device in its application. Power is shown equivalent to electrical current, thermal resistance is shown equivalent to electrical resistance, the electrical reactance C and L are equivalent to the capacity to store heat, and the propagation delay through the medium. There are two mediums of heat transfer: conduction through mass and radiant convection. Convection is insignificant compared with conduction and isn't shown in the thermal resistance circuits. From the point power is generated (device junction) there are three possible paths to the ultimate heat sink: 1) through the device leads; 2) through the device surface by mechanical connection; and 3) through the device surface to ambient air. In all cases, the thermal paths are like delay lines and have a corresponding propagation delay. The thermal resistance is proportional to the length divided by the cross sectional area of the material. The Thermal Inductance is proportional to the length of the material (copper, molding compound, etc.) and inversely proportional to the cross sectional area. The thermal capacity is proportional to the volume of the material.

TL/F/5860-8
FIGURE 8. Capacitive Load with Current Limiting Resistor

FIGURE 9. Thermal Reactance from Junction to Amblent

Device Package

FIGURE 10. Components of Thermal Reactance for a Typical IC Package

National Semiconductor specifies the thermal resistance from device junction through the device leads soldered in a small PC board, measured in one cubic foot of still air. Figure 11 shows the maximum package power rating for an 8 pin Molded, an 8 pin Ceramic, 14 pin Molded and a 14 pin Ceramic package. The slope of the line corresponds to thermal resistance $\left(\phi_{J A}=\Delta P / \Delta T\right)$.

TL/F/5860-11
FIGURE 11. Maximum Package Power Rating
The maximum allowable junction temperature for ceramic packages is $175^{\circ} \mathrm{C}$; operation above this temperature will reduce the reliability and life of the device below an acceptable level. At a temperature of $500^{\circ} \mathrm{C}$ the aluminum metallization paths on the die start to melt. The maximum allowable junction temperature for a molded device is $150^{\circ} \mathrm{C}$, operations above this may cause the difference in thermal expansion between the molding compound and package lead frame to sheer off the wire bonds from the die to the package lead. The industry standard for a molded device is $150^{\circ} \mathrm{C}$, but National further recommends operation below $135^{\circ} \mathrm{C}$ if the device in its application will encounter a lot of thermal cycling (such as powered on and off over its life).
The way to determine the maximum allowable power dissipation from Figure 11, is to project a line from the maximum ambient temperature (T_{A}) of the application vertically (shown dotted in Figure 12), until the line intercepts the diagonal line of the package type, and then project a line (shown dotted) horizontally until the line intercepts the Power Dissipation Axis ($\mathrm{P}_{\mathrm{MAX}}$).

TL/F/5860-12

FIGURE 12. Maximum Package Rating Copper vs Kovar Lead Frame Packages

Figure 11 shows that 14 pin packages have less thermal resistance than 8 pin packages; which should be expected since it has more pins to conduct heat and has more surface area. Something that may not be expected is that the Thermal Resistance of the molded devices is comparable to the ceramic devices. The reason for the lower thermal resistance of the molded devices is the Copper lead frame, which is a better thermal conductor than the Kovar lead frame of the ceramic package. Almost all the peripheral drivers made by National Semiconductor are constructed with Copper lead frames (refer to $\phi_{J A}$ on the specific devices data sheet). The difference between the thermal resistance of Copper and Kovar in a molded package is shown in Figure 12.
Another variance in thermal resistance is the size of the IC die. If the contact area to the lead frame is greater, then the thermal resistance from the Die to the Lead Frame is reduced. This is shown in Figure 13. The thermal resistance shown in Figure 11 corresponds to die that are 6000 mil2 in area.

TL/F/5860-13
FIGURE 13. Thermal Resistance vs Die Size
In most applications the prime medium for heat conduction is through the device leads to the PC board, but the thermal resistance can be significantly improved by cooling air driven across the surface of the package. The conduction to air is limited by a stagnant film of air at the surface of the package. The film acts as an additional thermal resistance. The thickness of the film is proportional to its resistance. The thickness of the film is reduced by the velocity of the air
across the package as shown in Figure 14. In most cases, the thermal resistance is reduced 25% to 250 linear feet/ min , and 30% at 500 linear feet/min, above 500 linear feet/ min the improvement flattens out.

TL/F/5860-14
FIGURE 14. Thermal Resistance vs Air Velocity
The thermal resistance can also be improved by connecting the package to the PC board copper or by attaching metal wings to the package. The improvement by these means is outside the control of the IC manufacturer, but is available from the manufacturer of the heat sink device. If the IC is mounted in a socket rather than soldered to a PC board, the thermal resistance through the device leads will worsen. In most cases, the thermal resistance is increased by 20%; again this is a variable subject to the specific socket type.
The maximum package rating shown in this note corresponds to a 90% confidence level that the package will have thermal resistance equal to or less than the value shown. The thermal resistance varies $\pm 5 \%$ about the mean due to variables in assembly and package material.

CALCULATIONS OF POWER DISSIPATION

Most IC devices (such as T2L) operate at power levels well below the device package rating, but peripheral drivers can easily be used at power levels that exceed the package rating unknowingly, if the power dissipation isn't calculated. As an example, the DS3654 Ten Bit Printer Driver could dissipate 3 watts ($D C$ and, even more $A C$), and it is only in a 0.8 watt package. In this example, the device would be destroyed in moments, and may even burn a hole in the PC board it is mounted on. The DS3654 data sheet indicated that the 10 outputs could sink 300 mA with a V_{OL} of 1 volt, but it wasn't intended that all the outputs would be sinking this current at the same time, and if so, not for a long period. The use of the DS3654 requires that the power be calculated vs the duty cycle of the outputs.
The DC power dissipation is pretty obvious, but in another example, a customer used the DS3686 relay driver to drive 6.5 h inductive load. The DS3687 has an internal clamp network to quench the inductive back swing at 60 V . At 5 Hz the device dissipates 2 watts, with transient peaks up to 11 watts. After 15 minutes of operation, the driver succumbs to thermal overload and becomes non-functional. The DS3687 was intended for telephone relay, which in most applications switches 20 times a day.
Peripheral driver will dissipate peak power levels that greatly exceed the average DC power. This is due to the capacity of the die and package to consume the transient energy while still maintaining the junction temperature at a safe level.

This capacity is shown as a capacitor in Figure 9. In the lab (under a microscope) a device may be observed to glow orange around the parameter of the junction under excessive peak power without damage to the device. Figure 15 shows a plot of maximum peak power vs applied time for the DS3654, and the same information plotted as energy vs applied time. To obtain these curves, the device leakage current when it switches off was used to monitor device limitation. Note in Figure 15 there is a transition in the curve about $10 \mu \mathrm{~s}$. At this point, the thermal capacity of the die has been exceeded. The thermal delay to the next thermal capacity (the package) was too long, and limited the peak power. These levels are not suggested operating levels, but an example of a Peripheral Driver to handle peak transient power.

TL/F/5860-15
FIGURE 15. Peak Power and Energy vs the Period of Time the Power was Applied
To calculate power dissipation, the only information available to the design engineer is the parametric limits in the device data sheet, and the same information about the load reactance. If the calculations indicate the device is within its limits of power dissipation, then using those parametric limits is satisfactory. If the calculation of power dissipation is marginal, the parametric limits used in the calculations might be worst case at low temperature instead of high temperature due to a positive temperature coefficient (T_{C}) of resistance. IC resistors and resistors associated with the load generally have a positive T_{C}. On the other hand, diodes and transistor emitter base voltages have a negative T_{C}; which may in some circuits negate the effect of the resistors T_{C}. Peripheral output transistors have a positive T_{C} associated with $V_{O L}$; while output Darlington transistors have a negative T_{C} at low currents and may be flat at high currents. Figure 16 shows an example of power dissipation vs temperature; note that the power dissipation at the application's maximum temperature (T_{A}) was less than the power dissipation at lower temperatures. Since maximum junction temperature is the concern of the calculation, then maximum ambient temperature power should be used. The junction temperature may be determined by projecting a line (shown dotted in Figure 16), with a slope proportional to $\phi_{J A}$ back to the horizontal axis (shown as T_{j}). If the point is below the curve then T_{J} will be less than $150^{\circ} \mathrm{C}$. T_{j} must not exceed the maximum junction temperature for that package type. In this example, T_{j} is less than $150^{\circ} \mathrm{C}$ as required by a molded package. To calculate the power vs temperature, it is necessary to characterize the device parameters vs temperature. Unfortunately, this information is not always provided by IC manufacturers in the device data sheets. A method to calcu-
late ICC vs temperature is to measure a device, then normalize the measurements vs the typical value for I_{CC} in the data sheet, then worst case the measurements by adding 30%. Thirty percent is normally the worst-case resistor tolerance that IC devices are manufactured to.

TL/F/5860-16
FIGURE 16. IC Power Dissipation vs Temperature

CALCULATION OF OUTPUT POWER WITH AN INDUCTIVE LOAD

For this example, the device output circuit is similar to the DS3654 (10-Bit Printer Solenoid Driver) and the DS3686 and DS3687 (Telephone Relay Driver) as shown in Figure 17. Special features of the circuit type are the Darlington output transistors Q1 and Q2 and the zener diode from the collector of Q1 to the base of Q2. The Darlington output requires very little drive from the logic gate driving it and in turn dissipates less power when the output is turned ON and OFF, than a single saturating transistor output would. The zener diode $\left(\mathrm{D}_{2}\right)$ quenches the inductive backswing when the output is turned OFF.

Device and Load Characteristics Used for Power Calculation

$V_{O L}$	Output Voltage ON	1.5 V
$\mathrm{~V}_{\mathrm{C}}$	Output Clamp Voltage	65 V
$\mathrm{~V}_{\mathrm{B}}$	Load Voltage	30 V
R_{L}	Load Resistance	120Ω
$\mathrm{~L}_{\mathrm{L}}$	Load Inductance	5 h
$\mathrm{~T}_{\mathrm{ON}}$	Period ON	100 ms
TOFF $^{\text {P }}$	Period OFF	100 ms
T	Total Period	200 ms

TL/F/5860-17
FIGURE 17. Peripheral Driver with Inductive Load

Refer to Figure 18 voltage and current waveforms corresponding to the power dissipation calculated for this example of an inductive load.

PON = Average power dissipation in device output when device is ON during total period (T)

$$
\begin{aligned}
\tau & =\frac{L_{L}}{R_{L}}=\frac{5 h}{120 \Omega}=41.7 \mathrm{~ms} \\
I_{L} & =\frac{V_{B}-V_{O L}}{R_{L}}=\frac{30-1.5}{120}=237.5 \mathrm{~mA} \\
I_{P} & =I_{L}\left(1-e^{-T_{O N / \tau}}\right) \\
I_{P} & =237.5 \mathrm{~mA}\left(1-e^{-100 \mathrm{~ms} / 41.7 \mathrm{~ms})}\right. \\
I_{P} & =215.9 \mathrm{~mA} \\
P_{O N} & =V_{O L} \times I_{\mathrm{L}} \times \frac{T_{O N}}{T}\left[1-\int_{0}^{T_{O N}} \frac{e^{-t / \tau} \mathrm{dt}}{T_{O N}}\right] \\
P_{O N} & =V_{O L} \times I_{\mathrm{L}} \times \frac{T_{O N}}{T}\left[1-\frac{\tau}{T_{O N}}\left(1-e^{-T_{O N / \tau}}\right)\right] \\
P_{O N} & =1.5 \times 237.5 \mathrm{~mA} \times \frac{100}{200}\left[1-\frac{41.7}{100}\left(1-e^{-100 / 41.7}\right)\right] \\
P_{O N} & =110.6 \mathrm{~mW}
\end{aligned}
$$

Poff $=$ Average power dissipation in device output when device is OFF during total period (T)

$$
I_{R}=\frac{V_{C}-V_{B}}{R_{L}}=\frac{65-30}{120 \Omega}=291.7 \mathrm{~mA}
$$

$$
\mathrm{t}_{\mathrm{x}}=\tau \ell \mathrm{n}\left(\frac{\mathrm{I}_{\mathrm{P}}+\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{R}}}\right)
$$

$$
\mathrm{t}_{\mathrm{x}}=41.7 \mathrm{~ms} \ell \mathrm{n}\left(\frac{215.9+291.7}{291.7}\right)=23.1 \mathrm{~ms}
$$

$$
P_{\text {OFF }}=v_{C} \times \frac{t_{x}}{T}\left[\left(l_{P}+l_{R}\right) \int_{0}^{t_{x}} \frac{e^{-t / \tau} d t}{t_{x}}-l_{R}\right]
$$

$$
P_{\text {OFF }}=V_{C} \times \frac{t_{x}}{T}\left[\left(I_{P}+I_{R}\right) \times s \frac{\tau}{t_{x}}\left(1-e^{-t_{x / \tau}}\right)-I_{R}\right]
$$

$$
P_{\text {OFF }}=65 \times \frac{23.1}{200}\left[(215.9 \mathrm{~mA}+291.7 \mathrm{~mA}) \frac{41.7}{23.1}\right.
$$

$$
\mathrm{P}_{\mathrm{OFF}}=736 \mathrm{~mW}
$$

$$
\left.\left(1-e^{-23.1 / 41.7}\right)-291.7 \mathrm{~mA}\right]
$$

$$
P_{\mathrm{O}}=\text { Average power dissipation in device output }
$$

$$
P_{\mathrm{O}}=\mathrm{P}_{\mathrm{ON}}+\mathrm{P}_{\mathrm{OFF}}=110.6+736=846.6 \mathrm{~mW}
$$

In the above example, driving a 120Ω inductive load at 5 Hz , the power dissipation exceeded a more simple calculation of power dissipation, which would have been:

$$
\begin{aligned}
P_{O} & =\frac{V_{O L}\left(V_{B}-V_{O L}\right)}{R_{L}} \times \frac{T_{O N}}{T} \\
P_{O} & =\frac{1.5(30-1.5)}{120} \times \frac{100 \mathrm{~ms}}{200 \mathrm{~ms}}=182.5 \mathrm{~mW}
\end{aligned}
$$

An error 460% would have occurred by not including the reactive load. The total power dissipation must also include other outputs (if the device has more than one output), and the power dissipation due to the device power supply currents. This is an example where the load will most likely exceed the device package rating. If the load is fixed, the power can be reduced by changing the period (T) and duty rate ($\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\mathrm{OFF}}$).

FIGURE 18. Voltage and Current Waveforms Corresponding to Inductive Load

CALCULATION OF OUTPUT POWER WITH AN INCANDESCENT LAMP

An incandescent lamp is equivalent to a reactive load. The reactance is related to the period of time required to heat the lamp and the filaments positive temperature coefficient of resistance. Figure 19 shows the transient response for a typical lamp used on instrument panels, and the equivalent electrical model for the lamp. Much like IC packages the lamp has a thermal circuit and its associated propagation delay. This lamp filament has an 8 ms time constant, and a longer 250 ms time constant from the lamp body to ambient. The DC characteristics are shown in Figure 20. Note the knee in the characteristics at 2 volts; this is where power starts to be dissipated in the form of light. This subject is important, since more peripheral drivers are damaged by lamps than any other load.

TL/F/5860-19
FIGURE 19. Transient Response of an Incandescent Lamp

TL/F/5860-20
FIGURE 20. DC Characteristics of an Incandescent Lamp
Figure 21 shows the transient response of a driver similar to a DS75451 driving the lamp characterized in Figures 19 and 20. The equivalent load doesn't include the reactance of the lamp base to ambient, which has a 250 ms time constant, since 10 ms to an IC is equivalent to $D C$. The peak transient current was 1 amp , settling to 200 ms , with an 8 ms time constant. Observe the peak current is clamped at 1 amp , by the sinking ability of the driver; otherwise the peak current may have been 1.2 amps . The DS75451 is only rated at 300 mA , but it is reasonable to assume it could sink 1 amp because of the designed force β required for switching response and worst case operating temperature.

TL/F/5860-21
FIGURE 21. Transient Incandescent Lamp Current
Caiculation of the energy dissipated by a peripheral driver for the transient lamp current shown in Figure 21 is shown above, and the plot of energy vs time is shown in Figure 22. Figure 22 also includes as a reference the maximum peak energy from Figure 15. It can be seen from Figure 22 that in this example there is a good safety margin between the lamp load and the reference max peak energy. If there were more drivers than one per package under the same load, the margin would have been reduced. Also, if the peripheral driver couldn't saturate because it couldn't sink the peak transient lamp current, then the energy would also reduce the margin of safe operation.

TL/F/5860-22
FIGURE 22. Energy vs TIme for a Peripheral Driver with an Incandescent Lamp Load

CALCULATION OF ENERGY IN AN

 INCANDESCENT LAMP$$
\begin{aligned}
& \text { Energy }=\int_{0}^{t} V_{O L}\left(I_{\mathrm{R} 1}+l_{\mathrm{R} 2}\right) d t \\
& \mathrm{I}_{\mathrm{R} 1}=\frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 1} \\
& i_{R 2}=\left(\frac{V_{B}-V_{O L}}{R 2}\right) e^{-t / \tau} \\
& =\mathrm{I}_{\mathrm{R} 2} \mathrm{e}^{-\mathrm{t} / \tau} \quad \tau=\mathrm{R} 2 \mathrm{C} 2 \\
& \text { Energy }=\int_{0}^{t} V_{O L}\left(l_{R 1}+l_{R 2} e^{-t / \tau}\right) d t \\
& =V_{O L}\left[I_{R 1} t+I_{R 2} \tau\left(i-\theta^{-t / \tau}\right)\right]
\end{aligned}
$$

Given: $V_{O L}=0.6 \mathrm{~V}$

$$
\begin{aligned}
& I_{R 1}=0.2 \mathrm{Amps} \\
& I_{\mathrm{R} 1}+\mathrm{I}_{\mathrm{R} 2}=1 \mathrm{Amp}
\end{aligned}
$$

A common technique used to reduce the 10 to 1 peak to $D C$ transient lamp current is to bias the lamp partially ON , so the lamp filament is warm. This can be accomplished as shown in Figure 23. From Figure 20 it can be seen that the lamp resistance at OV is 5.7Ω, but at 1 V the resistance is 18Ω. At 1 V the lamp dosen't start to emit light. Using a lamp resistance of 100Ω and lamp voltage of $1 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}$ was calculated to be approximately 100Ω. This circuit will reduce the peak lamp current from 1 amp to 316 mA .

TL/F/5860-23
FIGURE 23. CIrcult Used to Reduce Peak Translent Lamp Current

PERIPHERAL DRIVER SECTION

National Semiconductor has a wide selection of peripheral drivers as shown in this section's guide. The DS75451, DS75461, DS3631 and the DS3611 series have the same selection of logic function in an 8 -pin package. The DS75461 is a high voltage selection of the DS75451 and may switch slower. The DS3611 and DS3631 are very high voltage circuits and were intended for slow relay applications. The DS3680, DS3686, and DS3687 were intended for 56 V telephone relay applications. The DS3654 contains a 10-bit shift register followed by ten 250 mA clamped drivers. The DS3654 was intended for printer solenoid applications. High current and high voltage peripheral drivers find many applications associated with digital systems, and it is the intention of the application note to insure that reliability and service life of peripheral drivers equal or exceed the performance of the other logic gates made by National.
For additional information, please contact the Interface Marketing Department at National or one of the many field application engineers world-wide.
\qquad

Section 4

Display Drivers

Section 4 Contents

Display Drivers-Introduction 4-3
Display Drivers-Selection Guide 4-4
DS75491 MOS-to-LED Quad Segment Driver 4-6
DS75492 MOS-to-LED Hex Digit Driver 4-6
DS55493/DS75493 Quad LED Segment Drivers 4-9
DS55494/DS75494 Hex Digit Drivers 4-12
DS8654 8-Output Display Driver (LED, VF, Thermal Printer) 4-14
DS8669 2-Digit BCD to 7-Segment Decoder/Driver 4-18
DS8863/DS8963 MOS-to-LED 8-Digit Drivers 4-21
DS8870 Hex LED Digit Driver 4-24
DS8874 9-Digit Shift input LED Driver 4-26
DS7880/DS8880 High Voltage 7-Segment Decoder/Driver 4-28
DS8884A High Voltage Cathode Decoder/Driver 4-32
DS8973 9-Digit LED Driver 4-35
AN-84 Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Drivers 4-37
MM5450/MM5451 LED Display Drivers 4-40
MM5452/MM5453 Liquid Crystal Display Drivers 4-46
MM5480 LED Display Driver 4-53
MM5481 LED Display Driver 4-57
MM5483 Liquid Crystal Display Driver 4-61
MM5484 16-Segment LED Display Driver 4-64
MM5486 LED Display Driver 4-67
MM58201 Multiplexed LCD Driver 4-72
MM58241 High Voltage Display Driver 4-78
MM58242 High Voltage Display Driver 4-83
MM58248 High Voltage Display Driver 4-88
MM58341 High Voltage Display Driver 4-93
MM58342 High Voltage Display Driver 4-98
MM58348 High Voltage Display Driver 4-103
AN-350 Designing an LCD Dot Matrix Display Interface 4-108
AN-371 The MM58348/342/341/248/242/241 Directly Drive Vacuum Fluorescent (VF) Displays 4-127
AN-378 A Novel Process for Vacuum Fluorescent (VF) Display Drivers 4-138
AN-440 New CMOS Vacuum Fluorescent Drivers Enable Three Chip System to Provide Intelligent Control of Dot Matrix VF Display 4-144

MOS/LSI DISPLAY DRIVERS

National's comprehensive family of display drivers provides direct interface to all of the common display technologies-light-emitting diode (LED), liquid crystal display (LCD), and vacuum fluorescent (VF).

FUNCTION SIMILAR FAMILY

Each driver utilizes a simple serial-data input channel, onchip shift register, latches and buffer/driver outputs. The serial input channel allows direct interface to most microprocessors, including COPSTM, NSC800TM, 8080 series, and TMS1000 series. Besides a serial-data input, each driver requires a clock input. Some offer a latch (data) input and/or data output for easy cascade interconnect of additional drivers.

Once loaded, the shift register data can be transferred to the on-chip latches, which then output to the buffer/driver and respective display. This buffer/driver is where each provides the unique driver interface desired by the particular display technology-LED, LCD, or VF.

THE MM58241 SERIES-VF
Each of the products in the MM58241 series provides highvoltage (several up to 60V) drive of VF displays. All are ideal
for direct or multiplexed interface to large complex VF panel arrays or 5×7 (or larger) dot-matrix character strings. Each of the drivers are cascadable for further expansion. Application note AN-371 provides further details and other application information.

THE MM5450 SERIES-LED

National's MM5450 series of LED display drivers rounds out this comprehensive product family. This popular series offers direct drive of LED displays by providing up to 25 mA of current drive per LED segment.

CMOS/LSI

Many of the products in the display driver family utilize CMOS technology and are further evidence of National's capabilities and commitment to CMOS/LSI-the technology of the ' 80 s .
In addition, National offers a line of bipolar segment and digit drivers with a broad range of output sink and source currents.
Detailed features/functions of the 16-member display driver family are high-lighted in the following product guide.

LSI Display Driver Selection Guide

Display Technology	Product Number	Features	Page No.
Vacuum Fluorescent (VF)	MM58241	32-segment, direct/multiplexed drive to 60 V , data enable, brightness control, cascadable, 40-pin DIP or 44-pin PCC package.	4-78
VF	MM58242	20 -digit, direct/multiplexed drive to 60 V , data enable, brightness control, cascadable, 28-pin DIP or PCC package.	4-83
VF	MM58248	35-segment, direct/multiplexed drive to 60V, pin-compatible to MM5448, 40-pin DIP or 44-pin PCC package.	4-88
VF	MM58341	32 -segment, direct/multiplexed drive to 35 V , data enable, brightness control, cascadable, 40-pin DIP or 44-pin PCC package.	4-93
VF	MM58342	20-digit, direct/multiplexed drive to 35 V , data enable, brightness control, cascadable, 28-pin DIP or PCC package.	4-98
VF	MM58348	35 -segment, direct/multiplexed drive to 35 V , pin-compatible to MM5448, 40-pin DIP or 44-pin PCC package.	4-103
Liquid Crystal (LCD)	MM5452	32-segment, direct drive, serial-data input, data enable, on-chip backplane (B/P) oscillator, 40-pin DIP or 44-pin PCC package.	4-46
LCD	MM5453	33-segment, direct drive, serial-data input, B/P oscillator, 40-pin DIP or 44-pin PCC package.	4-46
LCD	MM5483	31-segment, direct drive, serial-data input/output, latch (data) control, 40-pin DIP or 44-pin PCC package.	4-61
LCD	MM58201	Multiplexed drive, 192 segments (8 backplanes, 24 segments), 192-bit RAM, cascadable, R/C oscillator, serial-data input/output, 40-pin DIP or 44-pin PCC package.	4-72
Light-Emitting Diode (LED)	MM5450	34-segment, direct drive up to 25 mA , brightness control, data enable, 40-pin DIP or 44-pin PCC package.	4-40
LED	MM5451	35 -segment, direct drive up to 25 mA , brightness control, 40-pin DIP or 44-pin PCC package.	4-40
LED	MM5480	23-segment, direct drive up to 25 mA , serial-data input, brightness control, 28-pin DIP package.	4-53
LED	MM5481	14-segment, direct drive up to 25 mA , serial-data input, brightness control, 20-pin DIP package.	4-57
LED	MM5484	16 -segment, direct drive up to 10 mA , serial-data input/output, cascadable, 22-pin DIP package.	4-64
LED	MM5486	33 -segment, direct drive up to 25 mA , serial-data input/output, brightness control, latch (data) control, 40-pin DIP package.	4-67

DS75491 MOS-to-LED Quad Segment Driver DS75492 MOS-to-LED Hex Digit Driver

General Description

The DS75491 and DS75492 are interface circuits designed to be used in conjunction with MOS integrated circuits and common-cathode LEDs in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-ad-dress-and-digit-scan method of LED drive.

Features

■ 50 mA source or sink capability per driver (DS75491)

- 250 mA sink capability per driver (DS75492)
m MOS compatability (low input current)
■ Low standby power
- High-gain Darlington circuits

Schematic and Connection Diagrams

Absolute Maximum Ratings (Note 1)							
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales			Continuous Total Dissipation	DS75491 600 mW	DS75492 600 mW		
Office/Distributors for availability and specifications. DS75491 DS75492			Operating Temperature Range	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{gathered}$			
			Storage Temperature Range				
Input Voltage Range (Note 4)			Lead Temp. (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$		
Collector Output Voltage (Note 5)	10 V	10 V	Maximum Power Dissipation at $25^{\circ} \mathrm{C}$				
Collector Output to Input Voltage	10 V	10 V					
Emitter to Ground Voltage ($\mathrm{V}_{1} \geq 5 \mathrm{~V}$)	10 V		Cavity Package Molded Package	$\begin{aligned} & 1308 \mathrm{~mW}^{*} \\ & 1207 \mathrm{~mW}^{*} \end{aligned}$	$1364 \mathrm{~mW} \dagger$$1280 \mathrm{~mW} \dagger$		
Emitter to Input Voltage	5 V						
Voltage at $\mathrm{V}_{\text {ss }}$ Terminal with Respect to any Other Device Terminal	10 V	10 V	-Derate cavity package $8.72 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.				
Collector Output Current			†Derate cavity package $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$; derate molded package $10.24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.				
Each Collector Output	50 mA	250 mA					
All Collector Outputs	200 mA	600 mA					

Electrical Characteristics $\mathrm{v}_{\text {SS }}=10 \mathrm{~V}$ (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
DS75491								
$V_{\text {CE ON }}$	"ON" State Collector Emitter Voltage	$\begin{aligned} & \text { Input }=8.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.9	1.2	V
				$T_{A}=0-70^{\circ} \mathrm{C}$			1.5	V
IC OFF	"OFF' State Coilector Current	$\begin{aligned} & V_{C}=10 \mathrm{~V} \\ & V_{E}=0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=40 \mu \mathrm{~A}$				100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$				2.2	3.3	mA
IE	Emitter Reverse Current	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~mA}$					100	$\mu \mathrm{A}$
Iss	Current Into $\mathrm{V}_{\text {SS }}$ Terminal						1	mA
DS75492								
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \text { Input }=6.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \\ & \text { IOUT }=250 \mathrm{~mA} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.9	1.2	V
				$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$			1.5	V
IOH	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}$	$\mathrm{I}_{1 \mathrm{~N}}=40 \mu \mathrm{~A}$				200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$				200	$\mu \mathrm{A}$
11	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$				2.2	3.3	mA
ISS	Current Into $\mathrm{V}_{\text {SS }}$ Terminal						1	mA

Switching Characteristics $\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DS75491						
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output (Collector)	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		100		ns
tpHL	Propagation Delay Time, High-to-Low Level Output (Collector)			20		ns
DS75492						
tplH	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & V_{I H}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		300		ns
tPHL	Propagation Delay Time, High-to-Low Level Output			30		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS75491 and DS75492.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The input is the only device terminal which may be negative with respect to ground.
Note 5: Voltage values are with respect to network ground terminal unless otherwise noted.

AC Test Circuits and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega, \mathrm{PRR}=100 \mathrm{kHz}, \mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}$.
TL/F/5830-7
Note 2: C_{L} includes probe and jig capacitance.

General Description

The DS55493/DS75493 is a quad LED segment driver. It is designed to interface between MOS IC's and LED's. An external resistor is required for each segment to drive the output current which is approximately equal to $0.7 \mathrm{~V} / \mathrm{R}_{\mathrm{L}}$ and is relatively constant, independent of supply variations. Blanking can be achieved by taking the chip enable (CE) to a logical "1" level.

DS55493/DS75493 Quad LED Segment Driver

Schematic and Connection Diagrams

TL/F/7561-1

Dual-In-Line Package

TL/F/7561-2

Order Number DS55493J, DS75493J or DS75493N
See NS Package Number J16A or N16A

Features

■ Low voltage operation

- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Output current regulation
- Quad high gain circuits

Truth Table

CE	$V_{\text {IN }}$	IOUT
0	1	ON
0	0	OFF
1	X	OFF

$X=$ Don't care

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallablility and specifications.
 Supply Voltage
 Input Voltage 10 V
 Output Voltage VCC
 Storage Temperature Range
 Output Current (lout)
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 $-25 \mathrm{~mA}$
 Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
 Cavity Package
 Molded Package
 Lead Temperature (Soldering, 4 seconds) . $260^{\circ} \mathrm{C}$
 *Derate cavity package $9.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions			
Min	Max	Unlts	
Supply Voltage			
VCC $^{\text {O }}$	3.2	8.8	V
VSS	6.5	8.8	V
Temperature T_{A}			
DS55593	0	+70	${ }^{\circ} \mathrm{C}$
DS55493	-55	+125	${ }^{\circ} \mathrm{C}$

Operating Conditions

Electrical Characteristics ($\mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{CC}}$) (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
IN	Input Current	$\mathrm{V}_{S S}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$				3.2	mA
		$\mathrm{I}_{\text {OUT }}=\mathrm{R}_{\text {SET }} @ 0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=8.8 \mathrm{~V}$				3.6	mA
$I_{\text {CE }}$	Chip Enable Input Current	$V_{C C}=M_{a x}, V_{S S}=M a x, V_{C E}=8.8 \mathrm{~V}$, All Other Pins to GND				2.1	mA
lout	Output Current	IOUT @ $2.15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{S S}=6.5 \mathrm{~V}, \\ & I_{C E}=80 \mu \mathrm{~A}, \mathrm{~V}_{I N}=6.5 \mathrm{~V} \\ & \text { Through } 1.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-8	-13		mA
			$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=8.8 \mathrm{~V}$		-16	-20	mA
lOL	Output Leakage Current	$\text { IOUT }=R_{S E T} @ O V \text {, }$ Measure Current to Gnd, $V_{\mathrm{SS}}=8.8 \mathrm{~V}$	$\begin{aligned} & V_{C C}=M i n, V_{C E}=0 V \\ & V_{I N}=8.8 V \text { Through } \\ & 100 \mathrm{k} \Omega \end{aligned}$			-200	$\mu \mathrm{A}$
			$\begin{aligned} & V_{\mathrm{CE}}=6.5 \mathrm{~V} \text { Though } \\ & 1.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}=8.8 \mathrm{~V} \end{aligned}$			-100	$\mu \mathrm{A}$
ICC	Supply Current, VCC	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {SS }}=$ Max, All Other Pins to Gnd				40	$\mu \mathrm{A}$
Iss	Supply Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, All Other Pins to Gnd				40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{SS}}=8.8 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OUT}}$ @ $2.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=8.8 \mathrm{~V}$ Through $100 \mathrm{k} \Omega$, $R_{L}=50 \Omega$		0.5	1.5	mA
			$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=\text { Open, } \mathrm{R}_{\mathrm{SET}}=\text { Open, } \\ & V_{\mathrm{CE}}=\mathrm{OV} \end{aligned}$			1.4	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {pd(OFF) }}$	Propagation Delay to a Logical "0" From Input to Output	(See AC Test Circuit		.170	300	ns
$\mathrm{t}_{\mathrm{pd}(\mathrm{ON})}$	Propagation Delay to a Logical "1" From Input to Output	(See AC Test Circuit)		11	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75493 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS55493.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Typical Applications

AC Test Circuit

Switching Time Waveforms

DS55494/DS75494 Hex Digit Driver

General Description

The DS55494/DS75494 is a hex digit driver designed to interface between most MOS devices and common cathodes configured LED's with a low output voltage at high operating currents. The enable input disables all the outputs when taken high.

Features

- 150 mA sink capability
- Low voltage operation
- Low input current for MOS compatibility
- Low standby power

■ Display blanking capability
E Low voltage saturating outputs

- Hex high gain circuits

Schematic and Connection Diagrams

Truth Table

Enable	$\mathbf{V}_{\text {IN }}$	$\mathbf{V}_{\text {OUT }}$
0	0	1
0	1	0
1	X	1

$X=$ don't care

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage 10V
Input Voltage 10V
Output Voltage 10 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package 1433 mW Molded Package 1362 mW
Lead Temperature (Soldering 4 seconds) $260^{\circ} \mathrm{C}$
*Derate cavity package $9.55 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Unlts
Supply Voltage, V_{CC}	3.2	8.8	V
Temperature, T_{A}			
DS75494	0	+70	${ }^{\circ} \mathrm{C}$
DS55494	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions					Min	Typ	Max	Units
${ }_{1 / 2}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IN}}=8.8 \mathrm{~V}$		$\mathrm{V}_{\text {CE }}=8.8 \mathrm{~V}$ through 100 k					2.0	mA
				$V_{\text {CE }}=8.8 \mathrm{~V}$					2.7	mA
IIL	Logical "0" Input Current	$V_{\text {CC }}=M a x, V_{\text {IN }}=-5.5 \mathrm{~V}$							-20	$\mu \mathrm{A}$
IOH	Logical "1" Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{OH}}=8.8 \mathrm{~V}$		$\mathrm{V}_{\mathrm{IN}}=8.8 \mathrm{~V}$ through 100k, $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$					400	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=6.5 \mathrm{~V}$ through 1.0 k					400	$\mu \mathrm{A}$
V_{OL}	Logical "0' Output Voltage	$\begin{aligned} & V_{C C}=\text { Min, } \mathrm{IOL}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=6.5 \mathrm{~V} \text { through } 1.0 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{CE}}=8.8 \mathrm{~V} \text { through } 100 \mathrm{k} \end{aligned}$				DS75494		0.25	0.35	V
						DS55494		0.25	0.4	V
$I_{C C}$	Supply Currents	$V_{C C}=\operatorname{Max}$	One Driver ' ON ", $\mathrm{V}_{\mathrm{iN}}=8.8 \mathrm{~V}$			DS75474			8.0	mA
						DS55494			10.0	mA
			All Other Pins to GND		$V_{\text {CE }}=6.5 \mathrm{~V}$	rough 1.0k			100	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{IN}}=8.8 \mathrm{~V}$	ough 100k			100	$\mu \mathrm{A}$
			All Other Pins to GND						40	$\mu \mathrm{A}$
toff	Output "OFF', Time	$C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{~V}_{C C}=4.0 \mathrm{~V}$, See AC Test Circuits						0.04	1.2	$\mu \mathrm{s}$
ton	Output "ON" Time	$C_{L}=20 \mathrm{pF}, R_{L}=24 \Omega, V_{C C}=4.0 \mathrm{~V}$, See AC Test Circuits						13	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75494 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS55494.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

AC Test Circuit and Switching Time Waveforms

TL./F/5832-3

TL/F/5832-4

National
Semiconductor

DS8654 8-Output Display Driver (LED, VF, Thermal Printer)

General Description

DS8654 is an 8-digit driver with emitter/follower outputs. It can source up to 50 mA at a low impedance, and operates with a constant internal drive current over a wide range of power supply-from 4.5 V to 33 V . The DS8654 can be used to drive electrical or mechanical, multiplexed or unmultiplexed display systems. It can be used as a segment driver for common cathode displays with external current limiting resistors or can drive incandescent or fluorescent displays directly, both digits (anodes) and segments (grids). It will be necessary to run the device at a lower duty cycle, to keep the maximum package dc power dissipation less than 600 mW while operating all 8 outputs at high supply voltage
and large source current. The inputs are MOS compatible and eliminate the need for level shifting since inputs are referenced to the most negative supply of system.

System Description

The DS8654 is specifically designed to operate a thermal printing head for calculator or other uses. In this application the same segment in each digit is selected at the same time, reducing the overall time for a complete print cycle. The DS8654 is an 8-digit driver. With a 15 -digit print head, two of the DS8654 are required.

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage 36 V
Input Voltage 36V
Output Voltage
$\mathrm{VCC}-36 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Molded Package

1563 mW
Lead Temperature (Soldering, 4 seconds)
$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Unlts
Supply Voltage $\left(V_{C C}\right)$	4.5	33	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

LED Display-0 mA to $\mathbf{5 0} \mathrm{mA}$ Peak Segment Current

Typical Applications (Continued)

LED Display-50 mA to 100 mA Peak Segment Current

TL/F/5833-5

TL/F/5833-6

DS8669 2-Digit BCD to 7-Segment Decoder/Driver

General Description

The DS8669 is a 2-digit BCD to 7 -segment decoder/driver for use with common anode LED displays. The DS8669 drives 27 -segment LED displays without multiplexing. Outputs are open-collector, and capable of sinking $25 \mathrm{~mA} / \mathrm{seg}-$ ment. Applications include TV and CB channel displays.

Features

- Direct 7-segment drive
- $25 \mathrm{~mA} /$ segment current sink capability
- Low power requirement-16 mA typ

■ Very low input currents-2 $\mu \mathrm{A}$ typ

- Input clamp diodes to both $V_{C C}$ and ground
- No multiplexing oscillator noise

Logic and Connection Diagrams

TL/F/5836-1

Dual-In-Llne Package

TL/F/5836-2
Top View
Order Number DS8669N
See NS Package Number N24A

Absolute Maximum Ratings (Note 1)				
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$			
Office/Distributors for availability and specifications.	Lead Temperature (Soldering, 10 seconds)			$300^{\circ} \mathrm{C}$
Supply Voltage 7V	${ }^{*}$ Derate molded package $16.04 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.			
Input Current 20 mA				
Output Voltage 12V	Operating Conditions			
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		Min	Max	Units
	Supply Voltage (V_{CC})	4.5	6.0	V
	Temperature (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5.25 \mathrm{~V}$, (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$V_{C C}=$ Min	2.0		$V_{C C}+0.6$	V
$\mathrm{V}_{\text {IL }}$	Logical "0' Input Voltage	$V_{C C}=\operatorname{Min}$	-0.3		0.8	V
10	Logical "1" Output Leakage Current	$\begin{aligned} & V_{C C}=M a x, \\ & V_{O U T}=10 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$
V_{OL}	Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$		0.4	0.8	V
$\mathrm{IIH}^{\text {H}}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		2.0	10	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$\begin{aligned} & V_{I N}=0 V \\ & V_{C C}=M a x \end{aligned}$		-0.1	-10	$\mu \mathrm{A}$
ICC	Supply Current	All Outputs Low, $V_{C C}=M a x$		16	25	mA
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}$			$V_{C C}+1.5 \mathrm{~V}$	V
		$\mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$			-1.5V	V
$t_{\text {pdo }}$	Propagation Delay to a Logical " 0 " from Any Input to Any Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			10	$\mu \mathrm{S}$
${ }_{\text {tpd }}$	Propagation Delay to a Logical "1" from Any Input to Any Output				10	$\mu \mathrm{S}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8669. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Truth Table

INPUT LEVELS				SEGMENT OUTPUTS															
D_{N}	C_{N}	BN_{N}	A_{N}	a1	b1	c1	d1	e1	$f 1$	g1	a2	b2	c2	d2	e2	12	． 2	DISPLAY 1	DISPLAY 2
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	\square	17
0	0	0	1	1	0	0	1	1	1	1	1	0	0	1	1	1	1	i	，
0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	『	マ
0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	1	1	0	F1	Э
0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	4	H
0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	E	E
0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	乭	E
0	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	7	7
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	隹
1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	5	5
1	0	1	0	0	1	1	0	0	0	1	1	0	0	1	0	0	0	L	H
1	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	H	－＇
1	1	0	0	0	0	1	1	0	0	0	1	1	1	0	0	0	1	F^{\prime}	L
1	1	0	1	0	1	1	0	0	0	0	0	1	1	1	0	0	0	E	F
1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	－	－
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	（Blank）	（Blank）

＂0＂＝Segment ON
$" 1 "=$ Segment OFF

Display Segment Notation

TL／F／5836－4

AC Test Circuit

TL／F／5836－5

Switching Time Waveforms

TL／F／5836－6

DS8863/DS8963 MOS-to-LED 8-Digit Driver

General Description

The DS8863 and DS8963 are designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays.
The DS8863 is an 8 -digit driver. Each driver is capable of sinking up to 500 mA .

The DS8963 is identical to the DS8863 except it is intended for operation at up to 18 V .

Schematic and Connection Diagrams

TL/F/5839-1

Dual-In-Line Package

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.		
	DS8863	DS8963
Input Voltage Range (Note 1)	-5 V to V_{SS}	-5 V to $\mathrm{V}_{S S}$
Collector (Output) Voltage (Note 2)	10 V	18V
Collector (Output)-to-Input Voltage	10V	18 V
Emitter-to-Ground Voltage $\left(V_{1} \geq 5 \mathrm{~V}\right)$		
Emitter-to-Input Voltage		
Voltage at $\mathrm{V}_{\text {SS }}$ Terminal With Respect to Any Other		
Device Terminal	10 V	18V

	DS8863	DS8963
Collector (Output) Current		
Each Collector (Output)	500 mA	500 mA
All Collectors (Output)	600 mA	600 mA
Continuous Total Dissipation	800 mW	800 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Maximum Power Dissipation at $25^{\circ} \mathrm{C}$		
Lead Temperature (Soldering, 4 sec .)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
tDerate molded package 12.5 mW /	${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Electrical Characteristics $\mathrm{V}_{S S}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions			Min	Typ	Max	Units
VOL	Low Level Output Voltage	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}, \mathrm{l}$ OUT $=500 \mathrm{~mA}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	V
							1.6	V
IOH	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}^{*}$	$\mathrm{I}_{\mathrm{IN}}=40 \mu \mathrm{~A}$				250	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$				250	$\mu \mathrm{A}$
11	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{IOL}=20 \mathrm{~mA}$					2	mA
Iss	Current into $\mathrm{V}_{\text {SS }}$ Terminal		-				1	mA

18 V for the DS8963
Switching Characteristics $\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpliH	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & V_{I H}=8 V, R_{L}=20 \Omega, \\ & C_{L}=15 \mathrm{pF} \end{aligned}$		300		ns
tPHL	Propagation Delay Time, High-to-Low Level Output			30		ns

Note 1: The input is the only device terminal which may be negative with respect to ground.
Note 2: Voltage values are with respect to network ground terminal unless otherwise noted.

AC Test Circuits and Waveforms

Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega, \mathrm{PRR}=100 \mathrm{KHz}, \mathrm{t}_{\mathrm{W}}=1 \mu \mathrm{~s}$.
Note 2: C_{L} includes probe and jig capacitance.

DS8870 Hex LED Digit Driver

General Description

The DS8870 is an interface circuit designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digitscan method of LED drive.

Features
■ Sink capability per driver- 350 mA

- MOS compatibility (low input current)
- Low standby power
- High-gain Darlington circuits

Schematic and Connection Diagrams

TL/F/5841-1

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage Range (Note 4)
-5 V to $\mathrm{V}_{S S}$
Collector Output Voltage
Collector Output to Input Voltage
Voltage at $V_{S S}$ Terminal with Respect to Any Other Device Terminal
Collector Output Current
Each Collector Output All Collector Outputs

Continuous Total Dissipation
800 mW 0° to $+70^{\circ} \mathrm{C}$
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package 1308 mW Molded Package $\quad 1207 \mathrm{~mW}$
Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
\cdot Derate cavity package $8.72 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics $\mathrm{V}_{\text {SS }}=10 \mathrm{~V}$ (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
VOL	Low Level Output Voltage	$\begin{aligned} & \text { Input }=6.5 \mathrm{~V} \text { through } \mathrm{k} \Omega, \\ & \mathrm{I}_{\text {OUT }}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1.2	1.4	V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \text { Input }=6.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \\ & \text { IOUT }=350 \mathrm{~mA} \end{aligned}$			1.6	V
IOH	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=40 \mu \mathrm{~A}$			200	$\mu \mathrm{A}$
${ }_{\mathrm{O}}$	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{iN}}=0.5 \mathrm{~V}$			200	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{IOL}=20 \mu \mathrm{~A}$		2.2	3.3	mA
Iss	Current into $\mathrm{V}_{\text {SS }}$ Terminal				1	mA

Switching Characteristics $\mathrm{v}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {tLH }}$	Propagation Delay Time, Low-to-High Level Output	$V_{I H}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		300		ns
t_{PH}	Propagation Delay Time, High-to-Low Level Output	$\mathrm{V}_{\mathrm{IH}}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		30		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The input is the only device terminal which may be negative with respect to ground.

DS8874 9-Digit Shift Input LED Driver

General Description

The DS8874 is a 9-digit LED driver which incorporates a shift register input decoding circuit and a low battery indicator. Outputs will sink 110 mA at less than 0.5 V drop when sequentially selected. When the $\mathrm{V}_{C C}$ supply falls below 6.5 V typical, segment current will be furnished at digit 9 time to indicate a low battery condition. Pin 13 is generally connected to the decimal point segment on the display so that when a low battery condition exists, the left-most decimal point lights up.

Features

■ 110 mA digit sink

- Low battery indicator
- Minimum number of connections
- MOS compatible inputs

Connection Diagram

Equivalent Schematic

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 10V
Input Voltage 3V
Output Voltage 10 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Molded Package

1280 mW
Lead Temperature (Soldering, 4 sec .)
$260^{\circ} \mathrm{C}$
*Derate molded package $10.24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	6.0	9.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$V_{C C}=M a x, V_{\text {IN }}=3 V$		0.25	0.4	mA
$\mathrm{I}_{\text {IL }}$	Logical "0"' Input Current	$V_{C C}=M a x, V_{I N}=0.8 \mathrm{~V}$		0.05	0.1	mA
$\mathrm{V}_{\mathrm{CCL}}$	Decimal Point "ON"	$\mathrm{V}_{\mathrm{dp}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{dp}}=-4 \mathrm{~mA}, 09=\mathrm{V}_{\mathrm{OL}}$			6.0	V
$\mathrm{V}_{\mathrm{CCH}}$	Decimal Point "OFF"	$V_{\text {dp }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{dp}}=-10 \mu \mathrm{~A}, 09=\mathrm{V}_{\mathrm{OL}}$	7.0			V
${ }^{\mathrm{OH}}$	Logical "1" Output Current	$V_{C C}=$ Max, Output Not Selected			100	$\mu \mathrm{A}$
VOL	Logical "0" Output Voltage	$V_{C C}=$ Min, Output Selected, $\mathrm{I}_{01}=80 \mathrm{~mA}$		0.45	1	V
		$\mathrm{V}_{\mathrm{CC}}=$ Max, Output Selected, $\mathrm{l}_{\mathrm{O} 1}=110 \mathrm{~mA}$		0.6	1.5	V
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, One Output Selected		13	19	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Timing Diagram (Upper Level More Positive)

DS7880/DS8880 High Voltage 7-Segment Decoder/Driver

General Description

The DS7880/DS8880 is custom designed to decode four lines of BCD and drive a gas-filled seven-segment display tube.
Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sinks have a voltage compliance from $3 V$ to at least 80 V ; typically the output current varies 1% for output voltage changes of 3 to 50 V . Each bit line of the decoder switches a current sink on or off as prescribed by the input code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or multiplex operation. The output current is adjusted by connecting an external pro-
gram resistor (R_{P}) from V_{CC} to the Program input in accordance with the programming curve. The circuit design provides a one-to-one correlation between program input current and b-segment output current.
The Blanking Input provides unconditional blanking of any output display, while the Ripple Blanking pins allow simple leading- or trailing-zero blanking.

Features

■ Current sink outputs
■ Adjustable output current- 0.2 to 1.5 mA
■ High output breakdown voltage-110V typ

- Suitable for multiplex operation

■ Blanking and Ripple Blanking provisions

- Low fan-in and low power

Logic Diagram

TL/F/5845-1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
VCC
Input Voltage (Except BI)
Input Voltage (BI) VCC
Segment Output Voltage 80V
Power Dissipation
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
Molded Package
1509 mW 1476 mW
*Derate cavity package $10.06 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Transient Segment Output Current

(Note 4)	50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec.$)$	$260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
DS7880	4.5	5.5	V
DS8880	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			${ }^{\circ}$
DS7880	-55	+125	${ }^{\circ} \mathrm{C}$
DS8880	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage	$V_{C C}=$ Min		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=\operatorname{Min}$				0.8	V
V_{OH}	Logical "1" Output Voltage	$V_{C C}=$ Min, $\mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}, \mathrm{RBO}$		2.4	3.7		V
V_{OL}	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\text {OUT }}=8 \mathrm{~mA}, \mathrm{RBO}$			0.13	0.4	V
${ }_{1 / \mathrm{H}}$	Logical "1" Input Current	$V_{C C}=$ Max, Except BI	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$		2	15	$\mu \mathrm{A}$
			$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$		4	400	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	Except BI		-300	-600	$\mu \mathrm{A}$
			BI		-1.2	-2.0	mA
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{R}_{\mathrm{p}}=2.2 \mathrm{k}$, All Inputs $=0 \mathrm{~V}$			27	43	mA
$\mathrm{V}_{C D}$	Input Diode Clamp Voltage	$V_{C C}=M a x, T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{IN}}=12 \mathrm{~mA}$			-0.9	-1.5	V
I_{0}	SEGMENT OUTPUTS "ON" Current Ratio	$\begin{aligned} & \text { All Outputs }=50 \mathrm{~V}, \\ & \text { loutb }=\text { Ref. } \end{aligned}$	Outputs a, f , and g	0.84	0.93	1.02	
			Outut c	1.12	1.25	1.38	
			Output d	0.90	1.00	1.10	
			Output e	- 0.99	1.10	1.21	
$\mathrm{l}_{\mathrm{b}} \mathrm{ON}$	Output b "ON" Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \\ & \text { All Other Outputs } \geq 5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\mathrm{p}}=18.1 \mathrm{k}$	0.15	0.20	0.25	mA
			$\mathrm{R}_{\mathrm{p}}=7.03 \mathrm{k}$	0.45	0.50	0.55	mA
			$\mathrm{R}_{\mathrm{p}}=3.40 \mathrm{k}$	0.90	1.00	1.10	mA
			$\mathrm{R}_{\mathrm{p}}=2.20 \mathrm{k}$	1.35	1.50	1.65	mA
$\mathrm{V}_{\text {SAT }}$	Output Saturation Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{R}_{\mathrm{p}}=1 \mathrm{k} \pm 5 \%, \mathrm{l}_{\text {OUT }} \mathrm{b}=2 \mathrm{~mA},($ Note 5)			0.8	2.5	V
$I_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}, \mathrm{BI}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k}$			0.003	3	$\mu \mathrm{A}$
$V_{\text {BR }}$	Output Breakdown Voltage	$\mathrm{I}_{\text {OUT }}=250 \mu \mathrm{~A}, \mathrm{BI}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{p}}=2.2 \mathrm{k}$		80	110		V
t_{pd}	Propagation Delays BCD Input to Segment Output	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.4	10	$\mu \mathrm{S}$
	Bl to Segment Output				0.4	10	$\mu \mathrm{s}$
	RBI to Segment Output				0.7	10	$\mu \mathrm{s}$
	RBI to RBO				0.4	10	$\mu \mathrm{s}$

Note 1: "Absolute Maximum Rating" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7880 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8880. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min or absolute value basis.

Note 4: In all applications transient segment output current must be limited to 50 mA . This may be accomplished in dc applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.
Note 5: For saturation mode the segment output currents are externally limited and ratioed.

Connection Diagram

Typical Performance Characteristics

TL/F/5845-3

Typical Application

Truth Table

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \\ & \hline \end{aligned}$	RBit ${ }^{+}$	D	C	B	A	BI/RBO	a	b	c	d	e	f	g	DISPLAY
0	1	0	0	0	0	1	0	0	0	0	0	0	1	1-1
1	x	0	0	0	1	1	1	0	0	1	1	1	1	1
2	x	0	0	1	0	1	0	0	1	0	0	1	0	I
3	x	0	0	1	1	1	0	0	0	0	1	1	0	\#1
4	x	0	1	0	0	1	1	0	0	1	1	0	0	II
5	x	0	1	0	1	1	0	1	0	0	1	0	0	I-
6	X	0	1	1	0	1	0	1	0	0	0	0	0	İ
7	x	0	1	1	1	1	0	0	0	1	1	1	1	7
8	x	1	0	0	0	1	0	0	0	0	0	0	0	17
9	X	1	0	0	1	1	0	0	0	0	1	0	0	$\underline{17}$
10	X	1	0	1	0	1	0	0	0	1	0	0	0	I7
11	X	1	0	1	1	1	1	1	0	0	0	0	0	I
12	x	1	1	0	0	1	0	1	1	0	0	0	1	1
13	x	1	1	0	1	1	1	0	0	0	0	1	0	1
14	X	1	1	1	0	1	0	1	1	0	0	0	0	E
15	x	1	1	1	1	1	0	1	1	1	0	0	0	1
B1*	X	X	x	x	x	0 *	1	1	1	1	1	1	1	
RB1	0	0	0	0	0	0	1	1	1	1	1	1	1	

*BI/RBO used as input only
$\dagger^{\prime} X=$ Don't care
TL/F/5845-5

DS8884A High Voltage Cathode Decoder/Driver

General Description

The DS8884A is designed to decode four lines of BCD input and drive seven-segment digits of gas-filled readout displays.
All outputs consist of switchable and programmable current sinks which provide constant current to the tube cathodes, even with high tube anode supply tolerance. Output currents may be varied over the 0.2 mA to 1.2 mA range for multiplex operation. The output current is adjusted by connecting an external program resistor (R_{P}) from V_{CC} to the program input in accordance with the programming curve. Unused outputs must be tied to V_{CC}.

Features

- Usable with AC or DC input coupling
- Current sink outputs
- High output breakdown voltage
- Low input load current
- Intended for multiplex operation

■ Input pullups increase noise immunity

- Comma/d.pt. drive

Connection Diagram
Dual-In-Line Package

Top Vlew
Order Number DS8884AN
See NS Package Number N18A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
$V_{C C}$
Input Voltage (Note 4) VCC
Segment Output Voltage 80 V
Power Dissipation 600 mW
Transient Segment Output Current (Note 5)

50 mA

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Max	Units
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		2.0		V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=4.75 \mathrm{~V}$			1.0	V
$\mathrm{IIH}^{\text {I }}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$			15	$\mu \mathrm{A}$
I/L	Logical "0" Input Current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-250	$\mu \mathrm{A}$
ICC	Power Supply Current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.8 \mathrm{k}$, All Inputs $=5 \mathrm{~V}$			40	mA
V_{1+}	Positive Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=1 \mathrm{~mA}$		5.0		V
V_{1}	Negative Input Clamp Voltage	$V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-1.5	V
Δl_{0}	SEGMENT OUTPUTS "ON" Current Ratio	All Outputs $=50 \mathrm{~V}$, Iout $\mathrm{b}=$ Ref., All Outputs		0.9	1.1	
lb ON	Output b "ON" Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\mathrm{P}}=18.1 \mathrm{k}$	0.15	0.25	mA
			$\mathrm{R}_{\mathrm{P}}=7.03 \mathrm{k}$	0.45	0.55	mA
			$\mathrm{R}_{\mathrm{P}}=3.40 \mathrm{k}$	0.90	1.10	mA
			$\mathrm{R}_{\mathrm{P}}=2.80 \mathrm{k}$	1.08	1.32	mA
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}$			5	$\mu \mathrm{A}$
V_{BR}	Output Breakdown Voltage	$\text { IOUT }=250 \mu \mathrm{~A}$		80		V
$t_{p d}$	Propagation Delay of Any Input to Segment Output	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{S}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min $/$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS8884A. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: This limit can be higher for a current limiting voltage source.
Note 5: In all applications transient segment output current must be limited to 50 mA . This may be accomplished in DC applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

Typical Application

TL/F/5847-4

Truth Table

FUNCTION	D．PT．	COMMA	D	C	B	A	a	b	c	d	－	1	g	DISPLAY	
0	1	1	0	0	0	0	0	0	0	0	0	0	1	$\square 7$	
1	1	1	0	0	0	1	1	0	0	1	1	1	1	1	
2	1	1	0	0	1	0	0	0	1	0	0	1	0	己	
3	1	1	0	0	1	1	0	0	0	0	1	1	0	\exists	
4	1	1	0	1	0	0	1	0	0	1	1	0	0	4	
5	1	1	0	1	0	1	0	1	0	0	1	0	0	今	
6	1	1	0	1	1	0	0	1	0	0	0	0	0	E	
7	1	1	0	1	1	1	0	0	0	1	1	1	1	7	
8	1	1	1	0	0	0	0	0	0	0	0	0	0	$日$	
9	1	1	1	0	0	1	0	0	0	0	1	0	0	5	
10	1	1	1	0	1	0	1	1	0	0	0	1	1	$\underline{\square}$	a
11	1	1	1	0	1	1	1	1	0	0	0	1	0	17	－1／b
12	1	1	1	1	0	0	0	0	1	1	1	0	0	日	$1 / 9$
13	1	1	1	1	0	1	0	1	1	0	0	0	0	辰	1－1／c
14	1	1	1	1	1	0	1	1	1	1	1	1	0	\cdots	\pm
15	1	1	1	1	1	1	1	1	1	1	1	1	1		
－D．PT．	0	1	x	x	x	x	x	x	x	x	x	x	x	\square	－Decimal Point
－Comma	0	0	x	x	x	\times	x	x	x	\times	x	\times	x	\％	9 Comma

TL／F／5847－3
＊Decimal point and comma can be displayed with or without any numeral．

Logic Diagram

TL／F／5847－1

DS8973 9-Digit LED Driver

General Description

The DS8973 is a 9 -digit driver designed to operate from 3 -cell battery supplies. Each driver will sink 100 mA to less than 0.7 V when driven by only 0.1 mA . Each input is blocked by diodes so that the input can be driven below ground with virtually no current drain. This is especially important in calculator systems employing a DC-to-DC converter on the negative side of the battery. If the converter were on the positive side of the battery, the converter would have to handle all of the display current, as well as the MOS calculator chip current. But if it is on the negative side, it only has
to handle the MOS current. The DS8973 is designed for the more efficient operating mode.

Features

- Nine complete digit drivers
- Built-in low battery indicator
- High current outputs- 100 mA
- Straight through pin out for easy board layout

Equivalent Circuit Diagrams

Typical D.P. Out Circuit

Connection Diagram
Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
Lead Temperature (Soldering, 4 seconds)
"Derate molded package $13.39 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$	3.0	5.5	V
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC} 1}\right)$	3.0	9.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage	$V_{C C}=M a x$		3.9			V
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=3.9 \mathrm{~V}$		0.1		0.3	mA
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=M a x$				0.5	V
ILL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$				40	$\mu \mathrm{A}$
V_{BH}	High Battery Threshold	$\begin{aligned} & V_{O T}(\operatorname{Pin} 1)=1 \mathrm{~V}, \mathrm{I}_{\mathrm{OT}} \leq-50 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IH}}(\operatorname{Pin} 2)=3.9 \mathrm{~V} \end{aligned}$	DS8973	3.6			V
$V_{B L}$	Low Battery Threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{OT}}(\operatorname{Pin} 1)=2.1 \mathrm{~V}, \mathrm{I}_{\mathrm{OT}} \leq-6 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IH}}(\operatorname{Pin} 2)=3.9 \mathrm{~V} \end{aligned}$	DS8973			3.2	V
$I_{\text {CEX }}$	Logical "1" Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$				50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IH}}=3.9 \mathrm{~V}$				0.7	V
ICCl	Supply Current	$V_{C C}=\text { Max, One Input "ON" }$				6	mA
I_{B}	Pin 21 (High Battery Supply)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{B}}=$ Max				1.2	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Drivers

INTRODUCTION

Circuitry for driving high voltage cold cathode gas discharge 7 -segment displays, such as Sperry Information Displays* and Burroughs Panaplex II, is greatly simplified by two monolithic integrated circuits from National Semiconductor. They are: DS8880 high voltage cathode decoder/driver and DS8884A high voltage cathode decoder/driver.
In addition to satisfying all the displays' parameter requirements, including high output breakdown voltage, these circuits have capability of programming segment current, and providing constant current sinking for the display segments. This feature alleviates the problem of achieving uniformity of brightness with unregulated display anode voltage. The Na tional cirucits can drive the displays directly.
Sperry Information Display* and Burroughs Panaplex II are used principally in calculators and digital instruments. These 7 -segment, multi-digit displays form characters by passing controlled currents through the appropriate anode/segment combinations. The cathode in any digit will glow when a voltage greater than the ionization voltage is applied between it (the cathode) and the anode for that digit. In the multiplexed mode of operation, a digit position is selected by driving the anode for that digit with a positive voltage pulse. At the same time, the selected cathode segments are driven with a negative current pulse. This causes the potential between the anode and the selected cathodes to exceed the ionization level, causing a visible glow discharge.
Generally, these displays exhibit the following characteristics: low "on" current per segment-from $200 \mu \mathrm{~A}$ (in DC mode) to 1.2 mA (in multiplex mode); high tube anode supply voltage-180V to 200 V ; and moderate ionization volt-age- 170 V . Once the element fires, operating voltage drops to approximately 150 V and light output becomes a direct function of current, which is controlled by current limiting or current regulating cathode circuits. Current regulation therefore is most desirable since brightness will then be constant for large anode voltage changes. Tube anode to cathode "off" voltage is approximately 100 V ; and maximum "off" cathode leakage is $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$.
Correspondingly, specifications for the cathode driver must be complimentary, approximately as follows: A high "off" output breakdown voltage 80 V minimum; typical "on" output voltage of 50 V ; maximum "on" output current of 1.5 mA per segment; and maximum "off" leakage current of $3 \mu A$ to $5 \mu \mathrm{~A}$.
*Now called Beckman Displays

To allow operation without anode voltage regulation, the cathode driver must be able to sink a constant current in each output, with the output "on" voltage ranging from 5 V to 50 V (see Figure 1). The following is a brief description of the circuits now offered by National:
 1.5 mA .

APPLICATION

The circuit has a built-in BCD decoder and can interface directly to Sperry and Panaplex II displays, minimizing exter-
nal components (Figure 2). The inputs can be driven by TTL or MOS outputs directly. It is optimized for use in systems with 5 V supplies.

FIGURE 2. DC Operation From TTL

The DS8880 decoder/driver provides for unconditional as well as leading and trailing zero blanking. It utilizes negative input voltage clamp diodes. Typically, output current varies only 1% for output voltage changes of 3 V to 50 V . Operating power supply voltage is 5 V . The device can be used for multiplexed or DC operation.

Available in 16-pin cavity DIP packages, the DS7880 is guaranteed over the full military operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DS8880 in molded DIP over the industrial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

TL/F/5871-4
FIGURE 3. Interfacing Directly With TTL Output

DS8884A HIGH VOLTAGE CATHODE DECODER/DRIVER

The DS8884A offers 9 -segment outputs with high output breakdown voltage of 80 V minimum; constant current-sink outputs, programmable from 0.2 mA to 1.2 mA . It also offers input negative and positive voltage clamp diodes for DC restoring, and low input load current of -0.25 mA maximum.

APPLICATION

DS8884A decodes four lines of BCD input and drives 7-segment digits of gas-filled displays. There are two separate inputs and two additional outputs for direct control of decimal point and comma cathodes. The inputs can be DC cou-
pled to TTL (Figure 3) or MOS outputs (Figure 4), or AC-coupled to TTL or MOS outputs (Figure 5) using only a capacitor. This means the device is useful in applications where level shifting is required. It can be used in multiplexed operation, and is available in an 18 -pin molded DIP package.
Other advantages of the DS8884A are: typical output current variation of 1% for output voltage changes of 3 V to 50 V ; and operating power supply voltage of 5 V . Inputs have pull-up resistors to increase noise immunity in AC coupled applications.
The DS8884A is guaranteed over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range.

TL/F/5871-5
FIGURE 4. BCD Data Interfacing Directly With MOS Output

TL/F/5871-6
Note: Capacitive coupling between the logic and the segment drivers may be used only when the segment drivers are turned "OFF" during digit-to-digit transistions.

FIGURE 5. Cathode BCD Data AC Coupled From MOS-Output

MM5450/MM5451 LED Display Drivers

General Description

The MM5450 and MM5451 are monolithic MOS integrated circuits utilizing N -channel metal-gate low threshold, enhancement mode, and ion-implanted depletion mode devices. They are available in 40 -pin molded or cavity dual-in-line packages. The MM5450/MM5451 is designed to drive common anode-separate cathode LED displays. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected to V_{DD}.

Applications

- COPSTM or microprocessor displays
- Industrial control indicator
- Relay driver

■ Digital clock, thermometer, counter, voltmeter

- Instrumentation readouts

Block Diagram

FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Pin
Operating Temperature
$V_{S S}-0.3 V$ to $V_{S S}+12 \mathrm{~V}$

$$
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
+150^{\circ} \mathrm{C}
$$

$300^{\circ} \mathrm{C}$
Junction Temperature
Lead Temperature (Soldering, 10 sec .)

Power Dissipation at $+25^{\circ} \mathrm{C}$ Molded DIP Package, Board Mount 2.5W* 2.3W**
*Molded DIP Package board mount, $\theta_{\mathrm{JA}}=49^{\circ} \mathrm{C} / \mathrm{W}$, Derate $20.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
${ }^{* *}$ Molded DIP Package, socket mount, $\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}$, Derate $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics T_{A} within operatingrange, $\mathrm{V}_{D D}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Parameter	Conditions	M1n	Typ	Max	Unlts
Power Supply		4.75		11	V
Power Supply Current	Excluding Output Loads			7	mA
Input Voltages Logical "0" Level (V_{L}) Logical "1" Level (V)	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \mathrm{~V} \leq \mathrm{V}_{D D} \leq 5.25 \mathrm{~V}$ $V_{D O}>5.25 \mathrm{~V}$	$\begin{gathered} -0.3 \\ 2.2 \\ V_{D D}-2 V \end{gathered}$		$\begin{aligned} & 0.8 \\ & V_{D D} \\ & V_{D D} \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Brightness Input (Note 2)		0		0.75	mA
Output Sink Current Segment OFF Segment ON	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$ $V_{\text {OUT }}=1 \mathrm{~V}$ (Note 3) Brightness Input $=0 \mu \mathrm{~A}$ Brightness Input $=100 \mu \mathrm{~A}$ Brightness Input $=750 \mu \mathrm{~A}$	$\begin{gathered} 0 \\ 2.0 \\ 15 \end{gathered}$	2.7	$\begin{aligned} & 10 \\ & \\ & 10 \\ & 4 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
Brightness Input Voltage (Pin 19)	Input Current $750 \mu \mathrm{~A}$	3.0		4.3	\checkmark
Output Matching (Note 1)				± 20	\%
Clock Input Frequency, ic High Time, th Low Time, t_{1}	(Notes 5 and 6)	$\begin{aligned} & 950 \\ & 950 \end{aligned}$		500	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{gathered}$
Data Input Set-Up Time, tos Hold Time, t_{DH}		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Data Enable Input Set-Up Time, tDES		100			ns

Note 1: Output matching is calculated as the percent variation $\left(I_{\text {MAX }}+I_{\text {MIN }}\right) / 2$.
Note 2: With a fixed resistor on the brightness input pin, some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are complied with.
Note 3: See Figures 5, 6, and 7 for Recommended Operating Conditions and limits. Absolute maximum for each output should be limited to 40 mA .
Note 4: The VOUT voltage should be regulated by the user. See Figures 6 and 7 for allowable VOUT vs lout operation.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Connection Diagrams

Order Number MM5450N, MM5451N, MM5450V or MM5451V See NS Package Number N40A or V44A

Plastic Chip Carrler

Plastic Chip Carrier

Functional Description

Both the MM5450 and the MM5451 are specifically designed to operate 4- or 5-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A 0.001 capacitor should be connected to brightness control, pin 19, to prevent possible oscillations.
A block diagram is shown in Figure 1. For the MM5450 a DATA ENABLE is used instead of the 35th output. The DATA ENABLE input is a metal option for the MM5450. The output current is typically 20 times greater than the current into pin 19, which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 4 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configuration. There is no clear for the master portion of the first shift register, thus allowing continuous operation.

There must be a complete set of 36 clocks or the shift registers will not clear.
When the chip first powers ON an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 2 shows the pin-out of the MM5450 and MM5451. Bit 1 is the first bit following the start bit and it will appear on pin 18. A logical " 1 " at the input will turn on the appropriate LED.
Figure 3 shows the timing relationships between data, clock and DATA ENABLE. A max clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than IV VOUT. The following equation can be used for calculations.

$$
T_{j}=\left(V_{\text {OUT }}\right)\left(l_{\text {LED }}\right)(\text { No. of segments })\left(\theta_{J A}\right)+T_{A}
$$

where:
$\mathrm{T}_{\mathrm{j}}=$ junction temperature, $150^{\circ} \mathrm{C}$ max
$V_{\text {OUT }}=$ the voltage at the LED driver outputs
$I_{\text {LED }}=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
θ_{JA} (Socket Mount) $=54^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (Board Mount) $=49^{\circ} \mathrm{C} / \mathrm{W}$
The above equation was used to plot Figure 5, Figure 6 and Figure 7.

FIGURE 3

Functional Description (Continued)

FIGURE 4. Input Data Format

Typical Performance Characteristics

FIGURE 5

FIGURE 6

TL/F/6136-8

Typical Applications

TL/F/6136-9
FIGURE 8. Typical Application of Constant Current Brightness Control

TL/F/6136-10
FIGURE 9. Brightness Control Varying the Duty Cycle

Typical Applications (Continued)

Duplexing 8 Digits with One MM5450

MM5452/MM5453 Liquid Crystal Display Drivers

General Description

The MM5452 is a monolithic integrated circuit utilizing CMOS metal gate, low threshold enhancement mode devices. It is available in a 40-pin molded package. The chip can drive up to 32 segments of LCD and can be paralleled to increase this number. The chip is capable of driving a $41 / 2-$ digit 7 -segment display with minimal interface between the display and the data source.

The MM5452 stores display data in latches after it is clocked in, and holds the data until new display data is received.

Features

- Serial data input
- No load signal required

■ DATA ENABLE (MM5452)

- Wide power supply operation
- TTL compatibility
- 32 or 33 outputs
- Alphanumeric and bar graph capability
- Cascaded operation capability

Applications

- COPSTM or microprocessor displays
- Industrial control indicator

■ Digital clock, thermometer, counter, voltmeter

- Instrumentation readouts
- Remote displays

Block Diagram

FIGURE 1

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Voltage at Any Pin
$\mathrm{V}_{S S}$ to $\mathrm{V}_{S S}+10 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature
Power Dissipation
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
300 mW at $+70^{\circ} \mathrm{C}$
350 mW at $+25^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$300^{\circ} \mathrm{C}$

Electrical Characteristics

T_{A} within operating range, $V_{D D}=3.0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Power Supply		3		10	V
Power Supply Current	$\begin{aligned} & \text { Excluding Outputs } \\ & \text { OSC }=\mathrm{V}_{\text {SS }} \text {, BP IN @ } 32 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \text {, Open Outputs, No Clock } \end{aligned}$			$\begin{aligned} & 40 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Clock Frequency				500	kHz
Input Voltages Logical '0' Level Logical ' 1 ' Level	$\begin{aligned} & V_{D D}<4.75 \\ & V_{D D} \geq 4.75 \\ & V_{D D}>5.25 \\ & V_{D D} \leq 5.25 \\ & \hline \end{aligned}$	$\begin{gathered} -0.3 \\ -0.3 \\ 0.8 \mathrm{~V}_{\mathrm{DD}} \\ 2.0 \\ \hline \end{gathered}$		$\begin{gathered} 0.1 V_{D D} \\ 0.8 \\ V_{D D} \\ V_{D D} \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Output Current Levels Segments Sink Source Backplane Sink Source	$\begin{aligned} & V_{D D}=3 V, V_{O U T}=0.3 V \\ & V_{D D}=3 V, V_{O U T}=V_{D D}-0.3 V \\ & V_{D D}=3 V, V_{O U T}=0.3 V \\ & V_{D D}=3 V, V_{O U T}=V_{D D}-0.3 V \end{aligned}$	20 320		$\begin{aligned} & -20 \\ & -320 \end{aligned}$	$\mu \mathrm{A}$ μA μA $\mu \mathrm{A}$
Output Offset Voltage	Segment Load 250 pF Backplane Load 8750 pF (Note 1)			± 50	mV
Clock Input Frequency, fo	(Notes 2 and 3)			500	kHz
High Time, th		950			ns
Low Time, t_{1}		950			ns
Data Input Set-Up Time, tDS Hold Time, t_{DH}		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Enable Input Set-Up Time, tDES		100			ns

Note 1: This parameter is guaranteed (not 100% production tested) over operating temperature and supply voltage ranges. Not to be used in Q.A. testing.
Note 2: $A C$ input waveform for test purpose: $t_{r} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 3: Clock input rise and fall times must not exceed 300 ns .

Connection Diagrams

Plastic Chip Carrier

Plastic Chip Carrier

> Order Number MM5452N, MM5453N, MM5452V or MM5453V See NS Package Number N40A or V44A

Functional Description

The MM5452 is specifically designed to operate $41 / 2$-digit 7 segment displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Since the MM5452 does not contain a character generator, the formatting of the segment information must be done prior to inputting the data to the MM5452. Using a format of a leading " 1 " followed by the 32 data bits allows data transfer without an additional load signal. The 32 data
bits are latched after the 36th clock is complete, thus providing non-multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time.
A block diagram is shown in Figure 1. For the MM5452 a DATA ENABLE is used instead of the 33rd output. If the DATA ENABLE signal is not required, the 33rd output can be brought out. This is the MM5453 device.

Functional Description (Continued)

Figure 4 shows the input data format. A start bit of logical " 1 " precedes the 32 bits of data. At the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 32 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configuration. There is no clear for the master portion of the first shift register, thus allowing continuous operation.

If the clock is not continuous, there must be a complete set of 36 clocks otherwise the shift registers will not clear.
Figure 2a shows the pin-out of the MM5452. Bit 1 is the first bit following the start bit and it will appear on pin 18.
Figure 3 shows the timing relationships between data, clock and DATA ENABLE.

FIGURE 3

TL/F/6137-5
FIGURE 4. Input Data Format

Functional Description (Continued)
Figure 5 shows a typical application. Note how the input data maps to the output pins and the display. The MM5452 and MM5453 do not have format restrictions, as all outputs
are controllable. This application assumes a specific display pinout. Different display/driver connection patterns will, of course, yield a different input data format.

TL/F/6137-6
Consult LCD manufacturer's data sheet for specific pinouts.
FIGURE 5. Typical 4½-Digit Display Application
*The minimum recommended value for R for the oscillator input is $9 \mathrm{k} \Omega$. An RC time constant of approximately 4.91×10^{-4} should produce a backplane frequency between 30 Hz and 150 Hz .

FIGURE 6. Parallel Backplane Outputs

FIGURE 7. External Backplane Clock

Figure 8 shows a four wire remote display that takes advantage of the device's serial input to move many bits of display information on a few wires.

USING AN EXTERNAL CLOCK

The MM5452/MM5453 LCD Drivers can be used with an externally supplied clock, provided it has a duty cycle of 50%. Deviations from a 50% duty cycle result in an offset voltage on the LCD. In Figure 7, a flip-flop is used to assure a 50% duty cycle. The oscillator input is grounded to prevent oscillation and reduce current consumptions in the chips. The oscillator is not used.
Using an external clock allows synchronizing the display drive with AC power, internal clocks, or DVM integration time to reduce interference from the display.

Figure 9 is a general block diagram that shows how the device's serial input can be used to advantage in an analog display. The analog voltage input is compared with a staircase voltage generated by a counter and a digital-to-analog converter or resistor array. The result of this comparison is clocked into the MM5452, MM5453. The next clock pulse increments the staircase and clocks the new data in.
With a buffer amplifier, the same staircase waveform can be used for many displays. The digital-to-analog converter need not be linear; logarithmic or other non-linear functions can be displayed by using weighted resistors or special DACs. This system can be used for status indicators, spectrum analyzers, audio level and power meters, tuning indicators, and other applications.

Functional Description (Continued)

FIGURE 8. Four Wire Remote Display

TL/F/6137-10
Data is high until staircase > input
FIGURE 9. Analog Display

MM5480 LED Display Driver

General Description

The MM5480 is a monolithic MOS integrated circuit utilizing N -channel metal gate low threshold, enhancement mode and ion-implanted depletion mode devices. It utilizes the MM5451 die packaged in a 28 -pin package making it ideal for a $31 / 2$ digit display. The MM5480 is designed to drive common anode-separate cathode LED displays. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected either to $V_{D D}$ or to a separate supply of 11 V maximum.

Features

- No load signal required

■ Wide power supply operation

- TTL compatibility
- Alphanumeric capability
- $31 / 2$ digit displays

Applications

- COPSTM microcontrollers or microprocessor displays
- Industrial control indicator
- Relay driver
- Digital clock, thermometer, counter, voltmeter
- Instrumentation readouts

Continuous brightness control

- Serial data input

Block Diagram

TL/F/6138-1
FIGURE 1

Connection Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Pin
Storage Temperature

$$
V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{S S}+12 \mathrm{~V}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Power Dissipation at $25^{\circ} \mathrm{C}$

Molded DIP Package, Board Mount	$2.4 \mathrm{~W}^{*}$
Molded DIP Package, Socket Mount	$2.1 \mathrm{~W}^{*}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
"Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=52^{\circ} \mathrm{C} / \mathrm{W}$, Derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $25^{\circ} \mathrm{C}$.	
-"Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=58^{\circ} \mathrm{C} / \mathrm{W}$, Derate $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $25^{\circ} \mathrm{C}$.	

${ }^{*}$ Molded DIP Package, Board Mount, $\theta_{J A}=52^{\circ} \mathrm{C} / \mathrm{W}$, Derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
**Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=58^{\circ} \mathrm{C} / \mathrm{W}$, Derate $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics

$T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$	Power Supply		4.75		11	V
IDD	Power Supply Current	Excluding Output Loads			7	mA
VIL	Input Voltage Logical "0" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias	-0.3		0.8	V
V_{IH}	Input Voltage Logical "1" Level	$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}$	2.2		$V_{D D}$	V
		$\mathrm{V}_{D D}>5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}-2$		$V_{D D}$	V
I_{BR}	Brightness Input Current (Note 2)		0		0.75	mA
${ }^{\mathrm{IOH}}$	Output Sink Current (Note 3) Segment OFF	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$			10.0	$\mu \mathrm{A}$
l_{OL}	Output Sink Current (Note 3) Segment ON	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & \text { Brightness input }=0 \mu \mathrm{~A} \\ & \text { Brightness Input }=100 \mu \mathrm{~A} \\ & \text { Brightness Input }=750 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \\ 2.0 \\ 15.0 \\ \hline \end{gathered}$	2.7	$\begin{gathered} 10.0 \\ 4.0 \\ 25.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ mA mA
$V_{\text {IBR }}$	Brightness Input Voltage (Pin 13)	Input Current $=750 \mu \mathrm{~A}$	3.0		4.3	V
OM	Output Matching (Note 1)				± 20	\%

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Input Frequency	(Notes 5 and 6)	DC		500	kHz
t_{h}	High Time		950			ns
t_{I}	Low Time		950			ns
t_{DS}	Data Input Set-Up Time		300			ns
t_{DH}	Data Input Hold Time		300			ns

Note 1: Output matching is calculated as the percent variation from ($\left.I_{\text {MAX }}+I_{\text {MIN }}\right) / 2$.
Note 2: With a fixed resistor on the brightness input pin some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are complied with.
Note 3: Absolute maximum for each output should be limited to 40 mA .
Note 4: The VOUT voltage should be regulated by the user.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Functional Description

The MM5480 is specifically designed to operate $31 / 2$-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading "1" followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A $0.001 \mu \mathrm{~F}$ ceramic or mica disc capacitor should be connected to brightness control, pin 13, to prevent possible oscillations.
A block diagram is shown in Figure 1. The output current is typically 20 times greater than the current into pin 13, which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 4 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configuration. There is no clear for the master portion of the first shift register, thus allowing continuous operation.

There must be a complete set of 36 clocks or the shift registers will not clear.
When the chip first powers ON an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 5 shows the Output Data Format for the 5480 . Because it uses only 23 of the possible 35 outputs, 12 of the bits are 'Don't Cares'.
Figure 3 shows the timing relationships between data and clock. A maximum clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than IV VOUT. The following equation can be used for calculations.

$$
T_{j}=\left(V_{\text {OUT }}\right)\left(l_{\text {LED }}\right)(\text { No. of segments })\left(\theta_{J A}\right)+T_{A}
$$ where:

$\mathrm{T}_{\mathrm{j}}=$ junction temperature, $150^{\circ} \mathrm{C}$ max.
$V_{\text {OUT }}=$ the voltage at the LED driver outputs
$\mathrm{I}_{\text {LED }}=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$T_{A}=$ ambient temperature
$\theta_{J A}$ (Socket Mount) $=58^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (Board Mount) $=52^{\circ} \mathrm{C} / \mathrm{W}$

TL/F/6138-3
FIGURE 3

FIGURE 4. Input Data Format

FIGURE 5. Output Data Format

Functional Description (Continued)

FIGURE 6. Typical Application of Constant Current Brightness Control ${ }^{\text {TL/F/6138-5 }}$

TL/F/6138-6
FIGURE 7. Brightness Control Varying the Duty Cycle

TL/F/6138-8

MM5481 LED Display Driver

General Description

The 5481 is a monolithic MOS integrated circuit utilizing N channel metal gate low threshold, enhancement mode and ion-implanted depletion mode devices. It utilizes the MM5450 die packaged in a 20 -pin package making it ideal for a 2 digit display. The MM5481 is designed to drive common anode-separate cathode LED displays. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected either to $V_{D D}$ or to a separate supply of 11 V maximum.

- No load signal required
- Data enable

■ Wide power supply operation
■ TTL compatibility

- Alphanumeric capability
- 2 digit LED driver

Applications

- COPS or microprocessor displays
\square Industrial control indicator
- Relay driver
- Instrumentation readouts

Features

- Continuous brightness control
- Serial data input

Block and Connection Diagrams

FIGURE 1

Top View
FIGURE 2
Order Number MM5481N
See NS Package Number N20A

Absolute Maximum Ratings

Voltage at Any Pin
$V_{S S}$ to $V_{S S}+12 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature
Power Dissipation at $25^{\circ} \mathrm{C}$
2W*
Molded DIP Package, Socket Mount
$1.8 \mathrm{~W}^{* *}$

Junction Temperature
$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)
$300^{\circ} \mathrm{C}$
*Molded DIP Package, Board Mount, $\theta_{J A}=61^{\circ} \mathrm{C} / \mathrm{W}$, Derate $16.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
**Molded DIP Package, Socket Mount, $\theta_{J A}=67^{\circ} \mathrm{C} / \mathrm{W}$, Derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics

$T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$	Power Supply		4.75		11	V
IDD	Power Supply Current	Excluding Output Loads			7	mA
V_{IL}	Input Voltages Logical "0" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias	-0.3		0.8	V
$V_{I H}$	Logical "1" Level	$4.75 \leq V_{D D} \leq 5.25$	2.2		$V_{D D}$	V
		$V_{D D}>5.25$	$V_{D D}-2$		$V_{D D}$	V
$I_{B R}$	Brightness Input Current (Note 2)		0		0.75	mA
IOH^{\prime}	Output Sink Current (Note 3) Segment OFF	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$			10.0	$\mu \mathrm{A}$
${ }_{\text {loL }}$	Segment ON	$V_{\text {OUT }}=1 \mathrm{~V}$ (Note 4) Brightness Input $=0 \mu \mathrm{~A}$ Brightness Input $=100 \mu \mathrm{~A}$ Brightness Input $=750 \mu \mathrm{~A}$	$\begin{gathered} 0 \\ 2.0 \\ 15.0 \end{gathered}$	2.7	$\begin{gathered} 10.0 \\ 4.0 \\ 25.0 \end{gathered}$	$\mu \mathrm{A}$ mA mA
$\mathrm{V}_{\text {IBR }}$	Brightness Input Voltage $(\operatorname{Pin} 9)$	Input Current $=750 \mu \mathrm{~A}$	3.0		4.3	V
OM	Output Matching (Note 1)				± 20	\%

AC Electrical Characteristics $T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Input Frequency	(Notes 5 and 6)	DC		500	kHz
t_{h}	High Time		950			ns
t_{l}	Low Time		950			ns
	Data Input					
t_{DS}	Set-Up Time		300		ns	
t_{DH}	Hold Time		300			ns
$\mathrm{t}_{\mathrm{DES}}$	Data Enable Input					ns

Note 1: Output matching is calculated as the percent variation from $I_{\text {MAX }}+I_{\text {MIN }} / 2$.
Note 2: With a fixed resistor on the brightness input pin some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are compiled with.

Note 3: Absolute maximum for each output should be limited to 40 mA .
Note 4: The V VUT voltage should be regulated by the user.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Functional Description

The MM5481 uses the MM5450 die which is packaged to operate 2-digit alphanumeric displays with minimal interference to the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is complete, thus providing nonmultiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A $0.001 \mu \mathrm{~F}$ capacitor should be connected to brightness control, pin 9 , to prevent possible oscillations.
A block diagram is shown in Figure 1. The output current is typically 20 times greater than the current into pin 9 , which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 4 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are a static master-slave configuration. There is no clear for the master portion of the first shift register, thus allowing continous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.

When the chip first powers ON an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 5 shows the Output Data Format for the MM5481. Because it uses only 14 of the possible 34 outputs, 20 of the bits are 'Don't Cares'. Note that only alternate groups of 4 outputs are used.
Figure 3 shows the timing relationships between data, clock, and data enable. A maximum clock frequency of 0.5 MHz is assumed.

For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than IV VOUT. The following equation can be used for calculations.
$T_{j}=\left(V_{\text {OUT }}\right)\left(l_{\text {LED }}\right)\left(\right.$ No. of segments) $\left(\theta_{J A}\right)+T_{A}$
where:
$T_{j}=$ junction temperature, $150^{\circ} \mathrm{C}$ max
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$l_{\text {LED }}=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
$\theta_{J A}$ (Socket Mount) $=67^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}($ Board Mount $)=61^{\circ} \mathrm{C} / \mathrm{W}$

TL/F/6139-3

TL/F/6139-4
FIGURE 4. Input Data Format

START	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
5450																																		
START	X	X	X	X	1	2	3	4	X	X	X	X	5	6	7	8	X	X	X	X	9	10	11	12	X	X	X	X	13	14	X	X	X	X

FIGURE 5. Output Data Format

Functional Description (Continued)

TL/F/6139-5
FIGURE 6. Typical Application of Constant Current Brightness Control

TL/F/6139-6
FIGURE 7. Brightness Control Varying the Duty Cycle

Basic Electronically Tuned Television System

MM5483 Liquid Crystal Display Driver

General Description

The MM5483 is a monolithic integrated circuit utilizing CMOS metal-gate low-threshold enhancement mode devices. It is available in a 40 -pin molded package. The chip can drive up to 31 segments of LCD and can be cascaded to increase this number. This chip is capable of driving a $41 / 2^{-}$ digit 7 -segment display with minimal interface between the display and the data source.
The MM5483 stores the display data in latches after it is latched in, and holds the data until another load pulse is received

Features

- Serial data input
- Serial data output
- Wide power supply operation
- TTL compatibility
- 31 segment outputs
- Alphanumeric and bar graph capability
- Cascade capability

Applications

- COPSTM or microprocessor displays
- Industrial control indicator
- Digital clock, thermometer, counter, voltmeter
- Instrumentation readouts
- Remote displays

Block and Connection Diagrams

FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, Power Dissipation

300 mW at $+85^{\circ} \mathrm{C}$ 350 mW at $+25^{\circ} \mathrm{C}$ please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Pin
$V_{S S}$ to $V_{S S}+10 \mathrm{~V}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature

DC Electrical Characteristics

T_{A} within operating range, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Power Supply		3.0		10	V
Power Supply Current	$R=1 \mathrm{M}, \mathrm{C}=470 \mathrm{pF}$ Outputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{OSC}=0 \mathrm{~V}, \text { Outputs Open, } \\ & \text { BPIN }=32 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 9 \\ 17 \\ 35 \\ \\ 1.5 \end{gathered}$	$\begin{array}{r} 15 \\ 25 \\ 45 \\ \\ 2.5 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Voltage Levels Logic "0" Logic "1" Logic " 0 " Logic "1"	Load, Clock, Data $\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 2.4 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Output Current Levels Segments and Data Out Sink Source	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
BP OUT Sink Source	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V}, V_{O U T}=0.3 V \\ & V_{D D}=3.0 \mathrm{~V}, V_{O U T}=2.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \end{aligned}$			$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

AC Electrical Characteristics $\mathrm{V}_{\mathrm{DD}} \geq 4.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter		Min	Typ	Max	Units
f_{C}	Clock Frequency, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$				500	kHz
t_{CH}	Clock Period High	(Notes 1, 2)	500			ns
t_{CL}	Clock Period Low		500			ns
$t_{\text {DS }}$	Data Set-Up before Clock		300			ns
$t_{\text {DH }}$	Data Hold Time after Clock		100			ns
$\mathrm{t}_{\text {LW }}$	Minimum Load Pulse Width		500			ns
tLTC	Load to Clock		400			ns
tCDO	Clock to Data Valid			400	750	ns

Note 1: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 2: Clock input rise and fall times must not exceed 300 ns .
Note 3: Output offset voltage is $\pm 50 \mathrm{mV}$ with $\mathrm{C}_{\text {SEGMENT }}=250 \mathrm{pF}, \mathrm{C}_{\mathrm{BP}}=8750 \mathrm{pF}$.

Functional Description

A block diagram for the MM5483 is shown in Figure 1 and a package pinout is shown in Figure 2. Figure 3 shows a possible 3-wire connection system with a typical signal format for Figure 3. Shown in Figure 4, the load input is an asynchronous input and lets data through from the shift register to the output buffers any time it is high. The load input can be connected to V_{DD} for 2-wire control as shown in Figure 5. In the 2-wire control mode, 31 bits (or less depending on
the number of segments used) of data are clocked into the MM5483 in a short time frame (with less than 0.1 second there probably will be no noticeable flicker) with no more clocks until new information is to be displayed. If data was slowly clocked in, it can be seen to "walk" across the display in the 2 -wire mode. An AC timing diagram can be seen in Figure 6. It should be noted that data out is not a TTLcompatible output.

Functional Description (Continued)

TL/F/6140-3
FIGURE 3. Three-Wire Control Mode

FIGURE 4. Data Format Diagram

TL/F/6140-5
FIGURE 5. Two-Wire Control Mode

FIGURE 6. Timing Diagram

MM5484 16-Segment LED Display Driver

General Description

The MM5484 is a low threshold N-channel metal gate circuit using low threshold enhancement and ion implanted depletion devices. The MM5484 is available in a 22 -pin molded package and is capable of driving 16 LED segments. The MM5484 is designed to drive common anode separate cathode LED displays.

Features

- Serial data input
- Wide power supply operation
- 16 output, 15 mA sink capability
- MM5484 is cascadeable
- TTL compatibility
- No load signal required
- Non multiplex display
- $21 / 2$ digit capability-MM5484

Applications

- COPSTM or microprocessor displays
- Instrumentation readouts
- Industrial control indicator
- Relay driver

Block and Connection Diagrams

FIGURE 1. MM5484

Dual-In-Line Package

Order Number MM5484N
See NS Package Number N22A

Absolute Maximum Ratings

If Military/Aerospace speclfied devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at LED Outputs
$V_{S S}-0.5 \mathrm{~V}$ to $\mathrm{V}_{S S}+12 \mathrm{~V}$
Voltage at Other Pins
$V_{S S}-0.5 \mathrm{~V}$ to $\mathrm{V}_{S S}+10 \mathrm{~V}$

DC Electrical Characteristics $\mathrm{V}_{D D}=4.5 \mathrm{~V}$ to $9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage		4.5		9	V
Supply Current			5	10	mA
Logic One					
Input High Level V_{IH}		2.4		$V_{\mathrm{DD}}+0.5$	V
Logic Zero					
Input Low Level VIL	0		$\pm .8$	V	
Input Current				7.5	$\mu \mathrm{~A}$
Input Capacitance	High or Low Level			pF	

OUTPUTS

Data Output Voltage High Level V_{OH} Low Level V_{OL} Segment Off (Logic Zero on Input)	$\begin{aligned} & \text { IOUT }=0.1 \mathrm{~mA} \\ & \text { IOUT }=-0.1 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V} \\ & \mathrm{R}_{\text {EXT }}=400 \Omega \\ & \hline \end{aligned}$	$V_{D D}-0.5$		$\begin{gathered} 0.5 \\ 50 \end{gathered}$	$\begin{gathered} V \\ V \\ \mu A \end{gathered}$
Output Current Segment On (Logic One on Input) Output Voltage	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}} \geq 6 \mathrm{~V} \end{aligned}$		0.5	1.0	V

AC Electrical Characteristics

(See Figure 3.) $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Frequency				0.5	MHz
t_{h}	High Time		0.95			$\mu \mathrm{~s}$
t_{1}	Low Time		0.95			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{S} 1}$	Data Setup Time		0.5			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{H} 1}$	Data Hold Time		0.5			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{S} 2}$	Enable Setup Time		0.5			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{H} 2}$	Enable Hold Time		0.5			$\mu \mathrm{~s}$
t_{pd}	Data Out Delay				0.5	$\mu \mathrm{~s}$

Note 1: Under no condition should the power dissipated by the segment driver exceed 50 mW nor the entire chip power dissipation exceed 500 mW .
Note 2: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 3: Clock input rise and fall times must not exceed 500 ns .

Functional Description

The MM5484 is designed to drive LED displays directly. Serial data transfer from the data source to the display driver is accomplished with 3 signals, DATA IN, CLOCK and ENABLE. The signal ENABLE acts as an envelope and only while this signal is at a logic ' 1 ' do the circuits recognize the clock signal.
While ENABLE is high, data on the serial data input is transferred and shifted in the internal shift register on the rising clock edge, i.e. a logic ' 0 ' to logic ' 1 ' transition.

When the ENABLE signal goes to a low (logic zero state), the contents of the shift register is latched and the display will show the new data. While new data is being loaded into the SR the display will continue to show the old data.
For the MM5484, data is output from the serial DATA OUT pin on the falling edge of clock so cascading is made simple with race hazards eliminated.
When the chip first powers on, an internal power on reset signal is generated which resets the SR and latches to zero so that the display will be off.

Timing Diagram

TL/F/6141-5
FIGURE 3

MM5486 LED Display Driver

General Description

The MM5486 is a monolithic MOS integrated circuit utilizing N -channel metal-gate low-threshold, enhancement mode and ion-implanted depletion mode devices. It is available in a 40 -pin molded dual-in-line package. The MM5486 is designed to drive common anode-separate cathode LED displays. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected to $V_{D D}$.

Features

- Continuous brightness control
- Serial data input/outut
- External load input

Cascaded operation capability

Block and Connection Diagrams

FIGURE 1

TL/F/6142-2
Top View
Order Number MM5486N
See NS Package Number N40A
FIGURE 2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Pin
Operating Temperature
$V_{S S}$ to $V_{S S}+12 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation at $25^{\circ} \mathrm{C}$

Molded DIP Package, Board Mount	$2.5 \mathrm{~W} *$
Molded DIP Package, Socket Mount	$2.3 \mathrm{~W}^{*}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead́ Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
"Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=49^{\circ} \mathrm{C} / \mathrm{W}$, Derate $20.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $25^{\circ} \mathrm{C}$.	
-"Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}$, Derate $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $25^{\circ} \mathrm{C}$.	

Electrical Characteristics

T_{A} within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$	Power Supply		4.75		11	V
ID	Power Supply Current	Excluding Output Loads			7	mA
$\begin{aligned} & V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltages Logic "0" Level Logic "1" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25$	$\begin{gathered} -0.3 \\ 2.2 \end{gathered}$		$\begin{gathered} 0.8 \\ V_{D D} \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
		$\mathrm{V}_{\mathrm{DD}}>5.25$	$V_{D D}-2$		$V_{D D}$	V
$I_{\text {BR }}$	Brightness Input (Note 2)		0		0.75	mA
$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$	```Output Sink Current (Note 3) Segment OFF Segment ON```	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$ $V_{\text {OUT }}=1 \mathrm{~V}$ (Note 4) Brightness Input $=0 \mu \mathrm{~A}$ Brightness Input $=100 \mu \mathrm{~A}$ Brightness Input $=750 \mu \mathrm{~A}$	$\begin{gathered} 0 \\ 2.0 \\ 15 \end{gathered}$	2.7	$\begin{gathered} 10 \\ \\ 10 \\ 4 \\ 25 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $m A$ mA
I_{0}	Maximum Segment Current				40	mA
$\mathrm{V}_{\text {IBR }}$	Brightness Input Voltage (Pin 19)	Input Current $=750 \mu \mathrm{~A}$	3.0		4.3	V
OM	Output Matching (Note 1)				± 20	\%
V_{OL} V_{OH}	Data Output Logical "0" Level Logical "1" Level	$\begin{aligned} & \text { lout }=0.5 \mathrm{~mA} \\ & \text { I OUT }=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{S S} \\ & 2.4 \end{aligned}$		$\begin{gathered} 0.4 \\ \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{f}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \mathrm{t}_{\mathrm{l}} \\ & \hline \end{aligned}$	Clock Input Frequency High Time Low Time	(Notes 5 and 6)	$\begin{aligned} & 950 \\ & 950 \end{aligned}$		500	kHz ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \\ & \hline \end{aligned}$	Data Input Set-Up Time Hold Time		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note 1: Output matching is calculated as the percent variation $\left(l_{\text {MAX }}+l_{\text {MIN }}\right) / 2$.
Note 2: With a fixed resistor on the brightness input pin, some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are complied with.
Note 3: Absolute maximum for each output should be limited to 40 mA .
Note 4: The $V_{\text {OUT }}$ voltage should be regulated by the user. See Figures 6 and 7 for allowable $V_{\text {Out }}$ vs lout operation.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Functional Description

The MM5486 is specifically designed to operate four-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 3 signals, serial data, clock, and load. The data bits are latched by a positive-level load signal, thus providing non-multiplexed, direct drive to the display. When load is high, the data in the shift registers is displayed on the output drivers. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A $0.001 \mu \mathrm{~F}$ capacitor should be connected to brightness control, pin 19, to prevent possible oscillations. The output current is typically 20 times greater than the current into pin 19, which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
A block diagram is shown in Figure 1.
Figure 4 shows the input data format. Bit " 1 " is the first bit into the data input pin and it will appear on pin 17. A logical "1" at the input will turn on the appropriate LED. The load signal latches the 33 bits of the shift register into the latches. The data out pin allows for cascading the shift registers for more than 33 output drivers.

When the chip first powers ON, an internal power ON reset signal is generated which resets all registers and latches. The leading clock returns the chip to its normal operation.
Figure 3 shows the timing relationship between data, clock and data enable. A maximum clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than 1V VOUT. The following equation can be used for calculations:

$$
T_{J}=\left(V_{\text {OUT }}\right)\left(I_{\text {LED }}\right)(\text { No. of segments })\left(\theta_{J A}\right)+T_{A}
$$ where:

$\mathrm{T}_{\mathrm{J}}=$ junction temperature, $150^{\circ} \mathrm{C}$ max.
$V_{\text {OUT }}=$ the voltage at the LED driver outputs
lLED $=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
θ_{JA} (Socket Mount) $=54^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (Board Mount) $=49^{\circ} \mathrm{C} / \mathrm{W}$
The above equation was used to plot Figure 6, Figure 7, and Figure 8.

*This leading clock is necessary only after power ON.
FIGURE 4. Input Data Format

TL/F/6142-5
FIGURE 5

Typical Applications

FIGURE 6

FIGURE 7

FIGURE 8

TL/F/6142-9

$$
\mathrm{I}_{19}=\frac{\Delta V}{1 \mathrm{k}}
$$

FIGURE 9. Constant Current Brightness Control

FIGURE 10. Brightness Control Varying the Duty Cycle

Typical Applications (Continued)

Duplexing 8 Diglts with One MM5486

TL/F/6142-12
*This driver has 7 segments only.

MM58201 Multiplexed LCD Driver

General Description

The MM58201 is a monolithic CMOS LCD driver capable of driving up to 8 backplanes and 24 segments. A 192-bit RAM stores the data for the display. Serial input and output pins are provided to interface with a controller. An RC oscillator generates the timing necessary to refresh the display. The magnitude of the driving waveforms can be adjusted with the $V_{T C}$ input to optimize display contrast. Four additional bits of RAM allow the user to program the number of backplanes being driven, and to designate the driver as either a master or slave for cascading purposes. When two or more drivers are cascaded, the master chip drives the backplane lines, and the master and each slave chip drive 24 segment lines. Synchronizing the cascaded drivers is accomplished by tying the RC OSC pins together and the BP1 pins together.

The MM58201 is packaged in a 40-lead dual-in-line package, or 44 lead plastic chip carrier package.

Features

- Drives up to 8 backplanes and 24 segment lines
- Stores data for display
\square Cascadable
- Low power
- Fully static operation

Applications

- Dot matrix LCD driver
- Multiplexed 7-segment LCD driver
- Serial in/Serial out memory

Block Diagram

FIGURE 1

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	Power Dissipation at $25^{\circ} \mathrm{C}$ Molded DIP Package, board mount Molded DIP Package, socket mount	$\begin{array}{r} 2.9 W^{*} \\ 2.6 W^{* *} \end{array}$
Voltage at Any Pin $\quad V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{S S}+18 \mathrm{~V}$	*Molded DIP Package, board mount, derate $23.3 \mathrm{~m} \mathrm{~W} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$	$\theta_{\mathrm{JA}}=43^{\circ} \mathrm{C} / \mathrm{W}$,
Operating Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	**Molded DIP Package, socket mount, derate $21.3 \mathrm{~m} \mathrm{~W} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$	$\theta_{\mathrm{JA}}=47^{\circ} \mathrm{C} / \mathrm{W}$,
	Operating $\mathrm{V}_{\text {DD }}$ Range $\quad \mathrm{V}_{S S}+$	$\mathrm{V}_{S S}+7.0 \mathrm{~V}$ to $\mathrm{V}_{S S}+18.0 \mathrm{~V}$
	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/max limits apply across temperature range unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Quiescent Supply Current				0.3	mA
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		0.45 V DD		$V_{D D}+0.3$	V
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage		$\mathrm{V}_{S S}-0.3$		1.0	V
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" Output Voltage	$\mathrm{I}_{\text {SINK }}=0.6 \mathrm{~mA}$			0.4	V
IOUT(1)	Logical "1" Output Leakage Current	$V_{\text {OUT }}=V_{\text {DD }}$	0		± 10	$\mu \mathrm{A}$
${ }_{1}(1)$	Logical "1" Input Leakage Current	$V_{I N}=V_{D D}$	0		1.0	$\mu \mathrm{A}$
$1 \mathrm{IN}(0)$	Logical "0" Input Leakage Current	$V_{\text {IN }}=V_{S S}$	-1.0		0	$\mu \mathrm{A}$
$V_{T C}$	Input Voltage		4.5		$V_{D D}+0.3$	V
$V_{T C}$	Input Impedance		10		30	k Ω
zout	Output Impedance	Backplane and Segment Outputs			10	k Ω
ZOUT	DC Offset Voltage	Between Any Backplane and Segment Output	0		± 10	mV

AC Electrical Characteristics T_{A} and $V_{D D}$ within operating range unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$f_{\text {OSC }}$	Oscillator Frequency*		128η		400η	Hz
$\mathrm{f}_{\mathrm{CLK} \text { IN }}$	Clock Frequency		DC		100	kHz
t_{ON}	Clock Pulse Width		5.0			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{OFF}}$	Clock OFF Time		5.0			$\mu \mathrm{~s}$
t_{S}	Input Data Set-Up Time		2.0			$\mu \mathrm{~s}$
t_{H}	Input Data Hold Time		1.0			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {ACC }}$	Access Time		5.0		$\mu \mathrm{~s}$	
t_{r}	Rise Time	Backplane, Segment Outputs $C_{L}=2000 \mathrm{pF}$			60	$\mu \mathrm{~s}$
t_{f}	Fall Time	Backplane, Segment Outputs $C_{L}=2000 \mathrm{pF}$			60	$\mu \mathrm{~s}$

- η is the number of backplanes programmed.

Plastic Chip Carrier

Top View
FIGURE 2
Order Number MM58201N or MM58201V
See NS Package Number N40A or V44A

Switching Time Waveforms

TL/F/6146-3

TL/F/6146-5

Functional Description

A functional diagram of the MM58201 LCD driver is shown in Figure 1. Connection diagrams are shown in Figure 2.

SERIAL INPUTS AND OUTPUTS

A negative-going edge on the $\overline{C S}$ input initiates a frame. The $\overline{\mathrm{CS}}$ input must then stay low for at least one rising edge of CLK IN, and may not be pulsed low again for the next 31 clocks. At least one clock must occur while $\overline{\mathrm{CS}}$ is high. If CLK IN is held at a logic " 1 ", $\overline{\mathrm{CS}}$ is disabled. This allows the signal that drives $\overline{C S}$ to be used for other purposes when the MM58201 is not being addressed.
CLK \mathbb{N} latches data from the DATA \mathbb{N} input on its rising edge. Data from the DATA OUT pin changes on the falling edge of CLK IN and is valid before the next rising edge.
The first five bits of data following $\overline{\mathrm{CS}}$ are the address bits (Figure 3). The address selects the column where the operation is to start. Bit 1 is the MSB and bit 5 is the LSB. The sixth bit is the read/write bit. A logic " 1 " specifies a read operation and a logic " 0 " specifies a write operation. The next 24 bits are the data bits. The first data bit corresponds to the BP1 row of the display, the second data bit to the BP2 row, and so on. After the eighth and sixteenth data bits, the column pointer is incremented. When starting address 10110 or 10111 is specified, the column pointer increments from 10111 to 00000.
During a read or write cycle, the LCD segment outputs do not reflect the data in the RAM. To avoid disrupting the pattern viewed on the display, the read or write cycle time should be kept short. Since the LCD turn-on time can be as little as 30 ms , a clock rate of at least 10 kHz would be required in order to address the entire contents of the RAM within that time interval. The formula below can be used to estimate the minimum clock rate:

$$
f_{C L K} I N=\frac{30}{\left(t_{L C D}-7 t_{s}\right)}
$$

where t_{s} is the processor's set-up time between each read or write cycle, and $\mathrm{t}_{\mathrm{LCD}}$ is the minimum turn-on or turn-off time of the LCD as specified by the LCD manufacturer.
The DATA OUT output is an open drain N -channel device to $\mathrm{V}_{\text {SS }}$ (Figure 4). With an external pull-up this configuration allows the controller to operate at a lower supply voltage, and also permits the DATA OUT output to be wired in parallel with the DATA OUT outputs from any other drivers in the system.
To program the number of backplanes being driven and the $\mathrm{M} / \overline{\mathrm{S}}$ bit, load address 11000 , a write bit, three bits for the number of backplanes (Table I), and the M / \bar{S} bit. The remaining 20 data bits will be ignored but it is necessary to provide 21 more clocks before initiating another frame.

TABLE I. Backplane Select

Number of Backplanes	B2	B1	B0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	$\mathbf{1}$	1	1

RC OSC PIn

This oscillator generates the timing required for multiplexing the liquid crystal display. The oscillator operates at a frequency that is 4η times the refresh rate of the display, where η is the number of backplanes programmed. Since the refresh rate should be in the range from 32 Hz to 100 Hz , the oscillator frequency must be:

$$
128 \eta \leq \text { fosc } \leq 400 \eta
$$

The frequency of oscillation is related to the external R and C components in the following way:

$$
\mathrm{fOSC}^{\prime}=\frac{1}{1.25 R C} \pm 30 \%
$$

The value used for the external resistor should be in the range from $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$.
The value used for the external capacitor should be less than $0.005 \mu \mathrm{~F}$.

\mathbf{V}_{TC} Pin

The V_{TC} pin is an analog input that controls the contrast of the segments on the LCD. If eight backplanes are being driven ($\eta=8$), a voltage of typically 8 V is required at $25^{\circ} \mathrm{C}$. The voltage for optimum contrast will vary from display to display. It also has a significant negative temperature coefficient.
The voltage source on the $V_{T C}$ input must be of relatively low impedance since the input impedance of V_{TC} ranges from $10 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$. A suitable circuit is shown in Figure 5.
In a standby mode, the $V_{T C}$ input can be set to $V_{S S}$. This reduces the supply current to less than $300 \mu \mathrm{~A}$ per driver.

BACKPLANE AND SEGMENT OUTPUTS

Connect the backplane and segment outputs directly to the LCD row and column lines. The outputs are designed to drive a display with a total ON capacitance of up to 2000 pF . The output structure consists of transmission gates tapped off of a resistor string driven by $\mathrm{V}_{\text {TC }}$ (Figure 6).
A critical factor in the lifetime of an LCD is the amount of DC offset between a backplane and segment signal. Typically, 50 mV of offset is acceptable. The MM58201 guarantees an offset of less than 10 mV .
The BP1 output is disabled when the M/ $\overline{\mathrm{S}}$ bit is set to zero. This allows the BP1 output from the master chip to be connected directly to it so that synchronizing signals can be generated. Synchronization occurs once each refresh cycle, so the cascaded chips are assured of remaining synchronized.

Functional Description (Continued)

A4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
A3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1
A2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0
A1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
A0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

TL/F/6146-6
Diagram above shows where data will appear on display if starting address 01100 is specified in data format.
FIGURE 3. Data Format

FIGURE 4. DATA OUT Structure

Functional Description (Continued)

FIGURE 5. Typical Application

TL/F/6146-9
FIGURE 6. Structure of LCD Outputs

MM58241 High Voltage Display Driver

General Description

The MM58241 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P - and N -channel devices. It is available both in 40 -pin molded dual-in-line packages or as dice. The MM58241 is particularly suited for driving high voltage (60 V max) vacuum fluorescent (VF) displays (e.g., a 32-digit alphanumeric or dot matrix display).

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
\square Automotive dashboards

Features

- Direct interface to high voltage display

■ Serial data input

- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- Display blanking control input
- Simple to cascade

Block Diagram

TL/F/5600-1
FIGURE 1

Absolute Maximum Ratings	
If Military/Aerospace specified de please contact the National Se Office/Distributors for availability	ed devices are required, al Semiconductor Sales bility and specifications.
Voltage at Any Input Pin $V_{\text {DD }}+$	$V_{D D}+0.3 \mathrm{~V}$ to $\mathrm{V}_{S S}-0.3 \mathrm{~V}$
Voltage at Any Display Pin	$V_{D D}$ to $V_{D D}-62.5 \mathrm{~V}$
$V_{D D}+\left\|V_{\text {DIS }}\right\|$	62.5 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation at $+25^{\circ} \mathrm{C}$	
Molded DIP Package, Board Mount	Mount 2.28W*
Molded DIP Package, Socket Mount	Mount 2.05W**
Junction Temperature	$130^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$

Operating Conditions

erating	Min	Max	Units
Supply Voltage (VDD)			
$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$	4.5	5.5	V
Display Voltage (V) ${ }_{\text {DIS }}$)	-55	-25	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

*Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}$, Derate $21.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$.
**Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=51^{\circ} \mathrm{C} / \mathrm{W}$, Derate $19.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & I_{D D} \\ & I_{\text {DIS }} \end{aligned}$	Power Supply Currents	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$, $V_{\text {DIS }}$ Disconnected $V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{D I S}=-55 \mathrm{~V}$ All Outputs Low			$\begin{gathered} 150 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic ' 0 ' Logic '1'	(Note 1)	2.4	1	0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL} V_{OH} V_{OH}	Data Output Logic Levels Logic '0' Logic '1' Logic '1'	$\begin{aligned} & \text { IOUT }=400 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \\ & \text { IOUT }=-500 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} V_{D D}-0.5 \\ 2.8 \end{gathered}$		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
IN	Input Currents DATA IN, CLOCK ENABLE, BLANK	$\mathrm{V}_{\mathrm{IN}}=O \mathrm{~V}$ or V_{DD}	-10		10	$\mu \mathrm{A}$
C_{IN}	Input Capacitance DATA IN, CLOCK ENABLE, BLANK				15	pF
$\mathrm{R}_{\mathrm{OFF}}$ $\mathrm{RON}_{\mathrm{ON}}$	Display Output Impedances Output Off (Figure 3a) Output On (Figure 3b)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-55 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-40 \mathrm{~V} \\ & \mathrm{~V}_{\text {DIS }}=-55 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \\ & 80 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 550 \\ & 650 \\ & 4.0 \\ & 3.7 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {DOL }}$	Display Output Low Voltage	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \text { IOUT }=\text { Open Circuit, } \\ & -55 \mathrm{~V} \leq \mathrm{V}_{\text {DIS }} \leq-25 \mathrm{~V} \end{aligned}$	$V_{\text {DIS }}$		$V_{\text {DIS }}+4$	V

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V} @$ IOUT $=-400 \mu \mathrm{~A}, T \mathrm{TL} V_{O H}=2.4 \mathrm{~V} @ \mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}$.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & \mathrm{f}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{H}} \\ & \mathrm{t}_{\mathrm{L}} \end{aligned}$	Clock Input Frequency High Time Low Time	(Notes 3 and 4)	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		800	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \end{aligned}$	Data Input Set-Up Time Hold Time		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{ES}} \\ & \mathrm{t}_{\mathrm{EH}} \\ & \hline \end{aligned}$	Enable Input Set-Up Time Hold Time		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {t CDO }}$	Data Output CLOCK Low to Data Out Time	$C_{L}=50 \mathrm{pF}$			500	ns

Note 2: For timing purposes, the signals ENABLE and BLANK can be considered to be totally independent of each other.
Note 3: AC input waveform specification for test purposes: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=800 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 4: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Connection Diagrams

FIGURE 2

Order Number MM58241N or MM58241V See NS Package Number N40A or V44A

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58421 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic ' 1 ' will turn off all sections of the display. A block diagram of the MM58241 is shown in Figure 1.
Figure 2 shows the pinout of the MM58241 device, where output 1 (pin 18) is equivalent to bit 1 , i.e., the first bit of data

Top View
to be loaded into the shift register following ENABLE high. A logic ' 1 ' at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by use of the MM58241, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, Figures 3a and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.

Functional Description (Continued)

Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58241.
When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to normal operation on application of ENABLE, and so all interface signals should be inactive at power on.
In Figure 5, the ENABLE signal acts as an envelope, and only while this signal is at a logic ' 1 ' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., '0'-'1' transition. When the ENABLE signal goes low, the contents of the shift registers are latched, and the display will show
new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58241, being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58241 is used to provide the grid drive for a 32 -digit 5×7 dot matrix vaccum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58248, which does not require an externally generated load signal.

TL/F/5600-3
FIGURE 3a. Output Impedance Off

FIGURE 3b. Output Impedance On
Timing Diagrams

For the purposes of AC measurements, $\mathrm{V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
FIGURE 4. Clock and Data Timings

Timing Diagrams (Continued)

FIGURE 5. MM58241 Timings (Data Format)

Typical Application

FIGURE 6. Microprocessor-Controlled Word Processor

MM58242 High Voltage Display Driver

General Description

The MM58242 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P and N -channel devices. It is available both in 28 -pin molded dual-in-line packages or as dice. The MM58242 is particularly suited for driving high voltage (60 V max) vacuum fluorescent (VF) displays (e.g., a 20 -digit alphanumeric or dot matrix display).

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Block Diagram

TL/F/7924-1
FIGURE 1

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Dlstributors for availability and specifications.
Voltage at Any Input Pin
Voltage at Any Display Pin
VDD }+|\mp@subsup{V}{DIS}{}
Storage Temperature
Power Dissipation at +25 ' C
    Molded DIP Package, Board Mount 2.03W*
    Molded DIP Package, Socket Mount 1.83W**
Junction Temperature 130
Lead Temperature (Soldering, 10 sec.) 260'C
```



```
    Derate 19.2 mW/0}\textrm{C}\mathrm{ above +25}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ .
**Molded DIP Package, Socket Mount, 列 = 58 %
    Derate 17.2 mW/*}\textrm{C}\mathrm{ above +25}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ .
```

DC Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$I_{D D}$ IDIS	Power Supply Currents	$\begin{aligned} & V_{I N}=V_{S S} \text { or } V_{D D}, V_{S S}=0 V, V_{D I S} \text { Disconnected } \\ & V_{D D}=5.5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}, V_{D I S}=55 \mathrm{~V} \\ & \text { All Outputs Low } \end{aligned}$			$\begin{gathered} 150 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ mA
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic ' 0 ' Logic '1'	(Note 1)	2.4		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {OL }}$ VOH VOH	Data Output Logic Levels Logic ' 0 ' Logic '1' Logic ' 1 '	$\begin{aligned} & \text { l OUT }=400 \mu \mathrm{~A} \\ & \text { I OUT }=-10 \mu \mathrm{~A} \\ & \text { I OUT }=-500 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-0.5 \\ 2.8 \end{gathered}$		0.4	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
1 N	Input Currents DATA IN, CLOCK ENABLE, BLANK	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	-10		10	$\mu \mathrm{A}$
C_{IN}	Input Capacitance DATA IN, CLOCK ENABLE, BLANK	.			15	pF
Roff RON	Display Output Impedances Output Off (Figure 3a) Output On (Figure 3b)	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{D I S}=-25 \mathrm{~V} \\ & V_{D I S}=-40 \mathrm{~V} \\ & V_{D I S}=-55 \mathrm{~V} \\ & V_{D I S}=-25 \mathrm{~V} \\ & V_{D I S}=40 \mathrm{~V} \\ & V_{D I S}=-55 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \\ & 80 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 400 \\ & 550 \\ & 650 \\ & 4.0 \\ & 3.7 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {DOL }}$	Display Output Low Voltage	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \text { IOUT }=\text { Open Circuit, } \\ & -55 \mathrm{~V} \leq V_{D I S} \leq-25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {DIS }}$		$\mathrm{V}_{\text {DIS }}+4$	V

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V}$ © lout $=-400 \mu \mathrm{~A}, T \mathrm{TL} V_{O H}=2.4 \mathrm{~V}$ @ l $_{\text {OUT }}=-400 \mu \mathrm{~A}$.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
Clock Input Frequency, fc High Time, t_{H} Low Time, t_{L}	(Notes 3 and 4)	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		800	kHz ns ns
Data Input Set-Up Time, tos Hold Time, t_{DH}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Enable Input Set-Up Time, tes Hold Time, teH	(Note 2)	$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Output CLOCK Low to Data Out Time, tcDO	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			500	ns

Note 2: For timimg purposes, the signals ENABLE and BLANK can be considered to be totally independent of each other.
Note 3: AC input waveform specification for test purposes: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, f=800 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 4: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Connection Diagrams

Plastic Chip Carrier

Top View
Order Number MM58242V See NS Package Number V28A

Order Number MM58242N See NS Package Number N28B

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58242 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic ' 1 ' will turn off all sections of the display. A block diagram of the MM58242 is shown in Figure 1.
Figure 2 shows the pinout of the MM58242 device, where output 1 (pin 12) is equivalent to bit 1 (i.e., the first bit of data to be loaded into the shift register following ENABLE high). A logic ' 1 ' at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by use of the MM58242, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied, However, Figures 3 a and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.
Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58242.

When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to normal operation on application of ENABLE, and so all interface signals should be inactive at power on.
In Figure 5, the ENABLE signal acts as an envelope, and only while this signal is at a logic ' 1 ' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., ' 0 '-'1' transition. When the ENABLE signal goes low, the contents of the shift registers are latched, and the display will show new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58242 being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58242 is used to provide the grid drive for a 40 -digit 2 line 5×7 multiplexed vacuum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58248, which does not require an externally generated load signal.

Timing Diagrams

For the purposes of $A C$ measurement, $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
FIGURE 4. Clock and Data Timings

TL/F/7924-6
FIGURE 5. MM58242 Timings (Data Format)

Typical Application

FIGURE 6. Microprocessor-Controlled Word Processor

MM58248 High Voltage Display Driver

General Description

The MM58248 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P - and N -channel devices. It is available both in 40 -pin molded dual-in-line packages or as dice. The MM58248 is particularly suited for driving high voltage (60 V max) vacuum fluorescent (VF) displays (e.g., a 5×7 dot matrix display).

Applications

- COPSTM or microprocessor-driven display
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Features

- Direct interface to high voltage display
- Serial data input
- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- No load signal required

Block Diagram

TL/F/5599-1
FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablilty and specifications.

Voltage at Any Input Pin
$V_{D D}+0.3 V$ to $V_{S S}-0.3 V$
$V_{D D}$ to $V_{D D}-62.5 \mathrm{~V}$ 62.5 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature
Power Dissipation at $+25^{\circ} \mathrm{C}$ Molded DIP Package, Board Mount Molded DIP Package, Socket Mount

Junction Temperature
Lead Temperature
(Soldering, 10 seconds)

Operating Conditions

	Min	Max	Units
Supply Voltage $V_{D S}=0$	4.5	5.5	V
Display Voltage $\left(\mathrm{V}_{\mathrm{DIS}}\right)$	-55	-25	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

*Molded DIP Package, Board Mount $\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}$, Derate $21.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$.
**Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=51^{\circ} \mathrm{C} / \mathrm{W}$, Derate $19.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {IDD }}$	Power Supply Currents	$\begin{aligned} & V_{I N}=V_{S S} \text { or } V_{D D}, V_{S S}=0 \mathrm{~V}, \\ & V_{\text {DIS }} \text { Disconnected } \end{aligned}$			150	$\mu \mathrm{A}$
IDIS		$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \\ & V_{D I S}=-55 \mathrm{~V}, \text { All Outputs Low } \end{aligned}$			10	mA
V_{IL}	Input Logic Levels DATA IN, CLOCK Logic '0'				0.8	V
V_{IH}	Input Logic Levels DATA IN, CLOCK Logic '1'	(Note 1)	2.4			V
I_{N}	Input Currents, DATA IN, CLOCK	$V_{I N}=O V$ or $V_{D D}$	-10		10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance, DATA IN, CLOCK				15	pF
Roff	Display Output Impedances Output Off (Figure 3a)	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{D I S}=-25 \mathrm{~V} \\ & V_{D I S}=-40 \mathrm{~V} \\ & V_{D I S}=-55 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & 400 \\ & 550 \\ & 650 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
RON	Display Output Impedances Output on (Figure 3b)	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{D I S}=-25 \mathrm{~V} \\ & V_{D I S}=-40 \mathrm{~V} \\ & V_{D I S}=-55 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.6 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.7 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
VDOL	Display Output Low Voltage	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \text { IOUT }=\text { Open Circuit, } \\ & -55 \mathrm{~V} \leq \mathrm{V}_{\text {DIS }} \leq-25 \mathrm{~V} \end{aligned}$	$V_{\text {DIS }}$		$V_{\text {DIS }}+4$	V

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V}$ @ $I_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{TTL} \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ @ $\mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}$.
AC Electrical Characteristics $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Input Frequency	(Notes 2, 3)			1.0	MHz
t_{H}	Clock Input High Time		300			ns
t_{L}	Clock Input Low Time		300			ns
$t_{\text {DS }}$	Data Input Setup Time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	100			ns
$t_{\text {DH }}$	Data Input Hold Time		100			ns

Note 2: AC input waveform specification for test purposes: $t_{r}, t_{f} \leq 20 n s, f=1 \mathrm{MHz}, 50 \% \pm 10 \%$ duty cycle.
Note 3: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Connection Diagrams

Dual-In-Line Package

Plastic Chip Carrier

Top View
Order Number MM58248V
See NS Package Number V44A

FIGURE 2

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58248 uses two signals, DATA IN and CLOCK, with a format of a leading ' 1 ' followed by the 35 data bits, hence allowing data transfer without an additional signal. A block diagram of the MM58248 is shown in Figure 1.
Figure 2 shows the pinout of the MM58248 device, where output 1 (pin 18) is equivalent to bit 1 , i.e., the first bit of data to be loaded into the shift register following the start bit. A logic ' 1 ' at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by the use of the MM58248, because external pull-down resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, Figures $3 a$ and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.
Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58248.
When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to
normal operation on application of the start bit and the first clock pulse, and so all interface signals should be inactive at power on.
In Figure 5, a start bit of logic '1' precedes the 35 bits of data, each bit being accepted on the rising edge of CLOCK, i.e., a '0'-'1' transition. At the 36th clock, a LOAD signal is generated synchronously with the high state of the clock, thus loading the 35 bits of the shift register into the latches. At the low state of the clock, a RESET signal is generated, clearing all bits of the shift register for the next set of data. Hence, a complete set of 36 clock pulses is needed for the MM58248, or the shift register will not clear. If, at any given time, it is required that the display be cleared under microprocessor control, i.e., without power on reset, then the following flushing routine may be used. Clock in 36 'zeroes', followed by a 'one' (start bit), followed by 35 'zeroes'. This procedure will completely blank the display.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58248 is used to provide the anode drive for a 32 -digit 5×7 dot matrix vacuum fluorescent (VF) display. The grid drive in this example is provided by another member of the high voltage display driver family, namely the MM58241, which has the additional features of a BLANKING CONTROL pin, a DATA OUT pin, and an ENABLE (external load signal) pin.

Functional Description (Continued)

TL/F/5599-3
FIGURE 3a. Output Impedance Off

FIGURE 3b. Output Impedance On

Timing Diagrams

TL/F/5599-5
FIGURE 4. Clock and Data Timings

Typical Applications

TL/F/5599-7
FIGURE 6. Microprocessor-Controlled Word Processor

MM58341 High Voltage Display Driver

General Description

The MM58341 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P and N-channel devices. It is available both in 40 -pin molded dual-in-line packages or as dice. The MM58341 is particularly suited for driving high voltage (35 V max) vacuum fluorescent (VF) displays, (e.g., a 32-digit alphanumeric or dot matrix display).

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Features

- Direct interface to high voltage display
- Serial data input
- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- Display blanking control input
- Simple to cascade

Block Diagram

TL/F/5603-1
FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Input Pin
Voltage at Any Display Pin
$V_{D D}+\left|V_{D I S}\right|$
Storage Temperature
Power Dissipation at $25^{\circ} \mathrm{C}$
Molded DIP Package, Board Mount Molded DIP Package, Socket Mount *Molded DIP Package, Board Mount, $\quad \theta_{J A}=46^{\circ} \mathrm{C} / \mathrm{W}$ Derate $21.7 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$
** Molded DIP Package, Socket Mount, $\quad \theta_{\mathrm{JA}}=51^{\circ} \mathrm{C} / \mathrm{W}$ Derate $19.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$
Junction Temperature $\quad 130^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ Min Max $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	4.5	5.5	Units
Display Voltage $\left(\mathrm{V}_{\mathrm{DIS}}\right)$	-30	-10	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {ID }}$	Power Supply Currents	$\begin{aligned} & V_{I N}=V_{S S} \text { or } V_{D D}, V_{S S}=0 V, \\ & V_{D I S} \text { Disconnected } \end{aligned}$			150	$\mu \mathrm{A}$
lols		$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \\ & V_{D I S}=-30 \mathrm{~V}, \text { All Outputs Low } \end{aligned}$			10	mA
$V_{\text {IL }}$	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic '0'				0.8	V
V_{IH}	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic '1'	(Note 1)	2.4			V
V_{OH}	Data Output Logic Levels Logic '0'	IOUT $=400 \mu \mathrm{~A}$			0.4	V
V OH	Data Output Logic Levels Logic '1'	IOUT $=-10 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
V_{OH}	Data Output Logic Levels Logic '1'	IOUT $=-500 \mu \mathrm{~A}$	2.8			V
I_{IN}	Input Currents DATA IN, CLOCK ENABLE, BLANK	$V_{I N}=O V$ or $V_{D D}$	-10		10	$\mu \mathrm{A}$
C_{IN}	Input Capacitance DATA IN, CLOCK ENABLE, BLANK				15	pF
$\mathrm{R}_{\text {OFF }}$	Display Output Impedances Output Off (Figure 3a)	$\begin{aligned} & V_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DIS}}=-30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
RoN	Display Output Impedances Output On (Figure 3b)	$\begin{aligned} & V_{\text {DIS }}=-10 \mathrm{~V} \\ & V_{\text {DIS }}=-20 \mathrm{~V} \\ & V_{\text {DIS }}=-30 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 700 \\ 600 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 800 \\ & 750 \\ & 680 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {DOL }}$	Display Output Low Voltage	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \text { IOUT }=\text { Open Circuit, } \\ & -30 \mathrm{~V} \leq \mathrm{V}_{\text {DIS }} \leq-10 \mathrm{~V} \end{aligned}$	$V_{\text {DIS }}$		$\mathrm{V}_{\text {DIS }}+2$	V

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V}$ @ $\mathrm{l}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}, \mathrm{TTL} \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} @ \mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}$.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {f }}$ c	Clock Input Frequency	(Notes 3, 4)			800	kHz
${ }_{\text {H }}$	Clock Input High Time		300			ns
t_{L}	Clock Input Low Time		300			ns
$t_{\text {D }}$	Data Input Setup Time		100			ns
${ }^{\text {DH }}$	Data Input Hold Time		100			ns
$\mathrm{t}_{\text {ES }}$	Enable Input Setup Time		100			ns
$\mathrm{t}_{\text {EH }}$	Enable Input Hold Time		100			ns
$\mathrm{t}_{\text {CDO }}$	Data Output Clock Low to Data Out Time	$C_{L}=50 \mathrm{pF}$			500	ns

Note 2: Note that, for timing purposes, the signals ENABLE and BLANK can be considered to be totally independent of each other.
Note 3: AC input wavetorm specification for test purpose: $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=800 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 4: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Connection Diagrams

Dual-In-LIne Package

TL/F/5603-2

Top View
Order Number MM58341N See NS Package Number N40A

Plastic Chip Carrier

Top View
Order Number MM58341V See NS Package Number V44A

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum flucrescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58341 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic ' 1 ' will turn off all sections of the display. A block diagram of the MM58341 is shown in Figure 1.
Figure 2 shows the pinout of the MM58341 device, where output 1 (pin 18) is equivalent to bit 1 (i.e., the first bit of data to be loaded into the shift register following ENABLE high). A logic ' 1 ' at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by use of the MM58341, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, Figures 3a and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.
Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58341.
When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to normal operation on application of ENABLE, and so all interface signals should be inactive at power on.
In Figure 5, the ENABLE signal acts as an envelope, and only while this signal is at a logic ' 1 ' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., '0'-'1' transition. When the ENABLE signal goes low, the contents of the shift registers are latched, and the display will show new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58341, being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58341 is used to provide the grid drive for a 32 -digit 5×7 dot matrix vacuum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58348, which does not require an externally generated load signal.

Functional Decription (Continued)

TL/F/5603-3
FIGURE 3a. Output Impedance Off

Timing Diagrams

TL/F/5603-5
For the purposes of $A C$ measurements, $\mathrm{V}_{1 H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
FIGURE 4. Clock and Data Timings

FIGURE 5. MM58341 Timings (Data Format)

Typical Application

FIGURE 6. Microprocessor-Controlled Word Processor

General Description

The MM58342 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P - and N -channel devices. It is available both in 28 -pin molded dual-in-line packages or as dice. The MM58342 is particularly suited for driving high voltage (35 V max) vacuum fluorescent (VF) displays (e.g., a 20 -digit alphanumeric or dot matrix display).

Applications

■ COPSTM or microprocessor-driven displays

- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Features

- Direct interface to high voltage display

■ Serial data input

- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- Display blanking control input
- Simple to cascade

Block Diagram

FIGURE 1
TL/F/7925-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Voltage at Any Input Pin
Voltage at Any Display Pin
$V_{D D}+\left|V_{D I S}\right|$
Storage Temperature
Power Dissipation at $25^{\circ} \mathrm{C}$
Molded DIP Package, Board Mount 2.03W*
Molded DIP Package, Socket Mount 1.83W**
Junction Temperature $130^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
*Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=52^{\circ} \mathrm{C} / \mathrm{W}$, derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
**Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=58^{\circ} \mathrm{C} / \mathrm{W}$, derate $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	Min	Max	Units
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	4.5	5.5	V
Display Voltage $\left(\mathrm{V}_{\mathrm{DIS}}\right)$	-30	-10	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & I_{D D} \\ & I_{D I S} \end{aligned}$	Power Supply Currents	$V_{I N}=V_{S S} \text { or } V_{D D}, V_{S S}=0 V$ $V_{\text {DIS }}$ Disconnected $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DIS}}=-30 \mathrm{~V}$ All Outputs Low			$\begin{aligned} & 150 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ mA
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic ' 0 ' Logic ' 1 '	(Note 1)	2.4		0.8	$\begin{aligned} & V \\ & v \end{aligned}$
V_{OL} V_{OH} V_{OH}	Data Output Logic Levels Logic '0' Logic '1' Logic '1'	$\begin{aligned} & \text { IOUT }=400 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \\ & \text { IOUT }=-500 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} V_{D D}-0.5 \\ 2.8 \end{gathered}$		0.4	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
IN	Input Currents DATA IN, CLOCK ENABLE, BLANK	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	-10		10	$\mu \mathrm{A}$
C_{IN}	Input Capacitance DATA IN, CLOCK ENABLE, BLANK				15	pF
RofF R_{ON}	Display Output Impedances Output Off (Figure 3a) Output On (Figure 3b)	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & V_{D I S}=-10 \mathrm{~V} \\ & V_{D I S}=-20 \mathrm{~V} \\ & V_{D I S}=-30 \mathrm{~V} \\ & V_{D I S}=-10 \mathrm{~V} \\ & V_{D I S}=-20 \mathrm{~V} \\ & V_{D I S}=-30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 700 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 400 \\ & 800 \\ & 750 \\ & 680 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \Omega \\ \Omega \\ \Omega \end{gathered}$
$\mathrm{V}_{\text {DOL }}$	Display Output Low Voltage	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \text { I IOUT }=\text { Open Circuit, } \\ & -30 \mathrm{~V} \leq V_{\text {DIS }} \leq-10 \mathrm{~V} \end{aligned}$	$V_{\text {DIS }}$		$V_{\text {DIS }}+2$	V

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V}$ @ $\mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}, \mathrm{TTL} \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ @ $\mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}$.

AC Electrical Characteristics $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C} t_{H} t_{L}	Clock Input Frequency High Time Low Time	(Notes 3 and 4)	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		800	kHz ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \\ & \hline \end{aligned}$	Data Input Set-Up Time Hold Time		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		'	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{ES}} \\ & \mathrm{t}_{\mathrm{EH}} \\ & \hline \end{aligned}$	Enable Input Set-Up Time Hold Time	(Note 2)	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$.	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\mathrm{t}_{\mathrm{CDO}}$	Data Output CLOCK Low to Data Out Time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			500	ns

Note 2: For timing pupposes, the signals ENABLE and BLANK can be considered to be totally independent of each other.
Note 3: AC input waveform specification for test purposes: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=800 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 4: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Connection Diagrams

Order Number MM58342N
See NS Package Number N28B

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58342 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic ' 1 ' will turn off all sections of the display. A block diagram of the MM58342 is shown in Figure 1.

Figure 2 shows the pinout of the MM58342 device, where output 1 (pin 12) is equivalent to bit 1 (i.e., the first bit of data to be loaded into the shift register following ENABLE high). A logic ' 1 ' at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by use of the MM58342, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, Figures 3a

Functional Description (Continued)

and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.
Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58342.
When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to normal operation on application of ENABLE, and so all interface signals should be inactive at power on.
In Figure 5, the ENABLE signal acts as an envelope, and only while this signal is at a logic ' 1 ' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., '0'-'1' transition. When the ENABLE signal goes low, the contents
of the shift registers are latched, and the display will show new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58342 being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58342 is used to provide the grid drive for a 40 -digit 2 line 5×7 multiplexed vacuum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58348, which does not require an externally generated load signal.

Timing Diagrams

For the purposes of $A C$ measurement, $\mathrm{V}_{\mid \mathrm{H}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
FIGURE 4. Clock and Data Timings

Timing Diagrams (Continued)

TL/F/7925-6
FIGURE 5. Timings (Data Format)
Typical Application

TL/F/7925-7
FIGURE 6. Microprocessor-Controlled Word Processor

MM58348 High Voltage Display Driver

General Description

The MM58348 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P and N -channel devices. It is available both in 40 -pin molded dual-in-line packages or as dice. The MM58348 is particularly suited for driving high voltage (35 V max) vacuum fluorescent (VF) displays (e.g., a 5×7 dot matrix display).

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter

■ Word processor text displays

- Automotive dashboards

Features

- Direct interface to high voltage display
- Serial data input

■ No external resistors required

- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- No load signal required

Block Diagram

TL/F/5601-1
FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage at Any Input Pin
$V_{D D}+0.3 V$ to $V_{S S}-0.3 V$
Voltage at Any Display Pin
$V_{D D}$ to $V_{D D}-36.5 \mathrm{~V}$
$V_{D D}+\left|V_{D I S}\right|$
36.5 V

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$

Molded DIP Package, Board Mount	2.28W*
Molded DIP Package, Socket Mount	2.05W**
*Molded DIP Package, Board Mount, Derate $21.7 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$	$\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}$
**Molded DIP Package, Socket Mount, Derate $19.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$	$\theta_{\mathrm{JA}}=51^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	$130^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	Min	Max	Units
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	4.5	5.5	V
Display Voltage $\left(\mathrm{V}_{\mathrm{DIS}}\right)$	-30	-10	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol \& Parameter \& Conditions \& Min \& Typ \& Max \& Units \\
\hline IDD \& Power Supply Currents \& \[
\begin{aligned}
\& V_{I N}=V_{S S} \text { or } V_{D D}, V_{D D}=5.5 \mathrm{~V}, \\
\& V_{S S}=0 \mathrm{~V}, V_{D I S} \text { Disconnected } \\
\& V_{D D}=5.5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}, \\
\& V_{D I S}=-30 \mathrm{~V}, \text { All Outputs Low }
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 150 \\
\& 10
\end{aligned}
\] \& \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline VIL

$V_{\text {IH }}$ \& | Input Logic Levels DATA IN, CLOCK |
| :--- |
| Logic ' 0 ' |
| Logic '1' | \& \& 2.4 \& \& 0.8 \& | V |
| :--- |
| V |

\hline I_{N} \& Input Currents DATA IN, CLOCK \& $V_{I N}=O V$ or $V_{D D}$ \& -10 \& \& 10 \& $\mu \mathrm{A}$

\hline $\mathrm{C}_{\text {IN }}$ \& Input Capacitance DATA IN, CLOCK \& \& \& \& 15 \& pF

\hline | ROFF |
| :---: |
| |
| RON | \& | Display Output Impedances Output Off (Figure 3a) |
| :--- |
| Output On (Figure 3b) | \& \[

$$
\begin{aligned}
& V_{D D}=5.5 \mathrm{~V}, V_{S S}=0 \mathrm{~V} \\
& V_{D I S}=-10 \mathrm{~V} \\
& V_{D I S}=-20 \mathrm{~V} \\
& V_{D I S}=-30 \mathrm{~V} \\
& V_{D I S}=-10 \mathrm{~V} \\
& V_{\text {DIS }}=-20 \mathrm{~V} \\
& V_{\text {DIS }}=-30 \mathrm{~V} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 55 \\
& 60 \\
& 65
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 700 \\
& 600 \\
& 500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 250 \\
& 300 \\
& 400 \\
& 800 \\
& 750 \\
& 680
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{k} \Omega \\
\mathrm{k} \Omega \\
\mathrm{k} \Omega \\
\Omega \\
\Omega \\
\Omega
\end{gathered}
$$
\]

\hline $\mathrm{V}_{\text {DOL }}$ \& Display Output Low Voltage \& $$
\begin{aligned}
& V_{D D}=5.5 \mathrm{~V}, \text { IOUT }=\text { Open Circuit, } \\
& -30 \mathrm{~V} \leq V_{\text {DIS }} \leq-10 \mathrm{~V}
\end{aligned}
$$ \& $V_{\text {DIS }}$ \& \& $\mathrm{V}_{\text {DIS }}+2$ \& V

\hline
\end{tabular}

Note 1: 74LSTTL $V_{O H}=2.7 \mathrm{~V}$ @ IOUT $=-400 \mu \mathrm{~A}, \mathrm{TTL} V_{\mathrm{OH}}=2.4 \mathrm{~V}$ @ $\mathrm{l}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}$.

AC Electrical Characteristic $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Input Frequency	(Notes 2 and 3)			1.0	MHz
t_{H}	Clock Input High Time		300			ns
t_{L}	Clock Input Low Time		300			ns
t_{DS}	Data Input Set-Up Time		100			ns
t_{DH}	Data Input Hold Time		100			ns

Note 2: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=1 \mathrm{MHz}, 50 \% \pm 10 \%$ duty cycle.
Note 3: Clock input rise and fall times must not exceed $5 \mu \mathrm{~s}$.

Order Number MM58348N See NS Package Number N40A

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58348 uses two signals, DATA IN and CLOCK, with a format of a leading " 1 ". followed by the 35 data bits, hence allowing data transfer without an additional signal. A block diagram of the MM58348 is shown in Figure 1.
Figure 2 shows the pinout of the MM58348 device, where output 1 (pin 18) is equivalent to bit 1, (i.e., the first bit of

data to be loaded into the shift register following the start bit). A logic " 1 " at the input will turn on the corresponding display digit/segment/dot output.
A significant reduction in discrete board components can be achieved by use of the MM58348, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, Figure 3a and $3 b$ show that this output impedance will remain constant for a fixed value of display voltage.

TL/F/5601-4
FIGURE 3b. Output Impedance On

Functional Description (Continued)

Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58348.
When the chip first powers on, an internal reset is generated, resetting all registers and latches. The chip returns to normal operation on application of the start bit and the first clock pulse, and so all interface signals should be inactive at power on.
In Figure 5, a start bit of logic "1" precedes the 35 bits of data, each bit being accepted on the rising edge of CLOCK, i.e., a " 0 "-"1" transition. At the 36th clock, a LOAD signal is generated synchronously with the high state of the clock, thus loading the 35 bits of the shift register into the latches. At the low state of the clock, a RESET signal is generated, clearing all bits of the shift register for the next set of data. Hence, a complete set of 36 clock pulses is needed
for the MM58348, or the shift register will not clear. If, at any given time, it is required that the display be cleared under microprocessor control, i.e., without power on reset, then the following flushing routine may be used. Clock in 36 "zeroes", followed by a "one" (start bit), followed by 35 "zeroes". This procedure will completely blank the display.
Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58348 is used to provide the anode drive for a 32 -digit 5×7 dot matrix vacuum fluorescent (VF) display. The grid drive in this example is provided by another member of the high voltage display driver family, namely the MM58341, which has the additional features of a BLANKING CONTROL pin, a DATA OUT pin, and an ENABLE (external load signal) pin.

Timing Diagrams

TL/F/5601-5
For the purpose of $A C$ measurement, $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
FIGURE 4. Clock and Data TImings

TL/F/5601-6
FIGURE 5. MM58348 TImings (Data Format)

Typical Application

FIGURE 6. Microprocessor-Controlled Word Processor
frequency of the driving signals to the LCD. The MM58201 can also be programmed to accept the oscillator output and backplane signals of another MM58201 for cascading purposes. The displayed data may also be read serially from the on-chip RAM. A simplified functional block diagram of the MM58201 is shown in Figure 1.

The MM58201 is a CMOS LCD driver capable of driving a multiplexed display of up to 192 segments (24 segment columns by 8 backplanes). The number of backplanes being driven is programmable from one to eight. Data to be displayed is sent to the chip serially and stored in an internal RAM. An external resistor and capacitor control the

FIGURE 1. MM58201 Functional Diagram

BACKGROUND

LCD displays have become very popular because of their ultra-low power consumption and high contrast ratio under high ambient light levels. Typically an LCD has a backplane that overlaps the entire display area and multiple segment lines that each overlap just one segment or descriptor. This means that a separate external connection is needed for every segment or descriptor as shown in Figure 2. For a display with many segments such as a dot matrix display, the number of external connections could easily grow to be very large.
Unlike other display technologies that respond to peak or average voltage and current, LCDs are sensitive to the rms voltage between the backplane and given segment location. Also, any DC bias across this junction would cause an irreversible electrochemical action that would shorten the life of the display. A typical LCD driving signal is shown in Figure 3. The backplane signal is simply a symmetrical square wave. The individual segment outputs are also square waves, either in phase with the backplane for an "off" segment or out of phase for an "on" segment. This causes a Vrms of zero for an "off" segment and a Vrms of $+V$ for an "on" segment.

One way to reduce the number of external connections is to multiplex the display. An example of this could be an LCD with its segments arranged as intersections of an X-Y grid. A driver to control a matrix like this would be fairly straightforward for an LED display. However, it is more complex for an LCD because of the DC bias restriction.
A multiplexed LCD driver must generate a complex set of output signals to insure that an "on" segment sees an rms voltage greater than the display's turn-on voltage and that an "off" segment sees an rms voltage less than the display's turn-off voltage. The driver must also insure that there is no DC bias.
One pattern that can accomplish this is shown as an example in Figure 4. This is the pattern that the MM58201 uses. The actual Vrms of an "on" segment and an "off" segment is shown in Figure 5. If there are eight backplanes, the Vrms $(\mathrm{ON})=0.2935 \times \mathrm{V}_{\mathrm{TC}}$ and the Vrms (OFF) $=0.2029 \times$ V_{TC}. It can be seen in Figure 6 that as the number of backplanes increases, the difference between Vrms (ON) and Vrms (OFF) becomes less. Refer to the specifications of the LCD to determine exactly what Vrms is required.

FIGURE 3. Drive Signals from a Direct Connect LCD Driver

FIGURE 2. Typical LCD Pin Connections

TL/B/5606-5

$$
\begin{aligned}
\operatorname{Vrms}(O N) & =\left(\frac{1}{T} \int_{t 0}^{t 0+T} V^{2}(t) d t\right)^{1 / 2} \\
& =\left(\frac{1}{N}\left[\int_{0}^{1}\left(0.68 V_{T C}\right)^{2} d t+\int_{1}^{N}\left(-0.18 V_{T C}\right)^{2 d t}\right]\right)^{1 / 2} \\
& =\left(\frac{1}{N} V_{T C^{2}}[0.4624+0.0324(N-1)]\right)^{1 / 2} \\
& =V_{T C}\left[\frac{0.4624+0.0324(N-1)}{N}\right]_{1 / 2}
\end{aligned}
$$

$N=$ number of backplanes
a. Analysis of Vrms (ON)

$N=$ number of backplanes
b. Analysis of Vrms (OFF)

TL/B/5606-7
Example: If $\mathrm{N}=8$
and $\mathrm{Vrms}(\mathrm{OFF})=1.8 \mathrm{~V}$
and $V \mathrm{Vms}(\mathrm{ON})=2.2 \mathrm{~V}$
then $V_{T C}=7.5 \mathrm{~V}$
FIGURE 5

FUNCTIONAL DESCRIPTION

Connecting an MM58201 to an LCD

The backplane and segment outputs of the MM58201 connect directly to the backplane and segment lines of the LCD. These outputs are designed to drive a display with a total "on" capacitance of up to 2000 pF . This is especially important for the backplane outputs, as it is usually the backplanes that have the most capacitance. As the capacitance of the output lines increases, the DC offset between a backplane and segment signal may increase. Most LCD displays specify that a maximum offset of 50 mV is acceptable. For backplane capacitance under 2000 pF the MM58201 guarantees an offset of less than 10 mV .
If the LCD display to be used has 24 segments per backplane or less, then each MM58201 should be configured as a "master" so that each one will generate its own set of backplane signals. However, if the LCD display has more than 24 segments per backplane, more than one MM58201 will be needed for each backplane. To synchronize the driving signals there must be one "master" chip and then an additional "slave" chip for every 24 segments after the first 24. When a chip is configured as a "slave" it does not generate its own backplane signals. It simply synchonizes itself to the backplane signals generated by a "master" chip by sensing the BP1 signal. An example of both an all "master" configuration and a "master-slave" configuration will be shown later.

Voltage Control Pin and Circuitry

The voltage presented at the V_{TC} pin determines the actual voltage that is output on the backplane and segment lines. These voltages are shown in Figure 7. V_{TC} should be set with respect to Vrms (ON) and Vrms (OFF) and can be calculated as shown in Figure 5.

TL/B/5606-8
FIGURE 6. Δ Vrms $/ V_{T C}$

a. Backplane Output

TL/B/5606-10

Since the input impedance of $V_{\text {TC }}$ may vary between $10 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$, the output impedance of the voltage reference at $\mathrm{V}_{\text {TC }}$ should be relatively low. One example of a $\mathrm{V}_{\text {TC }}$ driver is shown in Figure 8. To put the MM58201 in a standby mode, bring $V_{T C}$ to $V_{S S}$ (ground). This will blank out the display and reduce the supply current to less than $300 \mu \mathrm{~A}$.

TL/B/5606-11

FIGURE 8. Example of $V_{T C}$ Driver

RC Oscillator

This oscillator works with an external resistor tied to $V_{D D}$ and an external capacitor tied to V_{SS}. The frequency of oscillation is related to the external R and C by:

$$
f_{O S C}=1 / 1.25 R C \pm 30 \%
$$

The value of the external resistor should be in the range from $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. The value of the external capacitor should be less than 0.005 uF .
The oscillator generates the timing required for multiplexing the LCD. The frequency of the oscillator is 4 N times the refresh rate of the display, where N is the number of backplanes programmed. Since the refresh rate should be in the range from 32 Hz to 100 Hz , the oscillator frequency should be:

$$
128 \mathrm{~N}<\mathrm{fosc}<400 \mathrm{~N}
$$

If the frequency is too slow, there will be a noticeable flicker in the display. If the frequency is too fast, there will be a loss of contrast between segments and an increase in power consumption.

Serial Input and Output

Data is sent to the MM58201 serially through the DATA IN pin. Each transmission must consist of 30 bits of information, as shown in Figure 9. The first five bits are the address, MSB first, of the first column of LCD segments that are to be changed. The next bit is a read or write flag. The following 24 bits are the actual data to be displayed.
The address specifies the first LCD column that is going to be affected. The columns are numbered as shown in Figure 10. Data is always written in three column chunks. Twentyfour bits of data must always be sent, even if some of the backplanes are not in use. The starting column can be any number between one (00000) and twenty-four (10111). If column 23 or 24 is specified the displayed data will wrap around to column 1.
If the R / \bar{W} bit is a " 0 " then the specified columns of the LCD will be overwritten with the new data. If the bit is a " 1 " then the data displayed in the specified columns will be available serially at the DATA OUT pin and the display will not be changed.

TL/B/5606-12
FIGURE 9. Transmission of Data

TL/B/5606-13
Diagram above shows where data will appear on display if starting address 01100 is specified in data format.
FIGURE 10. Address of Particular Segment Columns

The data is formatted as shown in Figure 10. The first bit in the data stream corresponds to backplane 1 in the first specified column. The second bit corresponds to backplane 2 in the first specified column and so on.
During initialization each MM58201 must be programmed to select how many backplanes are to be used, and whether the chip is to be a "master" or a "slave". The format of this transmission is just like a regular data transmission except for the following: the address must be 11000; the R/W must be a write (0); the first three data bits must be selected from the list in Table I. The next bit should be a " 1 " for the chip to be a master or a " 0 " for the chip to be a slave. The following 20 bits are necessary to complete the transmission but they will be ignored. The mode cannot be read back from the chip.

TABLE I. Backplane Select

Number of Backplanes	B2	B1	B0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

The timing of the CLK, $\overline{C S}$, DATA IN, and DATA OUT are illustrated in Figure 11. The frequency of the clock can be between DC and 100 kHz with the shortest half-period being
$5.0 \mu \mathrm{~s}$. A transmission is initiated by $\overline{\mathrm{CS}}$ going low. $\overline{\mathrm{CS}}$ can then be raised anytime after the rising edge of the first clock pulse and before the rising edge of the last clock pulse (the clock edge that reads in D24). 30 bits of information must always be sent.
The data at DATA IN is latched on each rising edge of the clock pulse. The data at DATA OUT is valid after each falling edge of the last 24 clock pulses.
It is important to note that during a read or write transmission the LCD will display random bits. Thus the transmissions should be kept as short as possible to avoid disrupting the pattern viewed on the display. A recommended frequency is:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{OSC}} & =30 /\left(\mathrm{t}_{\mathrm{LCD}}-7 \mathrm{t}_{\mathrm{S}}\right) \\
\mathrm{t}_{\mathrm{LCD}} & =\text { turn on/off time of LCD } \\
\mathrm{t}_{\mathrm{S}} & =\text { time between each successive transmission. }
\end{aligned}
$$

This should produce a flicker-free display.
The DATA OUT pin is an open drain N -channel device to $V_{S S}$. This output must be tied to $V_{D D}$ through a resistor if it is to be used. It could also be tied to a lower voltage if this output is to be interfaced to logic running at a lower voltage. The value of the resistor is calculated by:
$R \quad=(+V-0.4) / 0.0006$
$+\mathrm{V}=$ voltage of lower voltage logic

Power Supply

V_{DD} can range between 7 V and 18 V . A voltage should be used that is greater than or equal to the voltage that you calculate for $V_{T C}$ as shown in Figure 5.

TYPICAL APPLICATIONS

One application of the MM58201 is a general purpose display to show graphic symbols and text. This type of display could be used in an electronic toy or a small portable computer or calculator. One such display is shown in Figure 12. This display consists of four separate LCD displays that are built into one housing. Each separate LCD display has 8 backplanes and 24 segment lines. The entire display will require four MM58201s to control it.
The circuit diagram of this application is shown in Figure 14. Each separate LCD display is driven by one MM58201. The backplanes are driven by the separate MM58201s and are not paralleled together. There are three common lines: CLK, DATA IN, and DATA OUT. The CLK and DATA IN are generated from an output port such as an INS8255. Four other bits of the output port generate a linear select with a different bit going to each MM58201 chip select as shown in Figure 13. DATA OUT is sent to one bit of an input port.

The V_{TC} driver is as described beforehand. The MM74C906 is an open drain CMOS buffer that has near regular TTL compatible inputs. This is to provide level translation from the 5 V supply of the computer system to the 12 V supply of the MM58201.
If I/O ports are not available, the circuit in Figure 15 could be used as an interface between the MM58201s and a microprocessor bus.
To reduce the number of connections between the circuit and the LCD, all of the backplanes could have been driven by one MM58201 as shown in Figure 16. The other MM58201s would be configured as "slaves" synchronized to the one "master" MM58201. This would save 24 connections to the LCD but would increase the capacitance of the backplanes. In this application the capacitance is not a problem with either setup.

FIGURE 11. Timing of One Transmission

FIGURE 12. Four Separate LCD Displays Positioned to Look Like One Display

FIGURE 13. Chip Select Scheme

TL/B/5606-16
FIGURE 14. Diagram of Application

TL/B/5606-18
b. Input Port
a. Output Port

FIGURE 15. Input and Output Ports for Interface

TL/B/5606-19
FIGURE 16. Dlagram of a Master-Slave Set-Up Not Used for This Application

SOFTWARE

The real heart of this system is the software which consists of four parts. Part one is the initialization portion. This sets up the MM58201s as "masters" and programs them for 8 backplanes. It then sets up the needed pointers for the other subroutines which consist of:

1) GRAPH: displays pattern on LCD.
2) TEXT: prints ASCII characters on display.
3) SCROLL: scrolls whatever pattern is displayed to the right until LCD is cleared.
This application used an NSC800 ${ }^{\text {TM }}$ with 8080 mnemonics. it could easily be adapted for other microprocessors.

MAIN
This program initializes the MM58201s. It controls the sequence of display output by calling other programs.
It first sends out a "dummy" transmission to make sure that the chips are ready to respond to a valid transmission. It then programs the chips to be "masters" and to use eight backplanes.
After initialization, this program sets up the correct pointers to display a graphic symbol. First it displays the upper eight bits of it, then it displays the lower eight bits.

The words "TESTING MM58201" are then displayed. A call to scroll then causes this to scroll to the right until the screen is blank. Finally the words "END OF TEST" appear and the program ends.
The method to create a custom graphic symbol will be demonstrated in the next section.

```
N8080
EXTRN GRAPH,WRITE,MODE,TEXT,CURSOR,SCROLI
;INITIALIZE THE STACK POINTER
    LXI SP,1FFFH
INITIALIZE THE }81
;SET MODE O FOR PORT A
-INIT: MVI A,OOH
    OUT 27H
;SET PORT A AS OUTPUT AND PORT C AS INPUT
    MVI A,OFFH
    OUT 24H
    MVI A,00H
    OUT 26H
;INITIALIZE THE FOUR 58201'S
    MVI A,O
    STA MODE
    MVI E,11000B - ANY OLD CHIP SEIECT
    MVI D,00001110B
    CALL WRITE
    LXI H,MASTER ;CONFIGURE CHIPS 0, 1, 2, AND 3 AS MASTERS
    MVI D,00001110B
    CALL WRITE
    LXI H,MASTER
    MVI D,00001101B
    CALL WRITE
    LXI H,MASTER
    MVI D,00001011B
    CALL WRITE
    LXI H,MASTER
    MVI D,00000111B
    CALI WRITE
;SET UP POINTER AND COUNTERS TO DISPLAY NATIONAL SEMI SYMBOL
    MVI B,21 ;B HOLDS # OF COLUMNS TO CHANGE
RESTRT: MVI D,O ;D HOLDS THE STARTING COLUMN NUMBER FOR UPPER HALF
    MVI E,48 ;E HOLDS STARTING COLUMN NUMBER FOR LOWER HALF
DSLOOP: MOV C,D
    LXI H,NATSM1 ;DISPLAY UPPER HALF OF GRAPHIC
    CALL GRAPH
    LXI H,NATSM2
    MOV C,E
    CALI GRAPH
    LXI H,OFFFFH ;PAUSE
PAUSE: DCX H
    MOV A,H
    ORA L
    JNZ PAUSE
    INR D ;INCREMENT STARTING COLUMN NUMBERS
    INR D
    INR D
    INR E
    INR E
    INR E 3O FDISPLAY IT UNTIL COLUNN COUNT IS 30
    MVI A,30
    ;DISPLAY IT UNTIL COLUMN COUNT IS 30
    CMP D
    JNZ DSLOOP
    LXI H,TEXTI ;PRINT FIRST TEXT
    MVI A,O ;ZERO THE CURSOR
    STA CURSOR
    CALL TEXT
    CALL SCROLL ;SCROLL THE TEXT
    LXI H,TEXTR ;PRINT SECOND TEXT
    MVI A,O ;ZERO THE CURSOR
    STA CURSOR
    CALL TEXT
    IXI H,OFFFFH ;PAUSE
PAUSEI: DCX H
    MVI A,2
PAUSE2: DCR A
    JNZ PAUSE2
    MOV A,H
    ORA L
    JNZ PAUSE1
```


N8080
PUBLIC GRAPH, READ, WRITE, MODE
;GRAPHIC DISPLAY DRIVER

```
INPUT: HL - POINTS TO START OF DATA
        B- # OF 8 BIT COLUMNS TO CHANGE (MUST BE MULT. OF 3)
```

 C- COLUMN \# TO START WITH (MUST BE MULT. OF 3)
 OUTPUT: NO REGISTERS DISTURBED
 DATA POINTED TO IS DISPLAYED ON LCD DISPLAY.
 COLUMNS NOT SPECIFIED ARE NOT AFFECTED.
 READ:
;SAVE ALI STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;FLAG FOR A READ OPERATION
MVI A,10000000B
STA MODE
JMP GRAPHI
GRAPH:
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;FLAG FOR A WRITE OPERATION
MVI $A, 0$
STA MODE
;CALCULATE WHICH 58201 TO ACCESS
GRAPHL: MVI D,OEEH ;START WITH CSI
ACC: MOV A,C
SUI 24 ;SUBTRACT 24 FROM COLUMN COUNT
JC GO ;IF CARRY IS SET THE CORRECT CHIP IS SELEECTED
MOV C,A ;REG C GETS NEW COLUMN NUMBER
MLV A,D ;INCREMENT THE CS TO NEXT CHIP
MOV D,A
JMP ACC
;MAIN LOOP
GO: MOV E, C
;GET COLUMN NUMBER
M.LOOP: CALL WRITE
;SUBTRACT 3 FROM COLUMN COUNT
DCR B
DCR B
DCR B
JZ END.G ;IF DONE, JUMP.
MOV A,E ;ADD 3 TO ADDRESS
ADI 3
CPI 11000B ;IF ADDRESS NOT MAX THEN SKIP THIS
JNZ SKIPI
MOV A,D
RLC
;SELECT NEXT 58201 CS
MOV D,A
MVI $A, 0$
SKIP1: MOV E,A ;SAVE NEXT ADDRESS
JMP M.LOOP ;LOOP UNTIL DONE
END.G: POP H ;RESTORE ALL STATES
POP D
POP B
POP PSW
RET
WRITE:
; DISPLAY 3 COLUMNS OF DATA
; INPUT: HL- POINTS TO START OF DATA
E - ADDRESS
D - OUTPUT CS
OUTPUT: HL <- HL +3
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
START: MVI A,00001111B ;ISOLATE CS IN REG D
ANA D
MOV D,A
MOV A,E ;GET ADDRESS BITS AT HIGH END OF BYTE
RLC
RLC
MOV E,A
;OUTPUT FIVE ADDRESS BITS WITH CHIP SELECT
MVI $C, 5$
W.LOOP: MOV A,E

RLC
MVI A, 10000000 B
ANA E ;GET MSB
ORA D
CALL DISPLY
DCR C
;MERGE WITH CHIP SELECT

JNZ W.LOOP
;DEC ADDRESS BIT COUNTER
;LOOP UNIIL ADDRESS IS OUT
;SIGNAL FOR A READ OR WRITE
LDA MODE
ORI 00001111B
CALL DISPLY
JP DISO
; JUMP IF THIS IS A WRITE
;READ THE DATA
MVI B, 3
;3 BYTES OF DATA
READI: MVI C,B
; 8 BITS PER BYTE
MVI D,O ;CLEAR DATA BYTE
READ2: IN $22 H$
;GET A BIT OF DATA
ANI 00000001B ;MASK OFF UNWANTED BITS
ORA D
;MERGE WITH DATA BYTE
RRC
;ROTATE DATA
MOV D,A
MVI A,00001111B ;SET UP 58201 TO READ NEXT BIT
CALL DISPLY
DCR C
JNZ READ2
MOV M,D
INX H
DCR B
JNZ READI
;RESTORE STATES
;DISPLAY THE DATA
DISO: MVI B, 3
DIS1: MVI C,8
MOV D, M
DIS2: $\operatorname{MOV}_{\operatorname{RRC}}^{\operatorname{MO}, D}$
RRC
MOV D, A
ANI 10000000B ;GET NEXT BIT
ORI 00001111B ;SET CS
CALL DISPLY
;OUTPUT A BIT OF DATA
DRC C
JNZ DIS2
INX H
DCR B
JNZ DISI
;3 BYTES OF DATA
;INCREMENT BYTE POINTER
;LOOP UNTIL DONE WITH ALL BYTES

```
POP D
POP B
POP PSW
RET
POP D
    POP PSW
```


RE STATES
POP D
POP B
POP PSW
RET
DISPLY:
;DISPLAY ROUTINE
; INPUT: A - DATA AND CHIP SELECT
BIT 7 - DATA
BITS 0-3 - CHIP SELECT
OUTPUT: NO REGISTERS DISTURBED
OUTPUT ONE BIT TO 58201
PUSH PSW
ANI 10001111B ;MASK OFF UNWANTED BITS
;SAVE STATES
OUT 20 H
;SET UP DATA AND CHIP SELECT
ORI O1000000B ;CLOCK HIGH
OUT 20 H
ANI LO111111B ;CLOCK LOW
POP PSW ;RESTORE STATES
RET
MODE: DS 1

TEXT
This subroutine will take the ASCII text pointed to by HL and display it on the LCD starting at the column pointed to by the memory location CURSOR. The data should end with a zero. CURSOR should be in the range of $0-15$ as this is the extent of this LCD display. The first operation is the calculation of the offset into the ASCII table of the first character. Thirty-two is subtracted from the ASCII number because

N8080

EXTRN GRAPH
PUBLIC TEXT, LET TR, CURSOR

TEXT:

;DISPlay a character string on lcd display
; INPUT: HL-POINTS TO BEGINNING OF STRING
; CURSOR-CURRENT CURSOR POSITION
; OUTPUT: CURSOR <= CURSOR + LENGTH OF STRING
; NO REGISTERS DISTURBED
PUSH PSW ;SAVE STATES
PUSH H
;CHECK FOR END OF STRING
T.LOOP: MOV A, M

CPI 0
JZ T.FIN
CALL LETTR ;PRINT LETTER
INX H
JMP T.LOOP ;LOOP UNTIL DONE
T.FIN: POP H

POP PSW
RET

LETTR:

;DISPLAY AN ASCII CHARACTER ON LCD DISPLAY
; INPUT: A-CHARACTER TO DISPLAY CURSOR-CURRENT CURSOR LOCATION (0-95)
OUTPUT: CURSOR <= CURSOR + 1 NO REGISTERS DISTURBED
;SAVE STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;SET UP HL TO POINT TO CORRECT DATA
LXI H,ASCII ;HL POINTS TO BASE ADDRESS
MVI B,O ;BC GETS ASCII OFFSET MINUS A CONSTANT
SUI 20 H
MOV C, A
CALI MULT
DAD B
IDA CURSOR
MOV B, A
ADD B
ADD B
ADD B
ADD B
ADD B
MOV C, A
MVI B, 6 ;EACH CHARACTER IS SIX COLUMNS WIDE
CALL GRAPH
LDA CURSOR
INR A
CPI 16
JNZ T.END
MVI $A, 0$
T.END: STA CURSOR
;RESTORE States
POP H
POP D
POP B
POP PSW
RET
the table starts with a space character. This result is then multiplied by six because the data to be displayed is six bytes long. We now have the offset into the table. The character is displayed on the LCD. This operation is repeated until all the characters have been displayed.
A custom font can be generated using the same technique as that used to create a custom graphic symbol.

MULT:

;MULTIPLY BC REG BY SIX

;	INPUT:
;	BC - MULTIPLICAND
;	
	NO REGISTERS DISTURBED

PUSH PSW
PUSH H
MOV H, B
MOV L,C
DAD B
DAD B
DAD
B
DAD B
DAD B
MOV B, H
MOV C,L
POP H
POP PSW
RET
CURSOR: DS 1
ASCII: DB $0,0,0,0,0,0 \quad$;SPACE
DB $0,95,95,0,0,0$
DB $0,7,0,7,0,0$
DB 20,127,20,127,20,0
DB 36,42,127,42,18,0
DB 35,19,8,100,98,0
DB $54,73,102,32,80,0$
DB $0,0,7,0,0,0$
DB $0,28,34,65,0,0$
DB $0,65,34,28,0,0$
DB $34,20,127,20,34,0$
DB 8,8,62,8,8,0
DB $0,64,48,0,0,0$
DB $8,8,8,8,8,0$
DB $0,96,98,0,0,0$
;!
;"
;
;
;

DB 62,81,73,69,62,0
DB $0,66,127,64,0,0$
DB 122,73,73,73,70,0
DB 34,65,73,73,54,0
DB $15,8,8,126,8,0$
DB 39,69,69,69,57,0
DB 62,73,73,73,49,0 ; 6
DB $1,97,17,9,7,0$
DB 54,73,73,73,54,0 ; ;
DB 6,9,9,9,126,0
DB 0,54,54,0,0,0
DB $96,54,54,0,0,0$
DB 8,20,34,65,0,0
DB $20,20,20,20,20,0$
DB $0,65,34,20,8,0$
DB 2,1,88,5,2,0
DB $62,65,93,89,78,0$
DB 124,18,17,18,124,0
DB 127,73,73,73,54,0
DB 62,65,65,65,34,0
DB $127,65,65,65,62,0$
DB 127,73,73,65,65,0
DB $127,9,9,1,1,0$
DB $62,65,65,81,114,0$
DB $127,8,8,8,127,0$
DB $0,65,127,65,0,0$
DB 32,64,64,64,63,0
DB 127,8,20,34,65,0
DB $127,64,64,64,64,0$
DB 127,2,12,2,127,0
DB 127,4,8,16,127,0
DB 62,65,65,65,62,0 ; ;
DB $127,9,9,9,6,0$
DB 62,65,81,33,94,0
DB 127,9,25,41,70,0
DB 34,69,73,81,34,0
DB 1,1,127,1,1,0
DB 63,64,64,64,63,0
DB 31,32,64,32,31,0
DB $127,32,24,32,127,0$; W
DB 99,20,8,20,99,0 ;X
DB 3, $4,120,4,0$
DB $97,81,73,69,67,0$

SCROLL
This subroutine will scroll whatever is displayed on the LCD to the right until the screen is clear. It first reads in three columns of data. It then writes three columns of data with the HL pointer shifted by one byte. This will shift the displayed data by one column. This is repeated until the
entire LCD has been shifted by one column. Then the entire operation is repeated until all the displayed data is shifted off the screen.
This subroutine could easily be adapted to scroll the display to the left if desired.

```
    N8080
    PUBLIC SCROLL
    EXTRN READ,GRAPH
SCROLI:
;SCROLLS DISPLAY TO THE RIGHT UNTIL CLEAR
; INPUT: NONE
; OUTPUT: NO REGISTERS ARE CHANGED
                SCREEN IS SCROLLED UNTIL CLEAR
;SAVE ALL STATES
    PUSH PSW
    PUSH B
    PUSH D
    PUSH H
;SET UP ALL THE POINTERS
    MVI D,96 ;LOOP UNTIL SCREEN IS CLEAR (96 CYCLES)
REPEAT: MVI A,O ;CLEAR FIRST BYTE IN BUFFER
    STA BUFFER
    MVI B,3 ;READ 3 COLUMNS ALWAYS
    MVI C,O ;START WITH COLUMN ZERO
;READ THE DATA
L.READ: LXI H,BUFFER+1 ;SET HL TO POINT TO BUFFER+1
    CALL READ
    LXI H,BUFFER ;SET HL TO SHIFT THE DATA
    CALI GRAPH ;REDRAW THE SHIFTED DATA
;MOVE LAST COLUMN OF LAST READ INTO FIRST COLUMN OF NEXT WRITE
    IDA BUFFER+3
    STA BUFFER
;UPDATE COUNTERS
    MOV A,C ;INCREMENT COLUMN NUMBER
    ADI 3
    MOV C,A
    CPI 96 ;CHECK IF DONE WITH ONE CYCLE
    JNZ L.READ
    DCR D
    JNZ REPEAT ;LOOP UNTIL DONE WITH ALL CYCLES
;RESTORE STATES
    POP H
    POP D
    POP B
    POP PSW
    RET
BUFFER: DS 4
END
```


OTHER APPLICATIONS

There are many different types of LCDs that can be controlled by the MM58201. Some of these are shown in Figure 18.

Up to 24 seven-segment digits can be controlled by one MM58201. The software to control a multiplexed seven-segment display is not too much different from that of the previous application. The software is simpler because only one MM58201 is needed instead of four. A logic diagram for a six-digit multiplexed seven-segment LCD display is shown in Figure 19 and the software to control it is in Listing 5.

Given a string of numbers to display, this subroutine simply looks up the data it needs from a look-up table and stores this data in a buffer. After every three digits, the subroutine sends this data to the MM58201 to be displayed. The digit backplanes are wired backward in groups of three to simplify the software. The subroutines that this subroutine uses are very similar to the equivalent subroutines in the LCD dot matrix application. Since there is only one MM58201, the software is simpler. There is no need to calculate which MM58201 chip select to enable.

N8080
;INITIALIZE THE 810
MV A, 0
OUT 27H
MVI A,OFFH
OUT 24H
LXI BC,TEST
MVI E, 6
CALL NUMBER
RST 6
TEST: \quad DB $1,2,3,4,5,6$
;SUBROUTINE TO DISPLAY NUMERALS ON LCD DISPLAY
INPUT BC-POINTS TO BCD DATA STRING
E -LENGTH OF DATA STRING (MULTIPLE OF 3)
OUTPUT -NO REGISTERS DISTURBED -DATA STRING IS DISPLAYED
;
NUMBER: PUSH PSW ;SAVE STATES
PUSH B
PUSH D
PUSH H
DIG3: MVI D,3 ;LOOP FOR 3 DIGITS
LOOP: LDAX B
LXI H,TABLE ;CALCULATE ADDRESS INTO TABLE
ADD L
MOV L, A
MVI A, OOH
ADC H
MOV H,A
MOV A,M ;GET OUTPUT DATA FROM TABLE
PUSH PSW
LXI H,DATA ;STORE INTO DATA BUFFER
MOV A,L
ADD D
MOV L, A
DCR L
POP PSW
MOV M,A
INX B ;INCREMENT POINTER TO DATA STRING
DCR E ;DECREMENT \# OF DIGITS
DCR D ;DECREMENT 3 DIGIT COUNT
JNZ LOOP ;IF NOT THIRD DIGIT THEN LOOP BACK
LXI H,DATA
CALL WRITE ;DISPLAY THESE THREE DIGITS
MOV A,E ;CHECK FOR LAST DIGIT OF DATA STRING
ANA A
JNZ DIG3
POP H ;RESTORE STATES
POP D
POP B
POP PSW
RET

WRITE:

; DISPLAY 3 DIGITS
; INPUT HL-POINTS TO START OF DATA
; E - COLUMN ADDRESS
OUTPUT -NO REGISTERS DISTURBED
PUSH PSW ;SAVE STATES

PUSH B
PUSH D
PUSH H
MOV A,E
;GET ADDRESS BITS AT HIGH END OF BYTE
RLC
RLC
MOV E,A

```
;OUTPUT FIVE ADDRESS BITS
        MVI C,5
W.LOOP: MOV A,E
    RLC
    MOV E,A
    MVI A,10000000B ;GET MSB & ENABLE CHIP SELECT BIT
    ANA E
    CALL OUT
    DCR C
    JNZ W.LOOP
;SIGNAL FOR A WRITE
    MVI A,OOH
    CALL OUT ;OUTPUT A ZERO BIT
;OUTPUT THE DATA
MVI B,3
;3 BYTES OF DATA
DISI: MVI C,B ;8 BITS PER BYTE
MOV D,M
    MOV A,D
    RRC
    MOV D,A
    ANI 10000000B ;GET NEXT BIT
    ORI 00000001B ;DISABLE CHIP SELECT
    CALL OUT
    DCR C
    JNZ DIS2 ;LOOP UNTIL DONE WITH BYTE
    INX H
    DCR B
    JNZ DISI ;LOOP UNTIL DONE WITH 3 BYTES
    POP H ;RESTORE STATES
    POP D
    POP B
    POP PSW
    RET
OUT:
;SUBROUTINE TO OUTPUT ONE BIT TO THE MM58201
; INPUT A -DATA BIT IN MSB POSITION
; OUTPUT -NO REGISTERS DISTURBED
    OUTPUT -NO REGISTERS DISTURBED
    PUSH PSW
    OUT 20H
    ORI OlO00000B ;CLOCK HIGH
    OUT 20H
    ANI 10111111B ;CLOCK LOW
    OUT 20H
    POP PSW
    RET
DATA: DS 3
TABLE: DB 00111111B, 00000110B, 01011011B, 01001111B
    DB 01100110B, 01101101B, 01111101B, 00000111B
    DB 01111111B, 01101111B
    END
```


SUMMARY

The MM58201 makes it easy to interface a multiplexed LCD display to a microprocessor. It is simply a matter of connecting the display and the microprocessor to the chip, choosing a value for V_{CT}, then interfacing your program to use the
subroutines listed here or similar ones. Multiplexed LCDs are the perfect way to cut down on display interconnections while still taking advantage of the LCD's low power consumption and high contrast ratio-and the MM58201 makes them easy to use.

The MM58348/342/341/ 248/242/241 Directly Drive Vacuum Fluorescent (VF) Displays

1.0 INTRODUCTION

National has produced a family of high voltage display drivers which is specially designed for use with vacuum fluorescent (VF) displays. These circuits are fabricated using a standard metal gate CMOS process which has been extended to allow a maximum operating voltage of 60 V , thus enabling the design of bright multiplexed displays. In this way, the advantages of CMOS are retained (low power), while the range of applications for this technology is increased. Many of today's high voltage MOS display drivers require the use of one external resistor per display output, and this leads to a considerable increase in component count and board area. National's display drivers, however, incorporate an on-board pull-down resistor structure which removes these disadvantages.
This application note is intended to demonstrate several ways in which these display drivers can be configured to drive and control a wide range of VF displays. Although particular attention will be given to one specific display, a $32-$ character alphanumeric display, the design is presented in such a way as to enable easy extrapolation to the system designer's specific applications.

2.0 FUNCTIONAL DESCRIPTION

There are six circuits in this new family of high voltage VF drivers and they can be sub-divided according to maximum operating voltage, number of display outputs, data interfacing requirements and ability to be cascaded. Each of the three circuit configurations is available with maximum operating voltages of 35 V (MM583XX) or 60V (MM582XX). Due to the nature of the output stage required to attain high voltage operation of CMOS devices, the drive capabilities of the display output decrease as maximum operating voltage increases. Therefore, to maintain the option of trading off display voltage against drive current, each circuit has a high voltage (reduced drive) version and a low voltage (high drive) version. The three circuit configurations can be identified by the number of display outputs they contain (e.g., 20 , 32 or 35 outputs). In all cases, data is entered serially into a 5 V internal CMOS shift register. This data is latched to the output either by an external enable control signal (MM58241/341/242/342) or automatically by a leading start bit in the data stream (MM58248/348). Figure 1 shows how the 6 device numbers correspond to the different circuit configurations and operating voltages.

National Semiconductor Application Note 371
David Stewart

The MM58348/248 devices use a two control line data input format (data in and clock) which enables the 40-pin part to have 35 display outputs. To load data into the controller, a start bit precedes the 35 data bits. The start bit is a logical " 1 " clocked into the IC by the first clock pulse. Next, 35 data bits are clocked into these parts. The start and data bits are shifted in on the rising edge of the clock. As the data is clocked into the IC, the start bit is shifted down the 35 -bit register. On the rising edge of the 36th clock pulse, data is transferred to the display register and the start bit is shifted into the control latch. On the negative edge of the clock, the shift register is cleared. The display register feeds the level shifters that translate 5 V CMOS levels to the 35 V 60 V required by the display. The MM58348/248 devices are not cascadable. Typically, these devices would perform the segment refresh drive in a multiplexed multi-digit system. A functional block diagram is shown in Figure 2.
The MM58341/241/342/242 devices use a three control line data input format (data in, clock and enable) and have either 32 or 20 display outputs, as given by Figure 1. This configuration sacrifices some outputs to enable cascading, enhance control signal flexibility, and provide brightness control. Here again, data is shifted into the shift register on the rising edge of clock, but no start bit is needed. Instead, the enable signal is taken high to input data to the chip. When the enable is taken low, the contents of the shift register are loaded into the display register. Again, the display register feeds the level translator and display driver outputs. Each of the MM58241/341 and MM58242/342 devices has a serial data output pin which is connected directly to the last stage's output of the shift register. By connecting data out from one device to the data in pin of another device, and by holding each circuit's enable constantly high, the display drivers can be cascaded. The result is a shift register with a variable number of bits, depending on the mix of circuits used.
The MM58341/241/342/242 devices also have a blanking control input. A logic high on this pin turns all outputs off, while still retaining the display data. If a logic " 0 " is then applied, the display data will return unchanged. Consequently, the brightness of the display is proportional to the duty cycle of this blank signal. A functional block diagram of these devices is shown in Figure 3.

		Operating Voltage	
		$\mathbf{3 5 V}$	$\mathbf{6 0 V}$
Number of Outputs	20	MM58342	MM58242
	32	MM58341	MM58241
	35	MM58348	MM58248

20 and 32 output drivers use envelope enable data format and may be cascaded.
35 output (5×7 dot matrix) drivers use start bit data format.

FIGURE 1. The Complete VF Display Driver Family

2.0 FUNCTIONAL DESCRIPTION (Continued)

Referring to the functional block diagrams shown in Figures 2 and 3, it is clear that all the internal logic is implemented in standard 5V CMOS. Such signals do not possess sufficient drive for the high voltage output stage, so the data passes through a bank of 15 V level shifters to the output section. A schematic of the output stage is shown in Figure 4. It can be seen that all these display drivers use a two-stage high voltage structure with active pull-up transistors and passive pulldown resistors to the display voltage. Because resistor pulldowns are used, it is the output switching "off" time which is critical for the system design, and this is typically $20 \mu \mathrm{~s}$ for a rail-to-rail voltage swing.

FIGURE 4. High Voltage Output Structure

3.0 DESIGN CONSIDERATIONS

3.1 The VF Display Configuration

The operation of a VF display is merely an extension of the valve principle, i.e., it is a voltage controlled device. An AC waveform is applied across the filament of the display, and this excitation causes electrons to be emitted. If both the grid and the anode are at a high positive voltage with respect to the cathode, the electrons reach the anode area, which is coated with a fluorescent material. When bombarded by electrons, this material emits light, hence one segment of the display is turned on.
This particular family of display drivers can drive a wide range of VF displays. The simplest case is where each display segment can be directly driven by wiring each output to the display anode. This normally occurs on displays with a small number of digits and segments (e.g., 4 characters of 7 segments) and this can be driven by cascading the drivers until sufficient data bits are available. This display configuration has the advantage of not requiring any refresh (which would be required if a multiplexed configuration were used) but has the disadvantage of needing one wire per segment. As the size of the display increases, the number of available segments also rises, thus a multiplexing scheme which will reduce the number of display connections is desirable. This is normally achieved by hard wiring all the segments (anodes) of each digit together, then using the grids to select each digit in turn. The correct segment data can then be
displayed. Using these techniques necessitates that the display be continually refreshed with each digit of data, even when that data has not changed.
To see the advantage of multiplexing, if a 32 character 5×7 dot matrix display is used, a total of 1120 segments is available. For this reason, the display is multiplexed and has 32 grid inputs and 35 segment inputs. The required refreshing task must be accomplished without the detection of flickering by the human eye, i.e., at a rate greater than 50 Hz . (Refresh timing is discussed later.)
Given the aforementioned display pinout and control logic, it is desirable in multiplexed displays to use the MM58341 to control the display grids (digits) and one MM58348 to control the display anodes (segments).

3.2 The Display-Driver Interface

When using the MM58XXX series, no buffering is required between the driver output pins and the VF display. It is necessary only that the driver charge and discharge the display in such a time that the refresh rate outlined in the previous section can be achieved. All the CF drivers have LSTTL compatible inputs, and, as the data source is generally a microprocessor, no special interface requirements exist.

3.3 The Microprocessor-Driver Interface

Typically, the system utilizing these display drivers will have some sort of microprocessor or single chip computer controlling the display. Thus, this processor will control one or more of the display drivers. The drivers have relatively little intelligence, therefore the host processor will be in charge of updating the display drivers and generating refresh timing if needed. The advantage of having minimal intelligence on the drivers themselves is flexibility. Virtually any display size or type can be used with equal ease, from small 7 -segment, to British flag types, to larger $5 \times 7,7 \times 9$ or 5×12 displays. The drivers can be directly interfaced to the microcontroller, COPSTM4XX, or 80C48/9. This would normally be accomplished by connecting the driver's data and clock lines to control ports on the microprocessor. The MM58248/348 series is capable of accepting clock rates up to 1 MHz , and the MM58241/341 800 kHz . This is far faster than the control port bit manipulation rates for these controllers and will ensure compatibility with most low end microprocessors. 1 MHz input clock rates will also ensure that the desired display refreshing rate is attained.
In higher end systems using NSC800TM or 68008 -bit microprocessors, the 1 MHz clock rate, coupled with a 300 ns minimum pulse width, simplified direct interfacing of these drivers to a $\mu \mathrm{P}$ bus. In the simple case, some logic for address decoding would set aside an I/O port for communiction to each driver, then several bits of the data bus could be gated to create the clock, data and enable signals.

4.0 TYPICAL DESIGN IMPLEMENTATION

4.1 Simple Direct Drive Application

Figure 5 illustrates a simple cascaded direct drive application where MM58241s are cascaded to drive a 7-segment (plus decimal point) display. The MM58241s were chosen because of the ease with which they can be cascaded. The MM58248s can also be used and provide a few more outputs per package, but cannot be cascaded.
In this application, the controlling $\mu \mathrm{P}$ need only update the display whenever the data changes. When updating the display, the data is assembled, enable is raised, and the data is clocked serially to the driver. Once all the data is loaded into the shift registers, the enable is taken low. This action updates the display.

4.2 A 32-Digit 5×7 Dot Matrix Application

In this application, the obvious choice is to implement some sort of multiplexing scheme to drive the display with fewer lines. This application usually requires that a dedicated controller be used to generate all the timing signals.
General multiplex timing of a VF display is usually similar to LED multiplexing. First, the segment data for one character is output to the display. Next, the digit strobe for that digit is raised, enabling the character. Then the digit strobe is brought low while the segment data is changed to the next character on the display. The next character is enabled by raising the digit strobe. This action continues until each character is turned on sequentially. Figure 6 shows the basic timing for a simple display.

TL/F/7394-4
FIGURE 5. Typical Direct Drive System with $\mu \mathrm{P}$

FIGURE 6. Simplified Timing for Multiplexed VF Display
4.2 A 32-Diglt 5×7 Dot Matrix Application (Continued)

In this design, it is logical to use one MM58341 to control the display's digits. As will be seen, this driver can be easily used to shift a single high level bit which will be used to sequentially enable each character. One MM58348 can be used to drive the segments. A 5×7 matrix has 35 segments, which is ideal for the MM58348. Therefore, this configuration has a total of 6 connecting lines to interface the microprocessor to the display drivers. The connection diagram is shown in Figure 7. Because both of the drivers accept data only when the clock is active, it would be possible to couple both data lines together. However, although this saves one interface line, there is a disproportionate increase in the software burden.
The choice of which driver to use for segments and which for digits is dependent only on which configuration is the simplest to implement in hardware or software. The MM58241/242/248 devices are all equally capable of driving the digits or segments of a display.

4.3 Multiplexed Display Refresh Timing: The Controllers

Considering first the digit driver (MM58341), it is clear that the digits must be enabled sequentially and that this process must be continuous, even when the display data has not changed. To this end, the data for the MM58341 is simply a one followed by 31 zeroes, where the one is shifted along the internal register. As each digit is enabled, the corresponding segment data is displayed. To ensure that no ghosting effects are seen during the transition between digits, the blank signal is activated for a short time before and after the segment data is changed. Figure 8 shows the microprocessor waveforms and the resultant display waveforms for the 32-character design. Thus, one can see how the blank is used to mask the display while the digit enable signal goes low and the segment data is latched.

FIGURE 7a. Typical Architecture for Higher End System Utilizing Dedicated Display $\mu \mathbf{P}$

4:4 Multiplexed Display Refresh Timing: Display Brightness (Continued)

The refresh rate of the display is defined as the frequency at which each digit is enabled (i.e., the reciprocal of the time taken to display all digits). It is generally accepted that in order to avoid visible flickering, a refresh rate in excess of 50 Hz is required. Typically, VF manufacturers recommend $100 \mathrm{~Hz}-200 \mathrm{~Hz}$. Some sample calculations follow and assume a refresh rate of 100 Hz . Therefore, the time given to display all digits is $1 /(100 \mathrm{~Hz})=10 \mathrm{~ms}$, and is $10 \mathrm{~ms} / \mathrm{num}-$ ber of digits) for any one digit. For this example, $10 \mathrm{~ms} / 32$ $=312.5 \mu \mathrm{~s}$. This is defined as the total digit multiplex time and will be made up of a digit "on" time and an inter-digit blanking time. The inter-digit blanking is required to prevent display ghosting when digit information changes.
In general, then, the total digit time (t_{D}) is the inverse of the refresh rate (fr) divided by the number of digits in the display (nd), i.e.,

$$
t_{D}=1 /(f r \times n d) \text { seconds. }
$$

Since each digit time is composed of the "on" time, $\mathrm{t}_{\mathrm{DON}}$ and the blanking time, $t_{\text {DOFF, }}$, the total digit time is:

$$
t_{D}=t_{\text {DON }}+t_{\text {DOFF }} \text { (seconds). }
$$

A useful measure of the brightness of a multiplexed display can be obtained by comparing it to the direct drive (100% brightness) case. In the direct drive application each digit is "on" permanently, while in the multiplexed mode each digit is "on" only for a portion of the time taken to refresh the display. Therefore, the measure of multiplexed brightness is given by the ratio of an individual digit "on" time to the total refresh time. Noting that the refresh time is a function of the total digit time (t_{D}) and the number of display digits (nd), a percentage figure for the brightness compared to the direct drive case can easily be calculated.

$$
\begin{aligned}
& \text { percent muxed brightness }=\frac{t_{\text {DON }}}{t_{D} \times n d} \times 100 \\
& \text { percent muxed brightness }=\frac{t_{\text {DON }}}{\left(t_{\text {DON }}+t_{\text {DOFF }}\right) n d} \times 100
\end{aligned}
$$

Thus, regardless of the display logic's refresh speed, the display brightness will obviously depend on the amount of multiplexing and the amount of inter-digit blanking time. This is one constraint limiting the multiplexing scheme, and display manufacturers' data sheets should be consulted to determine a display's limits. This will, to a large degree, determine whether a design should use 32 -digit multiplexing or perhaps two separate 16 -digit multiplexed displays.
There are also limitations on the refresh rate based on the speeds of the hardware. In this design, the "on" time has a minimum value given by the time required to load the start bit and the first 34 data bits of the MM58348/248; i.e., the time required for 35 clock pulses of the MM58348. The MM58348 has a maximum clock frequency of 1 MHz , so the minimum time for 35 clock pulses is $35 /(1 \mathrm{MHz})=35 \mu \mathrm{~s}$.
The digit "off" time is constrained by the time required to clock the digit driver and to load the final segment data bit, or the time for the display outputs to switch off then on, whichever is greater. The MM58341 has a maximum clock frequency of 800 kHz , so the minimum digit "off" time due to driver limitations is related to $1 /(800 \mathrm{kHz})+1 /(1 \mathrm{MHz})$ $=2.25 \mu \mathrm{~s}$. The blanking signal must be active during this time. Also, though the display outputs take typically 20μ s to switch, the display itself limits the minimum digit "off" time and is actually $20 \mu \mathrm{~s}$.

Thus, the minimum total digit time per digit is:

$$
t_{D}=35 \mu \mathrm{~s},+20 \mu \mathrm{~s}=55 \mu \mathrm{~s} .
$$

At a refresh rate of $10 \mathrm{~ms}, 10 \mathrm{~ms} / 55 \mu \mathrm{~s}$ equals the theoretical maximum number of digits that can be multiplexed, or about 18035 -segment characters. This is unrealizable since current display "on" times must be greater than $35 \mu \mathrm{~s}$, and total digit duty cycles (or percent brightness) must be much higher.

$$
\text { percent brightness }=\frac{25 \mu \mathrm{~s}}{55 \mu \mathrm{~s} \times 180} \times 100=0.25 \%
$$

For the 32-digit case, the percent brightness is more realistic:

$$
\text { percent brightness }=\frac{0.29 \mathrm{~ms}}{0.31 \mathrm{~ms} \times 32} \times 100=2.9 \%
$$

These times are the limits of the drivers. If the time required to load them is limited by the speed of the controlling processor, the update times are calculated from the clock rates of the controlling $\mu \mathrm{P}$. However, as one can see, the limitations are more likely due to the display.

4.5 VF Display Brightness Control

Generally, to control or vary the brightness of a display, one can either vary the display drive voltage or vary the "on" time duty cycle by applying a signal to the blanking control. The duty cycle of the blanking signal will determine the brightness. This latter technique is preferred since more predictable behavior results.
In the simple direct drive case the MM58241/341/242/342 must be used. A periodic waveform is applied to the blanking pin. Its frequency should be greater than 100 Hz 200 Hz . As the duty cycle is varied, the percentage of time that the digits are "on" is changed and the perceived brightness changes.
In a multiplexed application, the brightness can be altered by merely modifying the relative length of the inter-digit blanking signal. This is easily accomplished in the software of the controlling $\mu \mathrm{P}$ by adding a delay while the blanking signal is active and subtracting the same delay from the time the blanking signal is inactive.
The relative brightness is the percentage of time that any one character is "on" divided by the sum of the character's "on" and "off" times. The latter term was previously defined as the total digit time. Thus:
relative brightness $=t_{D O N} / t_{D}$.
Due to hardware refresh update speed limitations, 100\% and 0% brightness cannot be achieved and also maintain proper refreshing, although 0\% can be achieved just by stopping refresh and blanking continuously. (Note that this percentage is relative to the theoretical minimum and maximum brightness for a given multiplexed display, not the brightness relative to a direct drive display as was done previously.)
In the above 32-digit example, the maximum brightness is (assuming 10 ms refresh rate and $20 \mu \mathrm{~s}$ minimum inter-digit blanking):

$$
\begin{aligned}
\max . \text { percent brightness } & =(0.29 \mathrm{~ms} / 0.31 \mathrm{~ms}) \times 100 \\
& =93.6 \%
\end{aligned}
$$

The minimum brightness, assuming $35 \mu s$ minimum "on" time is:
min. percent brightness $=(0.035 \mathrm{~ms} / 0.31 \mathrm{~ms}) \times 100$

$$
=11.2 \%
$$

Clearly there is a large range of available display brightness levels which are easily software controllable by altering the duty cycle of the blanking signal.
Again, the above analysis assumes that the microprocessor unit is interfacing with the display drivers at their maximum data rates. If this is not the case, some part of the brightness range will be lost.
Refer to Appendix for general system considerations.

5.0 THE SOFTWARE

Having outlined the general method by which the data can be displayed, it now remains to demonstrate how this can be achieved at the microprocessor level. It was thought best to use a familiar microprocessor for this task, so the implementation will use a 6502 and 6522 VIA circuit. The procedure which will be described is merely one example of how these display drivers can be applied, and it is hoped that by concentrating on the arranging and loading of the data, a more general benefit will be gained.
The application to be described here is that of an alpha-numeric display where characters are entered from a keyboard onto a VF display, feeding in from the left. The program will also accept control codes such as line feed, de-

FIGURE 9. General IC Flowchart
lete, etc. The general flowchart for this routine is shown in Figure 9. When the character is collected from the keyboard buffer it must first be established that it is a valid ASCII code; if not, it is ignored and the present data will continue to be displayed. The next thing to check is whether it is a control code. If it is a control code, the function represented must be executed on the existing data and the resulting data displayed. Assuming the ASCII code is not identified as a control code, it must correspond to a display character, and hence will be entered at the start of the display data buffer. Following this, the 32 characters denoted by the contents of the display data buffer are displayed, and after the last digit is enabled the keyboard buffer is checked for new data. As the display refresh rate far exceeds the speed of the human typist, each set of data is displayed several times before it changes.
Looking at the routine for displaying the 32 digits in more detail, a flowchart can be drawn up, as shown in Figure 10.

TL/F/7394-9
FIGURE 10. Display Data Subroutine Flowchart

5.0 THE SOFTWARE (Continued)

After first setting up and clearing the port lines and both the display drivers, a routine is performed for each of the 32 display characters. The ASCII code is collected and decoded to reveal memory locations where the corresponding 35 segment bits are stored. The start bit and first 34 data bits are loaded into the MM58348. Then the MM58341 blank signal is activated while the relevant digit is enabled and the final segment is loaded. After blank is removed, the next ASCll code is collected and decoded, etc. When the last digit has been loaded, control returns to the main program for the updating of the display data.
The machine code routine for the setting up of each digit of display data is shown in Figure 11. The relevant addresses of ports and digit codes are included in Figure 12 to make the program comprehensible. The address of the segment data is stored in locations 00E2 and 00E3, and it is assumed that this is updated outside the display subroutine. The ports can be addressed as 8 -bit memory locations or as individual lines. When considered as individual bits, the fifth address bit either sets or clears that bit, i.e., STA 0915 sets PA5 and 090B clears PB3.
The segment data for each character is stored as 7 consecutive memory locations, each containing 5 data bits.

The contents of each location are loaded into port A via the accumulator, starting with the highest memory address. This is achieved by indexing the lowest memory address by the contents of the Y register (starting as 06) and decrementing this register as every 5 bits are loaded. The least significant bit of port A is used for the segment data (PAO) and the 5 data bits are loaded by storing the code to port A, logically shifting it to the right, and storing it to port A again. This procedure is repeated 5 times for each memory location. The code given in Figure 11 is for the brightest case, i.e., where the blank signal is disabled, as soon as the data has been latched to the display outputs. Clearly, the brightness can be altered by delaying this action.
The data is held in memory in the form of 7 locations of 5 bits each. This format was chosen because each location can be equated to one row of 5×7 dot matrix, where the lowest memory location corresponds to the bottom row. For example, if it is desired that a " 5 " be displayed in the form shown in Figure 12, then the 36-bit data stream is as demonstrated. Assuming that the data is stored at the 7 locations starting at address 2120, then the location contents are as denoted in Figure 13.

DISPLAY	STA 0910			STA 090B	\ Enable low.
	STA 0918			STA 0920	
	STA 0908			STA 0918	\backslash Load 35th segment
	STA 0900	\backslash Load start bit.		STA 0908	\backslash bit.
	LDY \#06	\backslash Load 30 segment		STA 090C	\backslash Blank low.
	JSR LOAD5	\backslash bits, 5 at a time		RTS	\backslash Ret. to main prog.
	LDA (I)E2	\backslash Load lowest addr.	LOAD5	LDA (I), Y E2	\backslash Load mem. contents.
	LDX \#04			LDX \#05	\backslash Count for 5 bits.
LOOP1	STA 0920		LOOP2	STA 0920	\backslash Push data to port A.
	STA 0918			STA 0918	\backslash Segment clock high.
	STA 0909			STA 0908	\backslash Segment clock low.
	LSRA	\cdots		LSRA	\backslash Shift seg. data
	DEX			DEX	\backslash and dec. bit count.
	BNE LOOP1	\backslash Load 4 seg. bits.		BNE LOOP2	
	STA 091B	\Enable high.		DEY	\backslash Set up address of
	STA 0919			BNE LOAD5	\backslash next 5 seg. bits.
	STA 0909	\ Digit select clock.		RTS	\backslash Return to display
	STA 091C	\backslash Blank high			\backslash subroutine.

Port A-Address 0920			Port B-Address 0921		
Port Bit	Function	Address	Port Bit	Function	Address
PAO	Data 8	09-0	PB0	Clock 8	09-8
PA1	Not Used	09-1	PB1	Clock 1	09-9
PA2	Not Used	09-2	PB2	Data 1	09-A
PA3	Not Used	09-3	PB3	Enable	09-B
PA4	Not Used	09-4	PB4	Blank	09-C
PA5	Not Used	09-5	PB5	Not Used	09-D
PA6	Not Used	09-6	PB6	Not Used	09-E
PA7	Not Used	09.7	PB7	Not Used	09-F

Lowest memory address giving location of segment display data: stored in locations 00E2 and 00E3.
FIGURE 12. Port and Relevant Memory Addresses

row 1
row 2
row 3
row 4
row 5
row 6
row 7

6.0 CONCLUSIONS

This design example is merely one of the many possible applications for the MM58348/341/248/241 family of high voltage display drivers. For other applications it should be noted that the other 2 circuits in this series, namely the MM58342 and the MM58242, can provide a much wider range of possible connections. For example, larger displays such as the 2 -line by 40 -digit 5×7 dot matrix formats can be driven with two MM58348s and two MM58342s cascaded to form a 40-bit shift register.
The method by which the segment data is shown to be stored and accessed in memory in convenient in the above example, although again it is only one of the many methods.

An alternative using 5 locations of 7 -segment data bits is possible, where the software would be faster but the data formatting more difficult. There are many trade-offs to be found with so versatile a series of circuits.
The code used to demonstrate this example is that of the 6502 microprocessor, and it would be a simple task to convert the instructions for another device (e.g., National's CMOS NSC800). The versatility of display formats available is a major feature, and the fact that these display drivers are CMOS devices guarantees their low power consumption. In addition, the outputs incorporate internal pull-down resistors which greatly reduce the external component count. This cuts the required board area; consequently a considerable saving in system cost can be made.

APPENDIX: SYSTEM CONSIDERATIONS FOR VF DISPLAY DRIVING

The purpose of the following text is to show how a designer can make decisions on displays he can drive or ranges of brightness he can achieve with a given system. Alternatively, it can be used as a method of designing a system to meet a desired display specification.

THE THEORY

1. System Decisions

System Constraints:
a. Refresh rate (f_{r})
b. Number of display digits (nd)
c. Rate at which drivers are clocked by system (fclk)

Associated Parameters:

a. Total time available to diplay all digits (t_{r})
b. Total time allocated to each digit (t)
c. Total time each digit is on (tDON)
d. Total time each digit is off (tDOFF)
e. Number of display segments (ns)
f. Number of system clocks required to display one digit (ncon)
g. Number of system clocks required to load segment bits (nc)
h. Number of system clocks required to latch both segment and digit data (ncoff)
From the above definitions, the following equations can be stated:

$$
\begin{aligned}
& \text { tr }=1 / f_{r} \text { (seconds) } \\
& t_{D}=t_{r} / n d=1 /\left(f_{r} \times n d\right) \text { (seconds) } \\
& t_{\text {DON }}=\text { time to load segment bits for next digit } \\
& =\mathrm{ns} \text { system clocks } \\
& \text { = ncon system clocks } \\
& =n c o n / \text { foLk (seconds) } \\
& t_{\text {DOFF }}=\text { time to latch segment bits and to enable rele- } \\
& \text { vant digit } \\
& \text { = ncoff system clocks } \\
& =n \mathrm{nc}_{\mathrm{OFF}} / \mathrm{fcLK} \text { (seconds) } \\
& \text { Hence: } \\
& t_{D}=t_{\text {DON }}+t_{\text {DOFF }} \\
& =\left(\mathrm{nc}_{\mathrm{ON}} / \mathrm{f}_{\mathrm{CLK}}\right)+\left(\mathrm{nc}_{\mathrm{OFF}} / \mathrm{f}_{\mathrm{CLK}}\right) \\
& =\left(n_{C O N}+n c o p f / f_{\text {CLK }}\right. \\
& =n c / f_{\text {CLK }} \text { (seconds) } \\
& \text { And: } \\
& \mathrm{f}_{\mathrm{CLK}}=\mathrm{nc} / \mathrm{t}_{\mathrm{D}} \\
& =n c \times f_{r}, \times n d(H e r t z)
\end{aligned}
$$

2. Brightness Variation Considerations

The brightness of the display is proportional to the duty cycle of the blank signal, and the range of intensities available depends on the size of $t_{\text {DON }}$ and ultimately the refresh rate, fr.

$$
\begin{aligned}
\mathrm{Bd} & =\text { brightness of the display } \\
& =\text { duty cycle of blank signal } \\
& =\mathrm{t}_{\mathrm{DON}} / \mathrm{t}_{\mathrm{D}}
\end{aligned}
$$

In the above example, the least bright case is where the blank signal is low for only one system clock per digit.
$B d(\min)=1 / n c$

And the brightest case is where blank is low only for the time required to latch the segment data and enable the digit.

$$
\begin{aligned}
\mathrm{Bd}(\mathrm{max}) & =\left(\mathrm{nc}-\mathrm{nc}_{\mathrm{OFF}}\right) / \mathrm{nc} \\
& =1-\left[\left(\mathrm{nc}_{\mathrm{OFF}}\right) / \mathrm{nc}\right]
\end{aligned}
$$

The range of available brightness level, Br , is:

$$
\begin{aligned}
\mathrm{Br} & =\mathrm{Bd}(\max) / \mathrm{Bd}(\min) \\
& =\left[\left(\mathrm{nc}-\mathrm{nc}_{\mathrm{OFF}} / \mathrm{nc}\right] /(1 / \mathrm{nc})\right. \\
& =\mathrm{nc}-\mathrm{nc} \text {) }
\end{aligned}
$$

It should be noted that this is the minimum range of available brightness levels because t_{D} was minimized to maximize fr. If the system clock were fast enough to allow the maximum refresh rate to be in excess of the desired fr, then t_{D} could be increased from its minimum value. This would, in turn, produce a wider range of brightness levels.
It should also be noted that most manufacturers quote a minimum duty cycle for each digit. The system designer should ensure that neither end of the brightness specification exceeds this value.

THE APPLICATION

For the purposes of doing some sample calculations using the above theory, we will assume use of the system previously described, i.e., the driving of a 32 -digit 5×7 dot matrix display by one MM58341/241 and one MM58348/248.

1. System Decisions

The number of display digits is fixed, i.e., $n d=32\left(\mathrm{nc}_{\mathrm{ON}}=\right.$ 35 and ncoff $=2$, so nc $=37$ system clocks). Assume system has a 125 kHz clock rate.
Therefore, the resulting refresh rate is:

$$
\begin{aligned}
f_{r} & =f_{\text {CLK }} /(\mathrm{nc} \times \mathrm{nd}) \\
& =125000 /(37 \times 32) \\
& =105 \mathrm{~Hz}
\end{aligned}
$$

Also, the system clock rate needed for a given refresh rate can be calculated, e.g., $\mathrm{f}_{\mathrm{r}}=200 \mathrm{~Hz}$.
$\mathrm{f}_{\mathrm{CLK}}=\mathrm{nc} \times \mathrm{f}_{\mathrm{r}} \times$ nd
$=37 \times 32 \times 200$
$=237 \mathrm{kHz}$
$=$ approximately 250 kHz
There are many other examples of how this theory can be used to evaluate the possibilities for VF systems.

2. Brightness Variation Considerations

We can now calculate range of brightness intensities available with the above system, i.e., where fCLK $=125 \mathrm{kHz}$, $f_{r}=105 \mathrm{~Hz}$.

$$
\begin{aligned}
\mathrm{Bd}(\min) & =1 / \mathrm{nc} \\
& =1 / 37 \\
\mathrm{Bd}(\mathrm{max}) & =1-(\mathrm{nc} \text { OFF/nc) } \\
& =1-(2 / 37) \\
& =35 / 37 \\
& =B d(\max) / \mathrm{Bd}(\min) \\
& =35
\end{aligned}
$$

So the brightness can vary from its lowest value to its maximum value, which is 35 times the minimum level.
Also note that the minimum duty cycle for this display is given as $1 / 40$ (manufacturer's specification), so there is no problem in this application.

Let us now take the example of driving the same display with a system where $\mathrm{fCLK}=500 \mathrm{kHz}$, at a desired refresh rate of 200 Hz .

$$
\begin{aligned}
n c & =f_{C L K} /\left(f_{r} \times n d\right) \\
& =50000 /(200 \times 32)
\end{aligned}
$$

ncoff is 2 as before, and although we require only 35 clocks to load the segment data,

$$
\begin{aligned}
\text { ncON } & =n c-n c \text { OFF } \\
& =78-2 \\
& =76 \text { system clocks }
\end{aligned}
$$

In general, the higher the system clock rate, the wider the brightness control range.
Therefore,
$\mathrm{Bd}(\min)=1 / n c$
$=1 / 78$

But, remembering that $\mathrm{Bd}(\mathrm{min})$ must be less than the stated duty cycle (1/40):

$$
\begin{aligned}
\mathrm{Bd}(\min) & =2 / 78 \\
& =1 / 39 \\
\mathrm{Bd}(\max) & =1-\left(\mathrm{nc} \mathrm{OFF}^{\prime} / \mathrm{nc}\right) \\
& =1-(2 / 78) \\
& =76 / 78 \\
& =38 / 39 \\
& =\mathrm{Bd}(\max) / \mathrm{Bd}(\min) \\
& =(38 / 39) /(1 / 39) \\
& =38
\end{aligned}
$$

So, we can see that by manipulation of the system constraints, a wider range of brightness levels can be attained, although this is ultimately limited by the stated duty cycle of the display.
weii suiied io auiumūtive applicationis bacatice of its high brightness level, relatively low power consumption, and wide operating temperature range. Further, due to the recent introduction of thick and thin film techniques into display device manufacturing processes, it is with relative ease that high volumes of customer designed VF displays can be produced.
The application of VF displays to automotive dashboards demands additional requirements, because of the wide range of environmental conditions under which it must operate efficiently. In particular, it is imperative that the display characters are easily distinguishable in extreme light conditions. The visual recognition of the display information can be optimised readily by means of suitable filtering, and it is also desirable that the character brightness is variable. The latter could be achieved by altering the display voltage in proportion to signals from a light sensor mounted alongside the display on the dashboard.

High Voltage Display Drivers

EXISTING HIGH VOLTAGE DISPLAY DRIVERS

The most common, and indeed the most publicized type of display driver utilizes a mixture of MOS and bipolar technologies. While the logical areas of these devices operate as standard MOS 5V logic, each display output consists of a high voltage (up to 150 V) Bipolar buffer. These output structures result from well known npn and pnp design techniques, e.g. emitter follower, Darlington pair, etc., where high output source currents (up to 100 mA) are the aim. These high current circuits appear to be the legacy from high power LED display drivers and, although capable of driving VF displays, such devices have several drawbacks. First and foremost they are expensive, mainly due to the inherent low density of Bipolar technology which, if many display outputs are included in the circuit, can significantly increase die size and hence cost. For certain desired output structures it may be necessary to include extra masking steps to the basic MOS process, e.g. to form an epitaxial layer, and this again will inevitably lead to increased costs. Further, the high current outputs result in very high power consumption on chip which, depending on the package used, may cause problems due to excessive die temperatures. Difficulties associated with power dissipation may lead to a reduction in the number of display outputs per chip, or at least a limitation on the number of segments illuminated simultaneously.

Introduction

The recent introduction of Vacuum Fluorescent (VF) displays has provoked a great deal of interest in the market place in general, and in particular for use in automotive dashboard applications. Consequently, this attention has spread to the wide range of display drivers presently available. To take advantage of these displays, a new form of high voltage driver was required, at a lower cost than the previously available integrated circuit.

The Vacuum Fluorescent (VF) Display

The operation of a VF display is based upon that of a standard valve, where electrons are emitted from the cathode and are accelerated through the grid on to the anode. Initially, a filament element heats the electrons at the cathode, providing the electrons with the necessary energy for emission. If both the grid and the anode are at a positive potential with respect to the cathode, then the emitted electrons pass through the grid and onto the anode. In a VF display, the anode terminal is coated with a fluorescent material, which will emit light when bombarded by electrons. The general structure of such a display is shown in Figure 1. The anode areas correspond to individual segments of the display, and the grid is used to switch on and off whole digits, facilitating the option of multiplexed anodes. The brightness of the display varies directly with the voltage difference between cathode and grid/anode, and this has resulted in the need for high voltage drivers.
The type of display selected for an automotive dashboard is a critical decision, and there is a wide range from which to choose. Light emitting diode (LED) displays are commonly used in electronic dashboards at present, although they have the serious disadvantage of high power dissipation and a low level of brightness. Given the wide range of applications found for liquid crystal displays (LCD) in recent years, one might expect to find this technique applied to dashboards. However, LCD has the inherent disadvantage of a limited operating temperature range and the low temperature operation demanded in automotive applications results in difficulties when using present LCD technology as a substitute for LED. More modern display techniques, such as gas discharge or plasma, may provide a viable alternative in the future, but the technology has not been sufficiently proven at this stage. A VF display, on the other hand, is

FIGURE 1. Cross-Section of a Vacuum Fluorescent (VF) Display

TL/F/8349-2

FIGURE 2. Example of a High Voltage MOS Open Drain Structure

Another readily available type of high voltage display driver is fabricated using MOS techniques only. Such devices use PMOS technology, and the high voltage output swings are achieved by means of open drain p-channel output transistors, as shown in Figure 2. Significant reductions in chip size can be achieved in this way, although such devices require one external pulldown resistor per display output. Consequently the board component count, and hence the system cost, will increase.
Surveying the literature, several points of interest emerge. First, there is a trend towards including far more decoding and control logic on chip, and it is likely that this has occurred due to the increasing use of high voltage displays in word processor applications. Thus, there is a demand for decoding of both ASCII character display data and ASCII control codes direct from the keyboard. In addition, it appears to be relatively rare to find display drivers with direct TTL data and clock inputs. Some devices cater for RS232 or other standard interface requirements, but many devices require some level shifting circuitry between the data source and display driver inputs.

THE 'IDEAL' VF DISPLAY DRIVER

As has already been stated, the operation of a VF display is similar to that of a valve and hence is a voltage controlled device. In addition, the nature of the fluorescent material is such that the amount of light emerging from the display is directly proportional to both the number of, and the speed at which the electrons arrive at the anode. The number of electrons emitted from the cathode is a function of the current in the filament and as such, has a limit. The acceleration of the electrons, on the other hand, is directly proportional to the voltage between the cathode and the grid/anode. Thus, one major requirement of the VF driver is that it is capable of large output voltage swings between the on and off conditions. At present, typical VF displays operate at a maximum cathode to grid/anode voltage of 50 volts, and so it is essential that the driver can produce output swings of at least 50V.

Coupled with the discussion on output voltage capabilities, an examination of the display output current requirements should be undertaken. The previous conclusion, that the VF display is a voltage controlled device, suggests that high current outputs are not required (typically 5 mA for a segment and 10 mA for a digit). The driver output must charge and discharge the display capacitance in such a time as to avoid visible flickering or ghosting effects. Given that most VF displays now have multiplexed anodes, and that the refresh rate must be greater than 100 Hz to prevent the above effects, then it can be seen that charge/discharge times in
excess of 100μ secs can be tolerated. A typical VF display has a capacitance of 20 pF and if the output off resistance is $200 \mathrm{~K} \Omega$, then a discharge time constant of $4 \mu \mathrm{secs}$ can be anticipated, more than adequate for the demands of the human eye.
Another desirable characteristic of the VF driver is that it has internal pulldown resistors on each of its display outputs. Thus, the complete structure shown in Figure 2 can be incorporated on to the integrated circuit, and this will reduce component count and hence cost. The value of this resistor is critical in terms of both output voltage swing and standby power consumption, and as such is a parameter which must be closely defined. In addition, because low power consumption is desirable, the 5 V logic on chip should dissipate as little power as possible and for this reason complementary MOS (CMOS) is the optimum processing technology to be used.
The cost of the finished product is closely related to the complexity of the fabrication process used and so the most proven of the available CMOS processes should be chosen. Thus, metal gate CMOS will be the process used.

Standard Metal Gate CMOS Processing

Examining the requirements outlined in the previous section, it is clear that metal gate CMOS design techniques can provide low power 5 V internal logic and TTL microprocessor interface inputs with relative ease, using existing methods. Hence, it is the other requirements, namely high voltage outputs and on chip pulldown resistors, which demand closer attention.

OPERATING VOLTAGE LIMITATIONS

The electrical parameters which accompany the CMOS metal gate design rules state that 18 V is the maximum voltage of operation of any circuit designed according to those rules. In order to contemplate possible ways by means of which this limitation can be overcome, the mechanisms which cause it must be examined.
In general, it is the phenomenon of breakdown which determines the maximum operating voltage, and there are several methods by which this can occur. One such instance is junction breakdown, where the reverse biased pn diffusion diodes inherent in the process exhibit either avalanche or zener breakdown mechanisms, as described by Bar-lev (1). Under these conditions, the diodes begin to conduct in the reverse direction and clearly this will prevent the circuit from operating as designed. In practice, however, this does not
occur until junction voltages in excess of 80 V are applied and hence it is not a limiting factor on the VF driver circuit envisaged.
Another breakdown method is punchthrough, of which there are two types. The first, known as vertical punchthrough, occurs only in CMOS transistors which are situated in their own difíusion weilis. Fö the metal gate cincs procose cen. sidered in this paper, the substrate is n-type material, and so it is the n-channel transistors which are formed within p-wells. At high voltages (18 V), where the potential between the drain ($n+$ material) and the well $(\mathrm{p}-$) is large, the depletion region associated with the drain diffusion can extend until it reaches the substrate ($n-$), at which point a current path is formed. In this way, vertical punchthrough can occur as shown in Figure 3.
The second punchthrough mechanism is horizontal punchthrough, and this normally occurs between drain and source of both n - and p-channel devices. As stated by Hamilton and Howard (2), the threshold voltage of the basic MOS transistor is the voltage required to cause field inversion in bulk material and hence form a drain source channel, the conductive properties of which are controlled by the gate voltage. As before, at high drain voltages ($30-35 \mathrm{~V}$), a depletion region extends out from the drain diffusion. If the drain ($p+$ or $n+$) to bulk ($n-$ or $p-$) potential is high enough the drain depletion region will reach the source diffusion ($p+$ or $n+$) and an uncontrolled drain source channel is formed, causing the transistor to act as a short circuit. Consequently, horizontal drain source punchthrough, as
shown in Figure 4, is a phenomenon which must be pondered carefully in connection with high voltage applications.
The final breakdown mechanism is known as surface avalanche breakdown, and this occurs due to an accumulation of charge at the bulk material surface. If the drain voltage is again large with respect to both the gate and the source ($30-35 \mathrm{~V}$), then the enguinotential lines shown in Figure 5 will lead to an area of high electric field at the surface of the drain to bulk junction. Under the above conditions, and because the depletion region is relatively narrow at this point, surface avalanche breakdown can occur as described by Grove (3).
It is true to say, therefore, that there are several breakdown mechanisms which contribute to the aforementioned operating voltage limit. Referring to the on chip structure outlined in Figure 2, it is clear that only high voltage p-channel transistors are required, and so vertical punchthrough need not be considered in this case. In addition, junction breakdown will only occur at voltages above those envisaged in this application, and hence horizontal punchthrough and surface avalanche breakdown are the phenomena which must be overcome to facilitate a successful design.

ON CHIP RESISTORS

Due to the nature of CMOS, i.e. because the technology produces both pull-up and pull-down transistors, it is relatively rare to find resistors in such circuits. A further reason for the rare appearance of resistors is that the tolerances on MOS diffusion resistors are so large as to make them unac-

TL/F/8349-4
FIGURE 4. Horizontal Punchthrough in a CMOS P-Channel Transistor

TL/F/8349-5

FIGURE 5. Surface Avalanche Breakdown in a CMOS P-Channel Transistor

ceptable in normal applications. One occasion where such resistors are used is where it is only the ratio between the resistors which is important, and not their precise values, for instance in a voltage divider. Under these circumstances, any change in the nominal resistance value will be reflected in all the resistors and hence the divider will operate as designed.
As was pointed out above, such resistors are normally formed by making use of the sheet resistance of diffusion. In particular, the diffusion with the highest value of sheet resistance is used, and this is p -material. Hence, the structure shown in Figure 6, known as a pinched p-resistor, is common, and it is clear that this device is in fact a p-channel junction field effect transistor (JFET). The theory of JFET operation is described by Glaser and Subak-Sharpe (4), and because the p - diffusion process is followed by $\mathrm{n}+$ diffusion it can be seen that the JFET gate completely surrounds the p-type channel region in the form of $n+$ and $n-$ (substrate) material, which is tied to 5 volts. For this reason, the pinch-off voltage is very low (typically 10 V) and so these pinched resistors are widely used in low voltage applications. Further, p - diffusion sheet resistance is a parameter which has a wide process spread, i.e. $4.5-7.0 \mathrm{k} \Omega$ per square, and although the pinched resistor technique increases this nominal resistance value due to depletion effects, such resistors are difficult to specify in advance.
If the large changes in resistance value are not tolerable then $\mathrm{p}+$ diffusion resistors in the n - substrate are a viable alternative, for two reasons. First, because of the doping profile of $p+$ diffusion, the JFET depletion effects are reduced, and consequently such resistors have a much higher pinch-off voltage. Second, the nominal resistance of $p+$ diffusion is much more stable over the process range, although its value is far lower ($40-80 \Omega$ per square). For this latter reason, $\mathrm{p}+$ resistors occupy large areas for relatively small values.

High Voltage CMOS

Referring to the 'Ideal' VF Driver section, one of the principal aims of this design is that a standard fabrication process be used. Bearing that in mind then, there follows a study of possible ways by which the original VF display driver specification could be realised or even enhanced.

HIGH VOLTAGE TRANSISTORS

The simpler of the two operating voltage limitation factors to overcome is horizontal punchthrough. From Figure 5, it is clear that in order to increase the drain source voltage at
which the depletion regions combine the distance between the drain and source must be increased. This has the effect of lengthening the transistor channel, and the consequences of such action should be considered. The basic equations which describe the mode of operation of the MOS transistor are derived by A.M.I. (5), and from these, increasing the channel length (L) will result in lower drain source current ($I_{D S}$), lower gain factor (β), and higher threshold voltage $\left(V_{T}\right)$. All of these effects will degrade the transistor performance, although it is worth noting that the aspect ratio (W/L), i.e. the ratio of channel width (W) to its length, is a major component of the transistor equations. Hence, some performance can be salvaged by increasing the channel width to return the aspect ratio to its original value. Unfortunately, this approach increases gate area and hence parasitic capacitances, and so the resulting high voltage transistor is still inferior to its low voltage equivalent.
The other mechanism which leads to high voltage breakdown in MOS transistors is surface avalanche breakdown, and this phenomenon can only be overcome at a cost. As was explained previously in reference 3 , this avalanche effect is caused by a region of high electric field which can lead to electrons with energy levels high enough to start a chain reaction of collisions within the silicon lattice. The electric field at the corner (ξ corner) determines whether this phenomenon will occur and reference 3 points out that ξ corner is inversely proportional to gate oxide thickness (t_{ox}). Armed with this information, initial experiments were carried out with long channel devices having $t_{0 x}$ values ranging from the standard process value of $1000 \AA \hat{A}$ up to a maximum possible value of $2300 \AA$. In practice, the oxidation cycle had to be altered to allow these different oxide thicknesses to be fabricated without affecting other process parameters. As a result of these experiments, it was found that surface avalanche breakdown occurred at approximately 40 V with $\mathrm{t}_{\mathrm{ox}}=2300 \AA$. An alternative experiment involved making use of the oxide which isolates the silicon from the metal inter-connect, that known as field oxide. Field oxide is typically $8800 \AA$ thick, and hence it was felt that using this as gate oxide on long channel devices could provide the desired high voltage performance. However, field oxide MOS transistors were found to have breakdown voltages in excess of 70 V , and for this reason it was decided that the VF driver outputs would be designed for a maximum voltage swing of 60 V . The high breakdown voltage, however, is achieved at a cost in terms of performance. Using the basic MOS transistor equations of reference 5 , and noting that increasing $t_{o x}$ will decrease gate capacitance ($\mathrm{C}_{0 \mathrm{x}}$), it is clear that low values of gain factor ($\beta \cong 1 \mu \mathrm{~A} / \mathrm{V}^{2}$), and high

TL/F/8349-6

FIGURE 6. P-Pinched Resistor

values of threshold voltage $\left(\mathrm{V}_{\mathrm{T}} \cong-6 \mathrm{~V}\right)$ are expected. If these performance limitations are taken into account at the design stage, then high voltage p-channel MOS transistors are feasible.

The high voltage transistors outlined above are an ideal solution to the display output problem, as their fabrication requires no additional processing stages.

HIGH VOLTAGE PULLDOWN RESISTORS

Before looking at ways in which the high voltage pulldown resistors may be realised, a definitive value for this resistor should be assigned. It is essential that the resistor value is low enough that any leakage current from the p-channel transistor does not cause the output voltage, when the output is in the off state, to be significantly higher than the display voltage. If maximum values of expected leakage current are of the order of $10 \mu \mathrm{~A}$ and if the maximum output off voltage to display voltage difference is 2 volts, then the maximum resistance value is $200 \mathrm{k} \Omega$. In addition it is desirable to minimise the current taken on chip when the output is in the on state. Given that approximately 60 V will appear across the resistor under these circumstances and if the maximum desired on current is $600 \mu \mathrm{~A}$ per output, then the minimum resistance value is $100 \mathrm{k} \Omega$. Clearly, there is a trade off in performance between the above two requirements, and if the design is centered about a resistance value of $150 \mathrm{k} \Omega$ then any variation due to process spread should not cause this value to drop below $100 \mathrm{k} \Omega$ or rise above $200 \mathrm{k} \Omega$.
Having established the value of the resistor to be designed, it only remains to decide the method by which this is to be achieved. Unfortunately, neither of the two methods outlined previously can be applied in this case. P+ diffusion resistors are not practical because the nominal resistance per square of such material is too low, typically 60Ω per square, making such resistors occupy excessive amounts of die area. A p-pinched resistor, on the other hand, will pinch-off at voltages in excess of 10 V , and hence such a technique is not applicable.
Given the size of the resistor required, and in order that the die area be minimised, a technique using the p - diffusion should be sought. The problem is to ensure that a resistor of this type does not pinch-off at the voltages anticipated, and hence a method whereby the channel depletion effects may be minimised must be found. The first way in which these effects can be reduced is to increase the width of the
 required to pinch-off the channel, although in the case of pinched p - resistors an intolerably large increase in area is required to allow high voltage (in excess of 50V) operation. If, however, the $n+$ diffusion layer shown in Figure 6 is removed, then the JFET channel is only depleted from three, instead of four sides. Experiments showed that if the pwas simply diffused into the native n-type substrate without an $n+$ covering, and if the channel was sufficiently wide, then p - resistors with pinch-off voltages in excess of 60 V could be fabricated. Secondary tests showed that the psheet resistance doubled in this mode from its unbiased value, although this parameter is closely dependent on the drain to substrate potential.
Hence, the objective of high voltage on chip pulldown resistors has been realized with no alterations to the standard fabrication process.

DISPLAY DRIVER IMPLEMENTATION

As discussed previously, the microprocessor interface inputs are TTL compatible and the internal data handling CMOS logic operates from a 5 volt supply. The display data emerges from this logic and enters a bank of level shifters, which convert the $0 \rightarrow 5 \mathrm{~V}$ waveforms into $-10 \rightarrow 5 \mathrm{~V}$ levels. In this way, a p-channel field oxide transistor can be driven. The output section is in the form of a pre-buffer followed by a display output driver and a schematic of the whole circuit is shown in Figure 7.
Examining the schematic in more detail, it is clear that the -10 V supply to the level shifting stage $\left(\mathrm{V}_{\mathrm{ee}}\right)$ is derived by means of a p - resistor ladder between $V_{s s}(O V)$ and $V_{\text {dis }}$ $(-55 \mathrm{~V})$. The sizes of both the p-channel field device and the p - resistor in the pre-buffer stage are non-critical, as they merely drive the next stage, except to state that the pchannel is $16 \mu \mathrm{~m}$ long and the p-resistor is $10 \mu \mathrm{~m}$ wide. In fact, it is desirable that the p-resistor has a high resistance value as this minimises the circuit current when the display outputs are in the off state (pre-buffer is on). The output driver stage, on the other hand, demands a more structured approach. Using the design figure of $10 \mathrm{k} \Omega$ per square, a p - resistor size of 16 squares was used, i.e. a region of $p-$ diffusion which was $15 \mu \mathrm{~m}$ by $240 \mu \mathrm{~m}$. The p-channel field transistor was selected to have an output on impedance of $1.5-2.0 \mathrm{k} \Omega$, and to achieve this a size of $300 \mu \mathrm{~m}$ by $16 \mu \mathrm{~m}$ was chosen. The low VF display currents result in this high output on impedance being accepted.

The Future

Clearly, the future for VF display drivers is highly dependent upon the way in which such displays progress over the next few years. Further experiments with high voltage p-channel transistors suggest that voltages in excess of 100 V can be sustained, although this work is at present only at the initial evaluation stage. Hence, if future VF displays demand operating voltages of this order, compatible drivers should be feasible.
At present, there is considerable interest in Front Luminous VF Displays (FLVD), and it is claimed they provide better visual character recognition and a wider viewing angle. This is achieved by reversing the order of the component parts of the VF display shown in Figure 1. Hence, the luminous material is directly beneath the front glass, and so the light is unimpeded as it is emitted from the display. Fortunately, however, the driving requirements of FLVD are similar to those of the present VF display, and so the display drivers outlined in this paper appear adequately to meet the needs of the VF displays of today.

Conclusions

The display drivers described in this application note have demonstrated how a fabrication process, thought only to be applicable to low voltage designs, can be extended to produce high voltage circuits. This suggests that the standard
processes of today may also be stretched in other directions. If closer attention is given to the mechanisms behind the circuit and process limitations, then it is possible, as in this case, that they can be overcome. Clearly, if this is achieved the rewards of a wider range of products from the same fabrication process will follow.

References

1. Bar-lev, A., 1979, 'Semiconductors And Electronic Devices', Prentice-Hall International, Inc., London, pp. 124131.
2. Hamilton, D.J., Howard, W.G., 1975, 'Basic Integrated Circuit Engineering', McGraw-Hill Kogakusha Ltd., Tokyo, pp. 193-198.
3. Grove, A.S., 1967, 'Physics And Technology Of Semiconductor Devices', John Wiley And Sons, Inc., New York, pp. 311-315.
4. Glaser, A.B., Subak-Sharpe, G.E., 1977, 'Integrated Circuit Engineering', Addison-Wesley Publishing Co., Reading, Mass., pp. 71-80.
5. American Micro-Systems, Inc., 1972, 'MOS Integrated Circuits', Van Nostrand Reinhold Co., New York, pp. 6072.
6. "This article was first published on pp. 113-120 of the proceedings of the IEE Fourth International Conference On Automotive Electronics, November 1983."

> New CMOS Vacuum Fluorescent Drivers Enable Three Chip System to Provide Inte!!igent Contro! of Dot Matrix VF Display

INTRODUCTION

Vacuum Fluorescent (VF) displays are becoming more and more common in a variety of applications. Manufacturers of everything from Automobiles to Video Recorders have taken advantage of these easy to read displays. VF displays are available in a wide variety of configurations; clock displays, calculator displays, multi-segment, and dot matrix displays are readily available at a low cost. This application note develops and covers in some detail a small CMOS system consisting of a single chip microcontroller and two display drivers which control a 20 character, 5×7 dot matrix VF display.
Figure 1 shows the schematic of the system. The microcontroller, a COPSTM 424C, receives a character in ASCII form from the host system, stores the ASCII value of the character in its onboard RAM, converts the ASCII value to a 5 byte data word suitable for the display drivers and displays it on the VF display. The COPS also refreshes the display continuously while performing character update, much like a dumb terminal. Not including the address decoding logic, this application requires only the onboard RAM and ROM of the COPS424C, and National's MM58341 and MM58348 VF display drivers. If a steady message or a scrolling sentence is desired, only small changes in the COPS software are re-
quired. In this case the messages could be stored in the ROM of the COPS and the need for a host system would be eliminated.

VF DISPLAY AND VF DISPLAY DRIVER REQUIREMENTS

The display used in this application was an Itron \#DC205G2. This 20 segment, 5×7 dot matrix, multiplexed display required a filament voltage of 5.7 Vac and a filament current of 37 mAac . The anode and grid voltages were supplied by the display drivers. The voltage and current requirements vary considerably for different displays depending on the size and number of characters, and the configuration (dot matrix, 7 segment, 14 segment, etc.). To determine the voltage requirements for a particular display, a simple calculation can be made. If maximum possible brightness of the display is desired, the following equation must be true:
$E_{t} \geq E_{b}+E_{k}+\left(l_{b}\right)\left(R_{o n}\right)$ where:
E_{t} is the total Voltage of the display drvier or $\left|V_{\text {dis }}\right|+V_{d d}$
E_{k} is the display Cathode Bias Voltage
$E_{b}=E_{c}$ is the typical Anode or Grid Voltage (V_{p-p})
I_{b} is the typical anode current (mAp-p)
$R_{\text {on }}$ is the display driver output impedance (Ω)

TL/F/8683-1
FIGURE 1. System Diagram Showing the Basic 3-Chip Display Controller and the Interface to a Microprocessor System

If the maximum brightness is not desired, the following equation can be used: $\left(E_{t}\right)(1.2) \geq E_{b}+E_{k}+\left(l_{b}\right)\left(R_{o n}\right)$. In this application, the calculated E_{t} was 42.25 V , however, the display was legible under normal lighting conditions, with an E_{t} as low as 25 V . If your display requires more than the 35 V output of the MM58341 and MM58348, pin for pin compatible 60V VF Display Drivers (MM58241, MM58248) are available.
Figure 2 shows the relationship between the required VF display voltages. The cut-off voltage (E_{k}) is set by the Zener diode on the center tap of the filament transformer. This value is given in the VF display data sheet.

Avoiding Flicker and Pulsing

There are two different conditions which may cause the display to appear to flicker. The first is the refresh rate. This is particularly a problem on displays where the micro-controller must up-date more than 25 characters. Since the human
eye begins to notice flicker at about 40 Hz , a display with a refresh rate less than that will appear to be flashing on and off.
The second type of flicker occurs when the refresh rate is between 40 Hz and 90 Hz . In this case, the display will appear to be rolling rather than flashing. This condition occurs when the refresh rate and the filament frequency are close together. If a character is only on during the time when the filament voltage is negative, it will appear to be slightly brighter than the character next to it which may only be on during the positive cycle of the filament voltage. If this is the case, as it was in this application, the simplest solution is to increase the frequency of the filament. A DC oscillator circuit, such as the one shown in Figure 3, can be used to replace the $A C$ voltage source. The filament frequency can be easily adjusted to eliminate this condition.

FIGURE 2. Voltage Levels for VF Display

TL/F/8683-3
FIGURE 3. Filament Oscillator Circuit

VF Display Drivers

Two high voltage display drivers were needed to control the VF display. A MM58341, was used to control the grids and a MM58348 was used to control the individual pixels or anodes. Both of these drivers receive serial information and output 32 and 35 segments of data respectively.
 controlling the grids of a VF display. The blanking control pin will turn off all segments of the display when a logic ' 1 ' is applied to this pin. This is particularly important for reducing ghosting, and controlling brightness. Ghosting is a condition where the last characters shadow appears behind the character being displayed. The enable pin acts as an envelope for the input signal. Only while it is at a logic ' 1 ' level will the circuit accept clock inputs. When the pin goes low, all the data is latched and displayed. A data out pin is also provided for cascading. If the display has more than 32 grids, a second grid driver can be cascaded by connecting the data out pin to the input data for the second grid driver.
The MM58348 is a 35 bit shift register and latch which is used to control each pixel or dot. When a leading 1, fol-
lowed by 35 bits of data, is received, the data is latched and displayed. The chip is automatically reset upon power up.

MULTIPLEXED DISPLAY REFRESH TIMING

Considering first the digit driver (MM58341), it becomes clear that the digits must be enabled or refreshed sequentially and that this process must be continuous regardiess ii the display data has changed. The data for the MM58341 is simply a 1 followed by 19 zeroes where the 1 is shifted through the internal registers of the MM58341. As each digit is enabled, the corresponding segment data is displayed. To insure that no ghosting effects are seen during the transition between digits, the blanking control is activiated just before the data is latched into the dot or anode driver and deactivated just after the data has been latched. During this time when the blanking control is activated, the grid driver is clocked shifting the 1 to the next location. Figure 4 shows the micro-controller waveforms and the resultant display waveforms for the 20 character display.

FIGURE 4. Timing Diagram

In between digit strobes, the segment data is updated. The first 34 bits of segment data are set up in the dot driver and the blanking signal is activated to disable all 20 digits. The 35th bit of data is clocked in, updating the segments. Since the MM58348 resets its internal shift register each time the data is latched, it can accept all but the final data bit while still displaying the previous digit. The digit driver is then clocked, shifting the digit strobe to the next position. The enable is then brought low, enabling the next digit. Finally blanking control is deactivated and the data displayed.
During the time which the blanking control is high, the order in which the segments or the digits are updated is not critical. Since this occurs while the display is blank. The digit driver may be clocked first, or the segments could be changed first. In general, the philosophy for the driving this VF multiplexed display is outlined in Figure 5.

HOST INTERFACE AND PROGRAMMING

With a minimal amount of address decoding and an eight bit latch, COPS can be interfaced with a common microprocessor bus. When a character has been input into the host to be displayed, the ASCII value of that character is latched into the eight bit latch (MM74HC373) and is read on the L port (LO-6) of the COPS. The MSB of the ASCII value must be a logic 1 . This MSB is the signal to the COPS that a new character is being presented. Once the character has been stored, an interrupt is sent from the COPS to the host through the D-O port. The COPS checks for a new character being input every $200 \mu \mathrm{~s}$. If a character is being sent, 1 ms is required to store that character in the RAM of the COPS. With the COPS controlling the display, the host micro-processor is not being tied down with character look-up and display refresh. A simple flowchart of the host requirements is shown in Figure 6.

COPS SOFTWARE

There are four main sections of the COPS software. The first section, the initialization of the RAM, sets up the RAM as shown in Figure 7. A ' 0 ' is stored in all of the LSB positions and a ' 2 ' is stored in all of the MSB positions. Since the COPS is in a constant display loop, this is necessary to insure a blank display. 20 H is the ASCll value of a space. With the RAM set up in this way, a maximum of 28 characters can be stored in RAM. Since the display in this application is only 20 characters long, RAM locations M1,4 to M1,11 and M3, 4 to M3,11 are not used. RAM locations 1,12 to 1,15 and 3,12 to 3,15 are used as temporary storage throughout the program and cannot be used for character storage.
The second part of the program, stores the new characters sent by the host CPU in RAM. Once a character has been sent, this section of the program checks the ASCII value of that character to see if it is a control character or a display character. If it is a display character, the character is stored in RAM and an interrupt is sent to the host. There are three control characters which the COPS program will recognize. Cursor forward (ASCII value 08H) moves the cursor forward without destroying the data, cursor backwards (ASCII value 0 CH) moves the cursor backwards without destroying the data, and return (ASCll value ODH) will clear the display and put the cursor at the beginning of the display. To recognize and store a character, 1 ms is required.
The third part of the program, the display loop, is the heart of the program. Unless a new character has been detected, the program is always in this loop. This section does the

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LSB Chr 1	LSB Chr 2	$\begin{gathered} \text { LSB } \\ \text { Chr } 3 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \text { Chr } 4 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \text { Chr } 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LSB } \\ \text { Chr } 6 \end{array}$	$\begin{array}{\|l\|l\|} \text { LSB } \\ \text { Chr } \end{array}$	$\begin{array}{\|l\|} \text { LSB } \\ \text { Chr } 8 \end{array}$	$\begin{array}{\|c\|} \hline \text { LSB } \\ \mathrm{Chr} 9 \end{array}$	$\begin{array}{\|c\|} \hline \text { LSB } \\ \text { Chr } 10 \end{array}$	$\begin{array}{\|c\|} \hline \text { LSB } \\ \text { Chr } 11 \end{array}$	$\left\lvert\, \begin{gathered} \text { LSB } \\ \text { Chr } 12 \end{gathered}\right.$	$\begin{gathered} \text { LSB } \\ \text { Chr } 13 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LSB } \\ \text { Chr } 14 \end{array}$	$\begin{gathered} \text { LSB } \\ \text { Chr } 15 \end{gathered}$	LSB Chr 16
MSB Pointer	LSB Pointer	Temp. ASCII STORAGE										$\begin{array}{\|c\|} \hline \text { LSB } \\ \text { Chr } 17 \end{array}$	$\begin{gathered} \text { LSB } \\ \text { Chr } 18 \end{gathered}$	$\begin{array}{\|c\|} \text { LSB } \\ \text { Chr } 19 \end{array}$	$\begin{aligned} & \text { LSB } \\ & \mathrm{Chr} 20 \end{aligned}$
MSB Chr 1	MSB Chr 2	$\begin{aligned} & \text { MSB } \\ & \text { Chr } 3 \end{aligned}$	MSB Chr 4	$\begin{array}{\|c\|} \mathrm{MSB} \\ \mathrm{Chr} 5 \end{array}$	$\begin{array}{\|l\|} \hline \text { MSB } \\ \text { Chr } 6 \end{array}$	MSB Chr 7	$\begin{array}{\|l\|} \mathrm{MSB} \\ \mathrm{Chr} 8 \end{array}$	$\begin{array}{\|c} \text { MSB } \\ \text { Chr } 9 \end{array}$	$\left\|\begin{array}{c} \text { MSB } \\ \text { Chr } 10 \end{array}\right\|$	$\begin{gathered} \text { MSB } \\ \text { Chr } 11 \end{gathered}$	MSB Chr 12	$\begin{array}{\|c\|} \text { MSB } \\ \text { Chr } 13 \end{array}$	$\begin{array}{\|c\|c\|} \text { MSB } \\ \text { Chr } 14 \end{array}$	MSB Chr 15	$\left\|\begin{array}{c} \text { MSB } \\ \text { Chr 16 } \end{array}\right\|$
Temp. Storage of Pointer												MSB Chr 17	MSB Chr 18	MSB Chr 19	$\left\lvert\, \begin{gathered} \text { MSB } \\ \text { Chr } 20 \end{gathered}\right.$

FIGURE 7. COPS RAM Map

Matrix	PAD	Column 1	Column 2	Column 3	Column 4	Column 5	PAD
Binary	00010011111010100010010000101000001111.10						
Hex.	13	EA	24	28	3 E		

FIGURE 8
character font look-up, shifts the character data out the COPS serial port to the MM58348, and controls the MM58341 through the four bit parallel port (G0-4). Because the most significant nibble of the program counter is used as part of some COPS instructions, it is important that parts of the program are located at specific locations in ROM.
The final part of the program is the data. Each character is represented by a 5 byte data word. Each byte of the data word is stored at a different location in ROM. Fonts for characters with the ASCII values from $20 \mathrm{H}-5 \mathrm{AH}$ have already been stored in ROM. These characters can be changed or more characters can be added. The only limitation to the number of characters is the amount of available ROM.

CREATING THE 5 BYTE DATA WORD

Any number or combination of pixels or dots can be turned on at a time. To create a new character, it is easiest to first create a binary string which represents the character. A ' 1 ' in the binary string will turn on the pixel, a ' 0 ' will turn it off. To create this string, start in the upper left corner of the matrix and go down the columns.
The letter 'A' (Figure 9) would have a binary string shown in Figure 8. The data must be padded to make it an even 5 bytes in length. The pad at the beginning of the data (0001) is used as the leading 1 for the MM58348. The one bit pad at the end of the binary string must be a 0 . If a 1 were sent as the pad, it would be used as the start bit for the next character.
The 5 byte data word that would be stored in ROM and represent the letter ' A ' would then be 13EA24283E.

STORING THE DATA IN ROM

The 5 bytes of data are stored in 5 different locations in ROM. The first byte of data will be stored, LSB first, at location 200 H plus the ASCII value of the character. For example, the ASCII value of the letter ' A ' is 41 H . The first byte of data for the letter ' A ' would be stored, least significant bit first, at 241 H . The second byte of data is stored at the location of the first data byte plus 60 H or in this case at 2A1H. The location of the third byte is 40 H plus the location of the
second byte. In this case, the third byte of data would be stored at 2 E 1 H . The fourth byte of data is stored at 300 H plus the ASCII value of the character or at 341 H for the letter ' A '. The final byte of data is stored 40 H from the fourth byte or at 381 H . Remember the LSB of each byte is stored first. Table I shows the locations in ROM and the values stored in them for the letter ' A '.
This application shows a VF display controller designed with a minimum number of IC's. If additional information about VF displays or VF display drivers is required, refer to Application Note AN-371 (The MM58348/ 342/341/248/242/241 direct drive Vacuum Fluorescent (VF) Displays.

TABLE I. Character Data of ' A ' and Its Locations in ROM

Address In ROM	Data Stored
0241 H	31
02 A 1 H	AE
02 E 1 H	42
0341 H	82
0381 H	E 3

FIGURE 9.5×7 Character as Stored in ROM
;DEFINES COPS CHIP
;THIS SECTION INITIALIZES THE RAM IN THE COPS BY LOADING A ;2 IN THE MSB AND A 0 IN THE LSB LOCATIONS OF EACH CHARACTER. ;IT ALSO STOPS THE CLOCK AND SETS THE POINTER AT THE FIRST ;CHARACTER OF THE DISPLAY.

RESET :	CLRA	
	LBI 3,15	;LOADS A 2 IN ALL
	JSR Clear2	;MSB LOCATIONS
	LBI 2,15	;LOADS A 2 IN ALL
	JSR Clear2	;MSB LOCATIONS
	LBI 1,15	;LOADS A 0 IN ALL
	JSR CLEAR	;LSB LOCATIONS
	LBI 0,15	;LOADS A 0 IN ALL
	JSR CLEAR	;LSB LOCATIONS
	CLRA	;LOADS POINTER IN RAM
	XAD 1,15	;MSB IN 1,0F
	CLRA	
	AISC 15	;LSB IN 1,OE
	XAD 1,14	
	RC	;RESETS CARRY TO
	XAS	; STOP CLOCK
	JMP START	
CLEAR:	CLRA	;CLEARS REGISTORS
	XDS 0	
	JMP CLEAR	
	RET	
CLEAR2:	CLRA	;PUTS A 2 IN REGISTORS
	AISC 02	
	XDS 0	
	JMP CLEAR2	
	RET	

Section 2 of COPS Software
;THIS SECTION OF CODE IS ONLY EXECUTED WHEN A NEW ;CHARACTER HAS BEEN ENTERED. IF THE CHARACTER IS ;A CONTROL CHARACTER, THE CURSOR IS MOVED ACCORDINGLY, ;OTHERWISE THE CHARACTER IS STORED IN THE RAM OF THE COPS.
;NEW CHARACTER HAS BEEN ENTERED
NEW :
LBI 1,0C ;DUMMY POINTER
INL ;READS ASCII FROM
XIS $0 \quad$;DATA BUS
X 0
LDD 1,OD
RC ;CHAR. MSB=0 THEN YES
AISC $15 \quad$;MSB $<>0$ THEN NO
JMP SPECIAL
AISC 01
LDD 1,0E ;STORE ASCII IN RAM
CAB
LDD 1,0F
XABR
LDD 1,0C ;MSB IN 1,0C
X 2
LDD 1,OD ;LSB IN 1, OD
X 0

Section 2 of COPS Software (Continued)

;THIS IS THE DISPLAY LOOP OF THE PROGRAM. UNLESS A NEW CHARACTER ;HAS BEEN ENTERED AND IS BEING STORED, THE PROGRAM IS ALWAYS IN ;THIS DISPLAY LOOP. IT LOOKS UP THE CHARACTER FONT, SHIFTS THE ;CHARACTER DATA OUT THE SERIAL PORT AND CONTROLS THE GRID DRIVER.

START:

LBI 2,15	;DISPLAY LOOP POINTER
JSR HERE	;GOTO DISPLAY LOOP
LBI 3,O3	;SECOND DISPLAY LOOP POINTER
JSR HERE	;GOTO DISPLAY LOOP
OGI O9	;LOADS A I IN GRID DRIVER
OGI OD	
OGI O9	
JMP START	

;CHECKS FOR NEW CHAR

HERE :
RC ININ AISC 15 JMP OLDCHR JMP NEW
;DISPLAY LOOP FOR OLD CHAR AND
; LOOK UP


```
POINTER: LEI O1 ;COUNTER MODE
    XAS ;A IN SIO
    XABR ;BR IN A
    AISC 02 ;ADD 2
    XAD 3,14 ;A IN 1,0
        CBA ;BD IN A
        XAD 3,13 ;A IN 1,1
        LBI 3,15
        XAS ;SIO IN A
        LEI 08 ;SERIAL MODE
        JMP RIGHT
    ;SHIFTS OUT SERIAL PORT
SHIFT: LEI 08 ;THIS ROUTINE SHIFTS THE DATA
    SC ;FROM THE SI/O REGISTER OUT
    XAS ;THE SERIAL PORT WITH EACH
    NOP ;CLOCK CYCLE
    NOP
    RC
    XAS
    RET
    .=0200
DATA3: LQID
    JMP RIGHT
    LQID
    JMP POINTER
    .=0300
        LQID
        JMP RIGHT
```


Section 4 of COPS Software

```
;THE CHARACTER FONTS FOR THE CHARACTERS WITH ASCII VALUES BETWEEN 2OH AND 5AH HAVE BEEN STORED IN THIS SECTION OF THE PROGRAM.
;DATA FOR FIRST 2 BYTES OF EACH
; CHAR.
. \(=0220\)
.WORD 001, 001, 001, 021, 021, 0C1, 061, 001
.WORD 031, 001, 041, 011, 001, 011, 001, 001
.WORD 071, 001, 041, 081, 011, 0E1, 031, 081
.WORD 061, 061, 001, 001, 001, 021, 001, 041
.WORD 071, 031, 081, 071, 081, OF1, OF1, 071
.WORD OFl, 081, 081, OFl, OFl, OFl, OF1, O7l
.WORD OF1, 071, OF1, 061, 081, OFl, OF1, OF1
.WORD OC1, OC1, 081
```

;DATA FOR SECOND 2 BYTES OF EACH
; CHAR.
. $=0280$
.WORD 000, 000, OCl, OF9, OA4, 095, O2D, 000 .WORD 088, 000, 054, 020, 000, 020, 000, 014 .WORD 01D, 082, 003, 005, 058, 045, OAC, 001 .WORD 02D, 023, 000, 000, 020, 058, 001, 001 .WORD OOD, OAE, OF3, 00D, OF3, 02F, O2F, OOD .WORD O2E, OO3, OOD, O2E, OOE, O8E, O8E, OOD .WORD 02F, 00D, 02F, 025, 001, 00C, 008, 00C .WORD 056, 040, 017
;THIRD 2 BYTES OF DATA FOR EACH CHAR.
. $=02 \mathrm{CO}$
.WORD 000, OE3, 000, OAC, OFB, 040, OA5, 083 .WORD OOA, OO2, OF3, OF1, 034, 040, 008, 040 .WORD 046, OF7, O2E, 046, 021, 086, 046, 02E .WORD 046, 046, OAO, OB4, OAO, OAO, 015, 022 .WORD OE6, 042, O4E, 006, OOE, 046, 042, 046 .WORD 040, OF7, 006, OAO, 004, 080, OEO, OO6 .WORD 042, 026, 062, 046, 0F3, 004, 008, 034 .WORD 040, 070, 046
;FOURTH TWO BYTES OF DATA FOR EACH CHAR.
. $=0320$
.WORD 000, 008, 007, OF7, OAA, 031, 028, 000 .WORD 008, 02A, 049, 080, 000, 080, 000, 001 .WORD 01D, 018, 09C, 09D, 0F7, 01D, 09C, 084 .WORD O9C, OAC, 000, 000, 022, 041, 041, 08C .WORD ODC, 082, 09C, 01C, 01C, 09C, 084, 09C .WORD 080, 01C, OEF, 022, 018, 002, 020, 01C .WORD 084, O2C, OA4, O9C, OOC, 018, 028, 010 .WORD 041, 009, O1D
;LAST BYTES OF DATA FOR EACH CHAR.
. $=0380$
.WORD 000, 000, 000, 082, 084, 064, OAO, 000 .WORD 000, 083, 044, 001, 000, 001, 000, 004 .WORD 0C7, 020, 026, OCC, 080, 0C9, OC8, OOE .WORD OC6, 087, 000, 000, 028, 082, 001, 006 .WORD 027, OE3, 0C6, 044, 0C7, 028, 008, OC5 .WORD OEF, 028, 008, 028, 020, OEF, OEF, OC7 .WORD 006, OA7, 026, 0C4, 008, OCF, 08F, OCF .WORD O6C, OOC, O2C

Section 5
 Memory Support

Section 5 Contents
Memory Support-Introduction 5-3
Memory Support-Selection Guide 5-4
DP84240/DP84244 Octal TRI-STATE MOS Drivers 5-5
DS0025C Two Phase MOS Clock Driver 5-10
DS0026/DS0056 5 MHz Two Phase MOS Clock Drivers 5-14
DS3245 Quad MOS Clock Driver 5-22
DS1628/DS3628 Octal TRI-STATE MOS Drivers 5-25
DS3647A Quad TRI-STATE MOS Memory I/O Register 5-28
DS1648/DS3648/DS1678/DS3678 TRI-STATE TTL to MOS Multiplexers/Drivers 5-34
DS1649/DS3649/DS1679/DS3679 Hex TRI-STATE TTL to MOS Drivers 5-39
DS1651/DS3651 Quad High Speed MOS Sense Amplifiers 5-43
DS16149/DS36149/DS16179/DS36179 Hex MOS Drivers 5-49
DS55325/DS75325 Memory Drivers 5-53
DS75361 Dual TTL-to-MOS Driver 5-66
DS75365 Quad TTL-to-MOS Driver 5-71
AN-76 Applying Modern Clock Drivers to MOS Memories 5-76

MOS memory devices today can be found in a variety of configurations, giving design engineers more flexibility than ever before. National Semiconductor offers a variety of key devices that will allow a user to easily implement memory designs which meet his or her particular requirements.
National's memory support circuits include clock drivers, 4 k and 16k RAM address drivers, data I/O circuits, and timing and control drivers. Further information on the specific device types may be found in application note AN-76, "Applying Modern Clock Drivers to MOS Memories".

In addition to memory support applications, this family of products provides the versatility of general use in typical applications including level translation of TTL/CMOS input levels to high voltage (24 V) outputs with high capacitive (1000 pF) drive, power drivers, relay driver and sense amplifier. Detailed features/function of this series of drivers are highlighted in the following product guide.

DP84240/DP84244 Octal TRI-STATE ${ }^{\circledR}$ MOS Drivers

General Description

The DP84240 and DP84244 are octal TRI-STATE drivers which are designed for heavy capacitive load applications such as fast data buffers or as memory address drivers. The DP84240 is an inverting driver which is pin-compatible with both the 74S240 and AM2965. The DP84244 is a non-inverting driver which is pin-compatible with the 74S244 and AM2966. These parts are fabricated using an oxide isolation process, for much faster speeds, and are specified for 250 pF and 500 pF load capacitances.

Features

- t_{pd} specified with 250 pF and 500 pF loads
- Output specified from 0.8 V to 2.7 V
- Designed for symmetric rise and fall times at 500 pF
- Outputs glitch free at power up and power down
- PNP inputs reduce DC loading on bus lines
- Low static and dynamic input capacitance
- Low skew times between edges and pins
- AC parameters specified with all outputs switching simultaneously

Connection Diagram

View

Truth Table

DP84240

Inputs		Outputs	
$\overline{\mathbf{G}}$	\mathbf{A}	\mathbf{Y}	
H	X	Z	
L	L	H	
L	H	L	

H = High Level
L = Low Level
X = Don't Care
$\mathbf{Z}=$ High Impedance

TL/F/5219-1

Order Number DP84240J or DP84240N See NS Package Numbers J20A or N20A

DP84244

Inputs		Outputs
$\overline{\mathbf{G}}$	\mathbf{A}	\mathbf{Y}
H	X	Z
L	L	L
L	H	H

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{CC}
7.0 V

Logical "1" Input Voltage
7.0 V
$-1.5 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Cavity Package
1150 mW 1300 mW

Lead Temperature (soldering, 10 sec.)

Operating Conditions

	Min	Max	Unlts
$V_{\text {CC }}$ Supply Voltage	4.5	5.5	V
$\mathrm{~T}_{\mathrm{A}}$ Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. (Notes 2 and 3.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
VIN(1)	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IN }(0)}$	Logical " 0 " Input Voltage				0.8	V
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		0.1	20	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\underline{I N(0)}$	Logical '0" Input Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V}$		-50	-200	$\mu \mathrm{A}$
$V_{\text {clamp }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$,	-1	-1.2	V
V OH	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}-1.15 \\ & V_{C C}-1.5 \end{aligned}$	$\begin{array}{r} 4.3 \\ 3.9 \\ \hline \end{array}$		V
VOL	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	V
$1{ }_{10}$	Logical "1" Drive Current	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$	-75	-250		mA
10 D	Logical "0" Drive Current	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$	+100	+150		mA
$\mathrm{Hi}-\mathrm{Z}$	TRI-STATE Output Current	$0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$	-100		$+100$	$\mu \mathrm{A}$
lcc	Supply Current DP84240	All Outputs Open All Outputs High All Outputs Low All Outputs Hi-Z		$\begin{aligned} & 16 \\ & 74 \\ & 80 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 125 \\ 125 \\ \hline \end{gathered}$	mA
	DP84244	All Outputs High All Outputs Low All Outputs $\mathrm{Hi}-\mathrm{Z}$		$\begin{gathered} 40 \\ 100 \\ 115 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ 130 \\ 150 \end{gathered}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.
Note 3: Typical characteristics are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See Figures 5 and 6 for the switching time variations.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, all outputs loaded with specified load capacitance and all eight outputs switching simultaneously. (Note 3.)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay from LOW-to-HIGH Output	Figures 1 \& 3	$\begin{aligned} & \mathrm{CL}=250 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \end{aligned}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 27 \\ & 33 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay from HIGH-to-LOW Output		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \end{aligned}$	$\begin{gathered} 9 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 31 \\ \hline \end{array}$	ns
tpLz	Output Disable Time from LOW	Figures 2 \& 4, $\mathrm{S}=1, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			11	24	ns
tPHZ	Output Disable Time from HIGH	Figures 2 \& 4, $\mathrm{S}=2, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			12	24	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW	Figures 2 \& 4, $\mathrm{S}=1, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			30	45	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH	Figures 2 \& 4, $\mathrm{S}=2, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			23	35	ns
tSKEW	Output-to-Output Skew (Note 4)	Figures $1 \& 3, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			3		ns

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. (Note 3.)

Parameter	Conditions	Typ	Units
$\mathrm{C}_{\text {IN }}$	All Other Inputs Tied Low	6	pF
Cout	Output in TRI-STATE Mode	20	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.
Note 3: Typical characteristics are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See Figures 5 and 6 for the switching time variations.

Switching Test Circuits

TL/F/5219-3
${ }^{*} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND JIG CAPACITANCES
FIGURE 1. Capacitive Load Switching

FIGURE 2. TRI-STATE Enable/Disable

Typical Switching Characteristics

TL/F/5219-5
FIGURE 3. Output Drive Levels

TL/F/5219-7
FIGURE 5. tplH Measured to 2.7 V on Output vs. C_{L}

TL/F/5219-6 FIGURE 4. TRI-STATE Control Levels

TL/F/5219-8
FIGURE 6. $\mathrm{t}_{\text {PHL }}$ Measured to 0.8 V on Output vs. C_{L}

Typical Switching Characteristics (Continued)

TL/F/5219-9
FIGURE 7. Typical Power Dissipation for DP84240 at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (All 8 drivers switching simultaneously)

TL/F/5219-10
FIGURE 8. Typical Power Dissipation for DP84244 at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (All 8 drivers switching simultaneously)

Typical Application

DP84244 used as a buffer in a large memory array (greater than 88 dynamic RAMs)

TL/F/5219-11

DS0025C Two Phase MOS Clock Driver

General Description

The DS0025C is a monolithic, low cost, two phase MOS clock driver that is designed to be driven by TTL line drivers or buffers such as the DS8830 or DM7440. Two input coupling capacitors are used to perform the level shift from TTL to MOS logic levels. Optimum performance in turn-off delay and fall time are obtained when the output pulse is logically controlled by the input. However, output pulse width may be set by selection of the input capacitor eliminating the need for tight input pulse control.

Features

■ 8-lead TO-5 or 8-lead or 14-lead dual-in-line package
■ High Output Voltage Swings-up to 25 V

- High Output Current Drive Capability-up to 1.5A

■ Rep. Rate: 1.0 MHz into > 1000 pF

- Driven by DS8830, DM7440
- "Zero" Quiescent Power

Connection Diagrams

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablilty and specifications.
($\mathrm{V}^{+}-\mathrm{V}^{-}$) Voltage Differential
25 V Input Current 100 mA
Peak Output Current
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
Lead Temperature (Soldering, 10 sec)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Recommended Operating Conditions

V+V-Differential Voltage		20 V
	Min	Max
Temperature	0	70
Maximum Power Dissipation*		
8-Pin Cavity Package		
14-Pin Cavity Package		
Molded Package	1150 mW	
Metal Can (TO-5) Package	1410 mW	
		670 mW

* Derate 8 -pin cavity package $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate 14 -pin cavity package $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate metal can (TO-5) package $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2 and 3) See test circuit.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{d}} \mathrm{ON}$	Turn-On Delay Time	$\mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			15	30	ns
$t_{\text {RISE }}$	Rise Time	$\mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			25	50	ns
t_{d} OFF	Turn-Off Delay Time	$\begin{aligned} & \mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F} \\ & \text { (Note 4) } \end{aligned}$			30	60	ns
$\mathrm{t}_{\text {FALL }}$	Fall Time	$\begin{aligned} & C_{I N}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F} \end{aligned}$	(Note 4)	60	90	120	ns
			(Note 5)	100	150	250	ns
PW	Pulse Width (50\% to 50\%)	$\begin{aligned} & C_{I N}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega, \\ & C_{\mathrm{L}}=0.001 \mu \mathrm{~F}(\text { Note } 5) \end{aligned}$			500		ns
$\mathrm{V}_{\mathrm{O}+}$	Positive Output Voltage Swing	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=-1 \mathrm{~mA}$		$V+-1.0$	$\mathrm{V}+-0.7 \mathrm{~V}$		V
$\mathrm{V}_{\mathrm{O}-}$	Negative Output Voltage Swing	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$			$\mathrm{V}-+0.7 \mathrm{~V}$	$\mathrm{V}-+1.5 \mathrm{~V}$	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DS0025C.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Parameter values apply for clock pulse width determined by input pulse width.
Note 5: Parameter values for input width greater than output clock pulse width.

Timing Diagram

Typical Application

TL/F/5852-4

AC Test Circuit

*Q1 is selected high speed NPN switching transistor.

Typical Performance

TL/F/5852-7
$P_{A C}=\left(V^{+}-V^{-}\right)^{2 f C_{L}}$

Maximum Load Capacitance

TL/F/5852-9

$$
C_{L}<\frac{\left(P_{M A X}\right)(1 k)-\left(V^{+}-V^{-}\right)^{2}(D C)}{(f)(1 k)\left(V^{+}-V^{-}\right)^{2}}<\frac{\left(l_{p k}\right)\left(t_{r}\right)}{V^{+}-V^{-}}
$$

TL/F/5852-8

> DUTY CYCLE (\%)
$P_{D C}=\frac{\left.V^{+}-\mathrm{V}^{-}\right)^{2}(D C)}{1 \mathrm{k}}$

TL/F/5852-10
$I_{\text {MAX }}=$ Peak Current delivered by driver
$I_{\text {MIN }} \frac{V_{B E}}{R 1}=\frac{0.6}{1 \mathrm{k}}$

Applications Information

Clircult Operation

Input current forced into the base of Q_{1} through the coupling capacitor C_{IN} causes Q_{1} to be driven into saturation, swinging the output to $V-+V_{C E}$ (sat) $+V_{\text {Diode }}$.
When the input current has decayed, or has been switched, such that Q_{1} turns off, Q_{2} receives base drive through R_{2}, turning Q_{2} on. This supplies current to the load and the output swings positive to $\mathrm{V}+-\mathrm{V}_{\mathrm{BE}}$.

TL/F/5852-11
FIGURE 1. DS0025 Schematic (One-Half Circuit)
It may be noted that Q_{1} must switch off before Q_{2} begins to supply current, hence high internal transients currents from V - to $\mathrm{V}+$ cannot occur.

Fan-Out Calculation

The drive capability of the DS0025 is a function of system requirements, i.e. speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.
The following equations cover the necessary calculations to enable the fan-out to be calculated for any system condition.

Transient Current

The maximum peak output current of the DS0025 is given as 1.5 A . Average transient current required from the driver can be calculated from:

$$
\begin{equation*}
I=\frac{C_{L}\left(V^{+}-V^{-}\right)}{t_{r}} \tag{1}
\end{equation*}
$$

Typical rise times into 1000 pF load is 25 ns . For $\mathrm{V}^{+}-\mathrm{V}^{-}$ $=20 \mathrm{~V}, \mathrm{I}=0.8 \mathrm{~A}$.

Translent Output Power

The average transient power ($\mathrm{Pac}_{\mathrm{ac}}$) dissipated, is equal to the energy needed to charge and discharge the output capacitive load $\left(C_{L}\right)$ multiplied by the frequency of operation (f).

$$
\begin{equation*}
P_{A C}=C_{L} \times\left(V^{+}-V^{-}\right)^{2} \times f \tag{2}
\end{equation*}
$$

For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{P}_{\mathrm{AC}}=$ 400 mW .

Internal Power
"0" State Negligible (<3 mW)
"1" State

$$
\begin{align*}
P_{\text {int }} & =\frac{\left(V+-V^{-}\right)^{2}}{R_{2}} \times \text { Duty Cycle } \tag{3}\\
& =80 \mathrm{~mW} \text { for } V+-V-=20 \mathrm{~V}, \mathrm{DC}=20 \%
\end{align*}
$$

Package Power Dlsslpation

Total average power $=$ transient output power + internal power.

Example Calculation

How many MM506 shift registers can be driven by a DS0025CN driver at 1 MHz using a clock pulse width of 200 ns, rise time 30-50 ns and 16 V amplitude over the temperature range $0^{\circ}-70^{\circ} \mathrm{C}$?
Power Dissipation:
At $70^{\circ} \mathrm{C}$ the DS0025CN can dissipate 870 mW when soldered into printed circuit board.

Transient Peak Current Limitation:

From equation (1), it can be seen that at 16 V and 30 ns , the maximum load that can be driven is limited to 2800 pF .

Average Internal Power:

Equation (3), gives an average power of 50 mW at 16 V and a 20\% duty cycle.
For one-half of the DS0025C, $870 \mathrm{~mW} \div 2$ can be dissipated.
$435 \mathrm{~mW}=50 \mathrm{~mW}+$ transient output power.
$385 \mathrm{~mW}=$ transient output power.
Using equation (2) at $16 \mathrm{~V}, 1 \mathrm{MHz}$ and 350 mW , each half of the DS0025CN can drive a 1367 pF load. This is less than the load imposed by the transient current limitation of equation (1) and so a maximum load of 1367 pF would prevail.
From the data sheet for the MM506, the average clock pulse load is 80 pF . Therefore the number of devices driven is $1367 / 80$ or 17 registers.
For further information please refer to National Semiconductors Application Note AN-76.

DS0026/DS0056 5 MHz Two Phase MOS Clock Drivers

General Description

DS0026/DS0056 are low cost monolithic high speed two phase MOS clock drivers and interface circuits. Unique circuit design provides both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL outputs and converts them to MOS logic levels. They may be driven from standard 54/74 series and $54 \mathrm{~S} / 74 \mathrm{~S}$ series gates and flip-flops or from drivers such as the DS8830 or DM7440. The DS0026 and DS0056 are intended for applications in which the output pulse width is logically controlled; i.e., the output pulse width is equal to the input pulse width.

The DSO026/DS0056 are designed to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon-gate shift registers, a single device can drive over 10 k bits at 5 MHz . Six devices provide input address and precharge drive for a 8 k by 16-bit 1103 RAM memory system. Information on the correct usage of the DS0026 in these as well as other systems is included in the application note AN-76.
The DS0026 and DS0056 are identical except each driver in the DSO056 is provided with a V_{BB} connection to supply a higher voltage to the output stage. This aids in pulling up the
output when it is in the high state. An external resistor tied between these extra pins and a supply higher than V^{+}will cause the output to pull up to ($\mathrm{V}+-0.1 \mathrm{~V}$) in the off state.
For DS0056 applications, it is required that an external resistor be used to prevent damage to the device when the driver switches low. A typical V_{BB} connection is shown on the next page.
These devices are available in 8 -lead TO-5, one watt copper lead frame 8 -pin mini-DIP, and one and a half watt ceramic DIP, and TO-8 packages.

Features

- Fast rise and fall times-20 ns 1000 pF load
- High output swing-20V
- High output current drive $- \pm 1.5 \mathrm{amps}$
- TTL compatible inputs
\square High rep rate- 5 to 10 MHz depending on power dissipation
■ Low power consumption in MOS " 0 " state- 2 mW
- Drives to 0.4 V of GND for RAM address drive

Connection Diagrams (Top Views)

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Metal Can (TO-5) EIAJ SO Package	$\begin{aligned} & 660 \mathrm{~mW} \\ & 800 \mathrm{~mW} \end{aligned}$
		Operating Temperature Range	
V+ - V- Differential Voltage	22 V	DS0026, DS0056	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Current	100 mA	DS0026C, DS0056C	$0^{\circ} \mathrm{C}$ to $+70^{\circ}$
Input Voltage ($\mathrm{V}_{\mathbb{N}}-\mathrm{V}^{-}$)	5.5 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Peak Output Current	1.5A	Lead Temperature (Soldering, 10 sec.$)$	300
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$		- Derate 8-pin cavity package $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate 14 -pin cavity package $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate metal can (TO-5) package $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate EIAJ SO package $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	
Cavity Package (8-Pin)	1150 mW		
Cavity Package (14-Pin)	1380 mW		
Molded Package	1040 mW		

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Logic "1" Input Voltage	$V^{-}=0 \mathrm{~V}$		2	1.5		V
IIH	Logic "1" Input Current	$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}=2.4 \mathrm{~V}$			10	15	mA
$V_{\text {IL }}$	Logic "0" Input Voltage	$V^{-}=0 \mathrm{~V}$			0.6	0.4	V
If	Logic "0" Input Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=0 \mathrm{~V}$			-3	-10	$\mu \mathrm{A}$
V_{OL}	Logic "1" Output Voltage	$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			$V^{-}+0.7$	$V^{-}+1.0$	V
V_{OH}	Logic "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}-\mathrm{V}-=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}} \geq \mathrm{V}^{+}+1.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	DS0026	$V^{+}-1.0$	$v+-0.8$		V
			DS0056	$V+-0.3$	$v+-0.1$		V
ICC(ON)	"ON" Supply Current (one side on)	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}-\mathrm{V}^{-}=2.4 \mathrm{~V}$ (Note 6)	DS0026		30	40	mA
			DS0056		12	30	mA
ICC(OFF)	"OFF" Supply Current	$\begin{aligned} & V^{+}-V^{-}=20 V \\ & V_{I N}-V^{-}=0 V \end{aligned}$	$70^{\circ} \mathrm{C}$		10	100	$\mu \mathrm{A}$
			$125^{\circ} \mathrm{C}$		10	500	$\mu \mathrm{A}$

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Notes 5 and 7)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ton	Turn-On Delay	(Figure 1)		5	7.5	12	ns
		(Figure 2)			11		ns
tofF	Turn-Off Delay	(Figure 1)			12	15	ns
		(Figure 2)			13		ns
t_{r}	Rise Time	(Figure 1), (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		15	18	ns
			$C_{L}=1000 \mathrm{pF}$		20	35	ns
		(Figure 2), (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		30	40	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		36	50	ns
t_{f}	Fall Time	(Figure 1), (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		12	16	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		17	25	ns
		(Figure 2), (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		28	35	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		31	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics provides conditions for actual device operation.
Note 2: These specifications apply for $\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DS 0026 , DS 0056 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DS0026C, DS0056C

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: All typical values for $T_{A}=25^{\circ} \mathrm{C}$.
Note 5: Rise and fall time are given for MOS logic levels; i.e., rise time is transition from logic " 0 " to logic " 1 " which is voltage fall.
Note 6: $I_{B B}$ for DS0056 is approximately ($V_{B B}-V^{-}$)/1 $\mathrm{k} \Omega$ (for one side) when output is low.
Note 7: The high current transient (as high as 1.5 A) through the resistance of the internal interconnecting V - lead during the output transition from the high state to the low state can appear as negative feedback to the input. If the external interconnecting lead from the driving circuit to V - is electrically long, or has significant dc resistance, it can subtract from the switching response.

Typical VBB Connection

Typical Performance Characteristics

1/2 DS0056

AC Test Circuits and Switching Time Waveforms

FIGURE 1

TL/F/5853-14
FIGURE 2

Typical Applications

AC Coupled MOS Clock Driver

DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

Application Hints

DRIVING THE MM5262 WITH THE

 DS0056 CLOCK DRIVERThe clock signals for the MM5262 have three requirements which have the potential of generating problems for the user. These requirements, high speed, large voltage swing and large capacitive loads, combine to provide ample opportunity for inductive ringing on clock lines, coupling clock signals to other clocks and/or inputs and outputs and generating noise on the power supplies. All of these problems
have the potential of causing the memory system to malfunction. Recognizing the source and potential of these problems early in the design of a memory system is the most critical step. The object here is to point out the source of these problems and give a quantitative feel for their magnitude.

Application Hints (Continued)

Line ringing comes from the fact that at a high enough frequency any line must be considered as a transmission line with distributed inductance and capacitance. To see how much ringing can be tolerated we must examine the clock voltage specification. Figure 6 shows the clock specification, in diagram form, with idealized ringing sketched in. The

FIGURE 6. Clock Waveform
ringing of the clock about the $V_{S S}$ level is particularly critical. If the $\mathrm{V}_{\mathrm{SS}}-1 \mathrm{~V}_{\mathrm{OH}}$ is not maintained, at all times, the infor-
mation stored in the memory could be altered. Referring to Figure 1 , if the threshold voltage of a transistor were -1.3 V , the clock going to $V_{S S}-1$ would mean that all the devices, whose gates are tied to that clock, would be only 300 mV from turning on. The internal circuitry needs this noise margin and from the functional description of the RAM it is easy to see that turning a clock on at the wrong time can have disastrous results.
Controlling the clock ringing is particularly difficult because of the relative magnitude of the allowable ringing, compared to magnitude of the transition. In this case it is 1 V out of 20 V or only 5%. Ringing can be controlled by damping the clock driver and minimizing the line inductance.
Damping the clock driver by placing a resistance in series with its output is effective, but there is a limit since it also slows down the rise and fall time of the clock signal. Because the typical clock driver can be much faster than the worst case driver, the damping resistor serves the useful function of limiting the minimum rise and fall time. This is very important because the faster the rise and fall times, the worse the ringing problem becomes. The size of the damp-

TL/F/5853-11
FIGURE 7. Schematic of $\mathbf{1 / 2}$ DS0056

Application Hints (Continued)

ing resistor varies because it is dependent on the details of the actual application. It must be determined empirically. In practice a resistance of 10Ω to 20Ω is usually optimum.
Limiting the inductance of the clock lines can be accomplished by minimizing their length and by laying out the lines such that the return current is closely coupled to the clock lines. When minimizing the length of clock lines it is important to minimize the distance from the clock driver output to the furthest point being driven. Because of this, memory boards are usually designed with clock drivers in the center of the memory array, rather than on one side, reducing the maximum distance by a factor of 2 .
Using multilayer printed circuit boards with clock lines sandwiched between the $V_{D D}$ and $V_{S S}$ power plains minimizes the inductance of the clock lines. It also serves the function of preventing the clocks from coupling noise into input and output lines. Unfortunately multilayer printed circuit boards are more expensive than two sided boards. The user must make the decision as to the necessity of multilayer boards. Suffice it to say here, that reliable memory boards can be designed using two sided printed circuit boards.
The recommended clock driver for use with the MM4262/ MM5262 is the DS0056/DS0056C dual clock driver. This device is designed specifically for use with dynamic circuits using a substrate, V_{BB}, supply. Typically it will drive a 1000 pF load with 20 ns rise and fall times. Figure 7 shows a schematic of a single driver.
In the case of the MM5262, V^{+}is $\mathrm{a}+5 \mathrm{~V}$ and $\mathrm{V}_{B B}$ is +8.5 V . V_{BB} should be connected to the V_{BB} pin shown in Figure 7 through a $1 \mathrm{k} \Omega$ resistor. This allows transistor Q 8 to

saturate, pulling the output to within a $\mathrm{V}_{\text {CE(SAT) }}$ of the V^{+} supply. This is critical because as was shown before, the $V_{S S}-1.0 \mathrm{~V}$ clock level must not be exceeded at any time. Without the $V_{B B}$ pull up on the base of Q 8 the output at best will be 0.6 V below the V^{+}supply and can be 1 V below the $\mathrm{V}+$ supply reducing the noise margin on this line to zero.
Because of the amount of current that the clock driver must supply to its capacitive load, the distribution of power to the clock driver must be considered. Figure 8 gives the idealized voltage and current waveforms for a clock driver driving a 1000 pF capacitor with 20 ns rise and fall time.
As can be seen the current is significant. This current flows in the V_{DD} and V_{SS} power lines. Any significant inductance in the lines will produce large voltage transients on the power supplies. A bypass capacitor, as close as possible to the clock driver, is helpful in minimizing this problem. This bypass is most effective when connected between the $V_{S S}$ and $V_{D D}$ supplies. A bypass capacitor for each DS0056 is recommended. The size of the bypass capacitor depends on the amount of capacitance being driven. Using a low inductance capacitor, such as a ceramic or silver mica, is most effective. Another helpful technique is to run the $V_{D D}$ and $V_{S S}$ lines, to the clock driver, adjacent to each other. This tends to reduce the lines inductance and therefore the magnitude of the voltage transients.
While discussing the clock driver, it should be pointed out that the DSOO56 is a relatively low input impedance device. It is possible to couple current noise into the input without seeing a significant voltage. Since the noise is difficult to detect with an oscilloscope it is often overlooked.
Lastly, the clock lines must be considered as noise generators. Figure 9 shows a clock coupled through a parasitic coupling capacitor, C_{C}, to eight data input lines being driven by a 7404. A parasitic lumped line inductance, L, is also shown. Let us assume, for the sake of argument, that C_{C} is 1 pF and that the rise time of the clock is high enough to completely isolate the clock transient from the 7404 because of the inductance, L.

FIGURE 9. Clock Coupling
With a clock transition of 20 V the magnitude of the voltage generated across C_{L} is:

$$
V=20 \mathrm{~V} \times \frac{C_{C}}{C_{L}+C_{C}}=20 \mathrm{~V} \times\left(\frac{1}{56+1}\right)=0.35 \mathrm{~V}
$$

This has been a hypothetical example to emphasize that with 20 V low rise/fall time transitions, parasitic elements can not be neglected. In this example, 1 pF of parasitic capacitance could cause system malfunction, because a 7404 without a pull up resistor has typically only 0.3 V of

FIGURE 8. Clock Waveforms (Voltage and Current)

Application Hints (Continued)

noise margin in the " 1 " state at $25^{\circ} \mathrm{C}$. Of course it is stretching things to assume that the inductance, L, completely isolates the clock transient from the 7404. However, it does point out the need to minimize inductance in input/output as well as clock lines.
The output is current, so it is more meaningful to examine the current that is coupled through a 1 pF parasitic capacitance. The current would be:

$$
\mathrm{I}=\mathrm{C}_{\mathrm{C}} \times \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=\frac{1 \times 10^{-12} \times 20}{20 \times 10^{-9}}=1 \mathrm{~mA}
$$

This exceeds the total output current swing so it is obviously significant.

Clock coupling to inputs and outputs can be minimized by using multilayer printed circuit boards, as mentioned previously, physically isolating clock lines and/or running clock lines at right angles to input/output lines. All of these techniques tend to minimize parasitic coupling capacitance from the clocks to the signals in question.
In considering clock coupling it is also important to have a detailed knowledge of the functional characteristics of the device being used. As an example, for the MM5262, coupling noise from the $\phi 2$ clock to the address lines is of no particular consequence. On the other hand the address inputs will be sensitive to noise coupled from $\phi 1$ clock.

Packaging Information

DS3245 Quad MOS Clock Driver

General Description

The DS3245 is a quad bipolar-to-MOS clock driver with TTL compatible inputs. It is designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N -channel MOS memory systems.
Only 2 supplies, $5 \mathrm{~V}_{D C}$ and $12 \mathrm{~V}_{\mathrm{DC}}$, are required without compromising the usual high V_{OH} specification obtained by circuits using a third supply.

The device features 2 common enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive loads at high speeds and uses Schottky-clamped transistors. PNP transistors are used on all inputs, thereby minimizing input loading.

Features

TTL compatible inputs
■ Operates from 2 standard supplies: $5 V_{D C}, 12 V_{D C}$
■ Internal bootstrap circuit eliminates need for external PNP's

- PNP inputs minimize loading
- High voltage/current outputs
- Input and output clamping diodes
\square Control logic optimized for use with MOS memory systems
- Pin and function equivalent to Intel 3245

Logic and Connection Diagrams

Order Number DS3245J or DS3245N See NS Package Number J16A or N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Temperature Under Bias
Storage Temperature
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltage, V_{CC}
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Supply Voltage, VDD -0.5 V to +7 V -0.5 V to +14 V -1.0 V to V_{DD} -1.0 V to $\mathrm{V}_{D D}+1 \mathrm{~V}$
Outputs for Clock Driver

1509 mW 1476 mW

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Supply Voltage, V_{DD}	11.4	12.6	V
Operating Temperature $9 \mathrm{~T}_{\mathrm{A}}$	0	75	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\text {FD }}$	Select Input Load Current	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$			-0.25	mA
$\mathrm{I}_{\text {FE }}$	Enable Input Load Current	$V_{F}=0.45 \mathrm{~V}$			-1.0	mA
I_{RD}	Select Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {RE }}$	Enable Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$			40	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}$			0.45	V
		$\mathrm{l}_{\mathrm{OL}}=-5 \mathrm{~mA}$	-1.0			V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$V_{D D}-0.50$			V
		$\mathrm{I}_{\mathrm{OH}}=5 \mathrm{~mA}$			$V_{D D}+1.0$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, All Inputs				0.8	V
V_{IH}	Input High Voltage, All inputs		2			V
VCLAMP	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-1.0	-1.5	V

Power Supply Current Drain

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Current from $V_{C C}$ Output in High State	$V_{C C}=5.25 \mathrm{~V}$, $V_{D D}=12.6 \mathrm{~V}$		26	34	mA
IDD	Current from $V_{D D}$ Output in High State	$V_{C C}=5.25 \mathrm{~V}$, $V_{D D}=12.6 \mathrm{~V}$		23	30	mA
ICC	Current from $V_{C C}$ Output in Low $S t a t e$	$V_{C C}=5.25 \mathrm{~V}$, $V_{D D}=12.6 \mathrm{~V}$		29	39	mA
IDD	Current from $V_{D D}$ Output in Low State	$V_{C C}=5.25 \mathrm{~V}$, $V_{D D}=12.6 \mathrm{~V}$		13	19	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+^{\circ} \mathrm{C}$ range. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Switching Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Conditions	Min(1)	Typ(${ }^{(2,4 \text {) }}$	Max(3)	Units
t-+	Input to Output Delay	$\mathrm{R}_{\text {SERIES }}=0$	5	11		ns
$t_{\text {DR }}$	Delay Plus Rise Time	$\mathrm{R}_{\text {SERIES }}=0$		20	32	ns
t_{+}	Input to Output Delay	RSERIES $=0$	3	7		ns
$t_{\text {DF }}$	Delay Plus Fall Time	$\mathrm{R}_{\text {SERIES }}=0$		18	32	ns
t_{T}	Output Transition Time	$\mathrm{R}_{\text {SERIES }}=20 \Omega$	10	17	25	ns
$t_{\text {DR }}$	Delay Plus Rise Time	$\mathrm{R}_{\text {SERIES }}=20 \Omega$		27	38	ns
$t_{\text {DF }}$	Delay Plus Fall Time	$\mathrm{R}_{\text {SERIES }}=20 \Omega$		25	38	ns

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(5)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
C_{IN}	Input Capacitance, $\overline{T_{1}}, \overline{I_{2}}, \overline{I_{3}}, \overline{T_{4}}$			5	8	pF
C_{IN}	Input Capacitance, $\overline{\mathrm{R}}, \overline{\mathrm{C}}, \overline{\mathrm{E}} 1, \overline{\mathrm{E}} 2$			8	12	pF

Note 1: $C_{L}=150 \mathrm{pF}$
$\left.\begin{array}{l}\text { Note 2: } C_{L}=200 \mathrm{pF} \\ \text { Note 3: } C_{L}=250 \mathrm{pF}\end{array}\right\}$ These values represent a range of total stray plus clock capacitance for nine 4k RAMs.
Note 4: Typical values are measured at $25^{\circ} \mathrm{C}$.
Note 5: This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BIAS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC Test Circuit and Switching Time Waveforms

DS1628/DS3628 Octal TRI-STATE ${ }^{\circledR}$ MOS Drivers

General Description

The DS1628/DS3628 are octal Schottky memory drivers with TRI-STATE outputs designed to drive high capacitive loads associated with MOS memory systems. The drivers' output $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is specified at 3.4 V to provide additional noise immunity required by MOS inputs. A PNP input structure is employed to minimize input currents. The circuit employs Schottky-clamped transistors for high speed. A NOR gate of two inputs, DIS1 and DIS2, controls the TRI-STATE mode.

Schematic and Connection Diagrams

Features

- High speed capabilities
- Typical 5 ns driving $50 \mathrm{pF} \& 8 \mathrm{~ns}$ driving 500 pF
- TRI-STATE outputs
- High V_{OH} (3.4 V min)
- High density
- Eight drivers and two disable controls for TRI-STATE in a 20 -pin package
- PNP inputs reduce DC loading on bus lines
- Glitch-free power up/down

Truth Table

Disable		Input	Input
DIS 1	DIS 2		
H	H	X	Z
H	X	X	Z
X	H	X	Z
L	L	H	L
L	L	L	H

$H=$ high level
L = low level
$X=$ don't care
$Z=$ high impedance (off)

Order Number DS1628J, DS3628J, DS3628N See NS Package Number J20A or N20A

Typical Application

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7.0 V

Logical " 1 " Input Voltage 7.0 V

Logical "0" Input Voltage
$-1.5 \mathrm{~V}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1667 mW
Molded Package
1832 mW
Lead Temperature (Soldering, 10 seconds) • $300^{\circ} \mathrm{C}$
${ }^{*}$ Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
\quad DS1628	-55	+125	${ }^{\circ} \mathrm{C}$
DS3628	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$V_{\text {IN(1) }}$	Logical "1" Input Voltage				2.0			V
$\mathrm{V}_{\text {IN }(0)}$	Logical '0' Input Voltage						0.8	V
$\underline{\ln (1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				0.1	40	$\mu \mathrm{A}$
$\operatorname{IN}(0)$	Logical '0" Input Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				-180	-400	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-0.7	-1.2	V
V_{OH}	Logical "1" Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS1628	3.4	4.3		V
				DS3628	3.5	4.3		V
VOL	Logical "0" Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS1628		0.25	0.4	V
				DS3628		0.25	0.35	V
VOH	Logical "1" Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		DS1628	2.5	3.9		V
				DS3628	2.7	3.9		V
VOL	Logical " 0 " Output Voltage (With Load)	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{OL}=20 \mathrm{~mA}$	DS1628/DS3628		0.35	0.5	V
1 D	Logical "1" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},($ Note 6$)$				-150		mA
IOD	Logical "0" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}$, (Note 6)				150		mA
Hi-Z	TRI-STATE Output Current	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4V, DIS1 or DIS2 $=2.0 \mathrm{~V}$			-40	0.1	40	$\mu \mathrm{A}$
Icc	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	One DIS Input $=3.0 \mathrm{~V}$ All Other Inputs $=\mathrm{X}$, Outputs at $\mathrm{Hi}-\mathrm{Z}$			90	120	mA
			$\begin{aligned} & \text { DIS1, DIS2 }=0 \mathrm{~V}, \text { Others }=3 \mathrm{~V} \\ & \text { Outputs on } \end{aligned}$			70	100	mA
			All Inputs $=$ OV, Outputs Off			25	50	mA

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 6$)$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ts + -	Storage Delay Negative Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		4.0	5.0	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		6.5	8.0	
ts-+	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.2	5.0	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		6.5	8.0	
${ }^{\text {t }}$ F	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.2	6.0	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		19	22	
t_{R}	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5.2	7.0	ns
			$C_{L}=500 \mathrm{pF}$		20	24	
${ }^{\text {t }} \mathrm{L}$	Delay from Disable Input to Logical " 0 " Level (from High Impedance State)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to } \mathrm{GND} \end{aligned}$	$R_{L}=2 \mathrm{k} \Omega \text { to } V_{C C}$ (Figure 2)		19	25	ns
t_{zH}	Delay from Disable Input to Logical "1" Level (from High Impedance State)	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$R_{L}=2 \mathrm{k} \Omega \text { to } \mathrm{GND}$ (Figure 2)		13	20	ns

Switching Characteristics (Continued) $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 6)							
Symbol	Parameter		nditions	Min	Typ	Max	Units
tLZ	Delay from Disable Input to High Impedance State (from Logical "0" Level)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3) } \end{aligned}$		18	25	ns
t_{Hz}	Delay from Disable Input to High Impedance State (from Logical " 1 " Level)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{GND} \\ & \text { (Figure }) \end{aligned}$		8.5	15	ns

AC Test Circuits and Switching Time Waveforms

$$
\mathbf{t}_{\mathbf{S}+-}, \mathbf{t}_{\mathbf{s}-+}, \mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{t}}
$$

TL/F/5875-5

FIGURE 1

TL/F/5875-7
FIGURE 2

TL/F/5875-8 *ANY ONE OF EIGHT OUTPUTS

TL/F/5875-10
FIGURE 3
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1628 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3628. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages references to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$ and PRR $\leq 1 \mathrm{mHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 5: C_{L} includes probe and jig capacitance.
Note 6: When measuring output drive current and switching response for the DS1628 and DS3628 a 15Ω resistor should be placed in series with each output.

DS3647A Quad TRI-STATE ${ }^{\circledR}$ MOS Memory I/O Register

General Description

The DS3647A is a 4-bit I/O buffer register intended for use in MOS memory systems. This circuit employs a fall-through latch for data storage. This method of latching captures the data in parallel with the output, thus eliminating the delays encountered in other designs. This circuit uses Schottkyclamped transistor logic for minimum propagation delay and employs PNP input transistors so that input currents are low, allowing a large fan-out for this circuit which is needed in a memory system.
Two pins per bit are provided, and data transfer is bi-directional so that the register can handle both input and output data. The direction of data flow is controlled through the input enables. The latch control, when taken low, will cause the register to hold the data present at that time and display it at the outputs. Data can be latched into the register independent of the output disables or EXPANSION input. Either or both of the outputs may be taken to the high-impedance state with the output disables. The EXPANSION pin disables both outputs to facilitate multiplexing with other 1/O registers on the same data lines.

The DS3647A features TRI-STATE outputs. The "B" port outputs are designed for use in bus organized data transmission systems and can sink 80 mA and source -5.2 mA . Data going from port " A " to port " B " and from " B " to port " A " is inverted in the DS3647A.

Features

- PNP inputs minimize loading
- Fall-through latch design
- Propagation delay of only 15 ns
- TRI-STATE outputs
- EXPANSION control
- Bi-directional data flow
- TTL compatible
- Transmission line driver output

Logic and Connection Diagrams

Order Number DS3647AD or DS3647AN See NS Package Number D16C or N16A

Absolute Maximum Ratings (Note 1)
If Millitary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
Input Voltage
Storage Temperature Range
-1.5 V to +7 V

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
1476 mW
Lead Temperature (Soldering, 10 seconds)
*Derate molded package $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(V_{C C}\right)$	4.5	5.5	V
Temperature $\left(T_{A}\right)$ DS3647A 0 +70	${ }^{\circ} \mathrm{C}$		

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$V_{\text {IN(1) }}$	Logic "1" Input Voltage			2.0			V
$\mathrm{V}_{1 N(0)}$	Logic "0' Input Voltage					0.8	V
$\mathrm{I}_{\mathrm{I}(1)}$	Logic "1" Input Current	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	Latch, Disable Inputs		0.1	40	$\mu \mathrm{A}$
			Expansion		0.2	80	$\mu \mathrm{A}$
			A Ports, B Ports		0.2	100	$\mu \mathrm{A}$
			Enable Inputs		0.4	200	$\mu \mathrm{A}$
$\operatorname{IN}(0)$	Logic "0" Input Current	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$	Latch, Disable Inputs		-25	-250	$\mu \mathrm{A}$
			Expansion		-50	-500	$\mu \mathrm{A}$
			A Ports, B Ports		-50	-500	$\mu \mathrm{A}$
			Enable, Inputs		-0.1	-1.25	mA
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-0.6	-1.2	V
$V_{\text {OL(A) }}$	Logic "0" Output Voltage A Ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$			0.4	0.5	V
$V_{\text {OL(B) }}$	Logic "0" Output Voltage B Ports	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{2}=30 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{IOL}^{2}=50 \mathrm{~mA}$		0.4	0.5	V
$\mathrm{V}_{\mathrm{OH}(\mathrm{A})}$	Logic "1" Output Voltage A Ports	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.0	3.4		V
			$V_{C C}=4.5 \mathrm{~V}$	2.5	3.4		V
$\mathrm{V}_{\mathrm{OH}(\mathrm{B})}$	Logic " 1 " Output Voltage B Ports	$\mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA},($ Note 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.9	3.3		V
			$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	2.4	3.3		V
$\operatorname{los}(A)$	Output Short-Circuit Current A Port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, (Note 4)		-50	-80	-120	mA
los(B)	Output Short-Circuit Current B Port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, (Note 4)		-70	-120	-180	mA
Icc	Power Supply Current	Exp $=3 \mathrm{~V}$, A Ports $=0 \mathrm{~V}$, B Ports Open, All Other Pins $=0 \mathrm{~V}$	DS3647A		100	140	mA
		Enable A, Latch $=3 V$, A Ports $=$ OV, B Ports Open, All Other Pins $=0 \mathrm{~V}$	DS3647A		70	105	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.
Note 4: Only one output at a time should be shorted.

Switching Characteristics ($\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DATA TRANSFER B PORT TO A PORT						
$t_{\text {pd0 }}$	Propagation Delay to a Logic "0"	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$, (Figures 1 and 4)		7.5	15	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay to a Logic "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$, (Figures 1 and 4)		6.0	12	ns

A PORT CONTROL FROM OUTPUT DISABLE A INPUT

tLz	Delay to High Impedance from Logic "0"	(Figures 1 and 5)	13	20	ns
$t_{H Z}$	Delay to High Impedance from Logic "1"	(Figures 1 and 6)	14	20	ns
$t_{\text {ZL }}$	Delay to Logic "0" from High Impedance	(Figures 1 and 7)	10	15	ns
t_{zH}	Delay to Logic " 1 " from High Impedance	(Figures 1 and 8)	25	35	ns
DATA TRANSFER A PORT TO B PORT, DS3647A					
$t_{\text {pdo }}$	Propagation Delay to a Logic "0"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega,$ (Figures 2 and 4)	6.5	12	ns
$t_{\text {pd1 }}$	Propagation Delay to a Logic "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega,$ (Figures 2 and 4)	8.0	15	ns

B PORT CONTROL FROM OUTPUT DISABLE B INPUT, DS3647A

t_{LZ}	Delay to High Impedance from Logic "0"	(Figures 2 and 5)		15	25
t_{HZ}	Delay to High Impedance from Logic "1"	(Figures 2 and 6)	ns		
t_{ZL}	Delay to Logic "0" from High Impedance	(Figures 2 and 7)	14	20	ns
t_{ZH}	Delay to Logic "1" from High Impedance	(Figures 2 and 8)	10	16	ns

LATCH SET-UP AND HOLD TIMES, ALL DEVICES

tSET-UP	Set-Up Time of Data Input Before Latch Goes Low	5	0	ns	
$t_{\text {HOLD }}$	Hold Time of Data Input After Latch Goes Low		10	5	ns

Product Description

Device Number	B Port To A Port Function	A Port To B Port Function	A Port Outputs	B Port Outputs
DS3647A	Inverting	Inverting	TRI-STATE	TRI-STATE

Truth Table

Input Enables		Latch	Output Disables		Expansion	A PortsA1-A4	$\begin{aligned} & \text { B Ports } \\ & \text { B1-B4 } \end{aligned}$	Comments
A	B		A	B				
1	0	1	0	0	0	Hi-Z	\bar{A}	Data in on A, output to B
0	1	1	0	0	0	$\overline{\text { B }}$	Hi-Z	Data in on B, output to A
1	0	0	0	0	0	$\mathrm{Hi}-\mathrm{Z}$	$\overline{\mathrm{A}}$	Data stored which is present when latch goes low
0	1	0	0	0	0	\bar{B}	$\mathrm{Hi}-\mathrm{Z}$	Data stored which is present when latch goes low
1	0	x	0	1	0	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Both A and B in $\mathrm{Hi}-\mathrm{Z}$ state, Data in on A, may be latched
0	1	x	1	0	0	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Both A and B in $\mathrm{Hi}-Z$ state, Data in on B, may be latched
x	x	x	X	x	1	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Both A and B in $\mathrm{Hi}-\mathrm{Z}$ state

AC Test Circuits

TL/F/8354-3
FIGURE 1. A Port Load

TL/F/8354-4
FIGURE 2. B Port Load

Note 1: C_{L} includes probe and jig capacitance.

Operating Waveforms

Using TRI-STATE

INPUT
ENABLE

OUTPUT OUTPUT
DISABLE

TRI-STATE Dlsabled

*When the Input Enable makes a negative transition, the output will be indeterminate for a short duration. The negative transition of the Input Enable normally occurs during a don't-care timing state at the output.

Switching Time Waveforms

TL/F/8354-7
Input Characteristics: $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 5 \mathrm{~ns}$ (10% to 90% points), duty cycle $=50 \%, Z_{\text {OUT }}=50 \Omega$
FIGURE 4

FIGURE 5

FIGURE 7

FIGURE 6

TL/F/8354-11

FIGURE 8

Schematic Diagram

TL/F/8354-12
Note. Data pins A1-A4 and B1-B4 consist of
an input and an output tied together.

Typical Application

The diagram below shows how the DS3647A can be used as a register capable of multiplexing data lines.

DS1648/DS3648/DS1678/DS3678 TRI-STATE ${ }^{\circledR}$ TTL to MOS Multiplexers/Drivers

General Description

The DS1648/DS3648 and DS1678/DS3678 are quad 2-input multiplexers with TRI-STATE outputs designed to drive the large capacitive loads (up to 500 pF) associated with MOS memory systems. A PNP input structure is employed to minimize input currents so that driver loading in large memory systems is reduced. The circuit employs Schottkyclamped transistors for high speed and TRI-STATE outputs for bus operation.
The DS1648/DS3648 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast-switching
output. The DS1678/DS3678 has a direct, low impedance output for use with or without an external resistor.

Features

- TRI-STATE outputs interface directly with system-bus
- Schottky-clamped for better ac performance
- PNP inputs to minimize input loading
- TTL compatible
- High-speed capacitive load drivers

■ Built-in damping resistor (DS1648/DS3648 only)

Logic and Connection Diagrams

Order Number DS1648J, DS3648J, DS1678J DS3678J, DS3648N or DS3678N See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$7 V$
Logical "1" Input Voltage 7V
Logical "0" Input Voltage
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1433 mW
Molded Package 1362 mW
Lead Temperature
(Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

- Derate cavity package $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$.
DS1648, DS1678	-55	+125	${ }^{\circ} \mathrm{C}$
DS3648, DS3678	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$\mathrm{V}_{1 / \mathrm{N}(1)}$	Logical "1" Input Voltage				2.0			V
$\mathrm{V}_{\text {IN(}}(1)$	Logical "0" Input Voltage						0.8	V
$l_{\text {IN(1) }}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				0.1	40	$\mu \mathrm{A}$
$\operatorname{IIN}(0)$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$				-50.	-250	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$				-0.75	-1.2	V
V OH	Logical " 1 " Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS1648/DS1678	2.7	3.6		V
				DS3648/DS3678	2.8	3.6		V
V_{OL}	Logical "0" Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS1648/DS1678		0.25	0.4	V
				DS3648/DS3678		0.25	0.35	V
V_{OH}	Logical "1" Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		DS1648	2.4	3.5		V
				DS1678	2.5	3.5		V
				DS3648	2.6	3.5		V
				DS3678	2.7	3.5		V
V_{OL}	Logical " 0 " Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		DS1648		0.6	1.1	V
				DS1678		0.4	0.5	V
				DS3648		0.6	1.0	V
				DS3678		0.4	0.5	V
I_{10}	Logical "1" Drive Current	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},($ (Note 4)				-250		mA
100	Logical "0" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}$, (((te 4)				150		mA
$\mathrm{I}_{\mathrm{Hi}-\mathrm{Z}}$	TRI-STATE Output Current	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4V, Output Control $=2.0 \mathrm{~V}$			-40		40	$\mu \mathrm{A}$
ICC	Power Supply Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Output Control $=3 \mathrm{~V}$ All Other Inputs at 0 V			42	60	mA
			All inputs at OV			20	32	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1648 and DS 1678 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3648 and DS3678. All typical values for $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1678 and DS3678 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1648/DS3648 and need not be added.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{\text {ts }} \pm$	Storage Delay Negative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	7	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		9	12	ns
${ }_{\text {t }} \mp$	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		9	13	ns
t_{F}	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns
$t_{\text {R }}$	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns
$t_{\text {zL }}$	Delay from Output Control Input to Logical " 0 " Level (from High Impedance State)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \text { (Figure 2) } \end{aligned}$			10	15	ns
t_{ZH}	Delay from Output Control Input to Logical "1" Level (from High Impedance State)	$C_{L}=50 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega \text { to } \mathrm{GND}$ (Figure 2)			8	15	ns
$t_{L z}$	Delay from Output Control Input to High Impedance State (from Logical "0" Level)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{VCC},$ (Figure 3)			15	25	ns
t_{Hz}	Delay from Output Control Input to High Impedance State (from Logical "1" Level)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{GND}, \\ & \text { (Figure 3) } \end{aligned}$			10	25	ns
$\mathrm{t}_{5} \pm$	Propagation Delay to Logical "0" Transition When Select Selects A	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			12	15	ns
$\mathrm{t}_{5} \ddagger$	Propagation Delay to Logical "1" Transition When Select Selects A	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			14	17	ns
$\mathrm{t}_{5} \pm$	Propagation Delay to Logical " 0 " Transition When Select Selects B	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			16	20	ns
${ }^{\text {t }} \ddagger$	Propagation Delay to Logical "1" Transition When Select Selects B	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			14	20	ns

Schematic Diagram

AC Test Circuits and Switching Time Waveforms

TL/F/7506-5

TL/F/7506-4
Note 1: The putse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$ and PRR $\leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$. Note 2: C_{L} includes probe and lig capacitance.

FIGURE 1

*Internal on DS1648 and DS3648

TL/F/7506-9

FIGURE 2

TL/F/7506-10
*Internal on DS1648 and DS3648

FIGURE 3
Truth Table

Output Control	Inputs			Outputs
	Select	A	B	
H	X	X	X	Hi-Z
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

[^22]
Typical Applications

Refreshing Using TRI-STATE Counter

DS1649/DS3649/DS1679/DS3679 Hex TRI-STATE® TTL to MOS Drivers

General Description

The DS1649/DS3649 and DS1679/DS3679 are Hex TRI-STATE MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottkyclamped transistor logic for minimum propagation delay, and TRI-STATE outputs for bus operation.
The DS1649/DS3649 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast-switching
output. The DS1679/DS3679 has a direct low impedance output for use with or without an external resistor.

Features

- High speed capabilities
- Typ 9 ns driving 50 pF
- Typ 30 ns driving 500 pF
- TRI-STATE outputs for data bussing
- Built-in 15Ω damping resistor (DS1649/DS3649)
- Same pin-out as DM8096 and DM74366

Schematic Diagram

*DS1649/DS3649 only

Connection Diagram

Dual-In-Line Package

TL/F/7515-2

Top View

Order Number DS1649J, DS3649J, DS1679J, DS3679J, DS3649N or DS3679N See NS Package Number J16A or N16A

Truth Table

Disable Input			
DIS I	DIS 2		
0	0	0	1
0	0	1	0
0	1	X	Hi Z
1	0	X	$\mathrm{Hi}-\mathrm{Z}$
1	1	X	$\mathrm{Hi}-\mathrm{Z}$

$X=$ Don't care
$\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE mode

Switching Characteristics ($\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 4)							
Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {S }} \pm$	Storage Delay Negative Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		4.5	7	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		7.5	12	ns
$\mathrm{t}_{5} \pm$	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		8	13	ns
${ }^{\text {t }}$	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$C_{L}=500 \mathrm{pF}$		22	35	ns
t_{R}	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		21	35	ns
t_{ZL}	Delay from Disable Input to Logical "0" Level (from High Impedance State)	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \text { (Figure 2) } \end{aligned}$			10	15	ns
t_{ZH}	Delay from Disable Input to Logical "1" Level (from High Impedance State)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to GND (Figure 2) } \end{aligned}$			8	15	ns
tLZ	Delay from Disable Input to High Impedance State (from Logical "0" Level)	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \text { (Figure 3) } \end{aligned}$			15	25	ns
$t_{H Z}$	Delay from Disable Input to High Impedance State (from Logical "1" Level)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to GND (Figure 3) } \end{aligned}$			10	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1649 and DS1679 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3649 and DS3679. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When measuring output drive current and switching response for the DS1679 and DS3679 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1649/DS3649 and need not be added.

AC Test Circuits and Switching Time Waveforms

TL/F/7515-5
TL/F/7515-4
FIGURE 1

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 2

FIGURE 3

Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and PRR $\leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$. Note 2: C_{L} includes probe and jig capacitance.

DS1651/DS3651

Quad High Speed MOS Sense Amplifiers

General Description

The DS1651/DS3651 is TTL compatible high speed circuits intended for sensing in a broad range of MOS memory system applications. Switching speeds have been enhanced over conventional sense amplifiers by application of Schottky technology, and TRI-STATE ${ }^{\circledR}$ strobing is incorporated, offering a high impedance output state for bused organization.
The DS1651/DS3651 has active pull-up outputs and offers open collector outputs providing implied "AND" operations.

Connection Diagram

Dual-In-Line Package

Order Number DS1651J, DS3651J or DS3651N See NS Package Number J16A or N16A

Typical Applications

A Typical MOS Memory Sensing Application for a 4 k word by 4 -bit memory arrangement employing 1103 type memory devices

Note: Only 4 devices are required for a 4 k word by 16 -bit memory system.
TL/F/7528-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Supply Voltages

$V_{\text {cc }}$	+7 V DC
$V_{\text {EE }}$	$-7 V_{D C}$
Differential-Mode Input Signal Voltage	
Range, VIDR	$\pm 6 \mathrm{~V}$ DC
Common-Mode Input Voltage Range, $\mathrm{V}_{\text {ICR }}$	R
Strobe Input Voltage, $\mathrm{V}_{1(\mathrm{~S})}$	5.5 V DC
Strobe Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Cavity Package	1509 mW
Molded Package	1476 mW
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
* Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

	Min	Max	Unit
Supply Voltage (V_{CC})			
DS1651	4.5	5.5	V
DS3651	4.75	5.25	V
Supply Voltage (V_{EE})			
DS1651,	-4.5	-5.5	V
DS3651	-4.75	-5.25	V
Operating Temperature (T_{A})		\because	
DS1651	-55	+125	${ }^{\circ} \mathrm{C}$
DS3651	0	+70	${ }^{\circ} \mathrm{C}$
Output Load Current, (lol)		16	mA
Differential Mode Input			
Voltage Range, (VIDR)	-5.0	+5.0	V
Common-Mode Input			
Voltage Range, (VICR)	-3.0	+3.0	V
Input Voltage Range (Any			
Input to GND), (VIR)	-5.0	+3.0	V

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}_{\mathrm{DC}}$, Min $\leq \mathrm{T}_{\mathrm{A}} \leq$ Max, unless otherwise noted (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Unit
$V_{\text {IS }}$	Input Sensitivity, (Note 5) (Common-Mode Voltage Range) $\mathrm{VICR}=-3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+3 \mathrm{~V}$)	$\operatorname{Min} \leq \mathrm{V}_{\mathrm{CC}} \leq \operatorname{Max}$ $\operatorname{Min} \geq V_{E E} \geq \operatorname{Max}$					± 7.0	mV
V_{10}	Input Offset Voltage					2		mV
$\mathrm{I}_{\text {I }}$	Input Bias Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{EE}}=\mathrm{Max}$					20	$\mu \mathrm{A}$
l_{10}	Input Offset Current					0.5		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{IL} \text { (S) }}$	Strobe Input Voltage (Low State)						0.8	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{S})}$	Strobe Input Voltage (High State)				2			V
IIL(S)	Strobe Current (Low State)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$					-1.6	mA
ILLS	Strobe Current (High State)	$\begin{aligned} & V_{C C}=M a x, \\ & V_{E E}=M a x \end{aligned}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	DS3651			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$				1	mA
			$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	DS1651			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				1	mA
V OH	Output Voltage (High States)	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \\ & V_{\mathrm{EE}}=\mathrm{Min} \end{aligned}$	$10=-400 \mu \mathrm{~A}$	DS1651/DS3651	2.4			V
$\mathrm{V}_{\text {OL }}$	Output Voltage (Low State)	$\begin{aligned} & V_{C C}=M i n, \\ & V_{E E}=M i n \\ & \hline \end{aligned}$	$I_{0}=16 \mathrm{~mA}$	DS3651			0.45	V
				DS1651			0.50	
los	Output Current Short Circuit	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, \\ & \text { (Note 4) } \end{aligned}$		DS1651/DS3651	-18		-70	mA
lofF	Output Disable Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}$		DS3651			40	$\mu \mathrm{A}$
				DS1651			100	$\mu \mathrm{A}$
ICC	High Logic Level Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}$				45	60	mA
$\mathrm{IEE}^{\text {E }}$	High Logic Level Supply Current	$V_{C C}=M a x, V_{E E}=$ Max				-17	-30	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{tPHL}^{(\mathrm{D})}$	High-to-Low Logic Level Propagation Delay Time (Differential Inputs)	$5 \mathrm{mV}+V_{\mathrm{IS}}$ (Figure 2)	$\begin{aligned} & \hline \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		23	45	ns
${ }^{\text {PLHLH }}$ (${ }^{\text {(}}$	Low-to-High Logic Level Propagation Delay Time (Differential Inputs)	$5 \mathrm{mV}+V_{I S}$ (Figure 2)	$\begin{aligned} & \hline \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		22	55	ns
${ }^{\text {tPOH(S) }}$	TRI-STATE to High Logic Level Propagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		16	21	ns
$\mathrm{t}_{\text {PHO(S) }}$	High Logic Level to TRI-STATE Propagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \hline \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		7	18	ns
tPOL(S)	TRI-STATE to Low Logic Level Propagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \\ & \hline \end{aligned}$		19	27	ns
tpLO(S)	Low Logic Level to TRI-STATE Propagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		14	29	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 3651 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS 1651 . All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: A parameter which is of primary concern when designing with sense amplifiers is, what is the minimum differential input voltage required at the sense amplifier input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, blas currents, network source resistances, and voltage gain. As a design convenience, the DS1651 and DS3651 are specified to a parameter called input sensitivity ($V_{1 S}$). This parameter takes into consideration input offset currents and bias currents, and guarantees a minimum input differiential voltage to cause a given output logic state with respect to a maximum source impedance of 200Ω at each input.

Switching Time Waveform

Note: Output of channel B shown under test,
TL/F/7528-3 other channels are tested similarly.

Delay	V1	V2	s1	S2	C
tPLO(S)	100 mV	GND	Closed	Closed	15 pF
tpOL(S) $^{t_{\text {PHO(S) }}}$	100 mV	GND	Closed	Open	50 pF
tPOH(S)	GND	100 mV	Closed	Closed	15 pF

C_{L} includes jig and probe capacitance.
EIN waveform characteristics: $t_{\text {TLH }}$ and $t_{T H L} \leq 10$ ns measured 10% to 90%
PRR $=1 \mathrm{MHz}$
Duty cycle $=50 \%$

AC Test Circuits

TL/F/7528-4

TL/F/7528-7

FIGURE 1. Strobe Propagation Delay $t_{\text {PLO(}}\left(\mathbf{s}, \mathrm{t}_{\mathrm{POL}(\mathrm{S})}, \mathrm{t}_{\mathrm{PHL}}(\mathrm{s})\right.$ and $\mathrm{t}_{\mathrm{POH}}(\mathrm{S})$

TL/F/7528-10
Note: Output of channel B shown under test, other channels are tested similarly.
S1 at "B" for DS1651/DS3651, $C_{L}=50 \mathrm{pF}$ total for DS1651/DS3651

ElN waveform characteristics:
TL/F/7528-11
tTLH $_{\text {TL }}$ and thl $_{\text {TH }} \leq 10$ ns measured 10% to 90%
PRR $=1 \mathrm{MHz}$, duty cycle $=500 \mathrm{~ns}$
FIGURE 2. Differentlal Input Propagation Delay $t_{P L H(D)}$ and $t_{P H L}(\mathrm{D})$

Schematic Diagrams

TL/F/7528-12

Typical Applications

Level Detector with Hysteresis

TL/F/7528-15

> Transfer Characteristics and Equations for Level Detector with Hysteresis

TL/F/7528-16
$V_{\text {HIGH }}=V_{\text {REF }}+\frac{R 2\left[V_{O(M A X)}-V_{\text {REF }}\right]}{R 1+\text { R2 }}$
$v_{\text {LOW }}=V_{\text {REF }}+\frac{R 2\left[V_{O(M I N)}-V_{\text {REF }}\right]}{R 1+R 2}$
Hysteresis Loop $\left(V_{H}\right)$
$V_{H}=V_{\text {HIGH }}-V_{\text {LOW }}=\frac{R 2}{R 1+R_{2}}\left[V_{O_{(M A X)}}-V_{V_{(M I N)}}\right]$

Typical Applications (Continued)
4-Blt Parallel A/D Converter

$\overline{2^{0}}=(\bar{A}+B)(\bar{C}+D)(\bar{E}+F)(\bar{H}+J)(\bar{K}+L)(\bar{M}+N)(\bar{P}+R)(\bar{S})$
$\overline{2} \mathbf{T}=(\bar{B}+D)(\bar{F}+J)(\bar{L}+N)(\bar{R})$
$\overline{2^{2}}=(\overline{\mathrm{D}}+\mathrm{J})(\overline{\mathrm{N}})$
$=\mathrm{J}$
Conversion time $\approx 50 \mathrm{~ns}$

DS16149/DS36149, DS16179/DS36179 Hex MOS Drivers

General Description

The DS16149/DS36149 and DS16179/DS36179 are Hex MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and a disable control that places the outputs in the logic "1" state (see truth table). This is especially useful in MOS RAM applications where a set of address lines has to be in the logic " 1 " state during refresh.
The DS16149/DS36149 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast-switching output. The DS16179/DS36179 has a direct low impedance output for use with or without an external resistor.

Features

- High speed capabilities
- Typ 9 ns driving 50 pF
- Typ 29 ns driving 500 pF

■ Built-in 15Ω damping resistor (DS16149/DS36149)

- Same pin-out as DM8096 and DM74366

Schematic Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabillty and specifications.
Supply Voltage
7.0 V
Logical "1" Input Voltage
7.0 V
Logical " 0 " Input Voltage
$-1.5 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1371 mW
Molded Package $\quad 1280 \mathrm{~mW}$
Lead Temperature (Soldering 10 seconds)
*Derate cavity package $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $10.2 \mathrm{~m} / \mathrm{W}^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}(1)$	Logical '1" Input Voltage				2.0			V
$\mathrm{V}_{\text {IN }}(0)$	Logical "0" Input Voltage			. .			0.8	V
$\operatorname{lin}^{(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				0.1	40	$\mu \mathrm{A}$
$\mathrm{IIN}^{(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$				-50	-250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-0.75	-1.2	V
V_{OH}	Logical " 1 " Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS16149/DS16179	3.4	4.3		V
				DS36149/DS36179	3.5	4.3		V
V_{OL}	Logical " 0 " Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS16149/DS16179		0.25	0.4	V
				DS36149/DS36179		0.25	0.35	V
V_{OH}	Logical " 1 " Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		DS16149	2.4	3.5		V
				DS16179	2.5	3.5		V
				DS36149	2.6	3.5		V
				DS36179	2.7	3.5		V
V_{OL}	Logical "0" Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		DS16149		0.6	1.1	V
				DS16179		0.4	0.5	V
				DS36149		0.6	1.0	V
				DS36179		0.4	0.5	V
IID	Logical "1" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, (Note 4)				-250		mA
100	Logical "0" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V},($ Note 4)				150		mA
ICC	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	Disable Inputs All Other Inputs	$\begin{aligned} & =0 \mathrm{~V} \\ & =3 \mathrm{~V} \end{aligned}$		33	60	mA
			All Inputs $=0 \mathrm{~V}$		14		20	mA

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 4)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ts \pm	Storage Delay Negative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.5	7	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		7.5	12	ns
${ }^{\text {t }} \ddagger$	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		8	13	ns
t_{F}	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns

Switching Characteristics $\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 4) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
t_{R}	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		26	35	ns
${ }_{\text {L }}^{\text {LH }}$	Delay from Disable Input to Logical "1"	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{Gnd}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 2) } \end{aligned}$			15	22	ns
t_{HL}	Delay from Disable Input to Logical "0"	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, (Figure } 3 \text {) } \end{aligned}$			11	18	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 16149 and DS16179 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS36149 and DS36179. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When measuring output drive current and switching response for the DS16179 and DS36179 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS16149/DS36149 and need not be added.

Connection Diagram

Order Number DS16149J, DS36149J, DS16179J,
DS36179J, DS36149N or DS36179N
See NS Package Number J16A or N16A

AC Test Circuits and Switching Time Waveforms

FIGURE 1

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/7553-4

TL/F/7553-5
FIGURE 3
-Internal on DS16149 and DS36149
Note 1: The pulse generator has the following characteristics: Z Z $=50 \Omega$ and $P R R \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

Typical Applications

National Semiconductor

DS55325/DS75325
 Memory Drivers

General Description

The DS55325 and DS75325 are monolithic memory drivers which feature high current outputs as well as internal decoding of logic inputs. These circuits are designed for use with magnetic memories

The circuit contains two 600 mA sink-switch pairs and two 600 mA source-switch pairs. Inputs A and B determine source selection while the source strobe (S 1) allows the selected source turn on. In the same manner, inputs C and D determine sink selection while the sink strobe (S2) allows the selected sink turn on.
Sink-output collectors feature an internal pull-up resistor in parallel with a clamping diode connected to $\mathrm{V}_{\mathrm{CC} 2}$. This protects the outputs from voltage surges associated with switching inductive loads.
The source stage features Node R which allows extreme flexibility in source current selection by controlling the amount of base drive to each source transistor. This method of setting the base drive brings the power associated with the resistor outside the package thereby allowing the circuit

Connection Diagram

Top View
Order Number DS55325J,
DS75325J or DS75325N See NS Package Number J14A or N14A
to operate at higher source currents for a given junction temperature. If this method of source current setting is not desired, then Nodes R and RINT can be shorted externally, activating an internal resistor connected from $\mathrm{V}_{\mathrm{CC} 2}$ to Node R. This provides adequate base drive for source currents up to 375 mA with $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$ or 600 mA with $\mathrm{V}_{\mathrm{CC} 2}=24 \mathrm{~V}$. The DS55325 operates over the fully military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, while the DS75325 operates from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

m 600 mA output capability

- 24 V output capability
- Dual sink and dual source outputs
- Fast switching times
- Source base drive externally adjustable
- Input clamping diodes
- TTL compatible

Truth Table

Address Inputs				Strobe Inputs		Outputs			
Source		Sink		Source	Sink	Source		Sink	
A	B	C	D	S1	S2	W	X	Y	Z
L	H	X	X	L	H	ON	OFF	OFF	OFF
H	L	X	X	L	H	OFF ON	OFF OFF		
X	X	L	H	H	L	OFF OFF	ON	OFF	
X	X	H	L	H	L	OFF OFF	OFF	ON	
X	X	X	X	H	H	OFF OFF	OFF OFF		
H	H	H	H	X	X	OFF OFF	OFF OFF		

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Irrelevant
Note: Not more than one output is to be on at any one time.

Absolute Maximum Ratings (Note 1)

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage $\mathrm{V}_{\mathrm{CC} 1}$ (Note 5)
 Supply Voltage $\mathrm{V}_{\mathrm{CC2}}$ (Note 5)

Input Voltage (Any Address or Strobe Input)
5.5 V

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package
 Molded Package

1509 mW
1476 mW

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Temperature $\left(T_{A}\right)$ DS55325 -55 +125 DS75325 0 +70${ }^{\circ} \mathrm{C}$			

(Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{IH}	High Level Input Voltage	(Figures 1 and 2)			2			V
$V_{\text {IL }}$	Low Level Input Voltage	(Figures 3 and 4)					0.8	V
V_{1}	Input Clamp Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Figure } 5 \text {) } \end{aligned}$				-1.3	-1.7	V
IOFF	Source Collectors Terminal "Off" State Current	$V_{C C 1}=4.5 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}$ (Figure 1)	Full Range	DS55325			500	$\mu \mathrm{A}$
				DS75325			200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		3	150	$\mu \mathrm{A}$
				DS75325		3	200	$\mu \mathrm{A}$
V_{OH}	High Level Sink Output Voltage	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}$, lout $=0 \mathrm{~mA}$ (Figure 2)			19	23		V
$V_{\text {SAT }}$	Saturation Voltage Source Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{I}_{\mathrm{SOURCE}} \approx-600 \mathrm{~mA} \\ & \text { (Figure 3) (Notes } 4 \text { and 6) } \end{aligned}$	Full Range				0.9	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		0.43	0.7	V
				DS75325		0.43	0.75	V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage Sink Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{I}_{\mathrm{SINK}} \approx 600 \mathrm{~mA} \text { (Figure 4) } \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	Full Range				0.9	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		0.43	0.7	V
				DS75325		0.43	0.75	V
$!$	Input Current at Maximum Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC1}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V}(\text { Figure } 5) \end{aligned}$	Address Inputs				1	mA
			Strobe Inputs				2	mA
I_{H}	High Level Input Current	$\begin{aligned} & V_{\mathrm{CC1}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC2}}=24 \mathrm{~V}, \\ & \mathrm{~V}_{1}=2.4 \mathrm{~V} \text { (Figure 5) } \end{aligned}$	Address Inputs			3	40	$\mu \mathrm{A}$
			Strobe Inputs			6	80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V}(\text { Figure } 5) \end{aligned}$	Address Inputs			-1	-1.6	mA
			Strobe Inputs			-2	-3.2	mA
ICC OFF	Supply Current, All Sources and Sinks "Off"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1} 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Figure } 6 \text {) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC} 1}$			14	22	mA
			$\mathrm{V}_{\text {CC2 }}$			7.5	20	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current from V_{CC}, Either Sink "On"	$\begin{aligned} & V_{C C 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=50 \mathrm{~mA}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Figure } 7) \end{aligned}$				55	70	mA
ICC2	Supply Current from VCC2, Either Source "On"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, I_{\text {SOURCE }}=-50 \mathrm{~mA} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Figure 8) } \end{aligned}$				32	50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the $\mathrm{DS55325}$ and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75325. All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.
Note 5: Voltage values are with respect to network ground terminal.
Note 6: These parameters must be measured using pulse techniques. $t_{\mathrm{W}}=200 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {PLL }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}(\text { Figure 9) } \end{aligned}$	Source Collectors		25	50	ns
			Sink Outputs		20	45	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC2}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \text { (Figure 9) } \end{aligned}$	Source Collectors		25	50	ns
			Sink Outputs		20	45	ns
${ }^{\text {t }}$ L LH	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \text { Source Outputs, } \mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Figure 10) } \end{aligned}$		55		ns
			Sink Outputs, $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=24 \Omega \text { (Figure 9) }$		7	15	ns
${ }^{\text {t }}$ THL	Transition Time, High-to-Low Level Output	$C_{L}=25 \mathrm{pF}$	$\begin{aligned} & \text { Source Outputs, } \mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Figure 10) } \end{aligned}$		7		ns
			Sink Outputs, $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=24 \Omega(\text { Figure } 9)$		9	20	ns
$\mathrm{ts}^{\text {S }}$	Storage Time, Sink Outputs	$\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ (Figure 9)			15	30	ns

DC Test Circuits

FIGURE 1. Ioff

DC Test Circuits (Continued)

Test Table

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
2 V	4.5 V	GND	V_{OH}	OPEN
GND	4.5 V	2 V	$\mathrm{~V}_{\mathrm{OH}}$	OPEN
4.5 V	2 V	GND	OPEN	V_{OH}
4.5 V	GND	2 V	OPEN	V_{OH}

FIGURE 2. V_{IH} and V_{OH}

TL/F/9755-5
Note 1: Figure 3 and 4 parameters must be measured using pulse techniques, $\mathrm{t}_{\mathrm{W}}=200 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
FIGURE 3. $\mathbf{V}_{\text {IL }}$ and Source $\mathbf{V}_{\text {SAT }}$

TL/F/9755-6
Note 1: Figure 3 and 4 parameters must be measured using pulse techniques, $t_{w}=200 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
Test Table

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
0.8 V	4.5 V	0.8 V	R_{L}	OPEN
4.5 V	0.8 V	0.8 V	OPEN	R_{L}

FIGURE 4. $V_{I L}$ and Sink $V_{S A T}$

TL/F/9755-7
Test Tables

Apply $\mathrm{V}_{\mathbf{I}}=\mathbf{5 . 5 V}$ Measure $\mathbf{I}_{\mathbf{I}}$	Ground	Apply 5.5V
Apply $\mathrm{I}_{\mathbf{I}}=\mathbf{2 . 4 V}$ Measure $\mathbf{I}_{\mathbf{I H}}$		
A	S1	B, C, S2, D
S1	A, B	C, S2, D
B	S1	A, C, S2, D
C	S2	A, S1, B, D
S2	C, D	A, S1, B
D	S2	A, S1, B, C

$V_{1}, \mathrm{I}_{\text {IL }}$	
Apply $\mathrm{V}_{\mathrm{I}}=\mathbf{0 . 4 V}$ Measure ILL	Apply 5.5V
Apply $I_{\mathrm{I}}=\mathbf{- 1 0} \mathbf{m A}$ Measure $\mathbf{V}_{\mathbf{I}}$	
A	S1, B, C, S2, D
S1	A, B, C, S2, D
B	A, S1, C, S2, D
C	A, S1, B, S2, D
S2	$A, S 1, B, C, D$
D	A, S1, B, C, S2

FIGURE 5. $V_{I}, I_{1}, I_{I H}$ and $I_{I L}$

FIGURE 6. ICC1 (OFF) and ICC2 (OFF)

FIGURE 7. ICC1, Either Sink On

FIGURE 8. ICC2, Elther Source On

DC Test Circuits (Continued)

TL/F/9755-11
Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$, duty cycle $\leq 1 \%$.
Note 2: C_{L} includes probe and jig capacitance.

Voltage Waveforms

TL/F/9755-12
Test Table

Parameter	Output Under Test	Input	Connect to 5V
$t_{\text {PLH }}$ and $\mathrm{t}_{\text {PHL }}$	Source Collectors	A and S1	B, C, D and S2
		B and S1	A, C, D and S2
$t_{\text {PLH }}, t_{\text {PHL }}$, ${ }^{\text {tTLH }}, \mathrm{t}_{\mathrm{THL}}$ and t_{s}	Sink Output Y	C and S 2	A, B, D and S1
	Sink Output Z	D and S 2	A, B, C and S1

FIGURE 9. Switching Times

TL/F/9755-13
Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$, duty cycle $\leq 1 \%$.
Note 2: C_{L} includes probe and jig capacitance.

TL/F/9755-14
Test Table

Parameter	Output Under Test	Input	Connect to 5V
$t_{T L H}$ and $t_{T H L}$	Source Output W	A and $S 1$	B, C, D and $S 2$
	Source Output X	B and $S 1$	A, C, D and $S 2$

FIGURE 10. Transition Times of Source Outputs

Schematic Diagram

TL/F/9755-1

Applications

EXTERNAL RESISTOR CALCULATION

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one DS75325 delivers load current (L). The sink-output transistor of another DS75325 sinks this current.
The value of the external pull-up resistor $\left(\mathrm{R}_{\mathrm{ext}}\right)$ for a particular memory application may be determined using the following equation:

$$
\begin{equation*}
R_{e x t}=\frac{16\left[V_{\mathrm{CC} 2(\operatorname{Min})}-V_{S}-2.2\right]}{I_{L}-1.6\left[V_{\mathrm{CC} 2(\text { Min })}-V_{S}-2.9\right]} \tag{1}
\end{equation*}
$$

where: $R_{\text {ext }}$ is in $k \Omega$,
$V_{C C 2(M i n)}$ is the lowest expected value of $V_{C C 2}$ in volts, V_{S} is the source output voltage in volts with respect to ground, I_{L} is in mA.
The power dissipated in resistor $R_{\text {ext }}$ during the load current pulse duration is calculated using Equation 2.

$$
\begin{equation*}
P_{\text {Rext }} \approx \frac{I_{L}}{16}\left[V_{C C 2(M i n)}-V_{S}-2\right] \tag{2}
\end{equation*}
$$

where: $P_{\text {Rext }}$ is in mW .

After solving for $R_{\text {ext }}$, the magnitude of the source collector current (lcs) is determined from Equation 3.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CS}} \approx 0.94 \mathrm{I} \tag{3}
\end{equation*}
$$

where: ICS is in mA.
As an example, let $\mathrm{V}_{\mathrm{CC} 2(\mathrm{Min})}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}$ while I of 500 mA flows. Using Equation 1:

$$
R_{\text {ext }}=\frac{16(20-3-2.2)}{500-1.6(20-3-2.9)}=0.5 \mathrm{k} \Omega
$$

and from Equation 2:

$$
\mathrm{P}_{\mathrm{Rext}} \approx \frac{500}{16}[20-3-2] \approx 470 \mathrm{~mW}
$$

The amount of the memory system current source (ICS) from Equation 3 is:

$$
I_{C S} \approx 0.94(500) \approx 470 \mathrm{~mA}
$$

In this example the regulated source-output transistor base current through the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) and the source gate is approximately 30 mA . This current and I_{CS} comprise I_{L}.

DS75361 Dual TTL-to-MOS Driver

General Description

The DS75361 is a monolithic integrated dual TTL-to-MOS driver interface circuit. The device accepts standard TTL input signals and provides high-current and high-voltage output levels for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103 and MM5270 and MM5280.
The DS75361 operates from standard TTL 5V supplies and the MOS $V_{S S}$ supply in many applications. The device has been optimized for operation with V_{CC} supply voltage from 16 V to 20 V ; however, it is designed for use over a much wider range of V_{CC}.

Features

- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- $V_{C C 2}$ supply voltage variable over wide range to 24 V
- Diode-clamped inputs
- TTL compatible
- Operates from standard bipolar and MOS supplies
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

Schematic and Connection Diagrams

Order Number DS75361J or DS75361N
See NS Package Number J08A or N08E

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Range of $\mathrm{V}_{\mathrm{CC} 1}$ (Note 1)	-0.5 to 7 V
Supply Voltage Range of $\mathrm{V}_{\mathrm{CC} 2}$	-0.5 V to 25 V
Input Voltage	5.5 V
Inter-Input Voltage (Note 4)	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Molded Package	

Lead Temperature 1/16 inch from Case for 60 Seconds: J Package $300^{\circ} \mathrm{C}$ Lead Temperature 1/16 inch from Case for 10 Seconds: N or P Package $200^{\circ} \mathrm{C}$ *Derate molded package $8.2 \mathrm{~mW} /{ }^{\circ}$ above about $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC} 1}\right)$	4.75	5.25	V
Supply Voltage $\left(\mathrm{V}_{\mathrm{C} 2}\right)$	4.75	24	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	High-Level Input Voltage			2			V
$V_{\text {IL }}$	Low-Level Input Voltage					0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1}=-12 \mathrm{~m}$				-1.5	V
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC} 2}-1$	$\mathrm{V}_{\mathrm{CC} 2}-0.7$		V
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC} 2}-2.3$	$\mathrm{V}_{\mathrm{CC} 2}-1.8$		V
VOL	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.15	0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V} \text { to } 24 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$			0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$				$\mathrm{VCC2}+1.5$	V
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{1} \mathrm{H}$	High-Level Input Current	$V_{1}=2.4 V$	A Inputs			40	$\mu \mathrm{A}$
			E Input			80	$\mu \mathrm{A}$
ILL	Low-Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	A Inputs		-1	-1.6	mA
			E Input		-2	-3.2	mA
$\operatorname{lcC1}(\mathrm{H})$	Supply Current from VCC1, Both Outputs High	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \\ \text { All Inputs at } 0 \mathrm{~V}, & \text { No Load } \end{array}$			2	4	mA
${ }^{1} \mathrm{CC2}(\mathrm{H})$	Supply Current from VCC2, Both Outputs High					0.5	mA
$\mathrm{I}_{\text {CC1(L) }}$	Supply Current from VCC1, Both Outputs Low	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ \text { All Inputs at } 5 \mathrm{~V}, & \text { No Load } \end{array}$			16	24	mA
l $\mathrm{CC} 2(\mathrm{~L})$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, Both Outputs Low				7	11	mA
ICC2(S)	Supply Current from VCC2, Stand-by Condition	$V_{C C 1}=0$ All Inputs	$V_{\mathrm{CC} 2}=24 \mathrm{~V}$ No Load			0.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Untess otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS75361}$. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $V_{C C 2}=20 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: This rating applies between the A input of either driver and the common E input.

Switching Characteristics $\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{DLH}}$	Delay Time, Low-to-High Level Output	$\begin{gathered} C_{L}=390 \mathrm{pF} \\ \mathrm{R}_{\mathrm{D}}=10 \Omega \end{gathered}$ (Figure 1)		11.	20	ns
${ }_{\text {t }}{ }_{\text {DHL }}$	Delay Time, High-to-Low Level Output			10	18	ns
${ }_{\text {t }}$ LH	Transition Time, Low-to-High Level Output			25	40	ns
$\mathrm{t}_{\text {THL }}$	Transition Time, High-to-Low Level Output			21	35	ns
tPLH	Propagation Delay Time, Low-to-High Level Output		10	36	55	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay Time, High-to-Low Level Output		10	31	47	ns

AC Test Circuit and Switching Time Waveforms

TL/F/7557-4

TL/F/7557-5
Note 1: The pulse generator has the following characteristics: $P R R=1 \mathrm{MHz}, Z_{O U T}=50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 1. Switching Times, Each Driver

Typical Applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The
optimum value of the damping resistor to use depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

TL/F/7557-6

Note: $R_{D} \approx 10 \Omega$ to 30Ω (Optional).
FIGURE 3. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot in Certain DS75361 Applications

FIGURE 2. Interconnection of DS75361 Devices with 1103 RAM

Thermal Information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75361 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75361 as a function of load capacitance and frequency. Average power dissipated by this driver can be broken into three components:

$$
P_{T(A V)}=P_{D C}(A V)+P_{C(A V)}+P_{S(A V)}
$$

where $P_{D C(A V)}$ is the steady-state power dissipation with the output high or low, $\mathrm{P}_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $\mathrm{P}_{\mathrm{S}(\mathrm{AV})}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.
The power components per driver channel are:

$$
\begin{aligned}
& P_{D C(A V)}=\frac{P_{L} t_{L}+P_{H} t_{H}}{T} \\
& P_{C(A V)} \approx C_{C^{2} f} \\
& P_{S(A V)}=\frac{P_{L H} L_{L H}+P_{H L} t_{H L}}{T}
\end{aligned}
$$

where the times are defined in Figure 4.
$P_{L}, P_{H}, P_{L H}$ and $P_{H L}$ are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75361 is so designed that P_{S} is a negligible portion of P_{T} in most applications. Except at very high frequencies, $t_{L}+t_{H}>t_{L H}+t_{H L}$ so that P_{S} can be neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from both channels are then added together to obtain total device power.
The following example illustrates this power calculation technique. Assume both channels are operating identically with $\mathrm{C}=200 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}$, and duty cycle $=60 \%$ outputs high ($\mathrm{t}_{\mathrm{H}} / \mathrm{T}=0.6$). Also, assume $\mathrm{V}_{\mathrm{OH}}=19.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.1 \mathrm{~V}, \mathrm{P}_{\mathrm{S}}$ is negligible, and that the current from V_{CC} is negligible when the output is high.

On a per-channel basis using data sheet values:

$$
\begin{align*}
& \mathrm{PDC}(\mathrm{AV})= {\left[(5 \mathrm{~V})\left(\frac{2 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{2}\right)\right](0.6)+} \\
& {\left[(5 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{7 \mathrm{~mA}}{2}\right)\right](0.4) } \tag{0.4}\\
& \mathrm{P}_{\mathrm{DC}(\mathrm{AV})}= 47 \mathrm{~mW} \text { per channel } \\
& \mathrm{PC}_{\mathrm{C}(\mathrm{AV})} \approx(200 \mathrm{pF})(19.2 \mathrm{~V})^{2}(2 \mathrm{MHz}) \\
& \mathrm{P}_{\mathrm{C}(\mathrm{AV})} \approx 148 \mathrm{~mW} \text { per channel. }
\end{align*}
$$

For the total device dissipation of the two channels:
$P_{T(A V)} \approx 2(47+148)$
$\mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 390 \mathrm{~mW}$ typical for total package.

TL/F/7557-8

FIGURE 4. Output Voltage Waveform

DS75365 Quad TTL-to-MOS Driver

General Description

The DS75365 is a quad monolithic integrated TTL-to-MOS driver and interface circuit that accepts standard TTL input signals and provides high-current and high-voltage output levels suitable for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103.
The DS75365 operates from the TTL 5V supply and the MOS $V_{S S}$ and $V_{B B}$ supplies in many applications. This device has been optimized for operation with V_{CC} supply voltage from 16 V to 20 V , and with nominal $\mathrm{V}_{\mathrm{CC} 3}$ supply voltage from 3 V to 4 V higher than V_{CC}. However, it is designed so as to be usable over a much wider range of V_{CC} and V_{CC}. In some applications the V_{CC} power supply can be eliminated by connecting the $V_{C C 3}$ to the $V_{C C 2}$ pin.

- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- Interchangeable with Intel 3207
- $V_{C C 2}$ supply voltage variable over side range to 24 V maximum
- $V_{C C 3}$ supply voltage pin available
- $V_{C C 3}$ pin can be connected to $V_{C C 2}$ pin in some applications
- TTL compatible diode-clamped inputs
- Operates from standard bipolar and MOS supply voltages
- Two common enable inputs per gate-pair
- High-speed switching
a Transient overdrive minimizes power dissipation
- Low standby power dissipation

Features

- Quad positive-logic NAND TTL-to-MOS driver
- Versatile interface circuit for use between TTL and high-current, high-voltage systems

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Positive Logic: $\mathbf{Y}=\overline{\mathbf{A} \cdot E 1 \cdot E 2}$
Order Number DS75365J, DS75365N or DS75365WM
See NS Package Number J16A, M16B or N16A

TL/F/7560-1

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availabillty and specifications.
Supply Voltage Range of V_{CC}
Supply Voltage Range of V_{CC}
-0.5 V to 7 V

Supply Voltage Range of V_{CC}
nput Voltage
Inter-Input Voltage (Note 4)
-0.5 V to 25 V
-0.5 V to 30 V
5.5 V

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
Molded Package
SO Package
1509 mW

Lead Temperature (Soldering, 10 sec)

* Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$, derate SO package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage			2			V
V_{IL}	Low-Level Input Voltage					0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{l}_{1}=-12$				-1.5	V
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CS} 2}+3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$V_{\mathrm{CC} 2}-0.3$	$\mathrm{V}_{\mathrm{CC} 2}-0.1$		V
		$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC} 2}-1.2$	$\mathrm{V}_{\mathrm{CC} 2}-0.9$		V
		$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC} 2}-1$	$V_{\text {CC2 }}-0.7$		V
		$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC} 2}-2.3$	$\mathrm{V}_{\mathrm{CC} 2}-1.8$		V
V_{OL}	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{IOL}=10 \mathrm{~mA}$			0.15	0.3	V
		$\mathrm{V}_{\mathrm{CC} 3}=15 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$			0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$				$\mathrm{V}_{\mathrm{CC} 2}+1.5$	V
1	Input Current at Maximum Input Voltage	$V_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{1} \mathrm{H}$	High-Level Input Current	$V_{1}=2.4 V$	A Inputs			40	$\mu \mathrm{A}$
			E1 and E2 Inputs			80	$\mu \mathrm{A}$
IIL	Low-Level Input Current	$V_{1}=0.4 V$	A Inputs		-1	-1.6	mA
			E1 and E2 Inputs		-2	-3.2	mA
$\mathrm{I}_{\mathrm{CC1}}^{(H)}$	Supply Current from V_{CC}, All Outputs High	$\left\{\begin{array}{l} V_{C C 1}=5.25 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V} \\ V_{C C 3}=28 \mathrm{~V}, \text { All Inputs at } \mathrm{V}, \text { No Load } \end{array}\right.$			4	8	mA
$\mathrm{ICC2}^{(H)}$	Supply Current from $V_{\text {CC2 }}$, All Outputs High				-2.2	+0.25	mA
					-2.2	-3.2	mA
${ }^{\text {CC3 }}$ (H)	Supply Current from VCC3, All Outputs High				2.2	3.5	mA
$\mathrm{ICC1}_{(L)}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 1}$, All Outputs Low	$V_{C C 1}=5.25 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}$ $V_{C C 3}=28 \mathrm{~V}$, All Inputs at 5 V , No Load			31	47	mA
ICC2(L)	Supply Current from V CC_{2}, All Outputs Low					3	mA
$\mathrm{I}_{\text {CC3(L) }}$	Supply Current from VCC3, All Outputs Low				16	25	mA
$1 \mathrm{CC2}(\mathrm{H})$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, All Outputs High	$\begin{aligned} & V_{C C 1}=5.25 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V} \\ & V_{C C 3}=24 \mathrm{~V}, \text { All Inputs at } 0 \mathrm{~V}, \text { No Load } \end{aligned}$				0.25	mA
${ }^{\text {I CC3 }}$ (H)	Supply Current from $\mathrm{V}_{\mathrm{CC}} 3$, All Outputs High					0.5	mA

Electrical Characteristics (Notes 2,3) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$1 \mathrm{CC2(S)}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, Stand-By Condition	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC} 3}=24 \mathrm{~V}, \text { All Inputs at } 5 \mathrm{~V}, \text { No Load } \end{aligned}$			0.25	mA
$\mathrm{I}_{\mathrm{CC3}(\mathrm{~S})}$	Supply Current from V_{CC}, Stand-By Condition				0.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS75365}$. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $V_{C C 2}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: This rating applies between any two inputs of any one of the gates.

Switching Characteristics $\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{DLH}}$	Delay Time, Low-to-High Level Output	$\begin{aligned} & C_{L}=200 \mathrm{pF} \\ & R_{D}=24 \Omega \end{aligned}$ (Figure 1)		11	20	ns
${ }_{\text {t }}$	Delay Time, High-to-Low Level Output			10	18	ns
${ }_{\text {t }}^{\text {TLH }}$	Transition Time, Low-to-High Level Output			20	33	ns
$\mathrm{t}_{\text {THL }}$	Transition Time, High-to-Low Level Output			20	33	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output		10	31	48	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output		10	30	46	ns

AC Test Circuit and Switching Time Waveforms

TL/F/7560-4
Note 1: The pulse generator has the following characteristics: $\mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {OUT }}=58 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 1. Switching Times, Each Driver

Typical Performance Characteristics

Propagation Delay Time, High-to-Low Level Output vs Load Capacitance

Typical Applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

Note: $R_{D} \cong 10 \Omega$ to 30Ω (Optional)

> TL/F/7560-8

FIGURE 3. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot in Certain DS75365 Applications

Thermal Information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75365 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75365 as a function of load capacitance and frequency. Average power dissipation by this driver can be broken into three components:

$$
\mathrm{P}_{\mathrm{T}(\mathrm{AV})}=\mathrm{P}_{\mathrm{DC}(\mathrm{AV})}+\mathrm{P}_{\mathrm{C}(\mathrm{AV})}+\mathrm{P}_{\mathrm{S}(\mathrm{AV})}
$$

where $P_{D C(A V)}$ is the steady-state power dissipation with the output high or low, $\mathrm{P}_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $\mathrm{PS}_{\mathrm{S}}(\mathrm{AV})$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$
\begin{aligned}
& P_{D C(A V)}=\frac{P_{L t_{L}}+P_{H^{t} H}}{T} \\
& P_{C(A V)} \cong C V c^{2 f} \\
& P_{S(A V)}=\frac{P_{L H^{t} L H}+P_{H L} t_{H L}}{T}
\end{aligned}
$$

where the times are as defined in Figure 4.
$\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{H}}, \mathrm{P}_{\mathrm{LH}}$, and P_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.
The DS75365 is so designed that P_{S} is a negligible portion of P_{T} in most applications. Except at very high frequencies, $t_{L}+t_{H}>t_{L H}+t_{H L}$ so that P_{S} can be neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from all four channels are then added together to obtain total device power.
The following example illustrates this power calculation technique. Assume all four channels are operating identically with $\mathrm{C}=100 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}$, $V_{\text {CC3 }}=24 \mathrm{~V}$ and duty cycle $=60 \%$ outputs high ($\mathrm{t}_{\mathrm{H}} / \mathrm{T}=0.6$). Also, assume $\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.1 \mathrm{~V}, \mathrm{P}_{\mathrm{S}}$ is negligible, and that the current from $\mathrm{V}_{\mathrm{CC} 2}$ is negligible when the output is low.
On a per-channel basis using data sheet values:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{DC}(\mathrm{AV})=}[& (5 \mathrm{~V})\left(\frac{4 \mathrm{~mA}}{4}\right)+(20 \mathrm{~V})\left(\frac{-2.2 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V}) \\
& \left.\left(\frac{2.2 \mathrm{~mA}}{4}\right)\right](0.6)+\left[(5 \mathrm{~V})\left(\frac{31 \mathrm{~mA}}{4}\right)+\right. \\
& \left.(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{4}\right)\right](0.4)
\end{aligned}
$$

$P_{D C(A V)}=58 \mathrm{~mW}$ per channel
$\mathrm{P}_{\mathrm{C}(\mathrm{AV})} \cong(100 \mathrm{pF})(19.9 \mathrm{~V})^{2}(2 \mathrm{MHz})$
$P_{\mathcal{U}(A V)} \cong 79 \mathrm{~mW}$ per channel.
For the total device dissipation of the four channels:
$\mathrm{P}_{\mathrm{T}(\mathrm{AV})} \cong 4(58+79)$
$\mathrm{P}_{\mathrm{T}(\mathrm{AV})} \cong 548 \mathrm{~mW}$ typical for total package.

FIGURE 4. Output Voltage Waveform

National Semiconductor Application Note 76

B. Siegel
M. Scott

The DS0026 is a high speed, low cost, monolithic clock driver intended for applications above one megacycle. Table II illustrates its performance characteristics while its unique circuit design is presented in Appendix II. The DS0056 is a variation of the DS0026 circuit which allows the system designer to modify the output performance of the circuit. The DS0056 can be connected (using a second power supply) to increase the positive output voltage level and reduce the effect of cross coupling capacitance between the clock lines in the system. Of course the above are just examples of the many different types that are commercially available. Other National Semiconductor MOS interface circuits are listed in Appendix III.
The following section will hopefully allow the design engineer to select and apply the best circuit to his particular application while avoiding common system problems.

PRACTICAL ASPECTS OF USING MOS CLOCK DRIVERS

Package and Heat Sink Selection

Package type should be selected on power handling capability, standard size, ease of handling, availability of sockets, ease or type of heat sinking required, reliability and cost. Power handling capability for various packages is illustrated in Table III. The following guidelines are recommended:

TABLE I. DSO025 Characteristics

Parameter	Conditions $\left(V^{+}-V^{-}\right)=17 \mathrm{~V}$	Value	Units
t_{ON}		15	ns
$\mathrm{t}_{\mathrm{OFF}}$	$\mathrm{C}_{\mathrm{IN}}=0.0022 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega$	30	ns
t_{r}	$\mathrm{C}_{\mathrm{L}}=0.0001 \mu \mathrm{~F}, \mathrm{RO}=50 \Omega$	25	ns
t_{f}		150	ns
Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-1 \mathrm{~mA}$	$\mathrm{~V}+-0.7$	V
Negative Output Voltage Swing	$\mathrm{I}_{\mathrm{N}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$	$\mathrm{~V}^{-}+1.0$	V
On Supply Current $\left(\mathrm{V}^{+}\right)$	$\mathrm{I}_{\mathbb{N}}=10 \mathrm{~mA}$	17	mA

TABLE II. DS0026 Characteristics

Parameter	Conditions $\left(V^{+}-V^{-}\right)=17 \mathrm{~V}$	Value	Units
t_{ON}		7.5	ns
$\mathrm{t}_{\mathrm{OFF}}$	$\mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega$	7.5	ns
t_{r}	$\mathrm{RO}=50 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	25	ns
t_{f}		25	ns
Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-1 \mathrm{~mA}$	$\mathrm{~V}+-0.7$	V
Negative Output Voltage Swing	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$	$\mathrm{~V}-+0.5$	V
On Supply Current $\left(\mathrm{V}^{+}\right)$	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}$	28	mA

The TO-5 ("H") package is rated at 750 mW still air (derate at $200^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$) soldered to PC board. This popular cavity package is recommended for small systems. Low cost (about 10 cents) clip-on heat sink increases driving capability by 50%.
The 8-pin (" N ") molded mini-DIP is rated at 600 mW still air (derate at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$ soldered to PC board (derate at 1.39 W). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)
The TO-8 (" G ") package is rated at 1.5 W still air (derate at $100^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$) and 2.3 W with clip-on heat sink (Wakefield type 215-1.9 or equivalent-derate at $15 \mathrm{~mW} /$ ${ }^{\circ} \mathrm{C}$). Selected for its power handling capability and moderate cost, this hermetic package will drive very large systems at the lowest cost per bit.

Power Dissipation Considerations

The amount of registers that can be driven by a given clock driver is usually limited first by internal power dissipation. There are four factors:

1. Package and heat sink selection
2. Average dc power, $P_{D C}$
3. Average ac power, P_{AC}
4. Numbers of drivers per package, n

From the package heat sink, and maximum ambient temperature one can determine $\mathrm{P}_{\text {MAX }}$, which is the maximum internal power a device can handle and still operate reliably. The total average power dissipated in a driver is the sum of dc power and ac power in each driver times the number of drivers. The total of which must be less than the package power rating.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{DISS}}=\mathrm{n} \times\left(\mathrm{P}_{\mathrm{AC}}+\mathrm{P}_{\mathrm{DC}}\right) \leq \mathrm{P}_{\mathrm{MAX}} \tag{1}
\end{equation*}
$$

Average dc power has three components: input power, power in the "OFF" state (MOS logic " 0 ") and power in the "ON" state (MOS logic " 1 ").

$$
\begin{equation*}
P_{D C}=P_{I N}+P_{\text {OFF }}+P_{O N} \tag{2}
\end{equation*}
$$

For most types of clock drivers, the first two terms are negligible (less than 10 mW) and may be ignored.
Thus:

$$
P_{D C} \cong P_{O N}=\frac{\left(V^{+}-V^{-}\right)^{2}}{R e q} \times(D C)
$$

where:
$\mathrm{V}^{+}-\mathrm{V}^{-}=$Total voltage across the driver
Req $\quad=$ Equivalent device resistance in the "ON" state

$$
\begin{equation*}
=V^{+}-V^{-} / I_{S(O N)} \tag{3}
\end{equation*}
$$

DC

$$
\begin{aligned}
& =\text { Duty Cycle } \\
& =\frac{\text { "ON" Time }}{\text { "ON" Time + "OFF" Time }}
\end{aligned}
$$

For the DS0025, Req is typically $1 \mathrm{k} \Omega$ while Req is typically 600Ω for the DS0026. Graphical solutions for PDC appear in Figure 1. For example if $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$, Req $=$ 500Ω, and $D C=25 \%$, then $P_{D C}=145 \mathrm{~mW}$. However, if the duty cycle was only $5 \%, P_{D C}=29 \mathrm{~mW}$. Thus to maximize the number of registers that can be driven by a given
clock driver as well as minimizing average system power, the minimum allowable clock pulse width should be used for the particular type of MOS register.

TL/F/7322-1

FIGURE 1. PDC vs Duty Cycle

In addition to $P_{D C}$, the power driving a capacitive load is given approximately by:

$$
\begin{equation*}
P_{A C}=\left(V^{+}-V^{-}\right)^{2} \times f \times C_{L} \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& f=\text { Operating frequency } \\
& C_{L}=\text { Load capacitance }
\end{aligned}
$$

Graphical solutions for $P_{A C}$ are illustrated in Figure 2. Thus, any type of clock driver will dissipate internally 290 mW per MHz per thousand pF of load. At 5 MHz , this would be 1.5 W for a 1000 pF load. For long shift register applications, the driver with the highest package power rating will drive the largest number of bits.

TL/F/7322-2
FIGURE 2. PAC vs PRF
Combining equations (1), (2), (3) and (4) yields a criterion for the maximum load capacitance which can be driven by a given driver:

$$
\begin{equation*}
C_{L} \leq \frac{1}{f}\left[\frac{P_{M A X}}{n\left(V^{+}-V^{-}\right)^{2}}-\frac{(D C)}{R e q}\right] \tag{5}
\end{equation*}
$$

As an example, the DS0025CN can dissipate 890 mW at $T_{A}=70^{\circ} \mathrm{C}$ when soldered to a printed circuit board. Req is approximately equal to 1 k . For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$, $f=1 \mathrm{MHz}$, and $\mathrm{dc}=20 \%, \mathrm{C}_{\mathrm{L}}$ is:

$$
C_{L} \leq \frac{1}{10^{6}}\left[\frac{\left(890 \times 10^{-3}\right)}{(2)(17)^{2}}-\frac{0.2}{1 \times 10^{3}}\right]
$$

$C_{L} \leq 1340 \mathrm{pF}$ (each driver)

A typical application might involve driving an MM5013 triple 64-bit shift register with the DSOO25. Using the conditions above and the clock line capacitance of the MM5013 of 60 pF , a single DS 0025 can drive $1340 \mathrm{pF} / 60 \mathrm{pF}$, or ap. proximately 20 MM5013's.
In summary, the maximum capacitive load that any clock driver can drive is determined by package type and rating, heat sink technique, maximum system ambient temperature, ac power (which depends on frequency, voltage across the device, and capacitive load) and dc power (which is principally determined by duty cycle).

Rise and Fall Time Considerations

In general rise and fall times are determined by (a) clock driver design, (b) reflected effects of heavy external load, and (C) peak transient current available. Details of these are included in Appendixes I and II. Figures AI-3, AI-4, All-2 and All-3 illustrate performance under various operating conditions. Under light loads, performance is determined by internal design of the driver; for moderate loads, by load C_{L} being reflected (usually as $\mathrm{C}_{\mathrm{L} / \beta}$) into the driver; and for large loads by peak output current where:

$$
\frac{\Delta V}{\Delta T}=\frac{\text { lout PEAK }}{C_{L}}
$$

Logic rise and fall times must be known in order to assure non-overlap of system timing.
Note the definition of rise and fall times in this application note follow the convention that rise time is the transition from logic " 0 " to logic " 1 " levels and vice versa for fall times. Since MOS logic is inverted from normal TTL, "rise time" as used in this note is "voltage fall" and "fall time" is "voltage rise".

Power Supply Decoupling

Although power supply decoupling is a wide spread and accepted practice, the question often rises as to how much and how often. Our own experience indicates that each clock driver should have at least $0.1 \mu \mathrm{~F}$ decoupling to ground at the V^{+}and V^{-}supply leads. Capacitors should be located as close as is physically possible to each driver. Capacitors should be non-inductive ceramic discs. This decoupling is necessary because currents in the order of 0.5 to 1.5 amperes flow during logic transitions.
There is a high current transient (as high as 1.5 A) during the output transition from high to low through the V - lead. If the external interconnecting wire from the driving circuit to the V - lead is electrically long or has significant dc resistance, the current transient will appear as negative feedback and subtract from the switching response. To minimize this effect, short interconnecting wires are necessary and high frequency power supply decoupling capacitors are required if V - is different from the ground of the driving circuit.

Clock Line Overshoot and Cross Talk

Overshoot: The output waveform of a clock driver can, and often does, overshoot. It is particularly evident on faster drivers. The overshoot is due to the finite inductance of the clock lines. Since most MOS registers require that clock signals not exceed V_{SS}, some method must be found in large systems to eliminate overshoot. A straightforward approach is shown in Figure 3. In this instance, a small damping resistor is inserted between the output of the clock driver and the load. The critical value for R_{S} is given by:

$$
\begin{equation*}
R_{S}=2 \sqrt{\frac{L_{S}}{C_{L}}} \tag{6}
\end{equation*}
$$

TL/F/7322-3

FIGURE 3. Use of Damping Resistor to Eliminate Clock Overshoot

In practice, analytical determination of the value for R_{S} is rather difficult. However, R_{S} is readily determined empirically , and typical values range in value between 10 and 50Ω.
Use of the damping resistor has the added benefit of essentially unloading the clock driver; hence a greater number of loads may often be driven by a given driver. In the limit, however, the maximum value that may be used for R_{S} will be determined by the maximum allowable rise and fall time needed to assure proper operation of the MOS register. In short:

$$
\begin{equation*}
\mathrm{t}_{\text {(MAX })}=\mathrm{t}_{(\text {(MAX })} \leq 2.2 \mathrm{R}_{S} \mathrm{C}_{\mathrm{L}} \tag{7}
\end{equation*}
$$

One last word of caution with regard to use of a damping resistor should be mentioned. The power dissipated in R_{S} can approach $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2} \mathrm{fC}_{\mathrm{L}}$ and accordingly the resistor wattage rating may be in excess of 1 W . There are, obviously, applications where degradation of t_{r} and t_{f} by use of damping resistors cannot be tolerated. Figure 4 shows a practical circuit which will limit overshoot to a diode drop. The clamp network should physically be located in the center of the distributed load in order to minimize inductance between the clamp and registers.

TL/F/7322-4
FIGURE 4. Use of High Speed Clamp to Limit Clock Overshoot

Cross Talk: Voltage spikes from ϕ_{1} may be transmitted to ϕ_{2} (and vice versa) during the transition of ϕ_{1} to MOS logic. " 1 ". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Figure 5 illustrates the problem.

TL/F/7322-5
FIGURE 5. Clock LIne Cross Talk
The negative going transition of ϕ_{1} (to MOS logic " 1 ") is capacitively coupled via C_{M} to ϕ_{2}. Obviously, the larger C_{M} is, the larger the spike. Prior to ϕ_{1} 's transition, Q1 is "OFF" since only $\mu \mathrm{A}$ are drawn from the device.
The DSO056 connected as shown in Figure 6 will minimize the effect of cross talk. The external resistors to the higher power supply pull base of a Q1 up to a higher level and forward bias the collector base junction of Q1. In this bias condition the output impedance of the DS0056 is very low and will reduce the amplitude of the spikes.

TL/F/7322-6
FIGURE 6. Use of DS0056 to Minimize Clock Line Cross Talk

Input Capacitive Coupling

Generally, MOS shift registers are powered from +5 V and -12 V supplies. A level shift from the TTL levels $(+5 \mathrm{~V})$ to MOS levels $(-12 \mathrm{~V})$ is therefore required. The level shift could be made utilizing a PNP transistor or zener diode. The disadvantage to dc level shifting is the increased power dissipation and propagation delay in the level shifting device. Both the DS0025, DS0026 and DS0056 utilize input capacitors when level shifting from TTL to negative MOS capacitors. Not only do the capacitors perform the level shift function without inherent delay and power dissipation, but as will be shown later, the capacitors also enhance the performance of these circuits.

CONCLUSION

The practical aspects of driving MOS memories with low cost clock drivers has been discussed in detail. When the design guide lines set forth in this paper are followed and reasonable care is taken in circuit layout, the DS0025, DS0026 and DS0056 provide superior performance for most MOS input interface applications.

REFERENCES

1. Bert Mitchell, "New MOS Clock Driver for MOS Shift Registers," National Semiconductor, AN-18, March 1969.
2. John Vennard, "MOS Clock Drivers, " National Semiconductor, MB-9, December 1969.
3. Dale Mrazek, "MOS Delay Lines," National Semiconductor, AN-25, April 1969.
4. Dale Mrazek, "MOS Clock Savers," National Semiconductor, MB-5.
5. Dale Mrazek, "Silicon Disc's Challenge Magnetic Disc Memories," EDN/EEE Magazine, Sept. 1971.
6. Richard Percival, "Dynamic MOS Shift Registers Can Also Simulate Stack and Silo Memories," Electronics Magazine, November 8, 1971.
7. Bapat and Mrazek, "Dynamic MOS Random Access Memory System Considerations," National Semiconductor, AN-50, August 1971.
8. Don Femling, "Using the MM5704 Keyboard Interface in Keyboard Systems," National Semiconductor, AN-52.

APPENDIXI

DS0025 Circult Operation

The schematic diagram of the DS0025 is shown in Figure 7. With the TTL driver in the logic "0" state Q1 is "OFF" and Q2 is "ON" and the output is at approximately one $V_{B E}$ below the V^{+}supply.

TL/F/7322-7
FIGURE 7. DS0025 Schematic (One-Half Circuit)

When the output of the TTL driver goes high, current is supplied to the base of Q1, through $\mathrm{C}_{\mathbb{I}}$, turning it "ON." As the collector of Q1 goes negative, Q2 turns "OFF." Diode CR2 assures turn-on of Q1 prior to Q2's turn-off minimizing current spiking on the $\mathrm{V}+$ line, as well as providing a low impedance path around Q2's base emitter junction.
The negative voltage transition (to MOS logic "1") will be quite linear since the capacitive load will force Q1 into its linear region until the load is discharged and Q1 saturates. Turn-off begins when the input current decays to zero or the output of the TTL driver goes low. Q1 turns "OFF" and Q2 turns "ON" charging the load to within a V_{BE} of the $\mathrm{V}+$ supply.

Rise Time Considerations

The logic rise time (voltage fall) of the DS0025 is primarily a function of the ac load, C_{L}, the available input current and total voltage swing. As shown in Figure 8, the input current

TL/F/7322-8
FIGURE 8. Rise Time Model for the DSOO25
must charge the Miller capacitance of Q1, C_{TC}, as well as supply sufficient base drive to $Q 1$ to discharge C_{L} rapidly. By inspection:

$$
\begin{align*}
& I_{I N}=I_{M}+I_{B}+I_{R 1} \tag{Al-1}\\
& I_{N} \cong I_{M}+I_{B}, \text { for } I_{M}>I_{R 1} \text { and } I_{B}>I_{R 1} \\
& I_{B}=I_{I N}-C_{T C} \frac{\Delta V}{\Delta t} \tag{Al-2}
\end{align*}
$$

If the current through R2 is ignored,

$$
\begin{equation*}
I_{C}=I_{B} h_{F E Q 1}=I_{L}+I_{M} \tag{Al-3}
\end{equation*}
$$

where:

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{t}}
$$

Combining equations $\mathrm{Al}-1, \mathrm{Al}-2$, and $\mathrm{Al}-3$ yields:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}\left[C_{L}+C_{T C}\left(h_{F E Q 1}+1\right)\right]=h_{F E Q 1} l_{I N} \tag{Al-4}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{r} \cong \frac{\left[C_{L}+\left(h_{\text {FEQ } 1}+1\right) C_{T C}\right] \Delta V}{h_{F E Q 1} l_{I N}} \tag{Al-5}
\end{equation*}
$$

Equation (Ai-5) may be used to predict t_{r} as a function of C_{L} and $\Delta \mathrm{V}$. Values for C_{TC} and h_{FE} are 10 pF and 25 pF respectively. For example, if a DM7440 with peak output current of 50 mA were used to drive a DS0025 loaded with 1000 pF , rise times of:

$$
\frac{(1000 \mathrm{pF}+250 \mathrm{pF})(17 \mathrm{~V})}{(50 \mathrm{~mA})(20)}
$$

or 21 ns may be expected for $\mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$. Figure 9 gives rise time for various values of C_{L}.

TL/F/7322-9
FIGURE 9. Rise Time vs C_{L} for the DS0025

Fall Time Considerations

The MOS logic fall time (voltage rise) of the DS0025 is dictated by the load, C_{L}, and the output capacitance of Q1. The fall time equivalent circuit of DS0025 may be approximated

TL/F/7322-10
FIGURE 10. Fall Time Equivalent Circuit
with the circuit of Figure 10. In actual practice, the base drive to Q 2 drops as the output voltage rises toward V^{+}. A rounding of the waveform occurs as the output voltage reaches to within a volt of V^{+}. The result is that equation (Al-7) predicts conservative values of t_{f} for the output voltage at the beginning of the voltage rise and optimistic values at the end. Figure 11 shows t_{f} as function of C_{L}.

FIGURE 11. DS0025 Fall Time vs C_{L}

Assuming $\mathrm{h}_{\text {FE2 }}$ is a constant of the total transition:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}=\frac{\left(\frac{V^{+}-V^{-}}{2 R 2}\right)}{C_{T C Q 1}+C_{L} / h_{F E Q 1+1}} \tag{Al-6}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{f} \approx 2 R 2\left(C_{T C Q 1}+\frac{C_{L}}{h_{F E Q+1}}\right) \tag{Al-7}
\end{equation*}
$$

DS0025 Input Drive Requirements

Since the DS0025 is generally capacitively coupled at the input, the device is sensitive to current not input voltage. The current required by the input is in the 50-60 mA region. It is therefore a good idea to drive the DSOO25 from TTL line drivers, such as the DM7440 or DM8830. It is possible to drive the DS0025 from standard 54/74 series gates or flipflops but $t_{O N}$ and t_{r} will be somewhat degraded.

Input Capacitor Selection

The DS0025 may be operated in either the logically controlled mode (pulse width out \cong pulse width in) or $\mathrm{C}_{\text {IN }}$ may be used to set the output pulse width. In the latter mode a long pulse is supplied to the DS0025.

TL/F/7322-12
FIGURE 12. DS0025 Input Current Waveform
The input current is of the general shape as shown in Figure 12. $\mathrm{I}_{\mathrm{MAX}}$ is the peak current delivered by the TTL driver into a short circuit (typically $50-60 \mathrm{~mA}$). Q1 will begin to turn-off when I_{N} decays below $\mathrm{V}_{\mathrm{BE}} / \mathrm{R1}$ or about 2.5 mA . In general:

$$
\begin{equation*}
I_{I N}=I_{M A X} e^{-t / R 0} C_{I N} \tag{Al-8}
\end{equation*}
$$

where:
$\mathrm{RO}=$ Output impedance of the TTL driver
$\mathrm{C}_{\mathrm{IN}}=$ Input coupling capacitor

Substituting $I_{I N}=I_{\text {MIN }}=\frac{V_{B E}}{R 1}$ and solving for t_{1} yields:

$$
\begin{equation*}
t_{1}=R O C_{I N} \ln \frac{l_{M A X}}{I_{M I N}} \tag{Al-9}
\end{equation*}
$$

The total pulse width must include rise and fall time considerations. Therefore, the total expression for pulse width becomes:

$$
\begin{align*}
t_{\text {PW }} & \cong \frac{t_{r}+t_{f}}{2}+t_{1} \\
& =\frac{t_{r}+t_{f}}{2}+R 0 C_{I N} \ln \frac{I_{\text {MAX }}}{I_{\text {MIN }}} \tag{Al-10}
\end{align*}
$$

The logic " 1 " output impedance of the DM7440 is approximately 65Ω and the peak current (${ }_{\mathrm{MAX}}$) is about 50 mA . The pulse width for $\mathrm{C}_{\mathrm{IN}}=2,200 \mathrm{pF}$ is:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{PW}} \cong & \frac{25 \mathrm{~ns}+150 \mathrm{~ns}}{2}+(65 \Omega)(2200 \mathrm{pF}) \mathrm{ln} \\
& \frac{50 \mathrm{~mA}}{2.5 \mathrm{~mA}}=517 \mathrm{~ns}
\end{aligned}
$$

A plot of pulse width for various types of drivers is shown in Figure 13. For applications in which the output pulse width is logically controlled, C_{IN} should be chosen 2 to 3 times larger than the maximum pulse width dictated by equation (Al-10).

DC Coupled Operation

The DS0025 may be direct-coupled in applications when level shifting to a positive value only. For example, the MM1103 RAM typically operates between ground and +20 V . The DS0025 is shown in Figure 14 driving the address or precharge line in the logically controlled mode.
If DC operation to a negative level is desired, a level translator such as the DS7800 or DH0034 may be employed as shown in Figure 15. Finally, the level shift may be accomplished using PNP transistors are shown in Figure 16.

TL/F/7322-13
FIGURE 13. Output PW Controlled by C_{IN}

TL/F/7322-14
FIGURE 14. DC Coupled DS0025 Driving 1103 RAM

TL/F/7322-15
FIGURE 15. DC Coupled Clock Driver Using DHOO34

FIGURE 16. Transistor Coupled DS0025 Clock Driver

APPENDIX II

DS0026 Circuit Operation

The schematic of the DS0026 is shown in Figure 17. The device is typically AC coupled on the input and responds to input current as does the DS0025. Internal current gain allows the device to be driven by standard TTL gates and flipflops.
With the TTL input in the low state Q1, Q4, Q5, and Q6 are "OFF" allowing Q7 and Q8 to come "ON." R9 assures that the output will pull up to within a $V_{B E}$ of $V+$ volts. When the TTL input starts toward logic " 1, " current is supplied via C_{IN} to the bases of Q5 and Q6 turning them "ON." Simultaneously, Q7 and Q8 are snapped "OFF." As the input volt-
age rises (to about 1.2V), Q1 and Q4 turn-on. Multiple emitter transistor Q1 provides additional base drive to Q5 and Q6 assuring their complete and rapid turn-on. Since Q7 and Q8 were rapidly turned "OFF" minimal power supply current spiking will occur when Q9 comes "ON."

FIGURE 17. DS0026 Schematic (One-Half Circuit)

Q4 now provides sufficient base drive to Q9 to turn it "ON." The load capacitance is then rapidly discharged toward V^{-}. Diodes D6 and D7 prevent avalanching Q7's and Q8's base-emitter junction as the collectors of Q5 and Q6 go negative. The output of the DS0026 continues negative stopping about 0.5 V more positive than V^{-}.
When the TTL input returns to logic " 0 ," the input voltage to the DS0026 goes negative by an amount proportional to the charge on C_{IN}. Transistors Q2 and Q3 turn-on, pulling stored base charge out of Q4 and Q9 assuring their rapid turn-off. With Q1, Q5, Q6 and Q9 "OFF," Darlington connected Q7 and Q8 turn-on and rapidly charge the load to within a $V_{B E}$ of V^{+}.

Rise TIme Consideratlons

Predicting the MOS logic rise time (voltage fall) of the DS0026 is considerably involved, but a reasonable approximation may be made by utilizing equation (Al-5), which reduces to:

$$
t_{r} \cong\left[C_{L}+250 \times 10^{-12}\right] \Delta V
$$

For $C_{L}=1000 \mathrm{pF}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}, \mathrm{t}_{\mathrm{r}} \simeq 21 \mathrm{~ns}$. Figure 18 shows DS0026 rise times vs C_{L}.

TL/F/7322-18
FIGURE 18. Rise Time vs Load Capacitance

Fall Time Considerations

The MOS logic fall time of the DS0026 is determined primarily by the capacitance Miller capacitance of Q5 and Q1 and R5. The fall time may be predicted by:

$$
\begin{align*}
t_{f} & \cong(2.2)(R 5)\left(C_{S}+\frac{C_{L}}{h_{F E}{ }^{2}}\right) \\
& \cong\left(4.4 \times 10^{3}\right)\left(C_{S}+\frac{C_{L}}{h_{F E}^{2}}\right) \tag{All-2}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{S}} & =\text { Capacitance to ground seen at the base of Q3 } \\
& =2 \mathrm{pF} \\
\mathrm{~h}_{\mathrm{FE}}{ }^{2} & =\left(\mathrm{h}_{\text {FEQ3 }}+1\right)\left(\mathrm{h}_{\text {FEQ4 }}+1\right) \\
& \cong 500
\end{aligned}
$$

For the values given and $C_{L}=1000 \mathrm{pF}, \mathrm{t}_{\mathrm{f}} \cong 17.5 \mathrm{~ns}$. Figure 19. gives t_{f} for various values of C_{L}.

TL/F/7322-19

FIGURE 19. Fall Time vs Load Capacitance

DS0026 Input Drive Requirements

The DS0026 was designed to be driven by standard 54/74 elements. The device's input characteristics are shown in Figure 20. There is breakpoint at $\mathrm{V}_{\mathbb{N}} \cong 0.6 \mathrm{~V}$ which corresponds to turn-on of Q1 and Q2. The input current then rises with a slope of about 600Ω (R2 || R3) until a second breakpoint at approximately 1.2 V is encountered, corresponding to the turn-on of Q5 and Q6. The slope at this point is about 150Ω (R1 || R2 || R3 || R4).

TL/F/7322-20
FIGURE 20. Input Current vs Input Voltage
The current demanded by the input is in the $5-10 \mathrm{~mA}$ region. A standard 54/74 gate can source currents in excess of 20 mA into 1.2 V . Obviously, the minimum " 1 " output voltage of 2.5 V under these conditions cannot be maintained. This means that a 54/74 element must be dedicated to driving $1 / 2$ of a DS0026. As far as the DS0026 is concerned, the current is the determining turn-on mechanism not the voltage output level of the 54/74 gate.

Input Capacitor Selection

A major difference between the DS0025 and DS0026 is that the DS0026 requires that the output pulse width be logically controlled. In short, the input pulse width \cong output pulse width. Selection of $\mathrm{C}_{\mathbb{I N}}$ boils down to choosing a capacitor small enough to assure the capacitor takes on nearly full charge, but large enough so that the input current does not drop below a minimum level to keep the DS0026 "ON." As before:

$$
\begin{equation*}
t_{1}=R O C_{I N} \ln \frac{I_{M A X}}{I^{\prime \prime} M I N} \tag{All-3}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IN}}=\frac{t_{1}}{R O \ln \frac{I_{\mathrm{MAX}}}{I_{\mathrm{MIN}}}} \tag{All-4}
\end{equation*}
$$

In this case R0 equals the sum of the TTL gate output impedance plus the input impedance of the DS0026 (about 150Ω). IMIN from Figure 21 is about 1 mA . A standard 54/74 series gate has a high state output impedance of about 150Ω in the logic " 1 " state and an output (short circuit) current of about 20 mA into 1.2 V . For an output pulse width of 500 ns ,

$$
\mathrm{C}_{\mathrm{IN}}=\frac{500 \times 10^{-9}}{(150 \Omega+150 \Omega) \ln \frac{20 \mathrm{~mA}}{1 \mathrm{~mA}}}=560 \mathrm{pF}
$$

TL/F/7322-21
FIGURE 21. Logical "1" Output Voltage vs Source Current

In actual practice it's a good idea to use values of about twice those predicted by equation (All-4) in order to account for manufacturing tolerances in the gate, DS0026 and temperature variations.
A plot of optimum value for C_{IN} vs desired output pulse width is shown in Figure 22.

FIGURE 22. Suggested Input Capacitance vs Output Pulse Width

DC Coupled Applications

The DS0026 may be applied in direct coupled applications. Figure 23 shows the device driving address or pre-charge lines on an MM1103 RAM.

FIGURE 23. DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)
For applications requiring a dc level shift, the circuits of Figure 24 or 25 are recommended.

FIGURE 24. Transistor Coupled MOS Clock Driver

TL/F/7322-25
FIGURE 25. DC Coupled MOS Clock Driver

APPENDIX III		
MOS Interface Circuits	DS8800	Dual TTL to negative level converter.
MOS Clock Drivers	DS88L12	Active pull-up TTL to positive high level
MH0007 Direct coupled, single phase, TTL compatible clock driver.	DS3647A	MOS converter gates. Quad TRI-STATE ${ }^{\circledR}$ MOS driver I/O regis-
MH0009 Two phase, direct or ac coupled clock driver.		ter.
MH0012 10 MHz , single phase direct coupled clock driver.	$\begin{aligned} & \text { DS3648/DS3678 } \\ & \text { DS3649/DS3679 } \end{aligned}$	TRI-STATE MOS driver multiplexer. Hex TRI-STATE MOS driver.
MH0013 Two phase, ac coupled clock driver.	DS36149/	Hex TRI-STATE MOS driver.
DS0025C Low cost, two phase clock driver.	DS36179	
DS0026C Low cost, two phase, high speed clock driver.	MOS to TTL Converters and Sense Amps	
DS3674 Quad MOS clock driver.	DS75107,	Dual sense amp for MM1103 1k MOS
DS75361 Dual TTL-to-MOS driver.	Voltage Regulators for MOS Systems	
DS75365 Quad TTL-to-MOS driver.	LM309, LM340	Positive regulators.
MOS RAM Memory Address and Precharge Drivers	Series	
DS0025C Dual address and precharge driver.	LM320 Series	Negative regulators.
DS0026C Dual high speed address and precharge driver.	LM325 Series	Dual \pm regulators.
TTL to MOS Interface		
DH0034 Dual high speed TTL to negative level converter.		

Section 6
Microprocessor Support

Section 6 Contents

Microprocessor Support-Introduction 6-3
Microprocessor Support-Selection Guide 6-4
DP8212/DP8212M 8-Bit Input/Output Ports 6-5
DP8216/DP8216M/DP8226/DP8226M 4-Bit Bidirectional Bus Transceivers 6-13
DP8224 Clock Generator and Driver 6-18
DP8228/DP8228M/DP8238/DP8238M System Controller and Bus Driver 6-24

National offers a selection of high quality circuits designed specifically to interface with, and support, the very popular 8 -bit 8080A microprocessor. National's family of 8080A support circuits includes clock/generator driver, system control-
ler, I/O port and databus transceivers, all of which make it easy to add microprocessor capability to any system design. For further information on these devices, refer to the enclosed selection guide.

Natlonal's 8080A Support Circuits

DP8212/DP8212M 8-Bit Input/Output Port

General Description

The DP8212/DP8212M is an 8-bit input/output port contained in a standard 24-pin dual-in-line package. The device, which is fabricated using Schottky Bipolar technology, is part of National Semiconductor's 8080A support family. The DP8212/DP8212M can be used to implement latches, gated buffers, or multiplexers. Thus, all of the major peripheral and input/output functions of a microcomputer system can be implemented with this device.
The DP8212/DP8212M includes an 8-bit latch with TRI-STATE® output buffers, and device selection and control logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor.

Features

- 8-Bit data latch and buffer
- Service request flip-flop for generation and control of interrupts
- 0.25 mA input load current
- TRI-STATE TTL output drive capability
- Outputs sink 15 mA
- Asynchronous latch clear

■ 3.65V output for direct interface to INS8080A

- Reduces system package count by replacing buffers, latches, and multiplexers in microcomputer systems

8080A Microcomputer Family Block Diagram

TL/F/6824-1

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output or Supply Voltages
-0.5 V to +7 V
-1.0 V to 5.5 V
125 mA
Output Currents
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$

Cavity Package	1903 mW
Molded Package	2005 mW

*Derate cavity package $12.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $16.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC})			
DP8212M	4.50	5.50	VDC
DP8212	4.75	5.25	$V_{D C}$
Operating Temperaure (T_{A})			
DP8212M	-55	+125	${ }^{\circ} \mathrm{C}$
DP8212	0	+75	${ }^{\circ} \mathrm{C}$

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC electrical characteristics.

Electrical Characteristics $\operatorname{Min} \leq T_{A} \leq \operatorname{Max}, \operatorname{Min} \leq V_{C C} \leq M a x$, unless otherwise noted

Symbol	Parameter	Conditions		Min	Typ	Max	Units	
I_{F}	Input Load Current, STB, DS2, $\overline{C L R}, \mathrm{Dl}_{1}-\mathrm{Dl}_{8}$ Inputs	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$				-0.25	mA	
I_{F}	Input Load Current, MD Input	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$				-0.75	mA	
I_{F}	Input Load Current, $\overline{\mathrm{DS} 1}$ Input	$V_{F}=0.45 \mathrm{~V}$				-1.0	mA	
I_{R}	Input Leakage Current STB, DS2, $\overline{C L R}, \mathrm{Dl}_{1}-\mathrm{Dl}_{8}$ Inputs	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max}$				10	$\mu \mathrm{A}$	
I_{R}	Input Leakage Current, MD Input	$V_{\text {R }}=V_{C C} M a x$				30	$\mu \mathrm{A}$	
I_{R}	Input Leakage Current, $\overline{\mathrm{DS1}}$ Input	$V_{R}=V_{C C} M a x$				40	$\mu \mathrm{A}$	
V_{C}	Input Forward Voltage Clamp	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$				-1	V	
$V_{\text {IL }}$	Input "Low" Voltage		DP8212M			0.08	V	
			DP8212			0.85	V	
V_{IH}	Input "High" Voltage			2.0			V	
VOL	Output "Low" Voltage	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$	DP8212M			0.45	V	
		$\mathrm{IOL}^{2}=15 \mathrm{~mA}$	DP8212			0.45	V	
$\mathrm{VOH}^{\text {O }}$	Output "High" Voltage	$\mathrm{l}_{\mathrm{OH}}=0.5 \mathrm{~mA}$	DP8212M	3.40	4.0		V	
		$\mathrm{IOH}^{2}=1.0 \mathrm{~mA}$	DP8212	3.65	4.0		V	
Isc	Short-Circuit Output Current	$V_{O}=0 \mathrm{~V}, \mathrm{~V}_{C C}=5 \mathrm{~V}$		-15		-75	mA	
\|lo		Output Leakage Current, High Impedance State	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / \mathrm{V}_{\mathrm{CC}} \mathrm{Max}$				20	$\mu \mathrm{A}$
Icc	Power Supply Current		DP8212M		90	145	mA	
			DP8212		90	130	mA	

Capacitance* $\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	MIn	Typ	Max	Unlts
C_{IN}	DS1, MD Input Capacitance		9	12	pF
C_{IN}	DS2, $\overline{\text { CLR, STB, } \mathrm{Dl}_{1}-\mathrm{Dl}_{8} \text { Input Capacitance }}$		5	9	pF
$\mathrm{C}_{\text {OUT }}$	DO1-DO8 Output Capacitance		8	12	pF

*This parameter is sampled and not 100% tested.

Switching Characteristics Min $\leq T_{A} \leq$ Max, $_{\text {Min }} \leq V_{C C} \leq$ Max

Symbol	Parameter	Condltions	DP8212M		DP8212		Units
			Min	Max	Min	Max	
$t_{\text {pw }}$	Pulse Width		40		30		ns
$t_{\text {PD }}$	Data to Output Delay	(Note 1)		30		30	ns
twe	Write Enable to Output Delay	(Note 1)		50		40	ns
${ }_{\text {t }}$ SET	Data Set-Up Time		20		15		ns
t_{H}	Data Hold Time		30		20		ns
t_{R}	Reset to Output Delay	(Note 1)		55		40	ns
t_{s}	Set to Output Delay	(Note 1)		35		30	ns
t_{E}	Output Enable/Disable Time	(Note 2)		50		45	ns
t_{C}	Clear to Output Delay	(Note 1)		65		55	ns

Note 1: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
Note 2: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ except for DP8212M
t_{E} (DISABLE) $C_{L}=5 \mathrm{pF}$

Switching Conditions

1. Input Pulse Amplitude $=2.5 \mathrm{~V}$.
2. Input Rise and Fall Times $=5 \mathrm{~ns}$.
3. Between 1 V and 2 V Measurements made at 1.5 V with $15 \mathrm{~mA} \& 30 \mathrm{pF}$ Test Load.
4. C_{L} includes jig and probe capacitance.
5. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6. $C_{L}=30 \mathrm{pF}$ except for DP8212M $\mathrm{t}_{\mathrm{E} \text { (DISABLE) }} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

Alternate Test Load (Refer to Timing Dlagram)

Timing Diagram

TL/F/6824-4

Logic Diagram

Logic Tables

STB	MD	$\left(\mathbf{D S}_{\mathbf{1}} \bullet\right.$ DS $\left._{\mathbf{2}}\right)$	Data Out Equals
0	0	0	TRI-STATE
1	0	0	TRI-STATE
0	1	0	DATA LATCH
1	1	0	DATA LATCH
0	0	1	DATA LATCH
1	0	1	DATA IN
0	1	1	DATA IN
1	1	1	DATA IN

$\overline{C L R}$ ~ resets data latch to the output low state.
The data latch clock is level sensitive, a low level clock latches the data.
Logic Table B

$\overline{\text { CLR }}$	$\left(\mathrm{DS}_{1}{ }^{\bullet} \mathrm{DS}_{2}\right)$	$\mathbf{S T B}$	\mathbf{Q}^{*}	$\overline{\text { INT }}$
0 RESET	0	0	0	1
1	0	0	0	1
1	0	\urcorner	1	0
1	1 RESET	0	0	0
1	0	0	0	1

*Internal Service Request flip-flop.

Functional Pin Definitions

The following describes the function of all the DP8212/ DP8212M input/output pins. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Device Select ($\overline{\mathbf{D S}_{1}}, D S_{2}$): When $\overline{D S_{1}}$ is low and $D S_{2}$ is high, the device is selected. The output buffers are enabled and the service request flip-flop is asynchronously reset (cleared) when the device is selected.
Mode (MD): When high (output mode), the output buffers are enabled and the source of the data latch clock input is the device selection logic $\left(\mathrm{DS}_{1} \bullet \mathrm{DS}_{2}\right)$. When low (input mode), the state of the output buffers is determined by the device selection logic ($\mathrm{DS}_{1} \bullet D S_{2}$) and the source of the data latch clock input is the strobe (STB) input.
Strobe (STB): Used as data latch clock input when the mode (MD) input is low (input mode). Also used to synchronously set the service request flip-flop, which is negative edge triggered.

Data In ($\mathrm{Dl}_{1}-\mathrm{Dl}_{8}$): Eight-bit data input to the data latch, which consists of eight D-type flip-flops. Incorporating a level sensitive clock while the data latch clock input is high, the Q output of each flip-flop follows the data input. When the clock input returns low, the data latch stores the data input. The clock input high overrides the clear (CLR) input data latch reset.
Clear ($\overline{C L R}$): When low, asynchronously resets (clears) the data latch and the service request flip-flop. The service request flip-flop is in the non-interrupting state when reset.

OUTPUT SIGNALS

Interrupt (INT): Goes low (interrupting state) when either the service request flip-flop is synchronously set by the strobe (STB) input or the device is selected.
Data Out ($\mathrm{DO}_{1}-\mathrm{DO}_{8}$): Eight-bit data output of data buffers, which are TRI-STATE, non-inverting stages. These buffers have a common control line that either enables the buffers to transmit the data from the data latch outputs or disables the buffers by placing them in the high-impedance state.

Connection Diagram

Applications in Microcomputer Systems

TL/F/6824-7

TL/F/6824-8

Interrupt Instruction Port

Applications in Microcomputer Systems (Continued)

TL/F/6824-11

DP8216／DP8216M／DP8226／DP8226M 4－Bit Bidirectional Bus Transceivers

General Description

The DP8216／DP8216M and DP8226／DP8226M are 4－bit bi－ directional bus drivers to use in bus oriented applications． The non－inverting DP8216／DP8216M and inverting DP8226／DP8226M drivers are provided for flexibility in sys－ tem design．
Each buffered line of the four－bit drivers consists of two separate buffers that are TRI－STATE ${ }^{\circledR}$ to achieve direct bus interface and bidirectional capability．On one side of the driver the output of one buffer and the input of another are tied together（ DB ）；this side is used to interface to the sys－ tem side components such as memories，I／O，etc．，because its interface is TTL compatible and it has high driver（ 50 mA ）．On the other side of the driver the inputs and outputs are separated to provide maximum flexibility．Of course， they can be tied together so that the driver can be used to buffer a true bidirectional bus．The DO outputs on this side of the driver have a special high voltage output drive capa－ bility so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity．
The CS input is a device enable．When it is＂high＂the out－ put drivers are all forced to their high－impedance state． When it is a＂low＂the device is enabled and the direction of the data flow is determined by the DIEN input．

The DIEN input controls the direction of data flow，which is accomplished by forcing one of the pair of buffers into its high－impedance state and allowing the other to transmit its data．A simple two－gate circuit is used for this function．

Features

－Data bus buffer driver to 8080 type CPUs
－Low input load current－ 0.25 mA maximum
－High output drive capability for driving system data bus－ 50 mA at 0.5 V
－Power up－down protection
－DP8216／DP8216M have non－inverting outputs
－DP8226／DP8226M have inverting outputs
－Output high voltage compatible with direct interface to MOS
－TRI－STATE outputs
■ Advanced Schottky processing
－Available in military and commercial temperature

Logic Diagrams

DP8226／DP8226M

TL／F／8753－2

Absolute Maximum Ratings (Note 1)

	Min	Max	Units
All Output and Supply Voltages	-0.5	+7.0	V
All Input Voltages	-1.0	+5.5	V
Output Currents		125	mA
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$			
Cavity Package		1509	mW
Molded Package		1476	mW

Note: *Derate cavity package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Storage Temperature		Min Max Units		
		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (sold	4 seconds)		260	${ }^{\circ} \mathrm{C}$
Operating Conditions				
	Min	Max		Units
Supply Voltage, V_{CC}				
DP8216M, DP8226M	4.5	5.5		V
DP8216, DP8226	4.75	5.25		V
Temperature, T_{A}				
DP8216M, DP8226M	-55	+125		${ }^{\circ} \mathrm{C}$
DP8216, DP8226	0	+70		${ }^{\circ} \mathrm{C}$

Electrical Characteristics DP8216, DP8226 VCC $=5 \mathrm{~V} \pm 5 \%$ (Notes 2, 3, and 4)

Symbol	Parameter	Conditions	Limits			Units
			Min	Typ	Max	
DRIVERS						
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.95	V
V_{IH}	Input High Voltage		2			V
I_{F}	Input Load Current	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$		-0.03	-0.25	mA
I_{R}	Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$			10	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	$\mathrm{IC}_{\mathrm{C}}=-5 \mathrm{~mA}$			-1.2	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=25 \mathrm{~mA}$		0.3	0.45	V
Vol2	Output Low Voltage	$\begin{aligned} & \mathrm{DP8216} \mathrm{l} \mathrm{IOL}=55 \mathrm{~mA} \\ & \mathrm{DP8226} \mathrm{l} \mathrm{OL}=50 \mathrm{~mA} \end{aligned}$		0.5	0.6	V
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.0		V
${ }_{\text {ISC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-30	-75	-120	mA
$\mid \mathrm{lol}$	Output Leakage Current TRI-STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$

RECEIVERS							
$V_{\text {IL }}$	Input Low Voltage				0.95	V	
V_{IH}	Input High Voltage		2			V	
I_{F}	Input Load Current	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$		-0.08	-0.25	mA	
V_{C}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$			-1.2	V	
V_{OL}	Output Low Voltage	$\mathrm{IOL}=15 \mathrm{~mA}$		0.3	0.45	V	
$\mathrm{VOH}_{\text {1 }}$	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	3.65	4.0		V	
${ }_{\text {l }} \mathrm{CC}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-15	-35	-65	mA	
\|lo		Output Leakage Current TRI-STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
CONTROL INPUTS ($\overline{C S}, \overline{\text { DIEN }}$)							
$V_{\text {IL }}$	Input Low Voltage				0.95	V	
V_{IH}	Input High Voltage		2			V	
I_{F}	Input Load Current	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$		-0.15	-0.5	mA	
I_{R}	Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$			20	$\mu \mathrm{A}$	
ICC	Power Supply Current DP8216 DP8226			$\begin{aligned} & 95 \\ & 85 \end{aligned}$	$\begin{aligned} & 130 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	

Electrical Characteristics（Continued）DP8216M，DP8226M VCC $=5 \mathrm{~V} \pm 10 \%$（Notes 2， 3 and 4）

Symbol	Parameter	Conditions	Limits			Units
			Min	Typ	Max	
DRIVERS						
$\mathrm{V}_{\text {IL }}$	Input Low Voltage DP8216M DP8226M				$\begin{aligned} & 0.95 \\ & 0.90 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
V_{IH}	Input High Voltage		2			V
I_{F}	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		－0．08	－0．25	mA
I_{R}	Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$			－1．2	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=25 \mathrm{~mA}$		0.3	0.45	V
$\mathrm{V}_{\text {OL2 }}$	Output Low Voltage	$\mathrm{IOL}=45 \mathrm{~mA}$		0.5	0.6	V
V_{OH}	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.4	3.0		V
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	－30	－75	－120	mA
｜lo｜	Output Leakage Current TRI－STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
RECEIVERS						
$V_{\text {IL }}$	Input Low Voltage DP8216M DP8226M				$\begin{gathered} 0.95 \\ 0.9 \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage		2			V
I_{F}	Input Load Current	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$		－0．08	－0．25	mA
V_{C}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$			－1．2	V
V_{OL}	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$		0.3	0.45	V
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	3.4	3.8		V
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
ISC	Output Short Circuit Current	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	－15	－35	－65	mA
$\mid \mathrm{lo}$｜	Output Leakage Current TRI－STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
CONTROL INPUTS（ $\overline{\mathrm{CS}}, \overline{\mathrm{DIEN}})$						
VIL	Input Low Voltage DP8216M DP8226M				$\begin{gathered} 0.95 \\ 0.9 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2			V
I_{F}	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		－0．15	－0．5	mA
$\mathrm{I}_{\text {R }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
ICC	Power Supply Current DP8216M DP8226M			$\begin{aligned} & 95 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Symbol	Parameter	Conditions	Limits			Units
			Min	Typ	Max	
DP8216M, DP8226M, ${ }_{\text {CC }}=5 \mathrm{~V} \pm 10 \%$						
$t_{\text {PD1 }}$	Input to Output Delay, DO Outputs	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$		15	25	ns
tPD2	Input to Output Delay, DB Outputs DP8216M DP8226M	$\begin{aligned} & C_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega \\ & \mathrm{R}_{2}=180 \Omega \end{aligned}$		$\begin{aligned} & 19 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{t} \mathrm{E}$	Output Enable Time DP8216M DP8226M	DO Outputs: $C_{L}=30 \mathrm{pF}$, $\mathrm{R}_{1}=300 \Omega$ $\mathrm{R}_{2}=600 \Omega$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$, $\begin{aligned} & \mathrm{R}_{1}=90 \Omega \\ & \mathrm{R}_{2}=180 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 75 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{D}	Output Disable Time DP8216M DP8226M	DO Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{R}_{1}=300 \Omega$ $R_{2}=600 \Omega$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\begin{aligned} & R_{1}=90 \Omega \\ & R_{2}=180 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 38 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
DP8216, DP8226 V ${ }_{\text {CC }}=5.0 \mathrm{~V} \pm 5 \%$						
tPD1	Input to Output Delay, DO Outputs	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$		15	25	ns
$\mathrm{tPD2}$	Input to Output Delay, DB Outputs DP8216 DP8226	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & \mathrm{R}_{2}=180 \Omega \end{aligned}$		$\begin{array}{r} 20 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{E}	Output Enable Time DP8216 DP8226	DO Outputs: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, $\mathrm{R}_{1}=300 \Omega$ $R_{2}=600 \Omega$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$, $\begin{aligned} & R_{1}=90 \Omega \\ & R_{2}=180 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 65 \\ & 54 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{0}	Output Disable Time	DO Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\begin{aligned} & \mathrm{R}_{1}=300 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\begin{aligned} & R_{1}=90 \Omega \\ & R_{2}=180 \Omega \\ & \hline \end{aligned}$		20	35	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DP8216M and DP8226M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DP8216 and DP8226. All typical values are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 4: Only one output at a time should be shorted.

Test Conditions

Input rise and fall times of 5.0 ns between 1.0 V and 2.0 V .
Output loading is 5.0 mA and 10 pF .
Speed measurements are made at 1.5 V levels.

Test Load Circuit

TL/F/8753-4

Switching Time Waveforms

Connection Diagram

TL/F/8753-3
Order Number DP8216J, DP8216N, DP8226J, DP8226N, DP8216MJ or DP8226MJ
See NS Package Number J16A or N16A

DP8224 Clock Generator and Driver

General Description

The DP8224 is a clock generator/driver contained in a standard, 16-pin dual-in-line package. The chip, which is fabricated using Schottky Bipolar technology, generates clocks and timing for the 8080A microcomputer family.
Included in the DP8224 is an oscillator circuit that is controlled by an external crystal, which is selected by the designer to meet a variety of system speed requirements. Also included in the chip are circuits that provide: a status strobe for the DP8228 or DP8238 system controllers, power-on reset for the 8080A microprocessor, and synchronization of the READY input to the 8080A.

Features

- Crystal-controlled oscillator for stable system operation

■ Single chip clock generator and driver for 8080A microprocessor
■ Provides status strobe for DP8228 or DP8238 system controllers

- Provides power-on reset for 8080A microprocessor
- Synchronizes READY input to 8080A microprocessor
- Provides oscillator output for synchronization of external circuits
- Reduces system component count

8080A Microcomputer Family Block Diagram

TL/F/8752-1

```
Absolute Maximum Ratings (Note 2)
If Milltary/Aerospace specifled devices are required,
please contact the Natlonal Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
\begin{tabular}{lr}
\(V_{C C}\) & 7 V \\
V \(_{\text {DD }}\) & 15 V \\
Input Voltage & -1 V to +5.5 V \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Maximum Power Dissipation* at \(25^{\circ} \mathrm{C}\) & \\
Cavity Package & 1509 mW \\
Molded Package & 1476 mW \\
Lead Temperature (Soldering, 4 seconds) & \(260^{\circ} \mathrm{C}\)
\end{tabular}
- Derate cavity package \(10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\); derate molded package \(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).
```

Operating Conditions

	Min	Max	Units
Supply Voltage			
$V_{C C}$	4.75	5.25	V
$V_{D D}$	11.4	12.6	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
I_{F}	Input Current Loading	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$			-0.25	mA
I_{R}	Input Leakage Current	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$			10	$\mu \mathrm{A}$
V_{C}	Input Forward Clamp Voltage	$\mathrm{IC}_{\mathrm{C}}=-5 \mathrm{~mA}$			-1.0	V
$V_{\text {IL }}$	Input "Low" Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.8	V
V_{IH}	Input "High" Voltage	$\overline{\text { RESIN }}$ Input	2.6			V
		All Other Inputs	2.0			V
$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}$	$\overline{\text { RESIN }}$ Input Hysteresis	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.25			V
V_{OL}	Output "Low" Voltage ($\phi 1, \phi 2$), Ready, Reset STSTB Osc., $\phi 2$ (TTL) Osc., $\phi 2$ (TTL)	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$			$\begin{array}{r} 0.45 \\ 0.45 \\ 0.45 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output "High" Voltage $\phi 1, \phi 2$ Ready, Reset Osc., $\phi 2$ (TTL), $\overline{\text { STSTB }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 9.4 \\ & 3.6 \\ & 2.4 \\ & \hline \end{aligned}$			$\begin{aligned} & V \\ & v \\ & V \end{aligned}$
ISC	Output Short-Circuit Current (All Low Voltage Outputs Only), (Note 1)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	-10		-60	mA
ICC	Power Supply Current				115	mA
IDD	Power Supply Current				12	mA

Note 1: Caution $-\phi 1$ and $\phi 2$ output drivers do not have short circuit protection.
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 3: Unless otherwise specified $\min /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DP8224}$. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $V_{D D}=12 \mathrm{~V}$.

Crystal Requirements*

Tolerance	0.005% at $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Equivalent Resistance
Resonance	Fundamental	Power Dissipation (Min)
Load Capacitance	20 pF to 30 pF	
"It is good design practice to ground the case of the crystal **With tank circuit, use 3rd overtone mode		

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\boldsymbol{\phi} 1}$	\$1 Pulse Width	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ to 50 pF	$\frac{2 \mathrm{t}_{C Y}}{9}-20$			ns
$\mathrm{t}_{\text {¢ } 2}$	\$2 Pulse Width		$\frac{5 t_{C Y}}{9}-35$			ns
$t_{\text {D1 }}$	$\phi 1$ to $\phi 2$ Delay		0			ns
$t_{\text {D2 }}$	\$2 to $\$ 1$ Delay		$\frac{2 t_{C Y}}{9}-14$			ns
$t_{\text {D }}$	$\phi 1$ to $\phi 2$ Delay		$\frac{2 t}{\text { CTY }}$ 9		$\frac{2 t_{C Y}}{9}+20$	ns
tr_{r}	$\phi 1$ and $\phi 2$ Rise Time				20	ns
t_{f}	$\phi 1$ and $\phi 2$ Fall Time				20	ns
$t_{\text {D } 2}$	$\phi 2$ to $\2 (TTL) Delay	$\begin{aligned} & \phi 2 \mathrm{TTL}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R} 1=300 \Omega, \mathrm{R} 2=600 \Omega \end{aligned}$	-5		15	ns
toss	\$2 to $\overline{\text { STSTB }}$ Delay	$\begin{aligned} & \text { STSTB, } \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R} 1=2 \mathrm{k} \Omega, \mathrm{R} 2=4 \mathrm{k} \Omega \end{aligned}$	$\frac{6 t_{C Y}}{9}-30$.	$\frac{6 t_{C Y}}{9}$	ns
$t_{\text {PW }}$	$\overline{\text { STSTB Pulse Width }}$		$\frac{t_{C Y}}{9}-15$			ns
${ }^{\text {t }}$ DRS	RDYIN Set-Up Time to Status Strobe		$50-\frac{4 t_{C Y}}{9}$			ns
${ }^{\text {t }}$ DRH	RDYIN Hold Time After STSTB		$\frac{4 t_{C Y}}{9}$			ns
$t_{\text {DR }}$	READY or RESET to $\phi 2$ Delay	Ready and Reset, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, $\mathrm{R} 1=2 \mathrm{k} \Omega, \mathrm{R} 2=4 \mathrm{k} \Omega$	$\frac{4 t_{C Y}}{9}-25$		+	ns
${ }^{\text {t Clu }}$	CLK Period	.		$\frac{t_{C Y}}{9}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Oscillating Frequency		27			MHz
C_{IN}	Input Capacitance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ & V_{B I A S}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			8	pF

Test Circuit

TL/F/8752-2

Waveforms

TL/F/8752-3
Voltage Measurement Points: $\phi 1, \phi 2$ Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .

Switching Characteristics (For tcy $=488.28$ ns)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\phi 1}$	$\phi 1$ Pulse Width	$\phi 1$ and $\phi 2$ Loaded to $C_{L}=20$ to 50 pF Ready and Reset Loaded to $2 \mathrm{~mA} / 10 \mathrm{pF}$ All Measurements Referenced to 1.5 V unless Specified Otherwise	89			ns
$\mathrm{t}_{\phi 2}$	$\phi 2$ Pulse Width		236			ns
$t_{\text {D1 }}$	Delay $\phi 1$ to $\phi 2$		0			ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay $\phi 2$ to $\phi 1$		95			ns
$t_{\text {D }}$	Delay $\phi 1$ to $\phi 2$ Leading Edges		109		129	ns
t_{r}	Output Rise Time				20	ns
t_{f}	Output Fall Time				20	ns
toss	$\phi 2$ to STSTB Delay		296		326	ns
$t_{D \phi 2}$	$\phi 2$ to $\phi 2$ (TTL) Delay		-5		15	ns
${ }_{\text {t }}{ }^{\text {W }}$	Status Strobe Pulse Width		40			ns
${ }^{\text {t }}$ DRS	RDYIN Set-Up Time to STSTB		-167			ns
$t_{\text {DRH }}$	RDYIN Hold Time after STSTB		217			ns
$t_{\text {DR }}$	READY or RESET to $\phi 2$ Delay		192			ns
$\mathrm{f}_{\text {MAX }}$	Oscillator Frequency				18.432	MHz

Functional Pin Definitions

The following describes the function of all of the DP8224 input/output pins. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Crystal Connections (XTAL 1 and XTAL 2): Two inputs that connect an external crystal to the oscillator circuit of the DP8224. Normally, a fundamental mode crystal is used to determine the basic operating frequency of the oscillator. However, overtone mode crystals may also be used. The crystal frequency is 9 times the desired microprocessor speed (that is, crystal frequency equals $1 / \mathrm{t}_{\mathrm{CY}} \times 9$). When the crystal frequency is above 10 MHz , a selected capacitor (3 to 10 pF) may have to be connected in series with the crystal to produce the exact desired frequency. Figure A.
Tank: Allows the use of overtone mode crystals with the oscillator circuit. When an overtone mode crystal is used, the tank input connects to a parallel LC. network that is ac coupled to ground. The formula for determining the resonant frequency of this LC network is as follows:

$$
F=\frac{1}{2 \pi \sqrt{L C}}
$$

Synchronizing (SYNC) Signal: When high, indicates the beginning of a new machine cycle. The 8080A microprocessor outputs a status word (which describes the current machine cycle) onto its data bus during the first state (SYNC interval) of each machine cycle.
Reset In ($\overline{\mathbf{R E S I N}}$): Provides an automatic system reset and start-up upon application of power as follows. The RESIN input, which is obtained from the junction of an external RC network that is connected between V_{CC} and ground, is routed to an internal Schmitt Trigger circuit. This circuit converts the slow transition of the power supply rise into a sharp, clean edge when its input reaches a predetermined value. When this occurs, an internal D-type flip-flop is synchronously reset, thereby providing the RESET output signal discussed below.

For manual system reset, a momentary contact switch that provides a low (ground) when closed is also connected to the RESIN input.
Ready In (RDYIN): An asynchronous READY signal that is re-clocked by a D-type flip-flop of the DP8224 to provide the synchronous READY output discussed below.
+5 Volts: $V_{C C}$ supply.
+12 Volts: V_{DD} supply.
Ground: 0 volt reference.

OUTPUT SIGNALS

Oscillator (OSC): A buffered oscillator signal that can be used for external timing purposes.
ϕ_{1} and ϕ_{2} Clocks: Two non-TTL compatible clock phases that provide nonoverlapping timing references for internal storage elements and logic circuits of the 8080A microprocessor. The two clock phases are produced by an internal clock generator that consists of a divide-by-nine counter and the associated decode gating logic. Figure B.
ϕ_{2} (TTL) Clock: A TTL ϕ_{2} clock phase that can be used for external timing purposes.
Status Strobe (STSTB): Activated (low) at the start of each new machine cycle. The STSTB signal is generated by gating a high-level SYNC input with the $\phi_{1 A}$ timing signal from the internal clock generator of the DP8224. The STSTB signal is used to clock status information into the status latch of the DP8228 system controller and bus driver.
Reset: When the RESET signal is activated, the content of the program counter of the 8080A is cleared. After RESET, the program will start at location 0 in memory.
Ready: The READY signal indicates to the 8080A that valid memory or input data is available. This signal is used to synchronize the 8080A with slower memory or input/output devices.

Logic and Connection Diagrams

Top View
Order Number DP8224J or DP8224N See NS Package Number J16A or N16A

Applications Information

FIGURE A. DP8224 Connection Diagram

EXAMPLE: $\left(8080 \mathrm{t}_{\mathrm{CY}}=500 \mathrm{~ns}\right)$
OSC $=18 \mathrm{MHz} / 55 \mathrm{~ns}$
$\phi_{1}=110 \mathrm{~ns}(2 \times 55 \mathrm{~ns})$
$\phi_{2}=275 \mathrm{~ns}(5 \times 55 \mathrm{~ns})$ $\phi_{2}-\phi_{1}=110 \mathrm{~ns}(2 \times 55 \mathrm{~ns})$
FIGURE B. DP8224 Clock Generator Waveforms

DP8228/DP8228M/DP8238/DP8238M System Controller and Bus Driver

General Description

The DP8228/DP8228M, DP8238/DP8238M are system controller/bus drivers contained in a standard, 28-pin dual-in-line package. The chip, which is fabricated using Schottky Bipolar technology, generates all the read and write control signals required to directly interface the memory and input/ output components of the 8080A microcomputer family. The chip also provides drive and isolation for the bidirectional data bus of the 8080A microprocessor. Data bus isolation enables the use of slower memory and input/output components in a system, and provides for enhanced system noise immunity.
A user-selected signal-level interrupt vector (RST 7) is provided by the device for use in the interrupt structure of small systems that need only one basic vector. No additional components (such as an interrupt instruction port) are required to use the single interrupt vector in these systems. The devices also generate an Interrupt Acknowledge (INTA) control signal for each byte of a multibyte CALL instruction
when an interrupt is acknowledged by the 8080A. This feature permits the use of a multilevel priority interrupt structure in large, interrupt-driven systems.

Features

■ Single chip system controller and bus driver for 8080A Microcomputer Systems

- Allows use of multibyte CALL instructions for Interrupt Acknowledge
- Provides user-selected single-level interrupt vector (RST 7)
- Provides isolation of data bus
- Supports a wide variety of system bus structures
- Reduces system component count
- DP8238/DP8238M provides advanced Input/Output Write and Memory Write control signals for large system timing control

8080A Microcomputer Family Block Diagram

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallabillty and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, VCC
Input Voltage
Output Current 100 mA
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package 2179 mW
Molded Package
2361 mW
*Derate cavity package $14.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $18.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
Supply Voltage (VCC)			
DP8228M, DP8238M	4.50	5.50	$V_{D C}$
DP8228, DP8238	4.75	5.25	$V_{D C}$
Operating Temperature $\left(T_{A}\right)$			
DP8228M, DP8238M	-55	+125	${ }^{\circ} \mathrm{C}$
DP8228, DP8238	0	+70	${ }^{\circ} \mathrm{C}$

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC electrical characteristics.

Electrical Characteristics $\operatorname{Min} \leq T_{A} \leq \operatorname{Max}, \operatorname{Min} \leq V_{C C} \leq$ Max, unless otherwise noted

Symbol	Parameter		Conditions		Min	Typ (Note 1)	Max	Units	
V_{C}	Input Clamp Voltage, All Inputs		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$			0.6	-1.0	V	
I_{F}	Input Load Current	STSTB	$\begin{aligned} & V_{C C}=M a x \\ & V_{F}=0.45 \mathrm{~V} \text { for DP8228, DP8238 } \\ & V_{F}=0.40 \mathrm{~V} \text { for DP8228M, DP8238M } \end{aligned}$				500	$\mu \mathrm{A}$	
		D2 and D6					750	$\mu \mathrm{A}$	
		D0, D1, D4, D5 and D7				\cdots	250	$\mu \mathrm{A}$	
		All Other Inputs					250	$\mu \mathrm{A}$	
I_{R}	Input Leakage Current	DB0-DB7	$V_{C C}=M a x, V_{R}=V_{C C}$				20	$\mu \mathrm{A}$	
		All Other Inputs					100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage, All Inputs		$V_{C C}=5 \mathrm{~V}$		0.8		2.0	V	
ICC	Power Supply Current		$V_{C C}=\operatorname{Max}$	DP8228, DP8238		185	230	mA	
			DP8228M, DP8238M		160	230	mA		
V_{OL}	Output Low Voltage	D0-D7		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{aligned}$	DP8228M, DP8238M			0.50	V
			DP8228, DP8238				0.45	V	
		All Other Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{IOL}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$	DP8228M, DP8238M			0.50	V	
				DP8228, DP8238			0.45	V	
V_{OH}	Output High	D0-D7	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=-10 \mu \mathrm{~A} \end{aligned}$	DP8228M, DP8238M	3.3	3.8		V	
				DP8228, DP8238	3.6	3.8		V	
		All Other Outputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.8		V	
los	Short Circuit Current, All Outputs		$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$		15		90	mA	
Io (OFF)	OFF State Output Current All Control Outputs		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				100	$\mu \mathrm{A}$	
			$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$				-100	$\mu \mathrm{A}$	
IINT	INTA Current		(See Test Conditions, Figure 3)				5	mA	

Capacitance* $\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Parameter	Min	Typ (Note 1)	Max	Units
C_{IN}	Input Capacitance		8	12	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance Control Signals		7	15	pF
I/O	I/O Capacitance (D or DB)		8	15	pF

*This parameter is periodically sampled and not 100% tested.
Switching Characteristics Min $\leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{Max}^{2}$ Min $\leq \mathrm{T}_{\mathrm{A}} \leq$ Max

Symbol	Parameter	Conditions	DP8228M, DP8238M		DP8228, DP8238		Units
			Min	Max	Min	Max	
tpW	Width of Status Strobe		25	.	22		ns
$\mathrm{t}_{\text {SS }}$	Set-Up Time, Status Inputs D0-D7		8		8		ns
$\mathrm{t}_{\text {SH }}$	Hold Time, Status Inuts D0-D7		5		5		ns
$t_{\text {D }}$	Delay from STSTB to Any Control Signal	(Figure 2)	20	75	20	60	ns
$t_{\text {RR }}$	Delay from DBIN to Control Outputs	(Figure 2)		30		30	ns
$t_{\text {te }}$	Delay from DBIN to Enable/ Disable 8080 Bus	(Figure 1)		45		45	ns
$t_{\text {RD }}$	Delay from System Bus to 8080 Bus During Read	(Figure 1)		45		30	ns
$t_{\text {WR }}$	Delay from WR to Control Outputs	(Figure 2)	5	60	5	45	ns
twe	Delay to Enable System Bus DB0-DB7 after STSTB	(Figure 2)		30		30	ns
${ }^{\text {tw }}$	Delay from 8080 Bus D0-D7 to System Bus DB0-DB7 During Write	(Figure 2)	5	40	5	40	ns
t_{E}	Delay from System Bus Enable to System Bus DB0-DB7	(Figure 2)		30		30	ns
t_{HD}	HLDA to Read Status Outputs	(Figure 2)		25		25	ns
$t_{\text {DS }}$	Set-Up Time, System Bus Inputs to HLDA		10		10		ns
$t_{\text {DH }}$	Hold Time, System Bus inputs to HLDA		20		20		ns

Test Conditions

FIGURE 2. Test Load

FIGURE 3. INTA Test Circult (For RST 7)

Timing Diagram

TL/F/6825-5
VOLTAGE MEASUREMENT POINTS: $D_{0}-D_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$, Logic " 0 " $=0.8 \mathrm{~V}$, Logic " 1 " $=3.0 \mathrm{~V}$. All other signals measured at 1.5 V .
*Advanced $\overline{/ / O W} \overline{M E M W}$ for 8238 only.

Functional Pin Definitions

The following describes the function of all of the DP8228/ DP8228M; DP8238/DP8238M pinouts. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Status Strobe (STSTB): Activated (low) at the start of each new machine cycle. The STSTB input is used to store a status word (refer to chart) from the 8080A microprocessor into the internal status latch of the DP8228, DP8238. The status word is latched when the STSTB returns to the high state. The 8080A outputs this status word onto its data bus during the first state (SYNC interval) of each machine cycle.
Data Bus In (DBIN): When high, indicates that the 8080A data bus is in the input mode. The DBIN signal is used to gate data from memory or an input/output device onto the data bus.
Write ($\overline{W R}$): When low, indicates that the data on the 8080A data bus are stable for WRITE memory or output operation.
Hold Acknowledge (HLDA): When high, indicates that the 8080A data and address buses will go to their high impedance state. When in the data bus read mode, DBIN input in the high state, a high HLDA input will latch the data bus information into the driver circuits and gate off the applicable control signal $\overline{/ O R}, \overline{M E M R}$, or INTA (return to the output high state).
Bus Enable (BUSEN): Asynchronous DMA input to the internal gating array. When low, normal operation of the internal bidirectional bus driver and gating array occurs. When high, the bus driver and gating array are driven to their high impedance state.
$V_{\text {cc }}$ Supply: +5 V .
Ground: 0 V reference.

OUTPUT SIGNALS

Memory Read (MEMR): When low, signals data to be loaded in from memory. The MEMR signal is generated by strobing in status word 1, 2, or 4. (Refer to status word chart.)
Memory Write ($\overline{\mathrm{MEMW}}$): When low, signals data to be stored in memory. The MEMW signal is generated for the DP8238 by strobing in status word 3 or 5. (Refer to status word chart.) For the DP8228, the MEMW signal is generated by gating a low-level $\overline{W R}$ input with the strobed in status word 3 or 5.
Input/Output Read ($\overline{\mathbf{I} / \mathrm{OR}}$): When low, signals data to be loaded in from an addressed input/output device. The I/OR signal is generated by strobing in status word 6.
Input/Output Write ($\overline{\mathrm{I} O W}$): When low, signals data to be transferred to an addressed input/output device. The $\overline{\text { IOW }}$ signal for the DP8238 is generated by strobing in status word 7. For the DP8238 the I/OW signal is generated by gating in a low-level $\overline{W R}$ input with the strobed in status word 7.
Interrupt Acknowledge (INTA): When low, indicates that an interrupt has been acknowledged by the 8080A microprocessor. The INTA signal is generated by strobing in staus word 8 or 10.
Signal Level Interrupt (RST 7): When the INTA output is tied to 12 V through a $1 \mathrm{k} \Omega$ resistor, strobing in status word 8 or 10 will cause the CPU data bus outputs, when active, to go to the high state.

INPUT/OUTPUT SIGNALS

CPU Data ($D_{7}-D_{0}$) Bus: This bus comprises eight TRI-STATE ${ }^{(1}$ input/output lines that connect to the 8080A microprocessor. The bus provides bidirectional communica-

Functional Pin Definitions (Continued)
tion between the CPU, memory, and input/output devices for instructions and data transfers. A status word (which describes the current machine cycle) is also outputted on this data bus during the first microcycle of each machine cycle (SYNC = logic 1).

System Data ($\mathrm{DB}_{7}-\mathrm{DB}_{0}$) Bus: This bus comprises eight TRI-STATE input/output lines that connect to the memory and input/output components of the system. The internal bidirectional bus driver isolates the $\mathrm{DB}_{7}-\mathrm{DB}_{0}$ Data Bus from the $\mathrm{D}_{7}-\mathrm{D}_{0}$ Data Bus.

Status Word Chart

Machine Cycle	Status Word	Data Bus Blt								Control Signal
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Instruction Fetch	1	1	0	1	0	0	0	1	0	$\overline{\text { MEMR }}$
Memory Read	2	1	0	0	0	0	0	1	0	$\overline{\text { MEMR }}$
Memory Write	3	0	0	0	0	0	0	0	0	MEMW
Stack Read	4	1	0	0	0	0	1	1	0	MEMR
Stack Write	5	0	0	0	0	0	1	0	0	MEMW
Input Read	6	0	1.	0	0	0	0	1	0	$\overline{\text { IOR }}$
Output Write	7	0	0	0	1	0	0	0	0	$\overline{\text { IOW }}$
Interrupt Acknowledge	8	0	0	1	0	0	0	1	1	INTA
Halt Acknowledge	9	1	0	0	0	1	0	1	0	(none)
Interrupt Acknowledge While Halt	10	0	0	1	0	1	0	1	1	INTA

Block and Connection Diagrams

TL/F/6825-6

Dual-In-LIne Package

TL/F/6825-7
Order Number DP8228J, DP8228MJ, DP8228N, DP8238J, DP8238MJ or DP8238N
See NS Package Number J28A or N28B

Section 7
 Level Translators and Buffers

Section 7 Contents

Level Translators and Buffers-Introduction 7-3
Level Translators and Buffers-Selection Guide 7-4
DP8480A 10k ECL-to-TTL Level Translator with Latch 7-5
DP8481 TTL-to-10k ECL Level Translator with Latch 7-8
DP8482A 100k ECL to TTL Level Translator with Latch 7-11
DP8483 TTL-to-100k ECL Level Translator with Latch 7-14
DS1630B/DS3630B Hex CMOS Compatible Buffers 7-17
DS7800/DS8800 Dual Voltage Level Translators 7-21
DS78L12/DS88L12 Hex TTL-MOS Inverter/Interface Gates 7-24
MM5034/MM5035 Octal 80-Bit Static Shift Registers 7-27

Level Translators/Buffers

Several different families of logic circuits are available today, each offering advantages in certain applications. This wide selection of circuit types allows the design engineer to more easily construct functions and systems which meet his specific requirements.
Each of these logic "families", however, is produced using different processes, and their specific electrical characteris-
tics are almost always different. Interfacing between these logic families can, at times, be difficult.
National Semiconductor offers a selection of level translators which can greatly simplify this task. The following selection guide outlines the level translator circuits available.

Level Translators/Buffers

Device Number		Logic Function,	Output Characteristics	Output	Input	Page Number
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					
DP8480A		Inverting	TRI-STATE Fall Through Latch	TTL	10k ECL	$7-5$
DP8481		Inverting	Gated Fall Through Latch	10 k ECL	TTL	7-8
DP8482A		Inverting	TRI-STATE Fall Through Latch	TTL	10k ECL	7-11
DP8483		Inverting	Gated Fall Through Latch	100k ECL	TTL	7-14
DS3630	DS1630	Hex Buffer	50 ns Prop. Delay at 500 pF	CMOS	CMOS	7-17
DS8800	DS7800	Dual 2-Input Gate	Open-Collector -30 V to 30 V	PMOS	TTL	7-21
DS88L12	DS78L12	Hex Inverter	Active Pull-Up 0.4V to 14 V	MOS	TTL	7-24
MM74C901	MM54C901	Hex Inverter	Active Pull-Up 0.4V @ 2.6 mA	TTL	CMOS	CMOS
MM74C902	MM54C902	Hex Buffer	Active Pull-Up 0.4V @ 3.2 mA	TTL	CMOS	CMOS
MM74C903	MM54C903	Hex Inverter	Active Pull-Up OV to 15V	PMOS	CMOS	CMOS
MM74C904	MM54C904	Hex Buffer	Active Pull-Up 0V to 15V	PMOS	CMOS	CMOS
MM74C906	MM54C906	Hex Buffer	Open Drain OV to 15V	NMOS	CMOS	CMOS
MM74C907	MM54C907	Hex Buffer	Open Drain $\mathrm{V}_{C C}$ to $\mathrm{V}_{C C}-15 \mathrm{~V}$	PMOS	CMOS	CMOS

DP8480A 10k ECL to TTL Level Translator with Latch

General Description

This circuit translates ECL input levels to TTL output levels and provides a fall-through latch. The TRI-STATE® outputs are designed to drive standard 50 pF loads. The strobe and chip select inputs operate at ECL levels.

Features

- 16-pin DIP
- TRI-STATE outputs
- ECL control inputs
- 8 ns typical propagation delay with 50 pF load
- Outputs are TRI-STATE during power up/down for glitch free operation
- 10k ECL input compatible

Truth Table

\mathbf{D}	$\overline{\mathbf{Q}}$	$\overline{\mathbf{S T R}}$	$\overline{\mathbf{C S}}$
H	L	L	L
L	H	L	L
X	\bar{Q}	H	L
X	Hi-Z	X	H

$H=$ high level (most positive)
$L=$ low level (most negative)
$X=$ don't care

Order Number DP8480AJ or DP8480AN See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distrlbutors for avallability and specifications.
 $V_{\text {EE }}$ Supply Voltage
 $-8 \mathrm{~V}$
 $V_{C C}$ Supply Voltage 7V
 Input Voltage
 Output Voltage

 GND to $V_{E E}$

 GND to $V_{E E}$
 5.5 V

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Molded Package

1476 mW
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Recommended Operating Conditions

$V_{E E}$ Supply Voltage	$-5.2 \mathrm{~V} \pm 10 \%$
$\mathrm{~V}_{\mathrm{CC}}$ Supply Voltage	$5.0 \mathrm{~V} \pm 10 \%$
$\mathrm{~T}_{\mathrm{A}}$, Ambient Temperature	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Electrical Characteristics (TTL Logic) Notes 2,3 and 4

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CC}}-2 \mathrm{~V}$			V
I_{AV}	Output Low Drive Current	Force 2.5V	70	150		mA
I_{OS}	Output High Drive Current	Force 0 V	-70	-150	-350	mA
I_{OZ}	TRI-STATE Output Current		-50	1	+50	$\mu \mathrm{~A}$
I_{CC}	Supply Current				35	mA

Electrical Characteristics (ECL Logic) Notes 2 and 3

Symbol	Parameter	Conditions	$\mathbf{T}_{\mathbf{A}}$	Min	Typ	Max	Units
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$0^{\circ} \mathrm{C}$	-1870		-1490	
			$25^{\circ} \mathrm{C}$	-1850		-1475	mV
			$75^{\circ} \mathrm{C}$	-1830		-1450	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$0^{\circ} \mathrm{C}$	-1145		-840	
		$25^{\circ} \mathrm{C}$	-1105		-810	mV	
			$75^{\circ} \mathrm{C}$	-1045		-720	
I_{IL}					50	125	$\mu \mathrm{~A}$
I_{IH}	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \operatorname{Max}$			75	750	$\mu \mathrm{~A}$
I_{EE}	Supput High Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max}$				-55	mA

Switching Characteristics Notes 2 and 5

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PD1 }}$	Strobe to Output Delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	9	15	ns
$\mathrm{t}_{\text {PD }}$	Data to Output Delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	3.5	8	15	ns
t_{S}	Data Set-Up Time	$($ Note 6$)$	3.0	1.0		ns
t_{H}	Data Hold Time	$($ Note 6$)$	3.0	1.0		ns
t_{PW}	Strobe Pulse Width	$($ Note 6$)$	5.0	3.0		ns
t_{ZE}	Delay from Chip Select to Active State from $\mathrm{Hi}-\mathrm{Z} \mathrm{State}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	15	25	ns
t_{EZ}	Delay from Chip Select to $\mathrm{Hi}-\mathrm{Z}$ State from Active State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	12	22	ns

[^23]
Switching Time Waveforms

S1 open

Test Load

TL/F/5861-4

Typical Performance Versus CL

TL/F/5861-6

DP8481 TTL to 10k ECL Level Translator with Latch

General Description

This circuit translates TTL input levels to ECL output levels and provides a fall-through latch. The outputs are gated with CS providing for wire ORing of outputs. The strobe and chip select inputs operate at ECL levels.

Features

- 16-pin flat-pack or DIP
- ECL control inputs
- CS provided for wire ORing of output bus
- 10k ECL I/O compatible

■ 3.0 ns typical propagation delay

Logic and Connection Diagram

Truth Table

D	\bar{Q}	STR	CS
H	L	L	H
L	H	L	H
X	\bar{Q}	H	H
X	L	X	L

$H=$ high level (most positive) L. $=$ low level (most negative) X= don't care

Order Number DP8481F, DP8481J or DP8481N See NS Package F16B, J16A or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
$V_{E E}$ Supply Voltage
$-8 \mathrm{~V}$
$V_{C C}$ Supply Voltage 7 V
Input Voltage (ECL)
Input Voltage (TTL)
Output Current
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
Storage Temperature
*Derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Conditions
$V_{E E}$ Supply Voltage
$-5.2 \mathrm{~V} \pm 10 \%$
$V_{C C}$ Supply Voltage
T_{A}, Ambient Temperature

Electrical Characteristics (TTLLogic) (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{I L}$	Input Low Voltage				0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		2.0			V
$I_{I L}$	Input Low Current	$\mathrm{V}_{I N}=0.5 \mathrm{~V}$		-25	-200	$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		1.0	40	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CLAMP}}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-0.9	-1.2	V
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		10	20	mA

Electrical Characteristics (ECLLogic) (Notes 2 and 3)

Symbol	Parameter	Conditions	T_{A}	Min	Typ	Max	Units
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV
V_{1}	Input High Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV
$1 / 2$	Input Low Current	$\mathrm{V}_{\text {IN }}=-1.8 \mathrm{~V}$			55	150	$\mu \mathrm{A}$
I_{H}	Input High Current	$\mathrm{V}_{\text {IN }}=-0.8 \mathrm{~V}$			85	200	$\mu \mathrm{A}$
VoL	Output Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1000 \\ & -960 \\ & -900 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV
Volc	Output Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 75^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \end{aligned}$	mV
$\mathrm{V}_{\text {OHC }}$	Output High Voltage	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$	$\begin{aligned} & \hline 0^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -1020 \\ & -980 \\ & -920 \\ & \hline \end{aligned}$			mV
$\mathrm{IEE}^{\text {E }}$	Supply Current	$\mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$			-70	-90	mA

Switching Characteristics (Notes 2 and 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PD1 }}$	Strobe To Output Delay		1.5	3.0	6.0	ns
$\mathrm{t}_{\text {PD2 }}$	Data To Output Delay		2.5	4.5	7.5	ns
ts_{S}	Data Set-Up Time to Strobe		5.0	2.0		ns
t_{H}	Data Hold Time		1.0	0		ns
t_{PW}	Strobe Pulse Width		5.0	3.0		ns
$t_{\text {PD3 }}$	Chip Select to Output Delay		1.0	2.5	4.0	ns
$\mathrm{t}_{\text {SCS }}$	Data Set-Up Time to Chip Select		5.5	3.0		ns

Note t: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} / \mathrm{max}$ limits apply across the $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ ambient temperature range in still air and across the specified supply variations. All typical values are for $25^{\circ} \mathrm{C}$ and nominal supply.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative. All voltages are referenced to ground; unless otherwise specified.

Note 4: Unless otherwise specified, all AC measurements are referenced from the 1.5 V level of the TTL input and to/from the 50% point of the ECL signal and a 50Ω resistor to -2 V is the load. ECL input rise and fall times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$ from 20% to 80%. TTL input characteristic is 0 V to 3 V with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$ measured from 10% to 90%.

Switching Time Waveforms

DP8482A 100k ECL to TTL Level Translator with Latch

General Description

This circuit translates ECL input levels to TTL output levels and provides a fall-through latch. The TRI-STATE ${ }^{\circledR}$ outputs are designed to drive standard 50 pF loads. The strobe and chip select inputs operate at ECL levels.

Features

- 16-pin DIP or S.O.
- TRI-STATE outputs
- ECL control inputs
m 8 ns typical propagation delay with 50 pF load
■ Outputs are TRI-STATE during power up/down for glitch free operation
- 100k ECL input compatible

Truth Table

\mathbf{D}	$\overline{\mathbf{Q}}$	$\overline{\mathbf{S T R}}$	$\overline{\mathbf{C S}}$
H	L	L	L
L	H	L	L
X	\bar{Q}	H	L
X	$H i-Z$	X	H

$\mathrm{H}=$ high level (most positive)
L= low level (most negative)
X = don't care

Order Number DP8482AJ, DP8482AM or DP8482AN See NS Package Number J16A, N16A or M16B

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
VEE Supply Voltage	-8 V
$\mathrm{~V}_{\mathrm{CC}}$ Supply Voltage	7 V
Input Voltage	GND to V_{EE}
Output Voltage	5.5 V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	
Molded Package	1476 mW

Storage Temperature : $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-Derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Recommended Operating Conditions

V_{EE} Supply Voltage	$-4.5 \mathrm{~V} \pm 7 \%$
$\mathrm{~V}_{\mathrm{CC}}$ Supply Voltage	$5.0 \mathrm{~V} \pm 10 \%$

T_{A}, Ambient Temperature $\quad 0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics (TTL Logic) (Notes 2, 3 and 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}=12 \mathrm{~mA}}$			0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CC}}-2 \mathrm{~V}$			V
I_{AV}	Output Low Drive Current	Force 2.5 V	70	150		mA
I_{OS}	Output High Drive Current	Force 0 V	-70	-150	-350	mA
I_{OZ}	TRI-STATE Output Current		-50	1	+50	$\mu \mathrm{~A}$
I_{CC}	Supply Current				35	mA

Electrical Characteristics (ECL Logic) (Notes 2 and 3)

Symbol	Parameter	Conditions	T_{A}	Min	Typ	Max	Units
$V_{I L}$	Input Low Voltage	$V_{E E}=-4.5 \mathrm{~V}$		-1810		-1475	mV
$V_{I H}$	Input High Voltage	$V_{E E}=-4.5 \mathrm{~V}$		-1165		-880	mV
$I_{I L}$	Input Low Current	$V_{I N}=V_{I L} M a x$			50	100	$\mu \mathrm{~A}$
$I_{I H}$	Input High Current	$V_{I N}=V_{I H} M a x$			75	750	$\mu \mathrm{~A}$
I_{EE}	Supply Current					-55	mA

Switching Characteristics (Notes 2 and 5)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PD1 }}$	Strobe to Output Delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	9	15	ns
$\mathrm{t}_{\mathrm{PD} 2}$	Data to Output Delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	3.5	8	15	ns
t_{S}	Data Set-Up Time	$($ Note 6$)$	3.0	1.0		ns
t_{H}	Data Hold Time	$($ Note 6$)$	3.0	1.0		ns
$\mathrm{t}_{\text {PW }}$	Strobe Pulse Width	$($ Note 6$)$	5.0	3.0		ns
t_{ZE}	Delay from Chip Select to Active State from Hi-Z State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	15	25	ns
t_{EZ}	Delay from Chip Select to $\mathrm{Hi}-Z$ State from Active State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	12	22	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature range in still air and across the specified supply variations. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply. Maximum propagation delays are specified with all outputs switching simultaneously.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative. All voltages are referenced to ground, unless otherwise specified.

Note 4: When DC testing I_{AV} or I_{OS}, only one output should be tested at a time and the current limited to 120 mA max.
Note 5: Unless otherwise specified, all AC measurements are referenced from the 50% level of the ECL input to the 0.8 V level on negative transitions or the 2.4 V level on positive transitions of the output. ECL input rise and fall times are $0.7 \mathrm{~ns} \pm 0.1 \mathrm{~ns}$ from 20% to 80%.
Note 6: Caution should be used when latching data while the outputs are switching. TTL outputs generate severe ground noise when switching. This noise can be sufficient to cause the ECL latch to lose data. Board mounting and good supply decoupling are desirable. The worst case conditions are with all outputs switching low simultaneously, the maximum capacitive loading on the outputs and the maximum $V_{C C}$ supply voltage applied.

Switching Time Waveforms

S1 open

TL/F/5863-3

Test Load

Typical Performance Versus C_{L}

DP8483 TTL to 100k ECL Level Translator with Latch

General Description

This circuit translates TTL input levels to ECL output levels and provides a fall-through latch. The outputs are gated with CS providing for wire ORing of outputs. The strobe and chip select inputs operate at ECL levels.

Features

- 16-pin DIP or S.O.
- ECL control inputs
- CS provided for wire ORing of output bus
- 100k ECL I/O compatible

■ 3.0 ns typical propagation delay

Logic and Connection Diagram

Truth Table

\mathbf{D}	$\overline{\mathbf{Q}}$	STR	CS
H	L	L	H
L	H	L	H
X	\bar{Q}	H	H
X	L	X	L

$\mathrm{H}=$ high level (most positive)
$\mathrm{L}=$ low level (most negative)
X = don't care

Order Number DP8483J, DP8483M or DP8483N See NS Package Number J16A, M16B or N16A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
V_{EE} Supply Voltage
-8V
$V_{C C}$ Supply Voltage
Input Voltage (ECL)
Input Voltage (TTL)
GND to $V_{E E}$
-1 V to 5.5 V
Output Current

50 mA

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
1476 mW
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-Derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Recommended Operating Conditions

$V_{E E}$ Supply Voltage	$-4.5 \mathrm{~V}+7 \%$
$\mathrm{~V}_{\mathrm{CC}}$ Supply Voltage	$5.0 \mathrm{~V} \pm 10 \%$
$\mathrm{~T}_{\mathrm{A}}$, Ambient Temperature	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics (TTLLogic) (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{I L}$	Input Low Voltage				0.8	V
$V_{I H}$	Input High Voltage		2.0			V
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		-25	-200	$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{V}_{I N}=2.5 \mathrm{~V}$		1.0	40	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CLAMP}}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-0.9	-1.2	V
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		10	20	mA

Electrical Characteristics (ECL Logic) (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-1810		-1475	mV
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-1165		-880	mV
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=-1.8 \mathrm{~V}$		45	150	$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{IN}}=-0.8 \mathrm{~V}$		75	200	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-1810	-1705	-1620	mV
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-1025	-955	-880	mV
$\mathrm{V}_{\mathrm{OLC}}$	Output Low Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$			-1610	mV
$\mathrm{V}_{\mathrm{OHC}}$	Output High Voltage	$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-1035			mV
I_{EE}	Supply Current	$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}$		-65	-85	mA

Switching Characteristics (Notes 2 and 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tPD1	Strobe To Output Delay	(Note 4)	1.5	3.0	6.0	ns
$\mathrm{t}_{\mathrm{PD} 2}$	Data To Output Delay		2.5	4.5	7.5	ns
t_{s}	Data Set-Up Time to Strobe		5.0	2.0		ns
t_{H}	Data Hold Time		1.0	0		ns
tpw	Strobe Pulse Width		5.0	3.0		ns
tPD3	Chip Select to Output Delay		1.0	2.5	4.0	ns
tscs	Data Set-Up Time to Chip Select		5.5	3.0		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature range in still air and across the specified supply variations. All typical values are for $25^{\circ} \mathrm{C}$ and nominal supply.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative. All voltages are referenced to ground, unless otherwise specified.
Note 4: Unless otherwise specified, all AC measurements are referenced from the 1.5 V level of the TTL input and to/from the 50% point of the ECL signal and a 50Ω resistor to -2 V is the load. ECL input rise and fall times are $0.7 \mathrm{~ns} \pm 0.1 \mathrm{~ns}$ from 20% to 80%. TTL input characteristics is 0 V to 3 V with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$ measured from 10% to 90%.

Switching Time Waveforms

TL/F/5864-2

General Description

The DS1630B/DS3630B is a high current buffer intended for use with CMOS circuits interfacing with peripherals requiring high drive currents. The DS1630B/DS3630B features low quiescent power consumption (typically $50 \mu \mathrm{~W}$) as well as high-speed driving of capacitive loads such as large MOS memories. The design of the DS1630B/DS3630B is such that $V_{C C}$ current spikes commonly found in standard CMOS circuits cannot occur, thereby, reducing the total transient and average power when operating at high frequencies.

Features

- High-speed capacitive driver
- Wide supply voltage range
- Input/output may interface to TTL
- Input/output CMOS compatibility
- No internal transient $V_{C C}$ current spikes
- $50 \mu \mathrm{~W}$ typical standby power

Equivalent Schematic and Connection Diagrams

TL/F/5826-1

See NS Package Number J14A or N14A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
 16 V

Input Voltage
16 V
Output Voltage
16 V
Lead Temperature (Soldering, 4 seconds)
$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$
Semperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$\mathbf{3}$	$\mathbf{1 5}$	V
DS1630B	-55	+125	${ }^{\circ} \mathrm{C}$
DS3630B	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{I}_{\text {INH }}$	Logical " 1 " Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC, }}$, IOUT $=-400 \mu \mathrm{~A}$	DS1630B		90	200	$\mu \mathrm{A}$
			DS3630B		90	200	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630B		0.5	6.4	mA
			DS3630B		0.5	4.0	mA
IINL	Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$, l $\mathrm{OUT}=16 \mathrm{~mA}$	DS1630B		-0.15	2.0	mA
			DS3630B		$V_{C C}-150$	1.3	mA
V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}, \mathrm{l}_{\text {OUT }}=-400 \mu \mathrm{~A}$	DS1630B	$V_{C C}-1$	$V_{C C}-0.75$		V
			DS3630B	$V_{C C}-0.9$	$V_{C C}-0.75$		V
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$, loUT $=-16 \mathrm{~mA}$	DS1630B	$V_{C C}-2.5$	$V_{C C}-2.0$		V
			DS3630B	$\mathrm{V}_{\mathrm{CC}}-2.5$	$V_{C C}-2.0$		V
VOL	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=400 \mu \mathrm{~A}$	DS1630B		0.75	1	V
			DS3630B		0.75	0.9	V
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{IOUT}=16 \mathrm{~mA}$	DS1630B		0.95	1.3	V
			DS3630B		0.95	1.3	V
		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630B		1.2	1.6	V
			DS3630B		1.2	1.5	V

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pdo }}$	Propagation Delay to a Logical "0"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	45	ns
		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		40	60	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		50	75	ns
$t_{\text {pd1 }}$	Propagation Delay to a Logical "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	25	ns
		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		35	50	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		50	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for 'Operating Temperature Range" they are not meant to imply that the devices should be operating at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1630 B and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3630B. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Typical Applications

TL/F/5826-3

AC Test Circuit and Switching Time Waveforms

Pulse Generator characteristics: PRR $=1.0 \mathrm{MHz}, \mathrm{PW}=500 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IN}}=0$ to V_{CC}
C_{L} includes probe and jig capacitance

Typical Performance Characteristics

DS7800/DS8800 Dual Voltage Level Translator

General Description

The DS7800/DS8800 are dual voltage translators designed for interfacing between conventional TTL or LS voltage levels and those levels associated with high impedance junction or MOS REF-type devices. The design allows the user a wide latitude in his selection of power supply voltages, thus providing custom control of the output swing. The translator is especially useful in analog switching; and since low power dissipation occurs in the "off" state, minimum system power is required.

Features

■ 31 volt (max) output swing

- 1 mW power dissipation in normal state
- Standard 5V power supply
- Temperature range:

DS7800	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS8800	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- Compatible with all MOS devices

Schematic and Connection Diagrams

TL/F/5827-1

Metal Can Package

Top Vlew
Order Number DS7800H or DS8800H See NS Package Number H10C

Bipolar to MOS Interfacing

Typical Applications

4-Channel Analog Switch

*Analog signals within the range of +8 V to -8 V .
$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Military/Aerospace specifled devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { VCC Supply Voltage } & 7.0 \mathrm{~V} \\ \text { V2 Supply Voltage } & -30 \mathrm{~V} \\ \text { V3 Supply Voltage } & 30 \mathrm{~V} \\ \text { V3-V2 Voltage Differential } & 40 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V} \\ \text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 4 \text { seconds) } & 260^{\circ} \mathrm{C} \\ \text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} & \\ \text { Metal Can (TO-5) Package } & 690 \mathrm{~mW} \\ \text { "Derate metal can package } 4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above } 25^{\circ} \mathrm{C} . & \end{array}$
Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ (Note 6)	Max	Units
V_{IH}	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}$				0.8	V
IIH	Logical "1" Input Current	$V_{C C}=\operatorname{Max}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
IL	Logical " 0 " Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-0.2	-0.4	mA
loL	Output Sink Current	$V_{C C}=M i n, V_{I N}=2 V$ V3 Open	DS7800	1.6			mA
			DS8800	2.3			mA
${ }^{\mathrm{OH}}$	Output Leakage Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (Notes 4 and 7)				10	$\mu \mathrm{A}$
R_{0}	Output Collector Resistor	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11.5	16.0	20.0	$\mathrm{k} \Omega$
V_{OL}	Logical "0" Output Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ (Note 7)				$\mathrm{V}_{2}+2.0$	V
ICC(MAX)	Power Supply Current Output "ON" Per Gate	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}($ Note 5$)$			0.85	1.6	mA
$\operatorname{lCC}(\mathrm{MIN})$	Power Supply Current Output "OFF" Per Gate	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (Note 5)			0.22	0.41	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{pd} 0}$	Transition Time to Logical " 0 " Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}=15 \mathrm{pF}($ Note 8$)$	25	70	125	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Transition Time to Logical " 1 " Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}=15 \mathrm{pF}($ Note 9$)$	25	62	125	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the $\mathrm{DS7800}$ and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8800.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Current measured is drawn from V_{3} supply.
Note 5: Current measured is drawn from $V_{C C}$ supply.
Note 6: All typical values are measured at $T_{A}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{2}=-22 \mathrm{~V}, \mathrm{~V}_{3}=+8 \mathrm{~V}$.
Note 7: Specification applies for all allowable values of V_{2} and V_{3}.
Note 8: Measured from 1.5 V on input to 50% level on output.
Note 9: Measured from 1.5 V on input to logic " 0 " voltage, plus 1 V.

Theory of Operation

The two input diodes perform the AND function on TTL input voltage levels. When at least one input voltage is a logical " 0 ", current from V_{CC} (nominally 5.0 V) passes through R_{1} and out the input(s) which is at the low voltage. Other than small leakage currents, this current drawn from $V_{C C}$ through the $20 \mathrm{k} \Omega$ resistor is the only source of power dissipation in the logical " 1 " output state.
When both inputs are at logical " 1 " levels, current passes through R_{1} and diverts to transistor Q_{1}, turning it on and thus pulling current through R_{2}. Current is then supplied to the PNP transistor, Q_{2}. The voltage losses caused by current through Q_{1}, D_{3}, and Q_{2} necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the inputs must be raised to a voltage level which is one diode potential lower than node P. Since these levels are exactly the same as those experienced with conventional TTL, the interfacing with these types of circuits is achieved.
Transistor Q_{2} provides "constant current switching" to the output due to the common base connection of Q_{2}. When at least one input is at the logical " 0 " level, no current is delivered to Q_{2}; so that its collector supplies essentially zero current to the output stage. But when both inputs are raised to a logical " 1 " level current is supplied to Q_{2}.

Selecting Power Supply Voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V_{2} is shown on the X axis. It must be between -25 V and -8 V . The allowable range for power supply V_{3} is governed by supply V_{2}. With a value chosen for $\mathrm{V}_{2}, \mathrm{~V}_{3}$ may be selected as any value along a vertical line passing through the V_{2} value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

Since this current is relatively constant, the collector of Q_{2} acts as a constant current source for the output stage. Logic inversion is performed since logical " 1 " input voltages cause current to be supplied to Q_{2} and Q_{3}. And when Q_{3} turns on the output voltage drops to the logical " 0 " level.
The reason for the PNP current source, Q_{2}, is so that the output stage can be driven from a high impedance. This allows voltage V_{2} to be adjusted in accordance with the application. Negative voltages to -25 V can be applied to V_{2}. Since the output will neither source nor sink large amounts of current, the output voltage range is almost exclusively dependent upon the values selected for V_{2} and V_{3}. Maximum leakage current through the output transistor Q_{3} is specified at $10 \mu \mathrm{~A}$ under worst-case voltage between V_{2} and V_{3}. This will result in a logical " 1 " output voltage which is 0.2 V below V_{3}. Likewise the clamping action of diodes D_{4}, D_{5}, and D_{6}, prevents the logical " 0 " output voltage from falling lower than 2 V above V_{2}, thus establishing the ouput voltage swing at typically 2 volts less than the voltage separation between V_{2} and V_{3}.

TL/F/5827-5

Switching Time Waveforms

TL/F/5827-6

DS78L12/DS88L12 Hex TTL-MOS Inverter/Interface Gate

General Description

The DS78L12/DS88L12 is a low power TTL to MOS hex inverter element. The outputs may be "pulled up" to +14 V in the logical " 1 " state, thus providing guaranteed interface between TTL and MOS logic levels. The gate may also be
operated with V_{CC} levels up to +14 V without resistive pullups at the outputs and still providing a guaranteed logical " 1 " level of $V_{C C}-2.2 \mathrm{~V}$ with an output current of $-200 \mu \mathrm{~A}$.

Schematic and Connection Diagrams

Note: Shown is schematic for each inverter.

Typical Applications

TL/F/8584-3

Order Number DS78L12J, DS88L12J, DS88L12N and DS78L12W See NS Package Number J14A, N14A or W14B

TTL Interface to MOS ROM with Resistive Pull-Up

Absolute Maximum Ratings (Note 1)	Operating Conditions			
If Military/Aerospace speclfied devices are required, please contact the National Semiconductor Sales	Supply Voltage (V_{CC})	Min	Max	Units
Office/Distributors for availability and specifications.	DS78L12	4.5	5.5	V
Supply Voltage 15V	DS88L12	4.75	5.25	V
Input Voltage 5.5 V	Temperature $\left(T_{A}\right)$	-55	125	
Output Voltage 15V	DS88L12	-55 0	125 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$				
Cavity Package 1308 mW				
Molded Package 1207 mW				
Lead Temperature (Soldering, 4 sec.) $260^{\circ} \mathrm{C}$				
*Derate cavity package $8.72 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $9.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.				

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage	$V_{C C}=14.0 \mathrm{~V}$		2.0	1.3		V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		2.0	1.3		V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=14.0 \mathrm{~V}$			1.3	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			1.3	0.7	V
V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=0.7 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$, IOUT $=-200 \mu \mathrm{~A}$	11.8	12.0		V
			$V_{C C}=$ Min, IOUT $=-200 \mu \mathrm{~A}$	14.5	15.0		V
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{C C}=$ Min, $\mathrm{IOUT}=-5.0 \mu \mathrm{~A}($ Note 6$)$					V
VOL	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=14.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=12 \mathrm{~mA}$		0.5	1.0	V
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\text {OUT }}=3.6 \mathrm{~mA}$		0.2	0.4	V
${ }_{1 /}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		<1	20	$\mu \mathrm{A}$
			$V_{C C}=$ Max		<1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		<1	100	$\mu \mathrm{A}$
			$V_{C C}=$ Max		<1	100	$\mu \mathrm{A}$
IIL	Logical "0" Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		-320	-500	$\mu \mathrm{A}$
			$V_{C C}=$ Max		-100	-180	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & V_{\text {OUT }}=O V \\ & \text { (Note 4) } \end{aligned}$	$V_{C C}=14.0 \mathrm{~V}$	-10	-25	-50	mA
			$V_{C C}=$ Max	-3	-8	-15	mA
ICCH	Supply Current—Logical "1" (Each Inverter)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		0.32	0.50	mA
			$V_{C C}=$ Max		0.11	0.16	mA
${ }^{\text {I CCL }}$	Supply Current—Logical "0" (Each Inverter)	$V_{\text {IN }}=5.25 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		1.0	1.5	mA
			$V_{C C}=$ Max		0.3	0.5	mA

Switching Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Symbol	Parameter		Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{pd}} 0$	Propagation Delay to a Logical "0" from Input to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \quad$ (Figure 2)		27	45	ns
			$V_{C C}=14.0 \mathrm{~V}$ (Figure 1)		11	20	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay to a Logical " 1 " from Input to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \quad$ (Figure 2), (Note 5)		79	100	ns
			$\mathrm{V}_{C C}=14.0 \mathrm{~V}$ (Figure 1)		34	55	ns

[^24]AC Test Circuits

FIGURE 1

FIGURE 2

Switching Time Waveforms

MM5034/MM5035
 Octal 80-Bit Static Shift Register

General Description

The MM5034 octal 80-bit shift register is a monolithic MOS integrated circuit utilizing N -channel low threshold enhancement mode and ion-implanted depletion mode devices.
The MM5034 is designed for use in computer display peripherals. All inputs and outputs are TTL compatible. The clocks and recirculate logic are internal to reduce system component count, and TRI-STATE ${ }^{\text {® }}$ output buffers provide bus interface. Because of its N-channel characteristics, single 5 V power supply operation is required.
Simple interface to the NSC CRT DP8350 controller and character generator to incorporate an entire CRT terminal is feasible with the MM5034.
The MM5034 is available in a 22 -lead dual-in-line package.

The MM5035 is a 20 -pin version of the MM5034 with the TRI-STATE output select feature omitted, for a simple data in/data out operation.

Features

- Single 5V power supply
- Internal clocks
- High speed and static operation
- TRI-STATE output buffer
- Recirculate and outut select independent
- TTL compatible

Applications

- CRT displays
- Computer peripherals

Connection Diagrams

Dual-In-Line Package

TL/F/10821-2

Order Number MM5035N See NS Package Number N20A

Absolute Maximum Ratings

If Milltary/Aerospace speclfied devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
Supply Voltage $7 V_{D C}$
Input Voltage
$7 V_{D C}$

Power Dissipation	750 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Clock Input Logical " 1 " Input Voltage Logical " 0 " Input Voltage		2.2	\because	0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Data and Control Inputs Logical "1" Input Voltage Logical "0" Input Voltage		2.2		0.8	$\begin{aligned} & V \\ & v \end{aligned}$
Data, Clock and Control Inputs Logical "1" Input Current Input Capacitance	$\begin{aligned} & V_{I N}=5 \mathrm{~V} \\ & V_{I N}=2.5 \mathrm{~V} \end{aligned}$		5.0	$\begin{aligned} & 5.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{pF} \end{aligned}$
Outputs Logical " 1 " Output Voltage Logical "0" Output Voltage TRI-STATE Output Current	$\begin{aligned} & \text { IOUT }=100 \mu \mathrm{~A} \\ & \text { IOUT }=1.6 \mathrm{~mA} \\ & \text { VOUT }=5 \mathrm{~V} \\ & \text { V OUT }^{2}=0 \mathrm{~V} \end{aligned}$	2.4	$\begin{gathered} 2.8 \\ 0.25 \end{gathered}$	$\begin{gathered} 0.4 \\ -5.0 \\ 5.0 \\ \hline \end{gathered}$	V. V $\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current			60	90	mA
Timing Clock Frequency Clock Pulse Width High Clock Pulse Width Low Output Rise and Fall Time (t_{r}, t_{f}) Set-Up Time Hold Time Output Enable Time Output Disable Time Clock Rise and Fall Time Output Delay, (tpD)	(Figure 1) (Note 1) (Figure 1)	$\begin{gathered} 0 \\ 125 \\ 125 \\ \\ 100 \\ 0 \end{gathered}$	40 80	$\begin{gathered} 3.0 \\ 10,000 \\ \infty \\ 50 \\ \\ \\ 185 \\ 185 \\ 5.0 \\ 185 \\ \hline \end{gathered}$	MHz ns $\mu \mathrm{s}$ ns

Note 1: The clock input must be a low level for DC storage. Minimum width assumes $10 \mathrm{~ns} \mathrm{t}_{\mathrm{r}}$ and t_{f}.

Recirculate and TRI-STATE Operation

Recirculate is used to maintain data in the shift register after it has been loaded. While the shift register is being loaded, Recirculate must be at a logical " 0 ". When the loading is completed, Recirculate should be brought to a logical " 1 ". This disables the data input and feeds the output of the last
shift cell back to the input of the first shift cell for each of the 8 registers.
For the output to be in the TRI-STATE mode output-select should be at the logical "1" level.

AC Test Circuits and Switching Time Waveforms

TL/F/10821-5
FIGURE 1

Typical Application

FIGURE 2. CRT System Diagram Using the MM5034, MM5035 as a Line Buffer with DMA

Section 8
Frequency Synthesis

Section 8 Contents

Frequency Synthesis-Introduction 8-3
Frequency Synthesis-Selection Guide 8-5
DS8614/DS8615/DS8616/DS8617 130/225 MHz Low Power Dual Modulus Prescalers 8-6
DS8627/DS8628 130/225 MHz Low Power Prescalers 8-10
DS8673/DS8674 Low Power VHF/UHF Prescalers 8-13
DS8906 AM/FM Digital Phase-Locked Loop Synthesizer 8-16
DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-23
DS8908B AM/FM Digital Phase-Locked Loop Frequency Synthesizer 8-29
DS8911/DS8913 AM/FM/TV Sound Up-Conversion Frequency Synthesizers 8-37
MM5368 CMOS Oscillator Divider Circuit 8-46
MM5369 Series 17 Stage Oscillator/Divider 8-49
MM5437 Digital Noise Source 8-52
MM54240 Asynchronous Receiver/Transmitter Remote Controller 8-55
AN-335 Digital PLL Synthesis 8-63
AN-512 DS8911 AM/FM/TV Sound Up-Conversion Frequency Synthesizer 8-70

Frequency synthesis is the process of generating a multitude of different frequencies from one reference frequency. A common application where the frequency synthesis concept is used is in electronically tuned radios and televisions. Digital tuning systems are fast replacing the conventional mechanical systems in AM, FM and television receivers. The digital approach encompasses the following operational features:

- Precise tuning of station frequencies
- Exact digital frequency display
- Keyboard entry of desired frequency
- Virtually unlimited station memory
- Up/down scanning through the band
- Station "search" (stop on next active station)
- Power-on to the last station
- Easy option for time-of-day clock

In addition, recent developments in large-scale integrated circuit technology and new varactor diodes for the AM band have made the cost-benefit picture for digital tuning very attractive.
The heart of any digital tuning system is, of course, the phase locked loop (PLL) synthesizer. The basic subcomponents of a digital system are: a voltage controlled oscillator (VCO), a phase comparator and some programmable and fixed dividers. The PLL's basic function is to take two input signals and match them as illustrated in Figure 1. The output of the phase comparator of the PLL is an error signal which is filtered and fed back to the VCO as a DC control voltage. The DC control voltage adjusts the VCO until it causes the phase comparator's two inputs to match one another.
The weak point of this simple illustration is that many PLLs are fabricated using MOS processes which make them relatively incapable of receiving high frequency signals. In fact,
state-of-the-art microCMOS devices are usually limited to 100 MHz operation. Even the FM band exceeds this limitation. As a result, a prescaler is almost always used in PLL tuning applications such as FM radios, police scanning radios, aircraft radios, etc. The prescaler is specifically designed to divide high frequency $A C$ input signals down to a usable frequency for the PLL. The prescaler becomes an extension of the PLL's programmable counter as illustrated in Figure 2.

For less sophisticated tuning applications, a fixed division prescaler will make the VCO signal palatable to the PLL and be sufficient for general tuning characteristics. However, in some applications, a fixed division prescaler can cause significant undesirable side effects such as:

1. Increased channel spacing (step size) at the output of the PLL's counter; or
2. A forced decrease of the fixed oscillator reference frequency in order to obtain specific channel spacing which can lead to
A. increased lock-on time,
B. decreased scanning rates, and
C. sidebands at undesirable frequencies.

AN-335 in this section explains in detail how these two shortcomings of fixed division prescaling are alleviated by using a dual modulus prescaler. A dual modulus prescaler is substituted for the fixed prescaler and is controlled by programmable counters in the dual modulus PLL, as illustrated by the dotted line in Figure 2.
In order to address the requirements of digital frequency synthesis applications, National has introduced a growing family of PLL synthesizers and prescalers. The DS8906, DS8907 and DS8908 are complete PLL synthesizers with features that go beyond those illustrated in Figure 2.

TL/XX/0108-1
FIGURE 1

Highlights

- The DS8908 integrates a reference oscillator, phase comparator, charge pump, operational amplifier, 120 MHz ECL/I2L dual modulus programmable divider, and a shift register/latch for serial data entry.
- The DS8614, DS8615, DS8616, DS8617, DS8627, and DS8628 represent a broad family of single and dual modulus prescalers for use in conjunction with other manufac-
turers' NMOS or CMOS PLLs. These low-power/highspeed prescalers are available with division ratios ranging from a fixed $\div 20$ up to a dual modulus $\div 64 / 65$. This array of products allows for the choice of a division ratio which is virtually tailored to the speed and tuning requirements of a particular frequency synthesis application.

FIGURE 2

National
Semiconductor

Frequency Synthesizers Selection Guide

PLL FREQUENCY SYNTHESIZERS

Product Type	Frequency Bands	Power (mA)	Tuning Resolution	Page No.
DS8906	AM/FM	160	$500 \mathrm{~Hz} / 12.5 \mathrm{kHz}$	$8-16$
DS8907	AM/FM	160	$10 \mathrm{~Hz} / 25 \mathrm{kHz}$	$8-23$
DS8908	AM/FM	160	$1 \mathrm{kHz}, 9 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}$	$8-29$
DS8911/13	AM/FM/VHF TV	35	$\mathrm{FM} ; 10,12.5,25,100 \mathrm{kHz}$	
AN-335 Digital			AM; 1,1.25, 2.5,10 kHz	$8-37$
PLL Synthesis			$8-63$	

HIGH FREQUENCY PRESCALERS

Product Type	Divide Modulus	Power (mA)	$\mathrm{f}_{\text {MAX }}$	Page No.
Single (Fixed) Modulus Dividers				
DS8627	$\div 24$	7/10	$130 / 225 \mathrm{MHz}$	$8 \cdot 10$
DS8628	$\div 20$	7/10	$130 / 225 \mathrm{MHz}$	8-10
DS8673	$\div 64$	25	1.0 GHz	$8-13$
DS8674	$\div 256$	25	1.0 GHz	8-13
Dual-Modulus Dividers				
DS8614	$\div 20 / 21$	7/10	$130 / 225 \mathrm{MHz}$	8-6
DS8615	$\div 32 / 33$	7/10	$130 / 225 \mathrm{MHz}$	8-6
DS8616	$\div 40 / 41$	7/10	$130 / 225 \mathrm{MHz}$	8-6
DS8617	$\div 64 / 65$	7/10	$130 / 225 \mathrm{MHz}$	8-6

DS8614/DS8615/DS8616/DS8617 130/225 MHz Low Power Dual Modulus Prescalers

General Description

The DS8614 series products are low power dual modulus prescalers which divide by $20 / 21,32 / 33,40 / 41$, and $64 / 65$, respectively. The modulus control (MC) input selects division by N when at a high TTL level and division by $\mathrm{N}+1$ when at a low TTL level. The clock inputs are buffered, providing 40/100 mVrms input sensitivity. The two outputs provide the user the option to wire either a totem-pole or open-collector output structure. Additionally, the user can wire a resistor between the two output pins to minimize edge transition emissions. The outputs are designed to drive positive edge triggered PLLs. These products can be operated from either an unregulated 5.5 V to 13.5 V source or regulated $5 \mathrm{~V} \pm 10 \%$ source. Unregulated operation is obtained by connecting V_{S} to the source with $V_{\text {REG }}$ open. Regulated operation is obtained by connecting both V_{S} and $V_{\text {REG }}$ to the supply source.

The device can be used in phase-locked loop applications such as FM radio or other communications bands to prescale the input frequency down to a more usable level. A digital frequency display system can also be derived separately or in conjunction with a phase-locked loop, and it can extend the useful range of many inexpensive frequency counters to 225 MHz .

Features

■ Input frequency: $130 \mathrm{MHz}(-4)$; $225 \mathrm{MHz}(-2)$

- Low power: $10 \mathrm{~mA}(-4,-2)$
n Input sensitivity: $100 \mathrm{mVrms}(-4) ; 40 \mathrm{mVrms}(-2)$
- Pin compatible with Motorola MC12015-17 prescalers
- Unregulated/regulated power supply option

Logic and Connection Diagrams

$$
\text { Generalized } \div N / N+1
$$

TL/F/5240-1

Order Number DS8614N-4, DS8615N-4, DS8616N-4, DS8617N-4, DS8614N-2, DS8616N-2, DS8614M-4, DS8615M-4, DS8616M-4 or DS8617M-4 See NS Package Number N08E, M08A

Absolute Maximum Ratings (Note 1)										
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Modulus Control Input Voltage Open-Collector Output Voltage Operating Free Air Temperature Range Storage Temperature Range				$\begin{array}{r} 7 \mathrm{~V} \\ 7 \mathrm{~V} \\ -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$			
$V_{\text {S }}$, Unregulated Supply Voltage $V_{\text {REG }}$, Regulated Supply Voltage		$7 \mathrm{~V}$					$-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$			
Recommended Operating Conditions										
Symbol	Parameter	Condit		DS8614-4 DS8615-4 DS8616-4 DS8617-4		DS8614-2 DS8615-2 DS8616-2 DS8617-2		Units		
				Min	Max	MIn	Max			
V_{S}	Unregulated Supply Voltage	$\mathrm{V}_{\text {REG }}=\mathrm{Op}$		6.8	13.5	5.5	13.5	V		
$V_{\text {REG }}$	Regulated Supply Voltage	V_{S} and $V_{\text {RE }}$	rted	4.5	5.5	4.5	5.5	V		
$f_{\text {MAX }}$	Toggle Frequency	$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m}$		20	130		225	MHz		
$V_{\text {IN }}$	Input Signal Amplitude			100	300	40	300	mVrms		
$\mathrm{V}_{\text {SLW }}$	Slew Rate			20		20		$\mathrm{V} / \mu \mathrm{s}$		
IOH	High Level Output Current				-400		-400	$\mu \mathrm{A}$		
1 l	Low Level Output Current				2.0		2.0	mA		

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	DS8614-4 DS8615-4 DS8616-4 DS8617-4		DS8614-2 DS8615-2 DS8616-2 DS8617-2		Units
			Min	Max	Min	Max	
V_{IH}	High Level MC Input Voltage	$V_{S}=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=$ Open	2.0		2.0		V
$V_{\text {IL }}$	Low Level MC Input Voltage	$V_{R E G}=V_{S}=4.5 \mathrm{~V}$		0.8		0.8	V
V_{OH}	High Level Output Voltage	$I_{\mathrm{OH}}=-0.4 \mathrm{~mA},$ Pins 2 and 3 Shorted	$V_{\text {REG }}-2$		$V_{\text {REG }}-2$		V
$I_{\text {CEX }}$	Open-Collector High Level Output	Lower Output $=5.5 \mathrm{~V}$		100		100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{REG}}=4.5 \mathrm{~V}, \mathrm{l} \mathrm{OL}=2 \mathrm{~mA}$		0.5		0.5	V
1	Max MC Input Current	$\begin{aligned} & V_{S}=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{IH}}=7 \mathrm{~V} \end{aligned}$		100		100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	High Level MC Input Current	$\mathrm{V}_{\mathrm{REG}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$		20		20	$\mu \mathrm{A}$
IIL	Low Level MC Input Current	$\begin{aligned} & V_{\mathrm{S}}=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V} \end{aligned}$		-200		-200	$\mu \mathrm{A}$
Is	Supply Current, Unregulated Mode	$\mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=$ Open		10		10	mA
$I_{\text {REG }}$	Supply Current, Regulated Mode	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{REG}}=5.5 \mathrm{~V}$		10		10	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified Min/Max limits apply across the $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.
Note 3: All current into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as Max or Min on absolute value basis.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter		Condltions	Min	Max	Units
tmodulus	Modulus Set-Up Time (Notes 4 and 5)	DS8614			55	
		DS8615, DS8616			65	ns
		DS8617			75	
$\mathrm{R}_{\text {IN }}$	AC Input Resistance		$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{MHz}$ and 50 mVrms	1.0		$\mathrm{k} \Omega$
C_{IN}	Input Capacitance		$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{MHz}$ and 50 mVrms	3	10	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 3: All currents into device pins are shown as positive, out of device pins as nogative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: $\mathrm{t}_{\text {MODULUS }}=$ the period of time the modulus control level must be defined prior to the positive transition of the prescaler output to ensure proper modulus selection.

Note 5: See Timing Diagrams.

Timing Diagram

TL/F/5240-3
The logical state of the modulus control input just prior to the output's rising edge will determine the modulus ratio of the device immediately following that rising edge. The pulse width difference of N and $\mathrm{N}+1$ operation occurs during the output $=\mathrm{HI}$ conditions.

Typical Applications

TL/F/5240-4

TL/F/5240-5

Schematic Diagrams

TL/F/5240-8

Application Hints

operating notes

The signal source is usually capacitively coupled to the input. At higher frequencies a $0.001 \mu \mathrm{~F}$ input capacitor (C1) is usually sufficient, with larger values used at the lower frequencies. If the input signal is likely to be interrupted, it may be desirable to connect a $100 \mathrm{k} \Omega$ resistor between one input and ground to stabilize the device. In the single-ended mode, it is preferable to connect the resistor to the unused input. In the differential mode, the resistor can be connected to either input. The addition of the $100 \mathrm{k} \Omega$ pulldown resistor causes a loss of input sensitivity, but prevents circuit oscillations under no signal (open circuit) conditions. In addition, in
the single ended mode, a capacitor of $0.001 \mu \mathrm{~F}$ (C2) should be connected between the unused input and the ground plane to provide a good high frequency bypass. The capacitor should be made larger for lower frequencies.
The input waveform may be sinusoidal, but below about 20 MHz the operation of the circuit becomes dependent on the slew rate of the input rather than amplitude. A square wave input with a slew rate of greater than $20 \mathrm{~V} / \mu \mathrm{s}$ will permit correct operation down to lower frequencies, provided the proper input coupling capacitor is provided.
For regulated mode operation connect V_{S} to $V_{\text {REG }}$ to ensure proper operation (see Typical Application diagram).

DS8627/DS8628 130/225 MHz Low Power Prescalers

General Description

The DS8627 and DS8628 are low power fixed ratio prescalers which divide by 24 and 20, respectively. The inputs can be driven either single or double-ended and they are buffered, providing $40 / 100 \mathrm{mVrms}$ input sensitivity. The output provided is open-collector and is capable of interfacing with TTL and CMOS.
The device can be used in phase-locked loop applications such as FM radio or other communications bands to prescale the input frequency down to a more usable level. A digital frequency display system can also be derived
separately or in conjunction with a phase-locked loop, and it can extend the useful range of many inexpensive frequency counters to 225 MHz .

Features

E Input frequency: $130 \mathrm{MHz}(-4,-3) ; 225 \mathrm{mHz}(-2$, std)

- Low power: $10 \mathrm{~mA}(-4,-2) ; 7 \mathrm{~mA}(-3$, std)
- Input sensitivity: $100 \mathrm{mVrms}(-4,-3) ; 40 \mathrm{mVrms}(-2$, std)

Logic and Connection Diagrams

TL/F/5009-1

$$
\begin{aligned}
& \text { Absolute Maximum Ratings (Note 1) } \\
& \text { If Military/Aerospace specified devices are required, } \\
& \text { please contact the Natlonal Semiconductor Sales } \\
& \text { Office/Distributors for availability and specifications. } \\
& V_{C C} \text { Supply Voltage } \\
& V_{I N} \text { Input Voltage }
\end{aligned}
$$

Open-Collector Output Voltage
7 V
Operating Free Air Temperature Range $\quad-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Conditions	$\begin{aligned} & \text { DS8627-4 } \\ & \text { DS8628-4 } \end{aligned}$		$\begin{aligned} & \text { DS8627-3 } \\ & \text { DS8628-3 } \end{aligned}$		$\begin{aligned} & \text { DS8627-2 } \\ & \text { DS8628-2 } \end{aligned}$		$\begin{aligned} & \text { DS8627 } \\ & \text { DS8628 } \end{aligned}$		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
$\mathrm{V}_{C C}$	Supply Voltage		4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	V
$\mathrm{f}_{\text {MAX }}$	Toggle Frequency	$\mathrm{V}_{\text {IN }}=100 \mathrm{mVrms}$	20	130	20	130	20	225	20	225	MHz
$\mathrm{V}_{\text {IN }}$	Input Signal Amplitude		100	300	100	300	40	300	40	300	mVrms
$\mathrm{V}_{\text {SLW }}$	Slew Rate		20		20		20		20		$\mathrm{V} / \mathrm{\mu s}$
lOL	Low Level Output Current			3		3				3	mA

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions	$\begin{aligned} & \text { DS8627-4 } \\ & \text { DS8628-4 } \end{aligned}$		$\begin{aligned} & \text { DS8627-3 } \\ & \text { DS8628-3 } \end{aligned}$		$\begin{aligned} & \text { DS8627-2 } \\ & \text { DS8628-2 } \end{aligned}$		DS8627 DS8628		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
ICEX	Open-Collector High Level Output	Output $=5.5 \mathrm{~V}$		100		100		100		100	$\mu \mathrm{A}$
V OL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
ICC	Supply Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$		10		7		10		7	mA

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{R}_{I N}$	AC Input Resistance	$\mathrm{V}_{\mathbb{I N}}=100 \mathrm{MHz}$ and 50 mVrms	1.0		$\mathrm{k} \Omega$
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance		3	10	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 3: All currents into device pins are shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Application Hints

OPERATING NOTES

The signal source is usually capacitively coupled to the input. At higher frequencies a $0.001 \mu \mathrm{~F}$ input capacitor is usually sufficient, with larger values used at the lower frequencies. If the input signal is likely to be interrupted, it may be desirable to connect a $100 \mathrm{k} \Omega$ resistor between one input and ground to stabilize the device. In the single-ended mode, it is preferable to connect the resistor to the unused input. In the differential mode, the resistor can be connected to either input. The addition of the $100 \mathrm{k} \Omega$ pull-down resistor causes a loss of input sensitivity, but prevents circuit oscilla-
tions under no signal (open circuit) conditions. In addition, in the single ended mode, a capacitor of $0.001 \mu \mathrm{~F}$ should be connected between the unused input and the ground plane to provide a good high frequency bypass. The capacitor should be made larger for lower frequencies.
The input waveform may be sinusoidal, but below about 20 MHz the operation of the circuit becomes dependent on the slew rate of the input rather than amplitude. A square wave input with a slew rate of greater than $20 \mathrm{~V} / \mu \mathrm{s}$ will permit correct operation down to lower frequencies, provided the proper input coupling capacitor is provided.

Schematic Diagrams

TL/F/5009-5

Typical Application

DS8673/DS8674 Low Power VHF/UHF Prescalers

General Description

The DS8673 and DS8674 products are low power prescalers which divide by 64 and 256 respectively. The devices are used in frequency synthesis applications such as TV/ CATV, cellular phone, and instrumentation to divide a very high frequency down to a frequency usable by low power MOS PLL's.
The devices have differential buffered inputs and complementary ECL outputs. The inputs provide high input sensitivity and good isolation. The DS8673 is pin compatible with Plessey's SP4531, SP4632, and Motorola's MC12073 prod-
ucts. The DS8674 is pin compatible with Plessey's SP4653 and Motorola's MC12074 products.

Features

- 1.0 GHz operating frequency
- 25 mA typical supply current
- 20 mV rms input sensitivity
- 0.8 V complementary ECL outputs

■ Low output radiation

Block and Connection Diagrams

Dual-In-Line Package

Top View
Order Number DS8673N or DS8674N
See NS Package Number N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
Supply Voltage
Input Voltage

Output Voltage	$V_{C C}+0.5 \mathrm{~V}$
Operating Free Air Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD rating is to be determined.	

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{C C}$	Power Supply Voltage Range		4.5		5.5	V
$\mathrm{~F}_{\mathbb{N}}$	Input Frequency Range	$\mathrm{V}_{\mathrm{IN}} \mathrm{Min}$	80		1,000	MHz
V_{IN}	Input Sensitivity into 50Ω	80 MHz	20		200	
		300 MHz	20		200	
		500 MHz	20		200	mV rms
		700 MHz	20		200	
		1 GHz	20		200	

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$		25	35	mA
$V_{\text {OUT }}$	Output Voltage Swing	Peak-to-Peak (no load)	0.8	1.2	1.6	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Typical Applications

Typical WIring Configuratlon

TL/F/9340-3

Typlcal Input Impedance

TL/F/9340-4

Typical Sensitivity Curve Under Nominal Conditions

TL/F/9340-5

DS8906 AM/FM Digital Phase-Locked Loop Synthesizer

General Description

The DS8906 is a PLL synthesizer designed specifically for use in AM/FM radios. It contains the reference oscillator, a phase comparator, a charge pump, a $120 \mathrm{MHz} \mathrm{ECL} / \mathrm{I}^{2} \mathrm{~L}$ dual modulus programmable divider, and a 20-bit shift register/latch for serial data entry. The device is designed to operate with a serial data controller generating the necessary division codes for each frequency, and logic state information for radio function inputs/outputs.
The Colpitts reference oscillator for the PLL operates at 4 MHz . A chain of dividers is used to generate a 500 kHz clock signal for the external controller. Additional dividers generate a 12.5 kHz reference signal for FM and a 500 Hz reference signal for AM/SW. One of these reference signals is selected by the data from the controller for use by the phase comparator. Additional dividers are used to generate a 50 Hz timing signal used by the controller for "time-ofday".
Data is transferred between the frequency synthesizer and the controller via a 3 wire bus system. This consists of a data input line, an enable line and a clock line. When the enable line is low, data can be shifted from the controller into the frequency synthesizer. When the enable line is transitioned from low to high, data entry is disabled and data present in the shift register is latched.
From the controller 22 -bit data stream, the first 2 bits address the device permitting other devices to share the same bus. Of the remaining 20 -bit data word, the next 14-bits are used for the PLL divide code. The remaining 6 bits are connected via latches to output pins. These 6 bits can be used to drive radio functions such as gain, mute, FM, AM, LW and SW only. These outputs are open collector. Bit 18 is used internally to select the AM or FM local oscillator input and to select between the 500 Hz and 12.5 kHz reference. A high level at bit 18 indicates FM and a low level indicates AM.
The PLL consists of a 14 -bit programmable I2L divider, an ECL phase comparator, an ECL dual modulus ($p / p+1$) prescaler, and a high speed charge pump. The programmable divider divides by $(N+1), N$ being the number loaded into the shift register (bits 1-14 after address). It is clocked by the AM input via an ECL $\div 7 / 8$ prescaler, or through a \div 63/64 prescaler from the FM input. The AM input will work at frequencies up to 8 MHz , while the FM input works up to 120 MHz . The AM band is tuned with a frequency resolution of 500 Hz and the FM band is tuned with a resolution of 12.5 kHz . The buffered AM and FM inputs are self-biased and can be driven directly by the VCO thru a capacitor. The ECL phase comparator produces very accurate resolution of the phase difference between the input signal and the reference oscillator.

The high speed charge pump consists of a switchable constant current source (-0.3 mA) and a switchable constant current sink (+0.3 mA). If the VCO frequency is low, the charge pump will source current, and sink current if the VCO frequency is high.
A separate $\mathrm{V}_{\mathrm{CCM}}$ pin (typically drawing 1.5 mA) powers the oscillator and reference chain to provide controller clocking frequencies when the balance of the PLL is powered down.

Features

■ Uses inexpensive 4 MHz reference crystal

- FIN capability greater than 120 MHz allows direct synthesis at FM frequencies
■ FM resolution of 12.5 kHz allows usage of 10.7 MHz ceramic filter distribution
- Serial data entry for simplified control
- 50 Hz output for "time-of-day" reference with separate low power supply (VCCM)
- 6-open collector buffered outputs for band switching and other radio functions
- Separate AM and FM inputs. AM input has 15 mV (typical) hysteresis

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)								
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Storage Temperature Range Lead Temperature (Soldering, 4 seconds)				$\begin{array}{r} -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ 260^{\circ} \mathrm{C} \end{array}$	
Supply Voltage			Operating Conditions					
($\mathrm{VCC1}^{\text {) }}$		7 V			Min	Max		Units
		7 V	Supply Voltage, V_{CC}					
Input Voltage		7 V	$V_{\text {CC1 }}$		4.75	5.25		\checkmark
Output Voltage		7 V	Temperature, T_{A}		4.5	6.0		\checkmark
					0	70		${ }^{\circ} \mathrm{C}$
DC Electrical Characteristics (Notes 2 and 3)								
Symbol	Parameter		Conditions		Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage				2.1			V
$\mathrm{IIH}^{\text {I }}$	Logical "1" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{CC} 1}$				0	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage						0.7	V
$\mathrm{l}_{\text {IL }}$	Logical "0" Input Current	Data, Clock	ENABLE IN	TS, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-5	-25	$\mu \mathrm{A}$
IOH	Logical "1" Output Current All Bit Outputs, 50 Hz Output	$\mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}$					50	$\mu \mathrm{A}$
	500 kHz Output	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCM}}=4.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Logical " 0 " Output Voltage All Bit Outputs	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$					0.5	V
	50 Hz Output, 500 kHz Output	$\mathrm{lOL}=250 \mu \mathrm{~A}$					-0.5	V
ICC1	Supply Current ($\mathrm{V}_{\mathrm{CC} 1}$)	All Bit Outputs High				90	160	mA
ICCM(STANDBY)	$\mathrm{V}_{\text {CCM }}$ Supply Current	$\mathrm{V}_{\text {CCM }}=6.0 \mathrm{~V}$, All Other Pins Open				1.5	4.0	mA
lout	Charge Pump Output Current	$\begin{aligned} & 1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CCM}}-1.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCM}} \leq 6.0 \mathrm{~V} \end{aligned}$		Pump Up	-0.10	-0.30	-0.6	mA
				Pump Down	0.10	0.30	0.6	mA
				TRI-STATE ${ }^{\text {® }}$		0	± 100	nA
ICCM(OPERATE)	$\mathrm{V}_{\text {CCM }}$ Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CCM}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \\ & \text { All Other Pins Open } \end{aligned}$				2.5	6.0	mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN(MIN }}(\mathrm{F})$	FIN Minimum Signal Input	AM and FM Inputs, $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$		20	100	mV (rms)
$\mathrm{V}_{\text {IN(MAX) }}(\mathrm{F})$	FIN Maximum Signal Input	AM and FM Inputs, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$	1000	1500		mV (rms)
Foperate	Operating Frequency Range (Sine Wave Input)	$\begin{array}{ll} V_{I N}=100 \mathrm{mV} \mathrm{rms} & \mathrm{AM} \\ 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} & \mathrm{FM} \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 60 \end{aligned}$		$\begin{gathered} 8 \\ 120 \end{gathered}$	MHz MHz
$\mathrm{R}_{\text {IN }}$ (FM)	AC Input Resistance, FM	$120 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=100 \mathrm{mV} \mathrm{rms}$	300			Ω
$\mathrm{R}_{\text {IN }}(\mathrm{AM})$	AC Input Resistance, AM	$2 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{mms}$	1000			Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance; FM and AM	$\mathrm{V}_{\mathrm{iN}}=120 \mathrm{MHz}$	3	6	10	pF
$\mathrm{t}_{\mathrm{EN} 1}$	Minimum ENABLE High Pulse Width			625	1250	ns
teno	Minimum ENABLE Low Pulse Width			375	750	ns
tclkENO	Minimum Time before ENABLE Goes Low that CLOCK must be Low			-50	0	ns
teNoclk	Minimum Time after ENABLE Goes Low that CLOCK must Remain Low			275	550	ns
tCLKEN1	Minimum Time before ENABLE Goes High that Last Positive CLOCK Edge May Occur			300	600	ns

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$ (Continued)

Symbol	Parameter	Conditlons	Min	Typ	Max	Units
$t_{\text {EN1CLK }}$	Minimum Time After ENABLE Goes High Before an Unused Positive CLOCK Edge May Occur			175	350	ns
$\mathrm{t}_{\text {CLKH }}$	Minimum CLOCK High Pulse Width			275	550	ns
$\mathrm{t}_{\text {CLKL }}$	Minimum CLOCK Low Pulse Width			400	800	ns
t_{DS}	Minimum DATA Setup Time, Minimum Time Before CLOCK that DATA Must be Valid			150	300	ns
$t_{\text {DH }}$	Minimum DATA Hold Time, Minimum Time After CLOCK that DATA Must Remain Valid		400	800	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS8906.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Schematic Diagrams (DS8906 AM/FM PLL Typical Input/Output Schematics)

TL/F/5775-4

TL/F/5775-6

Schematic Diagrams (DS8906 AM/FM PLL Typical Input/Output Schematics) (Continued)

Timing Diagrams*

TL/F/5775-8

TL/F/5775-9
CLOCK vs DATA

TL/F/5775-10

Applications Information

SERIAL DATA ENTRY INTO THE DS8906

Serial information entry into the DS8906 is enabled by a low level on the ENABLE input. One binary bit is then accepted from the DATA input with each positive transition of the CLOCK input. The CLOCK input must be low for the specified time preceding and following the negative transition of the ENABLE input.
The first 2 bits accepted following the negative transition of the ENABLE input are interpreted as address. If these address bits are not 1,1 , no further information will be accepted from the DATA inputs, and the internal data latches will not be changed when ENABLE returns high.
If these first 2 bits are 1,1, then all succeeding bits are accepted as data, and are shifted successively into the internal shift register as long as ENABLE remains low.
Any data bits preceding the 20th to last bit will be shifted out, and are thus irrelevant. Data bits are counted as any bits following 2 valid $(1,1)$ address bits with the ENABLE low.
When the ENABLE input returns high, any further serial data input is inhibited. Upon this positive transition of the ENABLE, the data in the internal shift register is transferred into the internal data latches.

Note that until this time, the states of the internal data latches have remained unchanged.
These data bits are interpreted as follows:

DATA BIT POSITION	DATA INTERPRETATION
Last	Bit 20 Output (Pin 2)
2nd to Last	Bit 19 Output (Pin 1)
3rd to Last	Bit 18 Output (FM//̄M) (Pin 20)
4th to Last	Bit 17 Output (Pin 19)
5th to Last	Bit 16 Output (Pin 18)
6th to Last	Bit 15 Output (Pin 17)
7th to Last	MSB of N (213)
8th to Last	(212)
9th to Last	(211)
10th to Last	(210)
11th to Last	$\left({ }^{9}\right)$
12th to Last	$\left(2^{8}\right)$
13th to Last	$\left({ }^{7}\right)$
14th to Last	$\left({ }^{6}\right)$
15th to Last	$\left({ }^{5}\right)$
16th to Last	(2)
17th to Last	(23)
18th to Last	(2)
19th to Last	(21)
20th to Last	LSB of $\mathrm{N} \quad\left(2^{\circ}\right)$

Note. The actual divide code is $\mathrm{N}+1$, i.e., the number loaded plus 1 .

Typical Application

TL/F/5775-12

Logic Diagram

"Sections operating from $V_{\text {CCM }}$ supply
**Address (1,1)

DS8907 AM/FM Digital

 Phase-Locked Loop Frequency Synthesizer
General Description

The DS8907 is a PLL synthesizer designed specifically for use in AM/FM radios. It contains the reference oscillator, a phase comparator, a charge pump, a 120 MHz ECL/I2L dual modulus programmable divider, and an 18-bit shift register/latch for serial data entry. The device is designed to operate with a serial data controller generating the necessary division codes for each frequency, and logic state information for radio function inputs/outputs.
The Colpitts reference oscillator for the PLL operates at 4 MHz . A chain of dividers is used to generate a 500 kHz clock signal for the external controller. Additional dividers generate a 25 kHz reference signal for FM and a 10 kHz reference signal for AM. One of these reference signals is selected by the data from the controller for use by the phase comparator.
Data is transferred between the frequency synthesizer and the controller via a 3 wire bus system. This consists of a data input line, an enable line, and a clock line. When the enable line is low, data can be shifted from the controller into the frequency synthesizer. When the enable line is transitioned from low to high, data entry is disabled and data present in the shift register is latched.
From the controller 20-bit data stream, the first 2 bits address the device permitting other devices to share the same bus. Of the remaining 18 -bit data word, the next 13 bits are used for the PLL divide code. The remaining 5 bits are connected via latches to output pins. These 5 bits can be used to drive radio functions such as gain, mute, FM, AM and stereo only. These outputs are open collector. Bit 16 is used internally to select the AM or FM local oscillator input and to select between the 10 kHz and 25 kHz reference. A high level at bit 16 indicates FM and a low level indicates AM.
The PLL consists of a 13 -bit programmable ${ }^{2}$ L divider, an ECL phase comparator, an ECL dual modulus ($p / p+1$) prescaler, and a high speed charge pump. The programma-
ble divider divides by $(N+1)$, N being the number loaded into the shift register (bits 1-13 after address). It is clocked by the AM input via an ECL $\div 7 / 8$ prescaler, or through a $\div 63 / 64$ prescaler from the FM input. The AM input will work at frequencies up to 15 MHz , while the FM input works up to 120 MHz . The AM band is tuned with a frequency resolution of 10 kHz and the FM band is tuned with a resolution of 25 kHz . The buffered AM and FM inputs are self biased and can be driven directly by the VCO through a capacitor. The ECL phase comparator produces very accurate resolution of the phase difference between the input signal and the reference oscillator. The high speed charge pump consists of a switchable constant current source (-0.3 mA) and a switchable constant current sink (+0.3 mA). If the VCO frequency is low, the charge pump will source current, and sink current if the VCO frequency is high. When using an AFC the charge pump output may be forced into TRI-STATE ${ }^{\circledR}$ by applying a low level to the charge pump enable input.
A separate $\mathrm{V}_{\mathrm{CCM}}$ pin (typically drawing 1.5 mA) powers the oscillator and reference chain to provide controller clocking frequencies when the balance of the PLL is powered down.

Features

- Uses inexpensive 4 MHz reference crystal
- FIN capability greater than 120 MHz allows direct synthesis at FM frequencies
- FM resolution of 25 kHz allows usage of 10.7 MHz ceramic filter distribution
- Serial data entry for simplified control

■ 50 Hz output for "time-of-day" reference driven from separate low power $V_{C C M}$
m 5-open collector buffered outputs for controlling various radio functions

- Separate $A M$ and FM inputs. AM input has 15 mV (typical) hysteresis

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage

$\left(V_{C C 1}\right)$	7 V
$\left(V_{C C M}\right)$	7 V
Input Voltage	7 V
Output Voltage	7 V

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec .)	$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
$V_{\mathrm{CC} 1}$	4.5	6.0	V
V_{CCM}	0	70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {H }}$	Logical "1" Input Voltage			2.1			V
I_{H}	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			0	10	$\mu \mathrm{A}$
V_{IL}	Logical "0" Input Voltage					0.7	V
I/L	Logical "0" Input Current	Data, Clock, and ENABLE Inputs, $\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$			-5	-25	$\mu \mathrm{A}$
InL	Logical "0" Input Current	Charge Pump Enable, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			-250	-450	$\mu \mathrm{A}$
IOH	Logical "1" Output Current All Bit Outputs, 50 Hz Output	$\mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}$				50	$\mu \mathrm{A}$
	500 kHz Output	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCM}}=4.5 \mathrm{~V}$				-250	$\mu \mathrm{A}$
V_{OL}	Logical "0" Output Voltage All Bit Outputs	$\mathrm{l}^{\mathrm{OL}}=5 \mathrm{~mA}$				0.5	V
	50 Hz Output, 500 Hz Output	$\mathrm{l}_{\mathrm{OL}}=250 \mu \mathrm{~A}$				0.5	V
ICCl	Supply Current (VCC1)	All Bits Outputs High			90	160	mA
ICCM(STANDBY)	$V_{\text {CCM }}$ Supply Current	$\mathrm{V}_{\text {CCM }}=6.0 \mathrm{~V}$, All Other Pins Open			1.5	4.0	mA
Iout	Charge Pump Ougtput Current	$\begin{aligned} & 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CCM}}-1.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCM}} \leq 6.0 \mathrm{~V} \end{aligned}$	Pump Up	-0.10	-0.30	-0.6	mA
			Pump Down	0.10	0.30	0.6	mA
			TRI-STATE		0	± 100	nA
ICCM(OPERATE)	$\mathrm{V}_{\text {CCM }}$ Supply Current	$V_{C C M}=6.0 \mathrm{~V}, V_{C C 1}=5.25 \mathrm{~V}$All Other Pins Open			2.5	6.0	mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$ (Continued)

Symbol	Parameter	Conditlons	Min	Typ	Max	Units
tentclk	Minimum Time After ENABLE Goes High Before an Unused Positive CLOCK Edge May Occur			175	350	ns
${ }^{\text {t CLKH }}$	Minimum CLOCK High Pulse Width			275	550	ns
tclek	Minimum CLOCK Low Pulse Width			400	800	ns
$t_{D S}$	Minimum DATA Setup Time, Minimum Time before CLOCK That DATA Must Be Valid			150	300	ns
${ }^{\text {t }}$ D	Minimum DATA Hold Time, Minimum Time after CLOCK That DATA Must Remain Valid			400	800	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\min /$ max limits apply across the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range for the DS8907.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Schematic Diagrams (DS8907 AM/FM PLL typical Input/Output Schematics)

TL/F/7511-5

TL/F/7511-3

Timing Diagrams*

ENABLE vs CLOCK

CLOCK vs DATA

AM/FM Frequency Synthesizer (Scan Mode)

*Timing diagrams are not drawn to scale. Scale within any one drawing may not be consistent, and intervals are defined positive as drawn.

SERIAL DATA ENTRY INTO THE DS8907

Serial information entry into the DS8907 is enabled by a low level on the ENABLE input. One binary bit is then accepted from the DATA input with each positive transition of the CLOCK input. The CLOCK input must be low for the specified time preceding and following the negative transition of the ENABLE input.
The first two bits accepted following the negative transition of the ENABLE input are interpreted as address. If these address bits are not 1,1 no further information will be accepted from the DATA inputs, and the internal data latches will not be changed when ENABLE returns high.

If these first two bits are 1,1, then all succeeding bits are accepted as data, and are shifted successively into the internal shift register as long as ENABLE remains low.
Any data bits preceding the 18th to last bit will be shifted out, and thus are irrelevant. Data bits are counted as any bits following two valid address bits $(1,1)$ with the ENABLE low. When the ENABLE input returns high, any further serial data entry is inhibited. Upon this positive transition, the data in the internal shift register is transferred into the internal data latches. Note that until this time, the states of the internal data latches have remained unchanged.

These data bits are interpreted as follows:

ote: The actual divide code is $\mathrm{N}+1$, i.e., the number loaded plus 1 .

Logic Diagram

TL/F/7511-13
*Sections operating from $\mathrm{V}_{\mathrm{CCM}}$ supply.
**Address (1, 1)

DS8908B AM/FM Digital Phase-Locked Loop Frequency Synthesizer

General Description

The DS8908B is a PLL synthesizer designed specifically for use in AM/FM radios. It contains the reference oscillator, a phase comparator, a charge pump, an operational amplifier, a $120 \mathrm{MHz} \mathrm{ECL} / \mathrm{I}^{2 \mathrm{~L}}$ dual modulus programmable divider, and a 19-bit shift register/latch for serial data entry. The device is designed to operate with a serial data controller generating the necesary division codes for each frequency, and logic state information for radio function inputs/outputs. A 3.96 MHz pierce oscillator and divider chain generate a 1.98 MHz external controller clock, a $20 \mathrm{kHz}, 10 \mathrm{kHz}, 9 \mathrm{kHz}$, and a 1 kHz reference signals, and a 50 Hz time-of-day signal. The oscillator and divider chain are sourced by the $\mathrm{V}_{\text {CCM }}$ pin thus providing a low power controller clock drive and time-of-day indication when the balance of the PLL is powered down.
The 21-bit serial data steram is transferred between the frequency synthesizer and the controller via a 3 -wire bus system comprised of a data line, a clock line, and an enable line.
The first 2 bits in the serial data stream address the synthesizer thus permitting other devices such as display drivers to share the same bus. The next 14 bits are used for the PLL $(\mathrm{N}+1)$ divide code. The 15th bit is used internally to select the AM or FM local oscillator input. A high level on this bit enables the FM input and a low level enables the AM input. The 16th and 17 th bits are used to select one of the 4 reference frequencies. The 18th and 19th bits are connected via latches to open collector outputs. These outputs can be used to drive radio functions such as gain, mute, AM, FM, or charge pump current source levels.
The PLL consists of a 14-bit programmable $\mathrm{I}^{2} \mathrm{~L}$ divider, an ECL phase comparator, an ECL dual modulus ($p / p+1$) prescaler, a high speed charge pump, and an operational amplifier. The programmable divider divides by $(\mathrm{N}+1), \mathrm{N}$ being the number loaded into the shift register. The programmable divider is clocked through a $\div 7 / 8$ prescaler by the AM input or through a $\div 63 / 64$ prescaler by the FM input. The AM input will work at frequencies up to 15 MHz , while the FM input works up to 120 MHz . The VCO can be tuned with a frequency resolution of either $1 \mathrm{kHz}, 9 \mathrm{kHz}, 10 \mathrm{kHz}$, or 20 kHz . The buffered AM and FM inputs are self-biased and can be driven directly by the VCO through a capacitor. The ECL phase comparator produces very accurate resolution of the phase difference between the input signal and the reference oscillator. The high speed charge pump consists of a switchable constant current source and sink. The charge pump can be programmed to deliver from $75 \mu \mathrm{~A}$ to $750 \mu \mathrm{~A}$ of constant current by connection of an external resistor from pin RpRogram to ground or the open collector bit outputs. Connection of programming resistors to the bit outputs enables the controller to adjust the loop gain for the particular reference frequency selected. The charge pump will source current if the VCO frequency is high and sink
current if the VCO frequency is low. The low noise operational amplifier provided has a high impedance JFET input and a large output voltage range. The op amp's negative input is common with the charge pump output and its positive input is internally biased.

Features

- Uses inexpensive 3.96 MHz reference crystal
- FIN capability greater than 120 MHz allows direct synthesis at FM frequencies
- FM resolution of either 10 kHz or 20 kHz allows usage of 10.7 MHz ceramic filter distribution
- Serial data entry for simplified control
- 50 Hz output for time-of-day reference driven from separate low power $\mathrm{V}_{\mathrm{CCM}}$
- 2 open collector buffered outputs for controlling various radio functions or loop gain
- Separate AM and FM inputs; AM input has 15 mV (typical) hysteresis
■ Programmable charge pump current sources enable adjustment of system loop gain
- Operational amplifier provides high impedance load to charge pump output and a wide voltage range for the VCO input

Connection Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)
$260^{\circ} \mathrm{C}$

Supply Voltage

$\left(V_{\text {CC1 }}\right)\left(V_{\text {CCM }}\right)$	7 V
$\left(\mathrm{VCCL}^{2}\right.$	17 V
Input Voltage	7 V
Output Voltage	7 V

Operating Conditions

	Min	Max	Units
$V_{C C 1}$	4.5	5.5	V
$V_{C C 2}$	$V_{C C 1}+1.5$	15.0	V
$V_{C C M}$	3.5	5.5	V
Temperature, T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IH}	Logical "1" Input Voltage			2.0			V
I_{H}	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			0	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage					0.8	V
ILL	Logical "0" Input Current	Data, Clock, and ENABLE Inputs, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			-5	-25	$\mu \mathrm{A}$
IOH	Logical "1" Output Current All Bit Outputs, 50 Hz Output	$\mathrm{VOH}^{\text {O }}=5.5 \mathrm{~V}$				50	$\mu \mathrm{A}$
	1.98 MHz Output	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCM}}=4.5 \mathrm{~V}$				-250	$\mu \mathrm{A}$
V OL	Logical "0" Output Voltage All Bit Outputs	$\mathrm{IOL}^{\prime}=5 \mathrm{~mA}$				0.5	V
	50 Hz Output, 1.98 MHz Output	$\mathrm{l}_{\mathrm{OL}}=250 \mu \mathrm{~A}$				0.5	V
	1.98 MHz Output	$\begin{aligned} & \mathrm{IOL}^{2}=20 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}>70^{\circ} \mathrm{C} \\ & \mathrm{IOL}^{2}=20 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$				$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
ICC1	Supply Current ($\mathrm{V}_{\mathrm{CC1}}$)	All Bit Outputs High				160	mA
ICCM	$V_{\text {CCM }}$ Supply Current	$\mathrm{V}_{\text {CCM }}=5.5 \mathrm{~V}$, All Other Pins Open			2.5	4.0	mA
Iout	Charge Pump Ougtput Current	$3.33 \mathrm{k} \leq$ RPROG $^{5} \leq 33.3 \mathrm{k}$ lout Measured between Pin 17 and Pin 18 $\mathrm{IPROG}=\mathrm{V}_{\mathrm{CC}} 1 / 2 \mathrm{R}_{\mathrm{PROG}}$	Pump Up	-20	$\mathrm{I}_{\text {PROG }}$	+20	\%
			Pump Down	-20	Iprog	+20	\%
			TRI-STATE ${ }^{\text {® }}$		0	11	nA
ICC2	V CC 2 Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CCM}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V} \\ & \text { All Other Pins Open } \end{aligned}$			6.7	11	mA
$\mathrm{OP}_{\text {VOH }}$	Op Amp Minimum High Level	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-750 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC} 2}-0.4$			V
OPVOL	Op Amp Maximum Low Level	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{IOL}=750 \mu \mathrm{~A}$				0.6	V
$\mathrm{CPO}_{\text {BIAS }}$	Charge Pump Bias Voltage Delta	CPO Shorted to Op Amp Output CPO $=$ TRI-STATE Op Amp loL: $750 \mu \mathrm{~A}$ vs $-750 \mu \mathrm{~A}$				100	mV

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IN(MIN)(F) }}$	FIN Minimum Signal Input	AM and FM Inputs, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$			20	100	mV (rms)
$\mathrm{V}_{\text {IN(MAX)(F) }}$	FIN Maximum Signal Input	AM and FM Inputs, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		1000	1500		mV (rms)
Foperate	Operating Frequency Range (Sine Wave Input)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{rms} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	AM	0.5		15	MHz
			FM	80		120	MHz
$\mathrm{R}_{\text {IN }}(\mathrm{FM})$	AC Input Resistance, FM	$120 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{rms}$		600			Ω
$\mathrm{R}_{\text {IN }}$ (AM)	AC Input Resistance, AM	$15 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{rms}$		1000			Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance, FM and AM	$\mathrm{V}_{\mathrm{IN}}=120 \mathrm{MHz}(\mathrm{FM}), 15 \mathrm{MHz}(\mathrm{AM})$		3	6	10	pF
$\mathrm{t}_{\text {EN1 }}$	Minimum ENABLE High Pulse Width				625	1250	ns

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{I}} \leq 10 \mathrm{~ns}$ (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
teno	Minimum ENABLE Low Pulse Width			375	750	ns
tcLKENO	Minimum Time before ENABLE Goes Low That CLOCK Must Be Low			-50	0	ns
tenoclk	Minimum Time after ENABLE Goes Low That CLOCK Must Remain Low			275	550	ns
tclken 1	Minimum Time before ENABLE Goes High That Last Positive CLOCK Edge May Occur			300	600	ns
ten 1 CLK	Minimum Time after ENABLE Goes High before an Unused Positive CLOCK Edge May Occur			175	350	ns
${ }_{\text {t CLKH }}$	Minimum CLOCK High Pulse Width			275	550	ns
${ }_{\text {t ClkL }}$	Minimum CLOCK Low Pulse Width			400	800	ns
$t_{\text {DS }}$	Minimum DATA Set-Up Time, Minimum Time before CLOCK That DATA Must Be Valid			150	300	ns
${ }^{\text {t }}$ H	Minimum DATA Hold Time, Minimum Time after CLOCK That DATA Must Remain Valid			400	800	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range for the DS8908B.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Schematic Diagrams (Ds8908B AM/FM PLL Typical Input/Output Schematics)

Schematic Diagrams (Continued)

Timing Diagrams*

Timing Diagrams* (Continued)

AM/FM Frequency Synthesizer (Scan Mode)

TL/F/5111-12
*Timing diagrams are not drawn to scale. Scale within any one drawing may not be consistent, and intervals are defined positive as drawn.

SERIAL DATA ENTRY INTO THE DS8908B

Serial information entry into the DS8908B is enabled by a low level on the ENABLE input. One binary bit is then accepted from the DATA input with each positive transition of the CLOCK input. The CLOCK input must be low for the specified time preceding and following the negative transition of the ENABLE input.
The first two bits accepted following the negative transition of the ENABLE input are interpreted as address. If these address bits are not 1,1 no further information will be accepted fromt he DATA inputs, and the internal data latches will not be changed when ENABLE returns high.
If these first two bits are 1,1 , then all succeeding bits are accepted as data, and are shifted successively into the internal shift register as long as ENABLE remains low.
Any data bits preceding the 19th to last bit will be shifted out, and thus are irrelevant. Data bits are counted as any bits following two valid address bits $(1,1)$ with the ENABLE low. When the ENABLE input returns high, any further serial data entry is inhibited. Upon this positive transition, the data in the internal shift register is transferred into the internal data latches. Note that until this time, the states of the internal data latches have remained unchanged.

These data bits are interpreted as follows:

Data Bit Position	Data Interpretation
Last	Bit 19 Output (Pin 2)
2nd to Last	Bit 18 Output (Pin 1)
3rd to Last	Ref. Freq. Select Bit(1)17
4th to Last	Ref. Freq. Select Bit(1)16
5th to Last	AM/FM Select Bit 15
6th to Last	$\left(2^{13}\right)$
7th to Last	(212)
8th to Last	(211)
9th to Last	(210)
10th to Last	$\left({ }^{9}\right)$
11th to Last	$\left(2^{8}\right)$
12th to Last	(27) $\quad \div \mathrm{N}^{(2)}$
13th to Last	$\left.\left(2^{6}\right)\right\} \quad \div N(2)$
14th to Last	(25)
15th to Last	$\left(2^{4}\right)$
16th to Last	$\left(2^{3}\right)$
17th to Last	(22)
18th to Last	(21)
19th to Last	LSB of $\div \mathrm{N}\left(2^{0}\right)$)

Note 1: See Reference Frequency Select Truth Table.
Note 2: The actual divide code is $N+1$, ie., the number loaded plus 1.

Truth Table
Reference Frequency Selection Truth Table

Serial Data		Reference Frequency
Bit 16	Bit 17	$\mathbf{(k H z})$
$\mathbf{1}$	1	20
1	0	10
0	1	9
0	0	1

Typical Application

Electronically Tuned Radio Controller System; Direct Drive LED

DS8911/DS8913 AM/FM/TV Sound Up-Conversion Frequency Synthesizer

General Description

The DS8911 is a digital Phase-Locked Loop (PLL) frequency synthesizer intended for use as a Local Oscillator (LO) in electronically tuned radios. The device is used in conjunction with a serial data controller, a loop filter, some varactor diodes and several passive elements to provide the local oscillator function for both AM and FM tuning.
The conventional superheterodyne AM receiver utilizes a low IF or down conversion tuning approach whereby the IF is chosen to be below the frequencies to be received. The DS8911 PLL on the other hand, utilizes an up-conversion technique in the AM mode whereby the first IF frequency is chosen to be well above the RF frequency range to be tuned. This approach eliminates the need for tuned circuits in the AM frontend since the image, half IF, and other spurious responses occur far beyond the range of frequencies to be tuned. Sufficient selectivity and second IF image protection is provided by a crystal filter at the output of the first mixer.
A significant cost savings can be realized utilizing this upconversion approach to tuning. Removal of the AM tuned circuits eliminates the cost of expensive matched varactor diodes and reduces the amount of labor required for alignment down from 6 adjustments to 2 . Additional cost savings are realized because up-conversion enables both the AM and FM bands to be tuned using a single Voltage Controlled Oscillator (VCO) operating between 98 and 120 MHz . (The 2 to 1 LO tuning range found in conventional AM down conversion radios is reduced to a 10% tuning range; 9.94 MHz to 11.02 MHz).
Up-conversion AM tuning is accomplished by first dividing the VCO signal down by a modulus 10 to obtain the LO signal. This LO in turn is mixed on chip with the RF signal to obtain a first IF at the MIXER output pins. This first IF after crystal filtering is mixed (externally) with a reference frequency provided by the PLL to obtain a 450 kHz second IF
frequency. The DS8911 derives the 450 kHz second IF by mixing an 11.55 MHz first IF with a 12.00 MHz reference frequency.
FM and WB (weather band) tuning is done using the conventional down conversion approach. Here the VCO signal is buffered to produce the LO signal and then mixed on chip with the RF signal to obtain an IF frequency at the MIXER output pins. This IF frequency is typically chosen to be 10.7 MHz although placement at 11.50 MHz can further enhance AM mode performance and minimize IF circuitry.
The PLL provides phase comparator reference frequencies of $10,12.5,25$, and 100 kHz . The tuning resolutions resulting from these reference frequencies are determined by dividing the reference by the premix modulus. Table II shows the tuning resolutions possible.
The DS8911 contains the following logic elements: a voltage controlled oscillator, a reference oscillator, a 14-bit programmable dual-modulus counter, a reference frequency divider chain, a premix divider, a mixer, a phase comparator, a charge pump, an operational amplifier, and control circuitry for latched serial data entry.
The DS8913 includes all the above logic elements except that it requires a 10 MHz reference frequency instead of 12 MHz .

Features

- Direct synthesis of LW, MW, SW, FM, and WB frequencies
- Serial data entry for simplified processor control
- $10,12.5,25$, and 100 kHz reference frequencies
- 8 possible tuning resolutions (see Table II)
- An op amp with high impedance inputs for loop filtering
- Programmable mixer with high dynamic range

Connection Diagram

Pin Descriptions

$\mathrm{V}_{\mathrm{CC} 1}$: The $\mathrm{V}_{\mathrm{CC} 1}$ pin provides a 5 V supply source for all circuitry except the reference divider chain, op amp and mixer sections of the die.
$\mathrm{V}_{\mathrm{CC} 2}$: The $\mathrm{V}_{\mathrm{CC} 2}$ pin provides a 12 V supply source for the Op amp.
$\mathrm{V}_{\text {CCL }}$: The $\mathrm{V}_{\mathrm{CCL}}$ pin provides an isolated 5 V supply source for the premix divider and mixer functions.
$V_{\text {ссм }}$: The $\mathrm{V}_{\text {ссм }}$ pin provides a 5 V supply source for the reference oscillator and divider chain down through the 50 Hz output, thus enabling low standby current for time-of-day clock applications.
GND1, GND2, GNDL and GNDM: Provide isolated circuit ground for the various sections of the device.
DATA and CLOCK: The DATA and CLOCK inputs are for serial data entry from a controller. They are CMOS inputs with TTL logic thresholds. The 24-bit data stream is loaded into the PLL on the positive transition of the CLOCK. The first 14 bits of the data stream select PLL divide code in binary form MSB first. The 15th through 24th bits select the premix modulus, the reference frequency, the bit output status, and the test/operate modes as shown in Tables I through V.
ENABLE: The ENABLE input is a CMOS input with a TTL logic threshold. The ENABLE input enables data when at a logic "one" and latches data on the transition to a logic "zero".

BIT Outputs: The open-collector BIT outputs provide either the status of shift register bits 22, 23, and 24 or enable access to key internal circuit test nodes. The mode for the bit outputs is controlled by shift register bits 20 and 21. In operation, the bit outputs are intended to drive radio functions such as gain, mute, and AM/FM status. These outputs can also be used to program the loop gain by connection of an external resistor to IPROG. Bit 24 output can also be used as a 300 millisecond timer under control of shift register bit 19. During service testing, these pins can be used for the purpose of either monitoring or driving internal logic points as indicated in the TEST MODES description under Table V.
VCOb and VCOe: The Voltage Controlled Oscillator inputs drive the 14 -bit programmable counter and the premix divider. These inputs are the base and emitter leads of a transistor which require connection of a coil, varactor, and several capacitors to function as a Colpitts oscillator. The VCO is designed to operate up to 225 MHz . The VCO's minimum operating frequency may be limited by the choice of reference frequency and the 961 minimum modulus constraint of the $31 / 32$ dual modulus counter.
RF + and RF-: The Radio Frequency inputs are fed differentiaily into the mixer.
IMXR: The bias current for the mixer is programmed by connection of an external resistor to this pin. The total mixer output current equals 4 times the current entering this pin.
MIXER and MIXER: The MIXER outputs are the collectors of the double balanced pair mixer transistors. They are intended to operate at voltages greater than $\mathrm{V}_{\mathrm{CC} 1}$.
OSCb and OSCc: The Reference Oscillator inputs are part of an on-chip Pierce oscillator designed to work in conjunction with 2 capacitors and a crystal resonator. The DS8911 requires a 12 MHz crystal to derive the reference frequencies shown in Table II. The DS8913 requires 10 MHz crystal.
The 12 MHz OSC signal is also used externally as the 2nd AM LO to obtain a 450 kHz 2nd IF frequency in the AM mode.
2 MHz : The 2 MHz output is provided to drive a controller's clock input.
50 Hz : The 50 Hz output is provided as a time reference for radios with time-of-day clocks.
IPROG: The IPROG pin enables the charge pump to be programmed from 0.25 mA to 1.0 mA by connection of an external resistor to ground.
CPO: The Charge Pump Output circuit sources current if the VCO frequency is high and sinks current if the VCO frequency is low. The CPO is wired directly to the negative input of the loop filter op amp.
OP AMP: The OP AMP output is provided for loop filtering. The op amp has high impedance PMOS gate inputs and is wired as a transconductance amplifier/filter. The op amp's positive input is internally referenced while its negative input is common with the CPO output.

Reference Tables
TABLEI

Bit 15	Premix Modulus
0	$\div 1$
1	$\div 10$

TABLE II

Bit		Reference	Tuning Resolution	
	Frequency		$\div 10$ Premix	
16	17		10 kHz	10 kHz
0	0	1 kHz		
0	1	12.5 kHz	12.5 kHz	1.25 kHz
1	0	25 kHz	25 kHz	2.5 kHz
1	1	100 kHz	100 kHz	10 kHz

TABLE III

Bit 18	Mode
0	Normal Operation*
1	Production Test Mode Only

-The user should always load Bit 18 low.

TABLE IV

Bit 19	Timer
0	Bit 24 Status
1	$\overline{\text { Bit } 24}$ for 300 ms

TIMER OPERATION

The timer function is provided for use as a retriggerable "one shot" to enable muting for approximately 300 milliseconds after station changes. The timer is enabled at bit 24's output if the normal operating mode is selected (shift register bits 20 and $21=$ "LOW") and shift register bit 19 data is latched as a "Hi". The timer's output state will invert immediately upon latching bit 19 "HI" and remain inverted for approximately 300 milliseconds. If the user readdresses the device with bit 19 data "LOW" before the timer finishes its
cycle the timer's BIT 24 output will finish out the 300 ms pulse. Readdressing the device with bit 19 " HI " before the timer finishes its cycle will extend the BIT 24 output pulse width by 300 ms . Addressing should be performed immediately after the 50 Hz output transitions "HI". BIT 24's output state is not guaranteed during the first 300 ms after $\mathrm{V}_{\mathrm{CC}_{1}}$ power up as a result of a timer reset in progress.

TABLE V

Bit		FUNCTION OF PINS 3, 4, \& 5
$\mathbf{2 0}$	$\mathbf{2 1}$	
0	0	Test mode 1
0	1	Test mode 2
1	0	Test mode 3
1	1	

TEST MODE OPERATION

Test Mode 1: Enables the BIT output pins to edge trigger the phase comparator inputs and monitor an internal lock detector. BIT 22 negative edge triggers the reference divider input of the phase comparator if the reference divider state is low. BIT 23 provides the open collector ORing of the phase comparator's pump up and down outputs. BIT 24 negative edge triggers the N counter input of the phase comparator if the N counter state is preconditioned low.
Test Mode 2: Enables the BIT outputs to clock the programmable N counter, monitor its output, and force either its load or count condition. BIT 22 provides the N counter output which negative edge triggers the phase comparator and which appears low one N counter clock pulse before it reloads. BIT 23 positive edge triggers the N counter's clock input if the prescaler's output is preconditioned HI. BIT 24 clears the N counter output so that loading will occur on the next N counter clock edge.
Test Mode 3: Enables the BIT outputs to clock the 50 Hz and 10 kHz reference dividers and monitor the reference divider input to the phase comparator. BIT 22 positive edge clocks the 10 kHz reference divider chain if the 10 kHz output is preconditioned HI. BIT 23 positive edge clocks the 50 Hz divider chain. BIT 24 is the reference divider negative edge trigger input to the phase comparator.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage

VCCM	7 V
$\mathrm{~V}_{\mathrm{CC} 1}$	7 V
$\mathrm{~V}_{\mathrm{CC} 2}$	15 V
Input Voltage	7 V
Output Voltage	
Logic	7 V
Op Amp and Mixer Outputs	15 V
ESD Sensitivity	1000 V

Storage Temperature Range
Lead Temp. (Soldering, 10 seconds)
Operating Conditions

	Min	Max	Units
$V_{\text {CCM }}$	3.5	5.5	V
$\mathrm{~V}_{\mathrm{CC} 1}$	4.5	5.5	V
$\mathrm{~V}_{\mathrm{CC} 2}$	7.0	12.0	V
Temperature, T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
Mixer IBIAS (Mixer $+\overline{\text { Mixer }}$ Current)	1	20	mA

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter		Test Conditions		Min	Typ	Max	Units	
V_{IH}	Logic "1" Input Voltage				2.0			V	
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage						0.8	V	
I_{IH}	Logic "1" Input Current		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				10	$\mu \mathrm{A}$	
II	Logic "1" Input Current		Data, Clock and Enable Inputs, $\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$				100	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Logic "0" Input Current		Data, Clock and Enable Inputs, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$	
$\overline{\mathrm{VOH}}$	Logic "1" Output Voltage	2 MHz	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		$\mathrm{V}_{\text {CCM }}-0.3$			V	
			$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		$\mathrm{V}_{\text {CCM }}{ }^{-2}$			V	
		Op Amp	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC} 2}-1.5$			V	
$\overline{\mathrm{V}} \mathrm{OL}$	Logic "0" Output Voltage	2 MHz	$\mathrm{IOL}=20 \mu \mathrm{~A}$				0.3	V	
			$\mathrm{IOL}=400 \mu \mathrm{~A}$				0.4	V	
		50 Hz	$\mathrm{l}_{\mathrm{OL}}=250 \mu \mathrm{~A}$				0.3	V	
		Bit Outputs	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$				0.3	V	
		Op Amp	$\mathrm{IOL}=1.0 \mathrm{~mA}$				1.5	V	
VBIAS	Op Amp Input V Δ		Op Amp I/O Shorted, $\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}$, CPO $=$ TRI-STATE ${ }^{\circ}$, Op Amp loh vs. Iol Applied				200	mV	
ICEX	High Level Output Current	Bit Outputs	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=8.8 \mathrm{~V}$				100	$\mu \mathrm{A}$	
		50 Hz	$\mathrm{V}_{\text {CCM }}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$				10	$\mu \mathrm{A}$	
		Mixers	$\mathrm{V}_{\text {CCL }}=\mathrm{V}_{\text {CC1 }}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}$				100	$\mu \mathrm{A}$	
$\overline{\mathrm{ICPO}}$	Charge Pump Program Current		$\begin{aligned} & 0.25 \mathrm{~mA}<\mathrm{I}_{\mathrm{CPO}}<1.0 \mathrm{~mA} \\ & 2 \text { l }_{\text {PROG }}=V_{C C 1} / R_{P R O G} \\ & \text { Measured } I_{\text {PROG }} \text { to } \mathrm{CPO} \end{aligned}$	Pump-up	-30	2 IPROG	$+30$	\%	
			Pump-down	-30	2 IPROG	$+30$	\%		
			TRI-STATE		0	100	nA		
ICCM	VCCM Supply Current (Static)			$\mathrm{V}_{\mathrm{CCM}}=5.5 \mathrm{~V}, \mathrm{OSCC}=$ High			0.5	1.0	mA
$\begin{aligned} & \hline \mathrm{ICC1}^{+} \\ & \mathrm{I}_{\mathrm{CCL}} \\ & \hline \end{aligned}$	$V_{C C 1}+V_{C C L}$Supply Current			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, Bits Hi, $\bar{l}_{\text {MXR }}$ and $\mathrm{l}_{\text {PROG }}$ Open			25	35	mA
ICC2	$\mathrm{V}_{\mathrm{CC} 2}$ Supply Current		$\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}$			1.5	2.5	mA	
$\begin{aligned} & \text { Mixer } \\ & \text { IBIAS } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Mixer + } \overline{\text { Mixer }} \\ \text { Current (Note 4) } \\ \hline \end{array}$		$V_{C C 1}=V_{C C L}=5.5 \mathrm{~V}, \text { Mixer }=\overline{\mathrm{Mixer}}=12 \mathrm{~V}$		-25	$4{ }_{\text {M M }}$	+25	\%	
RFIN	Mixer Input Max Signal Level		$\begin{aligned} & \text { Mixer IBIAS }=20 \mathrm{~mA} \\ & \text { RF + or RF - Signal Level } \\ & \hline \end{aligned}$			300		mVrms	

[^25]AC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{r}	20\%-80\% Rise Time	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$ to 5.5 V		200		ns
t_{f}	80\%-20\% Fall Time			200		ns
DATASU	Data Setup Time		100			ns
DATA $_{H}$	Data Hold Time		100			ns
ENSU	Enable Setup Time		100			ns
EN_{H}	Enable Hold Time		100			ns
ENPW+	Enable Positive Pulse Width		200			ns
CLKPW+	Clock Positive Pulse Width		200			ns
CLK $_{\text {PW }}$ -	Clock Negative Pulse Width		200			ns
VCO $f_{\text {max }}$	VCO Max Frequency	See Typical Wiring Diagram	20		225	MHz
OSC f max	Reference Oscillator Max Frequency	$\mathrm{V}_{\text {CCM }}=3.5 \mathrm{~V}$		12		MHz

Timing Diagram

TL/F/7398-10

MICROWIRETM Bus Format

ENABLE \qquad \bullet

TABLE VI. DS8911 Tuning Characteristics							
Mode	IF Frequency (MHz)	Tuning Range (MHz)	VCO Range (MHz)	Premix Modulus	Reference Frequency (kHz)	Tuning Resolution (kHz)	Image (MHz)
LW	11.55/.450	.145-. 290	112.4-114.1	10	10	1	22-23
MW	11.55/.450	.515-1.61	99.4-110.2	10	10, 12.5, 25, 100	1, 1.25, 2.5, 10	21-23
SW	11.55/.450	5.94-6.2	53.5 to 56.1	10	10, 12.5, 25	1, 1.25, 2.5	28-30
FM	10.7	87.4-108.1	98.1-118.8	1	10, 12.5, 25, 100	10, 12.5, 25, 100	109-130
WB	10.7	162.4-162.6	151-152	1	12.5, 25	12.5, 25	140-142
TV ${ }_{1}$	10.7	59.75-87.75	70.45-98.45	1	25	25	81-109
TV2	10.7	179.75-215.75	169.1-205.1	1	25	25	158-194

Input and Output Schematics

TL/F/7398-12

Input and Output Schematics (Continued)

OP AMP INPUT AND CHARGE PUMP OUTPUT

TL/F/7398-18

Logic Diagram

Note 1: The 14 bit programmable N counter is a dual modulus counter with $31 / 32$ prescaler. The minimum continuous modulus of the N counter is 961. (There are a limited number of valid modulus codes below 961.)
*The DS8913 has $\div 5$
Typical Application Diagram
AM/FM ETR Radio Application

Configuration Using PLL with LO Bypassing Mixer

MM5368 CMOS Oscillator Divider Circuit

General Description

The MM5368 is a CMOS integrated circuit generating 50 or $60 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz outputs from a 32 kHz crystal ($32,768 \mathrm{~Hz}$). For the 60 Hz selected output the input time base is divided by 546.133 , for the 50 Hz mode it is divided by 655.36 . The $50 / 60 \mathrm{~Hz}$ output is then divided by 5 or 6 to obtain a 10 Hz output which is further divided to obtain a 1 Hz output. The $50 / 60 \mathrm{~Hz}$ select input can be floated for a counter reset.

Features

- $50 / 60 \mathrm{~Hz}$ output
- 1 Hz output
- 10 Hz output
- Low power dissipation
- Fully static operation
- Counter reset
- $3.5 \mathrm{~V}-15 \mathrm{~V}$ supply range

■ On-chip oscillator-tuning and load capacitors are the only required external components besides the crystal. (For operation below 5 V it may be necessary to use an $\sim 1 \mathrm{M} \Omega$ pullup on the oscillator output to insure startup.)

Block and Connection Diagrams

FIGURE 2

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabillty and specifications.
Voltage at Any Pin
Operating Temperature
Storage Temperature

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } V_{\mathrm{DD}}+0.3 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Maximum $V_{D D}$ Voltage
16V
Operating $V_{D D}$ Range $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 15 \mathrm{~V}$
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$

Electrical Characteristics T_{A} within operating range, $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$

Parameter	Conditions	Min	Typ	Max	Units
Quiescent Current Drain	$V_{D D}=15 \mathrm{~V} ; 50 / 60$ Select Floating			10	$\mu \mathrm{A}$
Operating Current Drain	$\begin{aligned} & f_{I N}=32 \mathrm{kHz}, V_{D D}=3.5 \mathrm{~V} \\ & f_{I N}=32 \mathrm{kHz}, V_{D D}=15 \mathrm{~V} \end{aligned}$			$\begin{gathered} 60 \\ 1500 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Maximum Input Frequency	$\begin{aligned} & V_{D D}=3.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			$\begin{gathered} 64 \\ 500 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Output Current Levels Logical "1", Source Logical "0", Sink Logical "1", Source Logical "0", Sink	$\begin{aligned} & V_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}+2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}+6.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 400 \\ 1500 \end{gathered}$		$\begin{aligned} & -400 \\ & -1500 \end{aligned}$	μA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Current Levels Logical "1" (l_{H}) Logical " 1 " ((HH) Logical "0" ($\left.\right\|_{\mathrm{IL}}$) Logical " 0 " ($\left(I_{L}\right)$	50/60 Select Input (Note 1) $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \geq 0.9 \mathrm{~V}_{\mathrm{DD}}$ $V_{D D}=15 \mathrm{~V}, V_{I N} \geq 0.9 V_{D D}$ $V_{D D}=3.5 \mathrm{~V}, \mathrm{~V}_{I N} \geq 0.1 \mathrm{~V}_{\mathrm{DD}}$ $V_{D D}=15 \mathrm{~V}, V_{I N} \geq 0.1 V_{D D}$			$\begin{gathered} 50 \\ 3 \\ 20 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ mA $\mu \mathrm{A}$ mA

Note 1: The input current level test is performed by first measuring the open circuit voltage at the $50 / 60 \mathrm{~Hz}$ select pin. If the voltage is "high", make the liH test. If the voltage is "low", make the llL test. The state of the $50 / 60 \mathrm{~Hz}$ select pin may be changed by applying a pulse to OSC IN (pin 6) while the $50 / 60 \mathrm{~Hz}$ pin is open circuit.

Functional Description (Figure 1)

The MM5368 initially divides the input time base by 256. From the resulting frequency (128 Hz for 32 kHz crystal) 8 clock periods are dropped or eliminated during 60 Hz operation and 28 clock periods are eliminated during 50 Hz operation. This frequency is then divided by 2 to obtain a 50 or 60 Hz output. This output is not periodic from cycle to cycle; however, the waveform repeats itself every second. Straight divide by 5 or 6 and 10 are used to obtain the 10 Hz output and the 1 Hz outputs.
The 60 Hz mode is obtained by tying pin 7 to $V_{D D}$. The 60 Hz output waveform can be seen in Figure 3. The 10 Hz
and 1 Hz outputs have an approximate 50% duty cycle. In the 50 Hz mode the $50 / 60$ select input is tied to V_{SS}. The 50 Hz output waveform can be seen in Figure 3. The 10 Hz output has an approximate 40% duty cycle and the 1 Hz output has an approximate 50% duty cycle.
For the $50 / 60 \mathrm{~Hz}$ select input floating, the counter chain is held reset, except for the initial toggle flip-flop which is needed for the reset function. A reset may also occur when the input is switched (Figure 4). To insure the floating state, current sourced from the input must be limited to $1.0 \mu \mathrm{~A}$ and current sunk by the input must be limited to $1.0 \mu \mathrm{~A}$ for $V_{D D}=3.5 \mathrm{~V}$.

Timing Diagrams

FIGURE $3.50 / 60 \mathrm{~Hz}$ Output

Timing Diagrams (Continued)

FIGURE 4. 50/60 Select and Reset

Typical Applications

TL/F/6133-6
FIGURE 5. 10 Minute (9:59.9) Timer

MM5369 Series 17 Stage Oscillator/Divider

General Description

The MM5369 is a CMOS integrated circuit with 17 binary divider stages that can be used to generate a precise reference from commonly available high frequency quartz crystals. An internal pulse is generated by mask programming the combinations of stages 1 through 4,16 and 17 to set or reset the individual stages. The MM5369 is advanced one count on the positive transition of each clock pulse. Two buffered outputs are available: the cyrstal frequency for tuning purposes and the 17th stage output. The MM5369 is available in an 8 -lead dual-in-line epoxy package.

- High speed (4 MHz at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$)
- Wide supply range $3 \mathrm{~V}-15 \mathrm{~V}$
- Low power
- Fully static operation
- 8-lead dual-in-line package
- Low Current

Options

- MM5369AA $\quad 3.58 \mathrm{MHz}$ to 60 Hz
- MM5369EYR
3.58 MHz to 50 Hz
- MM5369EST

Features

- Crystal oscillator
- Two buffered outputs

Output 1 crystal frequency
Output 2 full division

Connection and Block Diagrams

Dual-In-Line Package

FIGURE 2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissipation 500 mW
Maximum V CC Voltage
16 V
Operating V_{CC} Range
3 V to 15 V
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Electrical Characteristics

T_{A} within operating temperature range, $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, 3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 15 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Quiescent Current Drain	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			10	$\mu \mathrm{A}$
Operating Current Drain	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=4.19 \mathrm{MHz}$		1.2	2.5	mA
Frequency of Oscillation	$\begin{aligned} & V_{D D}=10 V \\ & V_{D D}=6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$		$\begin{gathered} 4.5 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Output Current Levels Logical "1" Source Logical "0" Sink	$\begin{aligned} & V_{D D}=10 V \\ & V_{O}=5 V \end{aligned}$	$\begin{array}{r} 500 \\ 500 \\ \hline \end{array}$			$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output Voltage Levels Logical " 1 " Logical " 0 "	$\begin{aligned} & V_{D D}=10 V \\ & I_{O}=10 \mu \mathrm{~A} \end{aligned}$	9.0		1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note: For 3.58 MHz operation, $V_{D D}$ must be $\geq 10 \mathrm{~V}$.

Functional Description

A connection diagram for the MM5369 is shown in Figure 1 and a block diagram is shown in Figure 2.

TIME BASE

A precision time base is provided by the interconnection of a $3,579,545 \mathrm{~Hz}$ quartz crystal and the RC network shown in Figure 3 together with the CMOS inverter/amplifier provided between the OSC IN and the OSC OUT terminals. Resistor R1 is necessary to bias the inverter for class A amplifier operation. Capacitors C1 and C2 in series provide the parallel load capacitance required for precise tuning of the quartz crystal.
The network shown provides > 100 ppm tuning range when used with standard crystals trimmed for $\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$. Tuning to better than $\pm 2 \mathrm{ppm}$ is easily obtainable.

DIVIDER

A pulse is genertaed when divider stages 1 through 4, 16 and 17 are in the correct state. By mask options, this pulse is used to set or reset individual stages of the counter. Figure 4 shows the relationship between the duty cycle and the programmed modulus.

OUTPUTS

The Tuner Output is a buffered output at the crystal oscillator frequency. This output is provided so that the crystal frequency can be obtained without disturbing the crystal oscillator. The Divide Output is the input frequency divided by the mask programmed number. Both outputs are push-pull outputs.

Functional Description (Continued)

*To be selected based on xtal used
FIGURE 3. Crystal Oscillator Network

FIGURE 5. Typical Current Drain vs Oscillator Frequency

MM5437 Digital Noise Source

General Description

The MM5437 device is a monolithic metal gate NMOS integrated circuit which may be used as a digital noise source or a pseudo-random number generator. The part is designed to produce a broadband white noise signal with uniform noise quality and output amplitude. Two outputs are provided. The first, OUT 1, is sequence-limited to reduce "thumps." The other output, OUT 2 , is the last stage of the shift register when CONTROL 2 is left floating or is pulled up. Typical cycle time is one minute. Data is clocked in and out on the rising edge of the clock.

Applications

- Electronic musical rhythm instrument sound generators

Features

- Internal self-contained oscillator

■ Single supply voltage range of 4.5 V to 11 V

- TTL compatible at 5 V
- Normal and sequence-limited outputs
- Low power consumption
- One minute cycle time
- External loading and clocking capability
- Automatic reset for all-zeros state
- Uniform noise quality
- Uniform noise amplitude
- Eliminate noise preamps
- Single component insertion

■ Music synthesizer white and pink noise generators

- Room acoustics testing/equalization

Pseudo-random number generator

Block and Connection Diagrams

TL/F/5260-2

Order Number MM5437N
See NS Package Number N08E

```
Absolute Maximum Ratings
```

Operating Supply Voltage, $V_{D D}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\pm 12 \mathrm{~mA}$

Lead Temp. (Soldering, 10 seconds)
Storage Temperature, T_{S}
Operating Temperature, T_{A}
DC Output Current, per pin

DC Electrical Characteristics T_{A} within operating range, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=11 \mathrm{~V}$, unless specified

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage (VDD)		4.5		11	V
Supply Current (ldD)	$\begin{aligned} & V_{D D}=4.5 \mathrm{~V}(\text { No load }) \\ & V_{D D}=11 \mathrm{~V}(\text { No load }) \end{aligned}$			$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Voltage Levels Logic ' 0 ' Logic ' 1 '	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} V_{\mathrm{SS}} \\ 2.4 \end{gathered}$		$\begin{gathered} 0.4 \\ V_{D D} \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
Input Voltage Levels Logic '0' Logic ' 1 '		2.0		0.8	V
Input Currents Logic '0' Logic ' 1 '	$\begin{aligned} & V_{I N}=0.4 \mathrm{~V} \\ & V_{I N}=2.4 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Half Power Point*		30		140	kHz
Cycle Time		25		110	sec.

*Half Power Point $=0.45$ (Shift Register Clock Frequency)

AC Timing $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 11 \mathrm{~V}$

Symbol	Parameter	Min	Max	Units
t_{s}	Data Set Up Time Prior to Clock	100		ns
t_{H}	Data Hold Time After Clock	100		ns
$\mathrm{t}_{\mathrm{C} 2 \mathrm{DV}}$	CONTROL2 to Data Out Valid		100	ns
$\mathrm{t}_{\mathrm{CLKDV}}$	Clock to Data Out Valid		700	ns
t_{PH}	Clock Pulse Width High	1.5		$\mu \mathrm{~s}$
t_{PL}	Clock Pulse Width Low	1.5		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times		220	ns

Inputs/Outputs

CONTROL 1: A mode switch input, which when held at a logic " 1 " or left floating, gates the internal oscillator onto the INT/EXT CLK pin. When CONTROL 1 is at a logic " 0 ", the shift register can be driven externally through the INT/ EXT CLK pin.
CONTROL 2: A mode switch input, which when held at a logic " 1 " or left floating, gates the last stage of the shift register onto the OUT 2/DATA IN pin. When CONTROL 2 is at a logic " 0 ", the shift register can be loaded externally through the OUT 2/DATA IN pin.

OUT 1: An output pin for the sequence-limited output from the shift register.
INT/EXT CLK: An input/output pin. See CONTROL 1 for description.
OUT 2/DATA IN: An input/output pin. See $\overline{\text { CONTROL } 2}$ for description.

Timing Diagrams

FIGURE 1. ISINK vs Vout

Typical Applications

FIGURE 3. Pink Noise Generator

TL/F/5260-7
FIGURE 2. ISOURCE vs VOUT

FIGURE 4. Pseudo-Random Number Generator

MM54240

Asynchronous Receiver/Transmitter Remote Controller

General Description

The MM54240 is a monolithic MOS integrated circuit utilizing N -channel low-threshold, enhancement mode and ionimplanted depletion mode devices. The circuit is designed for processor-type remote control applications. The data transmission consists of a pulse width modulated serial data stream of 18 bits. This stream consists of 7 address bits, 1 command bit, 8 data bits, 1 parity bit and 1 dummy bit in that order.
The MM54240 can be operated in two modes; namely "master" and "slave". The master interfaces to a processor bus, and is capable of polling and controlling 128 slave circuits. The slave circuits are interfaced to remote data sources and/or data destinations.
sor units, remote digital transducer or remote data peripheral devices.

Features

■ Supply voltage range-4.75V to 11.5 V single supply
■ Low quiescent current- 5.0 mA maximum

- On-chip oscillator based on inexpensive R-C components
- Pulse width modulation techniques minimize error and maximize frequency tolerance
- Mode input for either master or slave operations
- Chip select ($\overline{\mathrm{CS}}$) input in the master mode
- Selectable output port options in the slave mode
- Transmit/receive control output ($\overline{\mathrm{CS}}$) in the slave mode

Applications

The MM54240 finds application in transmitting data to and receiving data from remote $A-D / D-A$, remote microproces-

Functional Block Diagram

Order Number MM54240N See NS Package Number N24C

Absolute Maximum Ratings

(exceeding these ratings could result in permanent damage to the device)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Voltage on Any Pin

$$
\begin{array}{ll}
\text { with Respect to } \mathrm{V}_{\mathrm{SS}} & -0.5 \mathrm{~V} \text { to }+12.0 \mathrm{~V} \\
\text { perating Temperature } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}
$$

Operating Temperature

Electrical Characteristics T_{A} within operating range, $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & V_{D D} \\ & I_{D D} \end{aligned}$	Supply Voltage Supply Current, Quiescent	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 11.5 V	4.75		$\begin{gathered} 11.5 \\ 5.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
$V_{\text {IL }}$ V_{IH} $V_{I H}$	Input Voltage Logic "0" Logic "1" Logic "1"	$\begin{aligned} & V_{D D}=4.75 \mathrm{~V} \text { to } 11.5 \mathrm{~V} \\ & V_{D D}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & V_{D D}=5.25 \mathrm{~V} \text { to } 11.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \\ 2.4 \\ V_{D D}-2.85 \end{gathered}$		0.8 $V_{D D}$ $V_{D D}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
${ }^{\mathrm{l}} \mathrm{OL}$ IOH lOH IOH los	$\begin{aligned} & \text { Output Current (D0-D7) } \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=0.5 \mathrm{~V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{OH}}=0.6 \mathrm{~V}_{\mathrm{DD}}\left(\text { Weak } \mathrm{V}_{\mathrm{OH}}\right) \end{aligned}$ Short Circuit Output Current	$V_{D D}=4.75 \mathrm{~V}$ to 11.5 V $V_{D D}=4.75 \mathrm{~V}$ to 5.25 V $V_{D D}=5.25 \mathrm{~V}$ to 11.5 V $V_{D D}=4.75 \mathrm{~V}$ to 11.5 V $V_{D D}=4.75 \mathrm{~V}$ to 5.25 V	$\begin{gathered} 2.0 \\ 200 \\ 200 \\ 0.5 \end{gathered}$	5	30	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
lOL	$\begin{gathered} \hline \text { Output (} \overline{\mathrm{CS}} \text { Slave) } \\ \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ \hline \end{gathered}$	$V_{D D}=4.75 \mathrm{~V}$ to 11.5 V	0.4			mA
$\begin{aligned} & F \\ & F \end{aligned}$	Frequency RC Input For a Fixed (RC) ${ }_{1}$ (Note 1) For a Fixed (RC) $)_{2}$ (Note 1)	$\begin{aligned} & V_{D D}=4.75 \mathrm{~V} \text { to } 7.0 \mathrm{~V} \\ & V_{D D}=7.0 \mathrm{~V} \text { to } 11.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
loL leak	Output Current (Serial) $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ Open-Drain Leakage	$\begin{aligned} & V_{D D}=4.75 \mathrm{~V} \text { to } 11.5 \mathrm{~V} \\ & V_{D D}=4.75 \mathrm{~V} \text { to } 11.5 \mathrm{~V} \end{aligned}$	2.0		10	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IIL	Internal Input Pull-Up Resistors, $\overline{\mathrm{CS}}$, Mode $V_{I N}=V_{S S}$	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 11.5 V	15		100	$\mu \mathrm{A}$

Note 1: $(\mathrm{RC})_{1}$ or $(\mathrm{RC})_{2}$: suggested $\mathrm{R} 1 \mathrm{k} \Omega-10 \mathrm{k} \Omega$, suggested $\mathrm{C} 50 \mathrm{pFd}-500 \mathrm{pFd}$.

Typical Application

TL/F/10819-2

Circuit Description

The MM54240 consists of four major logic blocks：Sequen－ tial Control，Shift Register，PWM Encoder and PWM Decod－ er．
Data Ports（D0－D7）：The data ports are bidirectional and have three output levels（high，low and weak pull－up）．The weak pull－up mode is only available when the MM54240 is a slave device．For the master circuit，the outputs are config－ ured with standard high and low states coincident with prop－ erly enabled $\overline{\mathrm{CS}}$ and $\overline{\mathrm{R}}$ ．This permits direct interface or buff－ ered interface with the standard bus structure of a proces－ sor system．The first three data ports（D0，D1，D2）also serve as status pins coincident with enabled $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}}$ ．${ }^{*}$ For the slave circuit，specialized input and output options are available by selecting the C1 and C2 inputs．The data port can still be read even if it is configured as an output port．
Address Ports（A0－A6）：The address ports are for the in－ put of address information into the MM54240．For the mas－ ter circuit，the input must be valid during the $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ com－ mand strobes．For the slave circuit，a unique hard－wired code must be on the address ports．This code is the ad－ dress of the slave circuit for addressing purposes．No inter－ nal pull－ups are provided．

Mode：This input is low for slave and high（or open）for master selections．An internal pull－up resistor is provided．
Chip Select（言）：This pin has an internal pull－up resistor to $V_{D D}$ ．In the master mode，$\overline{C S}$ is an input and has to be pulled low before the $\overline{\mathrm{R}}, \overline{\mathrm{W}}$ ，or $\overline{\mathrm{S}}$ strobes can be acknowl－ edged．When $\overline{\mathrm{CS}}$ is a logic high，the data port pins are high impedance．In the slave mode，$\overline{\mathrm{CS}}$ is an output．It is a logic ＂ 0 ＂when the circuit is expecting to receive a transmission． $\overline{\mathrm{CS}}$ is intended only for controlling a transceiver buffer de－ vice．During the receive mode，$\overline{\mathrm{CS}}$ will produce a high－going pulse when the dummy bit is received，but prior to the inter－ nal address compare．Thus，all slaves（addressed or not
addressed）will produce this pulse when receiving a trans－ mission．The slave that is addressed will keep $\overline{\mathrm{CS}}$ high until it completes the transmission to the master．
Read／Control 1 （ $\overline{\mathrm{R}} / \mathrm{C} 1$ ）：In the master mode，while $\overline{\mathrm{CS}}$ is active low，this input can be used to initiate either of the following three operations depending upon the present status of the circuit．
1．To initiate a read command
2．To enable output ports if transmission received is valid
3．To terminate read command if transmission received is incorrect（if master is in state 4 awaiting data from slave， a dummy read will set master to initialize）
In the slave mode，this input，together with $\bar{W} / \mathrm{C} 2$ ，selects the specialized output port configuration．
Write／Control 2 （ $\bar{W} / C 2$ ）：In the master mode，while $\overline{\mathrm{CS}}$ is active low，this input can be used to initiate a write com－ mand．In the slave mode，this input，together with $\overline{\mathrm{R}} / \mathrm{C} 1$ ， selects the specialized output port configuration．
Status（ $\overline{\mathbf{S}}$ ）：In the master mode，while $\overline{\mathrm{CS}}$ is active low，this input enables circuit status information to be output at the first three data ports．The other five data ports will be at logic＂ 0 ＂．In the slave mode，this input sets all the output （D0－D7）latches to the logic＂ 1 ＂state．In the slave mode， status cannot be interrogated．
OSC：This input is for connection to a resistor－capacitor cir－ cuit for the on－chip oscillator．Frequency tolerance is speci－ fied for two voltage ranges．In a master－slave system，if no one circuit has a frequency more than a factor of 2 different from any other circuit，then，valid transmission is guaran－ teed．Nominal setting is 400 kHz ．
Serial：Input and output pin for serial transmission．Output has open－drain configuration．
＊The other data ports will output logic＂ 0 ＂．

Data Format

1．Serially transmitted data

TL／F／10819－3
2．Pulse width modulation coding

TL／F／10819－4
A bit is equivalent to 96 clocks of the R－C oscillator frequency i．e．；when R－C frequency $=400 \mathrm{kHz}, 1$ bit $=240 \mu \mathrm{~s}, 1$ word $=4.32 \mathrm{~ms}$ ．

Slave Circuit Logic Flow Diagram

Specialized Output Options for Slave Circuits

C1	C2	Description
1	1	All 8 Pins are High Impedance Input Ports
0	1	All 8 Pins are Standard Low Impedance Output Ports
0	0	D1-D4 are Standard Low Impedance Output Ports D5-D8 are High Impedance Input Ports
1	0	Logic "0" Outputs are Low Impedance Output Ports Logic "1" Outputs are Weak Pull-Ups to V

* In this option, the slave data ports can be connected in a wired-OR configuration with open-collector or open-drain outputs on the peripheral.

Master Configuration State Chart				
Status Register			Description	
D2	D1	D0		
0	0	0	Not Used	
0	0	1	In Process of Transmitting to Slave during Write Slave Mode	
0	1	0	Valid Data Received from Slave	
0	1	1	Not Used	
1	0	0	Awaiting Data from Slave during Read Slave Mode	
1	0	1	In Process of Transmitting to Slave during Read Slave Mode	
1	1	0	Invalid Data Received from Slave*	
1	1	1	Initialization/Idle Condition	

* This state is entered if address or parity do not match.

Timing Diagram Description

TL/F/10819-7

Symbol	Parameter	Min	Max	Units
$t_{\text {DS }}$	Data and Address Set-Up Time	-	2	tosc
$t_{\text {d }}$	Data and Address Hold Time	5	-	tosc
$t_{\text {PV }}$	Serial Port Valid	-	5	tosc
$t_{\text {PF }}$	Serial Port Float	-	1733	tosc
$t_{D V}$	Output Data Valid	-	1.0	$\mu \mathrm{s}$
$t_{\text {bF }}$	Output Data Float	0		ns
t_{1}	Overlap Requirement		ne	-
t_{2}	Delay Between Master-Slave Transmission	0.2	1.4	ms
t_{3}	CS • Function	3	-	tosc
$t_{\text {PD }}$	Rise and Fall Time	-	100	ns

Oscillator Calculations

Conditions:

$V=5 \mathrm{~V} \pm 5 \%$
$\mathrm{F} \approx 400 \mathrm{kHz}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq 85^{\circ} \mathrm{C}$
$F=\frac{K}{R C}$
where $0.8 \leq K \leq 1.4$

t_{1}-There is no overlap requirement for CHIP SELECT
t_{2}-Delay between master-slave transmission 0.2 ms to 1.4 ms
t_{3} —Minimum duration is 3 cycles of oscillator clock
*During "waiting to receive" state, $\overline{\mathrm{CS}}$ coupled with $\overline{\mathrm{R}} / \mathrm{C} 1$ will force device into the device ready state.
** If address or parity do not match, the data invalid state is entered. $\overline{\mathrm{CS}}$ coupled with $\overline{\mathrm{R}} / \mathrm{C} 1$ will force device into the device ready state.

Typical Applications

TL/F/10819-10

TL/F/10819-11
Note: The INS8255 is specified by the microprocessor to operate in mode 0 . Port A is configured as input or output. Ports B and C are configured as output only. Load ports A and B prior to loading port C.

Typical Applications (Continued)

Digital PLL Synthesis

I. System Concepts

INTRODUCTION

Digital tuning systems are fast replacing the conventional mechanical systems in AM/FM and television receivers. The desirability of the digital approach is mainly due to the following features:

- Precise tuning of station frequencies
- Exact digital frequency display
- Keyboard entry of desired frequency
- Virtually unlimited station memory
a Up/down scanning through the band
- Station "search" (stop on next active station)
- Power on to the last station
. Easy option for time-of-day clock
In addition, recent developments in large scale integrated circuit technology and new varactor diodes for the AM band have made the cost-benefit picture for digital tuning very attractive. System partitioning is extremely important in optimizing this cost-benefit picture, as will be discussed.

SYSTEM DESCRIPTION

A simplified block diagram of a typical digitally tuned receiver is shown in Figure 1. Notice this receiver could be one for AM, FM, marine radio, or television; it makes no difference. The frequency synthesizer block generates the local oscillator frequency for the receiver, just as a conventional mechanical tuner would. However, the phase-locked-loop (PLL) acts as an integral frequency multiplier of an accurate crystal controlled reference frequency while the mechanical type provides a continuously variable frequency output with no reference. Some method of controlling the value of the multiplier for channel tuning must be provided. The other RF, IF, and audio/video circuitry will be the same as in the mechanical tuning method.
There are many different ways to partition the frequency synthesizer system to perform the digital tuning function.

FIGURE 1. Block Diagram of a Digitally Tuned Receiver

PROGRAMMABLE CONTROLLER FUNCTION

The most cost-effective application of different IC process technologies is shown in Figure 2. The controller is separate from the PLL. The controller can be as simple as a mask programmable microcontroller* or as complicated as a highpowered microprocessor system. It can be done most economically with NMOS technology because of the logic density possible and the small size of the RAM/ROM memory cells. It could also be CMOS for extremely low power consumption in standby mode.

BASIC PHASE-LOCKED-LOOP FUNCTION

The DS8906/7/8 series of PLLs utilize a dual-modulus frequency synthesis technique. The reasons for this and the PLL itself will now be discussed.
Figure 3 is a diagram of the most simple phase-locked-loop. A particular reference frequency is generated by a crystal oscillator and some fixed divider, and this goes into one side *Such as National's COPTM family.
of a digital phase comparator. A voltage controlled oscillator (VCO) feeds directly into the other input of the phase comparator. The output of the phase comparator is an error signal which is filtered and fed back to the VCO as a DC control voltage.
In lock, the phase error must be zero, so $f_{J N}$ equals fref. This system provides only one output frequency, that being equal to the reference frequency.
Figure 4 is basically the same but now a programmable di-vide-by-N counter is between the VCO and the phase comparator. The input to the phase comparator (f / \mathbb{N}) now becomes the output frequency of the VCO (fout) divided by N , where N is the division code loaded into the programmable counter. This means fout/ N must equal fref. Thus, the VCO output frequency becomes $N \times$ fref, and fout can now be changed in integral steps of $f_{\text {REF }}$ by merely changing N .

TL/F/5269-2
FIGURE 2. System Block Diagram

TL/F/5269-3
FIGURE 3. Basic Phase-Locked-Loop

$\left.\begin{array}{rl}f_{I N} & =f_{\text {REF }} \\ f_{I N} & =\frac{f_{O U T}}{N} \\ \frac{f_{\text {OUT }}}{N} & =f_{\text {REF }} \\ f_{O U T} & =N \times f_{\text {REF }} \rightarrow f_{\text {STEP }} \\ & =f_{\text {REF }}\end{array}\right\}$

FIGURE 4. Basic PLL Frequency Synthesizer

In applications where the output frequency desired exceeds the maximum clock frequency of available programmable dividers, a common solution is to add a prescaler preceding the programmable divider, as shown in Figure 5. In this case fout $=N\left(M \times f_{\text {REF }}\right)$ and so the output frequency step size becomes $M \times f_{\text {REF }}$. So, while this technique allows higher frequency operation, it does so at the expense of either increased channel spacing for a given reference frequency, or decreased reference frequency if a specific channel spacing is required. This latter limitation is often undesirable as it can cause increased lock-on time, decreased scanning rates, and sidebands at undesirable frequencies.

Figure 6 shows the basic dual-modulus scheme. Here, a dual-modulus prescaler is substituted for the fixed prescaler and the modulus is controlled by programmable counters. The advantage to this approach is that the step size is again equal to the reference frequency while the prescaling still allows the programmable counters to operate at lower frequencies. As in the fixed prescale technique, only the prescaler needs to be high speed. The DS8906/7/8 prescale by $7 / 8$ for $A M$ and in a similar fashion by $63 / 64$ in $F M$.

FIGURE 5. PLL Frequency Synthesizer with Fixed Prescaler

FIGURE 6. Basic Dual-Modulus Frequency Synthesizer

II. Application Hints

Voltage controlled oscillators

In all radio and television applications, the voltage controlled oscillator (VCO) is a varactor tuned, LC type of circuit. The LC circuit is used over the various RC current controlled circuits because of their superior noise characteristics. Figure 7 shows a collection of popular VCOs used in radio and television tuners. The AM VCO is a Hartley design chosen for wide tuning range. Commonly used varactors will show a capacitance change of 350 pF at 1 V to 20 pF at 8 V , which if used in a low capacitance oscillator circuit, can produce a tuning range approaching 3 to 1 .

In the higher frequency ranges, above 50 MHz , Colpitts oscillators are used because stray circuit capacitance will be in parallel with desired feedback capacitance and not cause undesirable spurious resonances that might occur with the tapped coil Hartley design. The FM VCO shown is a grounded base design with feedback from collector to emitter. A UHF television oscillator is also shown. It too is a grounded base oscillator, but using a transmission line as the resonant element instead of a coil. The transmission line and tuning capacitors are arranged in π network which offers improved noise characteristics over a parallel tuned circuit. This circuit will tune over almost an octave.

TL/F/5269-9
$500 \mathrm{MHz} \sim 1000 \mathrm{MHz}$ VCO
Tuning range $\cong 1.8: 1$
FIGURE 7. Typical VCO Circuits (Typical Values Shown)

PLL LOOP FILTER CALCULATIONS

Andrzej Przedpelski, in two articles published in Electronic Design (\#19, Sept. 13, 1978 and \#10, May 10, 1978) explains how to calculate the three time constants associated with a third order type 2 loop which is typically used with the DS8906/7/8 series. Figure 8 explains his method and shows a sample calculation. His articles illustrate how to calculate three time constants, and plot open loop gain and phase, and closed loop noise response.
It should be noted that VCO gain, K_{V}, is in terms of radians per second per volt, and phase detector gain, K_{D}, is in terms of amps per radian. The phase detector gain for the DS8906/7/8 series is \pm IOUT divided by 4π.

Figure 9 illustrates an example calculation of time constants, and a plot of open loop gain and phase based on the preceding analysis.

REFERENCES

1. Manassewitsch V., "Frequency Synthesizers" (Wiley, New York, 1976)
2. Rohde, A. L., "Digital PLL Frequency Synthesizers" (Prentice Hall, Englewood Cliffs, 1983)
3. Egan, W. F., "Frequency Synthesis By Phase Lock" (Wiley, New York, 1981)

$$
\begin{aligned}
& T 1=R 1 C t \\
& T 1=R 1 C 2 \\
& \frac{\theta_{V}}{\mathrm{I}_{\mathrm{O}}}=\frac{1+\mathrm{ST} 1}{\mathrm{SC} 1(1+\mathrm{ST} 2)} \\
& G(S)=\frac{K_{D} K_{V}}{N S^{2} C_{1}}\left(\frac{1+S T 1}{1+S T 2}\right) \\
& \text { T2 }=\frac{1-\tan \phi \cos \phi}{\omega_{O} \cos \phi} \\
& \mathrm{~T} 1=\frac{1}{\omega_{0}^{2 T} 2} \\
& C 1=\frac{K_{D} K_{V}}{N \omega_{O^{2}}}\left(\frac{-\omega_{O} T 1-1}{\omega_{O} T 2+1}\right) \\
& \text { where } \theta=\text { desired phase margin } \\
& \omega_{0}=\text { loop natural frequency } \\
& \approx \text { closed loop bandwidth }
\end{aligned}
$$

Note: DS8909 op amp required C3 $\approx 1000 \mathrm{pF}$ for compensation.
FIGURE 8. Third Order Type 2 Loop

FIGURE 9. Example of Gain and Phase Calculation

DUAL-MODULUS COUNTING RANGE LIMITATIONS

- Minimum count limitations
- Maximum count limitations

The DS8906/7/8 series PLLs utilize a dual-modulus counting scheme internally based on a 63/64 prescale modulus in FM mode in order that all of the U.S. FM frequency assignments could be reached using a 25 kHz reference. The counter modulus $N=64 A+B$ where B is the 6 least significant bits of N and A is the 7th and greater significant bits of N.

$$
\begin{aligned}
N & =64 A+B \\
N & =64 A+\overline{63}-8(B=63-\bar{B}) \\
1+N & =64 A+63+1-64 \bar{B}+63 \bar{B} \\
1+N & =64(A+1-\bar{B})+63 \bar{B}
\end{aligned}
$$

The last equation is in the final form used internally by the DS8906/7/8. The equation indicates that, if N is loaded into the device, it will solve for $N+1$.
The minimum continuous N modulus (code) the equation dictates should occur when $A=\bar{B}$. \bar{B} maximum $=63 \mathrm{im}-$ plies $A=\overline{62}, B=63$ should be an illegal $N+1 \operatorname{code}(N+$ $1=3969$). However, because this is just inside the lower FM band limits, extra circuitry was added to enable this particular code's operation. The actual minimum $N+1$ code for these PLLs thus becomes the case when $A=61, \bar{B}=$ $61, N+1$ minimum $=3907$. There are legitimate $N+1$ codes below this 3907 value, however, they are not continuous. (i.e., Starting at 3907 and counting down, one additional code is in error every 63 codes. Thereafter, these erroneous codes are the cases where $A<\bar{B}$.) The sequence of illegal codes is shown in Figure 10.

Loaded Value of N	A	\bar{B}	Status	Actual Locked $\mathrm{N}+1$ Value
3906	61	61	OK	3907
3905	61	62	illegal	3907
3904	61	63	illegal	3907
3903	60	0	OK	3904
-	-	-	-	-
\%	\bullet	-	\bullet	-
	-	-	$\stackrel{+}{\circ}$	$\stackrel{-}{ }$
3843	60	60	OK	3844
3842	60	61	illegal	3844
3841	60	62	illegal	3844
3840	60	63	illegal	3844
3839	59	0	OK	3840
-	-	-	-	-
\bullet	-	\bullet	\bullet	\bullet
-	-	\bullet	-	-
3780	59	59	OK	3781
3779	59	60	illegal	3781
3778	59	61	illegal	3781
3777	59	62	illegal	3781
3776	59	63	illegal	3781
3775	58	0	OK	3776
-	\bullet	-	-	-
\bullet	-	\bullet	-	-
-	-	-	-	-
3717	58	58	OK	3718
3716	58	59	illegal	3718
3715	58	59	illegal	3718
3714	58	60	illegal	3718
3713	58	61	illegal	3718
3712	58	63	illegal	3718
3711	57	0	OK	3712
-	-	\bullet	\bullet	-
-	-	-	-	-

FIGURE 10. FM Mode Dual-Modulus Counting Below the Minimum Continuous N Code of 3906

Maximum code limits for these dual-modulus PLLs are determined by the N code bit length. The DS8906 and DS8908 have a 14 -bit N counter allowing 16,383 counts. The DS8907 has a 13 -bit N node length, allowing a maximum N count of 8,191 . See Figure 11 for table operating ranges of the DS8906, DS8907 and DS8908 PLLs.

CONCLUSION

The major application for the DS8906/7/8 PLLs are synthesizers for AM-FM radios, and have been widely accepted in
the marketplace. Figure 12 shows the block diagram of such a radio. In this application the following performance relating to the PLL tuning system is realized.

PLL Loop Bandwidth	300 Hz
Reference Frequency Sidebands	$>60 \mathrm{~dB}$
Signal-to-Noise Ratio	
AM: 30% modulation	$>50 \mathrm{~dB}$
FM: 22.5 kHz deviation	$>55 \mathrm{~dB}$
Switching Speed (one channel)	$<1.5 \mathrm{~ms}$

Product	Input	Ref (Hz)	$\left.\mathrm{fiN}^{(} \mathrm{Hz}\right)$	
			Min*	Max
DS8906	AM	500	24.5k	8.193M
	FM	12.5k	48.8375M	120M
DS8907	AM	10k	490k	15M
	FM	25k	97.675M	120M
DS8908	AM	1k	49k	15M
		9 k	441k	15M
		10k	490k	15M
		20k	980k	15M
	FM	1k	3.907 M	15M
		9 k	35.163 M	120M
		10k	39.07M	120M
		20k	78.14M	120M

*The minimum frequency shown is obtained when the minimum continuous N code is utilized and it assumes the edge rates $>20 \mathrm{~V} / \mu \mathrm{s}$.

FIGURE 11. Product Operating Frequency Range

TL/F/5269-12

FIGURE 12. AM-FM Digitally Tuned Radio System

DS8911 AM/FM/TV Sound Up-Conversion Frequency Synthesizer

THE UP-CONVERSION AM RADIO USING THE DS8911
In an up-conversion AM radio the local oscillator and first IF frequency are chosen to be much higher in frequency than the received signal. This totally eliminates image problems since the image is far above the band of interest. In this application an IF of 11.55 MHz was chosen. This enables the RF front end to be untuned. A simple low pass filter is included to roll off frequencies above 2 MHz . The first mixer in an up-conversion design is subjected to the entire AM band and thus a very high dynamic range mixer (provided as part of the DS8911) is essential to prevent overload due to strong signals. Figure 2 shows the block diagram of the radio using an up-conversion scheme. Notice the three AM tuned stages mentioned in the conventional down-conversion scheme have been eliminated.

Note the dramatic simplification summarized below:
a. Untuned AM RF amplifier
b. One VCO internally generates the LO for both AM and FM modes
c. A common AM/FM mixer
d. Reduced number of tuning and tracking adjustments

TL/F/9449-1
FIGURE 1. Conventional Electronically Tuned Radio

TL/F/9449-2
FIGURE 2. Up-Conversion Electronically Tuned Radio
THE DS8911 IN AN ACTUAL RECEIVER APPLICATION
Shown below is a block diagram of the DS8911 demonstration radio.

FIGURE 3. Block Diagram of DS8911 Up-Conversion Radio

THE AM AND FM FRONT ENDS

The AM RF amplifier, shown in Figure 4, is an untuned JFET input cascode RF amplifier. With the exception of there being no tuned circuits, this is a standard configuration. The output of the cascode amplifier, Q1 and Q2, is further amplified by Q3, which in turn drives a low impedance ($\approx 50 \Omega$) wide band transformer, T1. Transformer T1 provides a 2 to 1 impedance step down to drive the differential inputs of the

DS8911. Note that C7 and L2 perform a low pass function to limit the response of the RF amp to about 2 MHz . Q10 is connected directly across the antenna input and is activated by the AGC circuit to limit very large received signals.
The typical gain of the AM RF block is 20 dB (antenna to Q3 collector). Most of this gain is lost in the low pass filter and wide-band transformer, T1. The net gain from antenna to the input of the DS8911 is about 8 dB .

TL/F/9449-4
FIGURE 4. DS8911 Untuned AM RF Front End

The FM RF amplifier is shown in Figure 5. It is of conventional design, using two varactor diodes, D1 and D2, for tuning. These diodes and the LO varactor, D1, are driven directly by the DS8911 Mixer/Synthesizer's tuning voltage output (OPAMP OUT).
Note that the wide-band transformer, T1, shown in Figure 6, serves as both the AM and FM differential input for the DS8911 mixer. C11 and L2 (Figure 4), are used as isolating devices between the AM and FM front ends.

AGC for the FM RF is applied to the second gate of the dual gate mosfet, Q7 (Figure 5). To insure pinch off action during AGC, R68 biases the source of Q7 so that the source cannot drop below about 650 mV . Note that R49 is used in the drain of Q7. This is designed to limit gain and add circuit stability. The approximate gain of the FM RF amplifier is 10 dB .

TL/F/9449-5
FIGURE 5. FM RF Front End

THE DS8911 MIXER AND IF FILTER SECTION
A mixer is provided on the DS8911 IC for both the FM conversion to 11.50 MHz and the AM first conversion to 11.55 MHz . The 2nd AM conversion to 450 kHz is provided by the mixer within the AM IF IC. If other partitioning constraints require that the first mixer be external to the DS8911, the

RF inputs of the mixer can be de-biased which results in passing the internally generated LO signal to the mixer output pins.
The DS9811 Mixer/Synthesizer section is shown in Figure 6.

FIGURE 6. DS8911 Mixer/Synthesizer Section

FIGURE 7. Mixer Blas Circuitry

The DS8911 double balanced mixer is differentially driven by center-tapped T1 into the RF+ and RF-inputs. These are emitter inputs with an approximate impedance of 25Ω. Current through the double balanced mixer is set by R20, shown in Figure 7. The total bias current through the sum of the mixer transistors whose collectors are at IMIXER (pin 5) and $I_{\text {MIXER }}$ (pin 6), is four times the current set by R20.

$$
\left(I_{M I X E R}+1 \overline{M I X E R}\right)=4 \times I_{M X R}
$$

A simple equation for calculating the value of R20 is shown in Figure 7. The mixer current in this evaluation board is set at 8 mA .
The local oscillator signals used for AM and FM tuning are derived from a single VCO within the DS8911. This VCO's range is from 98 to 120 MHz . In the AM mode this VCO is divided by ten to become the first LO input for the DS8911 mixer. The VCO frequency is set by the external inductor L3 and varactor D1 (see Figure 6). Inputs VCOE and VCOB form a Colpitts oscillator with the external components mentioned above. The VCO is capable of operating within the range of 40 to 225 MHz . However, most varactors operate in an approximately 2.5 to 1 capacitance range. At best, this translates to a 1.58 to 1 frequency range ($f=1 / 2 \pi \sqrt{L C}$). At FM frequencies using MV104 varactor diodes, it is possible to tune over a 25 MHz band. When the DS8911 is switched into the AM mode, the same VCO is used, except it is internally divided by ten. This then gives us a 2.5 MHz tuning range which is sufficient to cover the AM band including LW for European applications. It should be noted that when dividing the VCO by ten we increase the tuning resolution by ten. For example, when the VCO is tuned with a 10 kHz resolution, the divided by ten AM LO signal has a 1 kHz tuning resolution.
The DS8911 incorporates a zero deadband charge pump circuit in the phase detector portion of the internal PLL. This results in a VCO that is very stable, and has very low phase noise. This is particularly advantageous when considering AM stereo reception.

DS8911 IF FILTERS

Referring to Figure 6, the output of the DS8911 mixer is a differential output, MIXER, MIXER; pins 5 and 6 respectively. This output is applied to the center-tapped primary of T2, the mixer output transformer, which is tuned to 11.55 MHz . The AM IF frequency was chosen to be 11.55 MHz so that it would mix directly with the 12 MHz clock to produce a second IF frequency of 450 kHz . The FM IF frequency was chosen to be 11.50 MHz to enable the use of a common tuned 1st IF transformer (T2) for both AM and FM.
A low impedance tap on the secondary of T2 is used to drive FL3 and subsequent buffer circuitry which is fed to the FM IF section. Both FL3 and FL4 are 11.50 MHz ceramic resonators. The higher impedance portion of T2's secondary drives FL1 in series with optional FL2 which form the primary AM filtering. These are 11.55 MHz crystal filters with a 6 dB bandwidth of 7.5 kHz . Using FL1 alone is quite satisfactory, however steeper selectivity skirts are possible if FL2 is included. When both FL1 and FL2 are used, they must be a matched set. The AM IF filter section is interfaced to the AM IF section by transformer T3, shown in Figure 6.

THE AM IF SECTION

The AM IF section of the DS8911 evaluation board is implemented using a conventional fully integrated AM radio chip, the SANYO LA1130. See Figure 8 for schematic of the AM IF section. This device is used in this configuration to receive the modulated AM carrier signal at 11.55 MHz , downconvert it to 450 kHz , and decode the AM modulation. The LO input signal for the LA1130 is provided from the DS8911's 12 MHz crystal oscillator. This LO signal is injected into the OSC pin (pin 4). The low level 11.55 MHz IF signal from the crystal filter is injected into the RF INPUT (pin 2). The RF OUTPUT (pin 5) is tuned to 11.55 MHz with T4 and applied to the second MIXER INPUT (pin 6). Transformers T 5 and T 6 are tuned to 450 kHz .
It should be noted that T4 could be replaced by a ceramic resonator centered around 11.50 to 11.55 MHz with a bandwidth of several hundred kHz . Transformer T5 could be eliminated and T6 replaced with a 450 kHz resonator to produce a minimum tuned circuit design.

TL/F/9449-8
FIGURE 8. AM IF Circuitry

Detected audio is available at pin 14 (Mono AM out test point). AGC is generated internal to the LA1130, buffered by Q8 and applied to Q10, located in the AM front end.

THE FM IF SECTION

The FM IF filtering is done by FL3 (Figure 6) and FL4 (Figure 9) which precede the IF amplifier chip IC6, an LM3089. FM quadrature detection is done on chip. External inductor T9 is adjusted for correct FM demodulation. Audio output is made available on pin 6 (FM mono out test point). This is fed to the stereo decoder IC8. (Figure 11)

THE STEREO DECODER SECTION

The stereo decoders are a standard configuration with their outputs resistively summed into the dual volume control potentiometer, $\mathrm{R}_{\mathrm{vol}}$.

Device IC7, shown in Figure 10, is a Motorola MC13020P, an AM stereo decoder designed to decode the C-Quam AM stereo format. Because this chip needs a relatively high level 450 kHz IF signal to operate, transistors Q4 and Q5 boost the IF signal from T6 and apply it to pin 3 of IC7.
The FM stereo decoder, shown in Figure 11, is IC8, an LM1800. This device performs the FM stereo multiplex decoding. This circuit is standard and used in numerous consumer applications, therefore is mentioned only briefly.
The audio output section, shown in Figure 12, consists of two LM386 devices, IC3 and IC11. These are used simply to drive a pair of monitor loud speakers. No special de-emphasis of the audio has been done in this evaluation board. This should be taken into account if performance measurements are done on this board.

TL/F/9449-11
FIGURE 11. FM Stereo Decoder

FIGURE 12. DS8911 Audio Output Circuitry

POWER SUPPLIES

The evaluation board is designed for 12 VdC nominal operation. The power to various sections is controlled by the microcontroller via Q11, Q12, Q13, and Q14 shown in Figure 13. On board regulation is provided by IC 4 , and 8 V regulator (used for the signal circuits), and IC5, a 5 V regulator (used for the logic circuits). The 12 V power is used to operate the rest of the circuitry. No provisions have been made on the board for automobile load dump protection.

APPENDIX

Operating instructions for the DS8911 Application Board

The DS8911 AM/FM radio application board contains a built-in COPS controller which is programmed to send a 24 bit serial data stream to the DS8911 each time a key is pressed on the 4 by 4 keypad. Additionally, new data is sent to the display.

Power up.

Upon power up the radio will tune 98.5 MHz in the FM band. The store keys are preset to tune this frequency in the FM band and 810 kHz in the AM band.

Key Functions.

AM/FM: This key switches between the AM and FM bands. If the key is pressed while in FM, the station is first stored internally and then the band is changed to AM, recalling the last station played.
Note: An " A " will appear in the left digit location on the display while in the AM band, and no letter will appear for the FM band.
Tune up (\uparrow), tune down (\downarrow): Steps the tuned frequency by one reference increment at each key stroke.
Fast tune up ($\uparrow \uparrow$), tune down $(\downarrow \downarrow)$) Holding this key down steps the frequency up or down repetitively for speedy tuning. There are upper and lower tuning limits which vary according to what reference frequency the DS8911 is using. STO 1/2/3: A station may be stored by pressing the STO key and then the desired store location 1, 2 or 3 . An " S " will show up in the left digit space prompting the user for a store location.
A station may be recalled by directly pressing the store 1, 2 or 3 location. FM stations will be recalled while in the FM band and AM stations will be recalled while in the AM band.

FIGURE 13. Power Supply Clrcultry

LO: The LO key will display the local oscillator frequency that corresponds to the present tuned frequency. The LO frequency displays for a few seconds and then the tuned frequency returns.
TEST MODE: This key allows the user to choose between mode $0,1,2$ or 3 . Each time the key is pressed the test mode will rotate and display the new mode for a few seconds before the tuned frequency reappears. A keypress will not be recognized until the tuned frequency reappears. The system powers up in test mode 0 .
REF: This key allows the user to change the reference frequency used by the DS8911. Each keypress rotates the reference frequency from 100 kHz to $10 \mathrm{kHz}, 10 \mathrm{kHz}$ to $12.5 \mathrm{kHz}, 12.5 \mathrm{kHz}$ to 25 kHz or 25 kHz to 100 kHz depending where it started. The tuned frequency will be recalculated using the new reference frequency and displayed. If the tuned frequency is too high or low, a multiple or a non-integer of the new reference frequency, the program will automatically rotate to the next legal reference frequency, display it for a few seconds, and then return to displaying the tuned frequency. The system powers up in the 100 kHz mode.
BIT 22, 23, 24: Each of these keys changes the high or low state of bit 22, 23 and 24 in the serial data stream to the DS8911. The bits power up low and may be changed high independently by pressing the appropriate key. The display will then show the status of all three bits in the right three digit spots.
Example: Bit 23 high, bit 22 and 24 low. $=|0| 1|0|$

ALIGNMENT

1. In FM mode tune to 98.5 MHz . Adjust L 3 while monitoring DC voltage on OP AMP, pin 26 of IC1. Adjust L3 for a reading of 3.4 Vdc .
2. Switch to AM mode. Set generator for $810 \mathrm{kHz}, 30 \%$ modulation, 400 Hz . RF level: $100 \mu \mathrm{~V}$. Use 40 pF dummy antenna.
3. Adjust T2, T3, T4, T5, T6 for maximum sensitivity as measured at speaker output using suitable AC voltmeter.
Note: As signal strength increases with alignment, appropriately reduce the RF output of signal generator.
4. Switch to FM mode and tune to 98.5 MHz . Set FM generator to 98.5 MHz . Set RF output to $100 \mu \mathrm{~V}$, modulation 400 Hz , deviation 22.5 kHz . Use 50Ω termination on antenna input.
5. Adjust T9 for maximum recovered audio and mininum distortion.
6. Adjust T7 and T8 for maximum sensitivity. Reduce RF level of generator as needed.
7. Tune to stereo FM station. Adjust R70 for D5 "On." $100 \mu \mathrm{~V}$, modulation 400 Hz , deviation 22.5 kHz . Use 50Ω termination on antenna input.
8. Adjust T9 for maximum recovered audio and minimum distortion.
9. Adjust T7 and T8 for maximum sensitivity. Reduce RF level of generator as needed.
10. Tune to stereo FM station. Adjust R70 for D5 "On".

TYPICAL SPECIFICATIONS

AM SIGNAL-TO-NOISE	
RF Level	S/N
$12 \mu \mathrm{~V}$	14 dB
$45 \mu \mathrm{~V}$	27 dB
$1000 \mu \mathrm{~V}$	49 dB

AM RADIO SENSITIVITY

$540-1000 \mathrm{kHz}$	$6.7 \mu \mathrm{~V}$
$1000-1600 \mathrm{kHz}$	$8.9 \mu \mathrm{~V}$

AM RADIO SELECTIVITY

Input level $=2 \times$ Radio AM selectivity level
6 dB audio level Bandwidth : 8.0 kHz
Input level $=200 \times$ Radio AM selectivity level
6 dB audio level Bandwidth $\quad 24 \mathrm{kHz}$
AM STRONG SIGNAL DISTORTION

RF Level	\% Distortion
80 mV	1
800 mV	1
1500 mV	3
AGC figure of merit $=54.9$	

AM SPURIOUS RESPONSE

Freq. $\mathbf{k H z}$	$\mathbf{d B}$
700	-15
850	-9.5
913	-12
1051	-8
1074	-11
1198	-16

AM CROSS MODULATION
Ref. Gen. Level $=200 \mu \mathrm{~V}$ (Radio tuned to Ref. Gen.)
Frequency $=1.01 \mathrm{MHz}$
Gen \#2 Level $=10,000 \mu \mathrm{~V}$
Gen \#2 signal appears 30 dB down*
Frequency $=1.05 \mathrm{MHz}$

FM Signal to Noise

AM Signal to Noise

TL/F/9449-15

AM Percent Harmonic Distortion

TL/F/9449-17

Section 9

Hi-Rel Interface

Section 9 Contents

Interface Military Products-Selection Guide 9-3
Hi-Rel Interface 9-6
National's A + Program 9-16

National Semiconductor							
		Interfac	ce Milit	tary	Produ	ucts	
Advanced Peripheral							
Device No.	$\begin{gathered} \text { Pin } \\ \text { Count } \end{gathered}$	Description	Process Flows	Slash Sheet	$\begin{aligned} & \text { DESC } \\ & \text { SMD } \end{aligned}$	Package Type	Comments
MEMORY SUPPORT							
$\begin{aligned} & \text { DP8419 } \\ & \text { DP8429 } \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 52 \end{aligned}$	256k DRAM Controller 1 MB DRAM Controller	$\begin{aligned} & \text { MSP } \\ & \text { MSP } \end{aligned}$			$\begin{aligned} & \hline \text { CDIP } \\ & \text { CDIP } \end{aligned}$	16k \& 64k Controller also 16k, 64k, 256k DRAM Ctrl also
Interface							
Device No.	Pin Count	Description	Process Flows	$\begin{array}{\|l\|} \hline \text { Slash } \\ \text { Sheet } \end{array}$	$\begin{aligned} & \text { DESC } \\ & \text { SMD } \end{aligned}$	Package Type	Comments
BUS TRANSCEIVERS							
DM54LS373	20	Octal Bus Driver	883			CDIP	Transparent D-Type Latch
DM54LS374	20	Octal Bus Driver	883			CDIP	Edge Triggered Flip-Flops
DM54S240	20	TRI-STATE® Bus Driver/Rcvr	883, MIL S			CDIP, F/P	Non-Inverting
DM54S241	20	TRI-STATE Bus Driver/Rcvr	883			CDIP, F/P	Inverting
DS1776	28	Pl-Bus Transceiver	883			CDIP, LCC	Transceiver
DM7136	16	6-Bit Bus Comparator	883				
$\begin{aligned} & \hline \text { DP7304B } \\ & \text { DS7640 } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 14 \\ & \hline \end{aligned}$	TRI-STATE Transceiver Quad NOR Unified Bus Recvr	$\begin{array}{\|c\|} \hline-\mathrm{MIL} \\ 883 \\ \hline \end{array}$			$\begin{aligned} & \hline \text { CDIP } \\ & \text { CDIP, F/P } \\ & \hline \end{aligned}$	8-Bit Bidirectional Receiver
DS7833	16	Quad TRI-STATE Bus Xceiver	883			CDIP, F/P	Transceiver
DS7834	16	Quad TRI-STATE Bus Xceiver	883			CDIP, F/P	Transceiver
DS7835	16	Quad TRI-STATE Bus Xceiver	883			CDIP, F/P	Transceiver
DS7836	14	Quad Unified Bus Receiver	883			CDIP, F/P	NOR Function Receiver
DS7837	16	Quad Unified Bus Receiver	883			CDIP, F/P	Receiver
		Quad Unified Bus Xceiver	-MIL, MIL S				
MM54C373	20	Octal Bus Driver	883			CDIP	D Type Latch
MM54C374	20	Octal Bus Driver	883			CDIP	D Type Flip-Flop
MM54C922	18	16-Key Encoder	883			CDIP	Key Board Encoder/Debouncer
MM54C923	20	20-Key Encoder	-MIL				Key Board Encoder/Debouncer
MM70C97	16	TRI-STATE Hex Buffers	883			CDIP, F/P	Non-Inverting Driver
MM70C98	16	TRI-STATE Hex Buffers	883			CDIP, F/P	Inverting Driver
DISPLAY CONTROLLERS/DRIVERS							
DS55494	16	Hex Digit Driver	883			CDIP, F/P	
MM5452	40	32 Seg LCD Display Driver	-MIL			CDIP	
LEVEL TRANSLATORS/BUFFERS							
DS7800	10	Dual Voltage Level Xlator	883			MCAN	Translator
DS78L12	14	Hex TTL-MOS Interface	-MIL, MIL S			CDIP, F/P	
MM54C901	14	Hex TTL Buffer				CDIP, F/P	Inverting
MM54C902	14	Hex TTL Buffer	883			CDIP, F/P	Non-Inverting
MM54C906	14	Hex Buffer	883			CDIP, F/P	Open Drain N-Channel
MM54C907	14	Hex Buffer	883			CDIP, F/P	Open Drain P-Channel
MEMORY SUPPORT							
DS0026	8	5 MHz 2Phase MOS Clock Dvr	883, MIL S			CDIP, MCAN	
DS0056	8	5 MHz 2 Phase MOS Clock Dvr	883		7800801GX	MCAN	
DS16179	16	Hex MOS Driver	883			CDIP	
DS1649	16	Hex TTL-MOS Driver	883			CDIP, F/P	
MICROPROCESSOR SUPPORT							
DP8216	16	4-Bit Bus Transceiver	883			CDIP	8080 Support (Bidirectional)
DP8228	28	System Ctrler \& Bus Dvr	-MIL			CDIP	8080A Support
DP8238	28	System Ctrler \& Bus Dvr	-MIL			CDIP	8080A Support

Device No.	Pin Count	Description	Process Flows	Slash Sheet	DESC SMD	Package Type	Comments
PERERAL							

PERIPHERAL/POWER DRIVERS

DP7311	20	Octal Latched Periph Dvr
DS1631	8	CMOS Dual Peripheral Dvr
DS1632	8	CMOS Dual Peripheral Dvr
DS1634	8	CMOS Dual Peripheral Dvr
DS1687	8	Neg. Voltage Relay Driver
DS55451	14	Dual Peripheral Driver
DS55452	14	Dual Peripheral Driver
DS55453	14	Dual Peripheral Driver
DS55461	8	Dual Peripheral Driver
DS55462	8	Dual Peripheral Driver
DS55463	8	Dual Peripheral Driver
DS55464	8	Dual Peripheral Driver
LM195	3	Power Transistor
TRANSMISSION LINE DRIVERS/RECEIVERS		

DS16F95 DS96F172 DS96F173 DS96F174 DS96F175	$\begin{gathered} \hline 8 \\ 16 \\ 16 \\ 16 \\ 16 \\ \hline \end{gathered}$	Diff. Bus Transceiver Quad Diff. Line Driver Quad Diff. Line Rcvr Quad Diff. Line Driver Quad Diff. Line Revr	$\begin{array}{\|l\|} \hline 883 \\ 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$			CDIP, F/P, LCC	RS-485, RS-422 RS-485, RS-422 RS-485, RS-422 RS-485, RS-422 RS-485, RS-422
DS1603 DS1652 DS1691A DS26F31 DS26F32	$\begin{aligned} & 14 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	Dual Line Receiver Quad Diff. Line Receiver TRI-STATE Line Driver Quad Hi Spd Diff Line Dvr Quad Hi Spd Diff Line Rcv	$\begin{array}{\|l\|} \hline 883 \\ -\mathrm{MIL} \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$			CDIP, F/P CDIP CDIP, F/P CDIP, F/P, LCC CDIP, F/P, LCC	$\begin{aligned} & \text { RS-422, RS-423 } \\ & \text { RS-422, RS-423 } \\ & \text { RS-422, RS-423 } \\ & \hline \end{aligned}$
DS26LS31 DS26LS31 DS26LS32 DS26LS33 DS55107A	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	Quad Diff. Line Driver Quad Diff. Line Driver Quad Diff. Line Receiver Quad Diff. Line Receiver	$\begin{array}{\|l} \hline 883, \text { MIL S } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 7802301 E X \\ 7802302 F X \end{array}$	$\begin{array}{\|l\|} \hline \text { CDIP } \\ \text { F/P } \\ \text { CDIP, F/P } \\ \text { CDIP, F/P } \\ \hline \end{array}$	RS-422, RS-423 RS-422, RS-423 RS-422, RS-423 RS-422, RS-423
DS55107A DS55110A DS55113 DS55122	$\begin{aligned} & 14 \\ & 14 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	Dual Line Receiver Dual Line Driver Dual TRI-STATE Diff Line D Triple Line Receiver	$\begin{array}{\|l} \hline 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$	10401	8754701CA	$\begin{aligned} & \hline \text { CDIP, F/P } \\ & \text { CDIP } \\ & \text { CDIP } \\ & \text { CDIP, F/P } \\ & \hline \end{aligned}$	Line Driver With Hysteresis
DS7820 DS7820A DS7820A DS7830 DS7831	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 16 \end{aligned}$	Dual Line Receiver Dual Line Receiver Dual Line Receiver Dual Diff. Line Driver Dual TRI-STATE Line Driver	883, MIL S 883, MIL S 883, MIL S 883, MIL S 883		$\begin{array}{\|l\|} \hline 7900801 \mathrm{CX} \\ 7900801 \mathrm{DX} \\ 8004101 \mathrm{FX} \\ \hline \end{array}$	$\begin{aligned} & \text { CDIP, F/P } \\ & \text { CDIP } \\ & \text { F/P } \\ & \text { CDIP, F/P } \\ & \text { F/P } \\ & \hline \end{aligned}$	
DS7831 DS7832 DS7832 DS78C120 DS78C20	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 14 \end{aligned}$	Dual TRI-STATE Line Driver Dual TRI-STATE Line Driver Dual TRI-STATE Line Driver Dual Diff. Line Receiver Dual Diff. Line Receiver	$\begin{array}{\|l\|} \hline 883 \\ 883 \\ 883 \\ 883, \text { MIL S } \\ 883 \\ \hline \end{array}$		8004101EX 8004102EX 8004102FX	CDIP CDIP F/P CDIP CDIP, F/P	CMOS Compatible CMOS Compatible
DS78LS120 DS9614 DS9615 DS9616 DS9622	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	Dual Diff. Line Receiver Dual Diff. Line Driver Dual Diff. Line Receiver Triple Line Driver Dual Line Receiver	$\begin{array}{\|l} \hline 883 \\ 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$	$\begin{aligned} & 10403 \\ & 10404 \end{aligned}$	87522012A	$\begin{aligned} & \hline \text { CDIP, F/P } \\ & \text { CDP, LCC, F/P } \\ & \text { CDIP, LCC, F/P } \\ & \text { CDP, LCC } \\ & \text { LCC } \\ & \hline \end{aligned}$	Noise Filtering and Fail-Safe (See) DS55114 (See) DS55115 RS-232C, MIL-STD-188C
DS9622 DS9622 DS9627 DS9636A DS9637A	$\begin{gathered} \hline 14 \\ 14 \\ 16 \\ 8 \\ 8 \\ \hline \end{gathered}$	Dual Line Receiver Dual Line Receiver Dual Line Receiver Dual Prog. Slew Rate Dvr Dual Diff. Line Receiver	$\begin{array}{\|l\|} \hline 883 \\ 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 8752201 \mathrm{AA} \\ \text { 8752201CA } \\ \text { 8752301PA } \\ \text { 8752401PA } \\ \hline \end{array}$	F/P CDIP CDIP, LCC CDIP CDIP	$\begin{aligned} & \text { RS-232C, MIL-STD-188C } \\ & \text { RS-423 } \\ & \text { RS-422, RS-423 } \\ & \hline \end{aligned}$
DS9638 DS9639A DS9667A MM78C29 MM78C30	8 8 16 14 14 1	Dual Hi Spd Diff Line Dvr Dual Diff. Line Receiver Darlington Drivers Quad Line Driver Dual Diff. Line Driver	$\begin{array}{\|l\|} \hline 883 \\ 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$		8754601PA	CDIP CDIP CDIP CDIP, F/P CDIP, F/P	RS-422, RS-423, RS-232C
$\begin{aligned} & \mu A 55107 A \\ & \mu A 55110 A \\ & \mu A 9614 \\ & \mu A 9615 \\ & \mu \mathrm{~A} 9616 \\ & \hline \end{aligned}$	14 14 16 16 14	Dual Line Receiver Dual Line Driver Dual Diff. Line Driver Dual Diff. Line Receiver Triple Line Driver	$\begin{array}{\|l\|} \hline 883 \\ 883 \\ 883 \\ 883 \\ 883 \\ \hline \end{array}$	$\begin{aligned} & 10401 \\ & 10403 \\ & 10404 \end{aligned}$	8754701CA	$\begin{array}{\|l\|} \hline \text { CDIP, F/P } \\ \text { CDIP } \\ \text { CDIP, LCC, F/P } \\ \text { CDIP, LCC, F/P } \\ \text { CDIP, LCC } \\ \hline \end{array}$	(See) DS55114 (See) DS55115 RS-232C, MIL-STD-188C

Interface (Continued)							
Device No.	Pin Count	Description	Process Flows	Slash Sheet	$\begin{aligned} & \text { DESC } \\ & \text { SMD } \end{aligned}$	Package Type	Comments
TRANSMISSION LINE DRIVERS/RECEIVERS (Continued)							
μ A9622	14	Dual Line Receiver	883		8752201AA	F/P	
$\mu \mathrm{A} 9622$	14	Dual Line Receiver	883		8752201CA	CDIP	
μ A9622	14	Dual Line Receiver	883		87522012A	LCC	
μ A9627	16	Dual Line Receiver	883			CDIP	RS-232C, MIL-STD-188C
$\mu \mathrm{A} 9636 \mathrm{~A}$	8	Dual Prog. Slew Rate Dvr	883		8752301PA	CDIP	RS-423
$\mu \mathrm{A} 9637 \mathrm{~A}$	8	Dual Diff. Line Receiver	883		8752401PA	CDIP	RS-422, RS-423
$\mu \mathrm{A} 9638$	8	Dual Hi Spd Diff Line Dvr	883		8754601PA	CDIP	
$\mu \mathrm{A} 9639$ A	8	Dual Diff. Line Receiver	883			CDIP	RS-422, RS-423, RS-232C
$\mu \mathrm{A} 9667 \mathrm{~A}$	16	Darlington Drivers	883			CDIP	

Military/Aerospace Programs from National Semiconductor

The following is intended to provide a brief overview of military products available from National Semiconductor. For further information, refer to our Reliability Handbook.

MIL-M-38510

The MIL-M-38510 Program, which is sometimes called the JAN IC Program, is administered by the Defense Electronics Supply Center (DESC). The purpose of this program is to provide the military community with standardized products that have been manufactured and screened to governmentcontrolled specifications in government certified facilities. All 38510 manufacturers must be formally qualified and their products listed on DESC's Qualified Products List (QPL) before devices can be marked and shipped as JAN product.

There are two processing levels specified within MIL-M38510: Classes S and B. Class S is typically specified for space flight applications, while Class B is used for aircraft and ground systems. National is a major supplier of both classes of devices. Screening requirements are outlined in Table 3.
Tables 1 and 2 explain the JAN device marking system. Copies of MIL-M-38510, the QPL, and other related documents may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, PA 19120
(212) 697-2179

TABLE I. The MIL-M-38510 Part Marking

MIL-M-38510 (Continued)
TABLE II. JAN Package Codes

38510 Package Designation	Microcircult Industry Description
A	14-Pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flat Pack
B	14-Pin $3 / 15^{\prime \prime} \times 1 / 4^{\prime \prime}$ Flat Pack
C	14-Pin $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ Dual-In-Line
D	14-Pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Ceramic) Flat Pack
E	16-Pin $1 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$ Dual-In-Line
F	16-Pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Metal or Ceramic) Flat Pack
G	8-Pin TO-99 Can or Header
H	10-Pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flat Pack
1	10-Pin TO-100 Can or Header
J	$24-P i n 1 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
K	24-Pin $3 / \mathrm{s}^{\prime \prime} \times 5 / \mathrm{s}^{\prime \prime}$ Flat Pack
L	24-Pin $1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
M	12-Pin TO-101 Can or Header
N	(Note 1)
P	8-Pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ Dual-In-Line
Q	40-Pin $3 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}$ Dual-In-Line
R	20-Pin $1 / 4^{\prime \prime} \times 11 / 16^{\prime \prime}$ ' Dual-In-Line
S	20-Pin $1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ Flat Pack
T	(Note 1)
U	(Note 1)
V	18-Pin $3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$ Dual-In-Line
W	22-Pin $3 / 8^{\prime \prime} \times 1 / 8^{\prime \prime}$ Dual-In-Line
X	(Note 1)
Y	(Note 1)
Z	(Note 1)
2	20-Terminal 0.350" $\times 0.350^{\prime \prime}$ Chip Carrier
3	28-Terminal $0.450^{\prime \prime} \times 0.450^{\prime \prime}$ Chip Carrier

Note 1: These letters are assigned to packages by individuals MIL-M-38510 detail specifications and may be assigned to different packages in different specifications.

DESC Specifications

DESC specifications are issued to provide standardized versions of devices which are not yet available as JAN product. MIL-STD-883 Class B screening is coupled with tightly controlled electrical specifications which have been written to allow a manufacturer to use his standard electrical tests. A current listing of National's DESC specification offerings can be obtained from our franchised distributors, sales representatives, of DESC. DESC is located in Dayton, Ohio.

MIL-STD-883

Although originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision C of this document defines the minimum requirements for a device to be marked and advertised as 883 -compliant. Included are design and construction criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures. Details can be found in paragraph 1.2.1 of MIL-STD-883.
National offers both 883 Class B and 883 Class S product. The screening requirements for both classes of product are outlined in Table III.
As with DESC specifications, a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits, and test temperatures must be clearly documented. At National Semiconductor, this information is available via our RETS (Reliability Electrical Test Specification Program). The RETS document is a complete description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request.
Some of National's older products are not completely compliant with MIL-STD-883, but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product, but are marked "-MIL".

Military Screening Program (MSP)

National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly than is possible for JAN and 883 devices. Through this program, screened product is made available for prototypes and breadboards prior to or during the JAN or 883 qualification activities. MSP products receive the 100% screening of Table III, but are not subjected to Group C and D quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability.

Reliability Electrical Test Specifications (RETSTM)

National has implemented the first realtime, electronic catalog of military test specifications called RETS.
Included in this computerized directory is a detailed listing of the electrical tests performed on all military devices qualified by National, including forcing functions, test limits and temperature ranges.
Call your local National sales office for essential up-to-theminute information on device testing.

Reliability Electrical Test Specifications (RETSTM) (Continued)
TABLE III. 100\% Screening Requirements

Screen	Class S		Class B	
	Method	Reqmt	Method	Reqmt
1. Wafer Lot Acceptance	5007	All Lots		
2. Nondestructive Bond Pull (Note 14)	2023	100\%		
3. Internal Visual (Note 1)	2020, Condition A	100\%	2010, Condition B	100\%
4. Stabilization Bake (Note 16)	1008, Condition C, Min. 24 hrs. Min.	100\%	1008, Condition C, Min., 24 hrs. Min.	100\%
5. Temperature Cycling (Note 2)	1010, Condition C	100\%	1010, Condition C	100\%
6. Constant Acceleration	2001, Condition E Min. Y_{1} Orientation Only	100\%	2001, Condition E, Min. Y_{1} Orientation Only	100\%
7. Visual Inspection (Note 3)		100\%		100\%
8. Particle Impact Noise Detection (PIND)	2010, Condition A (Note 4)	100\%		
9. Serialization	(Note 5)	100\%		
10. Interim (Pre-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification (Note 6)	
11. Burn-In Test	1015 240 Hrs @ $125^{\circ} \mathrm{C}$ Min. (Cond. F Not Allowed)	100\%	$\begin{gathered} 1015 \\ 160 \mathrm{Hrs} . @ 125^{\circ} \mathrm{C} \text { Min. } \end{gathered}$	100\%
12. Interim (Post Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%		
13. Reverse Bias Burn-In (Note 7)	1015; Test Condition A, C, 72 Hrs . @ $150^{\circ} \mathrm{C}$ Min. (Cond. F Not Allowed)	100\%		
14. Interim (Post Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification	100\%
15. PDA Calculation	5\% Parametric (Note 14), 3\% Functional	All Lots	5\% Parametric (Note 14)	All Lots
16. Final Electrical Test (Note 15) a) Static Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table I, 5005) 2) Max \& Min Rated Operating Temp. (Subgroups 2, 3, Table I 5005) b) Dynamic Tests or Functional Tests 1) $25^{\circ} \mathrm{C}$ (Subgroups 4 or 7) 2) Max \& Min Rated Operating Temp. (Subgroups 5 and 6 or 8 , Table I, 5005) c) Switching Tests $25^{\circ} \mathrm{C}$ (Subgroups 9 Table I, 5005)	Per Applicable Device Specification	100\% 100\% 100\% 100\% 100%	Per Applicable Device Specification	100% 100\% 100\% 100\% 100%
17. Seal Fine, Gross	1014	100\%, (Note 8)	1014	100\%, (Note 9)
18. Radiographic (Note 10)	2012 Two Views	100\%		
19. Qualification or Quality Conformance Inspection Test Sample Selection	(Note 11)	Samp.	(Note 11)	Samp.
20. External Visual (Note 12)	2009	100\%		100\%

Reliability Electrical Test Specifications (RETSTM) (Continued)

TABLE III. 100\% Screening Requirements (Continued)
Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g., bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophic failures may be conducted after after each of the thermal/mechanical screens, after the sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted.
Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separately or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming (e.g., flatpacks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample test (LTPD=5) shall be performed on each inspection lot following these operations. If the sample fails, 100% rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 9.
Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.
Note 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment.
Note 13: Read and record is required at steps 10 and 12 only for those parameters for which post-burn-in delta measurements are specified. All parameters shall be read and recorded at step 14.

Note 14: The PDA shall apply to all subgroup 1 parameters at $25^{\circ} \mathrm{C}$ and all delta parameters.
Note 15: Only one view is required for flat packages and leadless chip carriers with leads on all four sides.
Note 16: May be performed at any time prior to step 10.

TABLE IV. Group A Electrical Tests

Subgroup (Notes 1, 2)	LTPD
Subgroup 1 Static Tests at $25^{\circ} \mathrm{C}$	2
Subgroup 2 Static Tests at Maximum Rated Operating Temperature	3
Subgroup 3 Static Tests at Minimum Rated Operating Temperature	5
Subgroup 4 Dynamic Tests at $25^{\circ} \mathrm{C}$	2
Subgroup 5 Dynamic Tests at Maximum Rated Operating Temperature	3
Subgroup 6 Dynamic Tests at Minimum Rated Operating Temperature	5
Subgroup 7 Functional Tests at $25^{\circ} \mathrm{C}$	2
Subgroup 8 Functional Tests at Maximum and Minimum Rated Operating Temperatures	5
Subgroup 9 Switching Tests at $25^{\circ} \mathrm{C}$	2
Subgroup 10 Switching Tests at Maximum Rated Operating Temperature	3
Subgroup 11 Switching Tests at Minimum Rated Operating Temperature	5

Note 1: The specific parameters to be included for tests in each subgroup shall be as specified in the applicable procurement document. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test.
Note 2: A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed.

Note 3: Group A testing by subgroup or within subgroups may be performed in any sequence, unless otherwise specified.

TABLE VI. Group B (Class S)

Test (Note 1)	Method	Condition	Quality/(Accept No.) or LTPD
Subgroup 1 a) Physical Dimensions (Note 2) b) Internal Water-Vapor (Notes 2, 3)	$\begin{aligned} & 2016 \\ & 1018 \end{aligned}$	$5,000 \mathrm{ppm}$ Maximum Water Content at $100^{\circ} \mathrm{C}$	$\begin{gathered} 2(0) \\ 3(0) \text { or } 5(1)(\text { Note } 4) \end{gathered}$
Subgroup 2 (Note 5) a) Resistance to Solvents b) Internal Visual and Mechanical c) Bond Strength (Note 6) 1) Thermocompression 2) Ultrasonic 3) Flip-Chip 4) Beam Lead d) Die Shear Test	2015 2014 2011 2019	Failure Criteria from Design and Construction Requirements of Applicable Procurement Document 1) Condition C or D 2) Condition C or D 3) Condition F 4) Condition H Per Method 2019 for the Applicable Die Size	4 (0) 2 (0) $\text { LTPD }=10$ $3 \text { (0) }$
Subgroup 3 Solderability (Note 7)	$\begin{gathered} 2003 \text { or } \\ 2022 \end{gathered}$	Soldering Temperature or $245 \pm 5^{\circ} \mathrm{C}$	LTPD $=15$
Subgroup 4 Lead Integrity (Note 5) Seal 1) Fine 2) Gross Lid Torque (Note 3)	$\begin{aligned} & 2004 \\ & 1014 \end{aligned}$	Condition B_{2}, Lead Fatigue As Applicable As Applicable	2 (0)
Subgroup 5 (Notes 8, 9) a) Electrical Parameters (Note 11) b) Steady State Life c) Electrical Parameters	1005	Group A, Subgroups 1, 2, 3: Read and Record Group A, Subgroups 4-11: Attributes Condition C, D or E: 1000 hours Groups A, Subgroups 1, 2, 3: Read and Record Group A, Subgroup 4-11: Attributes	LTPD $=5$
Subgroup 6 (Note 5) a) Electrical Parameters (Note 11) b) Temperature Cycling c) Constant Acceleration d) Seal 1) Fine 2) Gross e) Electrical Parameters	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \end{aligned}$	Group A, Subgroups 1, 2, 3: Read and Record Condition C, 100 Cycles/min. Test Condition E: Y_{1} Orientation Only Group A, Subgroups 1, 2, 3: Read and Record	LTPD $=5$
Subgroup 7 (Note 12) a) Electrical Parameters b) Electrostatic Discharge Sensitivity b) Electrical Parameters	3015	Group A, Subgroup 1 Group A, Subgroup 1	15 (0)

Reliability Electrical Test Specifications (RETSTM) (Continued)

TABLE VI. Group B (Class S) (Continued)

Note 1: Electrical reject devices from the same inspection may be used for all subgroups where electrical end-point measurements are not required.
Note 2: Not required for qualification or quality conformance inspections where Group \mathbf{D} inspection is being performed on samples from the same inspection lot.
Note 3: This test is required only if it is a glass-frit sealed package.
Note 4: Test 3 devices; if 1 fails, test 2 additional devices with no failures.
Note 5: All samples for subgroup B2 must have been through the complete sequence of subgroup B6 tests.
Note 6: Unless otherwise specified, the LTPD sample size for conditions C and D is the number of bond pulls selected from a minimum of 4 devices and for conditions F and H is the number of dice (not bonds).
Note 7: All devices must be in the same lead finish that will be on the shipped product and shall have been through the temperature/time exposure of burn-in except for devices that have been hot-solder dipped or undergone tin fusing after burn-in. The LTPD applies to the number of leads inspected, except in no case shall less than 3 devices be used to provide the number of leads required.

Note 8: The alternate removal-of-bias provisions of Method 1005 shall not apply for test temperatures above $125^{\circ} \mathrm{C}$.
Note 9: The same temperature must be employed for operating life that was used for the 100% burn-in.
Note 10: For leadless chip carriers, condition D will apply.
Note 11: Read and record data Group A of quality conformance is acceptable.
Note 12: Unless otherwise specified, test shall be performed for initial qualification and product redesign as a minimum.

TABLE VII. Group C (Die-Related Tests for Class B and C Only)

Test	Method	Condition	LTPD
Subgroup 1 Steady State Life Test End-Point Electrical Parameters	1005	Test Condition to be Specified (1,000 hours at $125^{\circ} \mathrm{C}$) As Specified in the Applicable Device Specification	5
Subgroup 2 Temperature Cycling Constant Acceleration Seal a) Fine b) Gross Visual Examination End-Point Electrical Parameters	$\begin{aligned} & i 010 \\ & 2001 \\ & 1014 \end{aligned}$	Condition C Condition E min, Y_{1} Orientation Only (Note 1) As Applicable Per Visual Criteria of Method 1010 or 1011 as Specified in the Applicable Device Specification	15

Note 1: See paragraph 3 of Method 5005 for the procedure for large cavity package.

Reliability Electrical Test Specifications (RETSTM) (Continued) TABLE VIII. Group D (Package-Related Tests for Classes)			
Test	Method	Condition	LTPD
Subgroup 1 (Note 1) a) Physical Dimensions	2016		15
Subgroup 2 (Note 1, 4) Lead Integrity Seal a) Fine b) Gross	$\begin{aligned} & 2004 \\ & 1014 \end{aligned}$	Test Condition B2 (Lead Fatigue) (Note 10) As Applicable	15
Subgroup 3 (Note 3) Thermal Shock Temperature Cycling Moisture Resistance (Note 4) Seal a) Fine b) Gross Visual Examination End-Point Electrical Parameter (Note 4)	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$	Test Condition B Minimum, 15 Cycles Minimum Test Condition C, 100 Cycles Minimum As Applicable Per Visual Criteria of Method 1004 or 1010 As Specified in the Applicable Device Specification	15
Subgroup 4 (Note 3) Mechanical Shock Vibration Variable Frequency Constant Acceleration Seal a) Fine b) Gross Visual Examination End-Point Electrical Parameters	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & \\ & 1014 \end{aligned}$	Test Condition B Minimum Test Condition A Minimum Test Condition E Minimum Y_{1} Orientation Only (Note 6) As Applicable Per Visual Criteria of Method 1010 or 1011 As Specified in the Applicable Device Specification	15
Subgroup 5 (Note 1) Salt Atmosphere Seal a) Fine b) Gross Visual Examination	$\begin{aligned} & 1009 \\ & 1014 \end{aligned}$	Test Condition A Minimum As Applicable Per Visual Criteria of Method 1009	15
Subgroup 6 (Note 1) Internal Water-Vapor Content	1018	$5,000 \mathrm{ppm}$ Maximum Water Content at $100^{\circ} \mathrm{C}$	3 Devices (0 Failures) or 5 Devices (1 Failure)(Note 5)
Subgroup 7 (Note 1) Adhesion of Lead Finish (Notes 7, 8)	2025		15
Subgroup 8 (Note 1) Lid Torque (Note 2)	2024		5 (0)
Note 1: Electrical reject devices from that same ins Note 2: Lid torque test shall apply only to packages whis package integrity). Note 3: Devices used in subgroup 3, "Thermal and Note 4: At the manufacturer's option, end-point ele Note 5: Test 3 devices; if 1 fails, test 2 additional d Note 6: See paragraph 3 of Method 5005 for the pro Note 7: Does not apply to leadless chip carriers. Note 8: The LTPD applies to the number of leads to Note 9: The lead bend stress initial conditioning is n Note 10: For leadless chip carriers only, condition D	tion lot may h use a glas isture Resis al paramet es with no dure for lar tested. required for all apply.	e used for samples. frit seal to lead frame, lead or package body (i.e., wherever frit seal nce" may be used in Subgroup 4 "Mechanical". may be performed after moisture resistance and prior to seal tes lures. cavity packages. adjess chip carriers.	ablishes hermeticity or

Reliability Electrical Test Specifications (RETSTM) (Continued)
TABLE IX. Group E (Radiation Hardness Assurance Tests)

Test (Note 1)	Method	Condition	Quantity (Accept Number $=0$)	
			Class S	Class B
Subgroup 1 (Note 3) Neutron Irradiation a) Qualification b) Quality Conformance End-Point Electrical Parameters	1017	$25^{\circ} \mathrm{C}$ Per Applicable Detail Specification	11 per Wafer Lot 11 per Wafer Lot	5 from each of 3 Wafer Lots 11 per Wafer Lot
Subgroup 2 Steady-state Total Dose Irradiation a) Qualification b) Quality Conformance End-Point Electrical Parameters	1019	$25^{\circ} \mathrm{C}$, Maximum Supply Voltage Per Applicable Detail Specification	(Note 2) (Note 2)	5 from each of 3 Wafer Lots 11 per Wafer Lot

Note 1: Parts used for one subgroup test may not be used for the other subgroup but may be used for higher levels in the same subgroup. Total exposure shall not be considered cumulative unless testing is performed within the time limits of the test method.
Note 2: 4 per wafer for devices type S less than or equal to 4000 equivalent transistors per chip, 2 per wafer for larger dice. Samples will be selected at radius approximately equal to two-thirds of the wafer radius and spaced uniformly around this radius.
Note 3: Subgroup 1 is not required for MOS devices.

Reliability Electrical Test Specifications (RETSTM) (Continued)
TABLE X. Wafer Lot Acceptance Tests

Test	Conditions (Note 1)	Limits (Note 2)	Sampling Plan
1. Wafer Thickness (not required when the finished wafer design thickness is greater than 10 mils)	MIL-STD-977, Method 1580. Measurement shall be performed after final lap or polish. All readings shall be recorded.	Maximum deviation of ± 2 mil for approved design nominal 6 mil minimum.	Two wafers per lot. Reject lot if any measurement exceeds limits or revert to test of each wafer.
2. Metallization thickness	MIL-STD-977 Method 5500. All readings shall be recorded.	a) Conductor: $8 \mathrm{k} \AA$ minimum for single level metal and for the top level of multi-level metal: $6 \mathrm{k} \AA$ minimum for lower levels, with a maximum deviation of \pm 20% from the approved design nominal. b) Barrier: Maximum deviation of $\pm 30 \%$ from the approved design nominal.	One wafer (or monitor) per lot. Reject lot if measurement exceeds limits or revert to test of each wafer.
3. Thermal stability (applicable to: all linear; all MOS; all bipolar digital operating at 10 V or more)	MIL-STD-977, Method 2500. Record V_{FB} or V_{T} ((Note 3)	a) $\Delta V_{F B}$ or $\Delta V_{T} \leq 0.75 V$ for bipolar digital devices operating at $\geq 10 \mathrm{~V}$ and all bipolar linear devices not containing MOS transistors. The monitor shall have an oxide and shall be metallized with the lot. b) $\Delta V_{F B}$ or $\Delta V_{T} \leq 1.0 \mathrm{~V}$ for bipolar linear devices that operate above 5 V and contain MOS transistors and digital devices that operate above 10 V and contain MOS structures. c) $\Delta \mathrm{V}_{\mathrm{FB}}$ or $\Delta \mathrm{V}_{\mathrm{T}} \leq 0.4 \mathrm{~V}$ for MOS devices.	One wafer (or monitor) per lot. Reject lot if measurement exceeds limits or revert to test of each wafer. Separate monitors may be used but must be oxidized and metallized with the lot. A monitor consisting of a gate oxide metalized with the lot shall be used.
4. SEM (Note 4)	MIL-STD-883, Method 2018.	MIL-STD-883, Method 2018.	MIL-STD-883, Method 2018. Lot acceptance basis.
5. Glassivation Thickness	MIL-STD-977, Method 5500. All readings shall be recorded.	$6 \mathrm{kÅ}$ minimum for SiO_{2} and $2 \mathrm{kÅ}$ minimum $\mathrm{Si}_{3} \mathrm{~N}_{4}$ with maximum deviation of $\pm 20 \%$ from approved design nominal.	One wafer (or monitor) per lot. Reject lot if any measurement exceeds limits or revert to test of each wafer.
6. Gold backing thickness (when applicable)	MIL-STD-977, Method 5500. All readings shall be recorded.	Per approved design nominal thickness and tolerance.	One wafer (or monitor) per lot. Reject lot if any measurement exceeds limits or revert to test of each wafer.

Note 1: Approved equivalent test methods may be used in lieu of the reference MIL-STD-977 methods.
Note 2: Approved design nominal values or tolerances shall be submitted for line certification per DESC-EQM-42.
Note 3: All reading shall be normalized to oxide thickness of $1000 \AA$.
Note 4: When wafer lots fail to pass the SEM requirements of Method 2018, compliance with the current density requirement shall not be used to waiver the SEM requirement.

National's A + Program

A+ Program: A comprehensive program that utilizes Na tional's experience gained from participation in the many Military/Aerospace programs.
A program that not only assures high quality but also increases the reliability of molded integrated circuits.
The A+ program is intended for users who need better than usual incoming quality and higher reliability levels for their standard integrated circuits.
Users who specify A+ processed parts will find that the program:

- Eliminates incoming electrical inspection.
- Eliminates the need for, and thus the added cost of, independent testing laboratories.
- Reduces the cost of reworking assembled boards.
- Reduces field failures.
- Reduces equipment down time.
- Reduces the need for excess inventories due to yield loss incurred as a result of processing performed at independent testing laboratories.

The A+ Program Saves You Money

It is a widely accepted fact that down-time of equipment is costly not only in lost hours of machine usage but also costly in the repair and maintenance cycle. One of the added advantages of the A+ program is the burn-in screen, which is one of the most effective screening procedures in the semiconductor industry. Failure rates as a result of the burnin can be decreased many times. The objective of burn-in is to stress the device much higher than it would be stressed during normal usage.

Reliability vs. Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliability and quality are different, and IC users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for products improvement that are generally available, and National's A+ program in particular.
The concept of quality gives us information about the population and faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty ICs that escape detection at the IC vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty ICs that escape detection. Quality Control does this by testing the outgoing parts on a sampled basis. The Acceptable Quality level (AQL) in turn determines the stringency of the sampling. As the AQL decreases it becomes more difficult for defective parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.
Thus the difference between quality and reliability means the ICs of high quality may, in fact be of low reliability, while those of low quality may be of high reliability.

Improving the Reliablity of Shipped Parts

The most important factor that affects a part's reliability is its construction; the materials used and the method by which they are assembled.
Reliability cannot be tested into a part. Still, there are tests and procedures that an IC vendor can implement which will subject the IC to stresses in excess of those that it will endure in actual use, and which will eliminate marginal, shortlife parts.
In any test of reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time of failure of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

National's A+ Program

National provides the A+ program as the best practical approach to maximum quality and reliability on molded devices. The following flow chart shows how we do it step by step.

SEM
Randomly selected wafers are taken from production regularly and subjected to SEM analysis.

Epoxy B Processing for All Molded Parts

At National, all molded semiconductors, including ICs, have been built by this process for some time now. All processing steps, inspections, and QC monitoring are designed to provide highly reliable products. (A reliability report is available that gives, in detail, the background of Epoxy B, the reason for its selection at National, and reliability data that proves its success.)

Six Hour, $150^{\circ} \mathrm{C}$ Bake

This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

National's A + Program (Continued)

Five Temperature Cycles $\left(0^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
Exercising each device over a $100^{\circ} \mathrm{C}$ temperature range provides an additional die and package stress.

High Temperature ($100^{\circ} \mathrm{C}$)

Functional Electrical Test
A high temperature test with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient.

Electrical Testing

Every device is tested at $25^{\circ} \mathrm{C}$ for functional and DC parameters.

Burn-In Test

Each device is burned-in for 160 hours at a minimum junction temperature of $+125^{\circ} \mathrm{C}$ or under equivalent conditions of time and temperature, as established by a time-temperature regression curve based on 0.96 eV activation energy (i.e., 23 hours at $+155^{\circ} \mathrm{C}$). All burn-in done under steadystate conditions unless otherwise specified.

DC Functional and Parametric Tests

These room-temperature functional and parametric tests are the normal, final tests through which all National products pass.

Thermal Shock Monitor
Samples from each package type are selected at random each week and submitted to cycles of liquid to liquid thermal shock $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. In addition, samples are selected every four weeks and subjected to 2000 temperature cycles of $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$.

Tighter-Than-Normal QC Inspection Plans
Most vendors sample inspect outgoing parts to a 0.3% AQL. When you specify the A+ program, we sample your parts to a 0.035% AQL at room temperature and $0.05 \% A Q L$ at T_{A} Max. This eight times tightening (from 0.3 to $0.035 \% \mathrm{AQL}$) coupled with three 100% electrical tests, dramatically reduces the number of "escapes" and allows us to guarantee the AQLs listed below.

Here are the QC sample plans used in our A+ test program:

Test	Temperature	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	0.035\%
Parametric, DC	$25^{\circ} \mathrm{C}$	0.035\%
Parametric, AC	$25^{\circ} \mathrm{C}$	0.1\%
Electrical Functionality	At each temperature	0.05\%
Mechanical		
Critical	-	0.01\%
Major	-	0.28\%

Section 10
 Appendices and
 Physical Dimensions

Section 10 Contents

Technical Terms and Definitions 10-3
Industry Package Cross Reference Guide 10-5
Packaging and Physical Dimensions
AN-336 Understanding Integrated Circuit Package Power Capabilities 10-8
AN-450 Small Outline (S.O.) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 10-13
Physical Dimensions 10-23
Data BookshelfSales and Distribution Offices

Technical Terms and Definitions

CURRENT

High-Level Input Current, $\mathbf{I}_{\mathbf{I H}}$
The current into* an input when a high-level voltage is applied to that input.
Input Current at Maximum Input Voltage, II
The current into* an input when maximum specified input voltage is applied.
Low-Level Input Current, IIL
The current into* an input when a low-level voltage is applied to that input.
Low-Level Input Current HiZ, IILZ
The current into* an input when a low-level voltage is applied to the input with the device in the TRI-STATE condition.

High-Level Output Current, $\mathrm{IOH}_{\mathrm{OH}}$

The current into* an output with input conditions applied that, according to the product specification, will establish a logic high level at the output.

Low-Level Output Current, IOL

The current into* an output with input conditions applied that, according to the product specification, will establish a logic low level at the output.

Off-State Output Current, Io (Icex)

The current flowing into* an output with input conditions applied that, according to the product specification, will cause the output switching element to be in the off state.
NOTE: This parameter is usually specified for open-collector outputs intended to drive devices other than logic circuits at a specified voltage usually greater than the V_{CC} supply.
Output Current of a TRI-STATE Device, IOZ
The current into* a TRI-STATE output having input conditions applied that, according to the product specification, will establish the high-impedance state at the output.

Short-Circuit Output Current, Ios

The current into* an output when that output is short-circuited to ground or any other specified potential, with input conditions applied to establish the output logic level farthest from ground potential or any other specified potential.

Supply Current, ICCH

The current into* the VCC supply terminal of an integrated circuit when the outputs are in a logic high state.

Supply Current, ICCL

The current into* the V V_{CC} supply terminal of an integrated circuit when the outputs are in a logic low state.

VOLTAGE

High-Level Input Voltage, V_{IH}
An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the least positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.
*Current out of a terminal is given as a negative value.

Low-Level Input Voltage, V_{IL}

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.
NOTE: A maximum is specified that is the most positive value of the low-level input voltage for which operation of the logic element within specification limits is guaranteed.
Positive-Going Threshold Voltage, $\mathbf{V}_{\text {TH }}$
The voltage level at a transition-operated input that causes operation of the logic element according to specification, as the input voltage rises from a level below the negative-going threshold voltage, V_{TL}.
Negative-Going Threshold Voltage, V_{TL}
The voltage level at a transition-operated input that causes operation of the logic element according to specification, as the input voltage falls from a level above the positive-going threshold voltage, V_{TH}.

Hysteresis, $\mathrm{V}_{\mathrm{HYS}}$

The absolute difference in voltage value between the positive going threshold and negative going threshold.
Input Clamp Voltage, $\mathbf{V}_{\mathbf{I K}}$
An input voltage in a region of relatively low differential resistance that serves to limit the input voltage swing.

High-Level Output Voltage, V_{OH}

The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a logic high level at the output.

Low-Level Output Voltage, VOL

The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a logic low level at the output.
Off-State Output Voltage, $\mathbf{V}_{\mathbf{O} \text { (off) }}$
The voltage at an output terminal with input conditons applied that, according to the product specification, will cause the output switching element to be in the off state.
NOTE: This characteristic is usually specified only for the outputs not having internal pull-up elements.

On-State Output Voltage, $\mathrm{V}_{\mathrm{O} \text { (on) }}$

The voltage at an output terminal with input conditions applied that, according to the product specification, will cause the output switching element to be in the on-state.

Output Clamp Voltage, V_{OK}

An output voltage in a region of low differential resistance that serves to limit the voltage swing.

PROPAGATION TIME

Propagation Delay Time, tpD

The time between the specified reference points on the input and output voltage waveforms with the output changing from one logic level (high or low) to the other logic level.

Technical Terms and Definitions (Continued)

Propagation Delay Time, Low-to-High-Level Output, $t_{\text {tph }}$

The time between the specified reference points on the input and output voltage waveforms with the output changing from the logic low level to the logic high level.
Propagation Delay Time, High-to-Low-Level Output, ${ }^{\text {tpHL }}$
The time between the specified reference points on the input and output voltage waveforms with the output changing from the logic high level to the logic low level.

Transition Time LOW to HIGH, $\mathbf{t}_{\text {TLH }}$

The time between two specified reference points on a waveform, normally specified between the 10% and 90% points, that is changing from LOW to HIGH.

Transition Time HIGH to LOW, $\mathbf{t}_{\mathbf{T H L}}$

The time between two specified reference points on a waveform, normally specified between the 90% and 10% points, that is changing from HIGH to LOW.

TRI-STATE DELAYS

Output Enable Time, tpzL

The propagation delay time between the specified reference points on the input and output voltage waveforms with the TRI-STATE output changing from a high-impedance (off) state to the logic low level.

Output Enable Time, $\mathbf{t}_{\text {PZH }}$

The propagation delay time between the specified reference points on the input and output voltage waveforms with the TRI-STATE output changing from a high-impedance (off) state to the logic high level.
Output Disable Time, tplz
The propagation delay time between the specified reference points on the input and output voltage waveforms with the TRI-STATE output changing from the logic low level to a high-impedance (off) state.
Output Disable Time, $t_{\text {PHZ }}$
The propagation delay time between the specified reference points on the input and output voltage waveforms with the TRI-STATE output changing from the logic high level to a high-impedance (off) state.

CLOCK FREQUENCY

Maximum Clock Frequency, $\mathbf{f}_{\text {MAX }}$

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

PULSE WIDTH

Pulse Width, t_{w}
The time interval between specified reference points on the leading and trailing edges of the pulse waveform.

SETUP AND HOLD TIME

Setup Time, t_{SU}

The time interval between the application of a single that is maintained at a specified input terminal prior to a consecutive active transition at another specified input terminal.
Note 1: The setup time is defined as the time between two events and may be insufficient to accomplish the setup. A minimum value is specified that is the shortest interval for which proper operation of the logic element is guaranteed.

Note 2: The setup time may have a negative value in which case the minimum limit defines the longest interval of time between the active transition and the application of the other signal for which proper operation of the logic element is guaranteed.
Hold Time, t_{h}
The interval during which a signal is maintained at a specified input terminal after an active transition occurs at another specified input terminal.
Note 1: The hold time is defined as the time between two events and may be insufficient to accomplish the intended result. A minimum value is specified that is the shortest interval of time for which proper operation of the logic element is guaranteed.

Note 2: The hold time may have a negative value in which case the minimum limit defines the longest interval of time between the release of data and the active transition on the specified input for which proper operation of the logic element is guaranteed.

TRUTH TABLE EXPLANATIONS

Symbols generally associated with Functional Truth Tables.

$$
\begin{aligned}
\mathrm{H}= & \text { Logic high level (steady-state) } \\
\mathrm{L}= & \text { Logic low level (steady-state) } \\
\mathrm{L}= & \text { Transition from a logic low to high level } \\
\mathrm{X}= & \text { Transition from a logic high to low level } \\
\mathrm{Z}= & \text { irrelevant (any input, including transitions) } \\
& \text { output (high-impedance) of a TRI-STATE }
\end{aligned}
$$

NOTE: If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the event sequence. The output logic state persists so long as the input configuration is maintained.
If, in the input columns, a row contains (H, L, and/or X) together with \rightarrow and/or this means the output is valid whenever the input configuration is achieved. However, the transition(s) must occur following the application of the steady-state levels. If the output is shown as a level (H, L, Q_{O} or \bar{Q}_{O}), it will be maintained so long as the steady-state input levels and the levels that terminate the defined transitions are maintained. Unless otherwise specified, input transitions in the opposite direction to those shown have no effect on the steady state output.

Industry Package Cross-Reference Guide								
		NSC	$\begin{gathered} \text { NSC } \\ \mu \mathbf{A} \end{gathered}$	Signetics	Motorola	TI	AMD	Spraque
	4/16 Lead Glass/Metal DIP	D	D	1	L		D	R
	Glass/Metal Flat Pack	F	F	Q	F	$\begin{gathered} \mathrm{F} \\ \mathrm{~S} \end{gathered}$	F	
	TO-99, TO-100, TO-5	H	H	T, K, L, DB	G	L	H	
	8-, 14- and 16-Lead Low Temperature Ceramic DIP	J	$\begin{aligned} & \mathrm{R}, \\ & \mathrm{D} \end{aligned}$	F	U	J	D	H
	(Steel)	K			KS			
	(Aluminum)	KC	K	DA	K	K		
	8-, 14- and 16-Lead Plastic DIP	N	T,	$\begin{gathered} \mathrm{N}, \\ \mathrm{~V} \end{gathered}$	P	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~N} \end{aligned}$	P	A, B, M
		-With du -With ra	line form y forme					

Industry Package Cross－Reference Guide

	，	NSC	$\begin{gathered} \text { NSC } \\ \mu \mathbf{A} \end{gathered}$	Signetics	Motorola	TI	AMD	Sprague
	TO－202 （D－40，Durawatt）	P						
	TO－220 3－\＆5－Lead	T	U	U		KC		
	$\begin{aligned} & \text { TO-220 } \\ & \text { 11-, 15- \& 23-Lead } \end{aligned}$	T						
	Low Temperature Glass Hermetic Flat Pack	W	F		F	W	F	：
	TO－92 （Plastic）	Z	W	S	P	LP		
日月月日日月 ABABHABRAB	so (Narrow Body)	M	S	$\begin{aligned} & \mathrm{S}, \\ & \mathrm{D} \end{aligned}$	D	D		L
	（Wide Body）	WM		：		DW		LW

 \title{
Understanding Integrated
 \title{
Understanding Integrated Circuit Package Power Circuit Package Power Capabilities
} Capabilities
}

National Semiconductor
Application Note 336
Charles Carinalli
Josip Huljev

INTRODUCTION

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

FACTORS AFFECTING DEVICE RELIABILITY

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

TL/F/5280-1
FIGURE 1. Fallure Rate vs Time
Infant mortality, the high failure rate from time to to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:

$$
\text { MTBF }=\frac{1}{\text { Failure Rate }}
$$

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t 1 and t 2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.
Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

FAILURE RATES vs TIME AND TEMPERATURE

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:

$$
F=\frac{X 1}{X 2}=\exp \left[\frac{E}{K}\left(\frac{1}{T 2}-\frac{1}{T 1}\right)\right]
$$

Where: $\mathrm{X} 1=$ Failure rate at junction temperature T 1
$\mathrm{X} 2=$ Failure rate at junction temperature T2
$\mathrm{T}=$ Junction temperature in degrees Kelvin
$E=$ Thermal activation energy in electron volts (ev)
$\mathrm{K}=$ Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30° rise in junction temperature, say from $130^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$, results in a 10 to 1 increase in failure rate.

TL/F/5280-2
FIGURE 2. Failure Rate as a Function of Junction Temperature

DEVICE THERMAL CAPABILITIES

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4.
Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.
Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit
flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.
Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right)
$$

Where: $T_{J}=$ Die junction temperature
$T_{A}=$ Ambient temperature in the vicinity device
$P_{D}=$ Total power dissipation (in watts)
$\theta_{\mathrm{JA}}=$ Thermal resistance junction-to-ambient
θ_{JA}, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All interface circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA}.
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using interface components.

TL/F/5280-3
FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

TL/F/5280-4
FIGURE 4. Thermal Flow (Predominant Paths)

DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, $\theta_{J A}$, worst-case ambient operating temperature; $T_{A}(\max)$, the only unknown parameter is device power dissipation, P_{D}. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.
The junction temperature of a device with a total package power of 600 mW at $70^{\circ} \mathrm{C}$ in a package with a thermal resistance of $63^{\circ} \mathrm{C} / \mathrm{W}$ is $108^{\circ} \mathrm{C}$.

$$
T_{J}=70^{\circ} \mathrm{C}+\left(63^{\circ} \mathrm{C} / \mathrm{W}\right) \times(0.6 \mathrm{~W})=108^{\circ} \mathrm{C}
$$

The next obvious question is, "how safe is $108^{\circ} \mathrm{C}$?"

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is $150^{\circ} \mathrm{C}$. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is $175^{\circ} \mathrm{C}$. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.
Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16 -pin molded package, the maximum allowable temperature is $150^{\circ} \mathrm{C}$; at this point no power dissipation is allowable. The power capability at $25^{\circ} \mathrm{C}$ is 1.98 W as given by the following calculation:

$$
P_{D} @ 25^{\circ} \mathrm{C}=\frac{T_{J}(\max)-T_{A}}{\theta_{J A}}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{63^{\circ} \mathrm{C} / \mathrm{W}}=1.98 \mathrm{~W}
$$

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

$$
\text { Derating Factor }=-\frac{1}{\theta_{\mathrm{JA}}}
$$

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16 -pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature ($70^{\circ} \mathrm{C}$ in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below $150^{\circ} \mathrm{C}$-the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be $150^{\circ} \mathrm{C}$. Any intersection that occurs above this line will result in a junction temperature in excess of $150^{\circ} \mathrm{C}$ and is not an appropriate operating condition.

TL/F/5280-5
FIGURE 5. Package Power Capablility vs Temperature
The thermal capabilities of all interface circuits are expressed as a power capability at $25^{\circ} \mathrm{C}$ still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above $25^{\circ} \mathrm{C}$, reduce the package power capability stated by the derating factor which is expressed in $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For our example-a θ_{JA} of $63^{\circ} \mathrm{C} / \mathrm{W}$ relates to a derating factor of $15.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

Die Size

Figure 6 shows a graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power.

TL/F/5280-6
FIGURE 6. Thermal Resistance vs Die Size

Lead Frame Material

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16 -pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 43 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

TL/F/5280-7

FIGURE 7. Thermal Resistance vs Lead Frame Materlal

Board vs Socket Mount

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 8 comes as no surprise. This compares the thermal resistance of our 16 -pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

FIGURE 8. Thermal Resistance vs

 Board or Socket Mount
Air Flow

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16 -pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

TL/F/5280- θ
FIGURE 9. Thermal Resistance vs Alr Flow

Other Factors

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case (θ_{Jc}). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Interface Circuits product family. Figure 10 is a composite of the copper lead frame molded package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

RATINGS ON INTERFACE CIRCUITS DATA SHEETS

In conclusion, all National Semiconductor Interface Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from $\pm 10 \%$ to $\pm 15 \%$ due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the interface data sheets reflect a 15% safety margin from the average num-

FIGURE 10. Thermal Resistance vs Die Size vs Package Type (Molded Package)
bers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.
The package power ratings are specified as a maximum power at $25^{\circ} \mathrm{C}$ ambient with an associated derating factor for ambient temperatures above $25^{\circ} \mathrm{C}$. It is easy to determine the power capability at an elevated temperature. The power specified at $25^{\circ} \mathrm{C}$ should be reduced by the derating factor for every degree of ambient temperature above $25^{\circ} \mathrm{C}$. For example, in a given product data sheet the following will be found:
$\begin{array}{ll}\text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} \\ \text { Cavity Package } & 1509 \mathrm{~mW} \\ \text { Molded Package } & 1476 \mathrm{~mW}\end{array}$

- Derate cavity package at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package at $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
If the molded package is used at a maximum ambient temperature of $70^{\circ} \mathrm{C}$, the package power capability is 945 mW .

$$
\mathrm{PD} @ 70^{\circ} \mathrm{C}=1476 \mathrm{~mW}-\left(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)
$$

$$
=945 \mathrm{~mW}
$$

Cavity (J Package) DIP*
Poly Die Attach Board Mount-Still Air

*Packages from 8- to 20-pin 0.3 mil width TL/F/5280-11
22-pin 0.4 mil width
24- to 48 -pin 0.6 mil width
FIGURE 11. Thermal Resistance vs Die Size vs Package Type (Cavity Package)

Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure A is a summary of accelarated bias moisture test performance on 30 V bipolar and 15 V CMOS product assembled in SO and DIP (control) packages.

TL/F/8766-3
FIGURE A

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.
All SO packages tested on 85% RA, $85^{\circ} \mathrm{C}$ were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure A no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated $85 \% / 85^{\circ} \mathrm{C}$ testing.

SURFACE-MOUNT PROCESS FLOW

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:

- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

PRODUCTION FLOW

Basic Surface-Mount Production Flow

TL/F/8766-4

Mixed Surface-Mount and Axial-Leaded Insertion Components Production Flow

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

TL/F/8766-6
FIGURE B
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching $160^{\circ} \mathrm{C}$, Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (T_{g}) of epoxy (typically $160-165^{\circ} \mathrm{C}$), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

TL/F/8766-26
FIGURE C

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws.
Most soldering processes involve temperatures ranging up to $260^{\circ} \mathrm{C}$, which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure D is a summary of accelerated bias moisture test performance on the 30V bipolar process.

Group 1 - Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards

Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds

It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

PICK AND PLACE

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available are classified as:
(a) In-line placement

- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
- Either a $X-Y$ moving table system or a $\theta, X-Y$ moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
$-X-Y$ moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

TL/F/8766-8

BAKE

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:

- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a $65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$ (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:

- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

REFLOW SOLDERING

There are various methods for reflowing the solder paste, namely:

- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

HOT GAS REFLOW/INFRARED HEATING

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about $100^{\circ} \mathrm{C}$ and then subjected to an air jet at about $260^{\circ} \mathrm{C}$. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.
Use of an infrared furnace is the next step to automating the concept, except that the heating is promoted by use of IR lamps or panels. The main objection to this method is that certain materials may heat up at different rates under IR radiation and may result in damage to these components (usually sockets and connectors). This could be minimized by using far-infrared (non-focused) system.

VAPOR-PHASE REFLOW SOLDERING

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3 M Corp) are:

- FC-70, $215^{\circ} \mathrm{C}$ vapor (most applications) or FX-38
- FC-71, $253^{\circ} \mathrm{C}$ vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:

- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

In-Line Conveyorized Vapor-Phase Soldering

TL/F/8766-9
The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to $215^{\circ} \mathrm{C}$: SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Vapor-Phase Furnace

TL/F/8766-10

TL/F/8766-11

Solder Joints on a SO-14 Package on PCB

TL/F/8766-12

PRINTED CIRCUIT BOARD

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:

- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:

- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:
— Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals:
- Compatible with soldering and cleaning requirements.

SOLDER PASTE SCREEN PRINTING

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.

TL/F/8766-13
The typical lithographic "footprints" for SO packages are illustrated below. Note that the $0.050^{\prime \prime}$ lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:

- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of $0.005^{\prime \prime}$ usually used to achieve a solder paste thickness (wet) of about $0.008^{\prime \prime}$ typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed $1 / 8$ " , to avoid damage to screens and minimize distortion.

SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:

- Particle sizes (see photographs below). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \times magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.

RECOMMENDED SOLDER PADS FOR SO PACKAGES

Comparison of Particle Size/Shape of Varlous Solder Pastes

$200 \times$ Kester $(63 / 37)$

Solder Paste Screen on Pads

$200 \times$ Fry Metal (63/37)

TL/F/8766-20

200 ESL (63/37)

TL/F/8766-21

CLEANING

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:

- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. Solvents commercially available are:

Freon TMS (general purpose)
Freon TE35/TP35 (cold-dip cleaning)
Freon TES (general purpose)
It should also be noted that these solvents generally will leave the substrate surface hydrophobic (moisture repellent), which is desirable.

Prelete or 1,1,1-Trichloroethane

Kester 5120/5121

- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.
The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

REWORK

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Rework Machine

TL/F/8766-23
lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

WAVE SOLDERING

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:

- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be $240-260^{\circ} \mathrm{C}$. The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about $100^{\circ} \mathrm{C}$ just before entering the solder wave.
- Due to the closer lead spacings ($0.050^{\prime \prime}$ vs $0.100^{\prime \prime}$ for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

(a) Same Side

(b) Opposite Sides

TL/F/8766-24
A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps.

AQUEOUS CLEANING

- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature $130^{\circ} \mathrm{C}$), a final spray rinse (water temperature $45-55^{\circ} \mathrm{C}$), and a hot $\left(120^{\circ} \mathrm{C}\right)$ air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

CONFORMAL COATING

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:

- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

SMD Lab Support

FUNCTIONS
Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.

Rellability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.
In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

16 Lead Hermetic Dual-In-Line Package (D) NS Package Number D16C

20 Terminal Ceramic Leadless Chip Carrier (LCC) NS Package Number E20A

Top View

Side Vlew

Bottom View

Detail A

16 Lead Ceramic Flatpack (F)

NS Package Number F16B

12 Lead ($0.400^{\prime \prime}$ Square Pattern) Metal Can Package (G) NS Package Number G12B

8 Lead (0.200" Diameter P.C.) TO-99 Metal Can Package (H) NS Package Number H08C

10 Lead (0.230" Diameter P.C.) TO-100 Metal Can Package (H) NS Package Number H10C

8 Narrow Lead Ceramic Dual-In-Line Package (J) NS Package Number J08A

14 Lead Ceramic Dual-In-Line Package (J)

 NS Package Number J14A

16 Lead Ceramic Dual-In-Line Package (J) NS Package Number J16A

20 Lead Ceramic Dual-In-Line Package (J) NS Package Number J20A

24 Lead Ceramic Dual-In-Line Package (J) NS Package Number J24A

28 Lead Ceramic Dual-In-Line Package (J)
 NS Package Number J28A

8 Lead (0.150" Wide) Molded Small Outline Package (M) NS Package Number M08A

14 Lead ($0.150^{\prime \prime}$ Wide) Molded Small Outline Package (M) NS Package Number M14A

16 Lead (0.150" Wide) Molded Small Outline Package (M) NS Package Number M16A

16 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package (M) NS Package Number M16B

20 Lead (0.300 " Wide) Molded Small Outline Package (M) NS Package Number M20B

8 Lead Molded Dual-In-Line Package (N) NS Package Number N08E

14 Lead Molded Dual-In-Line Package (N) NS Package Number N14A

16 Lead Molded Dual-In-Line Package (N)

 NS Package Number N16A

18 Lead Molded Dual-In-Line Package (N) NS Package Number N18A

20 Lead Molded Dual-In-Line Package (N) NS Package Number N20A

22 Lead Molded Dual-In-Line Package (N) NS Package Number N22A

24 Lead Molded Dual-In-Line Package (N) NS Package Number N24A

N24A (REV E)

24 Lead Skinny Dual-In-Line Package (0.300" Centers Molded) (N) NS Package Number N24C

28 Lead Molded Dual-In-Line Package (N) NS Package Number N28B

40 Lead Molded Dual-In-Line Package (N) NS Package Number N40A

20 Lead Plastic Chip Carrier (V) NS Package Number V20A

28 Lead Plastic Chip Carrier (V)
 NS Package Number V28A

44 Lead Plastic Chip Carrier (V) NS Package Number V44A

14 Lead Ceramic Package (W)

 NS Package Number W14B
\square

NOTES

NOTES

Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK-1990

Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky
ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS-1987
SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK—1988

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

DATA ACQUISITION LINEAR DEVICES-1989

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters
Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK—1990

LAN IEEE 802.3 • High Speed Serial/IBM Data Communications • ISDN Components • UARTs Modems • Transmission Line Drivers/Receivers

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

DRAM MANAGEMENT HANDBOOK—1989

Dynamic Memory Control • Error Detection and Correction - Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A Microprocessor Applications for the NS32CG821

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989

Embedded System Processor Overview • Central Processing Units • Slave Processors • Peripherals Development Systems and Software Tools

F100K DATABOOK—1990

Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11C Datasheets ECL BiCMOS SRAM, ECL PAL, and ECL ASIC Datasheets • Design Guide • Circuit Basics • Logic Design Transmission Line Concepts • System Considerations • Power Distribution and Thermal Considerations Testing Techniques • Quality Assurance and Reliability • Application Notes

FACTTM ADVANCED CMOS LOGIC DATABOOK—1990
 Description and Family Characteristics * Ratings, Specifications and Waveforms
 Design Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXX
 Quiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA

FAST® ${ }^{\circledR}$ ADVANCED SCHOTTKY TTL LOGIC DATABOOK—Rev. 1-1988
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations•54F/74FXXX

FAST® APPLICATIONS HANDBOOK—1990

Reprint of 1987 Falrchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders
Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics

GENERAL PURPOSE LINEAR DEVICES DATABOOK—1989

Continuous Voltage Regulators • Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators Instrumentation Amplifiers • Surface Mount

GRAPHICS HANDBOOK—1989
Advanced Graphics Chipset • DP8500 Development Tools • Application Notes

INTERFACE DATABOOK—1990

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

LINEAR APPLICATIONS HANDBOOK-1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK—1989

Contains former Fairchild Products
Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • TTL—Low Power

MASS STORAGE HANDBOOK-1989

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide
MEMORY DATABOOK—1990
PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECL I/O SRAMs

MICROCONTROLLER DATABOOK—1989

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

MICROPROCESSOR DATABOOK—1989

Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals
Development Systems and Software Tools • Application Notes • NSC800 Family
PROGRAMMABLE LOGIC DATABOOK \& DESIGN MANUAL—1990
Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools Fabrication of Programmable Logic • Application Examples

RELIABILITY HANDBOOK—1986

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510 The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

SPECIAL PURPOSE LINEAR DEVICES DATABOOK—1989

Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits Surface Mount

TELECOMMUNICATIONS—1990

Line Card Components • Integrated Services Digital Network Components • Analog Telephone Components Application Notes

ALABAMA
Huntsville
Arrow Electronics
(205) 837-6955

Bell Industries
(205) 837-1074

Hamilton/Avnet
(205) 837-7210

Pioneer Technology
(205) 837-9300

Time Electronics
(205) 721-1133

ARIZONA
Chandler Hamilton/Avnet
(602) 231-5100

Phoenix Arrow Electronics (602) 437-0750

Tempe
Anthem Electronics
(602) 966-6600

Bell Industries
(602) 966.7800

Time Electronics
(602) 967-2000

CALIFORNIA

Agora Hills
Bell Industries (818) 706-2608 Zeus Components (818) 889-3838

Anaheim Time Electronics (714) 934-0911

Chatsworth Anthem Electronics (818) 700-1000 Arrow Electronics (818) 701.7500 Hamilton Electro Sales (818) 700-6500 Time Electronics (818) 998-7200

Costa Mesa Avnet Electronics (714) 754-6050 Hamilton Electro Sales (714) 641 -4159

Cypress Bell Industries (714) 895-7801

Gardena Bell Industries (213) 515-1800 Hamilton/Avnet (213) 217.6751

Irvine Anthem Electronics (714) 768-4444

Ontario Hamilton/Avnet (714) $989-4602$

Rocklin
Anthem Electronics (916) 624-9744 Bell Industries (916) 652.0414

Sacramento Hamilton/Avnet (916) 925-2216

San Diego
Anthem Electronics
(619) 453-9005

Arrow Electronics (619) 565-4800 Hamilton/Avnet (619) 571-7510 Time Electronics (619) 586-1331

San Jose
Anthem Electronics
(408) 453-1200

Pioneer Technology
(408) 954-9100

Zeus Components
(408) 629-4789

Sunnyvale
Arrow Electronics
(408) 745-6600

Bell Industries
(408) 734-8570 Hamilton/Avnet (408) 743-3355 Time Electronics (408) 734-9888

Thousand Oaks Bell Industries (805) 499-6821

Torrance
Time Electronics
(213) 320-0880

Tustin Arrow Electronics (714) 838-5422

Yorba Linda Zeus Components (714) 921-9000

COLORADO
Englewood Anthem Electronics (303) 790-4500 Arrow Electronics (303) 790-4444 Hamilton/Avnet (303) 799.7800

CONNECTICUT
Cheshire Time Electronics (203) 271-3200

Danbury Hamilton/Avnet (203) 797-2800

Norwalk
Pioneer Standard (203) 853-1515

Wallingford Arrow Electronics (203) 265-7741

Waterbury Anthem Electronics (203) 575-1575

FLORIDA
Altamonte Springs
Bell Industries (407) 339-0078 Pioneer Technology (407) 834-9090

Clearwater Pioneer Technology (813) 536-0445

Deerfield Beach
Arrow Electronics (305) 429-8200 Bell Industries (305) 421-1997 Pioneer Technology (305) 428-8877

Fort Lauderdale Hamilton/Avnet (305) 971-2900 Time Electronics (305) 484-7778

Lake Mary
Arrow Electronics (407) 333-9300

Largo Bell Industries (813) 541-4434

Orlando
Time Electronics
(407) 841 -6565

Oviedo
Zeus Components
(407) 365-3000

St. Petersburg
Hamilton/Avnet (813) 576-3930

Winter Park Hamilton/Avnet (407) 628-3888

GEORGIA
Duluth
Arrow Electronics (404) 497-1300

Norcross Bell Industries (404) 662-0923 Hamilton/Avnet (404) 447.7500 Pioneer Technology (404) 448-1711 Time Electronics (404) 448-4448

ILLINOIS

Addison
Pioneer Electronics (708) 437-9680

Bensenville Hamilton/Avnet (708) 860-7780

Elk Grove Village Anthem Electronics
(708) 640-6066 Bell Industries (708) 640-1910

Itasca Arrow Electronics (708) 250-0500

Urbana Bell Industries (217) 328-1077

Wood Dale
Time Electronics (708) 350-0610

INDIANA
Carmel
Hamilton/Avnet
(317) 844-9333

Fort Wayne Bell Industries
(219) 423-3422

Indianapolis
Advent Electronics Inc.
(317) 872-4910

Arrow Electronics
(317) 243-9353

Bell Industries
(317) 634-8200

Pioneer Standard
(317) 573-0880

IOWA
Cedar Rapids
Advent Electronics
(319) 363-0221

Arrow Electronics
(319) $395 \cdot 7230$

Bell Industries
(319) 395-0730

Hamilton/Avnet
(319) 362-4757

KANSAS
Lenexa
Arrow Electronics
(913) 541-9542

Hamilton/Avnet
(913) 888-8900

MARYLAND
Columbia
Anthem Electronics
(301) 995-6640

Arrow Electronics
(301) 995-0003

Hamilton/Avnet
(301) 995-3500

Time Electronics
(301) 964-3090

Zeus Components
(301) 997-1118

Gaithersburg
Pioneer Technology
(301) 921-0660

MASSACHUSETTS
Andover
Bell Industries (508) 474-8880

Lexington
Pioneer Standard
(617) 861-9200

Zeus Components (617) 863-8800

Norwood
Gerber Electronics
(617) 769-6000

Peabody
Hamilton/Avnet
(508) 531-7430

Time Electronics
(508) 532-6200

Wilmington
Anthem Electronics
(508) 657-5170

Arrow Electronics
(508) 658-0900

MICHIGAN
Ann Arbor
Bell Industries
(313) 971-9093

Grand Rapids
Arrow Electronics
(616) 243-0912

Hamilton/Avnet
(616) 243-8805

Pioneer Standard (616) 698-1800

Livonia
Arrow Electronics
(313) 665-4100

Pioneer Standard
(313) 525-1800

Novi
Hamilton/Avnet
(313) 347-4720

Southfield
R. M. Electronics, Inc. (313) 262-1582

Wyoming
R. M. Electronics, Inc.
(616) $531-9300$

MINNESOTA
Eden Prairie Anthem Electronics
(612) $944-5454$ Pioneer Standard (612) 944-3355

Edina
Arrow Electronics (612) 830-1800 Time Electronics (612) 835-1250

Minnetonka Hamilton/Avnet (612) 932-0600

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

MISSOURI
Chesterfield
Hamilton/Avnet
(314) 537-1600

St. Louis
Arrow Electronics
(314) 567-6888

Pioneer Standard (314) 432-4350 Time Electronics (314) 391-6444

NEW HAMPSHIRE
Hudson Bell Industries (603) 882-1133

Manchester Arrow Electronics (603) 668-6968 Hamilton/Avnet (603) 624-9400

NEW JERSEY
Cherry Hill Hamilton/Avnet (609) 424-0100

Fairfield Anthem Electronics (201) 227-7960 Hamilton/Avnet (201) 575-3390

Marlton Arrow Electronics (609) 596-8000

Parsippany Arrow Electronics (201) 538-0900

Pine Brook Nu Horizons Electronics (201) 882-8300 Pioneer Standard (201) 575-3510 Time Electronics (201) 882-4611

NEW MEXICO

Albuquerque
Alliance Electronics Inc.
(505) 292-3360

Arrow Electronics
(505) 243-4566

Bell Industries (505) 292-2700 Hamilton/Avnet (505) 345-0001

NEW YORK
Amityville Nu Horizons Electronics (516) 226-6000

Binghamton Pioneer (607) 722-9300

Buffalo Summit Electronics (716) 887-2800

Commack Anthem Electronics (516) 864-6600

Fairport Pioneer Standard (716) $381-7070$ Time Electronics (716) 383-8853

Hauppauge Arrow Electronics (516) 231-1000 Hamilton/Avnet (516) 434-7413 Time Electronics (516) 273-0100

Port Chester Zeus Components (914) 937-7400

Rochester
Arrow Electronics
(716) 427-0300

Hamilton/Avnet
(716) 475-9130 Summit Electronics (716) 334-81 10

Ronkonkoma Zeus Components (516) 737-4500

Syracuse
Hamilton/Avnet
(315) 437-2641

Time Electronics
(315) 432-0355

Westbury
Hamilton/Avnet Export Div. (516) $997-6868$

Woodbury
Pioneer Electronics
(516) 921-8700

NORTH CAROLINA
Charlotte
Pioneer Technology
(704) 527-8188 Time Electronics (704) 522-7600

Durham
Pioneer Technology (919) $544-5400$

Raleigh
Arrow Electronics
(919) 876-3132 Hamilton/Avnet (919) 878-0810

Winston-Salem Arrow Electronics (919) 725-8711

OHIO
Centerville
Arrow Electronics
(513) 435-5563

Beil Industries
(513) 435-8660

Bell Industries-Military
(513) 434-8231

Cleveland Pioneer (216) 587-3600

Dayton
Hamilton/Avnet (513) 439-6700 Pioneer Standard (513) 236-9900 Zeus Components (914) 937-7400

Dublin
Time Electronics (614) 761-1100

Solon
Arrow Electronics (216) 248-3990 Hamilton/Avnet (216) 831-3500

Westerville Hamilton/Avnet (614) 882-7004

OKLAHOMA
Tulsa
Arrow Electronics
(918) 252-7537

Hamilton/Avnet
(918) 252-7297

Pioneer Standard
(918) 492-0546

Radio Inc.
(918) 587-9123

OREGON
Beaverton
Almac-Stroum Electronics
(503) 629-8090

Anthem Electronics
(503) 643-1114

Arrow Electronics
(503) 645-6456 Hamilton/Avnet (503) 627-0201

Lake Oswego Bell Industries
(503) 635-6500

Portland
Time Electronics
(503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150

Pioneer Technology (215) 674-4000

King of Prussia Time Electronics (215) 337-0900

Monroeville
Arrow Electronics (412) 856-7000

Pittsburgh Hamilton/Avnet (412) 281-4150 Pioneer
(412) 782-2300

TEXAS
Austin
Arrow Electronics (512) 835-4180 Hamilton/Avnet (512) 837-8911 Pioneer Standard (512) 835-4000 Time Electronics (512) 399-3051

Carrollton Arrow Electronics (214) 380-6464 Time Electronics (214) 241-7441

Dallas Hamilton/Avnet (214) 404-9906 Pioneer Standard (214) 386-7300

Houston
Arrow Electronics (713) 530-4700 Pioneer Standard (713) 988-5555

Richardson Anthem Electronics (214) 238-7100 Zeus Components (214) 783-7010

Stafford Hamilton/Avnet (713) 240-7733

UTAH
Midvale Bell Industries (801) 255-9611

Salt Lake City Anthem Electronics (801) 973-8555 Arrow Electronics (801) 973-6913 Hamilton/Avnet (801) 972-4300

West Valley
Time Electronics
(801) 973-8181

WASHINGTON
Bellevue
Almac-Stroum Electronics (206) 643-9992

Bothell
Anthem Electronics (206) 483-1700

Kent
Arrow Electronics
(206) 575-4420

Redmond Bell Industries (206) 885-9963 Hamilton/Avnet (206) 881-6697 Time Electronics (206) 882-1600

WISCONSIN
Brookfield
Arrow Electronics
(414) 792-0150

Mequon
Taylor Electric
(414) 241-4321

Waukesha
Beli Industries
(414) 547-8879

Hamilton/Avnet
(414) 784-4516

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Avnet
(604) 437-6667

Semad Electronics
(604) 420-9889

Calgary
Hamilton/Avnet
(403) 250-9380

Semad Electronics
(403) 252-5664

Zentronics
(403) 272-1021

Edmonton Zentronics
(403) 468-9306

Richmond
Zentronics
(604) 273-5575

Saskatoon
Zentronics
(306) 955-2207

Winnipeg
Zentronics
(204) 694-1957

EASTERN PROVINCES
Mississauga Hamilton/Avnet
(416) 677-7432

Time Electronics
(416) 672-5300

Zentronics
(416) 564-9600

Nepean
Hamilton/Avnet
(613) 226-1700

Zentronics
(613) 226-8840

Ottawa
Semad Electronics
(613) 727-8325

Pointe Claire Semad Electronics (514) 694-0860

St. Laurent Hamilton/Avnet (514) 335-1000

Zentronics (514) 737-9700

Willowdale
ElectroSonic Inc.
(416) 494-1666

SALES OFFICES

ALABAMA

Huntsville (205) 721-9367

ARIZONA

Tempe
(602) 966-4563

CALIFORNIA
EI Segundo (213) 643-7099

Rocklin (916) 632-2750

San Diego (619) 587-0666

Santa Clara (408) 562-5900

Tustin
(714) 259-8880

Woodland Hills (818) 888-2602

COLORADO
Boulder
(303) 440-3400

Cotorado Springs (719) 578-3319

Englewood (303) 790-8090

FLORIDA
Boca Raton
(407) 997-9891

Orlando
(407) 629-1720

St. Petersburg (813) $577-5017$

GEORGIA

Norcross (404) 441-2740

ILLINOIS

Schaumburg (708) 397-8777

INDIANA
Carmel
(317) 843-7160

Fort Wayne (219) 484-0722

IOWA

Cedar Rapids (319) 395-0090

KANSAS
Overland Park (913) 451-4402

MARYLAND
Hanover
(301) 796-8900

MASSACHUSETTS
Burlington
(617) 221-4500

MICHIGAN
Grand Rapids (616) 940-0588
W. Bloomfield (313) 855-0166

minnesota

Bloomington (612) 854-8200

MISSOURI

St. Louis (314) 569-9830

NEW JERSEY
Paramus (201) 599-0955

NEW MEXICO
Albuquerque (505) 884-5601

NEW YORK

Fairport (716) 223-7700

Melville
(516) 351-1000

Wappinger Falls (914) 298-0680

NORTH CAROLINA
Raleigh (919) 832-0661

OHIO
Dayton
(513) 435-6886

Independence (216) 524-5577

ONTARIO
Mississauga
(416) 678-2920

Nepean
(613) 596-0411

OREGON
Portland (503) 639-5442

PENNSYLVANIA
Horsham (215) 672-6767

PUERTO RICO
Rio Piedras (809) 758-9211

QUEBEC

Pointe Claire (514) 426-2992

TEXAS
Austin
(512) $346-3990$

Houston (713) 771-3547

Richardson (214) 234-3811

UTAH
Salt Lake City (801) 322-4747

WASHINGTON
Kirkland (206) 822-4004

WISCONSIN
Brookfield (414) 782-1818

National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240
SALES OFFICES (Continued)

INTERNATIONAL OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutores
Do Brasil Ltda.
Av. Brig. Faria Lima, 1383
6.0 Andor-Conj. 62

01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Fax: (55/11) 211-1181 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: (0.81-41) 103-0
Telex: 527-649
Fax: (08141) 103554
National Semiconductor (UK) Ltd.
The Maple, Kembrey Park
Swindon, Wiltshire SN2 6UT
United Kingdom
Tel: (07-93) 61-41-41
Telex: 444-674
Fax: (07-93) 69-75-22
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6-61-06-80
Telex: 61007
Fax: (02) 6-60-23-95
National Semiconductor (UK) Ltd.
Ringager 4A, 3
DK-2605 Brondby
Denmark
Tel: (02) 43-32-11
Telex: 15-179
Fax: (02) 43-31-11

National Semiconductor S.A
Centre d'Affaires-La Boursidiere
Bâtiment Champagne, B.P. 90
Route Nationale 186
F-92357 Le Plessis Robinson
France
Tel: (1) 40-94-88-88
Telex: 631065
Fax: (1) 40-94-88-11
National Semiconductor (UK) Ltd.
Unit 2A
Clonskeagh Square
Clonskeagh Road
Dublin 14
Tel: (01) 69-55-89
Telex: 91047
Fax: (01) 69-55-89
National Semiconductor S.p.A
Strada 7, Palazzo R/3
I-20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
Twx: 352647
Fax: (02) 8254758
National Semiconductor S.p.A.
Via del Cararaggio, 107
00147 Rome
italy
Tel: (06) 5-13-48-80
Fax: (06) 5-13-79-47
National Semiconductor (UK) Ltd.
Stasjonsvn 18
Postboks 15
$\mathrm{N}-1361$ Billingstadsletta
Norway
Tel: 47-2-849362
Fax: 47-2-848104
National Semiconductor AB
P.O. Box 1009

Grosshandlarvaegen 7
S-121 23 Johanneshov
Sweden
Tel: 46-8.7228050
Fax: 46-8-7229095
Telex: 10731 NSC S

National Semiconductor GmbH
Calle Agustin de Foxa, 27 ($9^{\circ} \mathrm{D}$)
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133
Fax: (01) 733-8018
National Semiconductor Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 828-444
Fax: (01) 830-1900
National Semiconductor
Kauppakartanonkatu 7 A22
SF-00930 Helsink
Finland
Tel: (90) 33-80-33
Telex: 126116
Fax: (90) 33-81-30
National Semiconductor
Postbus 90
1380 AB Weesp
The Netherlands
Tel: (0-29-40) 3-04-48
Telex: 10-956
Fax: (0-29-40) 3-04-30
National Semiconductor Japan Ltd.
Sanseido Bldg. 5F .
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000
National Semiconductor
Hong Kong Ltd.
Suite 513, 5th Floor,
Chinachem Golden Plaza
77 Mody Road, Tsimshatsui East,
Kowloon, Hong Kong
Tel: 3-7231290
Telex: 52996 NSSEA HX
Fax: 3-3112536

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd
Melbourne, 3004
Victoria, Australia
Tel: (03) 267-5000
Fax: 61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Lid.
Korea Branch
13th Floor, Dai Han Life Insurance 63 Building,
60, Yoido-dong, Youngdeungpo-ku,
Seoul, Korea 150-763
Tel: (02) 784-8051/3, 785-0696/8
Telex: 24942 NSPKLO
Fax: (02) 784-8054

[^0]: * = National's Closest Replacement
 + = Improved Performance

[^1]: * = National's Closest Replacement
 $+=$ Improved Performance

[^2]: * = National's Closest Replacement
 + = Improved Performance

[^3]: $H=$ High Level
 L = Low Level
 $Z=$ High Impedance (off)

[^4]: $\mathrm{L}=$ Low logic state
 $H=$ High logic state
 $X=$ Irrelevant
 $Z=$ TRI-STATE (high impedance)

[^5]: $\mathrm{L}=$ Low Logic State Open $=$ TRI-STATE
 $H=$ High Logic State $X=$ Indeterminate State

[^6]: *For most current package information, contact product marketing

[^7]: X = Don't Care

[^8]: Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

 Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 LS 120 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DS88LS120. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
 Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
 Note 4: Only one output at a time should be shorted.
 Note 5: Refer to EIA-RS422 for exact conditions.

[^9]: $\mathrm{L}=$ Low logic state
 $H=$ High logic state
 $X=$ Irrelevant
 $Z=$ TRI-STATE (high impedance)

[^10]: H = High Level
 $L=$ Low Level
 $Z=$ High Impedance (off)
 $X=$ Immaterial

[^11]: $\mathrm{H}=$ High Level
 L = Low Level
 $X=$ Immaterial
 $Z=$ High Impedance (off)

[^12]: *For most current package information, contact product marketing

[^13]: H = High Leve
 L = Low Level
 $X=$ Immaterial
 $\mathbf{Z}=$ High Impedance (off)

[^14]: Line length is a function of data rate（baud）and slew rate．The recommended safe operating area（line length vs baud rate）is shown below for 24 AWG wire．It assumes that a differential line receiver is used which is referenced at the driver ground．Also，it assumes that the driver slew rate is between 0.1 to 0.3 times the reciprocal of the baud rate（minimum unit interval）．Otherwise，line lengths greater than 50 feet are not recommended．The exception to line length is the 360 I／O coaxial interface．The coaxial provides improved grounding and eliminates cross－ talk．

[^15]: "Reprinted with written permission from Electronic Design, (Vol. 37, No. 10) May 11, 1989, Copyright 1989 Penton Publishing"

[^16]: $X=$ Don＇t Care

[^17]: Note: $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{1}}=2 \mathrm{~ns}$ from 10% to 90%

[^18]: Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．They are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂provides conditions for actual device operation．
 Note 2：Unless otherwise specified min／max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7641 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8641．All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$ ．
 Note 3：All currents into device pins shown as positive，out of device pins as negative，all voltages referenced to ground unless otherwise noted．All values shown as max or min on absolute value basis．
 Note 4：Only one output at a time should be shorted．
 Note 5： 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground．$C_{L O A D}=15 \mathrm{pF}$ total．Measured from $V_{I N}=1.5 \mathrm{~V}$ to $V_{B U S}=1.5 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$ to 3 V pulse ． Note 6：Fan－out of 10 load，$C_{\text {LOAD }}=15 \mathrm{pF}$ total．Measured from $\mathrm{V}_{I N}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3 V pulse．
 Note 7：The following apply for $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified．

[^19]: $x=$ Don't care

[^20]: $H=$ High level $L=$ Low level $X=$ Irrelevant $Z=$ High impedance state

[^21]: See NS Package Numbers J08A, M08A* or N08E
 *See Note 6 and AN-336 regarding S.O. package power dissipation constraints.

[^22]: H = High level
 $L=$ Low level
 $X=$ Don't care
 Hi-Z = TRI-STATE mode

[^23]: Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
 Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ ambient temperature range in still air and across the specified supply variations. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply. Maximum propagation delays are specified with all outputs switching simultaneously.
 Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative. All voltages are referenced to ground, unless otherwise specitied.
 Note 4: When DC testing I $I_{A V}$ or los, only one output should be tested at a time and the current limited to 120 MA max.
 Note 5: Unless otherwise specified, all AC measurements are referenced from the 50% level of the ECL input to the 0.8 V level on negative transitions or the 2.4 V level on positive transitions of the output. ECL input rise and fall times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$ from 20% to 80%.
 Note 6: Caution should be used when latching data while the outputs are switching. TTL outputs generate severe ground noise when switching. This noise can be sufficient to cause the ECL latch to loose data. Board mounting and good supply decoupling are desirable. The worst case conductions are with all outputs switching low simultaneously, the maximum capacitive loading on the outputs and the maximum $V_{C C}$ supply voltage applied.

[^24]: Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
 Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 L 12 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88L12.
 Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
 Note 4: Only one output at a time should be shorted.
 Note 5: $t_{p d 1}$ for $V_{C C}=5.0 \mathrm{~V}$ is dependent upon the resistance and capacitance used.
 Note 6: $V_{O H}=V_{C C}-1.1 V$ for the DS88L12 and $V_{C C}-1.4 V$ for the DS78L12.

[^25]: Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the device should be operated at these limits.
 Note 2: Unless otherwise specified, min/max limits apply across the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
 Note 3: All currents into device pins are shown as positive, out of device pins as negative, all voltage referenced to ground unless otherwise noted. All values shown as maximum or minimum on absolute value basis.
 Note 4: Total mixer output current (Mixer $+\overline{\text { Mixer })} \cong 4$ times the current into the $I_{M X R}$ pin.

