F100K ECL
 Logic Databook and Design Guide

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.
We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.
Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch ihre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité:
 Une Vocation Commune Chez National Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.
Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisànt des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.
Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. Il nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità.

F100K ECL DATABOOK

1990 Edition

Family Overview

F100K 300 Series Datasheets
F100K 100 Series Datasheets
11C Datasheets
ECL BiCMOS SRAMs
ECL PALs and ASICs
F100K ECL Design Guide and Application Notes
Ordering Information and Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

AbuseableTM	E-Z-LINKTM	MICROWIRE/PLUSTM	SCXTM
Anadig ${ }^{\text {TM }}$	FACTTM	MOLETM	SERIES/800TM
ANS-R-TRANTM	FACT Quiet Series ${ }^{\text {TM }}$	MPATM	Series 900TM
APPSTM	FAIRCADTM	MSTTM	Series 3000тM
ASPECTTM	Fairtech ${ }^{\text {TM }}$	Naked-87m	Series 32000®
Auto-Chem DeflasherTM	FAST ${ }^{\text {® }}$	National ${ }^{(8)}$	Shelf \sim Chek ${ }^{\text {TM }}$
BCPTM	5-Star ServiceTM	National Semiconductor ${ }^{\text {® }}$	Simple SwitcherTM
BI-FETTM	Flash ${ }^{\text {TM }}$	National Semiconductor	SofChektm
BI-FET IITM	GENIXTM	Corp. ${ }^{\text {® }}$	SONICTM
BI-LINETM	GNXTM	NAX 800 ${ }^{\text {TM }}$	SPIRETM
BIPLANTM	GTOTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refreshtm
BLCTM	HAMRTM	Nitride Plus OxideTM	STARTM
BLXTM	HandiScantm	NMLTM	Starlink ${ }^{\text {TM }}$
BMACTM	HEX 3000'M	NOBUSTM	STARPLEXTM
Brite-LiteTM	НРС'м	NSC800'm	Super-BlockTM
BSITM	${ }^{3} \mathrm{~L}$ - ${ }^{\text {® }}$	NSCISETM	SuperChip TM
BTLTM	ICMTM	NSX-16TM	SuperScript ${ }^{\text {m }}$
CDDTM	INFOCHEXTM	NS-XC-16TM	SYS32TM
CheckTrackTM	Integral ISETM	NTERCOM ${ }^{\text {TM }}$	TapePak ${ }^{\text {® }}$
CIM ${ }^{\text {TM }}$	Intelisplay ${ }^{\text {TM }}$	NURAM ${ }^{\text {TM }}$	TDSTM
CIMBUSTM	ISETM	OXISSTM	TeleGateTM
CLASICTM	ISE/06TM	P2CMOSTM	The National Anthem ${ }^{\text {® }}$
Clock \sim Chek ${ }^{\text {TM }}$	ISE/08TM	PC MasterTM	Time $\sim^{\text {Chek }}{ }^{\text {TM }}$
COMBO ${ }^{\text {® }}$	ISE/16TM	Perfect Watch ${ }^{\text {TM }}$ M	TINATM
COMBO ITM	ISE32TM	Pharma-ChekTM	TLCTM
COMBO IITM	ISOPLANARTM	PLANTM	TrapezoidalTM
COPSTM microcontrollers	ISOPLANAR-ZTM	PLANARTM	TRI-CODETM
CRDTM	KeyScantM	PLAYERTM	TRI-POLYTM
Datachecker ${ }^{\text {® }}$	LMCMOSTM	Plus-2TM	TRI-SAFETM
DENSPAKTM	M ${ }^{2}$ CMOSTM	Polycraft ${ }^{\text {m }}$	TRI-STATE ${ }^{\text {® }}$
DIBTM	Macrobus ${ }^{\text {TM }}$	POSilink ${ }^{\text {TM }}$	TURBOTRANSCEIVERTM
Digitalker ${ }^{\text {® }}$	Macrocomponent ${ }^{\text {TM }}$	POSitalker ${ }^{\text {TM }}$	VIPTM
DISCERNTM	MAXI-ROM ${ }^{\text {® }}$	Power + ControlTM	VR32Tm
DISTILLTM	MeatnChekTM	POWERplanarTM	WATCHDOGTM
DNR ${ }^{\text {® }}$	MenuMasterTM	QUAD3000TM	XMOSTM
DPVM ${ }^{\text {TM }}$	MicrobusTM data bus	QUIKLOOKTM	XPUTM
$\mathrm{E}^{2} \mathrm{CMOSTM}$	MICRO-DACTM	RATTM	Z STARTM
ELSTARTM	μ talker ${ }^{\text {TM }}$	RTX16TM	883B/RETSTM
Embedded System	MicrotalkerTM	SABRTM	883S/RETSTM
Processor ${ }^{\text {TM }}$	MICROWIRETM	ScriptıChek ${ }^{\text {TM }}$	

Multiwire ${ }^{\circledR}$ is a registered trademark of Multiwire Corporation.
Mylar® ${ }^{\circledR}$ and Teflon ${ }^{\circledR}$ are registered trademarks of E.I. DuPont de Nemours Company.
PAL® is a registered trademark of and used under license from Advanced Micro Devices, Inc.
Sentry ${ }^{\circledR}$ is a registered trademark of Schlumberger Limited.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction

National's F100K ECL family has gained acceptance as the standard subnanosecond logic and memory family used in high-speed, next generation systems. The family now includes the F100K 300 Series devices that offer specifications of DC and AC parameters over the full -4.2 V to $-5.7 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$ operating range and $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ case temperature, military versions ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$), full voltage and temperature compensation, PCC packaging and 2000 V minimum ESD protection. Together the 100 Series and 300 Series devices provide a ultra-high performance, cost-effective, easy to use ECL logic family.

F100K Data Book

Product Index and Selection Guide

The Product Index is a numerical list of all device types contained in this book, including one page descriptions on all of National's other ECL devices (SRAMs, PALs and ASICs). The Selection Guide groups the products by function and by family.

Section 1 Family Overview 1-1

Discusses F100K design philosophy and actualization and summarizes the key F100K features and advantages in high speed systems. The features and benefits of the 300 Series devices are brought out in great detail.

Section 2 F100K 300 Series Datasheets . . 2-1 Contains individual data sheets for the F100K 300 Series family devices.

Section 3 F100K 100 Series Datasheets .. 3-1 Contains individual data sheets for the F100K 100 Series family devices.

Section 4 11C Datasheets. 4-1

Contains individual data sheets for the 11 C devices.
Section 5 ECL BiCMOS SRAMs 5-1
Contains only the first page of each of the ECL BiCMOS SRAM data sheets. For full details refer to the Memory Databook.

Section 6 ECL PALs and ASIC's 6-1

Contains only the first page of each of the 6 ns and 4 ns ECL PAL datasheets, and the entire ECL ASIC datasheet. For full details on the PALs, refer to the Programmable Logic Devices Databook and Design Guide. For full details on the ASIC FGE Series, contact the ASIC Product Marketing Group. For details on the ASIC FGA Series, refer to the FGA Series ASPECTTM ECL Gate Array Datasheet.

F100K Design Guide and Application Notes-Section 7

Chapter 1 Circuit Basics 7-3

Discusses internal circuitry and logic function formation. Also, a sample analysis of noise margins is outlined.

Chapter 2 Logic Design. 7-9

Features brief applications of F100K logic arranged according to function.

Chapter 3 Transmission Line Concepts.7-22 Reviews the concepts of characteristic impedance and propagation delay and discusses termination, mismatch, reflections and associated waveforms.

Chapter 4 System Considerations7-35
Extends the transmission line approach to the specific configurations, signal levels and parameter values of ECL. Various methods of driving and terminating signal lines are discussed.

Chapter 5 Power Distribution and Thermal Considerations

Discusses power supply, decoupling and system cooling requirements.

Chapter 6 Testing Techniques 7-55
Discusses various methods and techniques used in testing ECL devices (intended for those concerned with customer incoming inspection). Also includes a section on Electrostatic Discharge, what is ESD and how we perform our ESD Classification testing.

Chapter 7 Quality Assurance

 and Reliability7-62Reviews the quality and reliability programs currently in use.

Application Notes .7-67
Contains several application notes on designing high speed systems using ECL.
$\begin{array}{ll}\text { Section } 8 & \begin{array}{l}\text { Ordering Information and } \\ \text { Package Outlines } \ldots \ldots18-1 ~\end{array}\end{array}$8-1

Alpha-Numeric Index

11 C01 Dual Input OR/NOR Gate 4-3
11 C 051 GHz Divide-by-Four Counter 4-6
$11 \mathrm{C06} 750 \mathrm{MHz}$ D-Type Flip-Flop 4-10
11C70 Master-Slave D-Type Flip-Flop 4-14
11C90 650 MHz Prescaler 4-20
11C91 650 MHz Prescaler 4-20
AN-573 Design Considerations for High Speed Architectures 7-67
AN-582 Using the F100250 for Copper Wire Data Communications 7-75
AN-650 The ECL System Solution 7-88
AN-651 10K vs 100K ECL I/O System Considerations 7-92
AN-682 Terminating F100K ECL Inputs 7-96
AN-683 300 MHz Dual Eight-Way Multiplexer/Demultiplexer 7-98
AN-684 F100336 Four Stage Counter/Shift Register 7-100
AN-685 Using the F100181 ALU and F100179 Carry Look-Ahead 7-107
F100101 Triple 5-Input OR/NOR Gate 3-3
F100102 Quint 2-Input OR/NOR Gate 3-6
F100104 Quint 2-Input AND/NAND Gate 3-9
F100107 Quint Exclusive OR/NOR Gate 3-13
F100112 Quad Driver 3-17
F100113 Quad Driver 3-21
F100114 Quint Differential Line Receiver 3-25
F100115 Low Skew Quad Driver 3-29
F100117 Triple 2-Wide OA/OAI Gate 3-33
F100118 5-Wide 5-4-4-4-2 OA/OAI Gate 3-36
F100121 9-Bit Inverter 3-40
F100122 9-Bit Buffer 3-43
F100123 Hex Bus Driver 3-46
F100124 Hex TTL-to-100K ECL Translator 3-50
F100125 Hex 100K ECL-to-TTL Translator 3-54
F100126 9-Bit Backplane Driver 3-58
F100128 Octal Bidirectional ECL/TTL Translator 3-61
F100130 Triple D Latch 3-70
F100131 Triple D Flip-Flop 3-76
F100135 Triple JK Flip-Flop 3-84
F100136 4-Stage Counter/Shift Register 3-90
F100141 8-Bit Shift Register 3-100
F100142 4×4 Content Addressable Memory 3-106
F100150 Hex D Latch 3-113
F100151 Hex D Flip-Flop 3-119
F100155 Quad Multiplexer/Latch 3-125
F100156 Mask/Merge Latch 3-131
F100158 8-Bit Shift Matrix 3-137
F100160 Dual Parity Checker/Generator 3-145
F100163 Dual 8-Input Multiplexer 3-150
F100164 16-Input Multiplexer 3-155
F100165 Universal Priority Encoder 3-160
F100166 9-Bit Comparator 3-166
F100170 Universal Demultiplexer/Decoder 3-171
F100171 Triple 4-Input Multiplexer with Enable 3-176
F100175 Quint 100K-to-10K Latch 3-181
F100179 Carry Lookahead Generator 3-187

Alpha-Numeric Index ${ }_{\text {(Continued) }}$

F100180 High-Speed 6-Bit Adder 3-194
F100181 4-Bit Binary/BCD ALU 3-199
F100182 9-Bit Wallace Tree Adder 3-206
F100183 2×8-Bit Recode Multiplier 3-214
F100250 Quint Full Duplex Line Transceiver 3-226
F100301 Low Power Triple 5-Input OR/NOR Gate 2-3
F100302 Low Power Quint 2-Input OR/NOR Gate 2-8
F100304 Low Power Quint AND/NAND Gate 2-13
F100307 Low Power Quint Exclusive OR/NOR Gate 2-17
F100311 Low Skew 9-Bit Clock Driver 2-21
F100313 Low Power Quad Driver 2-22
F100314 Low Power Quint Differential Line Receiver 2-27
F100321 Low Power 9-Bit Inverter 2-28
F100322 Low Power 9-Bit Buffer 2-34
F100324 Low Power Hex TTL-to-ECL Translator 2-38
F100325 Low Power Hex ECL-to-TTL Translator 2-43
F100328 Low Power Octal ECL/TTL Bidirectional Translator with Latch 2-50
F100329 Low Power Octal ECL/TTL Bidirectional Translator with Register 2-51
F100331 Low Power Triple D Flip-Flop 2-52
F100336 Low Power 4-Stage Counter/Shift Register 2-53
F100341 Low Power 8-Bit Shift Register 2-68
F100343 Low Power Octal Latch 2-76
F100344 Low Power Octal Latch with Cutoff Drivers 2-83
F100350 Low Power Hex D Latch 2-90
F100351 Low Power Hex D Flip-Flop 2-91
F100352 Low Power Octal Buffer with Cutoff Drivers 2-98
F100353 Low Power Octal Register 2-105
F100354 Low Power Octal Register with Cutoff Drivers 2-112
F100355 Low Power Quad Multiplexer/Latch 2-119
F100360 Low Power Dual Parity Checker/Generator 2-128
F100363 Low Power Dual 8-Input Multiplexer 2-135
F100364 Low Power 16-Input Multiplexer 2-141
F100370 Low Power Universal Demultiplexer/Decoder 2-142
F100371 Low Power Triple 4-Input Multiplexer 2-143
F100393 Low Power 9-Bit ECL-to-TTL Translator with Latch 2-144
F100395 Low Power 9-Bit ECL-to-TTL Translator with Register 2-145
FGA Series ASPECT ECL Gate Arrays 6-11
NM5100/NM100500 ECL I/O 256k BiCMOS SRAM 262,144 $\times 1$ Bit 5-3
NM5104/NM100504 256k BiCMOS SRAM 64k x 4 Bit 5-4
NM100492/NM4492 2kx9 Advanced Self-Timed SRAM (Preliminary) 5-7
NM100494 64k BiCMOS SRAM 16k $\times 4$ Bit 5-5
NM10494 64k BiCMOS SRAM 16k $\times 4$ Bit 5-6
PAL10/10016C4-2 2 ns ECL ASPECT Programmable Array Logic (PLCC) 6-8
PAL10/10016P4-2 2 ns ECL ASPECT Programmable Array Logic (DIP) 6-7
PAL10/10016P4A 4 ns ECL Programmable Array Logic 6-6
PAL10/10016P8 ECL Programmable Array Logic 6-3
PAL10/10016P8-3 3 ns ECL ASPECT Programmable Array Logic (DIP) 6-4
PAL10/10016PE8-3 3 ns ECL ASPECT Programmable Array Logic (PLCC) 6-5
PAL10/10016RD8 ECL Registered Programmable Array Logic 6-9
PAL10/10016RM4A ECL Registered Programmable Array Logic 6-10

F100K Product Selection Guide

Gates

Function	Device	Inputs/ Gate	No. of Gates	Leads
OR/NOR/Exclusive OR				
Low Power Triple 5-Input OR/NOR	100301	5	3	24, 28(PCC)
Triple 5-input OR/NOR	100101	5	3	24
Low Power Quint 2-Input OR/NOR	100302	2	5	24, 28(PCC)
Quint 2-Input OR/NOR	100102	2	5	24
Dual Input OR/NOR	$11 \mathrm{C01}$	4/5	2	16
Low Power Quint Exclusive OR/NOR	100307	2	5	24, 28(PCC)
Quint Exclusive OR/NOR	100107	2	5	24
AND/NAND				
Low Power Quint 2-Input AND/NAND	100304	2	5	24, 28(PCC)
Quint 2-Input AND/NAND	100104	2	5	24
OR-AND/OR-AND-INVERT				
Triple 2-Wide OA/OAI	100117	2	3	24
5-Wide 5, 4, 4, 4, 2 OA/OAI	100118	5/4/4/4/2	1	24

Flip-Flops

Function	Device	Clock Edge	Direct Set	Direct Clear	Complementary Outputs	Leads
Low Power Triple D Flip-Flop	100331	$\widetilde{ }$	Yes	Yes	Yes	24, 28(PCC)
Triple D Flip-Flop	100131	Ω	Yes	Yes	Yes	24
Triple J-K Flip-Flop	100135	\checkmark	Yes	Yes	Yes	24
Low Power Hex D Flip-Flop	100351	$\widetilde{ }$	No	Yes	Yes	24, 28(PCC)
Hex D Flip-Flop	100151	Ω	No	Yes	Yes	24
750 MHz D Flip-Flop	$11 \mathrm{C06}$	Ω	No	No	Yes	16
Master-Slave D Flip-Flop	11 C 70	$\widetilde{ }$	Yes	Yes	Yes	16

Latches

Function	Device	Enable Inputs	Complementary Outputs	Direct Set	Direct Clear	Leads
Triple D Latch	100130	$4(\mathrm{~L})$	Yes	Yes	Yes	24
Low Power Hex D Latch	100350	$2(\mathrm{~L})$	No	Yes	Yes	$24,28($ PCC)
Hex D Latch	100150	$2(\mathrm{~L})$	Yes	No	Yes	24
Low Power Quad 2-Input Mux/Latch	100355	$2(\mathrm{~L})$	No	Yes	Yes	$24,28($ PCC)
Quad 2-Input Mux/Latch	100155	$2(\mathrm{~L})$	Yes	No	Yes	24
Mask-Merge Latch	100156	$1(\mathrm{~L})$	No	No	No	24
Quint 100K-to-10K Latch	100175	$2(\mathrm{~L})$	No	No	Yes	24
Low Power 8-Bit Latch	100343	$2(L)$	No	No	No	$24,28($ PCC)
Low Power 8-Bit Latch w/Cutoff	100344	$3(L)$	No	No	No	$24,28(P C C)$
Drivers and 25ת Drive						

Multiplexers/Demultiplexers/Decoders

Function	Device	Enable Inputs	Complementary Outputs	Leads
Multiplexers				
Low Power Quad 2-Input Mux/Latch	100355	$2(L)$	Yes	$24,28(P C C)$
Quad 2-Input Mux/Latch	100155	2 (L)	Yes	24
Low Power Dual 8-Input	100363		No	24,28 (PCC)
Dual 8-Input	100163		No	24
Low Power 16-Input	100364		No	$24,28(P C C)$
16-Input	100164		Yes	24
Low Power Triple 4-Input	100371	100171	1(L)	Yes
Triple 4-Input			No	$24,28(P C C)$
Decoders/Demultiplexers	100370	2(L) \& 2(L)	No	24
Low Power Dual 1-of-4/Single 1-of-8	100170	2(L) \&2(L)	No	$24,28(P C C)$
Dual 1 of 4/Single 1 of 8			24	

Translators

Function	Device	Enable Inputs	Features	Complementary	Leads
Low Power Hex TTL-to-100K ECL	100324	$1(\mathrm{H})$	Flow-thru	Outputs	$24,28(\mathrm{PCC})$
Hex TTL-to-100K ECL	100124	$1(\mathrm{H})$	Flow-thru	Outputs	24
Low Power Hex 100K ECL-to-TTL	100325		Flow-thru	Inputs	$24,28(\mathrm{PCC})$
Hex 100K ECL-to-TTL	100125		Flow-thru	Inputs	24
Low Power Octal Bidirectional ECL/TTL	100328	$1(\mathrm{H})$	Latch		$24,28(\mathrm{PCC})$
Low Power Octal Bidirectional ECL/TTL	100329		Register		$24,28(\mathrm{PCC})$
Octal Bidirectional ECL/TTL	100128	$1(\mathrm{H})$	Latch		24
Quint 100K-to-10K	100175	$2(\mathrm{H})$	Latch		24
Low Power 9-Bit ECL-to-TTL	100393	$1(\mathrm{H})$	Latch		$24,28(\mathrm{PCC})$
Low Power 9-Bit ECL-to-TTL	100395		Register		$24,28(\mathrm{PCC})$

Registers/Shift Registers

Function	Device	Clock Inputs	Complementary Outputs	Leads
Registers				
Low Power 8-Bit Register	100353		No	24, 28(PCC)
Low Power 8-Bit Register w/Cutoff	100354		No	$24,28(P C C)$
Drivers and 25S Drive				
Shift Registers	100336		Yes	
Low Power 4-Bit Bidirectional Shift Reg.	100136		Yes	24, 28(PCC)
4-Bit Bidirectional Shift Reg	100341		No	24
Low Power 8-Bit Shift Register	100141		No	$24,28(P C C)$
8-Bit Shift Register			24	

New Octals

Function	Device	25Ω Drive	Output Cutoff	Leads
Low Power 8-Bit Latch	100343	No	No	$24,28(P C C)$
Low Power 8-Bit Latch	100344	Yes	Yes	$24,28($ PCC)
Low Power 8-Bit Buffer	100352	Yes	Yes	$24,28(P C C)$
Low Power 8-Bit Register	100353	No	No	$24,28(P C C)$
Low Power 8-Bit Register	100354	Yes	Yes	$24,28(P C C)$

Buffers/Drivers/Receivers					
Function	Device	Output Polarity	$\begin{gathered} \hline 25 \Omega \\ \text { Drive } \\ \hline \end{gathered}$	Output Cut-Off	Leads
Buffers/Inverters					
Low Power 9-Bit Inverter	100321	Inverting	No	No	24, 28(PCC)
9 9-Bit Inverter	100121	Inverting	No	No	24
Low Power 9-Bit Buffer	100322	Non-Inverting	No	No	24, 28(PCC)
$9-$ Bit Buffer	100122	Non-Inverting	No	No	24
Low Power 8-Bit Buffer	100352	Non-Inverting	Yes	Yes	24, 28(PCC)
Drivers/Bus Drivers					
Low Power Quad Line Driver	100313	Differential	No	No	24, 28(PCC)
Quad Line Driver	100113	Differential	No	No	24
Quad Line Driver	100112	Differential	No	No	24
Low Skew Quad Clock Driver	100115	Differential	No	No	16
Low Skew 9-Bit Clock Driver	100311	Differential	No	No	28(PCC)
Hex Bus Driver	100123	Non-Inverting	Yes	Yes	24
9-Bit Backplane Driver	100126	Non-Inverting	No	No	24
Recelvers/Transceivers					
Low Power Quint Differential Line Receiver	100314	Differential	No	No	24, 28(PCC)
Quint Differential Line Receiver	100114	Differential	No	No	24
Quint Full Duplex Line Transceiver	100250	Differential	No	No	24

Counters/Prescalers

Function	Device	Parallel Entry	Reset	Up/Down	Leads
Counters					
Low Power 4-Bit Binary Counter	100336	S	S/A	Yes	24, 28(PCC)
4-Bit Binary Counter	100136	S	S/A	Yes	24
1 GHz Divide-by-Four Counter	11 C 05		No	No	16
Prescalers					
650 MHz Prescaler	$11 C 90$		No	No	16
650 MHz Prescaler	$11 C 91$		No	No	16

Arithmetic Operators

Function	Device	Features	Leads
High Speed 6-Bit Adder	100180		24
Carry Lookahead	100179		24
4-Bit Binary/BCD ALU	100181	8 Logic/8 Arithmetic Ops	24
9-Bit Wallace Tree Adder	100182	Expandable	24
2×8-Bit Recode Multiplier	100183		24
Low Power Dual 9-Bit Parity Checker/Generator	100360	Expandable	$24,28(P C C)$
Dual 9-Bit Parity Checker/Generator	100160	Expandable	24
9-Bit Comparator	100166	Expandable	24
8-Input Priority Encoder	100165	Dual 4-Bit/Single 8-Bit	24
8-Bit Shift Matrix	100158	Barrel Shift, Backfill	24
4-Bit Mask-Merge/Latch	100156	Bit-Selectable Merge	24
4x 4-Bit Content Addressable Memory	100142		24

BiCMOS ECL I/O SRAM Selection Guide

Part Number	Organization	I/O Level	VEE	Access (ns)	Leads	Temperature Range
NM5100	$256 \mathrm{k} \times 1$	100 K	$-5.2 \mathrm{~V} \pm 5 \%$	15	24	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
NM100500	$256 \mathrm{k} \times 1$	100 K	-4.2 V to -4.8 V	15	24	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
NM5104	$64 \mathrm{k} \times 4$	100 K	$-5.2 \mathrm{~V} \pm 5 \%$	12,15	28	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
NM100504	$64 \mathrm{k} \times 4$	100 K	-4.2 V to -4.8 V	15	28	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
NM100494	$16 \mathrm{k} \times 4$	10 K	-4.2 V to -4.8 V	15,18	28	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
NM10494	$16 \mathrm{k} \times 4$	100 K	$-5.2 \mathrm{~V} \pm 5 \%$	$10,12,15$	28	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
NM100492	$2 \mathrm{k} \times 9$	100 K	-4.2 V to -4.8 V	7,10	64	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
NM4492	$2 \mathrm{k} \times 9$	100 K	$-5.2 \mathrm{~V} \pm 5 \%$	$5,7,10$	64	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

For further information on the ECL SRAMs, see the one page description of each device in this book; or refer to the Memory Databook for full details.

ECL Programmable Logic Selection Guide

Part Number	$T_{P D}$ (Max) (Note 1)	Icc (Max)	Outputs		Leads
			Combinatorial	Registered	
PAL1016P8	6 ns	-240 mA	8		24
PAL10016P8	6 ns	-240 mA	8		24
PAL1016P4A	4 ns	-220 mA	4		24
PAL10016P4A	4 ns	-220 mA	4		24
PAL1016PE8-3	3 ns	- 180 mA	8		28
PAL10016PE8-3	3 ns	-180 mA	8		28
PAL1016P8-3	3 ns	-180 mA	8		24
PAL10016P8-3	3 ns	-180 mA	8		24
PAL1016C4-2	2 ns	-180 mA	4		28
PAL10016C4-2	2 ns	-180 mA	4		28
PAL1016P4-2	2 ns	$-180 \mathrm{~mA}$	4		24
PAL10016P4-2	2 ns	-180 mA	4		24
PAL1016RD8	6 ns	-280 mA		8	24
PAL10016RD8	6 ns	$-280 \mathrm{~mA}$		8	24
PAL1016RM4A	4 ns	-220 mA		4	24
PAL10016RM4A	4 ns	-220 mA		4	24

Note 1: Maximum tpD for combinatorial outputs (commercial operating range). Denotes characteristic speed of family where product has all registered outputs. For further information on the ECL PALs, see the one page description of the devices in this book; or refer to the Programmable Logic Devices Databook and Design Guide.

ECL Gate Array Selection Guide

FGE Series

Part Number	Equivalent Gates	Internal Cells	Internal Gate Delay	Leads
FGE0050	60	4	225 ps	225 ps
FGE0500	680	50	225 ps	84
FGE2000	2500	224	225 ps	132
FGE2450	2840	252	225 ps	99
FGE2500	2840	252	250 ps	156
FGE6300	6300	560	250 ps	301
FGE6320R	3500 plus	280		301

For further information on the ECL FGE Series Gate Arrays, contact the ASIC Product Marketing Group.
FGA Series-ASPECT

Part Number	Equivalent Gates	Internal Cells	Internal Gate Delay	Leads
FGA0150	269	75	150 ps	$16,24,28$
FGA0200	269	75	150 ps	$16,24,28$
FGA0600	792	240	150 ps	44,75
FGA1300	1642	528	150 ps	$75,109,116$
FGA2800	3035	1044	150 ps	$75,109,116$
FGA4000	4704	1600	150 ps	$99,132,172,173$
FGA8000	8000	3000	150 ps	$99,132,172,173$
FGA14000	16709	5904	323	
FGA15000	16644	5920	150 ps	303
FGA30000	28486	10266	150 ps	323
FGA14040R	7835 plus	2624 plus	150 ps	323
	4.6 Bits RAM	$64 \times 9 \times 8$ RAM		

For further information on the ECL Gate Array devices, see the full description of the FGA Series in this book; or refer to the FGA Series ASPECTTM ECL Gate Array Databook.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Prellminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification This data sheet contains final specifications. National Semiconductor Noted.	Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Section 1
Family Overview
Section 1 Contents
Family Overview 1-3
Introduction. 1-3
F100K 100 Series Design Philosophy 1-3
Process Technology 1-4
Compensation Network $1-5$
Characteristics 1-6
F100K 300 Series Design Philosophy 1-7
System Aspects 1-10
Features 1-10
System Benefits 1-11
Packaging 1-11
Using F100K ECL 300 Series in Military Applications 1-11
Definitions of Symbols and Terms 1-12

Family Overview

Introduction

Systems designers have found that Emitter Coupled Logic （ECL）circuits offer significant advantages to high－speed systems．These advantages include high switching rates with moderate power consumption，low propagation delays with moderate edge rates，and the ability to drive low imped－ ance transmission lines．Most F100K devices have $50 \mathrm{k} \Omega$ pull－down resistors on all the inputs．
The F100K ECL family is the realization of refinements made on ECL design to produce a family of ultrafast logic and memory components．These components are capable of providing ultimate performance for packaged SSI／MSI， are easy to use，and cost effective．
F100K ECL has been accepted as the standard subnanose－ cond logic and memory family used in high－speed，next gen－ eration systems．The advance into complex LSI and gate arrays is fully supported by the F 100 K SSI／MSI parts．
Beginning in 1989，National introduced a new line of F100K ECL products，known as 300 Series．These 300 Series products are fully compatible with existing F100K 100 Se － ries Products，but offer many improvements．Features in－ clude much lower power dissipation，stable DC specifica－ tions over a wider supply voltage range，plastic chip carrier （PCC）surface mount packaging，higher electrostatic dis－ charge（ESD）tolerance，and full MIL－STD－883C qualifica－ tion levels．The 300 Series family includes pin and function compatible versions of several popular 100 Series products， as well as many new proprietary products．
Most of the 300 Series improvements were extensions of F100K 100 Series design and process techniques．This sec－ tion will begin with an overiew of the F100K 100 Series fami－ ly ，and then discuss the 300 Series improvements．Generic references to F100K apply to both Series of products．

F100K 100 Series Design Philosophy

F100K 100 Series was designed to meet four key require－ ments：high speed at reduced power，high level of on－chip integration，flexible logic functions，and optimum I／O pin as－ signment．

Subnanosecond Gate Delays

The subnanosecond internal gate delays of F100K 100 Se － ries are obtained by the use of ECL design techniques and the advanced Isoplanar－Z process．Many circuit approaches were carefully considered prior to selecting the optimum gate configuation for the F100K family．The emitter－follower current－switch（ $E^{2} \mathrm{CL}$ ）and current－mode logic（CML）gates were eliminated mainly because of poor capacitive drive and lack of output wired－OR capability；the CML gate has low noise margins．The $2-1 / 2 \mathrm{D}, \mathrm{EFL}, \mathrm{DCTTL}$ and hysteresis gates were eliminated due to the lack of simultaneous com－ plementary outputs along with difficult temperature and volt－
age compensation characteristics that lead to the loss of system noise immunity．
The choice narrowed down to the current－switch emitter－fol－ lower ECL gate which offers the following characteristics：
－High fan－out capability
－Simultaneous complementary outputs
－Excellent AC characteristics
－Compatibility with existing ECL logic and memories
－Internal series gating capability
－Good noise immunity
－Amenable full compensation and extended temperature characteristics
－External wired－OR capability
In order to ease drive requirements all circuit inputs were designed to have similar loading characteristics；i．e．，buffers are incorporated where an input pin would normally drive more than one on－chip gate．The on－chip delay incurred by buffering is less than the system delay caused by an output which drives a capacitance of higher than three unit loads． Full compensation was selected for the F100K Family to provide improved switching characteristics．Full compensa－ tion results in relatively constant signal levels and thresh－ olds and in improved noise margins over temperature and voltage variations from chip to chip，and thus a tighter AC window in the system environment．A comparison of fully compensated ECL to conventional ECL shows a $2: 1 \mathrm{im}$－ provement in system AC performance due solely to full compensation（Figure 1－1）．And，the improved speed has been achieved at reduced power．Power reduction is ac－ complished by the use of advanced process technology that reduces parasitic capacitances and improves tolerances，by optimum circuit designs using series gating and collector and emitter dotting，and by designing for the use of a -4.5 V $V_{E E}$ power supply．F100K 100 Series is specified at a $V_{E E}$ power supply of -4.2 V to -4.8 V ，but a $-5.2 \mathrm{~V} \pm 10 \%$ pow－ er supply can be used to interface with 2 ns ECL families．

TL／F／9908－1
FIGURE 1－1．Comparison of Propagation Delays

High On-Chlp Integration

Higher on-chip integration is made possible by using the 24pin package to increase the number of signal pins by 62% over the conventional 16 -pin package. The emphasis in F 100 K is to minimize the number of SSI functions and maximize the use of MSI and LSI to reduce wiring delays and thus make more efficient use of the fast on-chip switching technology. Only 10 SSI functions are needed to serve the system needs presently requiring 25 functions in the ECL 10K family.

Flexibility and Pin Assignment

F100K was planned to minimize to total number of logic functions by increasing the flexibility of each function and by making use of more I/O pins. Since next-generation system performance and ease of system designs are major F100K goals, pin assignment is important and was planned to minimize crosstalk, noise coupling and feedthrough, to facilitate OR-ties and to ease power-bus routing. Some of the key considerations in selecting the F100K pin assignments were:

- Locate power pins in the center on opposite sides of the DIP package to ease system design and to provide lowinductance connections to the chip.
- Provide two $V_{C C}$ pins, one for the internal circuit and one for the output buffers, to minimize noise coupling.
- Locate inverting outputs of logically independent gates adjacent to each other. This provides the ability to wire AND-OR-Invert functions with ease.
- Locate common pins such as common Reset and common Clock at pin number 22 and Address or control inputs at pins 19 and 20 for flatpaks. This is to maximize use of Computer Aided Design (CAD) for board layouts.
- When feasible, mode control pins are used to create multipurpose devices.

Process Technology

FAST-Z Process

The F100K 100 Series ECL family is fabricated using an advanced isoplanar technology called FAST-Z. This process makes possible subnanosecond logic delays and very
highly controlled switching characteristics for consistent de-vice-to-device high-speed performance.
The technology can best be described by reviewing the evolution of the transistor structure from the conventional planar and the original Isoplanar II processes to the FAST-Z and FAST-LSI processes (Figure 1-2). The top view shows the area needed for each structure; the dashed area is the center of the isolation region.
As in all Isoplanar technologies, the FAST-Z processes selectively grow a thick oxide between devices instead of the $\mathrm{P}+$ region that is present in the planar process. The oxide needs no separation from the base-collector regions, resulting in a substantial reduction in device and chip size. The base and emitter ends terminate in the oxide wall. The mask openings can therefore overlap onto the isolation oxide making them self-aligned in that direction. This overlap feature means that base and emitter masking does not have to meet the extremely close tolerances that might otherwise be necessary. In addition, the FAST-Z transistor contacts are defined on a single mask layer making them self-aligned in the other direction.
Both the self-alignment feature and the ability to overlap the mask openings onto the isolation oxide provide improved process control. The need to meet extremely close tolerances that otherwise might be necessary is therefore avoided.
The FAST-Z "walled emitter" structures provide a reduction in transistor silicon area of 400 percent as compared to the planar structure. The collector-substrate therefore is also reduced by 400 percent. The collector-base area is reduced by 540 percent. These area reductions, combined with the shallower junctions achieved by well controlled ion implantation processes, provide significantly reduced capacitance and resistance values within the FAST-Z transistor structure. This, is turn, allows higher speeds.

FAST-LSI Process

The 300 Series family is fabricated using an advanced isoplanar technology called FAST-LSI. The FAST-LSI process is similar to FAST-Z, but also includes many improvements which enhance performance, manufacturability; and reliability. Metal alignments have been tightened, shortening the

FIGURE 1-2. Evolution of Blpolar Transistor Structures
distance between base and emitter contacts. This reduces the base capacitance, giving F_{TS} of 8 GHz vs 5 GHz for FAST-Z. Parasitic capacitances are also reduced, allowing products to be designed with lower power consumption.
The FAST-LSI process implements wafer planarization techniques to smooth the interconnect metal transitions, significantly reducing thermal stresses on the die when encapsulated in molded plastic packaging. In addition, these planarization techniques increase metal step coverage to typically 65% for first level metal and 75% for second level metal. Increased metal thicknesses over a step improve current density performance and circuit reliability. First layer metal step coverage is improved by the addition of bird's head planarization after the oxide isolation process. Second layer metal step coverage improvements are provided by a technique known as spun-on-glass, an interlayer dielectric planarization.
FAST-LSI is a fully ion-implanted process, providing more precise control over doping profiles. This not only improves device performance, but also allows tighter manufacturing tolerances on transistor gains and resistor values. These tighter tolerances were exploited in the design of F100K 300 Series to meet the same-speed, half-power targets for the product line. The field oxide in FAST-LSI is doped (vs. undoped in FAST-Z). This lowers current leakage even further while still maintaining the walled emitter structures featured in FAST-Z.
The metal structure of FAST-LSI is also improved. Platinumsilicide is used to provide ohmic contacts to $\mathrm{N}+$ and $\mathrm{P}+$ regions, as well as Schottky diode contacts to N - regions. The Schottky diodes are used in the design of the high-performance TTL output stages in the 300 Series ECL-TTL level translators. A titanium-tungsten layer is utilized as a diffusion barrier against aluminum migration into the underlying silicon. Finally, both first and second layer metal use a cop-per-doped aluminum metalization which enhances reliability by providing a high resistance to electromigration.

Compensation Network

The heart of F100K is fully compensated ECL. 1 The basic gate consists of three blocks-the current switch, the output emitter-followers, and the reference or bias network (Figure 1-3). The current switch allows both conjunctive and disjunctive logic. The output emitter-followers provide high drive capability through impedance transformation and allows for increased logic swing. The bias network sets DC thresholds and current-source bias voltages. Temperature compensation at the gate output is achieved by incorporating a cross-connect branch between the complementary
collector nodes of the current switch and driving the current source with a temperature insensitive bias network ${ }^{2}$ (Figure 1-4).

TL/F/9908-8
FIGURE 1-4. Temperature Compensation
As junction temperature increases and the forward baseemitter voltage of the output emitter-follower decreases, the collector node of the current switch must become more negative. Since the current-source bias voltage, V_{CS}, is independent of temperature, the switch curent increases with temperature due to the temperature dependence of $V_{B E C}$. The combination of temperature controlled current, I_{E}, and the cross-connect branch current, I_{x}, forces the proper temperature coefficient at the collector node of the current switch to null out the $V_{B E O}$ tracking coefficient. ${ }^{3}$
The schematic for the reference network displays a V_{BE} amplifier in the bottom left corner (Figure 1-5). Two baseemitter junctions are operated at different current densities, J 1 and J 2 . The resulting voltage difference, V_{BE} minus $\mathrm{V}_{\mathrm{BE} 2}$, appears across R1 and is amplified by the ratio R2/ R1. Note that R2 is used twice, once to generate $V_{C S}$ and once to generate V_{BB}. The different current densities, J1 and J2, result in a positive temperature tracking coefficient across R2, which cancels the negative diode-tracking coefficient of $V_{B E 3}$ and $V_{B E 4}$. The $V_{C S}$ and the $V_{B B}$ thus generated are temperature insensitive at the extrapolated bandgap voltage of silicon ${ }^{1,2}$ (approximately 1300 mV). ${ }^{4} \mathrm{R}_{\mathrm{x}}$ in the $V_{B E}$ amplifier compensates for process variations of β and $\Delta \mathrm{V}_{\mathrm{BE}} .{ }^{5}$ Voltage regulation is achieved through a shunt regulator shown at the right side of the schematic.

FIGURE 1-5. Reference Network

Characteristics

F100K compatibility with existing ECL logic families and memories permit direct interface with slower logic families and ensures immediate memory availability. The typical logic swing is 800 mV (Figure 1-6) and all voltage levels are specified with a 50Ω load to -2 V at all outputs to provide transmission line drive capability. However, the inherently low output impedance (Figure 1-7) and maximum specified output current, 50 mA , make 25Ω drive possible at any or all outputs. Alternately, of course, higher termination impedances or other termination schemes are also useful.
 TL/F/9908-10
FIGURE 1-6. Transfer Characteristics

TL/F/9908-11
FIGURE 1-7. Output Characteristics vs Output Terminations
F100K exhibits relatively constant output levels and thresholds over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ specified temperature range and -4.2 V to -4.8 V specified voltage range (Figure $1-8$). $V_{E E}$ power supply current is also constant over the specified voltage range (Figure 1-9); therefore:

Fully Compensated ECL (over V_{EE} range)

TL/F/9908-14

Uncompensated ECL（over VEE range）

TL／F／9908－12
FIGURE 1－8．Transfer Characteristics

Uncompensated ECL（over temperature）

TL／F／9908－13
Fully Compensated ECL（over temperature）

TL／F／9908－15
FIGURE 1－8．Transfer Characteristics（Continued）
－Propagation delay is relatively constant versus power supply voltage variations thus tightening the $A C$ window．
－Power dissipation is a linear function of the supply volt－ age，reducing worst－case power consumption．
The typical propagation delay of an SSI gate function driving a 50Ω transmission line is 0.75 ns ，including package，with a power dissipation of 40 mW resulting in a speed－power product of 30 pJ ．For optimized MSI functions，the internal gates can dissipate $<10 \mathrm{~mW}$ with average propagation de－ lay of $<0.5 \mathrm{~ns}$ ，giving a power－speed product of $<5 \mathrm{pJ}$ ．

TL／F／9908－16
FIGURE 1－9．Change in I_{EE} vs Change in V_{EE}
F100K has a tighter $A C$ window over the wide range of envi－ ronmental conditions；thus，the system timing requirements are eased and maximum system clock rates are increased． At the sacrifice of AC performance，the small－signal input impedance was conservatively designed to be positive－real over the frequency range encountered by any circuit input． This provides adequate damping to insure AC stability within the system．

F100K 300 Series Design Philosophy

F100K 300 Series was designed to improve several per－ formance parameters while still maintaining the speed and functionality requirements of the original F100K family． These new improvements enable 300 Series to be used in an even broader range of applications．
Most importantly， 300 Series products all meet F100K＇s op－ timized speeds and edge rates，while consulting up to 50% less power．These lower power designs，combined with the manufacturability of the FAST－LSI process（see Process Technology），enabled the 300 Series line to be reliably packaged in plastic leaded chip carrier（PCC）packages．A graph is shown comparing the power consumption of the F100124 and F100324 vs．supply voltage（Figure 1－10）．In addition， 300 Series is designed with a more stable voltage reference network，providing a single set of DC specifica－ tions across a wider supply voltage range（ -4.2 V to -5.7 V ），easing the design of 300 Series into systems which use -5.2 V power supplies．Also， 300 Series products have been designed to comply with all MIL－STD－883C require－ ments，including operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．Finally，electrostatic discharge （ESD）protection diodes have been added to both input and output circuitry，guaranteeing a minimum of 2000V ESD pro－ tection for all 300 Series products．

Several new circuits were utilized to achieve the performance improvements. The stabilized DC characteristics across the -4.2 V to -5.7 V power supply range are achieved through use of an improved reference network (Figure 1-11). This network replaces a resistor with a PNP transistor $\left(Q_{3}\right)$. The collector-emitter voltage of Q_{3} varies with $V_{C C}$, allowing the voltage at the base of Q_{6} to remain constant as V_{CC} varies. This, in turn, stabilizes both V_{BB} and V_{CS}, so that as V_{EE} varies from -4.2 V to -5.7 V , V_{BB} varies no more than $15 \mathrm{mV}-20 \mathrm{mV}$. (Variation of V_{BB} in F100K 100 Series products over this same voltage range can be as much as $70 \mathrm{mV}-80 \mathrm{mV}$). The improved stability of 300 Series vs. $V_{C C}$ is reflected in the single set of DC I/O specifications guaranteed across this wider voltage range. These specifications are identical to the F100K 100 Series specifications listed at -4.5V. As shown in Figure 1-12, they increase minimum noise margins guaranteed by 300 Series to 140 mV .

FIGURE 1-10. 300 Series Power Reduction

TL/F/9908-18
FIGURE 1-11. 300 Series Reference Network

TL/F/9908-19

100 Series Logic

$V_{N H}=115 \mathrm{mV}$
$V_{N L}=115 \mathrm{mV}$
$V_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V
$V_{\mathrm{NH}}=\mathrm{V}_{\mathrm{OH}} \operatorname{Min}-\mathrm{V}_{\mathrm{IH}} \operatorname{Min}$
$V_{N L}=V_{I L} M a x-V_{O L} \operatorname{Max}$

300 Series Logic
$V_{N H}=140 \mathrm{mV}$
$V_{\mathrm{NL}}=145 \mathrm{mV}$
$V_{E E}=-4.2 \mathrm{~V}$ to -5.7 V

FIGURE 1-12. 300 Series Noise Margins

All 300 Series products are designed to operate over the full military temperature range. To achieve this, internal voltage swings were increased to guardband against transistor saturation at temperature extremes. The faster transistor speeds offered by the FAST-LSI process compensated for the increased delays introduced by the wider voltage swings. Some of the more complex products utilize multilevel series gating to achieve higher levels of logic complexity at while reducing gate delays and power consumption. These products employ a Widlar Current Sink (Figure 1-13) to compensate for V_{BE} shifts at $-55^{\circ} \mathrm{C}$. In this circuit, the emitter resistor is removed from the current source $\left(Q_{1}\right)$, providing more voltage headroom at lower temperatures, and avoiding saturation of the current source at $-55^{\circ} \mathrm{C}$. A second transistor $\left(\mathrm{Q}_{2}\right)$, driven by a voltage biased at $\mathrm{V}_{\mathrm{CS}}+$ $V_{B E}$, provides $V_{C S}$ at its emitter to drive the current source. This minimizes power by reducing the loading on the reference generator. A temperature-compensated current mirror $\left(Q_{3}\right)$ is employed to control the base voltage of the current source so that it doesn't move regardless of V_{EE} or temperature changes.

Electrostatic discharge (ESD) protection diodes were added to all 300 Series designs (Figure 1-14) specifically in the circuit paths that were most prone to ESD damage on F100K 100 Series products: input-to- V_{CC}, input-to- V_{EE}, and output-to- V_{Cc}. These diodes ($\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3}) are utilized to shunt the current caused by an ESD voltage pulse away from either the input or output circuitry. Depending on the polarity of the ESD voltage, the diodes either become for-ward-biased, directing the current into the supply, or go into reverse breakdown, directing the current into the substrate. Either way, the ESD-caused current is shunted away from the input and output transistors, avoiding damage to the circuitry. The diodes are designed to be rugged enough to guarantee 2000 V of ESD protection on all 300 Series products (they typically withstand up to 4000V). Even in providing this protection level, these diodes have a negligible impact on input capacitance. Addition of these diodes typically adds only tenths of picofarads to each product's input capacitance.

FIGURE 1-13. 300 Series Widlar Current Sink

FIGURE 1-14. 300 Series ESD Protection Diodes

System Aspects

F100K provides high-density digital functions that outperform all other families on the market today. How does this increased circuit performance and higher on-chip density improve system performance?
Propagation delay and transition times vary (AC windows) when functions are operated at the extremes of the specified environmental ranges. With F100K, these variations are reduced and more predictable system timing is achieved. For synchronous machines and very high speed asynchronous systems, timing and its predictability are of utmost importance. Due to F100K constant supply current versus power supply voltage and because of nearly constant levels and thresholds with respect to temperature, voltage variations and gradients, speed skews are minimized.
Not only timing but also maximum system clock rate is affected by the tighter AC window. Thus, with F100K the system designer can use a higher speed value in his worstcase calculations. This can be translated into higher possible system clock rates. Therefore, a machine can perform at up to twice the frequency, solely due to the F100K compensation features. Noise immunity will be of utmost importance in next generation computers, since much of the noise generated within the system is inversely proportional to the switching transition time of the circuits. The F100K transition time is typically 0.7 ns as compared to 2.0 ns in slower ECL families and should therefore increase system crosstalk by the same ratio.
F100K combats the increased system noise by maintaining a virtually invariant noise immunity with variations and gradients in power supply voltage, ambient and junction temperatures. The variation in junction temperatures is much larger than in earlier computer systems because of the mixture of LSI and SSI functions on the same boards.

Features

F100K ECL logic components are designed to be used in high-speed, low-noise systems and offer significant advantages over other logic families. Some of the important features and advantages are summarized below.

Low Propagation Delay

F100K ECL features gate delays that are typically 0.75 ns (750 picoseconds) with counters, registers and flip-flops operating in the $400-500 \mathrm{MHz}$ range. When compared to other logic families such as Schottky TTL or slower ECL families, system performance can be doubled or tripled. Tighter AC distribution helps system timing requirements and increases system clock rates.

Moderate Edge Rates

Because of the nature of current mode switching which uses differential comparison techniques and avoids transistor storage delays, rise times can be controlled by internal time constants without sacrificing throughout delays. Slower rise times minimize ringing and reflections on interconnection wiring and simplify physical design. The typical edge rate for F 100 K ECL is $1 \mathrm{~V} / \mathrm{ns}$, only about 80% of the edge rate of Schottky TTL. It can be shown that for ECL circuits, the natural rise and fall times are approximately equal to the propagation delay. This relationship is considered optimum for use in high-speed systems.

Wired-OR Capability

ECL outputs can be wired together where wiring rules permit, to form the positive logic-OR function, thus achieving an extra level of gating at no parts count expense. Data bussing and party line operations are facilitated by this features.

Complementary Outputs

A majority of F100K ECL logic elements have complementary outputs, providing numerous opportunities for reduction of package count and power consumption when mechanizing logic equations. Further, the system incurs no extra penalty in time delay since the complementary ECL outputs switch simultaneously.
A significant advantage to complementary outputs is that, since both the true and complement logic functions are available, ICC imbalance can be minimized either by using both outputs in the design or merely terminating unused outputs. In this way, the constant current characteristic of ECL is not compromised and power supply noise is minimized.

Low Output Impedance, High Current Capacity

As operating speeds are increased to achieve the higher performance levels demanded of digital systems, ordinary wiring begins to exhibit distributed parameter characteristics, as opposed to a lumped capacitance nature at low speeds.
Characteristic impedances of normal wiring and printed circuit interconnections generally fall in the 50Ω to 250Ω range. With these low impedance lines and fast transitions, the signals are attenuated by the voltage divider action between the circuit output impedance and the characteristic impedance of the interconnection.
Voltage mode circuits have a HIGH state output impedance of from 50Ω to 150Ω and thus exhibit an output stepped characteristic, first reaching about 50% of final value and later reaching the final value in another step. F100K ECL output impedances under 10Ω insure a complete, full valued, signal into a transmission line. Also, F100K ECL outputs are specified to drive a 50Ω load (some devices are specified to drive a 25Ω load). Outputs are capable of supply 50 mA or more and can thus support the quiescent current required for passive terminations.

Convenient Data Transmission

The complementary high-current outputs of F100K ECL elements are well suited for driving twisted pair or other balanced lines in a differential mode, thereby enhancing field cancellation and minimizing crosstalk between subsystems.

High Common-Mode Noise Rejection

Differential line receivers provide common-mode noise rejection of 1 V or more for induced and ground noise. Differential receiving requires less signal swing than single ended and thus allows more reliable interpretation of low signal swings.

Constant Supply Current

The supply current drain of F100K ECL elements is governed by one or more internal constant current sources supplying operating current for differential switches and level shifting networks. Since the current drain is the same regardless of the state of the switches, F100K ECL circuits present constant currents loads to power supplies (see Complementary Outputs).

Low Power Loss in Stray Capacitance

Energy is consumed each time a capacitor is charged or discharged so the energy loss rate, or power, goes up with switching frequency. Since the energy stored in a capacitor is proportional to the square of the voltage and F100K ECL signal swings are four to five times less than those of TTL, power loss in stray capacitance may be an order of magnitude less than that of TTL.

Low Noise Generation

In ECL systems, power supply lines are not subjected to the large current spikes common with TTL designs. Inherently, ECL is a constant current family without the totem-pole structures found in TTL circuits which generate the large current spikes. Since ECL voltage swings are much smaller than TTL, the current spikes caused by charging and discharging stray capacitances are much smaller with ECL than with TTL of comparable edge rates.

Low Crosstalk

Induced noise signals are proportional to signal swings and edge rates. The lower swing and slower edge rate of F100K ECL results in low levels of crosstalk.

System Benefits

The National F100K ECL Family offers improvements over other ECL families such as voltage and temperature compensation, higher integration levels, improved packaging, planned pinouts, lower propagation delay and more complementary outputs. These improvements offer measurable advantages to the design(er) of high-performance systems.

Easier Engineering

Designers have increased confidence that designs realized in F100K will operate with good margins over voltage and temperature variations in prototypes, production models and field installations. Less effort need be expended doing detailed voltage and temperature calculations and testing. With noncompensated ECL, noise margins cannot be guaranteed unless both the receiving and transmitting circuit operate at the same temperature and V_{EE}. This can cause a problem when attempting to transfer a breadboard or prototype system to production.
Since output swings and input thresholds remain almost constant over temperature and V_{EE} variations, complex control systems for power supply levels and more-than-adquate cooling are not necessary with F100K. This results in a more economical and better operating system.

Circult Design

F100K ECL benefits from sound, well-engineered circuit designs. All input pins exhibit positive/real input impedance to eliminate system oscillations. Input buffering is used to reduce loads on lines which drive multiple internal gates.

High Performance

The regulation and control of DC and AC parameters achieved by F100K ECL assures that signal timing and propagation delays in critical paths are relatively insensitive to changes or gradients of temperature and supply voltage. Guardbands can be narrower, yet provide a higher degree of confidence due to the elimination of skew between output levels at one location and input threshold at another.
The consistency of response and security of noise margins permit operation at higher clock rates and thus increase system performance.

Easier Debugging

With F100K, debugging of systems can proceed more rapidly than with uncompensated ECL. When a cabinet or enclosure is opened for access in debugging, the resultant change in thermal conditions has almost no effect on F100K signal swings, propagation delays, edge rates or noise margins.

Flexibility

F100K is designed to operate at -4.5 V for reduced power dissipation. If compatibility with other ECL families is a requirement, F100K 300 Series guarantees specifications between -4.2 V and -5.7 V due to its improved voltage compensation features.

Fan-In/Fan-Out

All F100K ECL outputs are specified to drive 50Ω transmission lines; this makes them suitable for driving very-high fanout loads. In addition, some F100K outputs are specified to drive 25Ω lines, which would be the case if a 50Ω party-line bus terminated at both ends were being driven.

System Design

F100K ECL was designed to be the ultimate standard packaged IC logic family. System design constraints were considered and the F100K family was designed for overall ease of system design and use while making the maximum use of the very fast propagation delay available.

Packaging

The initial package selected for the F100K family was a 24pin Flatpak, 0.375 inches square, with leads on 50 -mil centers, 6 leads per side. This package was chosen because its electrical characteristics minimized performance degradations of the circuit and its small footprint optimized board packing density. For customers who desire to use conventional through-hole assembly technology, the 24-pin ceramic dual in-line package is available as well. By utilizing the available F100K packages, and high chip complexities within the family, the user can achieve system densities two to three times higher than that possible with other ECL logic families.
In addition to the ceramic DIP and ceramic flatpak packages, all 300 Series products also offer a 28 -pin plastic leaded chip carrier (PCC) package for low cost, high density surface mount assembly. This package is approximately 0.490 inches square, with J-bend leads on 50 -mil centers, 7 leads per side. The leadframe has been designed with extra thermal paths which provide approximately $45^{\circ} \mathrm{C} / \mathrm{Wt}$ in air flow of 500 linear feet per minute.
For information on thermal resistance please see section on Power Distribution and Thermal considerations.

Using F100K ECL 300 Series in Military Applications

With the introduction of National's F100K ECL 300 Series comes the advent of $F 100 \mathrm{~K}$ ECL in military applications. The special concerns addressed in the 300 Series design criteria enables this family to specify operation over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and to comply fully with the requirements of MIL-STD-883 Revision C.

As in the commercial world, with military systems becoming more complex, speed becomes a major consideration. Speeds which are pushing Schottky and CMOS technologies to their maximum performance limits, forcing designers to look to faster logic technologies. But speed, of course, is not the only consideration military designers have to contend with. Power consumption, package/function size, price, ESD susceptibility, radiation tolerance and operation in any of a number of harsh environments must be addressed by a military system designer, and all have been addressed in the design of the F100K 300 Series Family.
The relatively high speed-to-power product of the F100K ECL 300 Series Family allows these products to be used in a wide variety of applications. As systems begin to strain under the $30 \mathrm{MHz}-40 \mathrm{MHz}$ limits of some of the more conventional logic families, the 300 Series with its data rates exceeding 100 MHz , becomes a viable solution. The reduced power operation offered by the 300 Series product line eliminates the last barriers inhibiting the extensive usage of ECL in battery powered systems. Mixing F100K ECL 300 Series products with other logic families is also made easier with a variety of level translators and a wide operating voltage range of -4.2 V to -5.7 V .
The lower power and improved ESD protection will also enhance the overall reliability of these products. The lower power operation will by drawing less current, decrease the package temperature and increase the life expectancy of these products. The 2000 V ESD protection helps eliminate the problem of "walking wounded" devices. Those devices which may be weakened by improper handling but not to a point where the damage could be detected. These "walking wounded" devices may eventually drift or even fail during operation, causing in some circumstances, a system failure. The high radiation tolerance of these products, a benefit inherent with the FAST-LSI process, enables these devices to withstand large doses of radiation such as those encountered in space applications.
The -4.2 V to $-5.7 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$ operating voltage range could be perhaps the most significant feature of this family. One set of AC and DC electrical specifications over this wide voltage supply range means that you will be able to mix 300 Series products with other logic families operating over a much narrower voltage supply range, without requiring separate power supplies. Special care though, should still be taken when mixing F100K ECL 300 Series products with other logic families. These considerations are addressed in more detail in the F100K ECL Design Guide.
Among the many other benefits this family offers is full temperature compensation and high noise immunity. Both of these features are extremely important in the environments military systems are subjected to, or standards to which they must comply. The temperature compensation circuit of F100K ECL ensures stable DC performance over temperature changes in the external environment, as well as temperature fluctuations within a system, or even on one circuit board. The high noise immunity provides clean operation and few system hiccups due to noise, even when operating in a noisy environment.

Definitions of Symbols and Terms

AC SWITCHING PARAMETERS

fcount (Count Frequency/Toggle Frequency/Operating Frequency): The maximum repetition rate at which clock pulses may be applied to sequential circuit. Above this frequency the device may cease to function.
t_{AA} (Address Access Time): 50\% points of address input pulse to data output pulse.
$t_{\text {Acs }}$ (Chip Select Access Time): 50% points of select pulse to data output pulse/leading edges.
t_{h} (Hold Time): The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its continued recognition.
$t_{\text {PLH }}$ (Propagation Delay Time): The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined LOW level to the defined HIGH level.
$t_{\text {PHL }}$ (Propagation Delay Time): The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined HIGH level to the defined LOW level.
$\mathrm{t}_{\text {RCS }}$ (Chip Select Recovery Time): Data output pulse/ trailing edges.
ts (Setup Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its recognition.
ts $_{\text {S }}$ (Release Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the master set or reset must be released (inactive) to ensure valid data is recognized.
$t_{\text {TLH }}$ (Transition Time, LOW to HIGH): The time between two specified reference points on a waveform which is changing from LOW to HIGH.
$\boldsymbol{t}_{\text {THL }}$ (Transition Time, HIGH to LOW): The time between two specified reference points on a waveform which is changing from HIGH to LOW.
t_{pw} (Pulse Width): The time between 50 percent amplitude points on the leading and trailing edges of a pulse.
$\mathrm{t}_{\mathrm{PHZ}}$ (Output Disable Time of a TRI-STATE® Output from High Level): The time between the 1.5 V level on the input and a voltage 0.3 V below the steady state output HIGH level with the TRI-STATE output changing from the defined HIGH level to a high impedance (OFF) state.
$t_{p L z}$ (Output Disable Time of a TRI-STATE Output from LOW Level): The time between the 1.5 V level on the input and a voltage 0.3 V above the steady state output LOW level with the TRI-STATE output changing from the defined LOW level to a high impedance (OFF) state.
$\mathbf{t}_{\text {PZH }}$ (Output Enable Time of a TRI-STATE Output to a HIGH Level): The time between the 1.5 V levels of the input and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a HIGH level.
tpZL $^{(O u t p u t ~ E n a b l e ~ T i m e ~ o f ~ a ~ T R I-S T A T E ~ O u t p u t ~ t o ~ a ~}$ LOW Level): The time between the 1.5 V levels of the input and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a LOW level.
ts, G-G $^{\text {(Skew, Gate to Gate): also referred to as tOST }}$ (Output Skew Time): the absolute value of the difference between the actual propagation delays for any two outputs of the same device. This applies to any combination of outputs switching LOW to HIGH and/or HIGH to LOW.
tost $^{\text {(Output Skew Time): the absolute value of the differ- }}$ ence between the actual propagation delays for any two outputs of the same device. This applies to any combination of outputs switching LOW to HIGH and/or HIGH to LOW.
$\mathbf{t}_{\mathbf{w}}$ (Write Pulse Width): 50% points of write enable input pulse.
$t_{\text {WHA }}$ (Address Hold Time): 50\% points of address pulse to trailing edge of write enable pulse.
$\mathbf{t}_{\text {WHCS }}$ (Chip Select Hold Time): 50\% points of trailing edges of chip select pulse to write enable pulse.
$t_{\text {whD }}$ (Data Hold Time after Write): 50% points of trailing edges of data input pulse to write enable pulse.
$\mathbf{t}_{\text {WR }}$ (Write Recovery Time): 50% points of trailing edges of write enable pulse to data output pulse.
$\mathrm{t}_{\text {Ws }}$ (Write Disable Time): 50% points of leading edges of write enable pulse to data output pulse.
$t_{\text {WSA }}$ (Address Setup Time): 50\% points of address pulse to leading edge of write enable pulse.
$t_{\text {wscs }}$ (Chip Select Setup Time): 50\% points of leading edges of chip select pulse to write enable pulse.
$t_{\text {WSD }}$ (Data Setup Time Prior to Write): 50% points of leading edges of data input pulse to write enable pulse.

CURRENTS

Positive current is defined as conventional current flow into a device lead. Negative current is defined as conventional curent flow out of a device lead.
I_{EE} (Power Supply Current): The current required by each device from the $V_{E E}$ supply. This value represents only the internal current required by the specified device, and does not include the current required for loads or terminations.
$I_{\text {TrL }}$ (Supply Current): The current flowing into the $V_{T T L}$ supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst-case operation.
I_{IH} (Input Current HIGH): The current flowing into a device lead with the specified V_{IH} applied to the input. This value represents the worst case DC input load that a device presents to a driving element.
IL (Input Current LOW): The current flowing into a device lead with the specified $V_{I L}$ applied to the input.
I_{OH} (Output HIGH Current): The current flowing out of the output when it is in the HIGH state. For a turned-off opencollector output with a specified HIGH output voltage applied, the I_{OH} is the leakage current.
IOL (Output LOW Current): The current flowing into an output when it is in the LOW state.
Ios (Output Short Circuit Current): The current flowing out of a HIGH-state output when that output is short circuited to ground (or other specified potential).

Iozh (Output OfF Current HIGH): The current flowing into a disable TRI-STATE output with a specified HIGH output voltage applied.
IozL (Output OFF Current LOW): The current flowing out of a disabled TRI-STATE output with a specified LOW output voltage applied.

VOLTAGES

All voltage values are referenced to V_{CC} (or ground) which is the most positive potential in an ECL system.
$V_{B B}$ (Blas Voltage): The internally generated reference voltage which is used to set the input and output threshold levels.
$\mathbf{V}_{\text {CC }}$ (CIrcuit Ground): This is the most positive potential in the ECL system and it is used as the reference level for other voltages.
$V_{\text {CCA }}$ (Separate Circuit Ground): The circuit ground for the buffered current switch. Outside the package, the $V_{C C}$ and $V_{C C A}$ leads should be connected to the common $V_{C C}$ distribution. Internally, the separation of V_{CC} and $\mathrm{V}_{\mathrm{CCA}}$ insures that any change in load currents during switching does not cause a change in $V_{C C}$ through the small but finite inductance of the $V_{C C A}$ bond wire and package lead.
$V_{C S}$ (Current Source Voltage): The internally generated potential used to control the level of the active current source.
\mathbf{V}_{EE} (Power Supply Voltage): This potential is the system power supply voltage and it is the most negative potential in the system.
$\mathrm{V}_{\mathrm{EES}}$ (Substrate V_{EE}): These pins (on the PCC package only) provide extra thermal conduction paths, therefore reducing θ_{JA}. These pins must be connected to the V_{EE} plane or not connected at all.
$V_{T T L}$ Supply Voltage: The range of the TTL power supply voltage over which the device is guaranteed to operate within the specified limits.
$\mathbf{V}_{I H}$ (Input Voltage HIGH): The range of input voltages that represents a logic HIGH level in the system.
$V_{I H}$ (Max): The most positive $V_{I H}$.
$V_{I H}(M / n)$: The most negative $V_{I H}$. This value represents the guaranteed input HIGH threshold for the device.
$V_{\text {IL }}$ (Input Voltage LOW): The range of input voltages that represents a logic LOW level in the system.
$V_{\text {IL (}}$ Max): The most positive $V_{\text {IL }}$. This value represents the guaranteed input LOW threshold for the device.
$\mathrm{V}_{\mathrm{IL}}(\mathrm{MIn})$: The most negative $\mathrm{V}_{\text {IL }}$.
V_{OH} (Output Voltage HIGH): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a HIGH level at the output.
V_{OH} (Max): The most positive V_{OH} under the specified input and loading conditions.
$\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$: The most negative V_{OH} under the specified input and loading conditions.
$V_{\text {OHC }}$: The output HIGH corner point or guaranteed HIGH threshold voltage with the inputs set to their respective threshold levels.

VOL (Output Voltage LOW): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a LOW level at the output.
$V_{\text {OL (Max) }}$: The most positive $V_{O L}$ under the specified input and loading conditions.
V_{OL} (Min): The most negative V_{OL} under the specified input and loading conditions.
Volc: The output LOW corner point or guaranteed LOW threshold voltage with the inputs set to their respective threshold levels.
$\mathbf{V}_{\text {NH }}$ (HIGH Level Noise Margin): Noise margin between the output HIGH level of a driving circuit and the input HIGH threshold level of its driven load. A conservative value for V_{NH} is the difference between $\mathrm{V}_{\mathrm{OHC}}$ and V_{IH} (Min).
$V_{\text {NL }}$ (LOW Level Noise Margin): Noise margin between the output LOW level of a driving circuit and the input LOW threshold level of its driven load. A conservative value for $V_{N L}$ is the difference between $V_{\text {IL }}$ (Max) and $V_{\text {OLC }}$.

References

1. H.H. Muller, W.K. Owens, and P.W.J. Verhofstadt, "Fully Compensated Emitter-Coupled Logic: Eliminating the Drawbacks of Conventional ECL", IEEE Journal of SolidState Circuits, October 1973, pp. 362-367.
2. R.R. Marley, "On-Chip Temperature Compensation for ECL'", Electronic Products, March 1, 1971.
3. V.A. Dhaka, J.E. Muschinske, and W.K. Owens, "Subnanosecond Emitter-Coupled Logic Gate Circuit Using Isoplanar II", IEEE Journal of Solid-State Circuits, October 1973, pp. 368-372.
4. R.J. Widlar, "New Developments in IC Voltage Regulators", ISSCC Digital Technical Papers, February 1970, pp. 157-159.
5. W.K. Owens, "Temperature Compensated Voltage Regulator Having Beta Compensating Means", United States Patent, No. 3,731,648, December 25, 1973.

Section 2
F100K 300 Series
Datasheets

Section 2 Contents
F100301 Low Power Triple 5-Input OR/NOR Gate . 2 2-3
F100302 Low Power Quint 2-Input OR/NOR Gate . 2-8
F100304 Low Power Quint AND/NAND Gate 2 .13
F100307 Low Power Quint Exclusive OR/NOR Gate . 2-17
F100311 Low Skew 9-Bit Clock Driver . 2-21
F100313 Low Power Quad Driver . 2-22
F100314 Low Power Quint Differential Line Receiver . 2-27
F100321 Low Power 9-Bit Inverter . 2 2- 28
F100322 Low Power 9-Bit Buffer . 2-34
F100324 Low Power Hex TTL-to-ECL Translator . 2 .38
F100325 Low Power Hex ECL-to-TTL Translator 2-43
F100328 Low Power Octal ECL/TTL Bidirectional Translator with Latch 2-50
F100329 Low Power Octal ECL/TTL Bidirectional Translator with Register 2-51
F100331 Low Power Triple D Flip-Flop . 2 .52
F100336 Low Power 4-Stage Counter/Shift Register . 2-53
F100341 Low Power 8-Bit Shift Register . 2 .68
F100343 Low Power Octal Latch . 2-76
F100344 Low Power Octal Latch with Cutoff Drivers . 2-83
F100350 Low Power Hex D Latch . 2-90
F100351 Low Power Hex D Flip-Flop . 2-91
F100352 Low Power Octal Buffer with Cutoff Drivers . 2-98
F100353 Low Power Octal Register . 2-105
F100354 Low Power Octal Register with Cutoff Drivers . 2-112
F100355 Low Power Quad Multiplexer/Latch . 2-119
F100360 Low Power Dual Parity Checker/Generator . 2-128
F100363 Low Power Dual 8-Input Multiplexer . 2-135
F100364 Low Power 16-Input Multiplexer . 2-141
F100370 Low Power Universal Demultiplexer/Decoder . 2-142
F100371 Low Power Triple 4-Input Multiplexer . 2-143
F100393 Low Power 9-Bit ECL-to-TTL Translator with Latch . 2-144
F100395 Low Power 9-Bit ECL-to-TTL Translator with Register . 2-145

F100301

Low Power Triple 5-Input OR/NOR Gate

General Description

The F100301 is a monolithic triple 5 -input OR/NOR gate. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 23% power reduction of the F100101
- 2000V ESD protection
- Pin/function compatible with F100101
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V

Ordering Code: See Section 8

Logic Symbol

TL/F/10579-1
Connection Diagrams

Pin Names	Description
$\mathrm{D}_{n a}, \mathrm{D}_{n \mathrm{~b}}, \mathrm{D}_{\mathrm{nc}}$	Data Inputs
$\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}, \mathrm{O}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}, \mathrm{O}_{\mathrm{c}}$	Complementary Data Outputs

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$

Ceramic
Plastic $+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

ESD (Note 2)

$$
\geq 2000 \mathrm{~V}
$$

Recommended Operating Conditions
Case Temperature (T_{c})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE}) $\begin{array}{ll}\text { Commercial } & -5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V} \\ \text { Military } & -5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}\end{array}$

Commercial Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\text {IL }}(\mathrm{Max})$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL(Min) }}$	
1 H	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
I_{EE}	Power Supply Current	-29	-17	-15	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay Data to Output	0.50	1.10	0.50	1.15	0.50	1.20	ns	Figures 1 and 2 (Note 1)
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Commercial Version (Continued)									
PCC and Cerpak AC Electrical Characteristics $V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.50	1.00	0.50	1.05	0.50	1.10	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.40	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2
ts, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Military Version-Preliminary

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
VOHC	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
ILL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\text { Min }) \end{aligned}$		1,2,3	
${ }_{I} \mathrm{H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
IEE	Power Supply Current	-32	-12	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.40	1.70	0.40	1.50	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
$\mathrm{t}_{\mathrm{TLH}}$ t_{THL}	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.40	1.50	0.40	1.30	0.40	1.60	ns	Figures 1 and 2	1,2,3,5
${ }^{\text {tTLH }}$ $\mathrm{t}_{\mathrm{T} H \mathrm{H}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.10	0.30	1.10	0.30	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups $A 10$ and
A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/10579-5

FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10579-6
FIGURE 2. Propagation Delay and Transition Times

F100302

Low Power Quint 2-Input OR/NOR Gate

General Description

The F100302 is a monolithic quint 2 -input OR/NOR gate with common enable. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 43\% power reduction of the F100102
- 2000V ESD protection
- Pin/function compatible with F100102
- Voltage compensated operating range $=$ -4.2 V to -5.7 V

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

Truth Table

$\mathrm{D}_{1 \times}$	$\mathrm{D}_{2 \mathrm{X}}$	E	O_{x}	\bar{O}_{X}
L	L	L	L	H
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	L	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level

Connection Diagrams

TL/F/10580-4

TL/F/10580-3

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic

$$
+175^{\circ} \mathrm{C}
$$

Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to

Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
\geq 2000 \mathrm{~V}
$$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})	
Commercial	-5.7 V to -4.2 V
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$V_{\text {IN }}=V_{\text {IH(Min }}$ or $\mathrm{V}_{\text {IL }}(\mathrm{Max})$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
I_{H}	Input HIGH Current			240	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IH(Max }}$	
I_{EE}	Power Supply Current	-45	-36	-20	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.50	1.15	0.50	1.15	0.50	1.25	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Enable to Output	1.10	1.90	1.10	1.90	1.20	2.00	ns	(Note 1)
${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{LLH}}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Commercial Version (Continued)
PCC and Cerpak AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tphL	Propagation Delay Data to Output	0.50	1.05	0.50	1.05	0.50	1.15	ns	Figures 1 and 2 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	1.10	1.80	1.10	1.80	1.20	1.90	ns	
$t_{\text {TLH }}$ $t_{\text {THL }}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.40	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2
ts, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Military Version-Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}($ Note 3$)$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V OH	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output L.OW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
VOHC	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1,2,3,4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-48	-17	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing
immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be
considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)										
Ceramic Dual-In-Line Package AC Electrical Characteristics $V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.50	0.40	1.70	ns		1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.60	2.60	0.80	2.30	0.80	2.80	ns	Figures 1 and 2	
$\begin{aligned} & t_{\text {TLL }} \\ & t_{\text {THL }} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.30	1.60	0.40	1.30	0.40	1.50	ns	Figures 1 and 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Enable to Output	0.60	2.40	0.80	2.10	0.80	2.60	ns		
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.10	0.30	1.10	0.30	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

TL/F/10580-5

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10580-6
FIGURE 2. Propagation Delay and Transition Times

National
 Semiconductor

F100304

Low Power Quint AND/NAND Gate

General Description

The F100304 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low Power Operation
- 2000V ESD protection
- Pin/function compatible with F100104
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 8

Logic Symbol

TL/F/10581-1

Logic Equation

$$
F=\overline{\left.\left(D_{1 \mathrm{a}} \cdot D_{2 \mathrm{a}}\right)+\left(D_{1 \mathrm{~b}} \bullet D_{2 \mathrm{~b}}\right)+D_{1 \mathrm{c}} \bullet D_{2 \mathrm{c}}\right)+\left(D_{1 \mathrm{~d}} \bullet D_{2 \mathrm{~d}}\right)+\left(D_{1 \theta} \cdot D_{2 \theta}\right)} .
$$

Pin Names	Description
$\mathrm{D}_{\text {na }}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

Connection Diagrams

TL/F/10581-4

Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})
Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

Recommended Operating

 Conditions| Case Temperature (T_{C}) | $00^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| \quad Commercial | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| \quad Military | |
| Supply Voltage (VEE) | -5.7 V to -4.2 V |
| \quad Commercial | -5.7 V to -4.2 V |

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$V_{I N}=V_{I H(\text { Min })}$	Loading with
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or $\mathrm{V}_{\text {IL }}$ (Max)	50Ω to -2.0 V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
${ }_{1} \mathrm{H}$	Input High Current $\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \\ & \hline \end{aligned}$			$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	-69	-43	-30	mA	Inputs open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n a}-D_{n e}$ to $0, \bar{O}$	0.40	1.75	0.40	1.65	0.40	1.75	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to F	1.00	2.60	1.00	2.60	1.15	3.20	ns	
${ }^{\text {t }}$ TLH $\mathrm{t}_{\mathrm{thL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{Tc}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.40	1.55	0.40	1.45	0.40	1.55	ns	Figures 1 and 2
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to F	1.00	2.40	1.00	2.40	1.15	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	```Transition Time 20% to 80%, 80% to 20%```	0.35	1.10	0.35	1.15	0.35	1.10	ns	
$\mathrm{t}_{\mathrm{S}, \mathrm{G}-\mathrm{G}}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.

Military Version-Preliminary

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{I N}=V_{I H}(\text { Max }) . \\ \text { or } V_{I L}(\text { Min }) \end{gathered}$	Loading with $50 \Omega 0$ to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
VOHC	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{I N}=V_{I H}(\operatorname{Min}) \\ \text { or } V_{I L}(\operatorname{Max}) \end{gathered}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VoLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\text {EE }}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H}}$	$\begin{gathered} \text { Input High Current } \\ D_{2 a}-D_{2 e} \\ D_{1 a}-D_{1 e} \\ \hline \end{gathered}$		$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
	$\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \end{aligned}$		$\begin{aligned} & 350 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
${ }^{\text {IEE }}$	Power Supply Current	-75	-25	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, 1, 23,7 , and 8 .
Note 3: Sample tested (Method 5005, Table !) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n a}-D_{n e}$ to O, \bar{O}	0.30	1.90	0.40	1.80	0.30	2.30	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to F	0.80	2.90	0.90	2.80	0.90	3.40	ns		
$\mathrm{t}_{\mathrm{T} \text { LH }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.80	0.30	1.60	0.20	2.00	ns		4

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{\text {na }}-D_{\text {ne }}$ to O, \bar{O}	0.30	1.95	0.30	1.85	0.30	1.95	ns	Figures 1 and 2	1,2,3
${ }^{\text {tpLH}}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay Data to F	0.90	2.80	0.90	2.80	1.05	3.40	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A 11 .
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to $V_{C C}$ and $V_{E E}$ All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10581-6
FIGURE 2. Propagation Delay and Transition Times

FIGURE 1. AC Test Circuit

National Semiconductor

F100307

Low Power Quint Exclusive OR/NOR Gate

General Description

The F100307 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low Power Operation
- 2000V ESD protection
- Pin/function compatible with F100107
\square Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 8

Logic Symbol

Logic Equation

$F=\left(D_{1 a} \oplus D_{2 a}\right)+\left(D_{1 b} \oplus D_{2 b}\right)+\left(D_{1 c} \oplus D_{2 c}\right)+\left(D_{1 d} \oplus\right.$ $\left.D_{2 d}\right)+\left(D_{1 e} \oplus D_{2 e}\right)$.

Pin Names	Description
$\mathrm{D}_{\text {na }}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary
	Data Outputs

Connection Diagrams

TL/F/10582-4

TL/F/10582-3

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage (VEE)
Commercial
-5.7 V to -4.2 V
Military

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 e} \\ & \hline \end{aligned}$			$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-69	-43	-30	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{2 a}-D_{2 e} \text { to } O, \bar{O}$	0.55	1.90	0.55	1.80	0.55	1.90	ns	Figures 1 and 2
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $D_{1 a}-D_{1 e} \text { to } 0, \bar{O}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to F	1.15	2.75	1.15	2.75	1.15	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.20	0.35	1.20	0.35	1.20	ns	

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{2 a}-D_{2 e}$ to O, \bar{O}	0.55	1.70	0.55	1.60	0.55	1.70	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{1 a}-D_{1 e}$ to O, \bar{O}	0.55	1.50	0.55	1.40	0.55	1.50	ns	
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay Data to F	1.15	2.55	1.15	2.55	1.15	2.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	
ts, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.

Military Version-Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\text { Max }) \\ \text { or } \mathrm{V}_{\text {IL }}(\text { Min }) \end{gathered}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with $50 \Omega 0$ to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{iH}	Input HIGH Voltage	-1165	-870	mV	$\begin{array}{r} \hline-55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3,4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		1, 2, 3	
I_{IH}	Input High Current $\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{10} \end{aligned}$		$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(M a x) \end{aligned}$		1, 2, 3	
	$\begin{aligned} & \mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}} \\ & \mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}} \\ & \hline \end{aligned}$		$\begin{aligned} & 350 \\ & 500 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
lee	Power Supply Current	-63	-30	mA	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,23,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 e} \text { to } 0, \bar{O}$	0.45	2.10	0.45	2.00	0.45	2.10	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.45	1.90	0.45	1.80	0.45	1.90	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.05	2.95	1.05	2.95	1.05	3.20	ns		
${ }^{\text {t }}$ tLH ${ }_{\text {thHL }}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.20	0.35	1.20	0.35	1.20	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tPLH $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.45	2.10	0.45	2.00	0.45	2.10	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{1 a}-D_{1 e} \text { to } O, \bar{O}$	0.45	1.90	0.45	1.80	0.45	1.90	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.05	2.95	1.05	2.95	1.05	3.20	ns		
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10582-6
FIGURE 2. Propagation Delay and Transition Times

FIGURE 1. AC Test Circuit

F100311

Low Skew 1:9 Differential Clock Driver

General Description

The F100311 contains nine low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input (CLKIN, CLKIN). If a single-ended input is desired, the $V_{B B}$ output pin may be used to drive the remaining input line. A HIGH on the enable pin (EN) will force a LOW on all of the CLK ${ }_{n}$ outputs and a HIGH on all of the $\overline{C L K}_{n}$ output pins. A LOW on EN will return control of the $\mathrm{CLK}_{n} / \mathrm{CLK}_{n}$ outputs back to the CLKIN/CLKIN inputs.

The skew specifications on the F100311 are fully tested and guaranteed.

Features

- Low output to output skew ($\leq 75 \mathrm{ps}$)

■ 2000V ESD protection

- 1:9 low skew clock driver
- Differential inputs and outputs

Logic Symbol

Pin Names	Description
$\mathrm{CLKIN}, \overline{\mathrm{CLKIN}}$	Differential Clock Inputs
$\overline{\mathrm{EN}}$	Enable
$\mathrm{CLK}_{0-8}, \overline{\mathrm{CLK}}_{0-8}$	Differential Clock Outputs
V_{BB}	V_{BB} Output
NC	No Connect

Truth Table

CLKIN	CLKIN	EN	CLK $_{\boldsymbol{n}}$	CLK $_{\boldsymbol{n}}$
L	H	L	L	H
H	L	L	H	L
X	X	H	L	H

TL/F/10648-1

Connection Diagram

28-Pin PCC
$\alpha K_{6} \overline{\alpha x}_{8} \alpha K_{7} v_{C A} \overline{\alpha K}_{7} \mathrm{CK}_{8} \overline{\alpha K}_{8}$ (1) 10 回 7 [5

(19) 20 21 22 23 23 25

F100313

Low Power Quad Driver

General Description

The F100313 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features

- 50% power reduction of the F100113
- 2000V ESD protection
- Pin/function compatible with F100113 and F100112
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{n a}-\mathrm{O}_{n d}$	Data Outputs
$\overline{\mathrm{O}}_{n a}-\overline{\mathrm{O}}_{n d}$	Complementary Data Outputs

TL/F/10249-3

Connection Diagrams

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V EE to +0.5 V
-50 mA
$\geq 2000 \mathrm{~V}$
Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating Conditions
Case Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
Commercial
-5.7 V to -4.2 V
Military
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\left.\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}} \mathrm{Min}\right)$	
${ }_{1 / H}$	Input HIGH Current Data Enable			$\begin{array}{r} 350 \\ 240 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbf{I H}(\mathrm{Max})}$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-59		-29	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.55	1.30	0.55	1.30	0.55	1.40	ns	Figures 1 and 2
$\mathbf{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.80	1.80	0.80	1.80	0.80	1.90	ns	(Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.30	0.45	1.30	0.45	1.30	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Commercial Version (Continued)

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay Data to Output	0.55	1.20	0.55	1.20	0.55	1.30	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.80	1.70	0.80	1.70	0.80	1.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	Figures 1 and 2
$\mathrm{t}_{\mathrm{s}, \mathrm{G}-\mathrm{G}}$	Skew, Gate to Gate		TBD		TBD		TBD	ns	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Military Version — Preliminary

DC Electrical Characteristics

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ \text { or } \mathrm{V}_{\mathrm{IL}(\text { Min })} \end{gathered}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ \text { or } \mathrm{V}_{\mathrm{IL}(\text { Max }} \end{gathered}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		1, 2, 3	
${ }_{1 / 4}$	 Dnput HIGH Current Enable Data Enable		$\begin{aligned} & 350 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(M a x) \end{aligned}$		1,2,3	
			$\begin{aligned} & 500 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
leE	Power Supply Current	-65	-20	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version - Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.45	1.50	0.45	1.50	0.45	1.60	ns	Figures 1 and 2	1,2,3,5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.70	2.00	0.70	2.00	0.70	2.10	ns		
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.45	1.30	0.45	1.30	0.45	1.30	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.50	0.45	1.50	0.45	1.60	ns	Figures 1 and 2	1, 2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.70	2.00	0.70	2.00	0.70	2.10	ns		
$\begin{gathered} \mathrm{t}_{\mathrm{TLLH}} \\ \mathrm{t}_{\mathrm{THL}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.30	0.45	1.30	0.45	1.30	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2; Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Test Circuitry

FIGURE 1. AC Test Circuit

Switching Waveforms

TL/F/10249-6
FIGURE 2. Propagation Delay and Transition Times

National Semiconductor

F100314

Low Power Quint Differential Line Receiver

General Description

The F100314 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply $\left(V_{B B}\right)$ is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.
Active current sources provide common-mode rejection of 1.0V in either the positive or negative direction. A defined
output state exists if both inverting and non-inverting inputs are at the same potential between $V_{E E}$ and $V_{C C}$. The defined state is logic HIGH on the $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$ outputs.

Features

- $\mathbf{~} \mathbf{5} \%$ power reduction of the F100114
- 2000 V ESD protection
- Pin/function compatible with F100114
- Voltage compensated operating range $=$ -4.2 V to -5.7 V

Logic Symbol

$D v_{\text {в }}$

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}$	Data Inputs
$\overline{\mathrm{D}}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}$	Inverting Data Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Complementary Data Outputs

TL/F/10260-1

Connection Diagrams

TL/F/10260-2

TL/F/10260-4

TL/F/10260-3

F100321

Low Power 9-Bit Inverter

General Description

The F100321 is a monolithic 9 -bit inverter. The device contains nine inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- 30% power reduction of the F100121
- 2000V ESD protection
- Pin/function compatible with F100121
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{1}-\mathrm{D}_{9}$	Data Inputs
$\overline{\mathrm{O}}_{1}-\overline{\mathrm{O}}_{9}$	Data Outputs

TL/F/10609-1

Connection Diagrams

24-Pin DIP

TL/F/10609-4

TL/F/10609-3

```
Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
-65}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
Maximum Junction Temperature ( }\mp@subsup{T}{\textrm{J}}{}\mathrm{ )
    Ceramic
Plastic
VEE Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
    -50 mA
ESD (Note 2) \geq2000V
```


Recommended Operating Conditions

Case Temperature (T_{C})

Commercial Military

Supply Voltage (VEE) Commercial Military
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-5.7 V to -4.2 V
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$	
I_{E}	Power Supply Current	-65		-30	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functonal operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.45	1.45	0.45	1.45	0.45	1.55	ns	Figures 1 and 2 (Note 1)
${ }^{\text {tTLLH }}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.
PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 2)
$t_{\text {TLH }}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
$\mathrm{t}_{\mathrm{s}, \mathrm{G}-\mathrm{G}}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Military Version - Preliminary DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									
Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathbb{I N}}=V_{\mathbb{I H}}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V OL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
VOHC	Output HIGH Voltage	-1035		mV	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Vole	Output LOW Voltage		-1610	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1,2,3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\text { Max }) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
IEE	Power Supply Current	-70	-25	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version - Preliminary (Continued)
Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.45	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
${ }^{t_{T} \text { LH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ tphL	Propagation Delay Data to Output	0.30	1.80	0.40	1.45	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
${ }^{\text {t }}$ TLH $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Test Circuitry

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/10609-6
FIGURE 2. Propagation Delay and Transition Times

F100322

Low Power 9-Bit Buffer

General Description

The F100322 is a monolithic 9-bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Features:

- 30% power reduction of the F100122
- 2000V ESD protection
- Pin/function compatible with F100122
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 8
Logic Symbol

Connection Diagrams

TL/F/10608-4

TL/F/10608-3

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1)	
If Military/Aerospace specified please contact the Natlonal Office/Distributors for availability	ces are required, conductor Sales specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	
Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$
$V_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
l_{H}	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max }}$	
I_{EE}	Power Supply Current	-65		-30	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ tphL	Propagation Delay Data to Output	0.45	1.45	0.45	1.45	0.45	1.55	ns	Figures 1 and 2 (Note 1)
$t_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1 and 2 (Note 2)
$\begin{aligned} & \mathbf{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 2
tS,G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Military Version-Preliminary DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VoLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	- 1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input HIGH Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$	$\begin{aligned} & V_{\text {EE }}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
IEE	Power Supply Current	-70	-25	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.60	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
${ }^{\text {t }}$ LLH $t_{\text {THL }}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	0.30	1.80	0.40	1.60	0.40	1.80	ns	Figures 1 and 2	1, 2, 3, 5
$t_{\text {TLLH }}$ $t_{T H L}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns		4

[^0]
Test Circuit

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/10608-5
FIGURE 1. AC Test Circult
Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

TL/F/10608-6

F100324

Low Power Hex TTL-to-ECL Translator

General Description

The F100324 is a hex translator, designed to convert TTL logic levels to 100 K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. The output levels are voltage compensated over the full -4.2 V to -5.7 V range.
When the circuit is used in the differential mode, the F100324, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The V_{EE} and V_{TT} power may be applied in either order.

The F100324 is pin and function compatible with the F100124 with similar AC performance, but features power dissipation roughly half of the F100124 to ease system cooling requirements.

Features

■ Pin/function compatible with F100124

- Meets F100124 AC specifications

■ 50\% power reduction of the F100124

- Differential outputs
- 2000V ESD protection
- -4.2 V to -5.7 V operating range

Ordering Code: See Section 8

Logic Diagram

TL/F/9878-4

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
E	Enable Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary
	Data Outputs

Connection Diagrams

TL/F/9878-3

TL/F/9878-2

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{i H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Guaranteed LOW Signal for All Inputs	
V_{CD}	Input Clamp Diode Voltage	-1.2			V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	
I_{H}	Input HIGH Current Data Enable			$\begin{gathered} 20 \\ 120 \end{gathered}$	$\mu \mathrm{A}$	$V_{\mathbb{I N}}=+2.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	
	Input HIGH Current Breakdown Test, All Inputs			1.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}, \\ & \text { All Other Inputs = GND } \end{aligned}$	
IIL	Input LOW Current Data Enable	$\begin{aligned} & -0.9 \\ & -5.4 \end{aligned}$			mA	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$ All Other Inputs $V_{I N}=V_{I H}$	
$\mathrm{I}_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Power Supply Current	-70	-45	-22	mA	All Inputs $\mathrm{V}_{\mathbb{N}}=+4.0 \mathrm{~V}$	
1 TTL	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		25	38	mA	All Inputs $\mathrm{V}_{\text {IN }}=\mathrm{GND}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these
conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electric Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.50	3.00	ns	igures 1 and 2
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1 and 2
${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{L}} \mathrm{H}$ t THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	
$t_{S} \mathrm{G}-\mathrm{G}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in the propagation delays between each of the outputs.
Military Version-Preliminary
DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} V_{I N}=V_{I H}(\operatorname{Max}) \\ \text { or } V_{I L}(\operatorname{Min}) \end{gathered}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
	Cutoff Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	OE or DIR Low		
			-1915	mV	$-55^{\circ} \mathrm{C}$			
VOHC	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \quad \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
Volc	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	2.0	5.0	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Over $V_{T T L}, V_{E E}, T_{C}$ Range		1, 2, 3, 4
V_{IL}	Input LOW Voltage	0.0	0.8	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE},} \mathrm{T}_{\mathrm{C}}$ Range		1, 2, 3, 4
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current		20	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1, 2, 3
	Breakdown Test		100	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$		

Military Version—Preliminary (Continued)

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V (Continued)

Symbol	Parameter	Min	Max	Units	$\mathbf{T}_{\mathbf{C}}$	Conditions	Notes
I_{IL}	Input LOW Current Data Enable	-0.9 -5.4		mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$	$1,2,3$
$\mathrm{~V}_{\mathrm{FCD}}$	Input Clamp Diode Voltage		-1.2	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	$1,2,3$
I_{EE}	V_{EE} Power Supply Current	-70	-22	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	All Inputs $\mathrm{V}_{\mathrm{IN}}=+4.0 \mathrm{~V}$	$1,2,3$
$\mathrm{I}_{\mathrm{TTL}}$	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		38	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	All Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	$1,2,3$

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electric Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.30	3.30	ns	igures 1 and 2	1, 2, 3,
${ }^{\boldsymbol{t}}{ }^{\text {T }}$ LH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.80	0.45	1.80	0.45	1.80	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.30	3.30	ns	Figures 1 and 2	1,2,3
${ }^{\text {t}}{ }^{\text {TLH }}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.80	0.45	1.80	0.45	1.80	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Switching Waveform

TL/F/9878-6
FIGURE 1. Propagation Delay and Transition Times

Test Circuit

TL/F/9878-5
FIGURE 2. AC Test Circuit

Notes:

$V_{C C} . V_{C C A}=0 V, V_{E E}=-4.5 \mathrm{~V}, V_{T T L}=+5.0 \mathrm{~V}, V_{I H}=+3.0 \mathrm{~V}$
L1, L2 and L3 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

National Semiconductor

F100325

Low Power Hex ECL-to-TTL Translator

General Description

The F100325 is a hex translator for converting F100K logic levels to TTL logic levels. Differential inputs allow each circuit to be used as an inverting, non-inverting or differential receiver. An internal reference voltage generator provides V_{BB} for single-ended operation, or for use in Schmitt trigger applications. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors. When the inputs are either unconnected or at the same potential the outputs will go low.
When used in single-ended operation the apparent input threshold of the true inputs is 20 mV to 40 mV higher (positive) than the threshold of the complementary inputs. The $V_{E E}$ and $V_{T T L}$ power may be applied in either order.

Features

- Pin/function compatible with F100125
- Meets F100125 AC specifications
- 50% power reduction of the F100125
- Differential inputs with built in offset
- Standard FAST® outputs
- 2000V ESD protection
- -4.2 V to -5.7 V operating range

Ordering Code: See Section 8

Logic Diagram

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
$\bar{D}_{0}-\bar{D}_{5}$	Inverting Data Inputs
$Q_{0}-Q_{5}$	Data Outputs

TL/F/9879-4

Connection Diagrams

24-Pin Quad Cerpak

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin
$V_{\text {TTL }}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH) ESD (Note 2)

$$
\begin{aligned}
-65^{\circ} \mathrm{C} \text { to } & +150^{\circ} \mathrm{C} \\
& +175^{\circ} \mathrm{C} \\
& +150^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
+6.0 \mathrm{~V} \text { to }-0.5 \mathrm{~V}
$$

$$
V_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
\geq 2000 \mathrm{~V}
$$

Recommended Operating Conditions

Case Temperature (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	
Supply Voltage (VEE)	-5.7 V to -4.2 V
\quad Commercial	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$V_{B B}$	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-2.1 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Single-Ended Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})
V_{IL}	Single-Ended Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to V_{BB})
V_{OH}	Output HIGH Voltage	2.5			V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$
V_{OL}	Output LOW Voltage			0.5	V	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
V_{CM}	Common Mode Voltage	$V_{C C}-2.0$		$V_{C C}-0.5$	V	
$I_{I H}$	Input HIGH Current			350	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\bar{D}_{5}=V_{\mathrm{IL}(\text { Min })} \end{aligned}$
I/L	Input LOW Current	0.5			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ Min) $), D_{0}-D_{5}=V_{\text {BB }}$
los	Output Short-Circuit Current	-150		-60	mA	$\mathrm{V}_{\text {OUT }}=$ GND*
$\mathrm{IEE}^{\text {E }}$	V_{EE} Power Supply Current	-37	-27	-17	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=\mathrm{V}_{\mathrm{BB}}$
$I_{\text {TTL }}$	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		45	65	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{B B}$

*Test one output at a time.
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TIL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.80	3.50	0.90	3.70	1.00	4.00	ns	$C_{L}=15 \mathrm{pF}$ Figures 1 and 2
t_{PLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	1.60	4.30	1.70	4.50	1.80	4.80	ns	$C_{L}=50 \mathrm{pF}$ Figures 1 and 3

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.80	3.30	0.90	3.50	1.00	3.80	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Figures } 1 \text { and } 2 \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	1.60	4.10	1.70	4.30	1.80	4.60	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Figures 1 and 3
ts G-G	Skew Gate to Gate		TBD		TBD		TBD	ps	PCC only (Note 1)

Note 1: Gate to gate skew is defined as the difference in the propagation delays between each of the outputs.

Truth Table

Inputs		Outputs
$\mathbf{D}_{\boldsymbol{n}}$	$\overline{\mathbf{D}}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	H	L
H	L	H
L	L	
H	H	L
Open	Open	L
$V_{E E}$	$V_{E E}$	L
L	$V_{B B}$	L
H	$V_{B B}$	H
$V_{B B}$	L	H
$V_{B B}$	H	L

[^1]Military Version—Preliminary DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
$V_{B B}$	Output Reference Voltage	-1380	-1260	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{VBB}}=-3 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{IVBB}=-2.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3	
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})		1, 2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs (with One Input Tied to V_{BB})		1, 2, 3, 4	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.4 \\ & \hline \end{aligned}$		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}$	$\begin{aligned} & V_{I N}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	1,2, 3	
					$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage		0.5	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{IOL}=20 \mathrm{~mA}$			
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150		mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Required for Full Output Swing		1, 2, 3	
V_{CM}	Common Mode Voltage	-2000	-500	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			1, 2, 3, 4	
I_{IH}	Input HIGH Current		350	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\widetilde{D}_{5}=V_{I L} \text { (Min) } \end{aligned}$		1, 2, 3	
					$-55^{\circ} \mathrm{C}$				
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {IN }}=V_{\text {IL }}\left(\right.$ Min),$~ D_{0}-D_{5}=V_{B B}$		1,2,3	
los	Output Short Circuit Current	-150	-60	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {OUT }}=G N D$ Test One Output at a Time		1, 2, 3	
ICEX	Output HIGH Leakage Current		250	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{\text {OUT }}=5.5 \mathrm{~V}$		1,2,3	
IEE	$V_{\text {EE }}$ Power Supply Current	-35	-12	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{B B}$		1, 2, 3	
ITTL	$V_{\text {TTL }}$ Power Supply Current		65	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$D_{0}-D_{5}=V_{B B}$		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	1.50	5.00	1.60	4.70	1.70	5.70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Figures 1 and 3	1, 2, 3

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | $\mathbf{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$ | | $\mathbf{T}_{\mathbf{C}}=+25^{\circ} \mathbf{C}$ | | $\mathbf{T}_{\mathbf{C}}=+125^{\circ} \mathrm{C}$ | | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Notes

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Switching Waveform

FIGURE 1. Propagation Delay

Test Circuits

TL/F/9879-5
FIGURE 2. AC Test Circuit for 15 pF Loading

Test Circuits (Continued)

FIGURE 3. AC Test Circuit for 50 pF Loading
Notes:
$V_{C C}=O V, V_{E E}=-4.5 \mathrm{~V}, V_{T T L}=+5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance tines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{C C}, V_{E E}$ and $V_{T T L}$
All unused outputs are loaded with 500Ω to GND
$C_{L}=$ Fixture and stray capacitance $=50 \mathrm{pF}$

National Semiconductor

ADVANCE INFORMATION

F100328

Low Power Octal ECL/TTL Bi-Directional Translator with Latch

General Description

The F100328 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the F100328 transparent.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The F100328 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Identical performance to the F100128 at 50% of the supply current
- Bi-directional translation

■ 2000V ESD protection

- Latched outputs
- FAST* TTL outputs
- TRI-STATE® outputs
- Voltage compensated operating range $=$ -4.2 V to -5.7 V

Logic Symbol

TL/F/10219-1

Pin Names	Description
$\mathrm{E}_{0}-\mathrm{E}_{7}$	ECL Data I/O
$\mathrm{T}_{0}-\mathrm{T}_{7}$	TTL Data I/O
OE	Output Enable Input
LE	Latch Enable Input
DIR	Direction Control Input

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams

TL/F/10219-2

National Semiconductor

F100329

Low Power Octal ECL/TTL Bidirectional Translator with Register

General Description

The F100329 is an octal registered bidirectional translator designed to convert TTL logic levels to 100 K ECL logic levels and vice versa. The direction of the translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP) even though only one output is enabled at the time.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces the termination power and prevents loss of low state noise margin when several loads share the bus.

The F100329 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Bidirectional translation

■ ECL high impedance outputs

- Registered outputs
- FAST TTL outputs
- TRI-STATE ${ }^{\circledR}$ outputs
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Logic Symbol

TL/F/10583-1

Pin Names	Description
$\mathrm{E}_{0}-\mathrm{E}_{7}$	ECL Data I/O
$\mathrm{T}_{0}-\mathrm{T}_{7}$	TTL Data I/O
OE	Output Enable Input
CP	Clock Pulse Input
	(Active Rising Edge)
DIR	Direction Control Input

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams

National

F100331

Low Power Triple D Flip-Flop

General Description

The F100331 contains three D-type, edge-triggered master/slave flip-flops with true and complement outputs, a Common Clock (CPC), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock ($C P_{n}$), Direct Set $\left(S_{n}\right)$ and Direct Clear ($C D_{n}$) inputs. Data enters a master when both CP_{n} and CP C are LOW and transfers to a slave when CP_{n} or CP C (or both) go HIGH. The Master Set, Master Reset and individual $C D_{n}$ and $S D_{n}$ inputs override the Clock inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- 35\% power reduction of the F100131
- 2000V ESD protection
- Pin/function compatible with F100131

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Logic Symbol

Pin Names	Descriptlon
$C P_{0}-C P_{2}$	Individual Clock Inputs
$C P_{c}$	Common Clock Input
$D_{0}-D_{2}$	Data Inputs
$C D_{0}-C_{2}$	Individual Direct Clear Inputs
S_{n}	Individual Direct Set Inputs
$M R$	Master Reset Input
$M S$	Master Set Input
$Q_{0}-Q_{2}$	Data Outputs
$\mathrm{Q}_{0}-\bar{Q}_{2}$	Complementary Data Outputs

TL/F/10262-1

Connection Diagrams

TL/F/10262-3

F100336

Low Power 4-Stage Counter/Shift Register

General Description

The F100336 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable (CEP, CET) inputs are provided for ease of cascading in multistage counters. One Count Enable (CET) input also doubles as a Serial Data (D_{0}) input for shift-up operation. For shift-down operation, D_{3} is the Serial Data input. In counting operations the Terminal Count (TC) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output repeats the Q_{3} output. The dual nature of this $\overline{T C} / Q_{3}$ output and the $D_{0} / \overline{C E T}$ input means that one interconnection from one stage to the next higher stage serves as the link for
multistage counting or shift-up operation. The individual Preset $\left(P_{n}\right)$ inputs are used to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flip-flops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ 30% power reduction of the F100136
■ 2000V ESD protection

- Pin/function compatible with F100136
- Voltage compensated operating range $=$
-4.2 V to -5.7 V

Ordering Code: See Section 8

Logic Symbol

Connection Diagrams

24-PIn DIP

28-PIn PCC

TL/F/10584-2
TL/F/10584-4

TL/F/10584-5

Function Select Table

$\mathbf{S}_{\mathbf{2}}$	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Function
L	L	L	Parallel Load
L	L	H	Complement
L	H	L	Shift Left
L	H	H	Shift Right
H	L	L	Count Down
H	L	H	Clear
H	H	L	Count Up
H	H	H	Hold

Truth Table

$Q_{0}=$ LSB

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1)	
If Military/Aerospace specified please contact the National S Office/Distributors for availability	es are required, conductor Sales specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (Ceramic Plastic	$\begin{aligned} & +175^{\circ} \mathrm{C} \\ & +150^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
ESD (Note 2)	$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})	
Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (VEE)	
\quad Commercial	-5.7 V to -4.2 V
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$	
lee	Power Supply Current	$\begin{aligned} & -198 \\ & -220 \end{aligned}$		$\begin{aligned} & -100 \\ & -100 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
Ceramic Dual-In-Line Package AC Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {Shift }}$	Shift Frequency	250		250		250		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Q_{n}, \bar{Q}_{n}	0.70	1.90	0.70	1.90	0.80	2.00	ns	Figures 1 and 3 (Note 1)
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay CP to TC (Shift)	1.30	3.80	1.30	3.80	1.40	3.90	ns	Figures 1, 7, 8 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{P} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Count)	1.60	4.60	1.60	4.60	1.60	5.00	ns	Figures 1 and 9 (Note 1)
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.10	2.50	1.10	2.50	1.20	2.60	ns	Figures 1 and 4 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to TC (Count)	2.00	4.00	2.00	4.00	2.20	4.10	ns	Figures 1, 12 (Note 1)
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay MR to TC (Shift)	1.60	3.20	1.60	3.20	1.70	3.40	ns	Figures 1, 10, 11 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.20	3.20	1.20	3.20	1.40	3.70	ns	Figures 1 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $S_{n} \text { to TC }$	0.90	4.00	0.90	4.20	1.00	4.80	ns	te 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3
t_{s}	```Setup Time D P D CEP Sn MR (Release Time)```	$\begin{aligned} & 1.00 \\ & 1.30 \\ & 1.35 \\ & 1.90 \\ & 4.40 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.30 \\ & 1.35 \\ & 1.90 \\ & 4.40 \\ & 2.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.30 \\ & 1.35 \\ & 1.90 \\ & 4.40 \\ & 2.60 \\ & \hline \end{aligned}$		ns	Figure 6
t_{h}	Hold Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\overline{\mathrm{CEP}}$ S_{n}	$\begin{gathered} 0.40 \\ 0.50 \\ 0.30 \\ 0.40 \\ -0.40 \\ \hline \end{gathered}$		$\begin{gathered} 0.40 \\ 0.50 \\ 0.30 \\ 0.40 \\ -0.40 \\ \hline \end{gathered}$		$\begin{gathered} 0.40 \\ 0.50 \\ 0.30 \\ 0.40 \\ -0.40 \\ \hline \end{gathered}$		ns	Figure 6
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Commercial Version (Continued)
PCC and Cerpak AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	300		300		300		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.70	1.70	0.70	1.70	0.80	1.80	ns	Figures 1 and 3 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to TC (Shift)	1.30	3.60	1.30	3.60	1.40	3.70	ns	Figures 1, 7, 8 (Note 2)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to TC (Count)	1.60	4.40	1.60	4.40	1.60	4.80	ns	Figures 1 and 9 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1 and 4 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to TC (Count)	2.00	3.80	2.00	3.80	2.20	3.90	ns	Figures 1 and 12 (Note 2)
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to TC (Shift)	1.60	3.00	1.60	3.00	1.70	3.20	ns	Figures 1, 10, 11 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay $D_{0} / \overline{C E T}$ to $\overline{T C}$	1.20	3.00	1.20	3.00	1.40	3.50	ns	Figures 1 and 5
$t_{\text {PLH }}$ tpHL	Propagation Delay S_{n} to $\overline{T C}$	0.90	3.80	0.90	4.00	1.00	4.60	ns	
${ }^{\text {t }}$ TLH ${ }_{\mathrm{t}}^{\mathrm{THL}}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	```Setup Time D Pn D CEP Sn MR (Release Time)```	$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.25 \\ & 1.80 \\ & 4.30 \\ & 2.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.25 \\ & 1.80 \\ & 4.30 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.25 \\ & 1.80 \\ & 4.30 \\ & 2.50 \\ & \hline \end{aligned}$		ns	Figure 6
t_{h}	$\begin{aligned} & \text { Hold Time } \\ & D_{3} \\ & P_{n} \\ & \hline \frac{D_{0} / \overline{C E T}}{} \overline{C E P} \\ & S_{n} \\ & \hline \end{aligned}$	$\begin{gathered} 0.30 \\ 0.40 \\ 0.20 \\ 0.30 \\ -0.50 \\ \hline \end{gathered}$		$\begin{gathered} 0.30 \\ 0.40 \\ 0.20 \\ 0.30 \\ -0.50 \end{gathered}$		$\begin{gathered} 0.30 \\ 0.40 \\ 0.20 \\ 0.30 \\ -0.50 \\ \hline \end{gathered}$		ns	Figure 6
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4
ts, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Military Version—Preliminary DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									
Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H \text { (Max) }} \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { o } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H \text { (Min) }} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { o } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{1}	Input HIGH Voltage	-1165	-870	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
VIL	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$		1,2,3	
IIH	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$\mathrm{Ife}^{\text {e }}$	Power Supply Current	$\begin{aligned} & -208 \\ & -230 \end{aligned}$	$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to	$\begin{array}{r} -4.8 \mathrm{~V} \\ -5.7 \mathrm{~V} \end{array}$	1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stablize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input conditon and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)
Ceramic Dual-In-Line Package AC Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {shift }}$	Shift Frequency	200		200		200		MHz	Figures 2 and 3	4
t_{PLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.60	2.10	0.60	2.10	0.70	2.20	ns	Figures 1 and 3	
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay CP to TC (Shift)	1.20	4.00	1.20	4.00	1.30	4.10	ns	Figures 1, 7, 8	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to $\overline{T C}$ (Count)	1.50	4.80	1.50	4.80	1.50	5.20	ns	Figures 1 and 9	1,2,3,5
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	1.00	2.70	1.00	2.70	1.10	2.80	ns	Figures 1 and 4	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to TC (Count)	1.90	4.20	1.90	4.20	2.10	4.30	ns	Figures 1, 12	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	1.50	3.40	1.50	3.40	1.60	3.60	ns	Figures 1, 10, 11	1, 2, 3, 5
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.10	3.40	1.10	3.40	1.30	3.90	ns	Figures 1 and 5	1, 2, 3, 5
$t_{\text {PLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay S_{n} to $\overline{\mathrm{TC}}$	0.80	4.20	0.80	4.40	0.90	5.00	ns		
$\mathrm{t}_{\mathrm{TLH}}$ $t_{T H L}$	$\begin{array}{\|l} \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ \hline \end{array}$	0.45	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3	4
t_{s}		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \\ & \hline \end{aligned}$		ns	Figure 6	4
t_{n}	\qquad	$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \\ \hline \end{gathered}$		$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \\ \hline \end{gathered}$		$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \\ \hline \end{gathered}$		ns	Figure 6	4
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.20		2.20		2.20		ns	Figures 3 and 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold tempertures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroups A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroups A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Military Version—Preliminary (Continued)

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {shift }}$	Shift Frequency	200		200		200		MHz	Figures 2 and 3	4
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.60	2.10	0.60	2.10	0.70	2.20	ns	Figures 1 and 3	1, 2, 3, 5
$\mathrm{t}_{\mathrm{PL}} \mathrm{H}$ t_{PHL}	Propagation Delay CP to $\overline{T C}$ (Shift)	1.20	4.00	1.20	4.00	1.30	4.10	ns	Figures 1, 7, 8	
tpLH t_{PHL}	Propagation Delay CP to TC (Count)	1.50	4.80	1.50	4.80	1.50	5.20	ns	Figures 1, 9	1,2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	1.00	2.70	1.00	2.70	1.10	2.80	ns	Figures 1 and 4	1, 2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to TC (Count)	1.90	4.20	1.90	4.20	2.10	4.30	ns	Figures 1 and 12	
$t_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	1.50	3.40	1.50	3.40	1.60	3.60	ns	Figures 1, 10, 11	1, 2, 3, 5
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.10	3.40	1.10	3.40	1.30	3.90	ns	Figures 1 and 5	1, 2, 3, 5
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay S_{n} to TC	0.80	4.20	0.80	4.40	0.90	5.00	ns		
$\mathrm{t}_{\mathrm{T} L \mathrm{H}}$ $t_{T H L}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.45	1.10	0.35	1.10	0.35	1.10	ns	Figures 1 and 3	4
t_{s}		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.50 \\ & 1.55 \\ & 2.10 \\ & 4.60 \\ & 2.80 \end{aligned}$		ns	Figure 6	4
t_{h}		$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \end{gathered}$		$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \end{gathered}$		$\begin{gathered} 0.60 \\ 0.70 \\ 0.50 \\ 0.60 \\ -0.30 \end{gathered}$		ns	Figure 6	4
$t_{p w}(H)$	Pulse Width HIGH CP, MR	2.20		2.20		2.20		ns	Figures 3 and 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold tempertures.

Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/10584-6
FIGURE 1. AC Test Circuit

TL/F/10584-7
FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Notes:

For shift right mode, +1.05 V is applied at S_{0}.
The feedback path from output to input should be as short as possible.

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Reset)

Switching Waveforms (Continued)

FIGURE 5. Propagation Delay (Serial Data, Selects)

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input. t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 6. Setup and Hold Time

Note: Shift Right Mode; $\mathrm{S}_{0}=\mathrm{H}, \mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{2}=\mathrm{L}$.
FIGURE 7. Propagation Delay, Clock to Terminal Count (Shift Right Mode)

Note:
*Decimal representation of binary outputs.
Count Up: $S_{0}=L, S_{1}=H, S_{2}=H$; Count Down: $S_{0}=L, S_{1}=L, S_{2}=H$.
Measurement taken at 50% point of waveform.
FIGURE 9. Propagation Delay, Clock to Terminal Count (Count Up and Count Down Modes)

Output Q3

TL/F/10584-18
Note: Shift Right Mode; $S_{0}=H, S_{1}=H, S_{2}=L$.
FIGURE 10. Propagation Delay, Master Reset to Terminal Count (Shift Right Mode)

Switching Waveforms (Continued)

Input D_{3} CLOCK

TL/F/10584-19
Note: Shift Left Mode; $S_{0}=L, S_{1}=H, S_{2}=L$.
FIGURE 11. Propagation Delay, Master Reset to Terminal Count (Shift Left Mode)

TL/F/10584-20
Note:
*Decimal representation of binary outputs. Count Up Mode: $S_{0}=L, S_{1}=H, S_{2}=H$.

TL/F/10584-21

Note:

*Decimal representation of binary outputs. Count Down Mode: $S_{0}=L, S_{1}=L, S_{2}=H$.
FIGURE 12. Propagation Delay, Master Reset to Terminal Count (Count Up and Count Down Modes)

Note: If $S_{0}=S_{1}=S_{2}=$ LOW, then $T_{C}=$ LOW

TL/F/10584-13

Fast Expansion Scheme

N
 National Semiconductor

F100341

Low Power 8-Bit Shift Register

General Description

The F100341 contains eight edge-triggered, D-type flipflops with individual inputs (P_{n}) and outputs $\left(Q_{n}\right)$ for parallel operation, and with serial inputs (D_{n}) and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.
The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as de-
scribed in the Truth Table. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

■ 35% power reduction of the F100141

- 2000V ESD protection
- Pin/function compatible with F100141
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$C P$	Clock Input
S_{0}, S_{1}	Select Inputs
D_{0}, D_{7}	Serial Inputs
$P_{0}-P_{7}$	Parallel Inputs
$Q_{0}-Q_{7}$	Data Outputs

TL/F/9880-1

Connection Diagrams

TL/F/9880-4

TL/F/9880-3

Logic Diagram

TL／F／9880－5

Truth Table

Function	Inputs					Outputs							
	D_{7}	D_{0}	S_{1}	S_{0}	CP	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	\mathbf{Q}_{2}	Q_{1}	Q_{0}
Load Register	X	X	L	L	\sim	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
Shift Left Shift Left	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\widetilde{\Omega}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{4} \\ & \mathrm{Q}_{4} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	Ω	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{7} \\ & Q_{7} \end{aligned}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{4} \\ & Q_{4} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \\ & \hline \end{aligned}$
Hold Hold Hold	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & H \\ & L \end{aligned}$	No Change							

$H=$ HIGH Voltage Level
L＝LOW Voltage Level
X＝Don＇t Care
$\Omega=$ LOW－to－HIGH Transition

```
Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Dlstributors for availabllity and specifications.
Storage Temperature (TSTG)
Maximum Junction Temperature (TJ)
        Ceramic
    Plastic
VEE Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
```

Recommended Operating Conditions

Case Temperature (T_{C})	
\quad Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (VE)	
\quad Commercial	-5.7 V to -4.2 V
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
VoL	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -157 \\ & -167 \end{aligned}$		$\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Inputs Open$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Max Clock Frequency	400		400		400		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	0.90	1.90	1.00	2.00	1.00	2.10	ns	Figures 1 and 3 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		ns	Figure 4
t_{h}	Hold $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Note 1: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Max Clock Frequency	425		425		425		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.90	1.70	1.00	1.80	1.00	1.90	ns	Figures 1 and 3 (Note 1)
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1 and 3
t_{s}	Setup Time $\begin{array}{rr} \\ & D_{n}, P_{n} \\ & S_{n} \\ & \end{array}$	0.551.50		0.551.50		$\begin{aligned} & 0.55 \\ & 1.50 \end{aligned}$		ns	Figure 4
$t_{\text {h }}$	Hold Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		0.700.50		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		ns	
$t_{p w}(H)$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3
t_{s}, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ns	PCC Only (Note 2)

Military Version-Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
VOL	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Current	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		1,2,3	
I_{H}	Input High Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(M a x) \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	$\begin{array}{r} -168 \\ -178 \end{array}$	$\begin{aligned} & -55 \\ & -55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	400		400		300		MHz	Figures 2 and 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	0.50	2.50	0.70	2.30	0.70	2.80	ns	Figures 1 and 3	1,2,3,5
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.90	0.30	1.80	0.30	1.90	ns		4
$\mathrm{t}_{\text {s }}$	Setup Time D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.60 \\ & 1.70 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.60 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.60 \\ 2.40 \\ \hline \end{array}$		ns	Figure 4	
t_{h}	Hold Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{array}{r} 0.90 \\ 0.50 \\ \hline \end{array}$		$\begin{array}{r} 0.90 \\ 0.50 \\ \hline \end{array}$		$\begin{aligned} & 0.90 \\ & 0.50 \\ & \hline \end{aligned}$		ns		
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3	

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Max Clock Frequency	425		425		350		MHz	Figures 2 and 3	4
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Output	0.50	2.50	0.70	2.30	0.70	2.80	ns	Figures 1 and 3	1,2,3,5
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.90	0.30	1.80	0.30	1.90	ns		4
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.60 \\ & 1.70 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.40 \end{aligned}$		ns	Figure 4	
t_{h}	Hold Time $\begin{array}{r} D_{n}, P_{n} \\ S_{n} \\ \hline \end{array}$	$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 0.50 \end{aligned}$		ns		
$t_{p w}(H)$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Test Circuitry

FIGURE 1. AC Test Circuit

For shift right mode pulse generator connected to S_{0} is moved to S_{1}.
TL/F/9880-7
Puise generator connected to S_{1} has a LOW frequency 99% duty cycle, which allows occasional parallel load.
The feedback path from output to input should be as short as possible.
FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Switching Waveforms

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time aftor the transition of the clock that information must remain unchanged at the data input.
FIGURE 3. Propagation Delay and Transition Times

TL/F/9880-9
FIGURE 4. Setup and Hold Times

F100343

Low Power 8－Bit Latch

General Description

The F100343 contains eight D－type latches，individual in－ puts，$\left(D_{n}\right)$ ，outputs $\left(Q_{n}\right)$ ，a common enable pin（ \bar{E} ），and a latch enable pin（ $\overline{\mathrm{LE}}$ ）．A Q output follows its D input when both \bar{E} and $\overline{L E}$ are LOW．When either \bar{E} or $\overline{L E}$（or both）are HIGH，a latch stores the last valid data present on its D input prior to \bar{E} or $\overline{L E}$ going HIGH．
The F100343 outputs are designed to drive a 50Ω termina－ tion resistor to -2.0 V ．All inputs have $50 \mathrm{k} \Omega$ pull－down re－ sistors．

Features

－Low power operation
－2000V ESD protection
■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to －5．7V

Ordering Code：See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
$\overline{\mathrm{E}}$	Enable Input
$\overline{\mathrm{LE}}$	Latch Enable Input
$Q_{0}-Q_{7}$	Data Inputs
NC	No Connect

Connection Diagrams

28－Pin PCC
$Q_{1} Q_{2} Q_{3} V_{\text {ESS }} Q_{4} Q_{5} Q_{6}$困回国7515

TL／F／10250－4

24－Pin Quad Cerpak

TL／F／10250－3

Logic Diagram

Truth Table

Inputs			Outputs
$D_{\mathbf{n}}$	\bar{E}	$\overline{L E}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	L	L
H	L	L	H
X	H	X	Latched* *
X	X	H	Latched* *

*Retains data present before either $\overline{\mathrm{LE}}$ or $\overrightarrow{\mathrm{E}}$ went HIGH
$H=H I G H$ voltage level
L = LOW voltage level
X = Dont's care

```
Absolute Maximum Ratings
Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
-65*'C to +150 %
Maximum Junction Temperature ( }\mp@subsup{T}{J}{}\mathrm{ )
    Ceramic
    +175}\mp@subsup{}{}{\circ}\textrm{C
    Plastic
VEE Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
    +150}\mp@subsup{}{}{\circ}\textrm{C
-7.0V to +0.5V
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```


Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\text {IL }}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}($ Max $)$	
$l_{E E}$	Power Supply Current	$\begin{aligned} & -95 \\ & -97 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.
Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay D_{n} to Output	0.70	2.00	0.70	2.00	0.70	2.20	ns	Figures 1, 2, 3 (Note 1)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{LE}}, \overline{\mathrm{E}}$ to Output	1.40	2.90	1.40	2.90	1.60	3.10	ns	Figures 1, 2, 3 (Note 1)
${ }^{t_{T L H}}$ ${ }^{\text {t }}$ thL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 3
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	1.0		1.0		1.1		ns	Figures 1, 4
t_{h}	Hold Time $D_{0}-D_{7}$	0.1		0.1		0.1		ns	Figures 1, 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.00		2.00		2.00		ns	Figures 1, 4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)

PCC and Cerpack AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay D_{n} to Output	0.70	1.80	0.70	1.80	0.70	2.00	ns	Figures 1, 2, 3 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	1.40	2.70	1.40	2.70	1.60	2.90	ns	Figures 1, 2, 3 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 3
$\mathrm{t}_{\text {s }}$	Setup Time $\quad \mathrm{D}_{0}-\mathrm{D}_{7}$	0.90		0.90		1.00		ns	Figures 1, 4
t_{h}	Hold Time $D_{0}-D_{7}$	0.0		0.0		0.0		ns	Figures 1, 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.00		2.00		2.00		ns	Figures 1, 4
ts, G-G	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.
Military Version — Preliminary
DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
VOL	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
VOLC	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1,2,3,4
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4
ILL	input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L} \text { (Min) } \end{aligned}$		1, 2, 3

Military Version - Preliminary (Continued)

DC Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions	Notes
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\text { Max }) \end{aligned}$	1,2,3
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -100 \\ & -105 \\ & \hline \end{aligned}$	$\begin{aligned} & -35 \\ & -35 \end{aligned}$	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	1,2,3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	0.50	2.70	0.50	2.30	0.50	2.80	ns	Figures 1, 2, 3	1, 2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{LE}}, \overline{\mathrm{E}}$ to Output	0.90	3.40	1.0	3.10	1.10	3.90	ns	Figures 1, 2, 3	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.60		0.60		0.60		ns	Figures 1, 4	4
t_{h}	Hold Time $D_{0}-D_{7}$	1.50		1.50		1.70		ns	Figures 1, 4	4
$t_{p w}(H)$	Pulse Width HIGH LE, E	2.40		2.40		2.40		ns	Figures 1, 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A11.

Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version — Preliminary (Continued)

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{c}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	0.50	2.70	0.50	2.30	0.50	2.80	ns	Figures 1, 2, 3	1, 2, 3, 5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	0.90	3.40	1.0	3.10	1.10	3.90	ns	Figures 1, 2, 3	1,2, 3, 5
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
$\mathrm{t}_{\text {s }}$	Setup Time $\quad \mathrm{D}_{0}-\mathrm{D}_{7}$	0.60		0.60		0.60		ns	Figures 1, 4	4
$t_{\text {h }}$	Hold Time $\quad \mathrm{D}_{0}-\mathrm{D}_{7}$	1.50		1.50		1.50		ns	Figures 1, 4	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.40		2.40		2.40		ns	Figures 1, 4	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing
immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 2. Propagation Delays

TL/F/10250-8
FIGURE 3. Propagation and Transition Times

TL/F/10250-9
FIGURE 4. Setup, Hold and Puise Width Times

F100344

Low Power 8-Bit Latch with Cut-Off Drivers

General Description

The F100344 contains eight D-type latches, individual inputs $\left(D_{n}\right)$, outputs $\left(Q_{n}\right)$, a common enable pin (\vec{E}), latch enable ($\overline{\mathrm{LE}}$), and output enable pin ($\overline{\mathrm{OEN}}$). A Q output follows its D input when both \bar{E} and $\overline{L E}$ are LOW. When either \bar{E} or $\overline{\mathrm{LE}}$ (or both) are HIGH, a latch stores the last valid data present on its D input prior to \bar{E} or $\overline{L E}$ going HIGH.
A HIGH on $\overline{O E N}$ holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The F100344 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Cut-off drivers

■ Drives 25Ω load

- Low power operation
- 2000V ESD protection

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
\bar{E}	Enable Input
$\overline{L E}$	Latch Enable Input
$\overline{O E N}$	Output Enable Input
$Q_{0}-Q_{7}$	Data Outputs

Connection Diagrams

Logic Diagram

Truth Table

Inputs				Outputs
$\mathbf{D}_{\boldsymbol{n}}$	\bar{E}	$\overline{\mathrm{LE}}$	$\overline{\mathrm{OEN}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	L	L	L	L
H	L	L	L	H
X	H	X	L	Latched* *
X	X	H	L	Latched* *
X	X	X	H	Cutoff

*Retains data present before either $\overline{\text { EE }}$ or \bar{E} go HIGH.
H = HIGH Voltage level
L = LOW Voltage level
Cutoff = lower-than-LOW state
$X=$ Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic

$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
-7.0 V to +0.5 V
$V_{E E}$ to +0.5 V
$-100 \mathrm{~mA}$
ESD (Note 2) 22000 V

Recommended Operating Conditions
Case Temperature (T_{C})
Commercial
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
Commercial
-5.7 V to -4.2 V
Military
-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1830	-1705	-1620	mV		
VOHC	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 25Ω to -2.0 V
Volc	Output LOW Voltage			-1610	mV		
Volz	Cutoff LOW Voltage			-1950	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
I_{1}	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
IEE	Power Supply Current	$\begin{aligned} & -178 \\ & -185 \end{aligned}$		$\begin{aligned} & -85 \\ & -85 \end{aligned}$	mA	Inputs Open$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output	0.90	2.10	0.90	2.10	1.00	2.30	ns	Figures 1, 2 (Note 1)
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	1.60	3.10	1.60	3.10	1.80	3.40	ns	Figures 1, 2 (Note 1)
$\begin{aligned} & \mathrm{tpZH}^{2} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 1, 2 (Note 1)
${ }^{\text {t }}$ tLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 3

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	1.0		1.0		1.1		ns	Figures 1, 3
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.1		0.1		0.1		ns	Figures 1, 3
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{\mathrm{LE}}, \overline{\mathrm{E}}$	2.00		2.00		2.00		ns	Figures 1, 3

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLiH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay D_{n} to Output	0.90	1.90	0.90	1.90	1.00	2.10	ns	Figures 1, 2 (Note 2)
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\text { LE }}, \bar{E}$ to Output	1.60	2.90	1.60	2.90	1.80	3.20	ns	Figures 1, 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pHz}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.50 \\ \hline \end{array}$	$\begin{aligned} & 1.60 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.00 \\ 2.50 \\ \hline \end{array}$	ns	Figures 1, 2 (Note 2)
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 3
$\mathrm{t}_{\text {s }}$	Setup Time $D_{0}-D_{7}$	0.90		0.90		1.00		ns	Figures 1, 3
$t_{\text {h }}$	Hold Time $D_{0}-D_{7}$	0.0		0.0		0.0		ns	Figures 1, 3
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.00		2.00		2.00		ns	Figures 1, 3
$\mathrm{t}_{\text {S, G-G }}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version-Preliminary

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V ${ }_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			

Military Version-Preliminary (Continued)

DC Electrical Characteristics (Continued)
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
Volz	Cutoff LOW Voltage		-1950	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { MIN }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	$\overline{\text { OEN }}=\mathrm{HIGH}$	1,2,3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\mathrm{Max}) \end{aligned}$		1,2,3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -195 \\ & -205 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \mathrm{tc} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{Vtc} \end{aligned}$		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay D_{n} to Output	0.50	2.60	0.70	2.60	0.70	3.10	ns	Figures 1, 2	1,2,3,5
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{L E}, \bar{E}$ to Output	0.80	3.30	1.00	3.30	1.10	4.80	ns	Figures 1, 2	1,2,3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{array}{r} 1.00 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.00 \\ 3.00 \\ \hline \end{array}$	$\begin{array}{r} 1.10 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 3.80 \\ 2.80 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.70 \\ & 3.20 \\ & \hline \end{aligned}$	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
t_{5}	Setup Time $D_{0}-D_{7}$	1.50		1.50		1.70		ns	Figures 1, 3	4
t_{h}	Hold Time $D_{0}-D_{7}$	0.60		0.60		0.60		ns	Figures 1, 3	4
$t_{p w}(H)$	Pulse Width HIGH $\overline{L E}, \bar{E}$	2.40		2.40		2.40		ns	Figures 1, 3	4

Military Version—Preliminary (Continued)
Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay D_{n} to Output	0.50	2.60	0.70	2.60	0.70	3.10	ns	Figures 1, 2	1, 2, 3, 5
$t_{\text {PLH }}$ tpHL	Propagation Delay $\overline{\text { LE }}, \bar{E}$ to Output	0.80	3.30	1.10	3.30	1.10	4.80	ns	Figures 1, 2	1,2,3,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Progation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 3.80 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 3.20 \end{aligned}$	ns	Figures 1, 2	1, 2, 3, 5
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	4
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	1.50		1.50		1.70		ns	Figures 1, 3	4
t_{n}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{7}$	0.60		0.60		0.60		ns	Figures 1, 3	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\overline{\text { LE }}, \bar{E}$	2.40		2.40		2.40		ns	Figures 1, 3	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A 10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

TL/F/9883-6

Notes:

FIGURE 1. AC Test Circuit
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

TL/F/9883-7
FIGURE 2. Propagation Delay and Cutoff Times

FIGURE 3. Setup, Hold and Pulse Width Times

National Semiconductor

F100350

Low Power Hex D-Latch

General Description

The F100350 contains six D-type latches with true and complement outputs, a pair of common Enables (\bar{E}_{a} and \bar{E}_{b}), and a common Master Reset (MR). A Q output follows its D input when both \bar{E}_{a} and \bar{E}_{b} are LOW. When either \bar{E}_{a} or \bar{E}_{b} (or both) are HIGH, a latch stores the last valid data present on its D input before \bar{E}_{a} or \bar{E}_{b} went HIGH. The MR input overrides all other inputs and makes the Q outputs L.OW. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

w 20% power reduction of the F100150

- 2000 V ESD protection

■ Pin/function compatible with F100150

- Voltage compensated operating range $=$ -4.2 V to -5.7 V

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
\bar{E}_{a}, \bar{E}_{b}	Common Enable Inputs (Active LOW)
$M R$	Asynchronous Master Reset Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary Data Outputs

Connection Diagrams

F100351

Low Power Hex D Flip-Flop

General Description

The F100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_{a} and CP_{b}) and common Master Reset (MR) input. Data enters a master when both CP_{a} and CP_{b} are LOW and transfers to the slave when CP_{a} and CP_{b} (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- 40% power reduction of the F100151
- 2000V ESD protection
- Pin/function compatible with F100151
- Voltage compensated operating range:
-4.2 V to -5.7 V

Ordering Code: See Section 8

Logic Symbol

Connection Diagrams

Logic Diagram

TL/F/9885-4

Truth Tables (Each Flip-flop)

Inputs				Outputs
D_{n}	$\mathrm{CPa}_{\mathrm{a}}$	CP_{b}	MR	$Q_{n}(t+1)$
L	\checkmark	L	L	L
H	\sim	L	L	H
L	L	Ω	L	L
H	L	Ω	L	H
X	H	\checkmark	L	$Q_{n}(t)$
X	\sim	H	L	$Q_{n}(t)$
X	L	L	L	$Q_{n}(t)$

Asynchronous Operation				
D_{n}	$\mathbf{C P}$	\mathbf{C}	Outputs	
X	X	X	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$t=$ Time before CP positive transition
$\mathrm{t}+1=$ Time after CP positive transition
$\Omega=$ LOW-to-HIGH transition

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic
$+175^{\circ} \mathrm{C}$
Plastic
$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

Recommended Operating Conditions

Case Temperature (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Commercial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad Military	
Supply Voltage (VEE)	-5.7 V to -4.2 V
\quad Commercial	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	input HIGH Current $\begin{array}{r} M R \\ D_{0}-D_{5} \\ C P_{a}, C P_{b} \\ \hline \end{array}$			$\begin{aligned} & 350 \\ & 240 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-129		-62	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1 and 4
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3

Commercial Version (Continued)
Ceramic Dual-In-Line Package AC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {s }}$	Setup Time$\begin{aligned} & D_{0}-D_{5} \\ & M R \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		ns	Figure 5
									Figure 4
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{5}$	1.00		1.00		1.00		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH $C P_{a}, C P_{b}, M R$	2.00		2.00		2.00		ns	Figures 3 and 4

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max	Min	Max				
$f_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1 and 3		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1 and 4		
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3		
$\mathrm{t}_{\text {s }}$	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		ns	Figure 5		
				Figure 4							
$t_{\text {h }}$	Hold Time $D_{0}-D_{5}$	0.90				0.90		0.90		ns	Figure 5
$t_{p w}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$	2.00		2.00		2.00		ns	Figures 3 and 4		
$\mathrm{t}_{\mathrm{S}, \mathrm{G}-\mathrm{G}}$	Skew, Gate-to-Gate		TBD		TBD		TBD	ps	(PCC only) (Note 1)		

Note 1: Gate-to-gate skew is defined as the difference in propagation delays between each of the outputs.

Military Version-Preliminary

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			

Military Version—Preliminary (Continued)

DC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions	Notes
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for All Inputs	1,2,3,4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
ILI	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$	1,2,3
$\mathrm{IH}^{\text {H }}$	Input HIGH Curren $\begin{array}{r} M R \\ D_{0}-D_{5} \\ C P_{a}, C P_{b} \\ \hline \end{array}$		$\begin{aligned} & 300 \\ & 250 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{Co} \\ +125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\text { Max }) \end{aligned}$	1,2,3
	$\begin{array}{r} M R \\ D_{0}-D_{5} \\ C P_{a}, C P_{b} \end{array}$		$\begin{aligned} & 450 \\ & 350 \\ & 750 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
IEE	Power Supply Current	-146	-96	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Inputs Open	1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.
Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.20	0.80	2.20	0.90	2.40	ns	Figures 1 and 3	, 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	. 1.20	2.90	1.30	3.00	1.20	3.10	ns	Figures 1 and 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3	
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.60 \end{aligned}$		ns	Figure 5	4
t_{n}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.70		0.70		0.70		ns	Figure 5	
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$, MR	2.00		2.00		2.00		ns	Figures 3 and 4	

Military Version—Preliminary (Continued)

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3	4
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.00	0.90	2.20	ns	Figures 1 and 3	1,2,3
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	1.20	2.70	1.30	2.80	1.20	2.90	ns	Figures 1 and 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3	
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.50 \end{aligned}$		ns	Figure 5 Figure 4	4
t_{n}	Hold Time $D_{0}-D_{5}$	0.60		0.60		0.60		ns	Figure 5	
$t_{p w}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$	2.00		2.00		2.00		ns	Figures 3 and 4	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ}$ C, Temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temperature, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuitry

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathbf{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to $V_{C C}$ and $V_{E E}$ All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and $\mathrm{V}_{E E}$ All unused outputs are loaded with 50Ω to GND $C_{L}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Toggle Frequency Test Circuit

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Reset)

TL/F/9885-9
Notes:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.
FIGURE 5. Setup and Hold Time

F100352

Low Power 8-Bit Buffer with Cut-Off Drivers

General Description

The F100352 contains an 8-bit buffer, individual inputs (Dn), outputs (Qn), and a data output enable pin ($\overline{O E N}$). A Q output follows its D input when the OEN pin is LOW. A HIGH on OEN holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.
The F100352 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000 V ESD protection
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$\overline{O E N}$	Output Enable Input
$Q_{0}-Q_{7}$	Data Outputs
$N C$	No Connect

Connection Diagrams

TL/F/10248-4

TL/F/10248-3

Logic Diagram

Truth Table

Inputs		Outputs
Dn	$\overline{\text { OEN }}$	Qn
L	L	L
H	L	H
X	H	Cutoff

$H=$ HIGH Voltage Level
L = LOW Voltage Level
Cutoff $=$ Lower-than-LOW State
X = Don't Care

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)	
If Military/Aerospace specified please contact the National Office/Distributors for availability	ices are required, iconductor Sales d specifications.
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}^{\text {) }}$	
Ceramic	$+175^{\circ} \mathrm{C}$
Plastic	$+150^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	- 100 mA
ESD (Note 2)	$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Commercial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	
Supply Voltage (VEE)	-5.7 V to -4.2 V
\quad Commercial	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035				$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Min)	Loading with
V OLC	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL }}$ (Max)	25Ω to -2.0V
Volz	Cut-Off LOW Voltage			-1950	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \text { or }$ YiL iniaia;	$\overline{\text { OEN }}=\mathrm{HIGH}$
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (}}^{\text {Max }}$)	
I_{EE}	Power Supply Current	$\begin{aligned} & -138 \\ & -143 \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \end{aligned}$	mA	Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Elecǐrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Dn to Output	0.70	2.00	0.70	2.00	0.70	2.20	ns	Figures 1, 2 (Note 1)
tpz	Propagation Delay	1.60	4.20	1.60	4.20	1.60	4.20	ns	Figures 1, 2
${ }_{\text {tPHZ }}$	OEN to Output	1.00	2.70	1.00	2.70	1.00	2.70	ns	(Note 1)
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

PCC and Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Dn to Output	0.70	1.80	0.70	1.80	0.70	2.00	ns	Figures 1, 2 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 1, 2 (Note 2)
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 2
$\mathrm{t}_{\text {S,G-G }}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version—Preliminary
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{I N}=V_{I H(M a x)}$ or $\mathrm{V}_{\text {IL(Min) }}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
VOHC	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
VOLC	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
Volz	Cut-Off LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})} \text {, or }$ VIL(Max)	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$	1,2,3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH signal for All inputs		1, 2, 3, 4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW signal for All inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \\ & \hline \end{aligned}$		1, 2, 3	
414	Input tisur Curront		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\left\{\begin{array}{l} V_{E E}=-5.7 \mathrm{~V} \\ V_{I N}=V_{I H(M a x)} \end{array}\right.$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
${ }^{\text {l EE }}$	Power Supply Current	$\begin{aligned} & -145 \\ & -150 \end{aligned}$	-55	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "rold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)
Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{c}}=+25^{\circ} \mathrm{C}$		TC $+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	0.30	2.60	0.50	2.40	0.50	2.70	ns	Figures 1, 2	1, 2, 3, 5
$\begin{array}{r} \mathrm{t}_{\mathrm{PZH}} \\ \mathrm{t}_{\mathrm{PHz}} \\ \hline \end{array}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.00 \\ 3.00 \\ \hline \end{array}$	$\begin{array}{r} 1.40 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.20 \\ 2.80 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.30 \\ 3.20 \\ \hline \end{array}$	ns	Figures 1,2	1, 2, 3, 5
t_{TLH} $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 2	4

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	0.30	2.60	0.50	2.40	0.50	2.70	ns	Figures 1, 2	1,2,3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\text { OEN }}$ to Output	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.00 \\ & 3.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.40 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.20 \\ 2.80 \\ \hline \end{array}$	$\begin{array}{r} 1.20 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.30 \\ 3.20 \\ \hline \end{array}$	ns	Figures 1, 2	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 2	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 2. Propagation Delay, Cut-Off and Transition Times

F100353

Low Power 8-Bit Register

General Description
 The F100353 contains eight D-typ

slave flip-flops with individual inpe edge triggered, master/ a clock input (CP), and a common $\left(\mathrm{D}_{n}\right)$, true outputs $\left(\mathrm{Q}_{n}\right)$, the slave whe master when CP is LOW enable pin (CEN). HIGH it overrid CP goes HIGH. When the and transfers to the Q outputs maid other inputs, disables the clout goes The F100353 output the last state.
mination to -2.0 V . All inputs are designed to drive 50Ω tertors.

Ordering Code: See Section B
 Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
CEN	Clock Enable Input
CP	Clock Input (Active Rising Edge)
$\mathrm{Q}_{0}-Q_{7}$	Data Outputs
$N \mathrm{C}$	No Connect

Connection Diagrams

 TL/F/9882-1

Truth Table

F100353

Low Power 8-Bit Register

General Description

The F100353 contains eight D-type edge triggered, master/ slave flip-flops with individual inputs (D_{n}), true outputs (Q_{n}), a clock input (CP), and a common clock enable pin ($\overline{\mathrm{CEN}}$). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.
The F100353 output drivers are designed to drive 50Ω termination to -2.0 V . All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Low power operation
[2000V ESD protection
a Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$\overline{C E N}$	Clock Enable Input
$C P$	Clock Input (Active Rising Edge)
$Q_{0}-Q_{7}$	Data Outputs
$N C$	No Connect

TL/F/9882-4

Connection Diagrams

TL/F/9882-3

TL/F/9882-2

Truth Table

Inputs			Outputs
$\mathbf{D}_{\mathbf{n}}$	CEN	$\mathbf{C P}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	-	L
H	L	-	H
X	X	L	NC
X	X	H	NC
X	H	X	NC

[^2]$\mathrm{NC}=$ No Change
$\Omega=$ LOW to HIGH Transition

Commercial Version (Continued)
PCC and Cerpack AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	425		425		425		MHz	Figures 2, 3
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 3 (Note 2)
$t_{\text {TLH }}$ ${ }_{\mathrm{t}}^{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 3
t_{5}	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) $\overline{\mathrm{CEN}}$ (Release Time)	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$		ns	Figures 1, 4
t_{h}	Hold Time D_{n}	0		0		0		ns	Figures 1,5
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 3
$\mathrm{t}_{\mathrm{S}, \mathrm{G}-\mathrm{G}}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.
Military Version—Preliminary
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	1, 2, 3
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH Signal for all Inputs		1, 2, 3, 4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for all Inputs		1, 2, 3, 4
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3

Military Version-Preliminary (Continued)
DC Electrical Characteristics (Continued)
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	Tc	Conditions	Notes
${ }^{1} \mathrm{H}$	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{aligned} 0^{\circ} \mathrm{Cto} \\ +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & V_{I N}=V_{I H}(\text { Max }) \end{aligned}$	1,2,3
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$		
IEE	Power Supply Current	$\begin{aligned} & -125 \\ & -130 \end{aligned}$	-50	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V $V_{E E}=-4.2 \mathrm{~V}$ to -5.7 V	1, 2, 3

Note 1 : F100K 300 Series cold temperature testing is pertormed by temperature soaking to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immedialely without allowing tor the luncion temperature to stabilize due to haat disispation ater power.u. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$f_{\text {max }}$	Toggle Frequency	400		400		400		MHz	Figures 2, 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.70	3.30	0.80	3.10	0.80	3.80	ns	Figures 1, 3	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.40	2.50	0.40	2.40	0.40	2.70	ns		4
$\mathrm{t}_{\text {s }}$	Setup Time D_{n} CEN (Disable Time) $\overline{\mathrm{CEN}}$ (Release Time)	$\begin{aligned} & 0.60 \\ & 0.90 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.70 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.90 \\ & 2.10 \end{aligned}$		ns	Figures 1, 4	4
t_{n}	Hold Time D_{n}	0.30		0.30		0.30		ns	Figures 1,5	4
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 3	4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
${ }^{f_{\text {max }}}$	Toggle Frequency	425		425		425		MHz	Figures 2, 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	1.30	3.20	1.30	3.20	1.40	3.30	ns	Figures 1, 3	1, 2, 3, 5
$\begin{aligned} & t_{\text {TLH }} \\ & t_{\text {THL }} \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.45	2.00	0.45	2.00	0.45	2.00	ns		4
$\mathrm{t}_{\text {s }}$	Setup Time D_{n} CEN (Disable Time) CEN (Release Time)	$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \\ & \hline \end{aligned}$		ns	Figures 1, 4	4
t_{n}	Hold Time $\quad \mathrm{D}_{\mathrm{n}}$	0.30		0.30		0.30		ns	Figures 1,5	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 3	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing
immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:

FIGURE 1. AC Test Circuit
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and $\mathrm{V}_{E E}$
All unused outputs are loaded with 50Ω to GND
$C_{L}=J i g$ and stray capacitance $\leq 3 \mathrm{pF}$

Switching Waveforms

FIGURE 4. Setup and Pulse Width Times

FIGURE 5. Data Setup and Hold Time
Note 1: t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
Note 2: t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

F100354

Low Power 8-Bit Register with Cut-Off Drivers

General Description

The F100354 contains eight D-Type edge triggered, master/slave flip-flops with individual inputs (D_{n}), true outputs $\left(Q_{n}\right)$, a clock input (CP), an output enable pin (OEN), and a common clock enable pin ($\overline{C E N}$). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.
A Q output follows its D input when the $\overline{O E N}$ pin is LOW. A HIGH on OEN holds the outputs in a cut-off state. The cutoff state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high
impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.
The F100354 outputs are designed to drive a doubly terminated 50Ω transmission line (25Ω load impedance). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
$\overline{\mathrm{CEN}}$	Clock Enable Input
CP	Clock Input
$\overline{\mathrm{OEN}}$	(Active Rising Edge)
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Output Enable Input
Data Outputs	

TL/F/10610-1

Connection Diagrams

24-Pin DIP

TL/F/10610-2

TL/F/10610-3

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Ceramic

$+175^{\circ} \mathrm{C}$
Plastic
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH) ESD (Note 2)

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Condition	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 25Ω to -2.0 V
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
$\mathrm{V}_{\text {OLZ }}$	Cutoff LOW Voltage			--1950	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$
V_{H}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
$l_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -202 \\ & -209 \end{aligned}$		$\begin{aligned} & -105 \\ & -105 \end{aligned}$	mA	Inputs Open$V_{E E}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V}$$V_{E E}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)
Ceramic Dual-In-Line Package AC Electrical Characteristics
$V_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	250		250		250		MHz	Figures 1 and 4
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1 and 4 (Note 1)
$t_{\text {PZH }}$ tphz	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 2.70 \end{aligned}$	ns	Figures 3 and 7 (Note 1)
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1 and 4
t_{5}	Setup Time D_{n} CEN (Disable Time) $\overline{C E N}$ (Release Time)	$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		ns	Figures 2 and 5
t_{n}	Hold Time D_{n}	0.10		0.10		0.10		ns	Figures 1 and 6
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width High \quad CP	2.00		2.00		2.00		ns	Figures 1 and 4

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {Max }}$	Toggle Frequency	250		250		250		MHz	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1 and 4 (Note 2)
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay OEN to Output	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 2.50 \end{aligned}$	ns	Figures 3 and 7 (Note 2)
${ }^{\text {t }}$ TLH $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1 and 4
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{aligned} & \frac{\mathrm{D}_{n}}{\mathrm{CEN}} \text { (Disable Time) } \\ & \overline{\mathrm{CEN}} \text { (Release Time) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		ns	Figures 2 and 5
t_{n}	Hold Time D_{n}	0.00		0.00		0.00		ns	Figures 1 and 6
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width High CP	2.00		2.00		2.00		ns	Figures 1 and 4
$\mathrm{t}_{\text {s, G-G }}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.
Note 2: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Military Version—Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH} \text { (Max) }} \\ & \operatorname{or}_{\mathrm{V} \text { (Min) }} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { max })} \end{aligned}$	Loading with$25 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
Volz	Cutoff LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{\text {IL (Max) }} \end{aligned}$	$\overline{\mathrm{OEN}}=\mathrm{HIGH}$	1, 2, 3	
			-1850		$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{\text {IN }}=V_{\mathrm{IL}(\mathrm{Min})} \\ & \hline \end{aligned}$		1, 2, 3	
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \end{aligned}$		1, 2, 3	
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	$\begin{aligned} & -215 \\ & -225 \end{aligned}$	$\begin{aligned} & -85 \\ & -85 \end{aligned}$	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ t $V_{E E}=-4.2 \mathrm{~V}$ to	$\begin{aligned} & -4.8 \mathrm{~V} \\ & -5.7 \mathrm{~V} \\ & \hline \end{aligned}$	1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version—Preliminary (Continued)
Ceramic Dual-In-Line Package AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	200		250		200		MHz	Figures 1 and 4	4
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Output	0.9	3.70	1.0	3.20	1.20	3.90	ns	Figures 1 and 4	1, 2, 3, 5
$\begin{aligned} & \mathrm{tpzH}^{\text {tphz }} \\ & \hline \end{aligned}$	Propagation Delay OEN to Output	$\begin{array}{r} 1.20 \\ 0.70 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 0.70 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.40 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.30 \\ & 3.20 \end{aligned}$	ns	Figures 3 and 7	1, 2, 3, 5
$\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1 and 4	4
$\mathrm{t}_{\text {s }}$	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) CEN (Release Time)	$\begin{array}{r} 1.30 \\ 0.60 \\ 1.30 \\ \hline \end{array}$		$\begin{aligned} & 1.30 \\ & 0.60 \\ & 1.30 \end{aligned}$		$\begin{array}{r} 1.30 \\ 0.60 \\ 1.30 \\ \hline \end{array}$		ns	Figures 2 and 5	4
t_{h}	Hold Time \qquad	0.30		0.30		0.30		ns	Figures 1 and 6	4
$t_{p w}(H)$	Pulse Width HIGH CP	2.4		2.4		2.4		ns	Figures 1 and 4	4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {Max }}$	Toggle Frequency	200		250		200		MHz	Figures 1 and 4	4
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	0.9	3.70	1.0	3.20	1.20	3.90	ns	Figures 1 and 4	1, 2, 3, 5
$\begin{aligned} & \text { tpZH } \\ & \text { tpHz } \\ & \hline \end{aligned}$	Propagation Delay $\overline{O E N}$ to Output	$\begin{aligned} & 1.20 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.60 \\ & 0.70 \\ & \hline \end{aligned}$		$\begin{array}{r} 1.40 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{r} 4.30 \\ 3.20 \\ \hline \end{array}$	ns	Figures 3 and 7	1, 2, 3, 5
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1 and 4	4
t_{s}	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) $\overline{\mathrm{CEN}}$ (Release Time)	$\begin{aligned} & 0.60 \\ & 0.90 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.70 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.90 \\ & 2.10 \\ & \hline \end{aligned}$		ns	Figures 2 and 5	4
t_{n}	Hold Time \qquad	0.30		0.30		0.30		ns	Figures 1 and 6	4
$t_{p w}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1 and 4	4

[^3]Test Circuitry

TL/F/10610-5
FIGURE 1. Toggle Frequency Test CIrcuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines

TL/F/10610-7
FiguRE 3. AC Test Clrcuit

Switching Waveforms

FIGURE 4. Propagation Delay (Clock) and Transition Times

FIGURE 5. Setup and Pulse Width Times

FIGURE 6. Data Setup and Hold Time

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 7. Cutoff Times

National Semiconductor

F100355

Low Power Quad Multiplexer/Latch

General Description

The F100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\bar{E}_{n}) inputs are LOW, the data that appears at an output is controlled by the Select $\left(\mathrm{S}_{n}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}. A positive-going signal on either Enable input
latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- Greater than 40% power reduction of the F100155 - 2000V ESD protection
- Pin/function compatible with F100155

■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
\bar{E}_{1}, \bar{E}_{2}	Enable Inputs (Active LOW)
\bar{S}_{0}, S_{1}	Select Inputs
$M R$	Master Reset
$D_{n a}-D_{n d}$	Data Inputs
$Q_{a}-Q_{d}$	Data Outputs
$\bar{Q}_{a}-\bar{Q}_{d}$	Complementary Data Outputs

Connection Diagrams

TL/F/10147-4

24-Pin Quad Cerpak

Logic Diagram

TL/F/10147-5

Operating Mode Table

Controls				Outputs
\bar{E}_{1}	\bar{E}_{2}	S_{1}	\bar{S}_{0}	Q_{n}
H	X	X	X	Latched*
X	H	X	X	Latched*
L	L	L	L	$\mathrm{D}_{0 \times}$
L	L	H	L	$D_{0 x}+D_{1 x}$
L	L	L	H	L
L	L	H	H	$\mathrm{D}_{1 \mathrm{x}}$

*Stores data present before \bar{E} went HIGH
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Truth Table

Inputs								Outputs	
MR	$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1 x}}$	$\mathbf{D}_{\mathbf{0 x}}$	$\overline{\mathbf{Q}}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$	
H	X	X	X	X	X	X	H	L	
L	L	L	H	H	H	X	L	H	
L	L	L	H	H	L	X	H	L	
L	L	L	L	L	X	H	L	H	
L	L	L	L	L	X	L	H	L	
L	L	L	L	H	X	X	H	L	
L	L	L	H	L	H	X	L	H	
L	L	L	H	L	X	H	L	H	
L	L	L	H	L	L	L	H	L	
L	H	X	X	X	X	X	Latched		
X	H	X	X	X	X	Latched*			

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Maximum Junction Temperature (T_{J}) Ceramic
Plastic
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$\mathrm{~V}_{\mathrm{EE}}$ to +0.5 V
-50 mA
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	
Commercial	-5.7 V to -4.2 V
Military	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OL	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for ALL Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for ALL Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
$\mathrm{IIH}^{\text {H}}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \bar{S}_{0}, S_{1} \\ & \bar{E}_{1}, \bar{E}_{2} \\ & D_{n a}-D_{\text {nd }} \\ & \text { MR } \end{aligned}$			$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \end{aligned}$	$\mu \mathrm{A}$	$V_{I N}=V_{I H}($ Max $)$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-87		-40	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ to Output (Transparent Mode)	0.60	1.90	0.60	1.90	0.70	2.00	ns	
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay $\bar{S}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.00	2.60	1.00	2.60	1.20	2.70	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.80	2.00	0.80	2.00	0.80	2.10	ns	
$\begin{aligned} & t_{\text {PL.H }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.80	2.30	0.80	2.30	0.80	2.30	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.60	1.40	0.60	1.40	0.60	1.40	ns	Figures 1 and 2
${ }^{\text {ts }}$	Setup Time$\begin{aligned} & D_{n a}-D_{n d} \\ & \bar{S}_{0}, S_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.70 \\ & 1.50 \end{aligned}$		ns	Figure 4
									Figure 3
t_{H}	Hold Time $\underline{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ \bar{S}_{0}, S_{1}	$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		ns	Figure 4
t_{pw} (L)	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Commercial Version (Continued) PCC and Cerpak AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
tplh $t_{\text {PHL }}$	Propagation Delay $D_{n a}-D_{n d}$ to Output (Transparent Mode)	0.60	1.70	0.60	1.70	0.70	1.80	ns	
${ }^{\text {tpLH}}$ ${ }_{\mathrm{t}}^{\mathrm{PHL}}$	Propagation Delay $\bar{S}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	1.00	2.40	1.00	2.40	1.20	2.50	ns	Figures 1 and 2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.80	1.80	0.80	1.80	0.80	1.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.60	1.30	0.60	1.30	0.60	1.30	ns	Figures 1 and 2
ts	Setup Time$\begin{aligned} & D_{n a}-D_{n d} \\ & \bar{S}_{0}, S_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.60 \\ & 1.40 \end{aligned}$		ns	Figure 4
									Figure 3
t_{H}	Hold Time $\begin{aligned} & D_{n a}-D_{n d} \\ & \bar{S}_{0}, S_{1} \end{aligned}$	$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.10 \end{gathered}$		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW $\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3
ts G-G	Skew Gate to Gate		TBD		TBD		TBD	ps	$\begin{aligned} & \text { PCC Only } \\ & \text { (Note 1) } \end{aligned}$

Note 1: Gate to gate skew is defined as the difference in the propagation delays between each of the outputs.

Military Version — Preliminary

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed HIGH Signal for ALL Inputs		1,2,3,4	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed LOW Signal for ALL Inputs		1,2,3,4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1,2,3	
I_{H}	$\begin{aligned} & \text { Input HIGH Current } \\ & \bar{S}_{0}, S_{1} \\ & \bar{E}_{1}, \bar{E}_{2} \\ & D_{\text {na }}-D_{\text {nd }} \\ & \text { MR } \end{aligned}$		$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		1,2,3	
	$\begin{aligned} & \bar{S}_{0}, S_{1} \\ & \bar{E}_{1}, \bar{E}_{2} \\ & D_{\text {na }}-D_{\text {nd }} \\ & M R \end{aligned}$		$\begin{aligned} & 320 \\ & 500 \\ & 490 \\ & 630 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$l_{\text {EE }}$	Power Supply Current	-95	-32	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$ Temp., Subgroups 1, 2, 3, 7, and 8 .
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups 1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version — Preliminary (Continued) Ceramic Dual-In-Line Package AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$										
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\text {nd }}$ to Output (Transparent Mode)	0.40	2.30	0.50	2.20	0.50	2.60	ns		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{S}_{0}, S_{1} to Output (Transparent Mode)	0.60	3.00	0.80	2.70	0.80	3.20	ns	Figures 1 and 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.50	2.60	0.60	2.30	0.70	2.70	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.60	2.80	0.70	2.60	0.70	2.90	ns	Figures 1 and 3	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.90	0.40	1.90	0.40	1.90	ns	Figures 1 and 2	4
t_{5}	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		ns	Figure 4 Figure 3	4
t_{H}	Hold Time $D_{n a}-D_{n d}$ \bar{S}_{0}, S_{1}	$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		ns	Figure 4	4
t_{pw} (L)	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ tpHL	Propagation Delay $D_{n a}-D_{\text {nd }}$ to Output (Transparent Mode)	0.40	2.30	0.50	2.20	0.50	2.60	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{S}_{0}, S_{1} to Output (Transparent Mode)	0.60	3.00	0.80	2.70	0.80	3.20	ns		
$t_{\text {PLH }}$ tpHL	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.50	2.60	0.60	2.30	0.70	2.70	ns		

Military Version - Preliminary (Continued)

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathbf{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
tpleh $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	0.60	2.80	0.70	2.60	0.70	2.90	ns	Figures 1 and 3	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.40	1.90	0.40	1.90	0.40	1.90	ns	Figures 1 and 2	4
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\text {na }}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{~S}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		ns	Figure 4 Figure 3	4
t_{H}	Hold Time $\begin{aligned} & D_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \end{aligned}$		ns	Figure 4	4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2	4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 \& A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuit

TL/F/10147-6
FIGURE 1. AC Test Circuit
(Using Quad Cerpak)

Notes:

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Switching Waveforms

TL/F/10147-7
FIGURE 2. Enable Timing

FIGURE 3. Reset Timing

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

F100360

Low Power Dual Parity Checker/Generator

General Description

The F100360 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs (l_{a} or I_{b}) has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits. The F100360 also has a Compare ($\overline{\mathrm{C}}$) output which allows the circuit to compare two 8 -bit words. The $\overline{\mathrm{C}}$ output is LOW when the two words match, bit for bit. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- Lower power than F100160
- 2000V ESD protection
- Pin/function compatible with F100160
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V
- Min to Max propagation delay 35\% tighter than F100160

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{na}}, \mathrm{I}_{\mathrm{nb}}$	Data Inputs
$\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	Parity Odd Outputs
$\overline{\mathrm{C}}$	Compare Output

TL/F/10611-1

Connection Diagrams

TL/F/10611-4

Logic Diagram

Truth Table (Each Half)

Sum of	Output
HIGH Inputs	\mathbf{Z}
Even	HIGH
Odd	LOW

Comparator Function

$\bar{C}=\left(I_{0 a} \oplus I_{1 a}\right)+\left(I_{2 a} \oplus I_{3 a}\right)+\left(I_{4 a} \oplus I_{5 a}\right)+\left(I_{6 a} \oplus I_{7 a}\right)+\left(I_{0 b} \oplus I_{1 b}\right)+\left(I_{2 b} \oplus I_{3 b}\right)+\left(I_{4 b} \oplus I_{5 b}\right)+\left(I_{6 b} \oplus I_{7 b}\right)$

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (TSTG)
Maximum Junction Temperature (T_{J})

Ceramic

Plastic
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\\
+175^{\circ} \mathrm{C} \\
+150^{\circ} \mathrm{C}
\end{array}
$$

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
\geq 2000 \mathrm{~V}
$$

Recommended Operating Conditions

Case Temperature (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	
Supply Voltage (VEE)	-5.7 V to -4.2 V
\quad Commercial	-5.7 V to -4.2 V
Military	

Commercial Version

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-870	mV mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830	-1705	-1620			
VOHC	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$	Loading with
Volc	Output LOW Voltage			-1610	mV	or $\mathrm{V}_{\text {IL (}}^{\text {(Max) }}$	50Ω to -2.0V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current I_{a}, I_{b} $I_{n a}, I_{n b}$			$\begin{aligned} & 340 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-100		-50	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.10	2.75	1.10	2.75	1.10	2.75	ns	Figures 1\&2
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{\text {na }}, I_{\text {nb }}$ to \bar{C}	1.10	2.80	1.10	2.80	1.10	2.80	ns	
$t_{\text {PLH }}$ tpHL	Propagation Delay $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ to $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	0.50	1.20	0.60	1.30	0.60	1.30	ns	
${ }^{\text {t }}$ tLH ${ }^{\text {t }}$ thL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

PCC and Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{tpHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{n a} I_{n b}$ to $Z_{a} Z_{b}$	1.10	2.75	1.10	2.75	1.10	2.75	ns	Figures 1 \& 2
tPLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.10	2.80	1.10	2.80	1.10	2.80	ns	
$\begin{aligned} & \mathrm{tpLLH}^{2} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{I}_{\mathrm{a}}, \mathrm{l}_{\mathrm{b}}$ to $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	0.50	1.20	0.60	1.30	0.60	1.30	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	
$\mathrm{t}_{\mathrm{s}, \mathrm{G}-\mathrm{G}}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC only Note 1

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.

Military Version — Preliminary

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1,2,3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
Volc	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
$V_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Guaranteed LOW Signal for All Inputs		1,2,3, 4	
I/L	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
I_{H}	```Input HIGH Current \(l_{a}, I_{b}\) \(I_{\text {na }}, I_{\text {nb }}\)```		$\begin{array}{r} 340 \\ 240 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 V \\ & V_{I N}=V_{I H}(M a x) \end{aligned}$		1, 2, 3	
	$\underset{I_{n a}, I_{n b}}{I_{a}, I_{b}}$		$\begin{aligned} & 490 \\ & 340 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
$I_{\text {EE }}$	Power Supply Current	-110	-50	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		1, 2, 3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version — Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.00	2.95	1.00	2.95	1.00	2.95	ns	Figures 1 \& 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{\text {na }}, I_{n b}$ to \bar{C}	1.00	3.00	1.00	3.00	1.00	3.00	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{a}, I_{b} \text { to } Z_{a}, Z_{b}$	0.40	1.40	0.50	1.50	0.50	1.50	ns		
$t_{T L H}$ t_{THL}	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.00	2.95	1.00	2.95	1.00	2.95	ns	Figures 1 \& 2	1,2,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{\text {na }}, I_{n b}$ to \bar{C}	1.00	3.00	1.00	3.00	1.00	3.00	ns		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{a}, I_{b} to Z_{a}, Z_{b}	0.40	1.40	0.50	1.50	0.50	1.50	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Switching Waveforms

FIGURE 2. Propagation Delay and Transition Times

F100363

Low Power Dual 8-Input Multiplexer

General Description

The F100163 is a dual 8 -input multiplexer. The Data Select $\left(S_{n}\right)$ inputs determine which bit $\left(A_{n}\right.$ and $\left.B_{n}\right)$ will be presented at the outputs (Z_{a} and Z_{b} respectively). The same bit $(0-7)$ will be selected for both the Z_{a} and Z_{b} output. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- 50% power reduction of the F100163
- 2000V ESD protection

E Pin/function compatible with F100163
■ Voltage compensated operating range $=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}$

- Tighter min to max propagation delay than F100163

Ordering Code: See Section 8
Logic Symbol

Pin Names	Description
$S_{0}-S_{2}$	Data Select Inputs
$A_{0}-A_{7}$	A Data Inputs
$B_{0}-B_{7}$	B Data Inputs
Z_{a}, Z_{b}	Data Outputs

TL/F/10612-1

Connection Diagrams

Logic Diagram

Truth Table

Inputs											Outputs
Select			Data								
S_{2}	S_{1}	\mathbf{S}_{0}	$\begin{aligned} & A_{7} \\ & B_{7} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{6} \\ & \mathbf{B}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{5} \\ & B_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{\mathbf{4}} \\ & \mathrm{B}_{\mathbf{4}} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{3} \\ & B_{3} \end{aligned}$	$\begin{aligned} & A_{2} \\ & B_{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & \mathbf{B}_{1} \end{aligned}$	A_{0} \mathbf{B}_{0}	$\begin{aligned} & \mathbf{z}_{a} \\ & \mathbf{Z}_{b} \\ & \hline \end{aligned}$
L	L	L								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	L	H H							L		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	H H	L						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$					L H				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \end{gathered}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
H H	L	$\begin{aligned} & H \\ & H \end{aligned}$			L						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$							$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

$H=$ HIGH Voltage Level
L = LOW Voltage Level
Blank $=\mathrm{X}=$ Don't Care


```
Absolute Maximum Ratings
Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature (TSTG)
-65}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
Maximum Junction Temperature (TJ)
    Ceramic
    Plastic
VEE Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
Cerami
                    +175
                    +150}\mp@subsup{}{}{\circ}\textrm{C
-7.0V to +0.5V
    VEE to + 0.5V
                                    -50 mA
                            2000V
Absolute Maximum Ratings
Above which the useful life may be impared (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature ( \(\mathrm{T}_{\mathrm{STG}}\) ) \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Ceramic
Plastic
\(V_{E E}\) Pin Potential to Ground Pin
Input Voltage (DC)
ESD (Note 2)
```


Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1830	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{IIH}^{\text {H}}$	$\begin{array}{r} \text { Input HIGH Current } \\ S_{n} \\ A_{n}, B_{n} \\ \hline \end{array}$			$\begin{aligned} & 265 \\ & 340 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
lee	Power Supply Current	-80		-40	mA	Inputs Open	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MiL-STD-883, Method 3015
Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.70	1.65	0.80	1.70	0.80	1.80	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.30	2.60	1.40	2.70	1.40	2.70	ns	
${ }^{t_{\text {tL }}}$ ${ }^{\text {t THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	

Commercial Version (Continued)
PCC and Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.70	1.65	0.80	1.70	0.80	1.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.30	2.60	1.40	2.70	1.40	2.70	ns	
$\mathrm{t}_{\mathrm{T} L \mathrm{H}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	
${ }^{\text {ts, G-G }}$	Skew, Gate to Gate		TBD		TBD		TBD	ps	PCC Only (Note 1)

Note 1: Gate to gate skew is defined as the difference in propagation delays between each of the outputs.

Military Version-Preliminary

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	TC	Conditions		Note	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	1, 2, 3	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$V_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4	
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{I N}=V_{I L}(\mathrm{Min}) \end{aligned}$		1, 2, 3	
IH	Input HIGH Current $\begin{array}{r} S_{n} \\ A_{n}, B_{n} \end{array}$		$\begin{aligned} & 265 \\ & 340 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{E E}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		1, 2, 3	
	$\begin{array}{r} S_{n} \\ A_{n}, B_{n} \end{array}$		$\begin{aligned} & 385 \\ & 490 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
lee	Power Supply Current	-87	-30	mA	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Inputs Open		1,2,3	

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $\mathrm{A} 1,2,3,7$, and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

Military Version-Preliminary (Continued)

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.50	2.40	0.60	2.30	0.70	3.00	ns	Figures 1 and 2	1,2,3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	0.80	3.00	0.90	2.80	1.00	3.40	ns		
$\begin{aligned} & t_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.90	0.40	1.80	0.30	2.10	ns		4

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t_{PLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.50	2.40	0.60	2.30	0.70	3.00	ns	Figures 1 and 2	1, 2, 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	0.80	3.00	0.90	2.80	1.00	3.40	ns		
${ }^{\text {t }}$ tL H ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.90	0.40	1.80	0.30	2.10	ns		4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately atter power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).

Test Circuitry

TL/F/10612-6

Notes:
$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

Switching Waveforms

FIGURE 2. Propagation Delay and Transition TImes

F100364

Low Power 16-Bit Multiplexer

General Description

The F100364 is a 16 -input multiplexer. Data paths are controlled by four Select lines $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. Their decoding is shown in the truth table. Output data polarity is the same as the seleted input data. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- 35\% power reduction of the F100164
- - 2000V ESD protection

■ Pin/function compatible with F100164

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V

Logic Symbol

Pin Names	Description
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Data Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Select Inputs
Z	Data Output

Connection Diagrams

TL/F/10265-4

F100370

Low Power Universal Demultiplexer/Decoder

General Description

The F100370 universal demultiplexer/decoder functions as either a dual 1-of-4 decoder or as a single 1-of-8 decoder, depending on the signal applied to the Mode Control (M) input. In the dual mode, each half has a pair of active-LOW Enable (\bar{E}) inputs. Pin assignments for the $\overline{\mathrm{E}}$ inputs are such that in the 1-of-8 mode they can easily be tied together in pairs to provide two active-LOW enables ($\bar{E}_{1 a}$ to $\bar{E}_{1 b}, \bar{E}_{2 a}$ to $\left.\mathrm{E}_{2 b}\right)$. Signals applied to auxiliary inputs $\mathrm{H}_{a}, \mathrm{H}_{b}$ and H_{c} determine whether the outputs are active HIGH or active LOW. In the dual 1-of-4 mode the Address inputs are $A_{0 a}, A_{1 a}$ and $A_{0 b}, A_{1 b}$ with $A_{2 a}$ unused (i.e., left open, tied to $V_{E E}$ or with

LOW signal applied). In the 1-of-8 mode, the Address inputs are $A_{0 a}, A_{1 a}, A_{2 a}$ with $A_{0 b}$ and $A_{1 b}$ LOW or open. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

■ 35% power reduction of the F100170

- 2000V ESD protection

■ Pin/function compatible with F100170

- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Logic Symbols

Pin Names	Description
$\mathrm{A}_{\text {na }}, A_{\text {nb }}$	Address Inputs
$\bar{E}_{n a}, \bar{E}_{n b}$	Enable Inputs
M	Mode Control Input
H_{a}	$\begin{aligned} & \mathrm{Z}_{0}-\mathrm{Z}_{3}\left(\overline{\mathrm{Z}}_{0 \mathrm{a}}-\overline{\mathrm{Z}}_{3 \mathrm{a}}\right) \\ & \text { Polarity Select Input } \end{aligned}$
H_{b}	$\begin{aligned} & \mathrm{Z}_{4}-\mathrm{Z}_{7}\left(\overline{\mathrm{Z}}_{0 b}-\overline{\mathrm{Z}}_{3 \mathrm{~b}}\right) \\ & \quad \text { Polarity Select Input } \end{aligned}$
H_{c}	Common Polarity Select Input
$Z_{0}-Z_{7}$	Single 1-0f-8 Data Outputs
$Z_{\text {na }}, Z_{\text {nb }}$	Dual 1-of-4 Data Outputs

Connection Diagrams

TL/F/10649-5

ADVANCE INFORMATION

F100371

Low Power Triple 4-Input Multiplexer with Enable

General Description

The F100371 contains three 4-input multiplexers which share a common decoder (inputs S_{0} and S_{1}). Output buffer gates provide true and complement outputs. A HIGH on the Enable input ($\overline{\mathrm{E}}$) forces all true outputs LOW (see Truth Table). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- 35% power reduction of the F100171
- 2000 V ESD protection
- Pin/function compatible with F100171
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7V

Logic Symbol

Pin Names	Description
$I_{0 x}-I_{3 x}$	Date Inputs
S_{0}, S_{1}	Select Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\mathrm{Z}_{\mathrm{a}}-Z_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{Z}}_{\mathrm{a}}-\overline{\mathrm{Z}}_{\mathrm{c}}$	Complementary Data Outputs

TL/F/10048-1

Connection Diagrams

TL/F/10048-3

TL/F/10148-4

National Semiconductor

F100393

Low Power 9-Bit ECL-to-TTL Translator with Latches

General Description

The F100393 is a 9-bit translator for converting F100K logic levels to FAST® TTL logic levels. A LOW on the latch enable (LE) latches the data at the input state. A HIGH on the LE makes the latches transparent. A HIGH on either the ECL or TTL output enable ($\overline{O E} E C L$ or $\overline{O E T T L}$), holds the outputs in a high impedance state.
The F100393 is designed with FAST® TTL, 64 mA outputs for Bus Driving capability. All ECL inputs have $50 \mathrm{k} \Omega$ pull down resistors. When the inputs are either unconnected or at the same potential, the outputs will go LOW.

Features

- $64 \mathrm{~mA} \mathrm{l}_{\mathrm{OL}}$ drive capability
- 2000V ESD protection
- -4.2 V to -5.7 V operating range
- Latched outputs
- FAST® TTL outputs

Logic Symbol

PIn Names	Description
$D_{0}-D_{8}$	Data Inputs (ECL)
$Q_{0}-Q_{8}$	Data Outputs (TTL)
LE	Latch Enable Input
$\overline{O E ~ T T L}$	Output Enable (TTL)
$\overline{O E ~ E C L}$	Output Enable (ECL)

TL/F/10650-1

Connection Diagram

(19) 20 21 22 2323
$V_{C C A} \frac{\overline{D E}}{E C L} V_{\Pi L} V_{C C A} V_{C C A} Q_{4} Q_{3}$

F100395

Low Power 9-Bit ECL-to-TTL Translator with Registers

General Description

The F100395 is a 9 -bit translator for converting F100K logic levels to FAST® TTL logic levels. A high on the output enable ($\overline{\mathrm{OE}})$ holds the TTL outputs in a high impedance state. A low on the clock enable (EN) transfers the data on the inputs to the outputs on a Low-to-High clock transition. A high on $\overline{E N}$ will not change the state of the outputs.
The F100395 is designed with FAST® TTL, 64 mA outputs for Bus Driving capability. All inputs have $50 \mathrm{k} \Omega$ pull down resistors. When the inputs are either unconnected or at the same potential, the outputs will go LOW.

Features

- 64 mA IOL drive capability
- 2000 V ESD protection

■ -4.2 V to -5.7 V operating range

- Registered outputs
- FAST TTL outputs

Logic Symbol

Pin Names	Description
$D_{0}-D_{8}$	Data Inputs (ECL)
$Q_{0}-Q_{8}$	Data Outputs (TTL)
$\overline{O E}$	Output Enable
$\overline{E N}$	Clock Enable
$C P$	Clock Pulse

TL/F/10651-1

Connection Diagram

Section 3
F100K 100 Series

Datasheets

Section 3 Contents

F100101 Triple 5-Input OR/NOR Gate 3-3
F100102 Quint 2-Input OR/NOR Gate 3-6
F100104 Quint 2-Input AND/NAND Gate 3-9
F100107 Quint Exclusive OR/NOR Gate 3-13
F100112 Quad Driver 3-17
F100113 Quad Driver 3-21
F100114 Quint Differential Line Receiver 3-25
F100115 Low Skew Quad Driver 3-29
F100117 Triple 2-Wide OA/OAI Gate 3-33
F100118 5-Wide 5-4-4-4-2 OA/OAI Gate 3-36
F100121 9-Bit Inverter 3-40
F100122 9-Bit Buffer 3-43
F100123 Hex Bus Driver 3-46
F100124 Hex TTL-to-100K ECL Translator 3-50
F100125 Hex 100K ECL-to-TTL Translator 3-54
F100126 9-Bit Backplane Driver 3-58
F100128 Octal Bidirectional ECL/TTL Translator 3-61
F100130 Triple D Latch 3-70
F100131 Triple D Flip-Flop 3-76
F100135 Triple JK Flip-Flop 3-84
F100136 4-Stage Counter/Shift Register 3-90
F100141 8-Bit Shift Register 3-100
F100142 4×4 Content Addressable Memory 3-106
F100150 Hex D Latch 3-113
F100151 Hex D Flip-Flop 3-119
F100155 Quad Multiplexer/Latch 3-125
F100156 Mask/Merge Latch 3-131
F100158 8-Bit Shift Matrix 3-137
F100160 Dual Parity Checker/Generator 3-145
F100163 Dual 8-Input Multiplexer 3-150
F100164 16-Input Multiplexer 3-155
F100165 Universal Priority Encoder 3-160
F100166 9-Bit Comparator 3-166
F100170 Universal Demultiplexer/Decoder 3-171
F100171 Triple 4-Input Multiplexer with Enable 3-176
F100175 Quint 100K-to-10K Latch 3-181
F100179 Carry Lookahead Generator 3-187
F100180 High-Speed 6-Bit Adder 3-194
F100181 4-Bit Binary/BCD ALU 3-199
F100182 9-Bit Wallace Tree Adder 3-206
F100183 2×8-Bit Recode Multiplier 3-214
F100250 Quint Full Duplex Line Transceiver 3-226

F100101

Triple 5-Input OR/NOR Gate

General Description

The F100101 is a monolithic triple 5 -input OR/NOR gate. All
Refer to the F100301 datasheet for: inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

PCC packaging
Lower power
Military versions
Extended voltage specs $(-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V})$

Ordering Code: See Section 8

Logic Symbol

TL/F/9835-3

Connection Diagrams

TL/F/9835-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$V_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{1 /}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}}($ Max $)$
I_{EE}	Power Supply Current	-38	-26	-18	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.50	1.15	0.50	1.15	0.55	1.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$	0.45	1.30	0.45	1.20	0.45	1.20	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.50	0.95	0.50	0.95	0.55	1.10	ns	Figures 1 and 2
$t_{T L H}$ $\mathbf{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.20	0.45	1.10	0.45	1.10	ns	

TL/F/9835-5
FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Propagation Delay and Transition Times

F100102

Quint 2-Input OR/NOR Gate

General Description

The F100102 is a monolithic quint 2 -input OR/NOR gate with common enable. All inputs have $50 \mathrm{k} \Omega$ pull-down resis tors and all outputs are buffered.

Refer to the F100302 datasheet for: PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\theta}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

TABLE 1. F100102 Truth Table

$\mathbf{D}_{1 \mathbf{X}}$	$\mathbf{D}_{\mathbf{2 X}}$	\mathbf{E}	$\mathbf{O}_{\mathbf{X}}$	$\overline{\mathbf{O}}_{\mathbf{X}}$
L	L	L	L	H
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	L	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	H	L

H = HIGH Voltage Level
L = LOW Voltage Level

Connection Diagrams

TL/F/9836-2

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature
Maximum Junction Temperature (T_{J})
Case Temperature under Bias (T_{C})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to
Ground Pin

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

Input Voltage (DC)
Output Current (DC Output HIGH)
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
Operating Range (Note 2)

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\mathrm{IL}(\text { (Max })}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILI }}$ Min)	

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Min }}$ or $\mathrm{V}_{\text {IL(Max }}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1595	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILIM }}$ Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
VOH	Output HIGH Voltage	-1035		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH(Min) }}$ or $\mathrm{V}_{\text {IL(Max }}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIM }}$ (in)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
IIH	Input HIGH Current Data Enable			$\begin{aligned} & 350 \\ & 300 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$
leE	Power Supply Current	-80	-55	-38	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.35	0.45	1.15	0.45	1.40	ns	
${ }^{\text {tpLH}}$ ${ }^{\text {tpHL }}$	Propagation Delay Enable to Output	0.95	2.15	0.95	2.15	0.95	2.20	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.20	ns	.

Cerpak AC Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Data to Output	0.45	1.15	0.45	0.95	0.45	1.20	ns	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tpHL }} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.95	1.95	0.95	1.95	0.95	2.00	ns	Figures 1 and 2
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.20	0.45	1.10	0.45	1.10	ns	

TL/F/9836-5
FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9836-6
FIGURE 2. Propagation Delay and Transition Times

F100104

Quint AND/NAND Gate

General Description

The F100104 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Refer to the F100304 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)
Ordering Code: See Section 8

Logic Symbol

Logic Equation

$$
\frac{\left.F=\left(\overline{D_{1 \mathrm{a}} \cdot D_{2 \mathrm{a}}}\right)+\left(\mathrm{D}_{1 \mathrm{~b}} \cdot \mathrm{D}_{2 \mathrm{~b}}\right)+\mathrm{D}_{1 \mathrm{c}} \cdot \mathrm{D}_{2 \mathrm{c}}\right)+\left(\mathrm{D}_{1 \mathrm{~d}} \cdot \mathrm{D}_{2 \mathrm{~d}}\right)}{+\left(\mathrm{D}_{1 \mathrm{e}} \cdot \mathrm{D}_{2 \mathrm{e}}\right)}
$$

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

TL/F/9837-3

Connection Diagrams

TL/F/9837-2

Absolute Maximum Ratings
 Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Storage Temperature
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }}(\text { Min }) \\ & \text { or } V_{\text {IL }} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$1 / 2$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\mathrm{IL}}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
Symbol	Parameter	Min	Typ	Max	Units	Conditions
IIH	Input HIGH Current $\begin{aligned} & D_{2 a}-D_{2 e} \\ & D_{1 a}-D_{1 \theta} \end{aligned}$			$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH (Max) }}$
IEE	Power Supply Current	-96	-66	-46	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $D_{n a}-D_{n \theta} \text { to } O, \bar{O}$	0.40	1.75	0.40	1.65	0.40	1.75	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to F	1.00	2.60	1.00	2.60	1.15	3.20	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.70	0.35	1.55	0.35	1.70	ns	

Cerpak AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{gathered} \mathrm{t}_{\mathrm{pLH}} \\ \mathrm{t}_{\mathrm{pHL}} \\ \hline \end{gathered}$	Propagation Delay $D_{n a}-D_{n e}$ to O, \bar{O}	0.40	1.55	0.40	1.45	0.40	1.55	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.00	2.40	1.00	2.40	1.15	3.00	ns	
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ HL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.35	1.60	0.35	1.45	0.35	1.60	ns	

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

F100107

Quint Exclusive OR/NOR Gate

General Description

The F100107 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs.

Refer to the F100307 datasheet for: PCC Packaging Lower Power
Military Versions
Extended Voltage Specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Logic Equation

$F=\left(D_{1 a} \oplus D_{2 a}\right)+\left(D_{1 b} \oplus D_{2 b}\right)+\left(D_{1 c} \oplus D_{2 c}\right)+\left(D_{1 d} \oplus\right.$ $\left.D_{2 d}\right)+\left(D_{19} \oplus D_{2 e}\right)$.

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
F	Function Output
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{e}$	Data Outputs
$\mathrm{O}_{\mathrm{a}}-\overline{\mathrm{O}}_{e}$	Complementary Data Outputs

TL/F/9838-3

Connection Diagrams

TL/F/9838-2

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OL	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1595			
$\mathrm{V}_{\text {IH }}$	input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$	

DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
Symbol	Parameter	Min	Typ	Max	Units	Conditions
IH	Input HIGH Current $\begin{aligned} & D_{2 \mathrm{a}}-D_{2 e} \\ & D_{1 \mathrm{a}}-D_{1 e} \end{aligned}$			$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max }}$
$\mathrm{IEE}^{\text {er }}$	Power Supply Current	-96	-66	-46	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}}$ to $\mathrm{O}, \overline{\mathrm{O}}$	0.55	1.90	0.55	1.80	0.55	1.90	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{1 a}-D_{1 e} \text { to } O, \bar{O}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to F	1.15	2.75	1.15	2.75	1.15	3.00	ns	
$\begin{array}{r} \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ \mathrm{t}_{\mathrm{THL}} \\ \hline \end{array}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.65	0.45	1.80	ns	

Cerpak AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \theta} \text { to } \mathrm{O}, \overline{\mathrm{O}}$	0.55	1.70	0.55	1.60	0.55	1.70	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{1 a}-D_{1 e}$ to $0, \bar{O}$	0.55	1.50	0.55	1.40	0.55	1.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to F	1.15	2.55	1.15	2.55	1.15	2.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.55	0.45	1.70	ns	

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

TL/F/9838-6
FIGURE 2. Propagation Delay and Transition Times

F100112
 Quad Driver

General Description

The F100112 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Refer to the F100313 Datasheet for PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{n a}-\mathrm{O}_{n d}$	Data Outputs
$\overline{\mathrm{O}}_{n \mathrm{a}}-\overline{\mathrm{O}}_{n d}$	Complementary Data Outputs

TL/F/9839-1

Connection Diagrams

TL/F/9839-3

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
	Data			550	$\mu \mathrm{~A}$	
	Enable		450			
	IEE	-106	-73	-51	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.55	1.50	0.55	1.40	0.45	1.60	ns	Figures 1 and 2
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay Enable to Output	0.65	2.00	0.65	1.90	0.65	2.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.55	1.30	0.55	1.20	0.45	1.40	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.65	1.80	0.65	1.70	0.65	1.80	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.50	0.45	1.40	0.45	1.50	ns	

TL/F/9839-5
FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9839-6
FIGURE 2. Propagation Delay and Transition Times

F100113

Quad Driver

General Description

The F100113 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Refer to the F100313 Datasheet for:
PCC Packaging
Lower Power
Military Versions
Extended Voltage Specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
E	Enable Input
$\mathrm{O}_{n a}-\mathrm{O}_{n d}$	Data Outputs
$\overline{\mathrm{O}}_{n \mathrm{na}}-\overline{\mathrm{O}}_{n d}$	Complementary Data Outputs

TL/F/9840-3

Connection Diagrams

TL/F/9840-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J}) $+150^{\circ} \mathrm{C}$
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	Data			550	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (max) }}$
	Enable			350	$\mu \mathrm{ma}$	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.40	0.45	1.35	0.45	1.40	ns	Figures 1 and 2
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Enable to Output	0.55	1.90	0.55	1.90	0.55	1.90	ns	
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ HL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.20	0.45	1.15	0.45	1.20	ns	Figures 1 and 2
$t_{\text {tLH }}$ $t_{\text {PHL }}$	Propagation Delay Enable to Output	0.55	1.70	0.55	1.70	0.55	1.70	ns	
$\begin{aligned} & t_{\mathrm{TLH}} \\ & t_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$.
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}.
All unused outputs are loaded with 50Ω to GND.
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$.
Pin numbers shown are for flatpak; for DIP see logic

TL/F/9840-5
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

F100114
 Quint Differential Line Receiver

General Description

The F100114 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply ($V_{B B}$) is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.

Active current sources provide common-mode rejection of 1.0V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between V_{EE} and V_{CC}. The defined state is logic HIGH on the $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\theta}$ outpuis.
Refer to the F100314 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}$	Data Inputs
$\overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}$	Inverting Data Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$	Complementary Data Outputs

TL/F/9841-3

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Maximum Junction Temperature (T_{J})

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
$V_{B B}$	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
V_{IH}	Single-Ended Input HIGH Voltage	-1165			mV	Guaranteed HIGH Signal for All Inputs (with one input tied to V_{BB})	
VIL	Single-Ended Input LOW Voltage			-1475	mV	Guaranteed LOW Signal for All Inputs (with one input tied to V_{BB})	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{BB}	Output Reference Voltage	-1396	-1320	-1244	mV	$\mathrm{l}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$	
V_{IH}	Single-Ended Input HIGH Voltage	-1150			mV	Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$)	
V_{IL}	Single-Ended Input LOW Voltage			-1475	mV	Guaranteed LOW Signal for All Inputs (with one input tied to $V_{B B}$)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { (Max) } \\ & \text { or } \mathrm{V}_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{\text {IL }}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{BB}	Output Reference Voltage	-1396	-1320	-1244	mV	$l_{\text {VBB }}=-250 \mu \mathrm{~A}$	
V_{IH}	Single-Ended Input HIGH Voltage	-1165			mV	Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$)	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage			-1490	mV	Guaranteed LOW Signal for All Inputs (with one input tied to V_{BB})	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes additional noise immunity and guard banding can be achieved by decreasing the aliowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics						
Symbol	Parameter	Min	Typ	Max	Units	Conditions
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
$V_{\text {CM }}$	Common Mode Voltage			1.0	V	Permissible $\pm V_{C M}$ with Respect to $V_{B B}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			50	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}), D_{a}-D_{e}=V_{B B}, \\ & \bar{D}_{\mathrm{a}}-\bar{D}_{\theta}=V_{I L}(\text { Min }) \end{aligned}$
Icbo	Input Leakage Current	-10	.		$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{E E}, D_{a}-D_{\theta}=V_{B B}, \\ & \bar{D}_{\mathrm{a}}-\bar{D}_{\theta}=V_{\text {IL }}(\text { Min }) \end{aligned}$
IEE	Power Supply Current	-106	-73	-51	mA	$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{BB}}, \overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.55	1.90	0.60	2.00	0.70	2.40	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.55	1.30	0.45	1.20	0.45	1.40	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.55	1.70	0.60	1.80	0.70	2.20	ns	Figures 1 and 2
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.55	1.20	0.45	1.10	0.45	1.30	ns	

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

F100115

Low-Skew Quad Clock Driver

General Description

The F100115 contains four low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input. This device also has the capability to select a secondary single-ended clock source for use in lower frequency system level testing.

Features

■ Low output to output skew ($\leq 75 \mathrm{ps}$)

- Differential inputs and outputs
- Small outline package
- Ideal for applications which require the low skew distribution of a clock signal to multiple outputs
- Secondary clock available for system level testing

Ordering Code: See Section 8

Logic Diagram

TL/F/9842-2

Connection Diagram

Pin Names	Description
CLKIN, $\overline{\text { CLKIN }}$	Differential Clock Inputs
CLK $_{1-4}, \overline{\text { CLK }}_{1-4}$	Differential Clock Outputs
TCLK	Test Clock Input \dagger
CLKSEL	Clock Input Select \dagger

†TCLK and CLKSEL are single-ended inputs, with internal $50 \mathrm{k} \Omega$ pulldown resistors.

Truth Table

CLKSEL	CLKIN	CLKIN	TCLK $^{\prime}$	CLK $_{\mathbf{N}}$	CLK $_{\mathbf{N}}$
L	L	H	X	L	H
L	H	L	X	H	L
H	X	X	L	L	H
H	X	X	H	H	L

[^4]
Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{CC} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Single-Ended Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIM }}$ M ${ }^{\text {a }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H(\operatorname{Min})} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Single-Ended Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Single-Ended Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIM }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610			
V_{IH}	Single-Ended Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIMin) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$V_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing
V_{CM}	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$		$\mathrm{~V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	V	
I_{IH}	Input High Current					$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
	CLKIN, CLKIN			107	$\mu \mathrm{~A}$	
	TCLK			300	$\mu \mathrm{~A}$	
	CLKSEL			260	$\mu \mathrm{~A}$	
$\mathrm{I}_{\mathrm{CBO}}$	Input Leakage Current	-10			$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=V_{E E}$
I_{EE}	Power Supply Current	-70		-30	mA	

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation Delay CLKIN, $\overline{\text { CLKIN }}$ to CLK $(1-4)$, CLK $_{(1-4)}$	0.63	0.83	0.65	0.85	0.70	0.93	ns	Figures 1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, TCLK to $\operatorname{CLK}_{(1-4)}, \overline{\operatorname{CLK}}_{(1-4)}$	0.50	1.20	0.50	1.20	0.50	1.20	ns	Figures 1, 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, CLKSEL to $\mathrm{CLK}_{(1-4)}, \overline{\mathrm{CLK}}_{(1-4)}$	0.60	1.40	0.60	1.40	0.60	1.40	ns	Figures 1, 2
ts G-G	Skew Gate to Gate (Note 1)		75		75		75	ps	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{~L}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	0.80	0.30	0.75	0.25	0.75	ns	Figures 1, 4

Note 1: Maximum output skew for any one device.

TL/F/9842-3
Note 1: Shown for testing CLKIN to CLK1 in the differential mode.
Note 2: L1, L2, L3 and L4 = equal length 50Ω impedance lines.
Note 3: All unused inputs and outputs are loaded with 50Ω in parallel with $\leq 3 \mathrm{pF}$ to GND.
Note 4: Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay, TCLK, CLKSEL to Outputs

FIGURE 3. Propagation Delay, CLKIN/CLKIN to Outputs

FIGURE 4. Transition Times
Note 1: The output to output skew, which is defined as the difference in the propagation delays between each of the four outputs on any one 100115 shall not exceed 75 ps .

F100117

Triple 2-Wide OA/OAI Gate

General Description

The F100117 is a monolithic triple 2 -wide OR/AND gate with true and complement outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nc}}$	Data Inputs
$\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{c}}$	Enable Inputs
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{c}}$	Complementary Data Outputs

TL/F/9843-3

Connection Diagrams

TL/F/9843-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Distributors for avallabllity and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditlons (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
VOHC	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ Min $)$	

DC Electrical Characteristics

$V_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs		260	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-79	-54	-37	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Condltions
		MIn	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.90	2.60	0.90	2.50	0.90	2.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.45	1.40	0.45	1.30	0.45	1.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.90	2.40	0.90	2.30	0.90	2.40	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Enable to Output	0.45	1.20	0.45	1.10	0.45	1.20	ns	
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.20	0.45	1.10	0.45	1.20	ns	

Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

F100118

5-Wide 5, 4, 4, 4, 2 OA/OAI Gate

General Description

The F100118 is a monolithic 5 -wide $5,4,4,4,2$ OR/AND gate with true complementary outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$	Data Inputs
$0, \overline{\mathrm{O}}$	Data Outputs

Connection Diagrams

	24-Pin DIP
$\mathrm{D}_{2 \mathrm{~d}}-1$	24
$\mathrm{D}_{3 \mathrm{~d}}-2$	23
$\mathrm{D}_{4 \mathrm{~d}}-3$	22
$\mathrm{D}_{10}-4$	21
$\mathrm{D}_{2 \mathrm{e}}-5$	20
$\mathrm{V}_{\text {cc }}-6$	19
$\mathrm{V}_{\mathrm{CCA}}-7$	18
- -8	17
$0-9$	16
$\mathrm{D}_{1 \mathrm{a}}-10$	15
$\mathrm{D}_{2 \mathrm{a}}-11$	14
$\mathrm{D}_{3 \mathrm{a}}-12$	13

TL/F/9844-2

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1)										
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avaliability and specifications.				Case Temperature under Bias (T_{C}) $V_{\text {EE }}$ Pin Potential to Ground Pin Input Voltage (DC) Output Current (DC Output HIGH)			$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				-7.0 V to +0.5 V						
				V_{EE} to +0.5 V						
Storage	perature	$-65^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$				- 50 mA			
Maximum Junction Temperature (T_{J})			$+150^{\circ} \mathrm{C}$				-5.7V to -4.2V			
DC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (Note 3) }$										
Symbol	Parameter	Min	Typ				Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V			
V_{OL}	Output LOW Voltage	-1810	-1705	-1620						
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V			
$V_{\text {OLC }}$	Output LOW Voltage			-1610						
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs				
v_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs				
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$				

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min }}$)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
VOH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{\text {IH (Min) }} \\ & \text { or } V_{\text {IL (Max) }} \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$1 / 2$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-92	-69	-42	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.85	2.50	0.95	2.50	0.95	2.70	ns	Figures 1 and 2
${ }^{\text {tTLH }}$ $t_{T H L}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	0.85	2.30	0.95	2.30	0.95	2.50	ns	Figures 1 and 2
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

TL/F/9844-5

FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Propagation Delay and Transition Times

F100121

9-Bit Inverter

General Description

The F100121 is a monolithic 9-bit inverter. The device contains nine inverting buffer gates with single input and output All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Refer to the F100321 Datasheet for:
PCC Packaging
Lower Power
Military Versions
Extended Voltage Specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9845-3

Pin Names	Description
$\mathrm{D}_{1}-\mathrm{D}_{9}$	Data Inputs
$\overline{\mathrm{O}}_{1}-\bar{O}_{9}$	Data Outputs

Connection Diagrams

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
-7.0 V to +0.5 V
$V_{E E}$ to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH(Min) }} \\ & \text { or } V_{\text {IL }}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
VOHC	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$1 / 2$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current			350	μA	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-96	-70	-46	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$T_{C}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	MIn	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.45	1.60	0.45	1.45	0.45	1.60	ns	Figures 1 and 2
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.40	ns	

Cerpak AC Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.45	1.40	0.45	1.25	0.45	1.40	ns	Figures 1 and 2
${ }^{t_{T} \text { LH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.30	ns	

TL/F/9845-5
FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}.
All unused outputs are loaded with 50Ω to GND.
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$.

TL/F/9845-6
FIGURE 2. Propagation Delay and Transition Times

National Semiconductor

F100122
 9-Bit Buffer

General Description

The F100122 is a monolithic 9-bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Refer to the F100322 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9846-3

Pin Names	Description
D_{1}, D_{9}	Data Inputs
O_{1}, O_{9}	Data Outputs

24-Pin Quad Cerpak

TL/F/9846-2

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{\text {IN }}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
11.	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{I H} \text { (Max) } \\ & \text { or } \mathrm{V}_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
V OH ,	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max
I_{EE}	Power Supply Current	-96	-70	-46	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-2.4 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{s}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unlts	Conditions
		Min	Max	Mln	Max	Min	Max		
$t_{p L H}$ t_{PHL}	Propagation Delay Data to Output	0.45	1.60	0.45	1.45	0.45	1.60	ns	Figures 1 and 2
$t_{\text {TLH }}$ ${ }_{\text {t }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.40	ns	

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output	0.45	1.40	0.45	1.25	0.45	1.40	ns	Figures 1 and 2
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\text {t }}$ THL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.40	0.45	1.30	0.45	1.30	ns	

FIGURE 1. AC Test Circult

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9846-6
FIGURE 2. Propagation Delay and Transition Times

F100123

Hex Bus Driver

General Description

The F100123 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as 25Ω. To reduce crosstalk, each output has its respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input $\left(D_{1}-D_{6}\right)$ and the OR of two select inputs (E and either $D E_{1}, D E_{2}$ or $D E_{3}$).

Enabling of data is possible in multiples of two, i.e., 2, 4 or all 6 paths. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an emitter-follower output transistor to turn off when the termination supply is -2.0 V and thus present a high impedance to the data bus.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{1}-D_{6}$	Data Inputs
$D E_{1}-D E_{3}$	Dual Enable Inputs
E	Common Enable Input
$O_{1}-O_{6}$	Data Outputs

Connection Diagrams

TL/F/9847-3

```
Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Maximum Junction Temperature ( \(\mathrm{T}_{\mathrm{J}}\) )
Case Temperature under Bias ( \(\mathrm{T}_{\mathrm{C}}\) )
```


DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 25Ω to -2.0 V
V_{OL}	Output LOW Voltage Cut-Off State			-2200	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{i N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage Cut-Off State			-2200	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {(Min) }}$)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1035		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage Cut-Off State			-2200	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current Common Enable Data and Dual Enable			$\begin{aligned} & 330 \\ & 260 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
$l_{\text {EE }}$	Power Supply Current	-235	-170	-113	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {tplH }}$	Propagation Delay	2.00	4.30	1.95	4.30		4.60	ns	Figures 1 and 2
$t_{\text {PHL }}$	Data to Output	1.00	2.40	1.00	2.40	1.10	2.60		
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay	2.30	4.70	2.00	4.70	2.30	5.10	ns	
$\mathrm{t}_{\text {PHL }}$	Dual Enable to Output	1.40	3.00	1.40	3.00	1.40	3.40		
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay	2.60	5.40	2.50	5.30	2.80	5.80	ns	
$\mathrm{t}_{\mathrm{PHL}}$	Common Enable to Output	1.50	3.20	1.50	3.30	1.50	3.60		
${ }^{\text {t }}$ LLH	Transition Time	0.70	2.10	0.70	1.80	0.70	2.20	ns	
${ }_{\text {the }}$	20\% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.40		

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {tplH }}$	Propagation Delay	2.00	4.10	1.95	4.10	2.00	4.40	ns	Figures 1 and 2
$t_{\text {PHL }}$	Data to Output	1.00	2.20	1.00	2.20	1.10	2.40		
$t_{\text {tpl }}$	Propagation Delay	2.30	4.50	2.00	4.50	2.30	4.90	ns	
tPHL.	Dual Enable to Output	1.40	2.80	1.40	2.80	1.40	3.20		
tplH	Propagation Delay	2.60	5.20	2.50	5.10	2.80	5.60	ns	
$\mathrm{t}_{\text {PHL }}$	Common Enable to Output	1.50	3.00	1.50	3.10	1.50	3.40		
${ }_{\text {t }}^{\text {TLH }}$	Transition Time	0.70	2.00	0.70	1.70	0.70	2.10	ns	
$\mathrm{t}_{\text {THL }}$	20\% to $80 \%, 80 \%$ to 20%	0.45	1.30	0.45	1.20	0.45	1.30		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitiance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9847-5
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

F100124

Hex TTL-to-ECL Translator

General Description

The F100124 is a hex translator, designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable input (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator or as a differential line driver. The output levels are voltage compensated.

When the circuit is used in the differential mode, the F100124, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The $\mathrm{V}_{\text {EE }}$ and $\mathrm{V}_{\text {TTL }}$ power may be applied in either order.
Refer to the F100324 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs $(-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V})$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
E	Enable Input
$\mathrm{Q}_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary
	Data Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9848-2

Absolute Maximum Ratings Above which the useful life may be impaired. (Note 1)							
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.				VEE Pin Potential to Ground Pin $V_{\text {TTL }}$ Pin Potential to Ground Pin Input Voltage (DC)			$\begin{aligned} & -7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ & +6.0 \mathrm{~V} \text { to }-0.5 \mathrm{~V} \end{aligned}$
Storage Temperature		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$					-0.5 V to $\mathrm{V}_{\mathrm{TTL}}$
Maximum Junction Temperature (T_{J})		-	$150^{\circ} \mathrm{C}$	Output Current (DC Output HIGH) Operating Range (VEE) (Note 2)			- 50 mA
Case Temperature under Bias (T_{C})		$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					-5.7 V to -4.2V
DC Electrical Characteristics							
Symbol	Parameter	Min	Typ	Max	Units		(Note 4)
VOH	Output HIGH Voltage	-1025	-955	-880	mV	$\mathrm{V}_{\text {IN }}=V^{\prime}$	Loading with
VOL	Output LOW Voltage	-1810	-1705	-1620		or VIL	50Ω to -2.0V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$V_{I N}=V^{\prime}$	Loading with
V OLC	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL }}$	50Ω to -2.0 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
VOHC	Output HIGH Voltage	-1030			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1595			

DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{IH}	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH Signal for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	0		0.8	V	Guaranteed LOW Signal for All Inputs
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage	-1.5			V	$\mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$
I_{H}	Input HIGH Current Data Enable			$\begin{gathered} 20 \\ 120 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$V_{I N}=+2.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
	Input HIGH Current Breakdown Test, All Inputs			1.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}, \\ & \text { All Other Inputs }=\mathrm{GND} \end{aligned}$
IIL	Input LOW Current Data Enable	$\begin{array}{r} -1.6 \\ -9.6 \end{array}$			mA	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$ All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{l}_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Power Supply Current	-140	-96	-52	mA	All Inputs $\mathrm{V}_{\mathrm{IN}}=+4.0 \mathrm{~V}$
1 TLL	$\mathrm{V}_{\text {TTL }}$ Power Supply Current		44	75	mA	All Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Ceramic Dual-In-Line Package AC Electric Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data and Enable to Output	0.50	3.00	0.50	2.90	0.50	3.00	ns	Figures 1 and 2
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {teHL }}$	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

FIGURE 1. AC Test CIrcult
Notes:
$V_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+3.0 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9848-6
FIGURE 2. Propagation Delay and Transition Times

F100125

Hex ECL-to-TTL Translator

General Description

The F100125 is a hex translator for converting F100K logic levels to TTL logic levels. Differential inputs allow each circuit to be used as an inverting, non-inverting or differential receiver. An internal reference voltage generator provides $V_{B B}$ for single-ended operation or for use in Schmitt trigger applications. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors; therefore, the outputs will go LOW when the inputs are left unconnected.

When used in the differential mode, the inputs have a common mode rejection of +1 V , making this device tolerant of ground offsets and transients between the signal source and the translator. The V_{EE} and $\mathrm{V}_{\text {TTL }}$ power may be applied in either order.
Refer to the F100325 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9849-3

Connection Diagrams

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Maximum Junction Temperature (T_{J})
Case Temperature under Bias (T_{C})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin
-7.0 V to +0.5 V
$V_{T T L}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH) Operating Range (Note 2)

$$
+6.0 \mathrm{~V} \text { to }-0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
$$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)
$V_{B B}$	Output Reference Voltage	-1380	-1320	-1260	mV	$\mathrm{I}_{\mathrm{VBB}}=-2.1 \mathrm{~mA}$
V_{IH}	Single-Ended Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})
$V_{\text {IL }}$	Single-Ended Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to $V_{B B}$)
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)
V_{BB}	Output Reference Voltage	-1396	-1320	-1244	mV	l $_{\text {VBB }}=-2.1 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Single-Ended Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to $\left.V_{B B}\right)$
V_{IL}	Single-Ended Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to $\left.V_{B B}\right)$
I_{IL}	Input LOW Current	0.50			$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ (Min)

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)
V_{BB}	Output Reference Voltage	-1396	-1320	-1244	mV	l $_{\text {VBB }}=-2.1 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Single-Ended Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs (with One Input Tied to V_{BB})
V_{IL}	Single-Ended Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs (with One Input Tied to $\left.\mathrm{V}_{\mathrm{BB}}\right)$
I_{IL}	Input LOW Current	0.50			$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ Min)

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes,

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	2.5			V	$\mathrm{lOH}^{\prime}=-2.0 \mathrm{~mA}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$
V_{OL}	Output LOW Voltage			0.5	V	$\mathrm{OL}=20 \mathrm{~mA}$	
V DIFF	Input Voltage Differential	150			mV	Required for Full Output Swing	
V_{CM}	Common Mode Voltage			1.0	V	Permissible $\pm V_{C M}$ with Respect to $V_{B B}$	
I_{H}	Input HIGH Current			350	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }), D_{0}-D_{5}=V_{B B}, \\ & \bar{D}_{0}-\bar{D}_{5}=V_{I L} \text { (Min) } \end{aligned}$	
11.	Input LOW Current	0.5			$\mu \mathrm{A}$	$V_{I N}=V_{\text {IL }}(\mathrm{Min}), D_{0}-D_{5}=V_{B B}$	
los	Output Short-Circuit Current	-100		-40	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}^{*}$	
$\mathrm{IEE}^{\text {E }}$	$\mathrm{V}_{\text {EE }}$ Power Supply Current	-85	-60	-40	mA	$\mathrm{D}_{0}-\mathrm{D}_{5}=V_{B B}$	
ITTL	$V_{\text {TTL }}$ Power Supply Current		75	115	mA	$D_{0}-D_{5}=V_{B B}$	

*Test one output at a time.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay Data to Output	0.80	3.50	0.90	3.70	1.00	4.00	ns	Figures 1 and 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	0.80	3.30	0.90	3.50	1.00	3.80	ns	Figures 1 and 2

Truth Table

Inputs		Outputs
$\mathbf{D}_{\mathbf{n}}$	$\overline{\mathbf{D}}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	H	L
H	L	H
L	L	U
H	H	U
Open	Open	L
$V_{E E}$	$V_{E E}$	L
L	$V_{B B}$	L
H	$V_{B B}$	H
$V_{B B}$	L	H
$V_{B B}$	H	L

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$U=$ Undefined
Notes:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TL}}=+5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{T} T \mathrm{~L}}$
All unused outputs are loaded with 500Ω to GND
FIGURE 1. AC Test Circuit

$C_{L}=$ Fixture and stray capacitance $=15 \mathrm{pF}$

FIGURE 2. Propagation Delay Times

F100126
 9-Bit Backplane Driver

General Description

The F100126 contains nine independent, high-speed, buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus-oriented systems where minimal output loading or bus isola-
tion is desired. The output transition times are longer to minimize noise when used as a backplane driver. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

TL/F/9850-3

Pin Names	Description
$D_{1}-D_{9}$	Data Inputs
$O_{1}-O_{9}$	Data Outputs

TL/F/9850-2

```
Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Maximum Junction Temperature ( \(T_{j}\) )
```


DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$
I_{EE}	Power Supply Current	-96	-70	-46	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	1.05	2.75	1.05	2.75	1.05	2.75	ns	Figures 1 and 2
$t_{\text {TLH }}$ ${ }^{\text {tTHL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.15	3.40	1.15	3.40	1.05	3.40	ns	

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{P L H}$ t_{PHL}	Propagation Delay Data to Output	1.05	2.55	1.05	2.55	1.05	2.55	ns	es 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	1.15	3.30	1.15	3.30	1.05	3.30	ns	

FIGURE 1. AC Test Circuit

TL/F/9850-6
FIGURE 2. Propagation Delay and Transition Times

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$ All unused outputs are loaded with 50Ω to GND $C_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

National Semiconductor

F100128

ECL/TTL Bi-Directional Translator

General Description

The F100128 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the F100128 transparent.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The F100128 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Bi-directional translation
- ECL high impedance outputs
- Latched outputs
- FAST® TTL outputs
- TRI-STATE ${ }^{\text {® }}$ outputs

Refer to the F100328 datasheet for:
PCC Packaging
Lower Power
Military Versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9851-3

Pin Names	Description
$\mathrm{E}_{0}-\mathrm{E}_{7}$	ECL Data I/O
$\mathrm{T}_{0}-\mathrm{T}_{7}$	TTL Data I/O
OE	Output Enable Input
LE	Latch Enable Input
DIR	Direction Control Input

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams

TL/F/9851-4
Note: LE, DIR and OE use ECL logic levels

Detail

Truth Table

OE	DIR	LE	ECL Port	TTL Port	Notes
L	X	L	LOW (Cut-Off)	Z	
L	L	H	Input	Z	1,3
L	H	H	LOW (Cut-Off)	Input	2,3
H	L	L	L	L	1,4
H	L	L	H	H	1,4
H	L	H	X	Latched	1,3
H	H	L	L	L	2,4
H	H	L	H	H	2,4
H	H	H	Latched	X	2,3

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$Z=$ High Impedance
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified please contact the Natlona Office/Distributors for avallab	vices are required, miconductor Sales and specifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
Case Temperature under Bias	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
$V_{T T L}$ Pin Potential to Ground Pin	+6.0 V to -0.5 V
ECL Input Voltage (DC)	V_{EE} to +0.5 V
ECL Output Current (DC Output HIGH)	-50 mA
TTL Input Voltage (Note 2)	-0.5 V to +7.0 V
TTL Input Current (Note 2)	-30 mA to +5.0 mA

Voltage Applied to Output in HIGH State TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to TTL
Output in LOW State (Max) Twice the Rated IOL (mA)
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
Recommended Operating Conditions

Case Temperature	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Note 1)	-5.7 V to -4.2 V
$\mathrm{~V}_{\mathrm{EE}}$	+4.5 V to +5.5 V
$\mathrm{~V}_{\mathrm{TLL}}$	

TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V OH	Output High Voltage	$\begin{aligned} & -1020 \\ & -1025 \\ & -1035 \\ & \hline \end{aligned}$	-955	$\begin{aligned} & -870 \\ & -880 \\ & -880 \end{aligned}$	mV mV mV	$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega$ to -2 V $V_{E E}=-4.5 \mathrm{~V}, 50 \Omega$ to -2 V $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega$ to -2 V
V_{OL}	Output Low Voltage	$\begin{aligned} & -1810 \\ & -1810 \\ & -1830 \\ & \hline \end{aligned}$	-1705	$\begin{array}{r} -1605 \\ -1620 \\ -1620 \\ \hline \end{array}$	$m V$ mV mV	$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega$ to -2 V $V_{E E}=-4.5 \mathrm{~V}, 50 \Omega$ to -2 V $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega$ to -2 V
	Cutoff Voltage		$\begin{aligned} & -2000 \\ & -2000 \\ & -2000 \end{aligned}$	$\begin{aligned} & -1930 \\ & -1950 \\ & -1950 \end{aligned}$	mV mV mV	OE or DIR Low, $\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{OHC}}$	Output High Voltage Corner Point High	$\begin{aligned} & -1030 \\ & -1035 \\ & -1045 \end{aligned}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$
V OLC	Output Low Voltage Corner Point Low			$\begin{aligned} & -1595 \\ & -1610 \\ & -1610 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$
V_{IH}	Input High Voltage	2.0			V	Over $V_{\text {TTL }}, V_{E E}, T_{C}$ Range
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			0.8	V	Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\text {EE }}, T_{C}$ Range
IIH	Input High Current			70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$
	Breakdown Test			1.0	mA	$\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$
112	Input Low Current			-1.0	mA	$\mathrm{V}_{\mathrm{IN}}=+0.5 \mathrm{~V}$
$V_{\text {FCD }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
IEE	$\mathrm{V}_{\text {EE }}$ Supply Current	-250	-175	-125	mA	LE Low, OE and DIR High

ECL-to-TTL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V OH	Output High Voltage	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \\ & \hline \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$
VOL	Output Low Voltage		0.3	0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$
V_{IH}	Input High Voltage	$\begin{aligned} & -1150 \\ & -1165 \\ & -1165 \end{aligned}$		$\begin{aligned} & -870 \\ & -880 \\ & -880 \end{aligned}$	mV mV mV	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{E E}=-4.5 \mathrm{~V} \\ & V_{E E}=-4.8 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\begin{aligned} & -1810 \\ & -1810 \\ & -1810 \end{aligned}$		$\begin{aligned} & -1475 \\ & -1475 \\ & -1490 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{E E}=-4.2 \mathrm{~V} \\ & V_{E E}=-4.5 \mathrm{~V} \\ & V_{E E}=-4.8 \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input High Current			200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)
$1 / 2$	Input Low Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$
lozht	TRI-STATE Current Output High			70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$
Iozlt	TRI-STATE Current Output Low			-1.0	mA	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-225	mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$
$1 \pi \mathrm{~L}$	$V_{\text {TTL }}$ Supply Current		$\begin{gathered} 155 \\ 90 \\ 120 \end{gathered}$	$\begin{aligned} & 200 \\ & 120 \\ & 160 \end{aligned}$	mA mA mA	TTL Outputs Low TTL Outputs High TTL Outputs in TRI-STATE

Cerpak TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	$\mathrm{TC}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	T_{n} to E_{n} (Transparent)	$\begin{aligned} & 1.0 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.3 \\ 3.7 \\ \hline \end{array}$	$\begin{array}{r} 1.0 \\ 1.4 \\ \hline \end{array}$	$\begin{array}{r} 3.3 \\ 4.3 \\ \hline \end{array}$	ns ns	Figures 1 \& 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	LE to E_{n}	$\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.7 \\ 2.4 \\ \hline \end{array}$	$\begin{aligned} & 5.4 \\ & 5.0 \\ & \hline \end{aligned}$	ns ns	Figures 1 \& 2
${ }_{\text {tPZH }}$	OE to E_{n} (Cutoff to High)	1.4	4.5	1.4	4.5	1.5	5.0	ns	Figures 1 \& 2
tPHZ	DIR to E_{n} (High to Cutoff)	1.0	4.0	1.0	4.0	1.0	4.0	ns	Figures 1 \& 2
$t_{\text {PHZ }}$	OE to E_{n} (High to Cutoff)	1.0	3.5	1.0	3.5	1.0	4.0	ns	Figures 1 \& 2
$t_{\text {set }}$	T_{n} to LE	1.0		1.0		1.0		ns	Figures 1\&2
thold	T_{n} to LE	2.0		2.0		2.0		ns	Figures 1 \& 2
tpw(H)	Pulse Width High, LE	2.0		2.0		2.0		ns	Figures 1\&2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{T} \mathrm{HL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1\&2

Cerpak ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	E_{n} to T_{n} (Transparent)	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns	Figures 3 \& 4
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$L E$ to T_{n}	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	OE to T_{n} (Enable Time)	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns	Figures 3\&5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns	Figures 3 \& 5
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.5 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ 8.5 \\ \hline \end{array}$	$\begin{array}{r} 3.0 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	Figures 3\&6
$\mathrm{t}_{\text {set }}$	E_{n} to LE	1.5		1.5		1.5		ns	Figures 3\&4
thold	E_{n} to LE	3.5		3.5		3.5		ns	Figures 3\&4
tpw(H)	Pulse Width High, LE	2.0		2.0		2.0		ns	Figures 3\&4

Ceramic Dual-In-Line Package TTL-to-ECL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	T_{N} to E_{n} (Transparent)	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 4.3 \end{aligned}$	ns ns	Figures 1\&2
$t_{\text {PLH }}$ ${ }^{t_{\text {PHL }}}$	LE to E_{n}	$\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.7 \\ 2.4 \\ \hline \end{array}$	$\begin{aligned} & 5.4 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1\&2
$t_{\text {PZH }}$	OE to E_{n} (Cutoff to High)	1.4	4.5	1.4	4.5	1.5	5.0	ns	Figures 1\&2
$t_{\text {PHZ }}$	DIR to E_{n} (High to Cutoff)	1.0	4.0	1.0	4.0	1.0	4.0	ns	Figures 1\&2
$\mathrm{t}_{\mathrm{PHZ}}$	OE to E_{n} (High to Cutoff)	1.0	3.5	1.0	3.5	1.0	4.0	ns	Figures 1\&2
$t_{\text {set }}$	T_{n} to LE	1.0		1.0		1.0		ns	Figures 1\&2
thold	T_{n} to LE	2.0		2.0		2.0		ns	Figures 1\&2
tpw(H)	Pulse Width High, LE	2.0		2.0		2.0		ns	Figures 1\&2
${ }^{\mathrm{t}} \mathrm{t}_{\mathrm{LH}}$ ${ }^{\text {t THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.6		1.0		1.6		ns	Figures 1\&2

Ceramic Dual-In-Line Package ECL-to-TTL AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	E_{n} to T_{n} (Transparent)	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$L E$ to T_{n}	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	ns	Figures 3 \& 4
$\begin{aligned} & \mathrm{tpZH}^{2} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	$O E$ to T_{n} (Enable Time)	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns	Figures 3 \& 5
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	OE to T_{n} (Disable Time)	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns	Figures 3 \& 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	DIR to T_{n} (Disable Time)	$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	Figures 3 \& 6
$\mathrm{t}_{\text {set }}$	E_{n} to LE	1.5		1.5		1.5		ns	Figures 3\& 4
$t_{\text {hold }}$	E_{n} to LE	3.5		3.5		3.5		ns	Figures 3\& 4
tpw(H)	Pulse Width High, LE	2.0		2.0		2.0		ns	Figures 3\& 4

$\mathrm{F}_{\mathrm{THL}}$ - TLL FORCING FUNCTION
$F_{\text {ECL }}$-ECL FORCING FUNCTION

FIGURE 1. TTL to ECL AC Test Circuit

TL/F/9851-7
FIGURE 2. TTL to ECL Transition-Propagation Delay and Transition Times

$F_{\text {ECL }}$ - ECL FORCING FUNCTION
TL/F/9851-8
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ including stray and jig capacitance.
Note: 50Ω to ground termination must be Included on ECL I/O pins not monitored by a 50Ω scope to prevent oscillatory feedback.
FIGURE 3. ECL-to-TTL AC Test Circuit

Note: DIR is LOW, OE is HIGH
FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times

TL/F/9851-13
Note: DIR is LOW, LE is HIGH
FIGURE 5. ECL-to-TTL Transition; OE to TTL Output, Enable and Disable Times

Note: OE and LE are HIGH
FIGURE 6. ECL-to-TTL Transition; DIR to TTL Output, Disable Time

FIGURE 5. Applications Diagram-MOS/TTL SRAM Interface Using F100128 ECL-TTL Latched Translator

F100130

Triple D Latch

General Description

The F100130 contains three D-type latches with true and complement outputs and with Common Enable (\bar{E}_{C}), Master Set (MS) and Master Reset (MR) inputs. Each latch has its
 inputs. The Q output follows its Data (D) input when both \bar{E}_{n} and \bar{E}_{C} are LOW (transparent mode). When either \bar{E}_{n} or \bar{E}_{C}
(or both) are HIGH, a latch stores the last valid data present on its D_{n} input before \bar{E}_{n} or \bar{E}_{C} goes HIGH.
Both Master Reset (MR) and Master Set (MS) inputs override the Enable inputs. The individual $C D_{n}$ and $S D_{n}$ also override the Enable inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$C D_{0}-C D_{2}$	Individual Direct Clear Inputs
${S D_{0}-S D_{2}}$ Individual Direct Set Inputs	
$\bar{E}_{0}-\bar{E}_{2}$	Individual Enable Inputs (Active LOW)
\bar{E}_{C}	Common Enable Input (Active LOW)
$D_{0}-D_{2}$	Data Inputs
$M R$	Master Reset Input
$M S$	Master Set Input
$Q_{0}-Q_{2}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{2}$	Complementary Data Outputs

TL/F/9852-3

Connection Diagrams

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9852-2

Truth Tables (Each Latch)

Latch Operation					
$\mathrm{D}_{\mathbf{n}}$	$\bar{E}_{\mathbf{n}}$	$\bar{E}_{\mathbf{C}}$	MS $\mathbf{S D}_{\mathbf{n}}$	MR $\mathbf{C D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	L	L	L	L
H	L	L	L	L	H
X	H	X	L	L	Latched *
X	X	H	L	L	Latched *

Asynchronous Operation					
Inputs					Outputs
D_{n}	\bar{E}_{n}	\bar{E}_{C}	$\begin{gathered} \mathrm{MS} \\ \mathrm{SD} \\ \hline \end{gathered}$	$\begin{aligned} & M R \\ & C D_{n} \\ & \hline \end{aligned}$	$\mathbf{Q}_{\mathbf{n}}$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

*Retains data presented before E positive transition
H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Don't Care
$U=$ Undefined

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		--1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	D_{n}			350		
	$\mathrm{CD}_{n}, \mathrm{SD}_{\mathrm{n}}$		530	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
	$\overline{\mathrm{E}}_{\mathrm{n}}$			240		
	E_{C}, MR, MS			450		
I_{EE}	Power Supply Current	-149	-106	-74	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.80	0.50	1.70	0.50	1.90	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E}_{C} to Output	0.65	2.10	0.75	2.00	0.75	2.10	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{CD}_{n}, S D_{n}, \bar{E}_{n}$ to Output	0.50	2.00	0.60	1.75	0.60	2.00	ns	Figures 1, 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.50	1.10	2.40	1.10	2.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20\% to 80\%, 80\% to 20\%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2
t_{5}	Setup Time $\begin{aligned} & \mathrm{D}_{0}-\mathrm{D}_{2} \\ & C D_{n}, S D_{n} \text { (Release Time) } \\ & \text { MR, MS (Release Time) } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.90 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.10 \\ & 1.90 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 2.00 \\ & \hline \end{aligned}$		ns	Figures 3 and 4
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$	0.60		0.60		0.80		ns	Figure 4
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}_{n}, \bar{E}_{C}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\mathrm{CD}_{\mathrm{n}}, S \mathrm{D}_{\mathrm{n}}, \mathrm{MR}, \mathrm{MS}$	2.00		2.00		2.00		ns	Figure 3

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.60	0.50	1.50	0.50	1.70	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{C} to Output	0.65	1.90	0.75	1.80	0.75	1.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}, E_{n}$ to Output	0.50	1.80	0.60	1.55	0.60	1.80	ns	Figures 1, 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.30	1.10	2.20	1.10	2.40	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\begin{aligned} & D_{0}-D_{2} \\ & C D_{n}, S D_{n} \text { (Release Time) } \\ & \text { MR, MS (Release Time) } \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.10 \\ & 1.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.00 \\ & 1.80 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.80 \\ 1.30 \\ 2.00 \\ \hline \end{array}$		ns	Figures 3 and 4
t_{n}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$	0.50		0.50		0.70		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW \bar{E}_{n}, \bar{E}_{C}	2.00		2.00		2.00		ns	Figure 2
$t_{p w}(H)$	Pulse Width HIGH $C D_{n}, S D_{n}, M R, M S$	2.00		2.00		2.00		ns	Figure 3

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9852-6
FIGURE 1. AC Test Circuit

TL/F/9852-7

FIGURE 3. Reset Timing

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{n} is the minimum time after the transition of the enable that information must
remain unchanged at the data input.

FIGURE 4. Data Setup and Hold Time

F100131

Triple D Flip-Flop

General Description

The F100131 contains three D-type, edge-triggered master/ slave flip-flops with true and complement outputs, a Common Clock (CP ${ }_{\mathrm{C}}$), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock (CP_{n}), Direct Set $\left(S D_{n}\right)$ and Direct Clear $\left(C_{n}\right)$ inputs. Data enters a master when both $C P_{n}$ and $C P_{C}$ are LOW and transiers to a slave when CP_{n} or $\mathrm{CP} \mathrm{C}_{\mathrm{C}}$ (or both) go HIGH. The Master Set,

Master Reset and individual $C D_{n}$ and $S D_{n}$ inputs override the Clock inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
Refer to the F100331 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{CP}_{0}-\mathrm{CP}_{2}$	Individual Clock Inputs
$C P_{\mathrm{C}}$	Common Clock Input
$\mathrm{D}_{0}-\mathrm{D}_{2}$	Data Inputs
$\mathrm{CD}_{0}-\mathrm{CD}_{2}$	Individual Direct Clear Inputs
SD_{n}	Individual Direct Set Inputs
MR	Master Reset Input
$M S$	Master Set Input
$\mathrm{Q}_{0}-\mathrm{Q}_{2}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{2}$	Complementary Data Outputs

Connection Diagrams

TL/F/9853-2

Logic Diagram

TL/F/9853-5
Truth Tables (Each Fip-Flop)

Inputs					Outputs
D_{n}	CP ${ }_{\text {n }}$	CPC_{C}	$\begin{gathered} M S \\ S D_{n} \end{gathered}$	$\begin{gathered} M R \\ C D_{n} \end{gathered}$	$Q_{n}(\mathbf{t}+1)$
L	\sim	L	L	L	L
H	\sim	L	L	L	H
L	L	$\widetilde{\sim}$	L	L	L
H	L	Ω	L	L	H
x	L	L	L	L	Qn(t)
X	H	X	L	L	Qn(t)
X	X	H	L	L	Qn(t)

Asynchronous Operation

Inputs					Outputs
D_{n}	CP_{n}	$\mathrm{CPP}_{\mathrm{c}}$	$\begin{gathered} M S \\ S D_{n} \end{gathered}$	$\begin{gathered} M R \\ C D_{n} \end{gathered}$	$Q_{n}(t+1)$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$U=$ Undefined
$\mathrm{t}=$ Time before CP Positive Transition
$t+1=$ Time after CP Positive Transition
$\sim=$ LOW to HIGH Transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

```
Storage Temperature
-65*}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
Maximum Junction Temperature (TJ) +150
```

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
V OHC	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V OH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{1 L}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
1 IH	$\begin{aligned} & \text { Input HIGH Current } \\ & C P_{n}, D_{n} \\ & M S, M R, P_{C} \\ & C D_{n}, S D_{n} \\ & \hline \end{aligned}$			$\begin{array}{r} 240 \\ 450 \\ 530 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
IEE	Power Supply Current	-149	-106	-74	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions			
		Min	Max	Min	Max	Min	Max					
$f_{\text {max }}$	Toggle Frequency	325		325		325		MHz	Figures 2 and 3			
tpLH t_{PHL}	Propagation Delay CP_{C} to Output	0.75	2.40	0.75	2.15	0.70	2.30	ns	Figures 1 and 3			
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P_{n}$ to Output	0.70	2.20	0.70	2.00	0.70	2.20	ns				
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.70	1.90	0.70	1.70	0.70	1.80	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	Figures 1 and 4		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \\ & \hline \end{aligned}$		0.70	2.10	0.70	2.00	0.70	2.20		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$			
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.70	1.10	2.60	1.10	2.70	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$			
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$		1.05	3.05	1.05	2.95	1.05	3.05		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.20	0.45	1.80	0.45	1.90	ns	Figures 1,3 and 4			
t_{s}	Setup Time D_{n}	$\begin{aligned} & 0.90 \\ & 1.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.30 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & 2.50 \end{aligned}$		ns	Figure 5			
	$\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ (Release Time) MS, MR (Release Time)			Figure 4								
t_{h}	Hold Time D_{n}	0.60				0.60		0.80		ns	Figure 5	
$t_{\text {pw }}(H)$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}, \mathrm{CD}_{\mathrm{n}}$, $S_{n}, M R, M S$	2.00		2.00		2.00		ns	Figures 3 and 4			

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions			
		Min	Max	Min	Max	Min	Max					
$\mathrm{f}_{\text {max }}$	Toggle Frequency	350		350		350		MHz	Figures 2 and 3			
$t_{\text {PLLH }}$ tphL	Propagation Delay CP ${ }_{\mathrm{C}}$ to Output	0.75	2.20	0.75	1.95	0.70	2.10	ns	Figures 1 and 3			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP_{n} to Output	0.70	2.00	0.70	1.80	0.70	2.00	ns				
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.70	1.70	0.70	1.50	0.70	1.60	ns	$C P_{n}, C P_{C}=L$	Figures 1 and 4		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$		0.70	1.90	0.70	1.80	0.70	2.00		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{P}_{\mathrm{C}}=\mathrm{H}$			
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	1.10	2.50	1.10	2.40	1.10	2.50	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{P}_{\mathrm{C}}=\mathrm{L}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$		1.05	2.85	1.05	2.75	1.05	2.85		$\mathrm{CP}_{n}, \mathrm{CP} \mathrm{P}_{\mathrm{C}}=\mathrm{H}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{TL} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	1.60	0.45	1.70	ns	Figures 1, 3 and 4			
$\mathrm{t}_{\text {s }}$	Setup Time D_{n}	$\begin{aligned} & 0.80 \\ & 1.40 \\ & 2.40 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.20 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.40 \\ & 2.40 \end{aligned}$		ns	Figure 5			
	$\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}$ (Release Time) MS, MR (Release Time)			Figure 4								
t_{n}	Hold Time D_{n}	0.50				0.50		0.70		ns	Figure 5	
$t_{p w}(H)$	$\begin{aligned} & \text { Pulse Width HIGH } \\ & C P_{n}, C P_{C}, C D_{n} \text {, } \\ & S D_{n}, M R, M S \\ & \hline \end{aligned}$	2.00		2.00		2.00		ns	Figure 3 and 4			

FIGURE 1. AC Test Circuit

FIGURE 2. Toggle Frequency Test Circuit

Note:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Resets)

FIGURE 5. Data Setup and Hold Time
Note:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input. t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

F100135

Triple J-K Flip-Flop

General Description

The F100135 contains three J-K, edge-triggered masterslave flip-flops with true and complement outputs. All have individual Clock ($C P_{n}$), Clear (C_{n}), and Set (S_{n}) inputs. Clocking occurs on the rising edge of CP_{n}. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- Toggle frequency 750 MHz Typical
- Propagation delay 2.2 ns max
- Outputs specified to drive a 50Ω load

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$J_{0}-J_{2}$	J Inputs
$K_{0}-K_{2}$	K Inputs
$S_{0}-S_{2}$	Direct Set Inputs
$C_{0}-C_{2}$	Direct Clear Inputs
$C P_{0}-\mathrm{CP}_{2}$	Clock Inputs
$Q_{0}-Q_{2}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{2}$	Complementary Data Outputs

Connection Diagrams

Logic Diagram

Truth Tables (Each Flip-Flop)

Synchronous Operation

Inputs					Outputs
J_{n}	K_{n}	CP_{n}	S_{n}	C_{n}	$\mathrm{an}_{\mathrm{n}}(\mathbf{t}+1)$
L	L	\checkmark	L	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$
L	H	\sim	L	L	L
H	L	\checkmark	L	L	H
H	H	\sim	L	L	$\overline{Q_{n}(t)}$
X	X	H	L	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$
X	X	L	L	L	$Q_{n}(t)$

Asynchronous Operation

Inputs					
$J_{\mathbf{n}}$	$K_{\mathbf{n}}$	$\mathbf{C P}_{\boldsymbol{n}}$	$\mathbf{S}_{\boldsymbol{n}}$	$\mathbf{C}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$U=$ Undefined
$t=$ Time before CP Positive Transition
$t+.1=$ Time after CP Positive Transition
$\mathcal{L}=$ LOW-to-HIGH Transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)

$$
\begin{array}{r}
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{~V} \text { EE } \text { to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA} \\
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{iH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
1 l	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
1 l	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

[^5]
DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs		350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-195	-150	-90	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	600		600		600		MHz	Figure 1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P_{n}$ to Output	0.70	2.20	0.70	2.00	0.70	2.20	ns	Figures 2 and 3
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ to Output	0.90	1.80	0.90	2.00	0.90	2.40	ns	$C P_{n}=L, C P_{n}=H$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.40	0.30	1.40	0.30	1.40	ns	Figures 2 and 3
ts	Setup Time $J_{n}, K_{n} \text { to } C P_{n}$ $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time)	$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \\ & \hline \end{aligned}$		ns	
t_{H}	Hold Time $J_{n}, K_{n} \text { to } C P_{n}$	0.80		0.80		0.80		ns	
$t_{\text {pw }}(\mathrm{H})$	Pulse Width HIGH $C P_{n}, C_{n}, S_{n}$	2.00		2.00		2.00		ns	

Cerpak AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	650		650		650		MHz	Figure 1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP_{n} to Output	0.70	2.00	0.70	1.80	0.70	2.00	ns	Figures 2 and 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n}, S_{n} to Output	0.90	1.60	0.90	1.80	0.90	2.20	ns	$C P_{n}=L, C P_{n}=H$
${ }^{\text {t T L LH }}$ ${ }^{\text {t }}$ HL	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.30	1.30	0.30	1.30	0.30	1.30	ns	Figures 2 and 3
ts	Setup Time $J_{n}, K_{n} \text { to } C P_{n}$ $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time)	$\begin{aligned} & 0.80 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 1.20 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.40 \\ & \hline \end{aligned}$		ns	
${ }_{\text {th }}$	Hold Time $J_{n}, K_{n} \text { to } C P_{n}$	0.70		0.70		0.70		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $C P_{n}, C_{n}, S_{n}$	2.00		2.00		2.00		ns	

TL/F/9854-6
FIGURE 1. Toggle Frequency Test Circuit

Notes:
$V_{C C}=V_{C C A}=+2 V$
$V_{E E}=-2.5 \mathrm{~V}$
Decouple power supplies with $0.1 \mu \mathrm{~F}$ from V_{CC} and $V_{E E}$ to GND
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ termination
Load all unused outputs with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
$*=$ equal electrical length 50Ω lines
\# = Connect Scope CHAN A to pulse generator as required
$t=$ Connect pulse generator to input under test; else connect input to voltage source set to +1.05 volts for logic HIGH or +0.31 volts for logic LOW
Consult truth table for appropriate logical condition

TL/F/9854-7
FIGURE 2. AC Test Circult

FIGURE 3. Propagation Delays and Setup and Hold Time

F100136

4-Stage Counter/Shift Register

General Description

The F100136 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select $\left(S_{n}\right)$ inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable ($\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$) inputs are provided for ease of cascading in multistage counters. One Count Enable ($\overline{\mathrm{CET}}$) input also doubles as a Serial Data (D_{0}) input for shift-up operation. For shift-down operation, D_{3} is the Serial Data input. In counting operations the Terminal Count ($\overline{\mathrm{TC}}$) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output repeats the Q_{3} output. The dual nature of this $\overline{T C} / Q_{3}$ output and the $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ input means that one interconnection from one stage to the next higher stage serves as the link for
multistage counting or shift-up operation. The individual Preset $\left(P_{n}\right)$ inputs are used to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flip-flops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
Refer to the F100336 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9855-3

Pin Names	Description
CP	Clock Pulse Input
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active LOW) $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ $\mathrm{S}_{0}-\mathrm{S}_{2}$ Serial Data Input/Count Enable Trickle Input (Active LOW) $\mathrm{P}_{0}-\mathrm{P}_{3}$
D_{3}	Select Inputs
$\overline{T C}$	Prester Reset Input Inputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Serial Data Input
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Terminal Count Output

Connection Diagrams

TL/F/9855-2

Logic Diagram

Function Select Table

$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Function
L	L	L	Parallel Load
L	L	H	Complement
L	H	L	Shift Left
L	H	H	Shift Right
H	L	L	Count Down
H	L	H	Clear
H	H	L	Count Up
H	H	H	Hold

Truth Table

$Q_{0}=$ LSB

Inputs								Outputs					
MR	S_{2}	S_{1}	S_{0}	CEP	$\mathrm{D}_{0} / \overline{\text { CET }}$	D_{3}	CP	Q_{3}	Q_{2}	Q_{1}	Q_{0}	$\overline{T C}$	Mode
L	L	L	L	x	X	X	-	P_{3}	P_{2}	P_{1}	P_{0}	L	Preset (Parallel Load)
L	L	L	H	X	X	X	\sim	$\overline{\mathrm{Q}}_{3}$	$\overline{\mathrm{Q}}_{2}$	\bar{Q}_{1}	\bar{Q}_{0}	L	Invert
L	L	H	L	X	x	X	\sim	D_{3}	Q_{3}	Q_{2}	D_{1}	D_{3}	Shift Left
L	L	H	H	X	X	X	\checkmark	Q_{2}	Q_{1}	Q_{0}	D_{0}	$Q_{3}{ }^{*}$	Shift Right
L	H	L	L	L	L	x	\sim		0_{0-3}	minus		(1)	Count Down
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \mathrm{H} \end{aligned}$	Count Down with CEP not active Count Down with CET not active
L	H	L	H	X	X	X	-	L	L	L	L	H	Clear
L	H	H	L	L	L	x	\sim		$\left(Q_{0-3}\right.$	plus 1		(3)	Count Up
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & X \end{aligned}$	H	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	${ }^{\text {(2) }}$	Count Up with $\overline{C E P}$ not active Count Up with $\overline{\text { CET }}$ not active
L	H	H	H	x	X	x	x	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Hold
H	L	L.	L	x	x	x	x	L	L	L	L	L	
H	L	L	H	x	x	x	x	L	L	L	L	L	
H	L	H	L	x	x	x	\times	L	L	L	L	L	
H	L	H	H	X	X	x	x	L	L	L	L	L	
H	H	L	L	x	L	x	x	L	L	L	L	L	
H	H	L	L	x	H	x	x	L	L	L	L	H	
H	H	L	H	x	x	x	x	L	L	L	L	H	
H	H	H	L	\times	x	x	x	L	L	L	L	H	
H	H	H	H	x	x	x	x	L	L	L	L	H	
$\begin{aligned} (1)= & L \text { if } Q_{0}-Q_{3}=L L L L \\ & H \text { if } Q_{0}-Q_{3} \neq L L L L L \end{aligned}$													
(8) $=$ Lif $Q_{0}-Q_{3}=H H H H$													
	HifO	Q_{3}	HHHH										
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level													
$\mathrm{L}=$ Low Voltage Level													
$\mathrm{x}=$ Don't Care													
$\sim=$ LOW-to-HIGH Transition													

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,	Case Temperature under Bias $\left(T_{C}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
please contact the Natlonal Semiconductor Sales	V $_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V	
Office/Distributors for availability and specifications.	Input Voltage (DC)	$V_{E E}$ to +0.5 V	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Output Current (DC Output HIGH)	-50 mA
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$	Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	$\mathrm{P}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$			180		
	CEP			200		
	MR		240	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
	D_{3}					
	CP					
	$\mathrm{D}_{0} / \overline{\mathrm{CET}}$					
I_{EE}	Power Supply Current	-283	-195	-136	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	250		250		250		MHz	Figures 2 and 3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	0.85	2.10	0.85	2.10	0.85	2.25	ns	Figures 1 and 3
$t_{\text {PLH }}$ tpHL	Propagation Delay CP to TC	1.90	4.80	1.90	4.60	1.90	5.20	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \\ & \hline \end{aligned}$	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	1.20	2.95	1.35	2.95	1.20	3.10	ns	Figures 1 and 4
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to TC	2.20	4.80	2.20	4.80	2.20	5.30	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.40	3.20	1.40	3.20	1.40	3.50	ns	Figures 1 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to TC	0.90	3.80	1.00	3.80	1.00	4.30	ns	
$\begin{aligned} & t_{\mathrm{TLH}} \\ & t_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	Figures 1 and 3
$\mathrm{t}_{\text {s }}$	Setup Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}, \overline{\mathrm{CEP}}$ S_{n} MR (Release Time)	$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$		ns	Figure 6
t_{n}	$\begin{aligned} & \text { Hold Time } \\ & D_{3} \\ & P_{n} \\ & D_{0} / \overline{\text { CET }}, \overline{\text { CEP }} \\ & S_{\mathrm{n}} \\ & \hline \end{aligned}$	$\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$		$\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$		$\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$		ns	Figure 6
${ }_{t p w}(H)$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	250		250		250		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Q_{n}, \bar{Q}_{n}	0.85	1.90	0.85	1.90	0.85	2.05	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$	1.90	4.60	1.90	4.40	1.90	5.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Q_{n}, \bar{Q}_{n}	1.20	2.75	1.35	2.75	1.20	2.90	ns	Figures 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to TC	2.20	4.60	2.20	4.60	2.20	5.10	ns	Figes 1 and 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{T}}$	1.40	3.00	1.40	3.00	1.40	3.30	ns	Figures 1 and 5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{TC}}$	0.90	3.60	1.00	3.60	1.00	4.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	Figures 1 and 3
t_{s}	```Setup Time D P D0/\overline{CET, CEP} Sn MR (Release Time)```	$\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \\ & \hline \end{aligned}$		$\begin{array}{r} 1.10 \\ 1.60 \\ 1.35 \\ 3.20 \\ 2.50 \\ \hline \end{array}$		ns	Figure 6
t_{n}	Hold Time D_{3} P_{n} $\mathrm{D}_{0} / \overline{\mathrm{CET}}, \overline{\mathrm{CEP}}$ S_{n}	$\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{gathered}$		$\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{gathered}$		$\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{gathered}$		ns	Figure 6
$t_{p w}(H)$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3 and 4

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1, L 2$ and $L 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circult

TL/F/9855-7
FIGURE 2. Shift Frequency Test Circult (Shift Left)

Notes:

For shift right mode, +1.05 V is applied at S_{0}.
The feedback path from output to input should be as short as possible.

TL/F/9855-8
FIGURE 3. Propagation Delay (Clock) and Transition Times

TL/F/9855-9
FIGURE 4. Propagation Delay (Reset)

FIGURE 5. Propagation Delay (Serial Data, Selects)

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input. t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 6. Setup and Hold Time

Applications

Note: If $\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=$ LOW, then $\mathrm{T}_{\mathrm{C}}=$ LOW
TL/F/9855-12

Fast Expansion Scheme

F100141

8-Bit Shift Register

General Description

The F100141 contains eight edge-triggered, D-type flipflops with individual inputs $\left(P_{n}\right)$ and outputs $\left(Q_{n}\right)$ for parallel operation, and with serial inputs $\left(D_{n}\right)$ and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.
The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either
"parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
Refer to the F100341 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9856-1

Pin Names	Description
$C P$	Clock Input
S_{0}, S_{1}	Select Inputs
D_{0}, D_{7}	Serial Inputs
$P_{0}-P_{7}$	Parallel Inputs
$Q_{0}-Q_{7}$	Data Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9856-3

Logic Diagram

Truth Table

Function	Inputs					Outputs							
	D_{7}	D_{0}	S_{1}	S_{0}	CP	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
Load Register	X	X	L	L	\sim	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
Shift Left Shift Left	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H H	$\sqrt{2}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & Q_{4} \\ & Q_{4} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	L
Shift Right Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & \mathbf{L} \end{aligned}$	$\sqrt{\sim}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & Q_{7} \\ & Q_{7} \end{aligned}$	$\begin{aligned} & Q_{6} \\ & Q_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{4} \\ & \mathrm{Q}_{4} \\ & \hline \end{aligned}$	Q_{3} Q_{3}	Q_{2} Q_{2}	Q_{1} Q_{1}
Hold Hold Hold	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline H \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	H X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	No Change							

H $=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\Omega=$ LOW-to-HIGH transition

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias $\left(T_{C}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min }}$)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	$\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}, S_{n}$			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)
	CP			550		mA
I_{EE}	Power Supply Current	-238	-170	-119	Inputs Open	

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	275		275		255		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	0.90	2.40	1.10	2.30	1.10	2.50	ns	Figures 1 and 3
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t_{5}	$\begin{aligned} & \hline \text { Setup Time } \\ & D_{n}, P_{n} \\ & S_{n} \\ & \hline \end{aligned}$	$\begin{array}{r} 0.85 \\ 2.20 \\ \hline \end{array}$		$\begin{aligned} & 0.85 \\ & 2.20 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.85 \\ 2.20 \\ \hline \end{array}$		ns	Figure 4
${ }_{\text {th }}$	Hold D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.60 \\ & 0.10 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.60 \\ 0.10 \\ \hline \end{array}$		$\begin{aligned} & 0.60 \\ & 0.10 \\ & \hline \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {shift }}$	Shift Frequency	300		300		280		MHz	Figures 2 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Output	0.90	2.20	1.10	2.10	1.10	2.30	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.40	ns	
t_{5}	Setup Time D_{n}, P_{n} S_{n}	$\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$		$\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$		$\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$		ns	Figure 4
t_{H}	$\begin{aligned} & \text { Hold } \\ & D_{n}, P_{n} \\ & S_{n} \end{aligned}$	$\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

FIGURE 1．AC Test Circuit

TL／F／9856－7
Notes：
For shift right mode pulse generator connected to S_{0} is moved to S_{1} ．
Pulse generator connected to S_{1} has a LOW frequency 99% duty cycle，which allows occasional parallel load．
The feedback path from output to input should be as short as possible．
FIGURE 2．Shift Frequency Test Circuit（Shift Left）

National Semiconductor

F100142

4 x 4-Bit Content Addressable Memory

General Description

The F100142 is a 4 word by 4 -bit Content Addressable Memory (CAM). Reading is accomplished when an address select input ($A_{0}, A_{7}, A_{2}, A_{3}$) is LOW and the write strobe input ($\overline{\mathrm{WS}}$) is HIGH. The corresponding stored word appears on the data outputs $\left(Q_{0}-Q_{3}\right)$. Writing can be performed to individual bits of a word or to the whole word. (A LOW on an address select input enables a 4-bit word.) A LOW on a bit mask input ($\mathrm{MK}_{0}, \mathrm{MK}_{1}, \mathrm{MK}_{2}, \mathrm{MK}_{3}$) enables a bit within all four 4-bit words. Write data is presented on the data inputs $\left(D_{0}, D_{1}, D_{2}, D_{3}\right)$ and is latched into the addressed bit latch when the write strobe input ($\overline{W S}$) is LOW. Hence, the bit
mask inputs are used to selectively store data bit-wise within an addressed word. During writing, the data input word is simultaneously compared to each of the stored memory words. A search/compare is performed by placing a LOW on the bit mask inputs and presenting a data pattern to the data inputs. Corresponding to the bit mask inputs, the match outputs $\left(M_{0}-M_{3}\right)$ go LOW if a data bit of the pattern matches the respective stored bit. A HIGH on any bit mask input forces a LOW on the respective match output. Each input has a $50 \mathrm{k} \Omega$ (typical) pull-down resistor to V_{EE}.

Ordering Code: See Section 8

Logic Symbol

Connection Diagrams

TL/F/9857-2

Operation	Inputs				Flip-Flop	Outputs	
	WS	A_{1}	D_{J}	MK J	\mathbf{Q}_{11}	$\mathrm{M}_{\mathbf{i}}$	Q^{-}
	WS	$\begin{aligned} & A_{0} \\ & A_{1} \\ & A_{2} \\ & A_{3} \end{aligned}$	$\begin{aligned} & D_{0} \\ & D_{1} \\ & D_{2} \\ & D_{3} \end{aligned}$	MK_{0} MK_{1} MK_{2} MK_{3}		M_{0} M_{1} M_{2} M_{3}	$\begin{aligned} & Q_{0} \\ & Q_{1} \\ & Q_{2} \\ & Q_{3} \end{aligned}$
Write Disabled	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	NC NC	$\begin{aligned} & X \\ & L \end{aligned}$	$\stackrel{\mathrm{L}}{\mathrm{Q}_{i j} \mathrm{n}^{-1}}$
Write	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} H \\ L \end{gathered}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & L \end{aligned}$
Read	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{array}{r} \mathrm{x} \\ \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & H \\ & \mathrm{~L} \end{aligned}$
Match Masked	H	X	X	H	NC	L	X
Match Not Satisfied	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Match Satisfied	H H H H	L H H L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & H=\text { HIGH Voltage Level } \\ & L=\text { LOW Voltage Level } \\ & X=\text { Don't Care } \\ & N C=\text { No Change from Previous State } \\ & \text { WS }=\text { Write Strobe } \\ & A_{i}=\text { Address for ith Word } \\ & D_{\mathrm{j}}=\text { Data for jth Bit } \end{aligned}$		$\begin{aligned} & M_{K_{1}}=\text { Data Mask for jth Bit } \\ & \quad H=\text { Mask } \\ & Q_{i j}=\text { Cell State for ith Word, jth Bit } \\ & M_{i}=\text { Match Output of ith Word } \\ & \quad L=\text { True } \\ & Q_{i}=\text { Data Output of jth Bit } \\ & Q_{n-1}=\text { Previous Cell State } \end{aligned}$					

Absolute Maximum Ratings
Above which the useful life may be impaired．（Note 1）
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature（ T_{J} ）

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

Symbol	Parameter	Min	Typ	Max	Units	Conditio	（Note 4）
V_{OH}	Output HIGH Voltage	－1025	－955	－880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	－1810	－1705	－1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	－1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	－1165		－880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	－1810		－1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL（ }}^{\text {Min }}$ ）	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4）
V_{OH}	Output HIGH Voltage	－1020		－870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	－1810		－1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	－1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			－1595			
V_{IH}	Input HIGH Voltage	－1150		－870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	－1810		－1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$（Min）	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

Symbol	Parameter	Min	Typ	Max	Units	Conditi	Note 4）
V_{OH}	Output HIGH Voltage	－1035		－880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	－1830		－1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	－1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			－1610			
V_{IH}	Input HIGH Voltage	－1165		－880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	－1830		－1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$（Min）	

Note 1：Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Parametric values specified at -4.2 V to -4.8 V ．
Note 3：The specified limits represent the＂worst case＂value for the parameter．Since these＂worst case＂values normally occur at the temperature extremes， additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges．
Note 4：Conditions for testing shown in the tables are chosen to guarantee operation under＂worst case＂conditions．
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs		200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-288	-190	-114	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{A D}$	Address to Data Out	1.20	4.40	1.20	4.30	1.20	4.50	ns	Figures 2 and 3
$t_{\text {DM }}$	Data In to Match Out Time	1.60	3.70	1.60	3.60	1.60	3.80	ns	Figure 5
${ }^{\text {t M M }}$	Mask In to "Enable Partial" Match Out Time	1.20	3.90	1.20	3.90	1.20	4.00	ns	
$t_{D D}$	Data In to New Data Out	1.70	4.40	1.70	4.40	1.70	4.60	ns	Figure 2
$t_{\text {WD }}$	Write to New Data Out	2.50	5.40	2.50	5.20	2.30	5.10	ns	
${ }^{\text {t }}$ AM	Address to Match	2.50	4.60	2.50	4.60	2.50	4.90	ns	
t_{MD}	Mask to Data	2.20	4.90	2.20	4.80	2.20	5.00	ns	
twSM	$\overline{\text { WS }}$ to Match	2.80	4.90	2.80	4.80	2.80	5.10	ns	
tw	Write Pulse Width	1.30		1.30		1.30		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.40		1.40		1.40		ns	
$t_{\text {AH }}$	Address Hold after Write Time	1.40		1.40		1.40		ns	
tDS	Data In Setup before Write Time	0.60		0.60		0.60		ns	
t_{DH}	Data In Hold after Write Time	1.10		1.10		1.10		ns	
${ }_{\text {tM }}$	Mask In Hold Write Time	2.50		2.50		2.50		ns	
t_{MS}	Mask In Setup Write Time	1.10		1.10		1.10		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.50	2.30	0.50	2.30	0.50	2.30	ns	Figure 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{A D}$	Address to Data Out	1.20	4.20	1.20	4.10	1.20	4.30	ns	Figures 2 and 3
$t_{\text {DM }}$	Data In to Match Out Time	1.60	3.50	1.60	3.40	1.60	3.60	ns	Figure 5
${ }^{\text {m M }}$	Mask In to "Enable Partial" Match Out Time	1.20	3.70	1.20	3.70	1.20	3.80	ns	
$t_{D D}$	Data In to New Data Out	1.70	4.20	1.70	4.20	1.70	4.40	ns	Figure 2
$t_{\text {WD }}$	Write to New Data Out	2.50	5.20	2.50	5.00	2.30	4.90	ns	
$t_{\text {AM }}$	Address to Match	2.50	4.40	2.50	4.40	2.50	4.70	ns	
$t_{\text {MD }}$	Mask to Data	2.20	4.70	2.20	4.60	2.20	4.80	ns	
twSM	WS to Match	2.80	4.70	2.80	4.60	2.80	4.90	ns	
$t_{\text {w }}$	Write Pulse Width	1.20		1.20		1.20		ns	Figure 1
$t_{\text {AS }}$	Address Setup before Write Time	1.30		1.30		1.30		ns	
$t_{\text {AH }}$	Address Hold after Write Time	1.30		1.30		1.30		ns	
$t_{\text {DS }}$	Data In Setup before Write Time	0.50		0.50		0.50		ns	
$t_{\text {DH }}$	Data In Hold after Write Time	1.00		1.00		1.00		ns	
t_{MH}	Mask In Hold Write Time	2.40		2.40		2.40		ns	
$t_{\text {MS }}$	Mask In Setup Write Time	1.00		1.00		1.00		ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	Figure 2

Switching Waveforms

FIGURE 1. AC Test Circuit

Note:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9857-7
FIGURE 2. Output Rise and Fall Times and Waveforms

FIGURE 3. Write Mode and Read/Write Mode Waveforms

Switching Waveforms (Continued)

FIGURE 4. Read Mode Waveforms

Application

The F100142 is an ideal choice for the register file unit of a bit-slice processor. Figure 5 shows the configuration of four F100145s into a 16×16 register file. The write enbles (WE_{1}, $W E_{2}$) and output enables $\left(\mathrm{OE}_{1}, \mathrm{OE}_{2}\right)$ are configured to allow access to one array of sixteen 16 -bit registers or two arrays of sixteen 8 -bit registers. Simultaneous read and write addressing is made possible with separate buses. Also, reading and then writing to the same address is easily and efficiently done by tying one write enable to an output enable.

TL/F/9857-10
FIGURE 5. Search Mode Waveforms

FIGURE 5. 16×16 Register File (Two 16×8 Register Files)

F100150
 Hex D Latch

General Description

The F100150 contains six D-type latches with true and complement outputs, a pair of common Enables (\bar{E}_{a} and \bar{E}_{b}). and a common Master Reset (MR). A Q output follows its D input when both \bar{E}_{a} and \bar{E}_{b} are LOW. When either \bar{E}_{a} or \bar{E}_{b} (or both) are HIGH, a latch stores the last valid data present on its D input before \bar{E}_{a} or $\overline{\mathrm{E}}_{\mathrm{b}}$ went HIGH. The MR input
overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
Refer to the F100350 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
\bar{E}_{a}, \bar{E}_{b}	Common Enable Inputs (Active LOW)
$M R$	Asynchronous Master Reset Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary Data Outputs

TL/F/9858-3

Connection Diagrams

TL/F/9858-2

Logic Diagram

Truth Tables (Each Latch)

Latch Operation

Inputs				Outputs
$\mathrm{D}_{\mathbf{n}}$	$\overline{\mathbf{E}}_{\mathbf{a}}$	$\overline{\mathbf{E}}_{\mathbf{b}}$	$\mathbf{M R}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	L	L	L
H	L	L	L	H
X	H	X	L	Latched *
X	X	H	L	Latched *

*Retains data present before \bar{E} positive transition
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specifled devices are required,
please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specificatlons.
Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	MR			450		
	D_{n}		340	E_{b}		520
				$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$		
I_{EE}	Power Supply Current	-159	-113	-79	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=\mathrm{O}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{tpLH}^{\text {tpL }} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.45	1.50	0.50	1.40	0.50	1.50	ns	Figures 1 and 2
$\begin{gathered} \text { tpLH } \\ t_{\text {PHL }} \\ \hline \end{gathered}$	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	2.05	0.75	1.85	0.75	2.05	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.80	2.40	0.90	2.40	0.90	2.60	ns	Figures 1 and 3
$\begin{aligned} & \text { țLH } \\ & \text { t }_{\text {THL }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.70	0.45	1.60	0.45	1.60	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$		$\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$		$\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$		ns	Figures 3 and 4
t_{n}	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.70		0.70		0.70		ns	Figure 4
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}_{a}, \bar{E}_{b}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.45	1.30	0.50	1.20	0.50	1.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{a}, \bar{E}_{b} to Output	0.75	1.85	0.75	1.65	0.75	1.85	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	0.80	2.20	0.90	2.20	0.90	2.40	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.60	0.45	1.50	0.45	1.50	ns	Figures 1 and 2
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$		$\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$		$\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$		ns	Figures 3 and 4
th	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.60		0.60		0.60		ns	Figure 4
$t_{\text {pw }}(\mathrm{L})$	Pulse Width LOW \bar{E}_{a}, \bar{E}_{b}	2.00		2.00		2.00		ns	Figure 2
$t_{p w}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L1 and L2 $=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Clrcult

TL/F/9858-7
FIGURE 2. Enable Timing

FIGURE 3. Reset Timing

Notes:
t_{s} is the minimum time before the transition of the enable that information must be present at the data input. t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

FIGURE 4. Data Setup and Hold Time

F100151

Hex D Flip-Flop

General Description

The F100151 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_{a} and CP_{b}) and common Master Reset (MR) input. Data enters a master when both CP_{a} and CP_{b} are LOW and transfers to the slave when CP_{a} and CP_{b} (or both) go HIGH. The MR input overrides all other inputs
and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.
Refer to the F100351 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{5}$	Data Inputs
$C P_{a}, C P_{b}$	Common Clock Inputs
$M R$	Asynchronous Master Reset Input
$Q_{0}-Q_{5}$	Data Outputs
$\bar{Q}_{0}-\bar{Q}_{5}$	Complementary Data Outputs

Connection Diagrams

Logic Diagram

TL/F/9859-5
Truth Table (Each Fipp-flop)
Synchronous Operation

Inputs				Outputs
D_{n}	$\mathrm{CPa}_{\mathrm{a}}$	CP_{b}	MR	$Q_{n}(t+1)$
L	Γ	L	L	L
H	\checkmark	L	L	H
L	L	\sim	L	L
H	L	Ω	L	H
X	H	\checkmark	L	$Q_{n}(t)$
X	\sim	H	L	$Q_{n}(t)$
X	L	L	L	$Q_{n}(t)$

Asynchronous Operation

Inputs				Outputs
D_{n}	$\mathrm{CPa}_{\mathrm{a}}$	CP_{b}	MR	$Q_{n}(t+1)$
X	X	X	H	L

H = HIGH Voltage Leve!
$\mathrm{L}=$ LOW Voltage Level
X $=$ Don't Care
$t=$ Time before CP positive transition
t+1 = Time after CP positive transition
$\sim=$ LOW-to-HIGH transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{H}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL.	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	MR			450	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
	$\mathrm{D}_{0}-\mathrm{D}_{5}$			225		
	$\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$			520		
I_{EE}	Power Supply Current	-210	-155	-98	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max	Min	Max				
$f_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.20	0.80	2.20	0.90	2.40	ns	Figures 1 and 3		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	1.20	2.90	1.30	3.00	1.20	3.10	ns	Figures 1 and 4		
${ }^{t}$ TLLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3		
$\mathrm{t}_{\text {s }}$	Setup Time $D_{0}-D_{5}$	$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.60 \end{aligned}$		ns	Figure 5		
	MR (Release Time)			Figure 4							
$t_{\text {h }}$	Hold Time $D_{0}-D_{5}$	0.70				0.70		0.70		ns	Figure 5
$t_{p w}(H)$	Pulse Width HIGH $C P_{a}, C P_{b}, M R$	2.00		2.00		2.00		ns	Figures 3 and 4		

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.00	0.90	2.20	ns	Figures 1 and 3
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	1.20	2.70	1.30	2.80	1.20	2.90	ns	Figures 1 and 4
$\mathbf{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & 2.50 \end{aligned}$		ns	Figure 5 Figure 4
t_{n}	Hold Time $D_{0}-D_{5}$	0.60	,	0.60		0.60		ns	Figure 5
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $C P_{a}, C P_{b}, M R$	2.00		2.00		2.00		ns	Figures 3 and 4

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test CIrcult

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with 50Ω to GND $C_{L}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9859-7
FIGURE 2. Toggle Frequency Test Circuit

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Reset)

Notes:
\mathbf{t}_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.
FIGURE 5. Setup and Hold Time

F100155
 Quad Multiplexer/Latch

General Description

The F100155 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\bar{E}_{n}) inputs are LOW, the data that appears at an output is controlled by the Select $\left(S_{n}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from ei-
ther D_{0} or D_{1}. A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the \mathbf{Q} outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.
Refer to the F100355 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

TL/F/9860-3

Connection Diagrams

Pin Names	Descriptlon
\bar{E}_{1}, \bar{E}_{2}	Enable Inputs (Active LOW)
\bar{S}_{0}, S_{1}	Select Inputs
$M R$	Master Reset
$\mathrm{D}_{n a}-\mathrm{D}_{n d}$	Data Inputs
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Data Outputs
$\overline{\mathrm{Q}}_{\mathrm{a}}-\overline{\mathrm{Q}}_{\mathrm{d}}$	Complementary Data Outputs

Logic Diagram

TL/F/9860-5

Operating Mode Table

Controls				
Outputs				
$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{n}}$
H	X	X	X	Latched* *
X	H	X	X	Latched *
L	L	L	L	$\mathrm{D}_{0 \mathrm{x}}$
L	L	H	L	$\mathrm{D}_{0 \mathrm{x}}+\mathrm{D}_{1 \mathrm{x}}$
L	L	L	H	L
L	L	H	H	$\mathrm{D}_{1 \mathrm{x}}$

*Stores data present before $\overline{\mathrm{E}}$ went HIGH
$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Don't Care

Truth Table

Inputs								
MR	$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1 x}}$	$\mathbf{D}_{\mathbf{0 x}}$	$\overline{\mathbf{Q}}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$
H	X	X	X	X	X	X	H	L
L	L	L	H	H	H	X	L	H
L	L	L	H	H	L	X	H	L
L	L	L	L	L	X	H	L	H
L	L	L	L	L	X	L	H	L
L	L	L	L	H	X	X	H	L
L	L	L	H	L	H	X	L	H
L	L	L	H	L	X	H	L	H
L	L	L	H	L	L	L	H	L
L	H	X	X	X	X	X	Latched*	
L	X	H	X	X	X	X	Latched*	

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature $\left(T_{\downarrow}\right)$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.0 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$	

DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$1 / \mathrm{L}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	\bar{S}_{0}, S_{1}		220			
	$\bar{E}_{1}, \overline{\mathrm{E}}_{2}$		350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
	$\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$			340		
	MR			430		
I_{EE}	Power Supply Current	-133	-95	-66	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristic

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay $D_{n a}-D_{n d}$ to Output (Transparent Mode)	0.50	1.90	0.60	1.85	0.50	1.90	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{S}_{0} S_{1}$ to Output (Transparent Mode)	1.50	3.50	1.50	3.40	1.50	3.50	ns	Figures 1 and 2
${ }^{\mathrm{t}} \mathrm{LLH}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.90	2.50	1.00	2.40	1.00	2.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to Output	0.90	3.00	0.90	2.90	0.90	3.00	ns	Figures 1 and 3
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.60	2.30	0.60	2.20	0.45	2.30	ns	Figures 1 and 2
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.70 \\ & 1.50 \end{aligned}$		ns	Figure 4
	MR (Release Time)								Figure 3
t_{H}	Hold Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0.40 \\ -0.70 \\ \hline \end{gathered}$		$\begin{gathered} 0.40 \\ -0.70 \\ \hline \end{gathered}$		$\begin{gathered} 0.40 \\ -0.70 \\ \hline \end{gathered}$		ns	Figure 4
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$ to Output (Transparent Mode)		1.70	0.60	1.65	0.50	1.70	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay \bar{S}_{1}, S_{1} to Output (Transparent Mode)	1.50	3.30	1.50	3.20	1.50	3.30	ns	Figures 1 and 2
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.90	2.30	1.00	2.20	1.00	2.30	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Continued)

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	0.90	2.80	0.90	2.70	0.90	2.80	ns	Figures 1 and 3
${ }^{\text {t }}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}^{\mathrm{L}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.60	2.20	0.60	2.10	0.45	2.20	ns	Figures 1 and 2
ts	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{~S}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.60 \\ & 1.40 \end{aligned}$		ns	Figure 4 Figure 3
t_{H}	Hold Time $\underline{D}_{n a}-D_{n d}$ \bar{S}_{0}, S_{1}	$\begin{gathered} 0.30 \\ -0.80 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.80 \end{gathered}$		$\begin{gathered} 0.30 \\ -0.80 \end{gathered}$		ns	Figure 4
t_{pw} (L)	Pulse Width LOW \bar{E}_{1}, \bar{E}_{2}	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

TL/F/9860-6
FIGURE 1. AC Test Circuit
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L. 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9860-7
FIGURE 2. Enable Timing

TL/F/9860-8
FIGURE 3. Reset Timing

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

F100156
 Mask-Merge/Latch

General Description

The F100156 merges two 4-bit words to form a 4-bit output word. The $A M_{n}$ enable allows the merge of A into B by one, two or three places (per the $A S_{n}$ value) from the left. The $B M_{n}$ enable similarly allows the merge of B into A from the left (per the $B S_{n}$ value). The B merge overrides the A merge when both are enabled. This means A first merges into B and B then merges into the A merge. If the B address is
equal to or greater than the A address, then outputs are forced to B .
The merge outputs feed four latches, which have a common enable (E) input. All inputs have a $50 \mathrm{k} \Omega$ (typical) pull-down resistor tied to V_{EE}.

Ordering Code: See Section 8

Logic Symbol

TL/F/9861-3
Note:
When \bar{E} is HIGH, Q_{n} outputs do not change
When E is LOW, $Q_{n}=A$ or B depending on which is selected.

Pin Names	Description
\bar{E}	Latch Enable Input (Active LOW)
$A_{0}-A_{3}$	A Data Inputs
$B_{0}-B_{3}$	B Data Inputs
$A M_{0}, A M_{1}$	A Merge Enable Inputs
$B M_{0}, B M_{1}$	B Merge Enable Inputs
$A S_{0}, A S_{1}$	A Address Inputs
$B S_{0}, B S_{1}$	B Address Inputs
$Q_{0}-Q_{3}$	Data Outputs

Connection Diagrams

TL/F/9861-2

Logic Diagram

TL/F/9861-5

Truth Table

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\mathrm{IL}}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL. }}^{\text {(Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current $\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}}, \mathrm{BM}_{\mathrm{n}}, \mathrm{AM}_{\mathrm{n}}, \mathrm{BS}_{n}, \mathrm{AS}_{\mathrm{n}}, \overline{\mathrm{E}}$			265	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{EE}	Power Supply Current	-235	-161	-107	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode)	0.45	1.90	0.50	1.80	0.50	2.00	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Outputs	1.00	2.50	1.00	2.40	1.00	2.50	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \text { to } \\ & \text { Outputs (Transparent Mode) } \end{aligned}$	1.20	3.70	1.20	3.70	1.20	3.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.90	0.45	1.80	0.45	1.90	ns	
ts	Setup Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$	$\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$		ns	Figure 3
${ }_{\text {th }}$	Hold Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$	$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.80 \end{aligned}$		ns	
$t_{p w}(L)$	Pulse Width LOW E	2.00		2.00		2.00		ns	Figure 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n}, B_{n} to Outputs (Transparent Mode)	0.45	1.70	0.50	1.60	0.50	1.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Outputs	1.00	2.30	1.00	2.20	1.00	2.30	ns	
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode)	1.20	3.50	1.20	3.50	1.20	3.60	ns	
$t_{T L H}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	
${ }_{\text {ts }}$	Setup Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$	$\begin{array}{r} 0.70 \\ 2.80 \\ \hline \end{array}$		$\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$		ns	Figure 3
${ }^{\text {th }}$	Hold Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$	$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 2

Notes:

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9861-6

FIGURE 1. AC Test Clrcult

TL/F/9861-7
FIGURE 2. Enable Timing

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the designated input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the designated input.
FIGURE 3. Data Setup and Hold Times

F100158

8-Bit Shift Matrix

General Description

The F100158 contains a combinatorial network which performs the function of an 8-bit shift matrix. Three control lines $\left(S_{n}\right)$ are internally decoded and define the number of places which an 8 -bit word present at the inputs $\left(D_{n}\right)$ is shifted to the left and presented at the outputs $\left(Z_{n}\right)$. A Mode Control input (M) is provided which, if LOW, forces LOW all out-
puts to the right of the one that contains D_{7}. This operation is sometimes referred to as LOW backfill. If M is HIGH, an end-around shift is performed such that D_{0} appears at the output to the right of the one that contains D_{7}. This operation is commonly referred to as barrel shifting. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$S_{0}-S_{2}$	Select Inputs
M	Mode Control Input
$Z_{0}-Z_{7}$	Data Outputs

TL/F/9862-3

Connection Diagrams

TL/F/9862-2

TL/F/9862-5

Truth Table

Inputs				Outputs							
M	S_{0}	S_{1}	S_{2}	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	z_{7}
X	L	L	L	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
L	H	L	L	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L
L	L	H	L	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L	L
L	H	H	L	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	L	L	L
L	L	L	H	D_{4}	D_{5}	D_{6}	D_{7}	L	L	L	L
L	H	L	H	D_{5}	D_{6}	D_{7}	L	L	L	L	L
L	L	H	H	D_{6}	D_{7}	L	L	L	L	L	L
L	H	H	H	D_{7}	L	L	L	L	L	L	L
H	H	L	L	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}
H	L	H	L	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}
H	H	H	L	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}
H	L	L	H	D_{4}	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}
H	H	L	H	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}
H	L	H	H	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
H	H	H	H	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
X = Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	$m V$	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$1 / 1$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min }}$)	

[^6]
DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}} 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current All Inputs		220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	
I_{EE}	Power Supply Current	-205	-140	-95	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	1.10	2.80	1.10	2.70	1.10	2.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{pH}} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.15	4.20	1.25	4.20	1.15	4.20	ns	
$\begin{aligned} & \text { tpLH } \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.20	1.70	4.20	1.70	4.20	ns	
$t_{T L H}$ t_{THL}	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	

Cerpak AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{P} H \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Output	1.10	2.60	1.10	2.50	1.10	2.60	ns	Figures 1 and 2
$\begin{aligned} & \begin{array}{l} t \mathrm{PLH} \\ t_{\text {PHL }} \end{array} \end{aligned}$	Propagation Delay M to Output	1.15	4.00	1.25	4.00	1.15	4.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tLH}} \\ & \mathrm{t}_{\mathrm{PPL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Output	1.70	4.00	1.70	4.00	1.70	4.00	ns	
	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.50	2.20	0.50	2.20	0.50	2.20	ns	

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$.
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}.
All unused outputs are loaded with 50Ω to GND.
$C_{L}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.
Pin numbers shown are for flatpak; for DIP refer to logic symbol.
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

Applications

The following technique uses two ranks of F100158s to shift a 64 -bit word from 0 to 63 places. Although two stage delays are required (one for each rank), the total shift takes only about 4 ns . This technique performs a bit shift on each 8 -bit byte in the first rank and then a modulo- 8 byte shift on the 64-bit word in the second rank.

Basic 16-Bit 0-7 Place Shifter

Figure 3 shows the basic 0-7 place shift technique which can be expanded to accommodate any word length.

Each 8-bit byte requires a pair of F100158s operating in the LOW backfill mode. The address lines for each pair of ICs are driven out of phase by three OR gates. Inputs for the two ICs are taken from two bytes transposed in order; outputs are transposed and emitter-OR tied. One device shifts right from location 0 and the other shifts left from location 7. The bits shifted off one pair are picked up by the next pair of F100158s or-in the case of the last one in the rank-returned to the first device. The net result is a $0-7$ place shift of the entire word.

FIGURE 3. Basic 16-Bit 0-7 Place Shifter

Applications (Continued)

Expanding to 64-Bit Word and 64-Place Shift

The basic 0-7 place shift technique can be expanded to accommodate a 64 -bit word shifted from 0 to 63 places, however, two ranks of F100158s are required (Figure 4). The first rank is identical to the one illustrated in Figure 3 except it contains a total of 16 devices. The second rank consists of eight additional F100158s connected in the modulo-8 configuration shown in Figure 5.
The modulo-8 rank is used to simulate an 8 -bit simultaneous shift since the F100158 cannot shift in 8 -bit jumps. The modulo- 8 configuration is achieved by wiring the first rank and the output device to the second rank as illustrated in Figure 5. The LSB of each output byte in the first rank is wired to one of the eight inputs of the first F100158 in the
second rank. The next least significant bit of each first-rank F100158 pair, however, is connected to the inputs of the second F100158 in the second rank. The other first-ranked outputs are connected in a similar fashion to the remainder of the second-rank inputs. Ultimately, the outputs of the second rank must then be connected to reform the final usable 64-bit word so that the bits are again ordered from 0-63.
The effect is that each single-location shift in the second rank appears to be an eight place shift in the final word due to the way the inputs and outputs of the second rank are connected. The combination of the two ranks produces the 64 -place shift of the entire word.

TL/F/9862-9
FIGURE 4. 64-Bit 0-63 Place Barrel Shifter

Applications (Continued)

FIGURE 5. Modulo-8 Shift

F100160

Dual Parity Checker/Generator

General Description

The F100160 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs (l_{a} or I_{b}) has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits. The F100160 also has a Compare ($\overline{\mathrm{C}}$) output which allows the circuit to compare two 8 -bit words. The $\overline{\mathrm{C}}$ output is LOW when the two words match, bit for bit. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Refer to the F100360 datasheet for: PCC packaging Lower power Military versions Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{I}_{\mathrm{a}}, I_{\mathrm{b}}, I_{\mathrm{na}}, I_{\mathrm{nb}}$	Data Inputs
$\mathrm{Z}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$	Parity Odd Outputs
C	Compare Output

TL/F/9863-3

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9863-2

Logic Diagram

TL/F/9863-5

Truth Table (Each Half)

Sum of HIGH Inputs	Output \mathbf{Z}
Even	HIGH
Odd	LOW

Comparator Function

$$
\begin{aligned}
\overline{\mathrm{C}}= & \left(I_{0 \mathrm{a}} \oplus I_{1 \mathrm{a}}\right)+\left(I_{2 \mathrm{a}} \oplus I_{3 a}\right)+\left(I_{I_{\mathrm{a}}} \oplus I_{5 \mathrm{a}}\right)+ \\
& \left(I_{6 \mathrm{a}} \oplus I_{7 \mathrm{a}}\right)+\left(\begin{array}{l}
\left.I_{\mathrm{lb}} \oplus I_{1 b}\right)+\left(I_{2 b} \oplus I_{3 b}\right)+ \\
\\
\\
\\
\left(I_{4 b} \oplus I_{5 b}\right)+\left(I_{6 b} \oplus I_{7 b}\right)
\end{array}\right.
\end{aligned}
$$

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
VOHC	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V OH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current I_{a}, l_{b} Ina, $I_{n b}$			$\begin{aligned} & 340 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$V_{\text {IN }}=\mathrm{V}_{\text {IH (Max }}$
$l_{\text {EE }}$	Power Supply Current	-115	-82	-57	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n a}, I_{n b}$ to Z_{a}, Z_{b}	1.30	4.30	1.30	4.10	1.30	4.30	ns	Figures 1 \& 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.20	3.30	1.20	3.10	1.20	3.30	ns	
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay l_{a}, I_{b} to Z_{a}, Z_{b}	0.50	1.60	0.50	1.50	0.50	1.60	ns	
$\mathrm{t}_{\mathrm{TLLH}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.60	0.45	1.50	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{\text {na }}, I_{\text {nb }}$ to Z_{a}, Z_{b}	1.30	4.10	1.30	3.90	1.30	4.10	ns	Figures 1 \& 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{n a}, I_{n b}$ to \bar{C}	1.20	3.10	1.20	2.90	1.20	3.10	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay I_{a}, I_{b} to Z_{a}, Z_{b}	0.50	1.40	0.50	1.30	0.50	1.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	1.50	0.45	1.40	0.45	1.50	ns	

FIGURE 1. AC Test CIrcuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

F100163

Dual 8-Input Multiplexer

General Description

The F100163 is a dual 8-input multiplexer. The Data Select $\left(S_{n}\right)$ inputs determine which bit (A_{n} and B_{n}) will be presented at the outputs (Z_{a} and Z_{b} respectively). The same bit ($0-7$) will be selected for both the Z_{a} and Z_{b} output. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Refer to the F100363 datasheet for: PCC packaging Lower power Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: see Section 8

Logic Symbol

Pin Names	Description
$S_{0}-S_{2}$	Data Select Inputs
$A_{0}-A_{7}$	A Data Inputs
$B_{0}-B_{7}$	B Data Inputs
Z_{a}, Z_{b}	Data Outputs

TL/F/9864-3

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9864-2

TL/F/9864-5

Truth Table

Inputs											Outputs
Select			Data								
S_{2}	S_{1}	S_{0}	$\begin{aligned} & A_{7} \\ & B_{7} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{6} \\ & \mathrm{~B}_{6} \end{aligned}$	$\begin{aligned} & A_{5} \\ & B_{5} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{\mathbf{4}} \\ & \mathbf{B}_{\mathbf{4}} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{3} \\ & B_{3} \end{aligned}$	$\begin{aligned} & A_{2} \\ & B_{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & B_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{0} \\ & \mathbf{B}_{0} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{\mathrm{a}} \\ & \mathbf{z}_{\mathrm{b}} \end{aligned}$
$\begin{aligned} & L \\ & L \end{aligned}$	L	L L								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$							$\begin{aligned} & L \\ & H \end{aligned}$		$\begin{aligned} & L \\ & H \end{aligned}$
L	$\begin{aligned} & H \\ & H \end{aligned}$	L						L			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$				$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & H \\ & H \end{aligned}$			$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$						$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$							$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L								$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

H = HIGH Voltage Level
L = LOW Voltage Level
Blank $=X=$ Don't Care

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Milltary/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$	

DC Electrical Characteristics

$V_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	S_{n}			265	$\mu \mathrm{~A}$	$V_{I N}=V_{I H}(\mathrm{Max})$
	$\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}}$			340	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output	0.55	1.65	0.60	1.70	0.65	1.80	ns	Figures 1 \& 2
$t_{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.10	2.80	1.10	2.80	1.20	3.10	ns	
${ }^{\text {t }}$ tLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.85	0.55	1.80	0.50	1.80	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay $A_{0}-A_{7}, B_{0}-B_{7}$ to Output	0.55	1.45	0.60	1.50	0.65	1.60	ns	Figures 1 \& 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output	1.10	2.60	1.10	2.60	1.20	2.90	ns	
${ }^{\dagger}{ }_{\text {TLH }}$ tTHL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.75	0.55	1.70	0.50	1.70	ns	

FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

F100164

16-Input Multiplexer

General Description

The F100164 is a 16 -input multiplexer. Data paths are controlled by four Select lines $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. Their decoding is shown in the truth table. Output data polarity is the same as the selected input data. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Refer to the F100364 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{I}_{0}-I_{15}$	Data Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Select Inputs
Z	Data Output

TL/F/9865-5
Truth Table

Select Inputs				Output
S_{0}	S_{1}	S_{2}	S_{3}	Z
L	L	L	L	10
H	L	L	L	I_{1}
L	H	L	L	I_{2}
H	H	L	L	I_{3}
L	L	H	L	I_{4}
H	L	H	L	I_{5}
L	H	H	L	I_{6}
H	H	H	L.	17
L	L	L	H	18
H	L	L	H	19
L	H	L	H	l_{10}
H	H	L	H	l_{11}
L	L	H	H	l_{12}
H	L	H	H	$1{ }_{13}$
L	H	H	H	l_{14}
H	H	H	H	l_{15}

$H=$ HIGH Voltage Level
L $=$ LOW Voltage Level

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL. }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditlo	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {LL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {(in) }}$)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	I_{n}					
	$\mathrm{S}_{0}, \mathrm{~S}_{1}$		280			
	$\mathrm{~S}_{2}, \mathrm{~S}_{3}$		240	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
IEE	Power Supply Current	-105	-70	-49	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Unlts	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{0}-I_{15}$ to Output	0.80	2.20	0.90	2.35	0.90	2.55	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{0}, S_{1} to Output	1.45	3.10	1.45	3.20	1.55	3.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.10	2.45	1.10	2.50	1.20	2.80	ns	
${ }^{\boldsymbol{t}}{ }^{\text {TLH }}$ ${ }_{\text {the }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output	0.80	2.00	0.90	2.15	0.90	2.35	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	1.45	2.90	1.45	3.00	1.55	3.40	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output	1.10	2.25	1.10	2.30	1.20	2.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	

FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition TImes

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{Cc} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

F100165

Universal Priority Encoder

General Description

The F100165 contains eight input latches with a common Enable ($\overline{\mathrm{E}}$) followed by encoding logic which generates the binary address of the highest priority input having a HIGH signal. The circuit operates as a dual 4 -input encoder when the Mode Control (M) input is LOW, and as a single 8 -input encoder when M is HIGH. In the 8 -input mode, Q_{0}, Q_{1} and Q_{2} are the relevant outputs, I_{0} is the highest priority input and GS_{1} is the relevant Group Signal output. In the dual mode, Q_{0}, Q_{1} and $G S_{1}$ operate with $I_{0-I_{3}} . Q_{2}, Q_{3}$ and G_{2}
operate with $1_{4}-1_{7}$. A GS output goes LOW when its pertinent inputs are all LOW.
Inputs are latched when \bar{E} goes HIGH. A HIGH signal on the Output Enable ($\overline{\mathrm{OE}}$) input forces all Q outputs LOW and GS outputs HIGH. Expansion to accommodate more inputs can be done by connecting the GS output of a higher priority group to the $\overline{O E}$ input of the next lower priority group. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: see Section 8

Logic Symbol

TL/F/9866-3

Pin Names	Description
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
M	Mode Control Input
$\mathrm{GS} S_{1}-\mathrm{GS}_{2}$	Group Signal Outputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data Outputs
$\overline{\mathrm{Q}}_{0}-\bar{Q}_{3}$	Complementary Data Outputs

Connection Diagrams

TL/F/9866-1

TL/F/9866-2

Logic Diagram

TL/F/9866-5
Truth Table

Inputs											Outputs					
\bar{E}	$\overline{O E}$	M	I_{0}	I_{1}	I_{2}	I_{3}	14	I_{5}	I_{6}	17	Q_{0}	Q_{1}	Q_{2}	Q_{3}	GS ${ }_{1}$	GS_{2}
L	L	L	H	X	X	x					L	L			H	
L	L	L	L	H	X	X					H	L			H	
L	L	L	L	L.	H	x					L	H			H	
L	L	L	L	L	L	H					H	H			H	
L	L	L	L	L	L	L					L	L			L	
L	L	L					H	X	x	X			L	L		H
L	L	L					L	H	X	x			H	L		H
L	L	L					L	L	H	X			L	H		H
L	L	L					L	L	L	H			H	H		H
L	L	L					L	L	L	L			L	L		L
L	L	H	H	X	x	x	X	X	X	X	L	L	L	L	H	H
L	L	H	L	H	X	X	X	X	X	X	H	L	L	L	H	H
L	L	H	L	L	H	X	X	X	X	X	L	H	L	L	H	H
L	L	H	L	L	L	H	X	X	X	X	H	H	L	L	H	H
L	L	H	L	L	L	L	H	X	X	X	L	L	H	L	H	H
L	L	H	L	L	L	L	L	H	X	X	H	L	H	L	H	H
L	L	H	L	L	L	L	L	L	H	X	L	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	H	H	H	H	L	H	H
L	1.	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H
X	H	X	X	X	X	X	X	X	X	X	L	L	L	L	H	H
H	L	L	x	x	x	x	x	X	x	x	Given by $I_{0-I_{7}}$ when \bar{E} was LOW and $M=L$ Given by $I_{0}-I_{7}$ when \bar{E} was LOW and $M=H$					
H	L	H	X	X	X	\times	X	X	X	X						

[^7]
Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	L.oading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL. }}^{\text {(Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions

DC Electrical Characteristics $V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
Symbol	Parameter	MIn	Typ	Max	Units	Conditions
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current All Inputs			230	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (Max) }}$
IEE	Power Supply Current	-200	-140	-77	mA	Inputs Open

Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Condition
		Min	Max	Min	Max	Min	Max		
tplu tpHL	Propagation Delay $I_{0}-I_{7} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ (Transparent Mode)	1.10	4.10	1.10	4.10	1.10	4.60	ns	Figures 1 and 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $I_{0}-I_{7}$ to $G S_{1}-G S_{2}$ (Transparent Mode)	1.30	3.90	1.30	3.90	1.30	4.20	ns	
$t_{\text {PLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	1.00	3.00	1.00	3.00	1.10	3.30	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$	1.10	2.60	1.10	2.60	1.20	2.80	ns	
tplH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $M \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	0.90	3.60	1.00	3.60	1.00	3.80	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay $\bar{E} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	1.50	4.70	1.50	4.60	1.50	5.00	ns	Figures 1 and 3
$t_{\text {TLIH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	Figures 1, 2 and 3
t_{s}	Setup Time $I_{0}-I_{7}$	1.00		0.90		1.00		ns	Figure 4
t_{H}	Hold Time $\mathrm{I}_{0}-\mathrm{I}_{7}$	1.20		1.20		1.20		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 3

Cerpak AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathbf{t}_{\mathrm{PHL}}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{0}-I_{7} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3} \\ & \text { (Transparent Mode) } \\ & \hline \end{aligned}$	1.10	3.90	1.10	3.90	1.10	4.40	ns	es 1 and 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $I_{0}-I_{7}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ (Transparent Mode)	1.30	3.70	1.30	3.70	1.30	4.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \bar{Q}_{0}-\bar{Q}_{3}$. 1.00	2.80	1.00	2.80	1.10	3.10	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$	1.10	2.40	1.10	2.40	1.20	2.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $M \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$	0.90	3.40	1.00	3.40	1.00	3.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\bar{E} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-Q_{3}$	1.50	4.50	1.50	4.40	1.50	4.80	ns	Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.40	0.45	1.30	0.45	1.40	ns	Figures 1, 2 and 3
ts_{5}	Setup Time $I_{0}-I_{7}$	0.90		0.80		0.90		ns	Figure 4
t_{H}	Hold Time $I_{0}-I_{7}$	1.10		1.10		1.10		ns	
$\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 3

FIGURE 1. ACTest Circuit

FIGURE 2. Propagation Delay ($M, \overline{\mathrm{OE}}$) and Transition Times

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9866-8
FIGURE 3. Enable Timing

FIGURE 4. Setup and Hold Times

Notes:

t_{s} is the minimum time before the transition of the enable that information must be present at the data input.
t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

F100166

9-Bit Comparator

General Description

The F100166 is a 9-bit magnitude comparator which compares the arithmetic value of two 9-bit words and indicates whether one word is greater than, or equal to, the other.

Other functions can be generated by the wire-OR of the outputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 8

Logic Symbol

TL/F/9867-3

Pin Names	Description
$A_{0}-A_{8}$	A Data Inputs
$B_{0}-B_{8}$	B Data Inputs
$A>B$	A Greater than B Output
$B>A$	B Greater than A Output
$\bar{A}=B$	Complement A Equal to B Output
	(Active LOW)

Connection Diagrams

Logic Diagram

TL/F/9867-5

Truth Table

Inputs									Outputs		
$\mathrm{A}_{8} \mathrm{~B}_{8}$	$\mathrm{A}_{7} \mathrm{~B}_{7}$	$\mathrm{A}_{6} \mathrm{~B}_{6}$	$\mathrm{A}_{5} \mathrm{~B}_{5}$	$\mathrm{A}_{4} \mathrm{~B}_{4}$	$\mathrm{A}_{3} \mathrm{~B}_{3}$	$\mathrm{A}_{2} \mathrm{~B}_{2}$	$A_{1} B_{1}$	$\mathrm{A}_{0} \mathrm{~B}_{0}$	A>B	$\mathrm{B}>\mathrm{A}$	$\overline{A=B}$
$\begin{array}{cc} H & L \\ L & H \\ A_{B}=B_{8} \\ A_{8}= & B_{8} \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$								$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
$\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{gathered} H \quad L \\ L \\ A_{6}=B_{6} \\ A_{6}=B_{6} \\ \hline \end{gathered}$	$\begin{array}{ll} H & L \\ L & H \end{array}$						$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & H \end{aligned}$
$\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{4} & =B_{4} \\ A_{4} & =B_{4} \\ \hline \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$				$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
$\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$	$\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{2}= & B_{2} \\ A_{2}= & B_{2} \\ \hline \end{array}$	$\begin{array}{ll} H & L \\ L & H \end{array}$		$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
$\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$	$\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$	$\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$		$\begin{aligned} & \mathrm{A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \end{aligned}$	$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$	$\begin{array}{cc} H & L \\ L & H \\ A_{0}=B_{0} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$

[^8] Blank = Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC) $\quad \mathrm{V}_{\mathrm{EE}}$ to +0.5 V	
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.0 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All inputs	
1 LL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input HIGH Current All Inputs		250	μA	$V_{I N}=V_{I H}(\mathrm{Max})$	
$\mathrm{I}_{E E}$	Power Supply Current	-238	-170	-119	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ ${ }_{\mathrm{t}}^{\mathrm{PHL}}$	Propagation Delay Data to Output	1.40	3.50	1.40	3.50	1.40	3.90	ns	Figures 1 and 2
$\mathrm{t}_{\mathrm{TLH}}$ ${ }^{\text {t }} \mathrm{HL}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.55	0.45	1.50	0.45	1.50	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Data to Output	1.40	3.30	1.40	3.30	1.40	3.70	ns	Figures 1 and 2
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.45	0.45	1.40	0.45	1.40	ns	

FIGURE 1. AC Test Circuit

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

National Semiconductor

F100170

Universal Demultiplexer/Decoder

General Description

The F100170 universal demultiplexer/decoder functions as either a dual 1-of-4 decoder or as a single $1-\mathrm{of}-8$ decoder, depending on the signal applied to the Mode Control (M) input. In the dual mode, each half has a pair of active-LOW Enable (\bar{E}) inputs. Pin assignments for the \bar{E} inputs are such that in the 1-of-8 mode they can easily be tied together in pairs to provide two active-LOW enables ($\bar{E}_{1 a}$ to $\bar{E}_{1 \mathrm{~b}}, \bar{E}_{2 \mathrm{a}}$ to $\mathrm{E}_{2 \mathrm{~b}}$). Signals applied to auxiliary inputs $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} determine whether the outputs are active HIGH or active LOW. In the dual 1-of-4 mode the Address inputs are $A_{0 a}, A_{1 a}$ and
$A_{0 b}, A_{1 b}$ with $A_{2 a}$ unused (i.e., left open, tied to $V_{E E}$ or with LOW signal applied). In the 1-of-8 mode, the Address inputs are $A_{0 a}, A_{1 a}, A_{2 a}$ with $A_{0 b}$ and $A_{1 b}$ LOW or open. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.
Refer to the F100370 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbols

Single 1-of-8 Application

Dual 1-of-4 Application

Pin Names	Description
$A_{\text {na }}, A_{n b}$	Address Inputs
$\bar{E}_{n a}, \bar{E}_{n b}$	Enable Inputs
M	Mode Control Input
H_{a}	$\begin{aligned} & Z_{0}-Z_{3}\left(\bar{Z}_{0 \mathrm{a}}-\bar{Z}_{3 \mathrm{a}}\right) \\ & \quad \text { Polarity Select Input } \end{aligned}$
H_{b}	$\begin{aligned} & \mathrm{Z}_{4}-\mathrm{Z}_{7}\left(\bar{Z}_{0 \mathrm{~b}}-\overline{\mathrm{Z}}_{3 \mathrm{~b}}\right) \\ & \quad \text { Polarity Select Input } \end{aligned}$
H_{c}	Common Polarity Select Input
$Z_{0}-Z_{7}$	Single 1-of-8 Data Outputs
$Z_{\text {na }}, Z_{\text {nb }}$	Dual 1-of-4 Data Outputs

Connection Diagrams

TL/F/9868-2

Logic Diagram

Note: $\left(Z_{n}\right)$ for 1-of-4 applications.

Truth Tables

Dual 1-of-4 Mode ($M=A_{2 a}=H_{C}=$ LOW)

Inputs				Active HIGH Outputs (H_{a} and H_{b} Inputs HIGH)				Active LOW Outputs (H_{a} and H_{b} Inputs LOW)			
$\begin{aligned} & \bar{E}_{1 a} \\ & \bar{E}_{1 b} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{\mathrm{fa}} \\ & \mathbf{A}_{1 \mathrm{~b}} \\ & \hline \end{aligned}$	$\mathrm{A}_{0 \mathrm{a}}$ $A_{0 b}$	$\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$	$\begin{aligned} & \mathbf{Z}_{1 \mathrm{a}} \\ & \mathbf{Z}_{\mathrm{b} b} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{z}_{2 a} \\ & \mathbf{z}_{2 b} \end{aligned}$	$\begin{aligned} & z_{3 a} \\ & z_{3 b} \end{aligned}$	$\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$	$\begin{aligned} & \mathbf{Z}_{1 a} \\ & \mathbf{Z}_{1 b} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{2 a} \\ & \mathbf{z}_{2 b} \end{aligned}$	$\begin{aligned} & \mathbf{z}_{3 a} \\ & \mathbf{z}_{3 \mathrm{~b}} \\ & \hline \end{aligned}$
H	X	X	X	L	L	L	L	H	H	H	H
X	H	X	X	L	L	L	L	H	H	H	H
L	L	L	L	H	L	L	L	L	H	H	H
L	L	L	H	L	H	L	L	H	L	H	H
L	L	H	L	L	L	H	L	H	H	L	H
L	L	H	H	L	L	L	H	H	H	H	L

Single 1-of-8 Mode (M = HIGH; $A_{0 b}=A_{1 b}=H_{a}=H_{b}=$ LOW $)$

Inputs					Active HIGH Outputs* (H_{c} Input HIGH)							
\bar{E}_{1}	\bar{E}_{2}	$\mathrm{A}_{\mathbf{2 a}}$	$\mathrm{A}_{1 \mathrm{a}}$	$\mathrm{A}_{0 \mathrm{a}}$	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
H	X	X	X	X	L	L	L	L	L	L	L	L
X	H	X	X	X	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L.	L	L	L	H

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
*for $\mathrm{H}_{\mathrm{c}}=$ LOW, output states are complemented
$\bar{E}_{1}=\bar{E}_{1 a}$ and $\bar{E}_{1 b}$ wired; $\bar{E}_{2}=\bar{E}_{2 a}$ and $\bar{E}_{2 b}$ wired

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semlconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature $\left(T_{J}\right)$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
-7.0 V to +0.5 V
$V_{E E}$ to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OLC	Output LOW Voltage			-1610			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$1 / 1$	Input LOW Current	0.50			$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL (}}^{\text {Min }}$)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
VOLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {Min) }}$)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	$\mathrm{H}_{\mathrm{c}}, \mathrm{A}_{0 \mathrm{a}} \mathrm{A}_{1 \mathrm{a}}, \mathrm{A}_{2 \mathrm{a}}$			310	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
	All Others			250		
I_{EE}	Power Supply Current	-153	-109	-76	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.90	2.30	0.90	2.20	0.90	2.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{\text {na }}, A_{\text {nb }}$ to Output	1.00	2.80	1.00	2.70	1.00	2.90	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	1.00	3.00	1.00	2.90	1.00	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.50	3.90	1.60	3.80	1.60	3.90	ns	
$t_{\text {TLH }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.80	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {th }}$ $t_{\text {PHL }}$	Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output	0.90	2.10	0.90	2.00	0.90	2.10	ns	Figures 1 and 2
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $A_{\text {na }}, A_{n b}$ to Output	1.00	2.60	1.00	2.50	1.00	2.70	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	1.00	2.80	1.00	2.70	1.00	2.80	ns	
$t_{\text {PLH }}$ tpHL	Propagation Delay M to Output	1.50	3.70	1.60	3.60	1.60	3.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.70	ns	

TL/F/9868-7

FIGURE 1. AC Test Circuit

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 2. Propagation Delay and Transition Times

F100171

Triple 4-Input Multiplexer with Enable

General Description

The F100171 contains three 4-input multiplexers which share a common decoder (inputs S_{0} and S_{1}). Output buffer gates provide true and complement outputs. A HIGH on the Enable input ($\overline{\mathrm{E}}$) forces all true outputs LOW (see Truth Table). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Refer to the F100371 datasheet for:
PCC packaging
Lower power
Military versions
Extended voltage specs (-4.2 V to -5.7 V)

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{I}_{0 \mathrm{x}}-\mathrm{I}_{3 \mathrm{x}}$	Date Inputs
$\mathrm{S}_{0}, \mathrm{~S}_{0}$	Select Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{c}}$	Data Outputs
$\overline{\mathrm{Z}}_{\mathrm{a}}-\overline{\mathrm{Z}}_{\mathrm{c}}$	Complementary Data Outputs

Connection Diagrams

TL/F/9869-2

Logic Diagram

Truth Table

Inputs			Outputs
E	S_{0}	S_{1}	Z_{n}
L	L	L	$I_{0 x}$
L	H	L	$I_{1 x}$
L	L	H	$I_{2 x}$
L	H	H	$I_{3 x}$
H	X	X	L

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Levol
$X==$ Don't Care

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J}) $+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL.	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$I_{\text {IL }}$	Input LOW Current	0.50		.	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V OH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantes operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	UnIts	Conditions
$I_{I H}$	Input HIGH Current					
	$I_{0 x}-I_{3 x}$			340	μA	$V_{I N}=V_{I H}(\max)$
	S_{0}, S_{1}, \bar{E}		300		$m A$	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay $1_{0 x}-1_{3 x}$ to Output	0.45	1.70	0.45	1.60	0.50	1.70	ns	Figures 1 and 2
tpLH t_{PHL}	Propagation Delay S_{0}, S_{1} to Output	0.90	2.40	0.90	2.60	1.00	3.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Output	0.65	2.40	0.65	2.30	0.75	2.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.60	0.45	1.60	ns	

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{0 x}-I_{3 x}$ to Output	0.45	1.50	0.45	1.40	0.50	1.50	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output	0.90	2.20	0.90	2.40	1.00	2.80	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay \bar{E} to Output	0.65	2.20	0.65	2.10	0.75	2.20	ns	
${ }^{\text {tTLH }}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.50	0.45	1.50	ns	

TL/F/9869-6
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

F100175

Quint Latch 100K In/10K Out

General Description

The F100175 is a 5-bit latch with temperature and voltage compensated 100 K compatible inputs and voltage compensated 10 K compatible outputs. Each latch has one data input and one output. All five latches share a common clear input and two enable inputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 8
Logic Symbol

TL/F/9870-2

Pin Names	Description
$D_{0}-D_{4}$	100 K Data Inputs
E_{1}, E_{2}	100K Enable Inputs
C	100K Common Clear Input
$Q_{0}-Q_{4}$	10K Data Outputs

Logic Diagram

Features

- Outputs specified to drive a 50Ω load
- Available in 16-pin ceramic DIP

■ 100K compatible inputs/10K compatible outputs

Absolute Maximum Ratings
 Above which the useful life may be impaired

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
Supply Voltage	-8 V
Input Voltage (DC)	-5.2 V to +0 V
Output Current (DC Output HIGH)	-55 mA
Operating Range	-5.72 V to -4.68 V
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.72 V	-5.2 V	-4.68 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$0^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	$T_{A}=0^{\circ} \mathrm{C}$	-1000		-840	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
		$T_{A}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
V_{OL}		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			mV		
Volc	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV	$\begin{aligned} & V_{I N}=V_{\text {IH }} \text { (Min) } \\ & \text { or } V_{\text {IL. }} \text { (Max) } \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
l_{H}	Input HIGH Current				290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
I/L	Input LOW Current		0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
IEE	$\mathrm{V}_{\text {EE }}$ Supply Current		-125	-90	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.68 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
V_{OL}	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			mV		
V OLC	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ (Max)	
ILL	Input LOW Current		0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\text { Min })}$	
$\mathrm{IEE}^{\text {e }}$	$\mathrm{V}_{\text {EE }}$ Supply Current		-125	-90	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.72 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

Symbol	Parameter	Temp	Min	Typ	Max	Units	Conditions	
VOH	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	mV		
VOL	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	mV		
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			mV		
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	mV		
		$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	mV		
V_{IH}	Input HIGH Voltage		-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current				290		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH (}}^{\text {Max }}$)	
I/L	Input LOW Current		0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	
$\mathrm{l}_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Supply Current		-125	-90	-50	mA	Inputs Open	

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{A}}=+75^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tPDLH } \\ & \text { tPDHL } \end{aligned}$	Propagation Delay Data to Output	1.10	2.60	1.10	2.75	1.10	3.00	ns	Figures 1\& 2
tpDLH tpDHL	Propagation Delay Enable to Output	1.20	3.40	1.20	3.50	1.20	3.75	ns	Figures 1 \& 3
tPDHL	Propagation Delay Clear to Output	1.30	3.20	1.30	3.20	1.30	3.20	ns	Figures 1, 3 \& 4
ts	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{4}$		2.50		2.50		2.50	ns	Figures 1 \& 5
${ }_{4}$	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{4}$		0.50		0.50		0.50	ns	
${ }^{\text {trith }}$ $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.10	3.25	1.20	3.25	1.20	3.50	ns	Figures 1, 2, 3 \& 4

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-3.2 V$
L1 and L2 = equal length 50Ω impedance lines
$\mathrm{A}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{f}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

FIGURE 2. Data Propagation Delay @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

TL/F/9870-6
FIGURE 3. Enable Propagation Delay @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

TL/F/9870-7
FIGURE 4. Clear Propagation Delay @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

FIGURE 5. Data Setup and Hold Time

F100179

Carry Lookahead Generator

General Description

The F100179 is a high-speed Carry Lookahead Generator intended for use with the F100180 6-bit fast Adder and the F100181 4-bit ALU. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 8
Logic Symbol

TL/F/9871-3

Pin Names	Description
$\overline{\mathrm{C}}_{\mathrm{n}}$	Carry Input (Active LOW)
$\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$	Carry Propogate Inputs (Active LOW)
$\overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$	Carry Generate Inputs (Active LOW)
$\overline{\mathrm{C}}_{n}+2, \overline{\mathrm{C}}_{n}+4$	Carry Outputs
$\overline{\mathrm{C}}_{\mathrm{n}}+6, \overline{\mathrm{C}}_{\mathrm{n}}+8$	

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9871-2

TL/F/9871-5

Truth Tables

Inputs					
$\overline{\mathbf{C}}_{n}$ Output					
$\overline{\mathbf{C}}_{\mathrm{n}}$	$\overline{\mathrm{G}}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{0}$	$\overline{\mathrm{G}}_{1}$	$\overline{\mathbf{P}}_{1}$	$\overline{\mathrm{C}}_{\mathrm{n}}+2$
X	X	X	L	X	L
X	L	X	X	L	L
L	X	L	X	L	L
All other combinations					

$\bar{C}_{n}+2=\bar{G}_{1} \cdot\left(\bar{P}_{1}+\bar{G}_{0}\right) \cdot\left(\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)$
$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Don't Care

$\overline{\mathbf{C}}_{n}+4$ Output									
$\overline{\mathbf{C}}_{\mathrm{n}}$	$\overline{\mathbf{G}}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{0}$	$\overline{\mathbf{G}}_{1}$	$\overline{\mathbf{P}}_{1}$	$\overline{\mathbf{G}}_{\mathbf{2}}$	$\overline{\mathbf{P}}_{\mathbf{2}}$	$\overline{\mathbf{G}}_{3}$	$\overline{\mathbf{P}}_{3}$	$\overline{\mathbf{C}}_{\mathrm{n}}+4$
X	X	X	X	X	X	X	L	X	L
X	X	X	X	X	L	X	X	L	L
X	X	X	L	X	X	L	X	L	L
X	L	X	X	L	X	L	X	L	L
L	X	L	X	L	X	L	X	L	L
All other combinations									

$$
\bar{C}_{n+4}=\bar{G}_{3} \bullet\left(\bar{P}_{3}+\bar{G}_{2}\right) \cdot\left(\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \bullet\left(\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right)
$$

$$
\cdot\left(\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)
$$

Truth Tables (Continued)

Inputs													$\begin{aligned} & \text { Output } \\ & \overline{\mathrm{C}}_{\mathrm{n}+6} \end{aligned}$
$\overline{\mathrm{c}}_{\mathrm{n}}$	$\overline{\mathrm{G}}_{0}$	\bar{P}_{0}	$\overline{\mathrm{G}}_{1}$	\bar{P}_{1}	$\overline{\mathrm{G}}_{2}$	$\overline{\mathrm{G}}_{2}$	$\overline{\mathrm{G}}_{3}$	\bar{P}_{3}	$\overline{\mathbf{G}}_{4}$	$\overline{\mathbf{P}}_{4}$	$\overline{\mathbf{G}}_{5}$	\bar{P}_{5}	
X	\times	x	X	x	X	x	x	x	X	X	L	X	L
x	x	X	x	x	x	x	x	x	L	x	x	L	L
x	x	x	x	x	x	x	L	x	x	L	x	L	L
x	x	x	X	x	L	X	x	L	x	L	x	L	L
X	X	X	L	X	X	L	X	L	X	L	X	L	L
x	L	x	x	L	x	L	x	L	x	L	x	L	L
L	x	L	X	L	X	L	X	,	x	L	x	L	L
All other combinations													H

$$
\begin{aligned}
\bar{C}_{n+6}= & \bar{G}_{5} \bullet\left(\bar{P}_{5}+\bar{G}_{4}\right) \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right) \\
& \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\
& \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)
\end{aligned}
$$

$\overline{\mathbf{C}}_{\mathrm{n}+8}$ Output

Inputs																	Output${\overline{C_{n+8}}}$
\bar{C}_{n}	\bar{G}_{0}	\bar{P}_{0}	\bar{G}_{1}	$\overline{\mathbf{P}}_{1}$	$\overline{\mathbf{G}}_{2}$	$\overline{\mathbf{P}}_{2}$	$\overline{\mathbf{G}}_{3}$	$\overline{\mathbf{P}}_{3}$	$\overline{\mathbf{G}}_{\mathbf{4}}$	\bar{P}_{4}	\bar{G}_{5}	\bar{P}_{5}	$\overline{\mathbf{G}}_{6}$	\bar{P}_{6}	\bar{G}_{7}	\bar{P}_{7}	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	L	X	L
X	X	X	X	X	X	X	X	X	X	X	X	X	L	X	X	L	L
X	X	X	X	X	X	X	X	X	X	X	L	X	X	L	X	L	L
X	X	X	X	X	X	X	X	X	L	X	X	L	X	L	X	L	L
X	X	X	X	X	X	x	L	X	X	L	X	L	X	L	X	L	L
X	X	X	X	X	L	X	X	L	X	L	x	L	X	L	X	L	L
X	X	X	L	X	X	L	X	L	X	L	X	L	X	L	X	L	L
X	L	X	X	L	X	L	X	L	X	L	X	L	X	L	x	L	L
L	X	L	X	L	X	L	X	L	X	L	X	L	X	L	X	L	L

All other combinations
H
$\overline{\mathrm{C}}_{\mathrm{n}+\mathrm{B}}=\overline{\mathrm{G}}_{7} \cdot\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{G}}_{6}\right) \cdot\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{G}}_{5}\right) \cdot\left(\bar{P}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{P}}_{5}+\overline{\mathrm{G}}_{4}\right)$
$\cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right)$

- $\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right)$
- $\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right)$
$\cdot\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)$
$H=H I G H$ Voltage Level
L = LOW Voltage Level
X = Don't Care

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Condit	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	MIn	Typ	Max	Units	Conditlons
I_{IH}	Input HIGH Current					
	$\overline{\mathrm{C}}_{\mathrm{N}} \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$		250		$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
	$\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$			340		
I_{EE}	Power Supply Current	-220	-150	-100	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{n}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$ to $\overline{\mathrm{C}}_{n+\mathrm{x}}$	1.10	2.90	1.10	2.90	1.10	3.00	ns	Figures 1 and 2
${ }^{\text {t }}$ TLH $t_{\text {THL }}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7} \text { to } \overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$	1.10	2.70	1.10	2.70	1.10	2.80	ns	Figures 1 and 2
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & t_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.70	0.45	1.70	ns	

FIGURE 1. AC Test Clircult

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9871-6
FIGURE 2. Propagation Delay and Transition Times

Applications

Fast Adder and Carry Lookahead

TL/F/9871-8

National Semiconductor

F100180

High-Speed 6-Bit Adder

General Description

The F100180 is a high-speed 6-bit adder capable of performing a full 6-bit addition of two operands. Inputs for the adder are active-LOW Carry, Operand A, and Operand B; outputs are Function, active-LOW Carry Generate, and ac-
tive-LOW Carry Propagate. When used with the F100179 Full Carry Lookahead as a second order lookahead block, the F100180 provides high-speed addition of very long words. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

TL/F/9872-3

Pin Names	Description
$A_{0}-A_{5}$	Operand A Inputs
$B_{0}-B_{5}$	Operand B inputs
\bar{C}_{n}	Carry Input (Active LOW)
\bar{G}	Carry Generate Output (Active LOW)
\bar{P}	Carry Propagate Output (Active LOW)
$F_{0}-F_{5}$	Function Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9872-2

Logic Diagram

TL/F/9872-5

```
Logic Equations
\(P_{i}=A_{i} \oplus B_{i}\)
\(\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}\)
\(i=0,1,2,3,4,5\)
\(\mathrm{F}_{0}=\mathrm{P}_{0} \oplus \mathrm{C}_{\mathrm{n}}\)
\(F_{1}=P_{1} \oplus\left(G_{0}+P_{0} C_{n}\right)\)
\(F_{2}=P_{2} \oplus\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}\right)\)
\(F_{3}=P_{3} \oplus\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}\right)\)
\(F_{4}=P_{4} \oplus\left(G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}\right)\)
\(F_{5}=P_{5} \oplus\left(G_{4}+P_{4} G_{3}+P_{4} P_{3} G_{2}+P_{4} P_{3} P_{2} G_{1}+P_{4} P_{3} P_{2} P_{1} G_{0}+P_{4} P_{3} P_{2} P_{1} P_{0} C_{n}\right)\)
\(\overline{\mathrm{P}}=\overline{P_{0} P_{1} P_{2} P_{3} P_{4} P_{5}}\)
\(\bar{G}=\overline{G_{5}}+P_{5} G_{4}+P_{5} P_{4} G_{3}+P_{5} P_{4} G_{3} G_{2}+P_{5} P_{4} P_{3} P_{2} G_{1}+P_{5} P_{4} P_{3} P_{2} P_{1} G_{0}\)
```


Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Dlstributors for availablity and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{\mathbb{I N}}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathbb{I L}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (}}^{\text {M }}$ (${ }^{\text {a }}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{\text {IN }}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V OL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	

Note 1: Absolute maximum ratings are those values beyond which the device may beidamaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achleved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input HIGH Current All Inputs			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-290	-195	-135	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics
 $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$T_{C}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.70	1.10	4.60	1.10	4.70	ns	Figures 1 and 2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	3.00	1.00	3.00	1.00	3.30	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.90	1.40	3.80	1.40	3.90	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{C}_{n} to F_{n}	1.10	4.00	1.10	3.90	1.10	4.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{~L} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	2.40	0.45	2.30	0.45	2.40	ns	

Cerpak AC Electrical Characteristics
 $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to F_{n}	1.10	4.50	1.10	4.40	1.10	4.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}	1.00	2.80	1.00	2.80	1.00	3.10	ns	
$t_{\text {pLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay A_{n}, B_{n} to \bar{G}	1.40	3.70	1.40	3.60	1.40	3.70	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to F_{n}	1.10	3.80	1.10	3.70	1.10	3.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.30	0.45	2.20	0.45	2.30	ns	

FIGURE 1. AC Test Circuit

TL/F/9872-7
FIGURE 2. Propagation Delay and Transition Times
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

F100181

4-Bit Binary/BCD Arithmetic Logic Unit

General Description

The F100181 performs eight logic operations and eight arithmetic operations on a pair of 4-bit words. The operating mode is determined by signals applied to the Select (S_{n}) inputs, as shown in the Function Select table. In addition to performing binary arithmetic, the circuit contains the necessary correction logic to perform BCD addition and subtraction. Output latches are provided to reduce overall package count and increase system operating speed. When the latches are not required, leaving the Enable ($\overline{\mathrm{E}}$) input LOW makes the latches transparent.

The circuit uses internal lookahead carry to minimize delay to the F_{n} outputs and to the ripple Carry output, $\overline{\mathrm{C}}_{\mathrm{n}}+4$. Group Carry Lookahead Propagate ($\overline{\mathrm{P}}$) and Generate ($\overline{\mathrm{G}}$) outputs are also provided, which are independent of the Carry input \bar{C}_{n}. The \bar{P} output goes LOW when a plus operation produces fifteen (nine for BCD) or when a minus operation produces zero. Similarly, \bar{G} goes LOW when the sum of A and B is greater than fifteen (nine for BCD) in a plus mode, or when their difference is greater than zero in a minus mode. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8 Logic Symbol

TL/F/9873-4

Pin Names	\quad Description
$A_{0}-A_{3}$	Word A Operand Inputs
$\mathrm{B}_{0}-\mathrm{B}_{3}$	Word B Operand Inputs
$\overline{\mathrm{C}}_{\mathrm{n}}$	Carry Input (Active LOW)
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Function Select Inputs
$\overline{\mathrm{E}}$	Latch Enable Input (Active LOW)
$\overline{\mathrm{P}}$	Carry Lookahead Propagate Output
	(Active LOW)
$\overline{\mathrm{G}}$	Carry Lookahead Generate Output
$\overline{\mathrm{C}}_{\mathrm{n}}+4$	(Active LOW)
$\mathrm{F}_{0}-\mathrm{F}_{3}$	Carry Output
	Function Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9873-2

Functional Description

There are two modes of operation: Arithmetic and Logic. The S_{3} input controls these two modes:
$S_{3}=$ LOW for Arithmetic mode
$S_{3}=$ HIGH for Logic mode
The arithmetic mode includes decimal and binary arithmetic operations. S_{2} is the control input: with $\mathrm{S}_{3}=$ LOW,
$\mathrm{S}_{2}=$ LOW for Decimal Arithmetic (BCD)
$\mathrm{S}_{2}=$ HIGH for Binary Arithmetic

DECIMAL ARITHMETIC OPERATION

Addition

$F=A$ plus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically performs the " +6 " and " -6 " logic correction internally.

Subtraction

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the nines complement of B and adds " +6 ". A " -6 " adjustment is made if the subtraction algorithm calls for it. If there is a carry out, the result is a positive number. With no carry out, the result is a negative number expressed in its nines complement form. Therefore, to perform a subtraction with
results in the tens complement form, an initial carry should be forced into the lowest order bit, i.e., set $\overrightarrow{\mathrm{C}}_{\mathrm{n}}=$ LOW.
(tens complement of B) $=($ nines complement of $B)+1$ $F=B$ minus A plus C_{n}. Operation is similar to and results are the same as $F=A$ minus B plus C_{n}.
BINARY ARITHMETIC OPERATION
Addition
$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs.

Subtraction

$F=A$ minus B plus C_{n}. Arguments A and B are directly applied to the inputs. The circuit automatically takes the ones complement of B (by inverting B internally). If there is a carry out the result is a positive number. With no carry out, the result is a negative number expressed in its ones complement form. Therefore, to perform a subtraction with results in the twos complement form, an initial carry should forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
(twos complement of B) $=$ (ones complement of B) +1
$F=B$ minus A plus C_{n}. Operation is similar and results are the same as $F=A$ minus B plus C_{n}.

Function Table

$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
$\overline{\mathrm{P}}=\bar{P}_{0}+\bar{P}_{1}+\bar{P}_{2}+\bar{P}_{3}$
$\bar{G}=\overline{G_{3}}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$
$\bar{C}_{n+4}=\bar{G} \bullet\left(\bar{P}+\bar{C}_{n}\right)$

Arithmetic Operations

$F_{n}=\overline{G_{n}+\bar{P}_{n}} \oplus C_{i} \quad i=0$ to 3
Logic Operations
$F_{n}=G_{n}+\bar{P}_{n}$

Internal Equations for Carry Lookahead
($i=0,1,2,3$)
$\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$C_{1}=G_{0}+P_{0} C_{n}+S_{3}$
$\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} P_{1} \mathrm{G}_{0}+\mathrm{P}_{2} P_{1} P_{0} C_{n}+\mathrm{S}_{3}$
Internal Equations for +6 Logic
$D_{0}=B_{0}$
$D_{1}=\bar{B}_{1}$
$D_{2}=B_{1} B_{2}+\bar{B}_{1} \bar{B}_{2}$
$D_{3}=B_{1}+B_{2}+B_{3}$
$\bar{G}_{x}=\bar{G}_{3} P_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias $\left(\mathrm{T}_{\mathrm{C}}\right)$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}(\text { Min })} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
I/L	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Volc	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol \cdots	Parameter	Min	Typ	Max	Units	Conditions
I_{IH}	Input HIGH Current					
	$\mathrm{S}_{\mathrm{n}}, \overline{\mathrm{E}}$			350	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
	All Others			250		
I_{EE}	Power Supply Current	-300	-210	-130	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	2.00	6.90	2.10	6.80	2.30	7.40	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to $\bar{P}, \overline{\mathrm{G}}$	1.40	4.70	1.40	4.40	1.40	4.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{C}_{n+4}	2.00	6.50	2.00	6.50	2.10	6.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{C}_{n} to F_{n}	1.60	5.10	1.60	5.20	1.60	5.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{pLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}+4}$	1.30	3.00	1.40	3.00	1.40	3.10	ns	
tplh $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{n} to F_{n}	1.40	8.80	1.50	8.60	1.50	9.00	ns	Figures 1 and 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{n} to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$	1.70	7.40	2.00	5.90	2.00	6.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{C}}_{n+4}$	2.70	10.10	2.80	8.50	2.90	8.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to F_{n}	1.00	3.40	0.90	3.60	1.10	3.80	ns	Figures 1 and 2
$t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.70	0.45	2.60	0.45	2.70	ns	Figures 1 and 2
$\mathrm{t}_{\text {s }}$	Setup Time A_{n}, B_{n} S_{n} $\overline{\mathrm{C}}_{n}$	$\begin{aligned} & 7.60 \\ & 8.70 \\ & 4.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.60 \\ & 8.50 \\ & 5.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.10 \\ & 9.60 \\ & 5.30 \\ & \hline \end{aligned}$		ns	Figure 3
t_{n}	Hold Time A_{n}, B_{n} S_{n} $\overline{\mathrm{C}}_{n}$	$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$		ns	
$t_{p w}(\mathrm{~L})$	Pulse Width LOW E	2.00		2.00		2.00		ns	Figure 2

	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$T_{C}=+25^{\circ} \mathrm{C}$		$\mathbf{T C}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to F_{n}	2.00	6.70	2.10	6.60	2.30	7.20	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to \bar{P}, \bar{G}	1.40	4.50	1.40	4.20	1.40	4.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n}, B_{n} \text { to } \bar{C}_{n+4}$	2.00	6.30	2.00	6.30	2.10	6.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to F_{n}	1.60	4.90	1.60	5.00	1.60	5.30	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}}+4$	1.30	2.80	1.40	2.80	1.40	2.90	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to F_{n}	1.40	8.60	1.50	8.40	1.50	8.80	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$	1.70	7.20	2.00	5.70	2.00	6.30	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{C}}_{\mathrm{n}}+4$	2.70	9.90	2.80	8.30	2.90	8.50	ns	
$\begin{gathered} \mathrm{tpLH}_{\mathrm{PL}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation Delay \bar{E} to F_{n}	1.00	3.20	0.90	3.40	1.10	3.60	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.45	2.60	0.45	2.50	0.45	2.60	ns	Figures 1 and 2
t_{s}	Setup Time A_{n}, B_{n} S_{n} $\overline{\mathrm{C}}_{\mathrm{n}}$	$\begin{aligned} & 7.50 \\ & 8.60 \\ & 4.70 \\ & \hline \end{aligned}$		$\begin{array}{r} 7.50 \\ 8.40 \\ 4.90 \\ \hline \end{array}$		$\begin{aligned} & 8.00 \\ & 9.50 \\ & 5.20 \\ & \hline \end{aligned}$		ns	Figure 3
$t_{\text {h }}$	Hold Time A_{n}, B_{n} S_{n} $\overline{\mathrm{C}}_{\mathrm{n}}$	$\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$		$\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$		$\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$		ns	
$t_{p w}(L)$	Pulse Width LOW \bar{E}	2.00		2.00		2.00		ns	Figure 2

Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9873-7
FIGURE 1. AC Test CIrcuit

TL/F/9873-8
FIGURE 2. Enable Timing

TL/F/9873-9
FIGURE 3. Setup and Hold Times
Notes:
t_{s} is the minimum time before the transition of the enable that information must be present at the data input. t_{h} is the minimum time after the transition of the enable that information must remain unchanged at the data input.

National Semiconductor

F100182

9-Bit Wallace Tree Adder

General Description

The F100182 is a 9-bit Wallace tree adder. It is designed to assist in performing high-speed hardware multiplication. The device is designed to add 9 bits of data 1-bit-slice wide and handle the carry-ins from the previous slices. The F100182 is easily expanded and still maintains four levels of delay regardless of input string length. In conjunction with the

F100183 Recode Multiplier, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the F100182 assists in performing parallel multiplication of two signed numbers to produce a signed twos complement product. See F100183 data sheet for additional information. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data Inputs
$\mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{CI}_{n-2}$	Carry Inputs
$\mathrm{CO}_{1}-\mathrm{CO}_{3}, \mathrm{CO}_{\mathrm{n}+2}$	Carry Outputs
PS	Partial Sum Output
PC	Partial Carry Output

Connection Diagrams

TL/F/9874-3

24-Pin Quad Cerpak

TL/F/9874-2

Logic Diagram

Adder Logic Diagram

TL/F/9874-6
Adder Truth Table

Inputs			Outputs	
A	B	C	S	CO
L	L	L	L	L
L	L	H	H	L
L	H	L	H	L
L	H	H	L	H
H	L	L	H	L
H	L	H	L	H
H	H	L	L	H
H	H	H	H	H

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$	Loading with 50Ω to -2.0 V
V OLC	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (}}^{\text {Min }}$)	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Condltions
1 IH	Input HIGH Current $\begin{aligned} & \mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{Cl}_{n-2} \\ & \mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{8} \end{aligned}$			300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$
	$\mathrm{D}_{0}, \mathrm{D}_{2}, \mathrm{D}_{7}$			250		
$l_{\text {EE }}$	Power Supply Current	-260	-180	-125	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{c}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$	1.40	4.50	1.40	4.50	1.50	4.70	ns	Figures 1 and 2
$t_{p L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$	1.30	4.80	1.30	4.70	1.50	5.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{2}$	2.20	6.20	2.20	6.10	2.30	6.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$	1.30	4.70	1.40	4.70	1.50	5.00	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to PS, PC	2.50	7.20	2.50	7.20	2.70	7.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.50	1.00	3.40	1.10	3.70	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to PS, PC	1.50	4.50	1.50	4.45	1.60	4.60	ns	Figures 1 and 2
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.30	0.80	3.20	0.90	3.60	ns	
$t_{\text {TLH }}$ ${ }^{\text {t }}$ THL	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	Figures 1 and 2

Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$	1.40	4.30	1.40	4.30	1.50	4.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$	1.30	4.60	1.30	4.50	1.50	4.80	ns	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{2}$	2.20	6.00	2.20	5.90	2.30	6.20	ns	
$t_{p L H}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$	1.30	4.50	1.40	4.50	1.50	4.80	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to PS, PC	2.50	7.00	2.50	7.00	2.70	7.20	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{Cl}_{n-2}, \mathrm{Cl}_{1}$ to CO_{2}	1.00	3.30	1.00	3.20	1.10	3.50	ns	Figures 1 and 2
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to PS, PC	1.50	4.30	1.50	4.25	1.60	4.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to PS, PC	0.80	3.10	0.80	3.00	0.90	3.40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	Figures 1 and 2

FIGURE 2. Propagation Delay and Transition Times

TL/F/9874-9

Application (Continued)

F100183

2×8-Bit Recode Multiplier

General Description

The F100183 is a 2×8-bit recode multiplier designed to perform high-speed hardware multiplication. In conjunction with the F100182 Wallace Tree Adder, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the

F100183 performs parallel multiplication of two signed numbers in twos complement form to produce a signed twos complement product. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
$A_{0}-A_{2}$	Multiplier (Recode) Inputs
$B_{0}-B_{8}$	Multiplicand Inputs
$F_{0}-F_{7}$	Partial Product Outputs
\bar{F}_{8}	Sign Extension Output

TL/F/9875-3

Connection Diagrams

TL/F/9875-2

TL/F/9875-5

Truth Table

Inputs			Recode Mode	Outputs								
A_{2}	A_{1}	A_{0}		\bar{F}_{8}	F_{7}	F_{6}	F_{5}	F_{4}	F_{3}	F_{2}	F_{1}	F_{0}
L	L	L	0	H	L	L	L	L	L	L	L	L
L	L	H	+1	$\overline{\mathrm{B}}_{8}$	B_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}
L	H	L	+1	\bar{B}_{8}	B_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}
L	H	H	+2	\bar{B}_{8}	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}	B_{0}
H	L	L	-2	B_{8}	\bar{B}_{7}	\bar{B}_{6}	\bar{B}_{5}	\bar{B}_{4}	\bar{B}_{3}	\bar{B}_{2}	\bar{B}_{1}	\bar{B}_{0}
H	L	H	-1	B_{8}	B_{8}	$\overline{\mathrm{B}}_{7}$	$\overline{\mathrm{B}}_{6}$	\bar{B}_{5}	$\stackrel{\rightharpoonup}{B}_{4}$	\bar{B}_{3}	B_{2}	\bar{B}_{1}
H	H	L	-1	B_{8}	\bar{B}_{8}	\bar{B}_{7}	$\overline{\mathrm{B}}_{6}$	$\overline{\mathrm{B}}_{5}$	\bar{B}_{4}	\bar{B}_{3}	\bar{B}_{2}	$\overline{\mathrm{B}}_{1}$
H	H	H	0	H	L	L	L	L	L	L	L	L

[^9]
Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$V_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditio	Note 4)
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1810		-1605			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1595			
V_{IH}	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830		-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$	Loading with 50Ω to -2.0 V
Volc	Output LOW Voltage			-1610			
V_{iH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
$1 / \mathrm{L}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}^{\text {(Min) }}$	

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specif									
Symbol	Parameter	Min		Typ		Max	Units		Conditions
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current $\begin{aligned} & B_{0}-B_{8} \\ & A_{0} \\ & A_{1} \\ & A_{2} \\ & \hline \end{aligned}$					$\begin{aligned} & 215 \\ & 215 \\ & 285 \\ & 310 \\ & \hline \end{aligned}$	μ		$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{I H} \text { (Max) }}$
IEE	Power Supply Current		-250	-170		-115	m		Inputs Open
Ceramic Dual-In-Line Package AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{0}-A_{2}$ to $F_{0}-F_{7}$	1.10	3.90	1.10	3.80	1.10	4.20	ns	Figures 1 and 2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{0}-A_{2} \text { to } \bar{F}_{8}$	0.90	3.20	1.00	3.10	1.00	3.60	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	0.80	2.20	0.90	2.15	0.90	2.50	ns	Figures 1 and 2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B_{8} to \bar{F}_{8}	0.80	2.00	0.90	2.00	0.90	2.50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	2.50	0.45	2.40	0.45	2.60	ns	Figures 1 and 2

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	1.10	3.70	1.10	3.60	1.10	4.00	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to \bar{F}_{8}	0.90	3.00	1.00	2.90	1.00	3.40	ns	
$\begin{aligned} & \mathrm{tpLH}^{\text {tpHL }} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$	0.80	2.00	0.90	1.95	0.90	2.30	ns	Figures 1 and 2
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay B_{8} to F_{8}	0.80	1.80	0.90	1.80	0.90	2.30	ns	
${ }^{\mathrm{t}} \mathrm{T}$ LH $t_{\text {thL }}$	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.45	2.40	0.45	2.30	0.45	2.50	ns	Figures 1 and 2

Notes:

Pin numbers shown are for flatpak; for DIP see logic symbol
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay and Transition Times

Application

F100183 is a 2×8-bit recode multiplier that performs parallel multiplication using twos complement arithmetic. In multiplying, the multiplier is partitioned into recode groups, then each recode group operates on the multiplicand to provide a partial product at the same time. The F100183, 2×8-bit recode multiplier provides partial products in 3.6 ns.
The F100182, 9-Bit Wallace Tree Adder combines the partial products to obtain the partial sum and partial carries in an additional 10.7 ns . Then the Carry Lookahead generator and 6 -bit adder combine the results of a 16×16-bit multiply
for a total of 24.3 ns . The propagation delays and package count for implementing various size multipliers are listed in Tables I and II.
Multiplication of twos complement binary numbers is accomplished by first obtaining all the partial products. Then the weighted partial products are added together to yield the final result. In the Wallace Tree method of multiplication the sign bit is treated the same as the rest of the bits to obtain a signed result.

TL/F/9875-7

TABLE I. Propagation Delay Summation*

Array Size	Recode Multiplier 100183	Wallace Tree Adder 100182	High-speed Adder 100180	Carry Lookahead 100179	Total (Max) Delay	
16×16	3.6	10.7	7.3	2.7	$=$	24.3 ns
17×17 thru 24×24	3.6	21.4	7.3	2.7	35.0 ns	
25×25 thru 48×48	3.6	21.4	7.3	5.4	$=$	37.7 ns
49×49 thru 72×72	3.6	21.4	7.3	8.1	$=$	40.4 ns
73×73	3.6	32.1	7.3	10.8	$=$	53.8 ns

*Worst case, Flatpak

Application (Continued)
TABLE II. Package Count

	100102 100117	100183	100182	100180	100179		Total
16×16	6	16	32	6	2	$=$	62
18×18	7	27	38	6	2	$=$	70
24×24	9	36	60	8	2	$=$	115
32×32	11	64	96	11	4	$=$	186
36×36	13	80	116	12	4	$=$	225
64×64	24	256	328	22	6	$=$	634

For a quick review of the twos complement number format see Table III. Note that subtraction is accomplished by adding the negative number. An example of changing from a positive number to a negative number is shown.
1011 negative number-5
0100 bits inverted
+0001 add one

TABLE III. Twos Complement Format

Sign Bit	$\mathbf{2}^{\mathbf{2}}$	Magnitude $\mathbf{2 1}^{\mathbf{1}}$	$\mathbf{2 0}^{\mathbf{0}}$	Decimal Number
0	$\mathbf{1}$	1	1	+7
0	1	1	0	+6
0	1	0	1	+5
0	1	0	0	+4
0	0	1	1	+3
0	0	1	0	+2
0	0	0	1	+1
0	0	0	0	+0
1	1	1	1	-1
1	1	1	0	-2
1	1	0	1	-3
1	1	0	0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-8

Multiplication Algorithm

In the multiplication algorithm used, the multiplier ($\mathrm{Y}_{\mathrm{n}} \ldots \mathrm{Y}_{0}$) is partitioned into recode groups and each recode group operates on the multiplicand ($X_{n} \ldots X_{0}$) as in Figure 4. The F100183, 2×8-bit recode multiplier partitions the multiplier ($X_{n} \ldots X_{0}$) into groups of eight and the multiplicand $\left(Y_{n} \ldots\right.$ $\left.Y_{0}\right)$ into groups of two. Each recode group is two bits wide but requires three bits to determine the partial products. Table IV lists the significance of the various recode groups. The partial product is ± 0, \pm multiplicand, or \pm two times the multiplicand. A forced zero is required to establish the least significant bit of the first recode group. By connecting recode multipliers in parallel the partial products are available at the same time. The weighted partial products ($A_{n} \ldots A_{0}$, $\left.B_{n} \ldots B_{0}\right) \ldots$ are added together using F100182, 9-bit Wallace Tree Adders. The results of the partial sum and partial

TABLE IV. Recode Product

Recode Group		Recode	Partlal Product	
$\mathbf{Y}_{\mathbf{I}+1}$	$\mathbf{Y}_{\mathbf{I}}$	$\mathbf{Y}_{\mathbf{I}-\mathbf{1}}$	Value	P
0	0	0	+0	Add zero
0	0	1	+1	Add multiplicand
0	1	0	+1	Add multiplicand
0	1	1	+2	Add twice the multiplicand
1	0	0	-2	Subtract twice the multiplicand
1	0	1	-1	Subtract the multiplicand Subtract the
1	1	0	-1	multiplicand Subtract zero
1	1	1	-0	

carry are combined together using Carry Lookahead generators and 6 -bit adders. An example of using recode multiplication is shown in Figure 3: multiplier (117_{10}) 01110101 times multiplicand $\left(105_{10}\right)$ 01101001. The first recode group 010 requires adding the multiplicand; the second recode group 010 also requires adding the multiplicand; the third group 110 requires subtracting the multiplicand (the same as inverting each digit and adding 1); the fourth group 011 requires adding twice the multiplicand. Combining the results of four groups, 1228510^{10}, we have the correct answer.

TL/F/9875-8

FIGURE 3. Recode Multiplication Example

Hardware Implementation

For the hardware implementation of the F100183 recode multiplier the sign bit is connected to the B_{8} input, and B_{7} through B_{0} are the magnitude bits. Two extend the word length greater than eight bits, the B_{0} and B_{8} inputs of adjacent devices are connected together (see Figure 7). The device outputs F_{0} through F_{7} are used as the partial products; these correspond to A_{0} through A_{7}, or A_{8} through A_{15}, or B_{0} through B_{7}, etc. To reduce the hardware, the \bar{F}_{8} bit (A_{16} in Figure 7) is used as the sign bit of the partial product. The sign bits are extended by using hardware wired logic "1s". The ones are located in front of each partial product with an extra " 1 " at the sign bit of the first partial product as in Figure 4. The logic "1s" are wired as inputs into the Wallace Tree Adders as shown in Figure 6. If the recode group requires the multiplicand to be added, then the F100183 outputs the correct partial products to be added. But when the recode group requires that the multiplicand be subtracted, then the F100183 outputs the ones complement. External gates are required to generate a " 1 " to be added to the ones complement to complete the twos complement for the partial product (Figure 7). These external gates generate the rounding bits, $\mathrm{K}_{0} \ldots \mathrm{~K}_{\mathrm{n}}$, which are input to the Wallace Tree Adder. Figures 4, 6 and 7 show the location. An example of multiplication which has the rounding bits and the hardware wired logic " 1 s " is shown in Figure 5.
The weighted partial products are added together using F100182, 9-bit Wallace Tree Adders as shown in Figure 6. The output is a partial sum and partial carry which can be reduced to the final product using Carry Lookahead and 6bit adders. See Figure 8.

TL/F/9875-10
FIGURE 5. Example of Multiplication Using Rounding Bits

TL/F/9875-11
FIGURE 6. F100182 Hook-up for 16×16 Multiplier

TL/F/9875-12
FIGURE 7. F100183 Hook-Up for 16×16 Multiplier

Hardware Implementation (Continued)

FIGURE 8. Final Summation for 16×16 Multiplier

F100250

Quint Full Duplex Line Transceiver

General Description

The F100250 is a quint line transceiver capable of simultaneously transmitting and receiving differential mode signals on a twisted pair line. Each transceiver has a signal input $\mathrm{S}_{\mathrm{IN},}$ a signal output $\mathrm{S}_{\mathrm{OUT}}$ and two differential line inputs/ outputs L and \bar{L}. Signals received from the lines L and \bar{L} can be stored in an internal latch. The line outputs are designed to drive twisted pair lines. The ENABLE input is common to all five transceivers.

Features

- Full duplex operation
- Common mode noise immunity of $\pm 1 \mathrm{~V}$

Ordering Code: See Section 8

Logic Symbol

Pin Names	Descriptlon
\bar{E}	Common Enable
S_{in}	100K Signal Inputs
$\mathrm{S}_{\mathrm{On}_{n}}$	100K Signal Outputs
$\mathrm{L}_{n}, \overline{\mathrm{~L}}_{n}$	Differential Line
	Inputs/Outputs

Connection Diagrams

24-Pin Quad Cerpak

TL/F/9876-2

Logic Diagram

FIGURE 1. Interconnection of Two F100250 Circuits, Duplex Mode Operation

Truth Table

E	$S_{\text {IA }}$	$S_{1 B}$	SOA	SOB	L	L
H	X	X	$\mathrm{S}_{\text {OA }}(\mathrm{n}-1)$	$\mathrm{S}_{\mathrm{OB}}(\mathrm{n}-1)$	*	*
L	L	L	L	L	U_{L}	U_{H}
L	L	H	H	L	$\left(U_{L}+U_{H}\right) / 2$	$\left(U_{L}+U_{H}\right) / 2$
L.	H	L	L	H	$\left(U_{L}+U_{H}\right) / 2$	$\left(U_{L}+U_{H}\right) / 2$
L	H	H	H	H	U_{H}	U_{L}

H = HIGH Voltage Level
$\mathrm{U}_{\mathrm{L}} \approx-1.27 \mathrm{~V}$
$\mathrm{L}=$ LOW Voltage Level
$U_{H} \approx-0.27 \mathrm{~V}$
$\mathrm{X}=$ Don't Care
$\left(U_{L}+U_{H}\right) / 2 \approx-0.77 \mathrm{~V}$
$n-1=$ Previous State

- = Dependent on S_{IA} and S_{IB}

Functional Waveform

\author{

Absolute Maximum Ratings
 Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
 | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ | $+150^{\circ} \mathrm{C}$ |

}

Case Temperature under Bias (T_{C})	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	V_{EE} to +0.5 V
Output Current (DC Output HIGH)	-50 mA
Operating Range (Note 2)	-5.7 V to -4.2 V

DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$I_{I H}$	Input HIGH Current	S_{In}			200	$\mu \mathrm{~A}$
		$\overline{\mathrm{E}}$			250	$\mu \mathrm{~A}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH(Max }}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810	-1705	-1620	mV	or $\mathrm{V}_{\text {IL (Min) }}$	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$	
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {KH }}$	Line Output HIGH Voltage	-370		-220	mV	No Load	
V_{KL}	Line Output LOW Voltage	-1400		-1090	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$	
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
ILL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\text { Min })}$	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1020		-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1810		-1605	mV	or $\mathrm{V}_{\text {IL }}$ (Min)	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1030			mV	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$	
V ${ }_{\text {OLC }}$	Output LOW Voltage			-1595	mV		
$\mathrm{V}_{\text {KH }}$	Line Output HIGH Voltage	-350		-200	mV	No Load	
V_{KL}	Line Output LOW Voltage	-1300		-990	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$ or $\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILIM }}$ (Min)	

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions (Note 4)	
V_{OH}	Output HIGH Voltage	-1035		-880	mV	$V_{I N}=V_{I H(M a x)}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830		-1620	mV	or $\mathrm{V}_{\text {IL(Min) }}$	
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1045			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Max})} \end{aligned}$	
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {KH }}$	Line Output HIGH Voltage	-400		-250	mV	No Load	
$V_{K L}$	Line Output LOW Voltage	-1500		-1190	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$	
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW Signal for All Inputs	
	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min }}$	

Note 1: Unless specified otherwise on individual data sheet.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $S_{\text {s }}$ to L, \bar{L}	1.1	2.4	1.1	2.4	1.2	2.6	ns	Figures 2 and 4
$\mathrm{t}_{\mathrm{PLH}}$ t_{PHL}	Propagation Delay L, L to S_{O}	1.2	2.8	1.2	2.9	1.3	3.0	ns	Figures 3 and 5
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to S_{O}	1.2	2.6	1.2	2.7	1.3	2.9	ns	Figures 3 and 5
${ }^{\text {tithL }}$ t TLH	$\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$	0.5	2.0	0.5	2.0	0.5	2.0	ns	
ts	Setup Time L, \bar{L}	1.3		1.3		1.5		ns	Figure 3
t_{H}	Hold Time L, L	1.3		1.3		1.5		ns	

Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S, to L, \bar{L}	1.1	2.2	1.1	2.2	1.2	2.4	ns	Figures 2 and 4
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{L}, \overline{\mathrm{L}}$ to S_{O}	1.2	2.6	1.2	2.7	1.3	2.8	ns	Figures 3 and 5
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { Eto So } \end{aligned}$	1.2	2.4	1.2	2.5	1.3	2.7	ns	Figures 3 and 5
t_{THL} $t_{\text {TLH }}$	Transition Time 20\% to $80 \%, 80 \%$ to 20%	0.5	1.9	0.5	1.9	0.5	1.9	ns	
t_{5}	Setup Time L, \bar{L}	1.3		1.3		1.5		ns	Figure 3
${ }_{\text {t }}$	Hold Time L, \bar{L}	1.3		1.3		1.5		ns	

Switching Waveforms

TL/F/9876-8
$\left.\begin{array}{rl}\text { Notes: } S_{I B} & =L \text { then } P=\left(U_{L}+U_{H}\right) / 2, Q=U_{L}, R=U_{H}, S=\left(U_{L}+U_{H}\right) / 2 \\ S_{I B} & =H \text { then } P=U_{H}, Q=\left(U_{L}+U_{H}\right) / 2, R=\left(U_{L}+U_{H}\right) / 2, S=U_{L}\end{array}\right\} L$, L loaded with another F100250
FIGURE 2. S_{j} to Differential Line

TL/F/9876-9
Notes: $S_{I A}=L$ then $P=\left(U_{L}+U_{H}\right) / 2, Q=U_{L}, R=U_{H}, S=\left(U_{L}+U_{H}\right) / 2$
$S_{I A}=H$ then $P=U_{H}, Q=\left(U_{L}+U_{H}\right) / 2, R=\left(U_{L}+U_{H}\right) / 2, S=U_{L}$
t_{S} is the minimum time before the transition of the enable that information must be present at the data input.
t_{H} is the minimum time before the transition of the enable that information must remain unchanged at the data input.
FIGURE 3. Differential Line to S_{0}

Test Circuitry

Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length 50Ω impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}.
All unused outputs are loaded with 50Ω to GND.
$C_{L}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.
L and \vec{L} terminated by F100250 or Thevenin equiva-
lent.
Signal levels will be a percentage of full swing if using equivalent network.
$R_{A}=91 \Omega, R_{B}=500 \Omega, R_{C}=220 \Omega, R_{D}=71.5 \Omega$ for $S_{I B}=L$.
$R_{A}=220 \Omega, R_{B}=71.5 \Omega, R_{C}=91 \Omega, R_{D}=500 \Omega$ for $S_{I B}=H$.

FIGURE 4. AC Test Circuit Si to Differential Line

TL/F/9876-14
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}.
All unused outputs are loaded with 50Ω to GND.
$C_{L}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.
FIGURE 5. AC Test Circuit Differential Line to S_{O} and \bar{E} to S_{0}

Section 4 11C Datasheets

Section 4 Contents

11C05 1 GHz Divide-by-Four Counter . 4-6
11 C06 750 MHz D-Type Flip-Flop . 4 .
11C70 Master-Slave D-Type Flip-Flop .
11C90/11C91 650 MHz Prescalers . 4-20

11C01

Dual 5-4 Input OR/NOR Gate

General Description

The 11C01 is a voltage-compensated ECL dual $5-4$ input OR/NOR gate. The circuit has standard internal voltage compensation with DC parameters identical to 10 K ECL devices.

Ordering Code: See Section 8

Logic Symbol

TL/F/9888-2

Pin Names	Description
$D_{1 a}-D_{1 e}, D_{2 a}-D_{2 d}$	Data Inputs
$Q_{1}, \bar{Q}_{1}, Q_{2}, \bar{Q}_{2}$	Outputs

Connection Diagrams

TL/F/9888-1
16-Pin Flatpak

TL/F/9888-3

Truth Tables

In						Out	
$D_{1 \mathbf{a}}$	$D_{1 b}$	$D_{1 \mathbf{c}}$	$D_{1 d}$	$D_{1 e}$	$\mathbf{Q}_{\mathbf{1}}$	$\overline{\mathbf{Q}}_{\mathbf{1}}$	
L	L	L	L	L	L	H	
H	X	X	X	X	H	L	
X	H	X	X	X	H	L	
X	X	H	X	X	H	L	
X	X	X	H	X	H	L	
X	X	X	X	H	H	L	

In				Out	
$D_{\mathbf{2 a}}$	$D_{\mathbf{2 b}}$	$D_{2 c}$	$D_{\mathbf{2 d}}$	$\mathbf{Q}_{\mathbf{2}}$	$\overline{\mathbf{Q}}_{\mathbf{2}}$
L	L	L	L	L	H
H	X	X	X	H	L
X	H	X	X	H	L
X	X	H	X	H	L
X	X	X	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care

Absolute Maximum Ratings	
Above which the useful life may be impaired	
If Milltary/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/DIstributors for avallability and specifications.	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJ)	$+150^{\circ} \mathrm{C}$
Supply Voltage Range	-7.0 V to GND
Input Voltage (DC)	V_{EE} to GND
Output Current (DC Output HIGH)	-50 mA
Operating Range	-5.5 V to -4.75 V
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})
Supply Voltage Range
Input Voltage (DC)

Operating Range
-5.5 V to -4.75 V
Lead Temperature (Soldering, 10 sec .)
$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5.5	-5.2	-4.75	V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0		+75	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{T}_{\text {A }}$	Conditions	
V OH	Output Voltage HIGH	$\begin{gathered} -1000 \\ -960 \\ -900 \\ \hline \end{gathered}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \\ & \hline \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$V_{I N}=V_{I H(M a x)}$ or $\mathrm{V}_{\text {IL(Min) }}$ per Truth Table	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \\ & \hline \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$		
VOHC	Output Voltage HIGH	$\begin{aligned} & -1020 \\ & -980 \\ & -920 \\ & \hline \end{aligned}$			mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \\ & \text { per Truth Table } \end{aligned}$	
Volc	Output Voltage LOW			$\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \\ & \hline \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$		
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \\ & \hline \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \\ & \hline \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \\ & \hline \end{aligned}$	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed input Voltage LOW for All Inputs	
$I_{1 H}$	Input Current HIGH			350	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ (
I/L	Input Current LOW	0.5			$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$	
l_{EE}	Power Supply Current	-30	-24		mA	$+25^{\circ} \mathrm{C}$	Inputs and Outputs Open	

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Flatpak			DIP			Units	Conditions
		Min	Typ	Max	Min	Typ	Max		
$t_{\text {PLH }}$	Propagation Delay LOW to HIGH	0.45	0.7	0.95	0.60	0.90	1.15	ns	See Figure 1
${ }_{\text {tphL }}$	Propagation Delay HIGH to LOW	0.45	0.7	0.95	0.60	0.90	1.15	ns	
${ }_{\text {t }}^{\text {LLH }}$	Output Transition Time LOW to HIGH (20% to 80%)		0.7	0.95		0.90	1.15	ns	
${ }^{\text {t }}$ THL	Output Transition Time HIGH to LOW (80% to 20%)		0.7	0.95		0.90	1.15	ns	

Notes:

L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ Termination of scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{EE} and V_{CC}
$C_{L} \leq 3 \mathrm{pF}$

Notes:

Jig setup with no circuit under test
$V_{\mathrm{CC} 1}=V_{\mathrm{CC} 2}=+2.0 \mathrm{~V}$
$V_{E E}=-3.2 \mathrm{~V}$
FIGURE 1. Switching Circult and Waveforms

11C05

1 GHz Divide-By-Four Counter

General Description

The 11C05 is an ECL Divide-By-Four Counter with a maximum operating frequency above 1 GHz over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. The input may be DC or AC (capacitively) coupled to the signal source. The emitter follower
outputs (Q and $\overline{\mathrm{Q}}$) are capable of driving 50Ω lines. The outputs are voltage-compensated and provide standard ECL output levels.

Ordering Code: See Section 8

Logic Symbol

TL/F/9889-1

Pin Names	Description
$C P$	Clock Input
$V_{\text {REF }}$	Reference Input
Q, \bar{Q}	Counter Outputs

Connection Diagram

Logic Diagram

Absolute Maximum Ratings Above which the useful life may be impaired		Recommended Operating Conditions			
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		Min	Typ	Max
Maximum Junction Temperature (T_{J})	$+150^{\circ} \mathrm{C}$	Supply Voltage (V_{EE})			
Supply Voltage Range	-7.0 V to GND	Commercial	$-5.25 \mathrm{~V}$	-5.0V	-4.75V
Input Voltage (DC)	$V_{E E}$ to GND	Military	-5.5V	-5.0V	-4.75V
Output Current (DC Output HIGH)	- 50 mA	Ambient Temperature (T_{A})			
Operating Range	-5.5 V to -4.75 V	Commercial	$\begin{gathered} 0^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & +75^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$		5		

Commercial DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{T}_{\text {A }}$	Conditions
V_{OH}	Output Voltage HIGH	$\begin{gathered} -1060 \\ -1025 \\ -980 \end{gathered}$	$\begin{aligned} & -995 \\ & -960 \\ & -910 \end{aligned}$	$\begin{aligned} & -910 \\ & -880 \\ & -830 \end{aligned}$	mV mV mV	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$ Loading 50Ω to -2 V
V_{OL}	Output Voltage LOW	-1810	-1705	-1620	mV	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -2.45 \\ & -2.50 \\ & -2.60 \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input HIGH
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW			$\begin{aligned} & -3.25 \\ & -3.30 \\ & -3.40 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input L.OW
$l_{\text {EE }}$	Power Supply Current	-90	-65		mA	$+25^{\circ} \mathrm{C}$	Input Open
V_{EE}	Supply Voltage Range	-5.25	-5.0	-4.75	V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
$V_{\text {REF }}$	Input Reference Voltage		-2.9		V	$+25^{\circ} \mathrm{C}$	

Military DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{T}_{\text {A }}$	Conditions
V OH	Output Voltage HIGH	$\begin{gathered} -1100 \\ -980 \\ -910 \\ \hline \end{gathered}$	$\begin{gathered} -1030 \\ -910 \\ -820 \\ \hline \end{gathered}$	$\begin{aligned} & -950 \\ & -820 \\ & -720 \end{aligned}$	mV mV mV	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	$V_{I N}=V_{I H} \text { or } V_{I L},$ Loading 100Ω to $-2 V$
V_{OL}	Output Voltage LOW	-1810	-1705	-1620	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage HIGH	$\begin{aligned} & -2.35 \\ & -2.50 \\ & -2.70 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed Input HIGH
$V_{\text {IL }}$	Input Voltage LOW			$\begin{aligned} & -3.15 \\ & -3.30 \\ & -3.50 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \\ & v \end{aligned}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	Guaranteed Input LOW
$l_{\text {EE }}$	Power Supply Current	-90	-65		mA	$+25^{\circ} \mathrm{C}$	Input Open
$V_{\text {EE }}$	Supply Voltage Range	-5.5	-5.0	-4.75	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$V_{\text {REF }}$	Input Reference Voltage		-2.9		V	$+25^{\circ} \mathrm{C}$	

Commercial and Military AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
fCOUNT	Maximum Sinusoidal Input Frequency	1000			MHz	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AC Coupled 800 mV Peak-to-Peak Input (Note 2)
		950				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
fcount	Minimum Sinusoidal Input Frequency		25		MHz		
$\mathrm{SR}_{\text {MIN }}$	Slew Rate of Squareware		50		$\mathrm{V} / \mu \mathrm{s}$	(Not	

Note 1: Very low frequency operation is possible as long as sufficient slew rate of the input pulse edges is maintained.
Note 2: Input drive shall not exceed 1.5 V peak-to-peak max.

TL/F/9889-4
FIGURE 1. AC Test Circult

FIGURE 2. AC Input Requirements
Note: Trigger amplitudes refer to the circuit end of the input cable as opposed to the signal generator end.

A DC coupled input should be designed to provide specified V_{IH} and V_{IL} levels. For $A C$ coupling, an external resistor may or may not be necessary depending on the application. If an input signal is always present, only the capacitor is required because an internal 400Ω resistor connected between CP and VREF centers the AC signal about midthreshold. For applications in which an input signal is not
always present, $A C$ coupling requires that an external 10 $\mathrm{K} \Omega$ resistor be connected between CP and V_{EE}. This offsets the input sufficiently to avoid extreme sensitivity to noise when no signal is present. Otherwise, noise triggering can lead to oscillation at about 450 MHz . For best operation, both outputs should be equally loaded.

11C06

750 MHz D-Type Flip-Flop

General Description

The 11C06 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 750 MHz . Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and
output levels insensitive to V_{EE} variations. Complementary Q and \bar{Q} outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replacement.

Ordering Code: See Section 8

Logic Symbol

Connection Diagrams

Truth Table

Pin Names	Description
D_{n}	Data Input
$C P$	Clock Input
$\overline{C E}$	Clock Enable (Active LOW)
Q, \bar{Q}	Outputs

$\overline{C E}$	$\mathbf{C P}$	\mathbf{D}	\mathbf{Q}_{n}
L	L	X	Q_{n-1}
L	H	X	Q_{n-1}
L	-	L	L
L		H	H
H	X	X	Q_{n-1}

[^10]```
Absolute Maximum Ratings
Above which the useful life may be impaired
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```

Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$\begin{array}{lr}\text { Supply Voltage Range } & -7.0 \mathrm{~V} \text { to GND } \\ \text { input Voltage (DC) } & V_{E E} \text { to GND } \\ \text { Output Current (DC Output HIGH) } & -50 \mathrm{~mA}\end{array}$

Operating Range Lead Temperature (Soldering, 10 sec. )
-5.7 V to -4.7 V
Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ | -5.7 V | -5.2 V | -4.7 V |
| Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\mathbf{A}}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage HIGH | $\begin{gathered} -1000 \\ -960 \\ -900 \\ \hline \end{gathered}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max } \text { or }} \mathrm{V}_{\mathrm{IL}(\text { Min) }}$ per Truth Table Loading $50 \Omega$ to -2 V |
| VOL | Output Voltage LOW | $\begin{array}{r} -1870 \\ -1850 \\ -1830 \\ \hline \end{array}$ |  | $\begin{aligned} & -1635 \\ & -1620 \\ & -1595 \\ & \hline \end{aligned}$ | mV <br> mV <br> mV | $\begin{array}{r}  \\ 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output Voltage HIGH | $\begin{aligned} & -1020 \\ & -980 \\ & -920 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | $V_{I N}=V_{I H}$ (Min) or $V_{I L}$ (Max) for $D_{n}$ Inputs Loading $50 \Omega$ to -2 V |
| Volc | Output Voltage LOW |  |  | $\begin{aligned} & -1615 \\ & -1600 \\ & -1575 \\ & \hline \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} \\ 0^{\circ} \mathrm{C} \\ + \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$ |  |
| $V_{1 H}$ | Input Voltage HIGH | $\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input Voltage HIGH for All Inputs |
| $V_{\text {IL }}$ | Input Voltage LOW | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input Voltage LOW for All Inputs |
| $\mathrm{IIH}^{\text {H}}$ | Input Current HIGH <br> Clock Input <br> Data Input |  |  | $\begin{aligned} & 250 \\ & 270 \end{aligned}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| IIL | Input Current LOW | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$ |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current | -59 | -40 |  | mA | $+25^{\circ} \mathrm{C}$ | All Inputs Open |

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PHL }}$ <br> tpLH | Propagation Delay (CP-Q) <br> Propagation Delay (CP-Q) | $\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ | See Figure 1 |
| $\begin{aligned} & t_{T L H} \\ & t_{T H L} \\ & \hline \end{aligned}$ | Transition Time 20\% to 80\% Transition Time 80\% to 20\% | $\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |  |
| ts | Set-up Time |  | 0.2 |  | ns |  |
| ${ }_{\text {t }}^{\text {H }}$ | Hold Time |  | 0.2 |  | ns |  |
| $f_{\text {TOG ( MAX) }}$ | Toggle Frequency (CP) | 650 | 750 |  | MHz | See Figure 2, Note |

Note: The device is guaranteed for fTOG (CP) $\geq 600 \mathrm{MHz}$, $f_{T O G}(C E) \geq 550 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

## Functional Description

While the clock is LOW, the slave is held steady and the information on the $D$ input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous
master-slave changes when the clock has slow rise or fall times.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\text { CE }}$ should go HIGH while CP is still HIGH.


TL/F/9890-4
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 1. Propagation Delay (CP to Q)

$R_{T}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
Adjust $\mathrm{V}_{\text {BIAS }}$ for +0.7 V baseline of
800 mV peak-to-peak sinewave input.
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 2. Toggle Frequency Test Circuit

## Typical Waveforms



Horizontal Scale $=1.0 \mathrm{~ns} / \mathrm{div}$
Vertical Scale $=200 \mathrm{mV} /$ div

National Semiconductor

## 11 C70

## Master-Slave D-Type Flip-Flop

## General Description

The 11 C 70 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 650 MHz . Designed primarily for communications and instrumentation, it can also be used in other digital applications and is fully compatible with 10K ECL. Asynchronous Direct Set and Direct Clear inputs are provided which override the clock.
The circuit is voltage-compensated, which makes output levels and input thresholds insensitive to $\mathrm{V}_{\mathrm{EE}}$ variations.

This also allows operation with ECL supply voltage $\mathrm{V}_{\mathrm{EE}}$ of -5.2 V or with TTL supply $\mathrm{V}_{\mathrm{CC}}$ of +5.0 V . Each input has an internal $50 \mathrm{k} \Omega$ pull-down resistor, which allows unused inputs to be left open. Open emitter-follower outputs accommodate a variety of loading and terminating schemes. The 11 C 70 is pin-compatible with the Motorola MC1670 but is a higher-frequency replacement.

Ordering Code: See Section 8

## Logic Symbol



TL/F/9891-2

| Pin Names | Description |
| :--- | :--- |
| $\overline{\mathrm{CE}}$ | Clock Enable (Active LOW) |
| CP | Clock Pulse |
| D | Data Input |
| $\mathrm{Q}, \overline{\mathrm{Q}}$ | Outputs |
| $\mathrm{S}_{\mathrm{D}}$ | Direct Set |
| $\mathrm{C}_{\mathrm{D}}$ | Direct Clear |

Truth Table

## Connection Diagram



TL/F/9891-1

| Inputs |  |  |  |  | $Q_{t+1}$ | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S ${ }_{\text {D }}$ | $C_{D}$ | D | $\overline{\text { CE }}$ | CP |  |  |
| H | L | X | X | X | H | Direct Set |
| L | H | X | X | X | L | Direct Clear |
| H | H | X | X | X | - | Intermediate |
| L | L | X | H | $\checkmark$ | $\mathrm{Q}_{\mathrm{t}}$ | Disable Clock |
| L | L | H | L | $\checkmark$ | H | Clocked Set |
| L | L | L | L | $\checkmark$ | L | Clocked Clear |

[^11]| Absolute Maximum Ratings <br> Above which the useful life may be impaired |  | Recommended Operating Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| If Military/Aerospace specified de please contact the National Se Office/Distributors for availability a | ces are required, iconductor Sales d specifications. | Supply Voltage ( $\mathrm{V}_{\mathrm{EE}}$ ) | $\underset{-5.7 \mathrm{~V}}{\text { Min }}$ | $\begin{gathered} \text { Typ } \\ -5.2 \mathrm{~V} \end{gathered}$ | Max -4.7 V |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | Ambient Temperature ( $\mathrm{T}_{\mathrm{A}}$ ) | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ}$ |
| Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ ) | $+150^{\circ} \mathrm{C}$ |  |  |  |  |
| Supply Voltage Range | -7.0 V to GND |  |  |  |  |
| Input Voltage (DC) | $V_{E E}$ to GND |  |  |  |  |
| Output Current (DC Output HIGH) | $-50 \mathrm{~mA}$ |  |  |  |  |
| Operating Range | -5.7 V to -4.7 V |  |  |  |  |
| Lead Temperature (Soldering, 10 sec .) | $300^{\circ} \mathrm{C}$ |  |  |  |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathbf{T}_{\mathbf{A}}$ | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $V_{\text {OH }}$ | Output Voltage HIGH | -1000 |  | -840 | mV | $0^{\circ} \mathrm{C}$ | $\begin{array}{l}V_{\text {IN }}=V_{\text {IHA }} \text { or } V_{\text {ILB }} \text { per Truth } \\ \text { Table Loading } 50 \Omega \text { to }-2 \mathrm{~V}\end{array}$ |
|  |  | -960 |  | -810 | mV | $+25^{\circ} \mathrm{C}$ |  |
|  |  | -900 |  | -720 | mV | $+75^{\circ} \mathrm{C}$ |  |$]$

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$ | Propagation Delay (CP-Q) |  | 1.1 | 1.4 | ns | See Figures 3 and 4 |
| $\mathrm{tPLH}, \mathrm{tPHL}$ | Propagation Delay ( $\mathrm{S}_{\mathrm{D}}-\overline{\mathrm{Q}}, \mathrm{C}_{\mathrm{D}}-\mathrm{Q}$ ) |  | 1.3 | 1.7 | ns |  |
| $\mathrm{t}_{\mathrm{TLH}}$ | Transition Time 20\% to 80\% |  | 0.9 | 1.3 | ns |  |
| ${ }_{\text {T }}^{\text {THL }}$ | Transition Time 80\% to 20\% |  | 0.9 | 1.3 | ns |  |
| $\mathrm{f}_{\text {TOG ( MAX) }}$ | Toggle Frequency (CP) | 550 | 650 |  | MHz | See Figure 2 |

[^12]
## Functional Description

Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master-slave changes when the clock has slow rise or fall times. While the clock is LOW, the slave is in a HOLD condition and information present on the D input is gated into the master. When the clock goes HIGH, it locks the master into its present state, making it insensitive to the D input, causing the new information to appear on the outputs.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\text { CE }}$ should be HIGH while CP is still HIGH.
A HIGH signal on $S_{D}$ or $C_{D}$ will override the clocked inputs and force $Q$ or $\bar{Q}$, respectively, to go HIGH. If both $C_{D}$ and $S_{D}$ are HIGH, the two output voltages will be somewhere between the HIGH and LOW levels and thus, cannot be usefully defined.
When the input signals for the 11 C 70 come from other ECL circuits, either 11CXX series or 10K types, these circuits will automatically provide appropriate signal swings, provided, of course, that these circuits are operated within their ratings and that due consideration is given to terminations appropriate to the particular application, as discussed in the F100K ECL Design Guide (Section 5 of Databook).
For applications where the clock signal comes from a circuit type other than ECL (in high frequency prescaling, for example) it is generally necessary to use external components to shift the signal levels and center them about the 11C70 input threshold region. A typical biasing scheme is shown in Figure 1. Resistors R1 and R2 are chosen such that the
quiescent voltage at the CP input is -1.3 V with respect to the $V_{C C}$ terminal of the 11C70. Also indicated is the coupling from $\bar{Q}$ back to the $D$ input to make a simple toggle. The clock source should be designed to provide a signal swing in the range of 400 mV to 1200 mV , peak-to-peak, over the specified frequency and temperature range. To avoid saturating the input transistor, and thus limiting the frequency capability, the positive peak of the clock should not be more positive than -0.4 V with respect to $\mathrm{V}_{\mathrm{Cc}}$.
The 11C70 outputs have no internal pull-down resistors. When driving a microstrip line terminated at the far end by a resistor returned to -2 V (w.r.t. $\mathrm{V}_{\mathrm{CC}}$ ), the quiescent $\mathrm{I}_{\mathrm{OH}}$ current in the line performs the pull-down function when the output starts to go LOW. For series termination or for short unterminated lines, a $270 \Omega$ resistor to $V_{E E}$ will provide adequate pull-down current. The outputs switch slightly faster when both outputs are equally loaded than if only one output is loaded. Equal and opposite changes in Q and $\overline{\mathrm{Q}}$ load currents tend to cancel the effects of the small inductance of the $V_{C C}$ pin.
The test arrangements illustrate the use of split power supplies, with a $2 \mathrm{~V} V_{C C}$ and $-3.2 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$. This is done as a matter of instrumentation convenience, since it allows the outputs to be connected via $50 \Omega$ cables directly to the sampling scope inputs, which have $50 \Omega$ internal terminations. By thus avoiding the use of probes, test correlation problems between supplier and user are minimized. In actual applications, only a single power supply is needed, and ground can be assigned to $V_{C C}$, as in ECL systems or to $V_{E E}$ side as in TTL systems. RF bypass capacitors are recommended in either case.


TL/F/9891-3
FIGURE 1. Input Biasing for AC Coupled Triggering


TL/F/9891-4
$R_{T}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
Adjust $\mathrm{V}_{\text {BIAS }}$ for $\pm 0.7 \mathrm{~V}$ baseline of
800 mV peak-to-peak sinewave input


FIGURE 2. Toggle Frequency Test Circuit

$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


FIGURE 3. Propagation Delay and $C_{D}$ Test Circult

$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


FIGURE 4. Propagation Delay and $\mathrm{S}_{\mathrm{D}}$ Test Circuit

## 11C90/11C91 <br> 650 MHz Prescalers

## General Description

The 11C90 and 11C91 are high-speed prescalers designed specifically for communication and instrumentation applications. All discussions and examples in this data sheet are applicable to the 11C91 as well as the 11C90.
The 11C90 will divide by 10 or 11 and the 11C91 by 5 or 6, both over a frequency range from DC to typically 650 MHz . The division ratio is controlled by the Mode Control. The divide-by-10 or -11 capability allows the use of pulse swallowing techniques to control high-speed counting modulos by lower-speed circuits. The 11C90 may be used with either ECL or TTL power supplies.
In addition to the ECL outputs $Q$ and $\bar{Q}$, the 11C90 contains an ECL-to-TTL converter and a TTL output. The TTL output operates from the same $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ levels as the counter, but a separate pin is used for the TTL circuit $\mathrm{V}_{\mathrm{EE}}$. This minimizes noise coupling when the TTL output switches and
also allows power consumption to be reduced by leaving the separate $V_{E E}$ pin open if the TTL output is not used.
To facilitate capacitive coupling of the clock signal, a $400 \Omega$ resistor ( $\mathrm{V}_{\mathrm{REF}}$ ) is connected internally to the $\mathrm{V}_{\mathrm{BB}}$ reference. Connecting this resistor to the Clock Pulse input (CP) automatically centers the input about the switching threshold. Maximum frequency operation is achieved with a $50 \%$ duty cycle.
Each of the Mode Control inputs is connected to an internal $2 \mathrm{k} \Omega$ resistor with the other end uncommitted ( $\mathrm{RM}_{1}$ and $\mathrm{RM}_{2}$ ). An M input can be driven from a TTL circuit operating from the same $V_{C C}$ by connecting the free end of the associated $2 \mathrm{k} \Omega$ resistor to $\mathrm{V}_{\text {CCA }}$. When an M input is driven from the ECL circuit, the $2 \mathrm{k} \Omega$ resistor can be left open or, if required, can be connected to $\mathrm{V}_{\mathrm{EE}}$ to act as a pull-down resistor.

## Ordering Code: See Section 8

Logic Symbol


| Pin Names | Description |
| :--- | :--- |
| $\overline{C E}$ | Count Enable Input (Active LOW) |
| $C P$ | Clock Pulse Input |
| $M_{n}$ | Count Modulus Control Input |
| $M S$ | Asynchronous Master Set Input |
| $Q, \bar{Q}$ | ECL Outputs |
| $Q T T L$ | TTL Output |
| $R M_{n}$ | $2 \mathrm{k} \Omega$ Resistor to $M_{n}$ |
| $V_{R E F}$ | $400 \Omega$ Resistor to $V_{B B}$ |

## Connection Diagram



TL/F/9892-1


## TTL Input/Output Operation

## DC Electrical Characteristics

Over Operating Temperature and Voltage Range unless otherwise noted, Pins 12 and 13 = GND

| Symbol | Parameter | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage $M_{1}$ and $M_{2}$ Inputs |  | 4.1 |  | V | Guaranteed Input HIGH Threshold Voltage (Note 4), $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage $M_{1}$ and $M_{2}$ Inputs |  | 3.3 |  | V | Guaranteed Input LOW Threshold <br> Voltage (Note 4), $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage QTTL Output | 2.3 | 3.3 |  | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{Min}, \\ & \mathrm{l}_{\mathrm{OH}}=-640 \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage QTTL Output |  | 0.2 | 0.5 | V | $\begin{aligned} & V_{C C}=V_{C C A}=\mathrm{Min}, \\ & l_{\mathrm{OL}}=20.0 \mathrm{~mA} \end{aligned}$ |
| ILL | Input LOW Current $M_{1}$ and $M_{2}$ Inputs |  | -2.3 | -5.0 | mA | $\begin{aligned} & V_{C C}=V_{C C A}=M a x, \\ & V_{I N}=0.4 V, \text { Pins } 6,7=V_{C C} \end{aligned}$ |
| Isc | Output Short Circuit Current | -20 | -35 | -80 | mA | $\begin{aligned} & V_{C C}=V_{C C A}=\operatorname{Max}, \\ & V_{\text {OUT }}=0.0 \mathrm{~V}, \operatorname{Pin} 14=V_{C C} \end{aligned}$ |

## AC Electrical Characteristics

$V_{C C}=V_{C C A}=5.0 \mathrm{~V}$ Nominal, $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay, (50\% to 50\%) CP to QTTL | 6 | 10 | 14 | ns | See Figure 1 |
| $t_{\text {PLH }}$ | Propagation Delay, (50\% to 50\%) MS to QTTL |  | 12 | 17 | ns |  |
| $\mathrm{t}_{5}$ | Mode Control Setup Time | 4 | 2 |  | ns |  |
| $t_{h}$ | Mode Control Hold Time | 0 | -2 |  | ns |  |
| ${ }^{\text {trib }}$ | Output Rise Time ( $20 \%$ to $80 \%$ ) |  | 10 |  | ns |  |
| $\mathrm{t}_{\text {THL }}$ | Output Fall Time ( $80 \%$ to $20 \%$ ) |  | 2 |  | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Count Frequency | $\begin{aligned} & 550 \\ & 600 \end{aligned}$ | $\begin{aligned} & 650 \\ & 650 \end{aligned}$ | - | MHz | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ <br> Clock Input AC Coupled 350 mV Peak-to-Peak Sinewave (Note 5) |

## ECL Operation-Commercial Version

## DC Electrical Characteristics

$V_{C C}=V_{C C A}=G N D, V_{E E}=-5.2 \mathrm{~V}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage $Q$ and $\bar{Q}$ | $\begin{gathered} -1060 \\ -1025 \\ -980 \end{gathered}$ | $\begin{array}{r} -995 \\ -960 \\ -910 \\ \hline \end{array}$ | $\begin{aligned} & -905 \\ & -880 \\ & -805 \\ & \hline \end{aligned}$ | mV | $\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ | Load $=50 \Omega$ to -2 V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage $Q$ and $\bar{Q}$ | -1820 | -1705 | -1620 | mV | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | $\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input HIGH Signal (Note 6) |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input LOW Signal |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current <br> CP Input (Note 1) <br> MS Input <br> $M_{1}$ and $M_{2}$ Input |  |  | $\begin{aligned} & 400 \\ & 400 \\ & 250 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$ |
| IIL | Input LOW Current | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| $l_{\text {EE }}$ | Power Supply Current | $\begin{array}{r} -110 \\ -119 \end{array}$ | -75 |  | mA | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ | Pins 6, 7, 13 not connected |
| $V_{E E}$ | Operating Supply Voltage Range | -5.7 | -5.2 | -4.7 | V | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |
| $V_{\text {REF }}$ | Reference Voltage | -1550 |  | -1150 | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & V_{\mathrm{RM}_{1}}=\mathrm{V}_{\mathrm{RM}_{2}}=-5.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

| Symbol | Parameter | $\begin{aligned} & 0^{\circ} \mathrm{C} \\ & \text { Typ } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +75^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay, (50\% to 50\%) CP to Q | 1.8 | 1.3 | 2.0 | 3.0 | 2.5 | ns | Output: $R_{L}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input: $t_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ (20\% to 80\%) <br> See Figure 1 |
| ${ }_{\text {tPLH }}$ | Propagation Delay, (50\% to 50\%) MS to Q | 3.7 |  | 4.0 | 6.0 | 4.5 | ns |  |
| $\mathrm{t}_{\text {s }}$ | Setup Time, M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{\text {h }}$ | Hold Time, M to CP | -2.0 | 0.0 | -2.0 |  | -2.0 | ns |  |
| ${ }^{\text {t }}$ L H | Output Rise Time ( $20 \%$ to $80 \%$ ) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }^{\text {t }}$ HL | Output Fall Time ( $80 \%$ to $20 \%$ ) | 1.0 |  |  | 2.0 | 1.0 | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency | 650 | 600 | 650 |  | 625 | MHz | AC Coupled Input 350 mV Peak-to-Peak. $\mathrm{f}_{\mathrm{MAX}}$ is Guaranteed to be 575 MHz Min at $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. |

## ECL Operation－Military Version

DC Electrical Characteristics
$V_{C C}=V_{C C A}=G N D, V_{E E}=-5.2 \mathrm{~V}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage $Q$ and $\bar{Q}$ | $\begin{aligned} & -1100 \\ & -980 \\ & -910 \end{aligned}$ | $\begin{aligned} & -1030 \\ & -910 \\ & -820 \end{aligned}$ | $\begin{aligned} & -900 \\ & -820 \\ & -670 \end{aligned}$ | mV | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | Load $=100 \Omega$ to -2 V |
| VOL | Output LOW Voltage $Q$ and $\bar{Q}$ | －1820 | －1705 | －1620 | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | $\begin{aligned} & -1190 \\ & -1095 \\ & -975 \end{aligned}$ |  | $\begin{aligned} & -905 \\ & -810 \\ & -690 \end{aligned}$ | mV | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | Guaranteed Input HIGH Signal（Note 6） |
| $V_{\text {IL }}$ | Input LOW Voltage | $\begin{aligned} & -1890 \\ & -1850 \\ & -1800 \end{aligned}$ |  | $\begin{aligned} & -1525 \\ & -1485 \\ & -1435 \end{aligned}$ | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Guaranteed Input LOW Signal |
| IIH | Input HIGH Current <br> CP Input（Note 1） MS Input <br> $M_{1}$ and $M_{2}$ input |  |  | $\begin{aligned} & 400 \\ & 400 \\ & 250 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{1} \mathrm{HA}$ |
| ILL | Input LOW Current | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| lee | Power Supply Current | －110 | －75 |  | mA | $+25^{\circ} \mathrm{C}$ | Pins 6，7， 13 not connected |
|  |  |  | －119 |  | mA | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |
| $V_{E E}$ | Operating Supply Voltage Range | －5．7 | －5．2 | －4．7 | V | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$ |  |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage | －1550 |  | －1150 | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & V_{R M_{1}}=V_{R M_{2}}=-5.2 \mathrm{~V} \\ & I_{\mathrm{N}}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | $\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +125^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $t_{\text {PLH }}$ <br> tpHL | Propagation Delay， （ $50 \%$ to $50 \%$ ）CP to Q | 1.5 | 1.3 | 2.0 | 3.0 | 3.0 | ns | Output： $R_{L}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input： $t_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ <br> （ $20 \%$ to $80 \%$ ） <br> See Figure 1 |
| tpLH | Propagation Delay， （ $50 \%$ to $50 \%$ ）MS to Q | 3.5 |  | 4.0 | 6.0 | 5.0 | ns |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time，M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{n}$ | Hold Time，M to CP | －2．0 | 0.0 | －2．0 |  | －2．0 | ns |  |
| ${ }^{\text {t }}$ LLH | Output Rise Time （20\％to 80\％） | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }^{\text {t }}$ HL | Output Fall Time （ $80 \%$ to $20 \%$ ） | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency | 700 |  | 650 |  | 600 | MHz | AC Coupled Input 350 mV Peak－to－Peak．$f_{\text {MAX }}$ is Guaranteed to be 550 MHz Min at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ． |

Note 1：Conditions for testing，not shown in the Table，are chosen to guarantee operation under＂worst case＂conditions．
Note 2：The specified limits represent the＂worst case＂value for the parameter．Since these＂worst case＂values normally occur at the temperature and supply voltage extremes，additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges．
Note 3： Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．
Note 4：The $M_{1}$ and $M_{2}$ threshold specifications are normally referenced to the $V_{C C}$ potential，as shown in the ECL operation tables．Using $V E E$（GND）as the reference，as in normal TTL practice，effectively makes the threshold vary directly with $\mathrm{V}_{\mathrm{Cc}}$ ．Threshold is typically 1.3 V below $\mathrm{V}_{\mathrm{CC}}\left(e . g\right.$ ．，+3.7 V at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ ）． A signal swing about threshold of $\pm 0.4 \mathrm{~V}$ is adequate，which gives the state $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ values．The internal $2 \mathrm{k} \Omega$ resistors are intended to pull TTL outputs up to the required $\mathrm{V}_{\mathrm{IH}}$ range，as discussed in the Functional Description and shown in Figure 5.

Note 5：TTL Output Signal swing is guaranteed at $f_{\text {MAX }}$ over temperature range．
Note 6：$M_{1}$ or $M_{2}$ can be tied to $V_{C C}$ for fixed divide－by－ten operation．


TL/F/9892-3

TL/F/9892-4

## Conditions:

$V_{C C}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ (scope input impedance)
$\mathrm{C}_{\mathrm{L}}=$ Jig and stray capacitance $<5.0 \mathrm{pF}$
$I_{1}=L_{2}=$ equal $50 \Omega$ impedance lines
$\mathrm{C}=0.1 \mathrm{pF}$
Note 7: Use high impedance to test QTTL.
Connect pin 13 to $\mathrm{V}_{\mathrm{EE}}$.
Note 8: For High frequency test use AC coupled input as in Figure 3.
Adjust input amplitude to 350 mV peak-to-peak.
FIGURE 1. AC Test Circuit

## Functional Description

The 11C90 contains four ECL Flip-Flops, an ECL to TTL converter and a Schottky TTL output buffer with an active pull-up. Three of the Flip-Flops operate as a synchronous shift counter driving the fourth Flip-Flop operating as an asynchronous toggle. The internal feedback logic is such that the TTL output and the Q ECL output are HIGH for six clock periods and LOW for five clock periods. The Mode Control (M) inputs can modify the feedback to make the output HIGH for five clock periods and LOW for five clock periods, as indicated in the Count Sequence Table.
The feedback logic is such that the instant the output goes HIGH, the circuit is already committed as to whether the output period will be 10 or 11 clock periods long. This means that subsequent changes in an $M$ input signal, including decoding spikes, will have no effect on the current output period. The only timing restriction for an $M$ input signal is that it be in the desired state at least a setup time before the clock that follows the HHLL state shown in the table. The allowable propagation delay through external logic to an $M$ input is maximized by designing it to use the positive transition of the 11C90 output as its active edge. This gives an allowable delay of ten clock periods, minus the CP to $Q$ delay of the 11 C 90 and the $M$ to $C P$ setup time. If the external logic uses the negative output transition as its active edge, the allowable delay is reduced to five clock periods minus the previously mentioned delay and setup time.
Capacitively coupled triggering is simplified by the $400 \Omega$ resistor which connects pin 15 to the internal $\mathrm{V}_{\mathrm{BB}}$ reference. By connecting this to the CP input, as shown in Figure 3, the clock is automatically centered about the input threshold. A clock duty cycle of $50 \%$ provides the fastest operation, since the Flip-Flops are Master-Slave types with offset clock thresholds between master and slave. This feature ensures that the circuit will operate with clock waveforms having very slow rise and fall times, and thus, there is no maximum frequency restriction. Recommended minimum and maximum clock amplitude as a function of a frequency and temperature are shown in the graph labeled Figure 2. When the CP or any other input is driven from another ECL circuit, normal ECL termination methods are recommended. One method is indicated in Figure 4. Other ECL termination methods are discussed in the F100K ECL Design Guide (Section 5 of Databook).


TL/F/9892-5
FIGURE 2. AC Coupled Triggering Characteristics


FIGURE 3. Capacitively Coupled ClockIng


TL/F/9892-11

| $Z_{0} \Omega$ | 50 | 75 | 100 |
| :---: | :---: | :---: | :---: |
| $R_{1} \Omega$ | 80.6 | 121 | 162 |
| $R_{2} \Omega$ | 130 | 196 | 261 |

$V_{E E}=-5.2 \mathrm{~V}, V_{C C}=0 \mathrm{~V}, V_{T T}=-2.0 \mathrm{~V}$
FIGURE 4. Clocking by ECL Source via Terminated Line
When an $M$ input is to be driven from a TTL output operating from the same $\mathrm{V}_{\mathrm{CC}}$ and ground ( $\mathrm{V}_{\mathrm{EE}}$ ), the internal $2 \mathrm{k} \Omega$ resistor can be used to pull the TTL output up as shown in Figure 5. Some types of TTL outputs will only pull up to within two diode drops of $V_{C C}$, which is not high enough for 11 C 90 inputs. The resistor will pull the signal up through the threshold region, although this final rise may be somewhat slow, depending on wiring capacitance. A resistor network that gives faster rise and also lower impedance is shown in Figure 6.


TL/F/9892-12
FIGURE 5. Using Internal Pull-Up with TTL Source


TL/F/9892-13
FIGURE 6. Faster Low Impedance TTL to ECL Interface

Functional Description (Continued)
The ECL outputs have no pull-down resistors and can drive series or parallel terminated transmission lines. For short interconnections that do not require impedance matching, a $270 \Omega$ to $510 \Omega$ resistor to $\mathrm{V}_{\mathrm{EE}}$ can be used to establish the $\mathrm{V}_{\mathrm{OL}}$ level. Both $\mathrm{V}_{\mathrm{CC}}$ pins must always be used and should
be connected together as close to the package as possible. Pin 12 must always be connected to the $\mathrm{V}_{\mathrm{EE}}$ side of the supply, while pin 13 is required only if the TTL output is used. Low impedance $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ distribution and RF bypass capacitors are recommended to prevent crosstalk.

## Logic Diagram 11C90



TL/F/9892-6
Note: This diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than shown.

Count Sequence Table 11C90

|  | $\mathrm{Q}_{1}$ | $\mathbf{Q}_{2}$ | $Q_{3}$ | $\mathbf{Q}_{4}$ (QTTL) |
| :---: | :---: | :---: | :---: | :---: |
|  | H | H | H | $\mathrm{H}<$ |
| $\div 10$ | L | H | H | H |
|  | L | L | H | H |
|  | L | L | L | H |
|  | H | L | L | H |
|  | H | H | L | H |
|  | L | H | H | L |
|  | L | L | H | L |
|  | L | L | L | L |
|  | H | L | L | L |
|  |  | H | L | L |

TL/F/9892-7
Note: A HIGH on MS forces all Qs HIGH.

## Logic Diagram 11C91



Count Sequence Table 11C91

|  | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{3}$ (QTTL) |
| :---: | :---: | :---: | :---: |
| $\div 5$ | H | H | $H \longleftarrow \div 6$ |
|  | L | H | H |
|  | L | L | H |
|  | L | $L$ | L |
|  | H | L | L |
|  | H | H | L |

Note: A HIGH on MS forces all Qs HIGH.

Operating Mode Table 11C91

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- |
| Output <br> Response |  |  |  |  |
|  | $\overline{\text { CE }}$ | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ |  |
| H | X | X | X | Set HIGH |
| L | H | X | X | Hold |
| L | L | L | L | $\div 6$ |
| L | L | X | H | $\div 5$ |
| L | L | H | X | $\div 5$ |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
X = Don't Care

Section 5 ECL BiCMOS SRAMs

## Section 5 Contents

NM5100/NM100500 ECL I/O 256k BiCMOS SRAM 262,144 x 1 Bit ..... 5-3
NM5104/NM100504 256k BiCMOS SRAM 64k x 4 Bit ..... 5-4
NM100494 64k BiCMOS SRAM 16k x 4 Bit ..... 5-5
NM10494 64k BiCMOS SRAM 16k x 4 Bit ..... 5-6
NM100492/NM4492 2k x 9 Advanced Self-Timed SRAM (Preliminary) ..... 5-7

National
Semiconductor
NM5100/NM100500 ECL I/O 256k BiCMOS SRAM
262,144 x 1 Bit

## General Description

The NM5100 and NM100500 are a 262,144-bit fully static, asynchronous, random access memories organized as 262,144 words by 1 bit. The devices are based on National's advanced one micron BiCMOS III process. This process utilizes advanced lithography and processing techniques with double polysilicon and double metal bringing high density CMOS to performance driven ECL designs. National's combination of high performance technology and speed optimized circuit designs results in a very high speed memory device.

The NM5100 operates with a supply voltage of -5.2 V $\pm 5 \%$, yet the input and output voltage levels are temperature compensated 100k ECL compatible. The NM100500 operates with a -4.2 V to -4.8 V supply voltage.
Reading the memory is accomplished by pulling the chip select ( $\overline{\mathrm{S}}$ ) pin LOW while the write enable ( $\overline{\mathrm{W}}$ ) pin remains HIGH allowing the memory contents to be displayed on the output pin (Q). The output pin will remain inactive (LOW) if either the chip select $(\overline{\mathrm{S}})$ pin is HIGH or the write enable $(\overline{\mathrm{W}})$ pin is LOW.
Writing to the device is accomplished by having the chip select ( $\overline{\mathrm{S}}$ ) and the write enable ( $\overline{\mathrm{W}}$ ) pins LOW. Data on the
input pin will then be written into the memory address specified on the address pins (A0-A17).

## Features

- $15 \mathrm{~ns} / 18 \mathrm{~ns}$ speed grades over the commercial temperature range
- Balanced read and write cycle times
- Write cycle timing allows $33 \%$ of cycle time for system skews
■ Temperature compensated F100k ECL I/O
- Power supply $-5.2 \mathrm{~V} \pm 5 \%$ (NM5100)
- Power supply -4.2 V to -4.8 V (NM100500)

■ Low power dissipation <1.1W

- Soft error rate less than 100 FIT
- Over 2000V ESD protection
m One micron BiCMOS III process technology
- Over 200 mA latch-up immunity
- Low inductance, high density 24-pin flatpack


## Connection Diagrams

## 400 Mil Ceramic DIP



Top View
$365 \times 535$ Ceramic Flatpack
(30 Mil Lead Pitch)


Pin Names

| $\mathrm{A} 0-\mathrm{A} 17$ | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{S}}$ | Chip Select |
| $\overline{\mathrm{W}}$ | Write Enable |
| Q | Data Out |
| D | Data In |
| $\mathrm{V}_{\mathrm{CC}}$ | Ground |
| $\mathrm{V}_{\mathrm{EE}}$ | Power |

## NM100504/NM5104 256k BiCMOS SRAM 64k x 4

## General Description

The NM5104 and NM100504 are 262,144-bit fully static, asynchronous, random access memories organized as 65,536 words by 4 bits. The device is based on National's advanced one micron BiCMOS III process. This process utilizes advanced lithography and processing techniques with double polysilicon and double metal bringing high density CMOS to performance driven ECL designs. National's combination of high performance technology and speed optimized circuit designs results in a very high speed memory device.
The NM5104 operates with a supply voltage of -5.2 V $\pm 5 \%$, yet the input and output voltage levels are temperature compensated 100K ECL compatible. The NM100504 operates with a -4.2 V to -4.8 V supply voltage.
Reading the memory is accomplished by pulling the chip select $(\overline{\mathrm{S}})$ pin LOW while the write enable $(\bar{W})$ pin remains HIGH allowing the memory contents to be displayed on the output pins (Q0-Q3). The output pins will remain inactive (LOW) if either the chip select ( $\overline{\mathrm{S}}$ ) pin is HIGH or the write enable $(\bar{W})$ pin is LOW.
Writing to the device is accomplished by having the chip select $(\bar{S})$ and the write enable $(\bar{W})$ pins LOW. Data on the
input pins will then be written into the memory address specified on the address pins (A0-A15).

## Features

■ Speed Grades: $12 \mathrm{~ns} / 15 \mathrm{~ns} / 18 \mathrm{~ns}$

- Speed Grades: $15 \mathrm{~ns} / 18 \mathrm{~ns}$ (NM100504)
- Balanced read and write cycle times
- Write cycle timing allows $33 \%$ of cycle time for system skews
- Temperature compensated F100K ECL I/O
- Power supply -5.2 V to $\pm 5 \%$ (NM5104)
- Power supply -4.2 V to -4.8 V . (NM100504)
- Low power dissipation <1.4W @ 50 MHz
- Soft error rate less than 100 FIT
- Over 2000 V ESD protection
- One micron BiCMOS III process technology
- Over 200 mA latch-up immunity

■ Low inductance, high density 28 -pin flatpak and 28 -pin ceramic DIP

## Connection Diagrams



Top View

28-Pin Ceramic Flatpak (30 Mil Lead Pltch)


Top View
Pin Names

| A0-A15 | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{S}}$ | Chip Select |
| $\overline{\mathrm{W}}$ | Write Enable |
| $\mathrm{Q} 0-\mathrm{Q3}$ | Data Out |
| $\mathrm{D} 0-\mathrm{D} 3$ | Data In |
| $\mathrm{V}_{\mathrm{CC}}$ | Ground |
| $\mathrm{V}_{\mathrm{EE}}$ | Power |

## NM100494 64k BiCMOS SRAM 16k x 4 Bit

## General Description

The NM100494 is a 65,536 -bit fully static, asynchronous, random access memory organized as 16,384 words by 4 bits. The device is based on National's advanced one micron BiCMOS III process. This process utilizes advanced lithography and processing techniques with double polysilicon and double metal bringing high density CMOS to performance driven ECL designs. National's combination of high performance technology and speed optimized circuit designs results in a very high speed memory device.
The NM100494 operates with a -4.2 V to -4.8 V supply voltage. Reading the memory is accomplished by pulling the chip select ( $\overline{\mathbf{S}}$ ) pin LOW while the write enable ( $\overline{\mathrm{W}}$ ) pin remains HIGH allowing the memory contents to be displayed on the output pins (QO-Q3). The output pins will remain inactive (LOW) if either the chip select ( $\overline{\mathrm{S}}$ ) pin is HIGH or the write enable ( $\bar{W}$ ) pin is LOW.
Writing to the device is accomplished by having the chip select ( $\overline{\mathrm{S}}$ ) and the write enable $(\overline{\mathrm{W}}$ ) pins LOW. Data on the input pins will then be written into the memory address specified on the address pins (A0-A13).

## Features

- $15 \mathrm{~ns} / 18 \mathrm{~ns}$ speed grades over the commercial temperature range
- Balanced read and write cycle times
- Write cycle timing allows $33 \%$ of cycle time for system skews
■ Temperature compensated F100K ECL I/O
■ Power supply -4.2 V to -4.8 V
- Low power dissipation <1.3W @ 50 MHz
- Soft error rate less than 100 FIT
- Over 2000V ESD protection
- One micron BiCMOS III process technology
- Over 200 mA latch-up immunity
- Low inductance, high density 28 -pin flatpak and 28 -pin ceramic DIP


## Connection Diagrams



28-Pin Ceramic Flatpak (30 Mil Lead Pitch)

| D0 -1 | 28-5 |
| :---: | :---: |
| $\mathrm{DI}-2$ | $27-\bar{W}$ |
| D2-3 | 26-NC |
| D3-4 | 25-A13 |
| Q0-5 | 24-A12 |
| Q1-6 | $23-\mathrm{Al1}$ |
| $\mathrm{VCC}-7$ | 22 -A10 |
| Q2-8 | $21-\mathrm{V}_{\mathrm{EE}}$ |
| Q3-9 | 20-A9 |
| NC- 10 | 19-48 |
| AO- 11 | $18-47$ |
| A1-12 | 17-A6 |
| A2-13 | 16-A5 |
| $A_{3}-14$ | $15-44$ |

TL/D/10391-3
Top Vlew

| Pin Names |  |
| :--- | :--- |
| AO-A13 | Address Inputs |
| $\bar{S}$ | Chip Select |
| $\bar{W}$ | Write Enable |
| Q0-Q3 | Data Out |
| D0-D3 | Data In |
| $V_{C C}$ | Ground |
| $V_{\mathrm{EE}}$ | Power |

## NM10494 64k BiCMOS SRAM 16k x 4 Bit

## General Description

The NM10494 is a 65,536 -bit fully static, asynchronous, random access memory organized as 16,384 words by 4 bits. The device is based on National's advanced one micron BiCMOS III process. This process utilizes advanced lithography and processing techniques with double polysilicon and double metal bringing high density CMOS to performance driven ECL designs. National's combination of high performance technology and speed optimized circuit designs results in a very high speed memory device.
The NM10494 operates with a supply voltage of -5.2 V $\pm 5 \%$, and the input and output voltage levels are 10 k ECL I/O compatible.
Reading the memory is accomplished by pulling the chip select ( $\overline{\mathbf{S}}$ ) pin LOW while the write enable ( $\bar{W}$ ) pin remains HIGH allowing the memory contents to be displayed on the output pins (Q0-Q3). The output pins will remain inactive (LOW) if either the chip select ( $\overline{\mathrm{S}}$ ) pin is HIGH or the write enable ( $\bar{W}$ ) pin is LOW.
Writing to the device is accomplished by having the chip select ( $\overline{\mathrm{S}}$ ) and the write enable $(\overline{\mathrm{W}}$ ) pins LOW. Data on
the input pins will then be written into the memory address specified on the address pins (A0-A13).

## Features

- $10 \mathrm{~ns} / 12 \mathrm{~ns} / 15 \mathrm{~ns}$ speed grades over the commercial temperature range
- Balanced read and write cycle times
- Write cycle timing allows $33 \%$ of cycle time for system skews
- 10k ECL I/O
- Power supply $-5.2 \mathrm{~V} \pm 5 \%$
- Low power dissipation <1.3W @ 50 MHz
- Soft error rate less than 100 FIT
- Over 2000V ESD protection

■ One micron BiCMOS III process technology

- Over 200 mA latch-up immunity
- Low inductance, high density 28 -pin flatpak and 28 -pin ceramic DIP


## Connection Diagrams




## NM100492/NM4492 2k x 9 Advanced Self-Timed SRAM

## Features

- Extremely fast access time - 5 ns Max (NM4492) - 7 ns Max (NM100492)

■ Power supply: $-5.2 \mathrm{~V} \pm 5 \%$ (NM4492)
$\square$ Power supply: -4.2 V to -4.8 V (NM100492)
■ Completely self-timed read and write cycle

- On-chip input and output registers
- Modest power consumption-2W at $7 \mathrm{~ns},<1.5 \mathrm{~W}$ at 100 MHz
■ On-chip parity checking-with odd address parity mode pin
- Clock enable input simplifies pipeline control

■ Scan diagnostics supported by on-chip scan registers

- High speed ceramic flatpak
- High speed TapePakTM package under development
- I/O compatible with F100k standard


## General Description

The NM100492/NM4492 is an extremely high performance $2 \mathrm{k} \times 9$ SRAM. It is the first of a family of similar 9 -bit wide SRAMs designed specifically for very high speed ECL computer applications such as register files, writable control stores, cache RAMs, cache tag RAMs, and address translation lookaside buffers. The NM100492/NM4492 offers several features which are very desirable in such applications.

## ADVANCED SELF-TIMED ARCHITECTURE

This advanced self-timed RAM simplifies the system design of extremely fast memory arrays by minimizing the impact of timing skews on the cycle time of the memory array. All input signals (address, data and control signals) are registered on-chip by a transition of the clock. By registering all inputs with minimal setup and hold times (setup + hold $=$ 2 ns ) the troublesome skews inherent with traditional static RAM timing requirements are significantly reduced. With skew problems minimized, very short cycle times become practical. Output registers (self-timed on-chip) hold output data valid for an extended portion of the cycle easing system read timing requirements.

## HIDDEN WRITE CYCLE MODE

The hidden write cycle timing allows relaxed data bus timing. This will often ease system setup and hold requirements for the data output bus. Hidden write timing is essentially a technique for interleaving reads and writes. This advanced self-timed SRAM supports hidden write timing more conveniently in the system than first generation self-timed SRAM's, due to the unique control signal functions defined for write enable ( $\bar{W}$ ) and chip select ( $\overline{\mathrm{S}}$ ). By keeping the output register active (with the last read data) during a write cycle, this device greatly simplifies the timing of interleaved memory architectures. This mode may be very useful in cache and register file applications, where multiple sources and/or destinations may be interleaved within each machine cycle.

## PARITY CHECKING

The device also offers several convenient features which may be useful in specific applications. One such feature is the on-chip parity checking function. For systems where parity checking is desirable this device will check for odd parity on the 9 -bit data input field, and will check for either even or odd parity (depending on the polarity of the parity mode pin -PM) on the 11-bit address field combined with the address parity input. Odd parity is met when the number of highs in the field is odd. Address parity checking can be conveniently disabled if desired, allowing data field only parity checking. If either the data or address demonstrates a parity error, then the parity error output flag is set. The polarity of the error output flag facilitates emitter dot ORing several error outputs for minimal delay. The parity checking feature is benign in the sense that if parity checking is not desired, the output can simply be ignored without detrimental effects to normal operation.

## SERIAL SCAN DIAGNOSTICS REGISTERS

Another convenient feature provided on-chip is the scan diagnostics register. For system designs where scan diagnostics are included, this device allows observing the state of the input registers (scan out) and forcing the state of the input and output registers (scan in). For writable control store applications the control store can be loaded via the serial channel (scan in), simplifying circuit board layout by eliminating the wide parallel data input bus structure. For systems where scan diagnostics are not desired, the scan enable input can simply be left open allowing the on-chip pulldown device to disable scan functions and provide normal SRAM functionality.

## PIPELINE CONTROL

Yet a third convenient feature is the clock enable input. This control simplifies starting and stopping pipeline operations in pipelined systems. It reduces, and may eliminate, the need to gate the clock signal external to the RAM. This feature is also benign since the on-chip pulldown device will ensure normal operation if the clock enable is not used.

## MODEST POWER CONSUMPTION

Modest power consumption is achieved without compromising device speed through very unique and innovative circuit design techniques (patents applied for). Power consumption is predominately dependent on clock frequency ( $1 /$ cycle time) allowing a reduction in power at lower operating frequency.

## F100K COMPATIBLE I/O

The device is I/O compatible with standard temperature compensated F100K ECL logic, allowing trouble free interfacing in high performance ECL systems.

Section 6
ECL PALs and ASICs

## Section 6 Contents

PAL10/10016P8 ECL Programmable Array Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
PAL10/10016P8-3 3 ns ECL ASPECT Programmable Array Logic (DIP) ....................... . . 6-4
PAL10/10016PE8-3 3 ns ECL ASPECT Programmable Array Logic (PLCC) ................... . 6-5
PAL10/10016P4A 4 ns ECL Programmable Array Logic .......................................... . . . 6 . 6
PAL10/10016P4-2 2 ns ECL ASPECT Programmable Array Logic (DIP) ....................... . 6-7
PAL10/10016C4-2 2 ns ECL ASPECT Programmable Array Logic (PLCC) ..................... 6-8
PAL10/10016RD8 ECL Registered Programmable Array Logic .................................. . . . . . 6
PAL10/10016RM4A ECL Registered Programmable Array Logic ............................... 6-10
FGA Series ASPECT ECL Gate Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11

## PAL10/10016P8

## ECL Programmable Array Logic

## General Description

The PAL1016P8/10016P8 is the first member of an ECL programmable logic device family possessing common electrical characteristics, utilizing an easily accommodated programming procedure, and produced with National Semiconductor's advanced oxide-isolated process. This family includes combinatorial, and registered output devices.
These devices are fabricated using National's proven Ti-W (Titanium-Tungsten) fuse technology to allow fast, efficient, and reliable programming.
This family allows the designer to quickly implement the defined logic function by removing the fuses required to properly configure the internal gates and/or registers. Product terms with all fuses removed assume a logical high state. All devices in this series are provided with an output polarity fuse that, if removed, will permit any output to independently provide a logic low when the equation is satisfied. When these fuses are intact the outputs provide a logic true (most positive voltage level) in response to the input conditions defined by the applicable equation. All input and I/O pins have on-chip $50 \mathrm{k} \Omega$ pull-down resistors.

Fuse symbols have been omitted from the logic diagrams to allow the designer use of the diagrams to create fuse maps representing the programmed device.
All devices in this family can be programmed using conventional programmers. After the device has been programmed and verified, an additional fuse may be removed to inhibit further verification or programming. This "security" feature can provide a proprietary circuit which cannot easily be duplicated.

## Features

- tpd $=6 \mathrm{~ns}$ max
- Eight combinatorial outputs with programmable polarity
- Programmable replacement for conventional ECL logic
- Both 10 KH and 100 K I/O compatible versions
- Simplifies prototyping and board layout
- 24-pin thin DIP packages.
- Programmed on conventional TTL PLD programmers
- Security fuse to prevent direct copying
- Reliable titanium-tungsten fuses


## Ordering Information



# PAL10/10016P8-3 (DIP Only) 3 ns ECL ASPECT ${ }^{\text {TM }}$ Programmable Array Logic 

## General Description

The PAL10/10016P8-3 is a member of the National Semiconductor 28 -pin high speed ECL PAL® family. This device utilizes National Semiconductor's ASPECT (Advanced Single Poly Emitter Coupled Technology) process with a newly developed tungsten fuse technology to provide the highestspeed user-programmable replacements for conventional ECL SSI-MSI logic with significant chip-count reduction. The JEDEC fuse-map format and programming algorithm of this device is compatible with those of all prior ECL PAL products from National.
Programmable logic devices provide convenient solutions for a wide variety of applications-specific functions, including random logic, custom decoders, state machines, etc. By programming fuse links to configure AND/OR gate connections, the system designer can implement custom logic as convenient sum-of-products Boolean functions. System prototyping and design iterations can be performed quickly using these off-the shelf products.
The PAL10/10016P8-3 logic array has a total of 16 complementary input pairs, 64 product terms and 8 programmable polarity output functions. Each output function is the ORsum of 8 product terms. Each product term is satisfied when all array inputs which are connected to it (via intact fuses) are in the correct state as defined by the equation for that
product term. Each output function is provided with output polarity fuses. These fuses permit the designer to configure each output independently to produce either a logic high (by leaving the fuse intact) or a logic low (by programming the fuse) when the equation defining that output is satisfied.
Programming equipment and software make PAL design development quick and easy. Programming is accomplished using TTL voltage levels and is therefore supported by industry standard TTL PLD programmers. After programming and verifying the logic array, an additional security fuse may be programmed to prevent direct copying of proprietary logic designs.

## Features

- High speed: $t_{P D}=3 \mathrm{~ns}$ max
- Programmable replacement for ECL logic
- Both 100 K and 10 KH I/O compatible versions
- Eight output functions with programmable polarity
- Improved programmability tungsten fuses
- Security fuse to prevent direct copying
- Programmed on conventional TTL PLD programmers
- Fully supported by PLANTM software
- Commercial and Military ranges


## Ordering Information



Block Diagram
PAL10/10016P8-3


TL/L/10714-1

# PAL10／10016PE8－3（PLCC Only） 3 ns ECL ASPECT ${ }^{\text {TM }}$ Programmable Array Logic 

## General Description

The PAL10／10016PE8－3 is a member of the National Semi－ conductor 28 －pin high speed ECL PAL ${ }^{8}$ family．This device utilizes National Semiconductor＇s ASPECT（Advanced Sin－ gle Poly Emitter Coupled Technology）process with a newly developed tungsten fuse technology to provide the highest－ speed user－programmable replacements for conventional ECL SSI－MSI logic with significant chip－count reduction．The JEDEC fuse－map format and programming algorithm of this device is compatible with those of all prior ECL PAL prod－ ucts from National．
Programmable logic devices provide convenient solutions for a wide variety of applications－specific functions，includ－ ing random logic，custom decoders，state machines，etc．By programming fuse links to configure AND／OR gate connec－ tions，the system designer can implement custom logic as convenient sum－of－products Boolean functions．System pro－ totyping and design iterations can be performed quickly us－ ing these off－the shelf products．
The PAL10／10016PE8－3 logic array has a total of 16 com－ plementary input pairs， 64 product terms and 8 programma－ ble polarity output functions．Each output function is the OR－ sum of 8 product terms．Each product term is satisifed when all array inputs which are connected to it（via intact fuses） are in the correct state as defined by the equation for that
product term．Each output function is provided with output polarity fuses．These fuses permit the designer to configure each output independently to produce either a logic high（by leaving the fuse intact）or a logic low（by programming the fuse）when the equation defining that output is satisfied．
Programming equipment and software make PAL design de－ velopment quick and easy．Programming is accomplished using TTL voltage levels and is therefore supported by in－ dustry standard conventional TTL PLD programmers．After programming and verifying the logic array，an additional se－ curity fuse may be programmed to prevent direct copying of proprietary logic designs．

## Features

■ High speed：$t_{\text {PD }} 3 \mathrm{~ns}$ max
m Full 28 －pin function（all pins used）
－Programmable replacement for ECL logics
－Both 100 K and 10 KH I／O compatible versions
－Eight output functions with programmable polarity
－Security fuse to prevent direct copying
－Fully supported by PLAN and other industrial software
■ High density－high performance 28－pin PLCC package

Block Diagram


TL／L／10712－1

## Ordering Information



## PAL10/10016P4A <br> 4 ns ECL Programmable Array Logic

## General Description

The PAL1016P4A and PAL10016P4A are members of the National Semiconductor ECL PAL® family. The PAL10/ 10016P4A is a functional subset of the PAL10/10016P8 ( 6 ns tpd ) and is compatible in pinout, JEDEC map format, and programming algorithm. The ECL PAL family utilizes National Semiconductor's advanced oxide-isolated process and proven Titanium-Tungsten (Ti-W) fuse technology to provide user-programmable logic to replace conventional ECL SSI/MSI gates and flip-flops. Typical chip count reduction gained by using PAL devices is greater than 4:1.
This family allows the systems engineer to customize his chip by opening fuse links to configure AND and OR gates to perform his desired logic function. Complex interconnections that previously required time-consuming layout are thus transferred from PC board to silicon where they can easily be modified during prototype checkout or production. The PAL transfer function is the familiar sum-of-products implemented with a single array of fusible links. The PAL device incorporates a programmable AND array driving a fixed OR array. The AND term logic matrix incorporates 16 complementary inputs and 32 product terms. The 32 product terms are grouped into four OR functions with eight product terms each. All devices in this series are provided with output polarity fuses. These fuses permit the designer to configure each output independently to provide either a logic true (by leaving the fuse intact) or a logic false (by programming the fuse) when the equation defining that output is satisfied.
Product terms with all fuses programmed assume a logical high state, while product terms connected to both the true
and complement of any input assume a logical low state. All product terms in an unprogrammed part are logically low.
Fuse symbols have been omitted from the logic diagrams to allow the designer use of the diagrams for logic editing.
These ECL PAL devices may be programmed on many PLD programmers. Programming is accomplished using TTL voltage levels. Once programmed and verified, an additional fuse may be programmed to disable further verification. This feature gives the user a proprietary circuit which is difficult to copy.

## Features

- High speed: Combinatorial outputs tpd $=4 \mathrm{~ns}$ max
■ Both 10 KH and 100 K I/O compatible versions
- Four output functions; sixteen dedicated inputs
- Individually programmable polarity for all logic outputs
- Reliable titanium-tungsten fuses
- Security fuse to prevent direct copying
- Programmed on many PLD programmers
- Fully Supported by PLANTM Software
- Packaging:

24-pin thin DIP ( $0.300^{\prime \prime}$ )
24-pin QUAD CERPAK

## Applications

- Programmable replacement for ECL logic
- Address or instruction decoding


## Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:


National Semiconductor

## PAL10/10016P4-2 (DIP Only) 2 ns ECL ASPECT ${ }^{\text {TM }}$ Programmable Array Logic

## General Description

The PAL10/10016P4-2 is a member of the National Semiconductor 28 -pin high speed ECL PAL© family. This device utilizes National Semiconductor's ASPECT (Advanced Single Poly Emitter Coupled Technology) process with a newly developed tungsten fuse technology to provide the highestspeed user-programmable replacements for conventional ECL SSI-MSI logic with significant chip-count reduction. The JEDEC fuse-map format and programming algorithm of this device is compatible with those of all prior ECL PAL products from National.
Programmable logic devices provide convenient solutions for a wide variety of application-specific functions, including random logic, custom decoders, state machines, etc. By programming fuse links to configure AND/OR gate connections, the system designer can implement custom logic as convenient sum-of-products Boolean functions. System prototyping and design iterations can be performed quickly using these off-the-shelf products.
The PAL10/10016P4-2 logic array has a total of 16 complementary input pairs, 32 product terms and 4 programmable polarity output functions. Each output function is the ORsum of 8 product terms. Each product term is satisfied when all array inputs which are connected to it (via intact fuses) are in the correct state as defined by the equation for that
product term. Each output function is provided with output polarity fuses. These fuses permit the designer to configure each output independently to produce either a logic high (by leaving the fuse intact) or a logic low (by programming the fuse) when the equation defining that output is satisfied.
Programming equipment and software make PAL design development quick and easy. Programming is accomplished using TTL voltage levels and is therefore supported by industry standard TTL PLD programmers. After programming and verifying the logic array, an additional security fuse may be programmed to prevent direct copying of proprietary logic designs.

## Features

- Highest speed: $t_{P D}=2.5$ ns max
- Programmable replacement for ECL logic
- Both 100 K and 10 KH I/O compatible versions
- Four output functions with programmable polarity
- Improved programmability tungsten fuses
- Security fuse to prevent direct copying
- Programmed on conventional TTL PLD programmers
m Fully Supported by PLANTM Software
- Commercial and Military ranges


## Block Diagram PAL10/10016P4-2



TL/L/10711-1
$V_{E E}=12, V_{C C}=24, V_{C C O}(5,7)=6$
$V_{C C O}(18,20)=19$
Pinout applies to 24 -pin DIP

National

# PAL10/10016C4-2 (PLCC Only) 2 ns ECL ASPECT ${ }^{\text {TM }}$ Programmable Array Logic 

## General Description

The PAL10/10016C4-2 is a member of the National Semiconductor 28 -pin high speed ECL PAL ${ }^{\text {® }}$ family. This device utilizes National Semiconductor's ASPECT (Advanced Single Poly ECL Technology) Process with a newly developed tungsten fuse technology to provide the highest-speed userprogrammable replacements for conventional ECL SSI-MSI logic with significant chip-count reduction. The JEDEC fusemap format and programming algorithm of this device is compatible with those of all prior ECL PAL products from National.
Programmable logic devices provide convenient solutions for a wide variety of application-specific functions, including random logic, custom decoders, state machines, etc. By programming fuse links to configure AND/OR gate connections, the system designer can implement custom logic as convenient sum-of-products Boolean functions. System prototyping and design iterations can be performed quickly using these off-the-shelf products.
The PAL10/10016C4-2 logic array has a total of 16 complementary input pairs, 32 product terms and 4 complementary output functions. Each output function is the OR-sum of 8 product terms. Each product term is satisfied when all array inputs which are connected to it (via intact fuses) are in the correct state. Complementary outputs eliminate the need
for external inverters and allow for more convenient output OR-tying. They are also suitable for differential sensing for increased noise immunity. All input pins have on-chip $50 \mathrm{k} \Omega$ pull-down resistors.
Programming equipment and software make PAL design development quick and easy. Programming is accomplished using TTL voltage levels and is therefore supported by several conventional TTL PLD programming units. After programming and verifying the logic array, an additional security fuse may be programmed to prevent direct copying of proprietary logic designs.

## Features

- Highest speed: $\mathrm{t}_{\mathrm{PD}}=2 \mathrm{~ns}$ max
- Full 28 -pin function
- Programmable replacement for ECL. logic
- Both 100 K and 10 KH I/O compatible versions
- Four output functions with complementary outputs
- Improved programmability tungsten fuses
- Security fuse to prevent direct copying
- Programmed on conventional TTL PLD programmers
- Fully Supported by PLANTM Software
- High density-High performance 28-pin PLCC package


## Ordering Information



Block Diagram

PAL10/10016C4-2

$V_{E E}=14, V_{C C}=28, V_{C C O}(5,6,8,9)=7$
$V_{C C O}(21,22,24,25)=23$
Pinout applies to 28 -pin PLCC

National Semiconductor

## PAL10/10016RD8 ECL Registered Programmable Array Logic

## General Description

The registered ECL PAL10/10016RD8 is offered in 10KH or 100 K compatible versions. A maximum propagation delay of 6 ns (input to output) characterizes the performance of this ECL PAL® series. The ECL PAL family utilizes National Semiconductor's advanced oxide-isolated process and proven Titanium Tungsten (Ti-W) fuse technology to provide user-programmable logic to replace conventional ECL SSI/ MSI gates and flip-flops. Typical chip count reduction gained by using PAL devices is greater than 4:1.
This family allows the system engineer to customize the chip by opening fuse links to configure AND and OR gates to perform the desired logic function. Complex interconnections that previously required time-consuming layout are thus transferred from PC board to silicon where they can easily be modified during prototype checkout or production. The PAL transfer function is the familiar sum-of-products implemented with a single array of fusible links. The PAL device incorporates a programmable AND array driving a fixed OR array. The AND term logic matrix incorporates 16 complementary inputs and 64 product terms. The 64 product terms are grouped into eight OR functions with eight product terms each. All devices in this family are provided with output polarity fuses. These fuses permit the designer to configure each output independently to produce either a logic high (by leaving the fuse intact) or a logic low (by programming the fuse) when the equation defining that output is satisfied. In addition, the ECL PAL family offers these options:

- Output registers
- Dual (split) clocks

Product terms with all fuses programmed assume a logical high state, while product terms connected to both the true and complement of any input assume a logical low state. All product terms in an unprogrammed part are logically low. All input and I/O pins have on-chip $50 \mathrm{k} \Omega$ pull-down resistors. Registers consist of D-type flip-flops which are loaded in response to the low-to-high transition of the clock input(s).

Fuse symbols have been omitted from the logic diagrams to allow the designer use of the diagrams for logic editing.
These ECL PAL devices may be programmed on several TTL PLD programmers. Programming is accomplished with TTL voltage levels. Once the PAL is programmed and verified, an additional security fuse may be programmed to defeat verification. This feature gives the user a proprietary circuit which is difficult to copy.

## Features

- High speed:

Combinatorial outputs
tpd $=6$ ns max
Registered outputs
$\mathrm{t}_{\mathrm{su}}=5 \mathrm{~ns} \mathrm{~min}$
$\mathrm{t}_{\mathrm{clk}}=3.5 \mathrm{~ns}$ max
$\mathrm{f}_{\text {max }}=117 \mathrm{MHz}$ max

- Both 10 KH and 100 K I/O compatible versions
- Eight output functions with feedback; eight dedicated inputs
■ Eight registered outputs
- Individually programmable polarity on all logic outputs

E Output enable gate on all registered outputs

- Reliable Titanium Tungsten fuses
- Security fuse to prevent direct copying

■ Programmed on conventional TTL PLD programmers

- Fully Supported by PLANTM Software
- Packaging:

24-pin thin DIP ( $0.300^{\prime \prime}$ )
24-pin QUAD CERPAK

## Applications

■ Programmable replacement for ECL logic

- Programmable state machine
- Address or instruction decoding

渚National Semiconductor

## PAL10/10016RM4A ECL Registered Programmable Array Logic

## General Description

The PAL10/10016RM4A is a member of the National Semiconductor ECL PAL® family. The ECL PAL Series-A is characterized by 4 ns maximum propagation delays (combinatorial input-to-output). The pinout, JEDEC fuse-map format and programming algorithm of these devices are compatible with those of all prior ECL PAL products from National. Se-ries-A ECL PAL devices are manufactured using National Semiconductor's advanced oxide-isolated process with proven titanium-tungsten fuse technology to provide highspeed user-programmable replacements for conventional ECL SSI/MSI logic with significant chip-count reduction.
Programmable logic devices provide convenient solutions for a wide variety of application-specific functions, including random logic, custom decoders, state machines, etc. By programming fuse links to configure AND/OR gate connections, the system designer can implement custom logic as convenient sum-of-products Boolean functions. System prototyping and design iterations can be performed quickly using these off-the-shelf products.
The PAL10/10016RM logic array has a total of 16 complementary input pairs, 32 product terms and four output functions; each output function is the OR-sum of 8 product terms. The 16RM4A provides an edge-triggered D-type register on each of its four outputs. Registers allow the PAL device to implement sequential logic circuits. Polarity fuses allow each output to be active-high or active-low.

Programming equipment and software make PAL design development quick and easy. Programming is accomplished using TTL voltage levels and is therefore supported by several conventional TTL PLD programming units. After programming and verifying the logic array, an additional security fuse may be programmed to prevent direct copying of proprietary logic designs.

## Features

- High speed:
$\mathrm{t}_{\mathrm{SU}}=3 \mathrm{~ns}$ min
$t_{\text {CLK }}=2$ ns max $\mathrm{f}_{\text {MAX }}=200 \mathrm{MHz} \max$ (registered) $\mathrm{t}_{\mathrm{PD}}=4 \mathrm{~ns}$ max (combinatorial)
- Programmable replacement for ECL SSI/MSI logic
- Both 10 KH and 100 K I/O compatible versions
$■$ Four registered output functions with I/O pin feedback; twelve dedicated inputs
- Individually programmable polarity on all logic outputs
- Reliable Titanium Tungsten fuses
- Security fuse to prevent direct copying
- Programmed on conventional TTL PLD programmers

E Fully Supported by PLANTM Software

- Packaging: 24-pin thin DIP ( $0.300^{\prime \prime}$ ) 24-pin Quad Cerpak


## Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:


## Block Diagram



TL/L/9772-2
$V_{E E}=12, V_{C C}=24, V_{C C O}(5,7)=6, V_{C C O}(18,20)=19$
Pinout applies to 24 -pin DIP.

## 行 <br> National Semiconductor FGA Series ASPECTTM ECL Gate Arrays

## General Description

The FGA Series is a new generation of ECL gate arrays based on National's ASPECT process. These advanced ECL gate arrays, ranging from 200 to over 30,000 equivalent gates, offer typical internal propagation delays of 150 ps and consume thirty percent less power than conventional ECL arrays. (Refer to Table I.)
With system clock frequencies up to 1.2 GHz , the speed domain of Gallium Arsenide, FGA Series gate arrays are especially well-suited for such high-performance applications as mainframe and supermini computers, fiber-optic communications, and many military and aerospace systems.
With only internal cells and I/O cells, FGA Series arrays are easy to use. Designers can implement logic using two-level or three-level series gating circuit structures within an array, with no complex signal mixing rules required. An extensive macro library, common to all FGA Series arrays, contains more than eighty SSI/MSI logic functions and 36 supporting I/O macros. In addition, internal macros may be grouped to form re-usable "soft macros" with even greater functional complexity.
All FGA Series gate arrays feature CAD-programmable speed/power options that allow the designer to maximize performance by individually assigning the switching speed and output drive currents for each internal macro. The speed/power feature provides maximum ECL speed where needed, yet allows overall chip power to remain at air-coolable levels. On-chip termination to -2V for the internal output emitter followers further reduces power consumption.

All FGA Series products interface with ECL 100K, ECL 10K and ECL 10KH components, and, except for the FGA200, FGA14000, FGA14040R, and FGA30000, are fully FAST®/ TTL compatible. The TTL interface eliminates requirements for separate off-chip signal converters in mixed logic level systems, thereby resulting in reduced board space and cost, as well as avoiding the performance and reliability penalties associated with off-chip signal converters.
In addition to providing superior speed/power performance with high density, the ASPECT process is scalable to submicron dimensions. FGA Series arrays are designed to accommodate multiple ASPECT process generations to allow designs implemented today to migrate to tomorrow's arrays based on future ASPECT processes.

## Features

- New generation ECL gate arrays with complexity to 30,000 equivalent logic gates
- Manufactured with 1.5 -micron ASPECT process
- CAD-programmable speed/power options
- 150 ps typical internal delay
- Flexible array architecture with only two cell types: Internal cells and I/O cells
- F100K, 10 K or 10 KH ECL-compatible I/Os
- Mixable ECL/TTL I/Os
- Allows large number of simultaneously switching outputs


Note：Stresses greater than those listed in＂Absolute Maxi－ mum Ratings＂may cause permanent damage to the device． This is a stress rating only；operation of the device at any condition above those indicated in the operational sections of these specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

## DC Specifications

All FGA Series gate arrays operate from a standard ECL power supply and an additional -2 V supply（ $\mathrm{V}_{\mathrm{T} T}$ ）which terminates internal cell emitter followers to reduce power consumption．With F100K inputs and outputs，the FGA se－ ries is designed to operate from a standard 100 K power supply，although a standard 10 K power supply may be used instead．When used for mixed ECL／TTL operations，an ad－ ditional power supply is required．The following table pro－ vides the power requirements for each allowable interface configuration．

## Power Supply Requirements

| 1／0 | $\mathrm{V}_{\text {cc }}(\mathrm{V})$ | $\mathrm{V}_{\text {TT }}(\mathrm{V})$（Note 2） | $\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$ | $\mathrm{V}_{\text {TTL }}(\mathrm{V})$ | Arrays |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F100K | GND | －1．9 to－2．1 | －4．2 to－5．7 | － | All |
| F10K | GND | －1．9 to－2．1 | -4.7 to－5．7 | － |  |
| F100K／TTL | GND | －1．9 to－2．1 | －4．2 to－5．7 | 4.5 to 5.5 | Except FGA200， FGA14000，FGA14040R and FGA 30000 |
| F10K／TTL | GND | －1．9 to－2．1 | -4.7 to－ 5.7 | 4.5 to 5.5 |  |
| Pseudo TTL | $V_{\text {TTL }}$ | $\left(V_{T T L}-2\right) \pm 0.1$ | GND | 4.75 to 5.25 |  |

## F100K ECL DC Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{J}}=-10^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$（Note 3）

| Symbol | Parameter | Conditions（Note 4） |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$（max） | Loaded with $50 \Omega$ to -2.0 V | －1035 | －955 | －870 | mV |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | or $\mathrm{V}_{\mathrm{IL}}$（min） |  | －1830 | －1705 | －1605 | mV |
| $\mathrm{V}_{\mathrm{IH}}$（Note 5） | Input HIGH Voltage | Guaranteed HIGH Signal for All Inputs |  | －1125 |  | －880 | mV |
| $\mathrm{V}_{\text {IL }}$（Note 5） | Input LOW Voltage | Guaranteed LOW Signal for All Inputs |  | －1810 |  | －1520 | mV |

Note 1：Unless otherwise specified contractually．
Note 2：For internal cell output emitter follower termination to save power．
Note 3：Equilibrium temperature
Note 4：Conditions for testing are chosen to guarantee operation under worst case conditions．
Note 5：Forcing one input at a time．Apply $\mathrm{V}_{\mathrm{IH}}$（max） or $\mathrm{V}_{\mathrm{IL}}$（min） to all other inputs．

F10K ECL DC Characteristics $\mathrm{v}_{\mathrm{EE}}=-5.2 \mathrm{v}_{1} \mathrm{v}_{\mathrm{T}}=-2 \mathrm{v}, \mathrm{v}_{\mathrm{CC}}=\mathrm{v}_{\mathrm{CCA}}=\mathrm{GND}$

| Parameter | Conditions | Junction Temperature |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $65^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{OH}}$ Max | $\begin{aligned} & V_{I H}=V_{I H} \operatorname{Max} \\ & V_{I L}=V_{I L} \operatorname{Min} \end{aligned}$ | -897 | -862 | -810 | -732 | mV |
| $\mathrm{V}_{\mathrm{OH}}$ Min |  | -1112 | -1077 | -1025 | -947 | mV |
| $\mathrm{V}_{\text {OL }}$ Max |  | -1656 | -1644 | -1620 | -1584 | mV |
| $\mathrm{V}_{\text {OL }}$ Min |  | -1920 | -1920 | -1920 | -1920 | mV |
| $\mathrm{V}_{1 H}$ Max (Note 1) |  | -888 | -858 | -810 | -738 | mV |
| $\mathrm{V}_{\text {IL }}$ Min (Note 1) |  | -1920 | -1920 | -1920 | -1920 | mV |
| $\mathrm{V}_{\text {IHA }} \mathrm{Min}$ (Note 1) |  | -1209 | -1172 | -1125 | -1045 | mV |
| $\mathrm{V}_{\text {ILA }}$ Max (Note 1) |  | -1604 | -1567 | -1520 | -1440 | mV |

## TTL DC Characteristics over Operating Temperature Range

$V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{J}=-10^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

| Symbol | Parameter | Conditions |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{lOH}=-400 \mu \mathrm{~A}$ | $V_{C C}=4.75 \mathrm{~V}$ | 2.7 | 3.0 | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | $\mathrm{l}_{\mathrm{OH}}=8.0 \mathrm{~mA} / 20 \mathrm{~mA}$ | $V_{C C}=4.75 \mathrm{~V}$ | - | 0.25 | 0.5 | V |
| $\mathrm{V}_{1 H}$ | Input HIGH Voltage |  |  | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  |  | - | - | 0.80 | V |
| $\mathrm{IIH}_{\mathrm{H}}$ | Input HIGH Current (Note 2) | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$ |  | - | - | 40 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current (Note 2) | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ |  | - | - | -400 | $\mu \mathrm{A}$ |
| IOZH | Output OFF Current HIGH | $V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V}$ |  | - | - | 40 | $\mu \mathrm{A}$ |
| Iozl | Output OFF Current LOW | $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$ |  | - | - | -40 | $\mu \mathrm{A}$ |
| los | Output Off Short Circuit Current (Note 3) | 8/20 mA Driver | $\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \end{aligned}$ | -15 | - | -130 | mA |

Note 1: Forcing one input at a time. Apply $\mathrm{V}_{\mathrm{IH}}$ (max) or $\mathrm{V}_{\mathrm{IL}}(\min )$ to all other inputs.
Note 2: Current per input.
Note 3: Not more than one output should be shorted at a time. Output should not be shorted for more than one second.

FGA Series ECL Gate Array Family
TABLE I. The FGA Gate Array Series

| Description | FGA0150 | FGA0200 | FGA0600 | FGA1300 | FGA4000 | FGA14000 | FGA14040R | FGA15000 | FGA30000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equivalent Gates | 269 | 269 | 792 | 1642 | 4704 | 16709 | $\begin{gathered} 7853+4.6 K \\ \text { RAM } \end{gathered}$ | 16644 | 28486 |
| Internal Cells (MAU) | 75 | 75 | 240 | 528 | 1600 | 5904 | $\begin{aligned} & 2624 \text { Plus } \\ & \text { RAM } \end{aligned}$ | 5920 | 10266 |
| Internal Gate Delay | 150PS |
| Speed/Power Options | Yes |
| $100 \mathrm{~K} / 10 \mathrm{~K} / 10 \mathrm{KH}$ Compatible | Yes |
| ECL/TTL <br> Mixed I/O | 22 | 0 | 36 | 72 | 128 | 0 | 0 | 220 | 0 |
| ECL Only I/O | 0 | 22 | 12 | 0 | 0 | 256 | 256 | 0 | 256 |
| Power/Ground | 6 | 6 | 12 | 40 | 48 | 56 | 56 | 72 | 56 |
| Typical Power (W) | 0.5-1.0 | 0.5-1.0 | 0.5-1.5 | 1-3 | 3-6 | 10-20 | 10-20 | 10-20 | 15-30 |
| Standard <br> Packages | 16,24 Metal Flat 28 PLCC/LDCC |  | $\begin{gathered} \text { 44LDCC } \\ \text { 75PGA } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { 109PGA } \\ 116 \text { LDCC } \\ 75 \text { PGA }^{*} \end{gathered}\right.$ | $\begin{array}{\|c\|} \hline \text { 173PGA } \\ 172 \mathrm{LDCC} \\ \hline 99 \mathrm{PA}^{* *} \end{array}$ | 323PGA | 323PGA | 303PGA | 323PGA |
| Available | Now | 1 Q90 |

*Maximum of $48 \mathrm{I} / \mathrm{O}$
**Maximum of 64 I/O

## ASPECT Process

FGA Series arrays use a National proprietary process called ASPECT which uses conservative 1.5 -micron design rules to achieve VLSI density and 150 ps typical internal gate delays at thirty percent of conventional ECL power consumption levels.
ASPECT is the first bipolar process to use polysilicon for emitter and base structures. Polysilicide serves as a source of impurities for both the emitter and the base. This permits the fabrication of extremely shallow ( $500 \AA$ below the surface) emitters and narrow base regions. The combination of shallow emitters and base leads to transistors with a very high switching speed. ASPECT also uses polysilicon resistors.

Such resistors exhibit low junction capacitance, making them ideal passive elements for high-speed logic circuits.
An important feature is the self-aligning process used in ASPECT gate arrays. This insensitivity to misalignment makes ASPECT a high-yield process and enables the move to smaller geometries with less difficulty than conventional bipolar processes.

## Array Organization

Electrical components (transistors, resistors, diodes and capacitors) are organized into repeating structures called cells, Macros, which are the basic building blocks of gate array logic design, are built by interconnecting the components in one or more cells.

## Array Organization (Continued)

The FGA Series employs only two cell types: internal cells and I/O cells. The internal cells are the workhorses of the array, where most of the circuit logic is implemented. All signals going to or coming from the outside world must exit or enter the array through an I/O cell. Since all signal level conversions are performed in the I/O cells, no signal mixing takes place within the array, thus simplifying the design effort. Cell types and their functions are described in greater detail in the following paragraphs.
The bonding pads are located around the periphery of the array. In addition to performing I/O functions, some of the pads are reserved for power and ground busses. Biasing occurs in dedicated routing channels and is optimally performed automatically by placement and routing CAD software.
All FGA Series arrays employ three-layer metalization for signals and bussing. The first metal layer connects components within macros and makes horizontal connections between macros. Layer two is primarily for vertical connections between macros, while layer three contains most of the power bussing. Future versions of the ASPECT process may include four metal layers. In that case, first-layer metal would not be needed to connect macros, thus eliminating routing channels and increasing gate counts for a given die size.

## Internal Cell and Logic Complexity

The basic internal cell in an FGA Series array is called a "minimum addressable unit", or MAU. It is the smallest portion of the chip that a CAD system can access for placing or routing.
The number of elements in this minimum cell is actually smaller than on any competing array. In fact, this small, compact cell structure, said to have a fine granularity, increases efficiency. In general, the larger the cell, the greater the likelihood that some cell resources go unused, thereby decreasing efficiency.

Single-level, two-level, and three-level series gated ECL structures are used in FGA Series arrays to implement various logic functions. Series gating allows complex logic functions to be implemented with fewer gates while maintaining optimum performance. Additional logic complexity at no cost in cell utilization may be gained in internal cells by connecting the outputs together (emitter dotting) to form wiredOR functions.
Speed/power options can be used to assign the current settings in each internal cell macro. This feature allows the designer to maximize speed when needed, yet minimize the power consumption. The termination of internal output emitter followers to a -2 V internal bus further reduces power consumption.
Typically, internal cell utilization of eighty-five percent is considered optimum. Designs can be completed with up to one-hundred percent utilization; however placement and routing at this level sometimes requires special interactive layout.
The FGA Macro Library contains a number of physical macros with MSI-level complexity. The final portion of this data sheet includes a representative sample of macros included in the FGA Series Macro Library. Full documentation for all macros, including specifications, can be found in the FGA Series Macro Library Reference Manual.

## I/O and Interface Capabilities

I/O cells in the FGA Series are capable of performing input, output, transceiver logic and ECL/TTL conversion functions. The array's I/O organization is flexible, with each signal pad supported by a dedicated I/O cell. An incoming signal can enter the internal array through any I/O cell and, after completing the logic implementation, can then exit the array through any I/O cell without restriction.
The flexible functionality of individual i/O cells can be especially useful in system applications requiring latched inputs and outputs. The ability of an FGA Series I/O cell to be

## I／O and Interface Capabilities

（Continued）
configured as a latch saves having to use an internal cell for this function．In addition，although most ECL devices drive $50 \Omega$ loads，I／Os can be paired to drive $25 \Omega$ loads．
Each I／O cell offers a choice of signal termination options． For relatively short signal paths，designers may build series－ terminated outputs，simplifying designs in systems where placing termination resistors on the board is not practical． To minimize noise，internal pull－down resistors are provided to keep unused inputs from floating．
Either F100K，10K，or 10 KH interface capability is available on all FGA Series arrays．All input thresholds and logic lev－ els must uniformly belong to the same ECL family．Likewise， the output interface must be the same as that used for input． With the exception of the FGA0200，FGA14000， FGA14040R and FGA30000，each I／O can also be a mixa－ ble ECL／TTL I／O．This means that every I／O can be inde－ pendently configured as either ECL or TTL．The TTL I／O is capable of producing totem－pole，open－collector，or three－ state output levels．Figure 2 illustrates the acceptable inter－ face options for FGA Series arrays．


TL／U／10560－5
FIGURE 2．Interface Capabilities

## Embedded RAM

The embedded RAM block is a self－timing memory device with the capabilities of supporting various memory configu－ rations，different bit select patterns，output power options， and different clock systems．The embedded RAM block contains 576 bits，and is organized as 64 words by 9 bits． There are 8 RAM blocks in the FGA14040R with the total of 4608 bits．Each embedded RAM block has its own built－in decoder and control circuit，thus improving system perform－ ance and reliability while saving board space．The embed－ ded RAM has three modes of operation，Normal mode， Scan mode and Test mode．At high power operation，the typical access time is 3.75 ns and the worst case access time is 5 ns ．Two output drive options， 0.6 mA and 1.2 mA ， are available to support the driving capabilities of the em－ bedded RAM．Note that the memory is called self－timed memory device because it generates and shapes its own write strobe internally．This pulse is generated off of the rising edge of the clock which is applied to the embedded RAM．

## Speed／Power Options

Speed／power options are a feature of all FGA Series gate arrays．This feature allows the designer to maximize speed where needed，yet minimize overall chip power consump－ tion．
Two sets of macros are available for each logic function in the FGA arrays，the standard macros and the double mac－ ros（see Table IV）．The double macros use two times as much current as standard macros，and are designed for use in the critical circuitry．These two macro types can be used interchangeably within the same chip．
Essentially，speed／power options are used to assign one or two current values（high $=0.3 \mathrm{~mA}$ ，low $=0.15 \mathrm{~mA}$ ）to the current source which controls switching speed；and one of two current values（high $=0.6 \mathrm{~mA}$ ，low $=0.3 \mathrm{~mA}$ ）to the true and complement outputs for output drive currents．The latter setting permits zero power consumption for unused outputs．Figure 3 illustrates circuit options for each of the three settings．


TL／U／10560－6
FIGURE 3．Speed／Power Options
The speed／power options are assigned during schematic capture．Default values for each setting may be specified during schematic capture as well．Designers may use the speed／power options to fine tune the design after place－ ment and routing simply by returning to schematic capture and reassigning values without having to repeat placement and routing．
The examples in Table III illustrate how speed／power op－ tions can affect propagation delay vs．power consumption at the macro level．Additional speed／power tradeoffs are listed in＂Macro Performance Examples＂later in this data sheet．

## Speed／Power Options（Continued）

TABLE III．Macro Speed／Power Tradeoffs

| Macro |  | Speed（ps） | Power（mW） |
| :--- | :---: | :---: | :---: |
| 2－Input <br> NOR <br> ORN02 | High | 235 | 2.5 |
| D Flip－ <br> Flop <br> DFI01 | High | 410 | 1.2 |
|  | Low | 680 | 7.5 |

TABLE IV．Current Setting of Speed／Power Options

| Current <br> $\mu \mathbf{A}$ | Standard Macro（S） |  | Double Macros（D） |  |
| :---: | :---: | :---: | :---: | :---: |
|  | High Speed | Low Power | High Speed | Low Power |
| Source Current | 300 | 150 | 600 | 300 |
| OEF Current | 600 | 300 | 600 | 300 |

## AC Specifications

FGA Series macro propagation delays are specified as MIN， TYP，and MAX values，with variations due to process，power supply and temperature，as shown in the＂AC Performance Variations＂table．

## Macro Performance Examples

The following pages contain performance specifications for some important internal cell macros．Complete information， including design rules and application notes，can be found in the FGA Series Design Manual and FGA Series Macro Library．

FA21D One Bit Full Adder with Gates Inputs
 TL／U／10560－7

AC Performance Variations

| Variation <br> Type | Derating from Typical（\％）（Note 2） |  |
| :--- | :---: | :---: |
|  | Minimum（Note 1） | Maximum（Note 3） |
| Temperature | -10 | 15 |
| Voltage | $\sim 0$ | $\sim 0$ |
| Process | -20 | 20 |
| Total | $-30 \%$ | $35 \%$ |

Note 1：Minimum：$T_{J}=0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}$ ，Best Case Process
Note 2：Typical：$T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ ，Normal Process
Note 3：Maximum： $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ ，Worst Case Process

Propagation Delay（units in ps）

| From Inputs | To Output | High Power |  |  | Low Power |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |
| A1，A2 | $s \sim$ | 330 | 410 | 550 | 420 | 530 | 710 |
| A1，A2 | s 乙 | 380 | 470 | 640 | 420 | 530 | 710 |
| B1， $\mathrm{B}^{\text {2 }}$ | $\mathrm{S} \sim$ | 380 | 470 | 640 | 470 | 580 | 790 |
| B1，B2 | S 乙 | 450 | 560 | 760 | 490 | 620 | 830 |
| C1，C2 | $\mathrm{S} \sim$ | 200 | 250 | 340 | 200 | 250 | 340 |
| C1，C2 | S 乙 | 240 | 300 | 400 | 280 | 350 | 480 |
| A1，A2 | $\mathrm{CO} \sim$ | 190 | 230 | 310 | 190 | 240 | 330 |
| A1，A2 | CO 乙 | 190 | 240 | 330 | 290 | 360 | 490 |
| B1，B2 | $\mathrm{CO} \sim$ | 240 | 300 | 400 | 260 | 330 | 450 |
| B1，B2 | CO 乙 | 260 | 330 | 450 | 380 | 470 | 640 |
| C1，C2 | $\mathrm{CO} \sim$ | 240 | 300 | 400 | 260 | 330 | 450 |
| C1，C2 | CO 乙 | 260 | 330 | 450 | 380 | 470 | 640 |

Macro Performance Examples (Continued)

Current in Base Macro

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :---: |
| IEE (mA) |  |  |  |
| HIGH | 1.36 | 1.80 | 2.26 |
| LOW | 0.92 | 1.20 | 1.52 |


| ITT (mA) |  |  |  |
| :--- | :--- | :--- | :--- |
| HIGH | 0.21 | 0.30 | 0.39 |
| LOW | 0.21 | 0.30 | 0.39 |

Current in Macro Outputs

| Power ATT | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| ITT (mA) |  |  |  |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW | 0.21 | 0.30 | 0.39 |

IBF03X2(3) Input Buffer


TL/U/10560-8
Propagation Delay (units in ps)

| From <br> Input | To <br> Outputs | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| I | $\mathrm{Z}, \mathrm{ZL}-$ | 220 | 280 | 380 |
| I | $\mathrm{Z}, \mathrm{ZL} 乙$ | 220 | 280 | 380 |

Current in Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| IEE (mA) |  |  |
| 0.60 | 0.80 | 1.0 |
| ITT (mA) |  |  |
| 0.84 | 1.20 | 1.56 |

MXDIO2-D Flip Flop with
Multiplexed Data Inputs


Propagation Delay (units in ps)

| From <br> Input | To <br> Output | High Power |  |  | Low Power |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| CP | $\mathrm{Q}-$ | 340 | 420 | 570 | 530 | 660 | 890 |  |
| CP | Q | - | 300 | 380 | 510 | 530 | 660 | 890 |
| CP | $\mathrm{QN} \sim$ | 340 | 430 | 580 | 540 | 670 | 910 |  |
| CP | $\mathrm{QN} \sim$ | 310 | 390 | 530 | 540 | 680 | 920 |  |

TL/U/10560-9

Current in Base Macro

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| IEE (mA) |  |  |  |
| HIGH | 0.92 | 1.20 | 1.52 |
| LOW | 0.68 | 0.90 | 1.14 |
| ITT (mA) |  |  |  |
| HIGH | 0.84 | 1.20 | 1.56 |
| LOW | 0.84 | 1.20 | 1.56 |

Current in Macro Outputs

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| ITT (mA) |  |  |  |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW | 0.21 | 0.30 | 0.39 |

## Macro Performance Examples (Continued)



TL/U/10560-10

Propagation Delay (units in ps)

| From <br> Inputs | To <br> Output | High Power |  |  |  | Low Power |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| AN | SN | - | 160 | 200 | 270 | 160 | 200 |  |
| AN | SN | 170 | 210 | 280 | 200 | 250 | 340 |  |
| AN | CN | 150 | 190 | 250 | 140 | 180 | 240 |  |
| AN | CN | 150 | 190 | 250 | 190 | 230 | 310 |  |
| BN | SN | 200 | 250 | 340 | 190 | 240 | 330 |  |
| BN | SN | 230 | 290 | 390 | 270 | 340 | 460 |  |
| BN | CN | 200 | 250 | 340 | 200 | 250 | 340 |  |
| BN | CN | 220 | 280 | 370 | 270 | 340 | 460 |  |

Current in Macro Outputs

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| IEE (mA) |  |  |  |
| HIGH | 0.68 | 0.90 | 1.13 |
| LOW | 0.46 | 0.60 | 0.76 |


| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| ITT (mA) |  |  |  |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW | 0.21 | 0.30 | 0.39 |

## 0R05D-5 Input OR Gate



TL/U/10560-11
Propagation Delay (units in ps)

| From <br> Input | To <br> Outputs | High Power |  |  | Low Power |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |
| A | Z, ZL $\sim$ | 160 | 200 | 270 | 180 | 230 | 310 |
| A | Z, ZL | 160 | 200 | 270 | 200 | 250 | 340 |

Current in Base Macro
IEE (mA)

| Power ATT | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| HIGH | 0.45 | 0.60 | 0.75 |
| LOW | 0.23 | 0.30 | 0.38 |

Current in Macro Outputs
ITT (mA) for each macro output used:

| Power ATT | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW | 0.21 | 0.30 | 0.39 |

DFI01D-D FIIp Flop with Reset


TL/U/10560-12

Propagation Delay (units in ps)

| From Inputs | To Output | High Power |  |  | Low Power |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |
| CP | Q $\sim$ | 340 | 420 | 570 | 500 | 620 | 840 |
| CP | $Q \sim$ | 350 | 430 | 580 | 380 | 480 | 650 |
| CP | QN $\sim$ | 310 | 390 | 530 | 400 | 500 | 680 |
| CP | QN 乙 | 340 | 430 | 580 | 400 | 490 | 670 |
| CP LOW |  |  |  |  |  |  |  |
| R | Q 乙 | 300 | 380 | 510 | 550 | 680 | 920 |
| R | QN $\sim$ | 350 | 430 | 590 | 490 | 610 | 820 |
| CP HIGH |  |  |  |  |  |  |  |
| R | $Q \sim$ | 370 | 460 | 620 | 560 | 710 | 950 |
| R | QN $\sim$ | 370 | 460 | 630 | 520 | 650 | 880 |

Macro Performance Examples (Continued)

Current In Base Macro

| Power ATT | Min | Typ | Max |  |
| :--- | :--- | :--- | :--- | :---: |
| IEE (mA) |  |  |  |  |
| HIGH | 1.13 | 1.50 | 1.88 |  |
| LOW | 0.69 | 0.90 | 1.14 |  |
| ITT (mA) |  |  |  |  |
| HIGH | 0.84 | 1.20 | 1.56 |  |
| LOW | 0.84 | 1.20 | 1.56 |  |

Current in Macro Outputs

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| ITT (mA) |  |  |  |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW (Note 1) | 0.21 | 0.30 | 0.39 |

Note 1: Output Q is hard wired to 0.6 mA current source and cannot be assigned power attributes.


Current In Base Macro

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| IEE (mA) |  |  |  |
| HIGH | 0.68 | 0.90 | 1.13 |
| LOW | 0.46 | 0.60 | 0.76 |

Current in Macro Outputs

| Power ATT | Min | Typ | Max |
| :--- | :--- | :--- | :--- |
| ITT (mA) |  |  |  |
| HIGH | 0.42 | 0.60 | 0.78 |
| LOW | 0.21 | 0.30 | 0.39 |

IRCI03X2 (3)-Differential Input Buffer


TL/U/10560-14

Propagation Delay (units in ps)

| From <br> Inputs | To <br> Output | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| I, IN | Z | 120 | 150 | 210 |
| I, IN | Z | 120 | 150 | 210 |
| I, IN | ZN | 120 | 150 | 210 |
| I, IN | ZN | 120 | 150 | 210 |

Current in Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| $\mathrm{IEE}(\mathrm{mA})$ |  |  |
| 0.60 | 0.80 | 1.0 |
| $\mathrm{ITT}(\mathrm{mA})$ |  |  |
| 0.84 |  |  |

IORI02X2-2 Input OR/NOR Gate


TL/U/10560-15

Propagation Delay (units in ps)

| From <br> Input | To <br> Outputs | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| A | Z | 190 | 240 | 320 |
| A | Z | 180 | 230 | 310 |
| A | $\mathrm{ZN} \sim$ | 160 | 200 | 270 |
| A | $\mathrm{ZN} \sim$ | 200 | 250 | 340 |

Current in Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| $\operatorname{IEE}(\mathrm{mA})$ |  |  |
| 0.60 | 0.80 | 1.0 |

Current in Macro Outputs

| Min | Typ | Max |
| :--- | :---: | :---: |
| ITT (mA) |  |  |
| 0.84 | 1.20 | 1.56 |

Macro Performance Examples (Continued)

IXOR02X2-2 Input XOR Gate


IXORO2X2
TL/U/10560-16

RCRI50X3—Differential Output Buffer


RCR150X3
TL/U/10560-17


Propagation Delay (units in ps)

| From <br> Input | To <br> Outputs | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| A | $\mathrm{Z}, \mathrm{ZL} \sim$ | 210 | 270 | 370 |
| A | $\mathrm{Z}, \mathrm{ZL} 乙$ | 190 | 240 | 320 |
| A | $\mathrm{Z}, \mathrm{ZL}$ | 330 | 410 | 550 |
| A | $\mathrm{Z}, \mathrm{ZL} 乙$ | 300 | 380 | 510 |

Current In Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| IEE (mA) |  |  |
| 1.20 | 1.60 | 2.0 |

Current in Macro Outputs

| Min | Typ | Max |
| :--- | :---: | :---: |
| ITT (mA) |  |  |
| 0.84 | 1.20 | 1.56 |

Propagation Delay (units in ps)

| From <br> Inputs | To <br> Outputs | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| I, IN | FZ, FZN $\sim$ | 400 | 470 | 640 |
| I, IN | FZ, FZN $\sim$ | 300 | 370 | 500 |

Current in Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| IEE (mA) |  |  |
| 4.35 | 5.80 | 7.25 |

Current in Base Macro

| Min | Typ | Max |
| :--- | :---: | :---: |
| IEE (mA) |  |  |
| 4.95 | 6.60 | 8.25 |

Current In Macro Outputs

| Min | Typ | Max |
| :--- | :---: | :---: |
| IVCCA (mA) |  |  |
| 23.8 | 28.0 | 32.2 |

## Macro Cells Library

Internal Macros

| Name | Function | Cells |
| :---: | :---: | :---: |
| BUFFERS, INVERTERS |  |  |
| BF01 | Buffer | 1 |
| BFl01 | Buffer/Inverter | 2 |
| RCR01D | Differential Receiver/Buffer | 1 |
| RCR11D | Differential Receiver/Buffer | 1 |
| RCRI01 | Differential Receiver/Buffer | 2 |
| RCRN01 | Inverting Differential Receiver | 1 |
| GATES |  |  |
| ANIO2 | 2-Input AND/NAND | 2 |
| OAl23D | 3-3 OR/AND-Invert | 2 |
| OAl23S | 3-3 OR/AND-Invert, 1.2 mA loef | 4 |
| OAl24 | 4-4 OR/AND-Invert | 2 |
| OAI32DT | 2-2-2 OR/AND-Invert | 3 |
| OAI44D | 4-3-3-3 OR/AND-Invert | 4 |
| OAl44S | 4-3-3-3 OR/AND-Invert | 4 |
| OA146 | 5-4-5-6 OR/AND-Invert | 5 |
| OAI55DT | 5-4-3-2-1 OR/AND-Invert | 5 |
| OAI66DT | 6-6-4-4-2-2 OR/AND-invert | 7 |
| OR02 | 2-Input OR | 2 |
| OR02D | 2-Input OR | 1 |
| OR05 | 5-Input OR | 1 |
| OR05D | 5-Input OR | 1 |
| ORIO2 | 2-Input OR/NOR | 2 |
| ORIO2D | 2-Input OR/NOR | 2 |
| ORIO2S | 2-Input OR/NOR | 4 |
| ORI05 | 5-Input OR/NOR | 2 |
| ORI05D | 5-Input OR/NOR | 2 |
| ORIO5S | 5-Input OR/NOR, 1.2 mA loef | 4 |
| ORI08 | 8-Input OR/NOR | 2 |
| ORIO8D | 8-input OR/NOR | 2 |
| ORI012D | 12-Input OR/NOR | 3 |
| ORN02 | 2 -Input NOR | 2 |
| ORNO2D | 2-Input NOR | 1 |
| ORN05 | 5-Input NOR | 1 |
| ORN05D | 5-Input NOR | 1 |
| 2OR02D | Dual 2-Input OR, 0.6 mA loef | 2 |
| 4OR02S | Quad 2-Input OR, 1.2 mA loef | 4 |
| XOR04 | 4-Input XOR | 4 |
| XOR09 | 9 -Input XOR | 8 |
| XORI03DT | 3-Input XOR/XNOR | 3 |
| XORI03ST | 3-Input XOR/XNOR, 1.2 mA loef | 4 |
| XORI22D | Gated 2-Input XOR/XNOR | 2 |
| XORI22S | Gated 2-Input XOR/XNOR, 1.2 mA loef | 4 |
| XORI23 | Gated 2-Input XOR/XNOR | 2 |
| XORN04D | 4-Input XNOR | 3 |
| XORNO4S | 4-Input XNOR, 1.2 mA loef | 5 |
| XORN06DT | 6-Input XNOR | 5 |


| Macro Cells Library (Continued) Internal Macros (Continued) |  |  |
| :---: | :---: | :---: |
| Name | Function | Cells |
| DECODERS, MULTIPLEXERS |  |  |
| DCE02DT | 2:4 Decoder with Enable | 4 |
| DCE22 | 2:4 Decoder with Enable | 4 |
| MX22 | 2:1 MUX | 1 |
| MX34 | 4:1 MUX, 3 Select Inputs | 3 |
| MXIO2 | 2:1 MUX, Low Enable, OR Gated Select, Comp. Outputs | 3 |
| MXIO2DT | 2:1 MUX, Low Enable, Complement Outputs | 2 |
| MXIO2ST | 2:1 MUX, Low Enable, 1.2 mA loef | 4 |
| MX104 | 4:1 MUX, Low Enable, Complement Outputs | 4 |
| MX104DT | 4:1 MUX, Complement Outputs | 3 |
| MXI08ST | 8:1 MUX, High Enable, Comp. Outputs 1.2 mA loef | 9 |
| MX122 | 2:1 MUX, Low Enable, OR Gated Select, Comp. Outputs | 2 |
| MX122D | 2:1 MUX | 2 |
| MXI24DT | 4:1 MUX, Low Enable, Complementary Outputs | 4 |
| 2MX04DT | Dual 4:1 Multiplexer | 6 |
| 2SELIO4D | Dual 4:1 Multiplexer | 5 |
| 4MX122D | Quad 2:1 Multiplexer | 8 |
| 4MXI22S | Quad 2:1 Multiplexer, 1.2 mA loef | 5 |
| LATCHES, MUX LATCHES |  |  |
| LAI01 | D Latch with Reset and 2-Input OR Enable | 2 |
| FLIP-FLOPS |  |  |
| 2DFN04 | Dual D Flip-Flop with a Common Clock | 4 |
| DFI01 | M/S D Flip-Flop with Asynchronous Reset | 4 |
| DFI01D | M/S D Flip-Flop with Asynchronous Reset | 4 |
| DF102 | M/S D Flip-Flop with Set, Reset, Gated Data \& Clock | 4 |
| DFIO2D | M/S D Flip-Flop with Set, Reset, Gated Data \& Clock | 4 |
| DFIO2DT | M/S D Flip.Flop with Active Low Enable | 4 |
| DFI04 | M/S D Flip-Flop, Positive Edge Triggered | 3 |
| DFI21 | M/S D Flip-Flop with Asynchronous Reset | 3 |
| DFI22 | M/S D Flip-Flop with Scan Input | 4 |
| DFSO2DT | M/S D Flip-Flop with Scan Input | 5 |
| DFS02ST | M/S D Flip-Flop with Scan Input, 1.2 mA loef | 7 |
| DFS21DT | M/S D Flip-Flop with Scan Input, Data Enable | 5 |
| DFS21ST | M/S D Flip-Flop with Scan Input, Data Enable, 1.2 mA loef | 7 |
| JK102 | M/S JN-K Flip-Flop | 4 |
| MXDI02 | M/S D Flip-Flop with Multiplexed Data Input | 4 |
| COMPARATORS |  |  |
| None Available at This Time |  |  |
| MISCELLANEOUS |  |  |
| AD01 | 1-Bit Carry Look Ahead Adder | 3 |
| FA21D | 1-Bit Full Adder w/Gated Inputs | 4 |
| FA21S | 1-Bit Full Adder w/Gated Inputs, 1.2 mA loef | 8 |
| HA01D | 1-Bit Half Adder | 2 |
| HLIO1 | High-Low Level Generator with Temperature Diode | 1 |
| MEMORY |  |  |
| IDC02X2 | Shared Input Buffer, 0.6 mA loef | 1 |
| IDC12X2 | Shared Input Buffer, 0.6 mA loef | 1 |
| MTX50X2 | Shared Output Buffer, $50 \Omega$ | 1 |
| RS69D | $64 \times 9$ RAM |  |

Macro Cells Library (Continued)
Input Macros

| Name | Function | Cells |
| :---: | :---: | :---: |
| BUFFERS, INVERTERS |  |  |
| IBF02X2 (3) | High Fan-Out Buffer, 10 mA loef (Note 1) | 1 |
| IBF03X2 (3) | Input Buffer, 0.6 mA loef | 1 |
| IBFI03X2 (3) | Input Buffer, Complementary Outputs, 0.6 mA loef | 1 |
| IBFN03X2 | Input Buffer, Inverting 0.6 mA loef | 1 |
| DIFFERENTIAL RECEIVERS |  |  |
| ICKD0X2 | Differential Input Clock Driver, 18 mA loef (Note 1) | 2 |
| ICKD0X3 | Differential Input Clock Driver, 18 mA loef (Note 1) | 2 |
| ICKD1X2 | Differential Input Clock Driver, 18 mA loef (Note 2) | 2 |
| IRCI02X2 (3) | Differential Input Buffer, Comp. Outputs, 10 mA loef | 2 |
| IRCI03X2 (3) | Differential Input Buffer, Comp. Outputs, 0.6 mA loef | 2 |
| GATES |  |  |
| IOR02X2 | 2-Input OR, 0.6 mA loef | 2 |
| IORIO2X2 | 2-Input OR/NOR, 0.6 mA loef | 2 |
| IORN02X2 | 2-Input NOR, 0.6 mA loef | 2 |
| IXOR02X2 | 2-Input XOR, 0.6 mA loef | 1 |
| IXORN2X2 | 2-Input XNOR, 0.6 mA loef | 1 |
| MISCELLANEOUS |  |  |
| INOOX2 (3) | Input Pad (Zero Resistance) | 1 |
| Note 1: ICKDOX2 and ICKDOX3 uses two external cells for electrical connection and cover, respectively, 90 and 50 internal cells for clock distribution <br> Note 2: ICKD12X2 uses two external cells for electrical connection and covers 44 internal cells for clock distribution. |  |  |


| Name | Function | Cells |  |
| :---: | :---: | :---: | :---: |
| BUFFERS, INVERTERS |  |  |  |
| BF50X2 (3) | Output Buffer, 50, F100K | 1 |  |
| BFI50X3 | Complementary Output Buffer, 50, F100K | 2 |  |
| BFN50X2 | Output Inverter, 50, F100K | 1 |  |
| RCRI50X3 | Differential Output Buffer, 50ת, F100K | 2 |  |
| GATES |  |  |  |
| OR220X2 | 2-Input OR, $25 \Omega$, F100K | 1 |  |
| ORI220X2 | 2-Input OR/NOR, $25 \Omega$, F100K | 2 |  |
| OR250X2 | 2-Input OR, 50, F100K | 1 |  |
| ORN250X2 | 2-Input NOR, 50, F100K | 1 |  |
| ORI250X2 | 2-Input OR/NOR, $50 \Omega$, F100K (FGA 14K) | 2 |  |
| ORI250X3 | 2-Input OR/NOR, 50, F100K (FGA 4K) | 2 |  |
| OR450X2 | 4-Input OR, $50 \Omega$, F100K | 1 |  |
| ORN450X2 | 4-Input NOR, $50 \Omega$, F100K | 1 |  |
| ORI450X2 | 4-Input OR/NOR, $50 \Omega$, F100K | 2 |  |
| BUS DRIVERS |  |  |  |
| BD20X2 | 2-Input OR, $25 \Omega$, F100K | 1 |  |
| BDN20X2 (3) | 2-Input NOR, $25 \Omega$, F100K | 1 |  |


| Macro Cells Library (Continued) Transceivers |  |  |
| :---: | :---: | :---: |
| Name | Function | Cells |
| TR20X3 <br> TRN20X3 <br> TRN50X2 (3) | 2-Input OR ECL Transceiver, $25 \Omega$ <br> 2-Input NOR ECL Transceiver, $25 \Omega$ <br> 2-Input NOR ECL Transceiver, $50 \Omega$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| Miscellaneous |  |  |
| Name | Function | Cells |
| OUTO0X2 (3) | Output Pad (Zero Resistance) | 1 |
| TTL Macros |  |  |
| Name | Function | Cells |
| INPUT BUFFERS |  |  |
| TED11X3 <br> TES11X3 | TTL Input Buffer <br> TTL Input Buffer (+5V Only) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| OUTPUT BUFFERS |  |  |
| $\begin{aligned} & \text { TOBD01X3 } \\ & \text { TOBD11X3 } \\ & \text { TOBS11X3 } \end{aligned}$ | 8 mA TTL Output Buffer 20 mA TTL Output Buffer 20 mA TTL Output Buffer (+5V Only) | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| TRANSCEIVERS |  |  |
| $\begin{aligned} & \text { TTRD11X3 } \\ & \text { TTRS01X3 } \end{aligned}$ | 20 mA TTL Transceiver <br> 8 mA TTL Transceiver (+5V Only) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |

TTL Macros

Section 7
F100K ECL Design Guide and Application Notes

## Section 7 Contents

Chapter One-Circuit Basics ..... 7-3
Chapter Two-Logic Design ..... 7-9
Chapter Three-Transmission Line Concepts ..... 7-22
Chapter Four-System Considerations ..... 7-35
Chapter Five-Power Distribution and Thermal Considerations ..... 7-48
Chapter Six-Testing Techniques ..... 7-55
Chapter Seven-Quality Assurance and Reliability ..... 7-62
AN-573 Design Considerations for High Speed Architectures ..... 7-67
AN-582 Using the F100250 for Copper Wire Data Communications ..... 7-75
AN-650 The ECL System Solution ..... 7-88
AN-651 10K vs 100K ECL I/O System Considerations ..... 7-92
AN-682 Terminating F100K ECL Inputs ..... 7-96
AN-683 300 MHz Dual Eight-Way Multiplexer/Demultiplexer ..... 7-98
AN-684 F100336 Four Stage Counter/Shift Register ..... 7-100
AN-685 Using the F100181 ALU and F100179 Carry Look-Ahead ..... 7-107

## Chapter 1 Circuit Basics

## Introduction

ECL circuits, except for the simplest elements, are schematically formidable and many of the specified parameters are relatively unfamiliar to system designers. The relationships between external parameters and internal circuitry are best determined by individually examining the fundamental subcircuits of a simple element. System variables such as supply voltage tolerances and temperature have predictable effects on circuit parameters, thus allowing a systematic evaluation of noise margins.

## Basic ECL Switch

At the bottom of every ECL circuit, literally and figuratively, is a current source. In the basic ECL switch (Figure 1-1), a logic operation consists of steering the current through either of two return paths to $V_{C c}$; the state of the switch can be detected from the resultant voltage drop across R1 or R2. The net voltage swing is determined by the value of the resistors and the magnitude of the current. Further, these two values are chosen to accomplish the charging and discharging of all of the parasitic capacitances at the desired switching rate.

## Required Input Signal

The voltage swing required to control the state of the switch is relatively small due to the exponential change of emitter current with base-emitter voltage and to the differential mode of operation. For example, starting from a condition where the two base voltages are equal, which causes the current to divide equally between Q1 and Q2, an increase of $\mathrm{V}_{\mathrm{IN}}$ by 125 mV causes essentially all of the current to flow through Q1. Conversely, decreasing $\mathrm{V}_{\mathrm{IN}}$ by 125 mV causes essentially all of the current to flow through Q2. Thus the minimum signal swing required to accomplish switching is 250 mV centered about $\mathrm{V}_{\mathrm{BB}}$. The signal swing is made larger (approximately 750 mV ) to provide noise immunity and to allow for differences between the $\mathrm{V}_{\mathrm{BB}}$ of one circuit and the output voltage levels of another circuit driving it.



TL/F/9905-2
FIGURE 1-2. $\mathbf{V}_{\mathbf{C 1}}-\mathrm{V}_{\text {IN }}$ Transition Region

## Emitter-Follower Buffers (Continued)



TL/F/9905-3
FIGURE 1-3. Buffered Current Switch
In this buffered current switch, the collectors of Q3 and Q4 return to a separate ground lead, VCCA. This separation insures that any changes in load currents during switching do not cause a change in $V_{C C}$ through the small but finite inductance of the VCCA bond wire and package lead. Outside the package, the $V_{C C}$ and $V_{C C A}$ leads should be connected to the common $V_{C C}$ distribution.
For internal functions of complex circuits where loading is minimal, the buffer transistors are scaled down to maintain high switching speeds with modest source currents. For service as output buffers, the emitter followers are designed for a maximum rated output current of 50 mA . For standardization of testing, detailed specifications on guaranteed $\mathrm{min} / \mathrm{max}$ output levels apply when an output is loaded with $50 \Omega$ returned to -2 V . The emitter followers have no internal pull-down resistors; consequently, there is maximum design flexibility when optimizing line terminations and using wired-OR techniques for combinatorial logic or data bussing.

## Multiple Inputs

The buffered switch of Figure $1-3$ is essentially an ECL line receiver circuit with the bases of both Q1 and Q2 available for receiving differential signals. With one input connected to the $\mathrm{V}_{\mathrm{BB}}$ terminal, the switch can receive a signal transmitted in a single-ended mode or it can act as a buffer or logic inverter. To perform the OR and NOR of two or more functions, additional transistors are connected in parallel with Q1 as indicated in Figure 1-4. When any input is HIGH, its associated transistor conducts the source current and Q2 is turned off; this causes the collector of Q1 to go LOW and the collector of Q2 to go HIGH, with the emitters of Q3 and Q4 following the collectors of Q1 and Q2 respectively. When two or more inputs are HIGH, the results are the same. Thus, with a HIGH level defined as a True or logic "1" signal, Q3 provides the NOR of the inputs while Q4 simultaneously provides the OR. In addition to the logic design flexibility afforded by the availability of both the assertion and negation, the Q3 and Q4 outputs can drive both conductors of a differential pair for data transmission. Also shown in Figure 1-4 are the pull-down resistors, nominally $50 \mathrm{k} \Omega$, connected between ECL inputs and the negative supply. These resistors serve the purpose of holding unused inputs in the LOW state by sinking ICBO current and preventing the build-up of charge on input capacitances. Accordingly, most non-essential ECL inputs are designed to be active HIGH. When such inputs are not used, the pull-down resistors eliminate the need for external wiring to hold them LOW.


TL/F/9905-4
FIGURE 1-4. Input Expansion by Parallel Transistors

## Power Conservation, Complementary Functions

Power dissipation in an ECL circuit is due in part to the output load currents and in part to the internal operating currents. Load currents depend on system design factors and are discussed in Chapter 5. In the basic switch (Figure $1-1$ ), power dissipation is fixed by the source current and the supply voltage, whether the circuit is in a quiescent or transient state. There is no mechanism for causing a current spike such as occurs in TTL circuits, and thus the power dissipation is not a function of switching frequency.
A distinct advantage of the ECL switch is the ease of forming both the assertion and negation of a function without additional time delay or complexity. This is very significant in complex MSI functions, since it helps to maximize the efficiency of the internal logic while minimizing chip area and power consumption. Since most 100K ECL devices have complementary outputs, the system designer has similar opportunities to reduce package count and power consumption while enhancing logic efficiency and reducing throughput times.

## Series Gating, Wired-AND

Quite often in ECL elements, the circuitry required to generate functions is much simpler than the detailed logic diagrams suggest. In addition to readily available complementary functions and the wired-OR option, other techniques providing high performance with low part count are series gating and wired collectors. These are illustrated in principle by the simplified schematics of Figures 1-5 and 1-6.

## Series Gating, Wired-AND (Continued)



TL/F/9905-5
FIGURE 1-5. Series/Parallel Gating


TL/F/9905-6
FIGURE 1-6. Exclusive-OR/NOR
In Figure 1-5, if both A and B are HIGH, then Q1 and Q3 conduct and $I_{S}$ flows through R1, making the collector of Q1 go LOW, thereby achieving the NAND of A and B . Connecting the collectors of Q2 and Q4 to the same load resistor provides the AND of A and B. If the collectors of Q3 and Q4 were interchanged, a different pair of functions of $A$ and $B$ would be produced. Similarly, a third functional pair is achieved by interchanging the collectors of Q1 and Q2. For Q3 and Q4 to operate at a lower voltage level than Q1 and Q2, the voltage level of $B$ is translated downward from the normal ECL levels and $V^{\prime}$ BB is similarly translated downward from the $\mathrm{V}_{\mathrm{BB}}$ voltage. In the slightly more complex circuit in Figure 1-6, another pair of transistors is added to obtain the Exclusive-OR and Exclusive-NOR functions.
Connecting transistors in series is not limited to two levels of decision making; three levels are shown in the simplified schematic of an octal decoding tree (Figure 1-7). If the three input signals are all HIGH, Q1 conducts through Q9 and Q13 to make the collector of Q1 LOW. In all, there are eight possible paths through which the source current can return to the positive supply. A LOW signal at the collector of any one of the transistors in the top row represents a unique combination of the three input signals. This $1-\mathrm{of}-8$ decoding circuit illustrates very clearly how ECL design techniques make the most efficient use of components and power to generate complex functions. This same set of switches, with the upper collectors wired in two sets of four collectors each, generates the binary sum and its complement of the three input signals.

## The Current Source, Output Regulation

All elements of the F100K circuits use a transistor current source illustrated in Figure 1-8. Source current is determined by an internally generated reference voltage $\mathrm{V}_{\mathrm{CS}}$, the emitter resistor $\mathrm{R}_{\mathrm{S}}$ and the base-emitter voltage of Q5. The reference voltage is designed to remain fixed with respect to the negative supply $\mathrm{V}_{\mathrm{EE}}$, which makes Is independent of supply voltage.


TL/F/9905-7
FIGURE 1-7. Octal Decoding Tree


TL/F/9905-8
FIGURE 1-8. Constant Current Source for a Switch
Regulating the current source ( $\mathrm{I}_{\mathrm{S}}$ ) simplifies system design because output voltage and switching parameters are not sensitive to $V_{E E}$ changes. Output voltage levels are determined primarily by the voltage drops across R1 and R2 resulting from the collector currents of Q1 and Q2. Since the collector current of the conducting transistor (Q1 or Q2) is determined by Is and the transistor $\alpha$, the voltage drop across the collector load resistor is not sensitive to $\mathrm{V}_{\mathrm{EE}}$ variations. For example, a 1 V change in $\mathrm{V}_{\mathrm{EE}}$ changes the output level $\mathrm{V}_{\mathrm{OL}}$ by only 30 mV .
Switching parameters are affected by transistor characteristics, the collector resistor (R1 or R2), stray capacitances, and the amount of current being switched. In other forms of ECL where source currents change with $\mathrm{V}_{\mathrm{EE}}$, switching parameters are directly affected. This sensitivity is essentially eliminated in F 100 K circuits by regulating $\mathrm{I}_{\mathrm{S}}$ against $\mathrm{V}_{\mathrm{EE}}$ changes.
Power dissipation in an ECL switch is the product of $I_{S}$ and $\mathrm{V}_{\mathrm{EE}}$. By holding Is constant with $\mathrm{V}_{\mathrm{EE}}$, incremental changes in dissipation are linear with $V_{E E}$ changes. In non-regulated ECL, Is increases with $V_{E E}$ causing switch dissipation to change more rapidly with $\mathrm{V}_{\mathrm{EE}}$.

## Threshold Regulation

As previously discussed, the input threshold region of an ECL switch is centered on the internal reference $\mathrm{V}_{\mathrm{BB}}$. In F100K circuits, the on-chip bias driver holds $\mathrm{V}_{\mathrm{BB}}$ constant with respect to $V_{\mathrm{CC}}$, thus minimizing changes in input thresholds with $V_{E E}$. For a $V_{E E}$ change of 1 V , for example, $V_{B B}$ changes by approximately 25 mV .
With output voltage levels and input thresholds regulated, F100K circuits tolerate large differences in $\mathrm{V}_{\mathrm{EE}}$ between a driving and a receiving circuit and still maintain good noise margins. For example, a driving circuit operated with -4.2 V and receiving circuit operated with -5.7 V experience a LOW state noise margin loss of only 30 mV to 40 mV compared to the ideal case of both circuits with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. This insensitivity to $V_{E E}$ simplifies the design of system power distribution and regulation.

## Temperature Compensation

In F100K circuits, input thresholds are made insensitive to temperature by regulating $\mathrm{V}_{\mathrm{BB}}$. Output voltage levels are made insensitive to temperature by a correction factor designed into the current source and by a simple network connected between the bases of the output transistors as shown in Figure 1-9.


TL/F/9905-9
FIGURE 1-9. Temperature Compensation
With Q1 conducting and Q2 off, most of the source current flows through R1, while a small amount flows through R2, D1 and R3. If the chip temperature increases, the source current is made to increase, causing an increase in the voltage drop of sufficient magnitude across R1 to offset the decrease in base-emitter voltage of Q3. The voltage drop across R1 increases with temperature at the rate of approximately $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, while the voltage drop across D 1 decreases at the same rate. This means that there is a net voltage increase of $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ across the series combination of R2 and R3. This increase is equally divided between the two resistors since R3 is equal to R2 (and R1); thus the voltage at the base of Q 4 goes negative by $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, offsetting the decrease in the base-emitter voltage of Q4. When Q2 is on and Q1 is off, the same relationships apply except that most of the current flows through R2, and D2 conducts instead of D1. F100K change rates for $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{BB}}$, and $\mathrm{V}_{\mathrm{OL}}$ are approximately $0.06,0.08$ and $0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, respectively.

The stabilization of output levels against changes in temperature provides significant advantages to both the user and manufacturer. In testing, an extended thermal stabilization period is not required, nor is an elaborate air cooling arrangement necessary to obtain correlation of test results between user and supplier. In a system, the output signal swing of a circuit does not depend on its temperature, therefore temperature differences do not cause a mismatch in signal levels between various locations. With temperature gradients thus eliminated as a system constraint, the design of the cooling system is greatly simplified.

## Noise Margins

The most conservative values of ECL noise margins are based on the $D C$ test conditions and limits listed on the data sheets. Acceptance limits on $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ are identified on a symbolic waveform in Figure 1-10, with the boundaries of the input threshold region also identified. The HIGH-state noise margin is usually defined as the difference between $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$ and $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$, with the LOW-state margin defined as the difference between $\mathrm{V}_{\mathrm{OL}(\text { Max })}$ and $\mathrm{V}_{\mathrm{IL}}$ (Max). These two differences are identified as $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ respectively. The worst case input and output test points are also identified on the OR gate transfer function shown in Figure 1-11. The transition region indicated by the solid line is applicable when the internal reference $V_{B B}$ has the design center value of -1.32 V for F 100 K circuits. The transition regions indicated by the dashed lines represent the lot-to-lot displacement resulting from the normal production tolerances on $V_{B B}$, which amount to $\pm 40 \mathrm{mV}$ for F100K circuits. Using F100K circuit values as an example, the dashed curve on the right correlates with a $\mathrm{V}_{\mathrm{BB}}$ value of -1.280 V , and the input test voltage $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ is -1.165 V , for a net difference of 115 mV . Similarly, the dashed curve on the left applies when $V_{B B}$ is -1.360 V with $\mathrm{V}_{\mathrm{IL}}$ (Max) specified as -1.475 V , which also gives a net difference of 115 mV . The points $\mathrm{V}_{\mathrm{OHC}}$ and $\mathrm{V}_{\mathrm{OLC}}$ are commonly referred to as the corner points because of their location on the transfer function of worst case circuits.


TL/F/9905-10
FIGURE 1-10. Identifying Specification Limits on Input and Output Voltage Levels
In actual system operation, the noise margins $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ are quite conservative because of the way $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ and $\mathrm{V}_{\mathrm{IL}(\mathrm{Max})}$ are defined. From the transfer function of Figure 1-11, for example, $\mathrm{V}_{I H(\text { Min })}$ is defined as a value of input voltage which causes a worst-case output to decrease from $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$ to $\mathrm{V}_{\mathrm{OHC}}$ This change in $\mathrm{V}_{\mathrm{OH}}$ amounts to only 10 mV for F 100 K circuits. Thus, if a worst case OR gate has a quiescent input of $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$, a superimposed negative-going disturbance of amplitude $\mathrm{V}_{\mathrm{NH}}$ causes an output change of only 10 mV , assuming that the time duration of the disturbance is sufficient for the OR gate to respond fully. In

## Noise Margins (Continued)

contrast, a system fault does not occur unless the superimposed noise at the OR input is of sufficient amplitude to cause the output response to extend into the threshold region(s) of the load(s) driven by the OR gate. In general, noise becomes intolerable when it propagates through a string of gates and arrives at the input of a regenerative circuit (flip-flop, counter, shift register, etc.) with sufficient amplitude to reach the $V_{B B}$ level.
The critical requirement for propagating either a signal or noise through a string of gates is that each output must exhibit an excursion to the $V_{B B}$ level of the next gate in the string, assuming, of course, that the time duration is sufficient to allow full response. If the excursion at the input of a particular gate either falls short or exceeds $\mathrm{V}_{\mathrm{BB}}$, the effect on its output response is magnified by the voltage gain of the gate. On the voltage transfer function of a gate, the slope in the transition region is not, strictly speaking, constant. However, for input signal excursions of about $\pm 50 \mathrm{mV}$ on either side of $\mathrm{V}_{\mathrm{BB}}$, a value of 5.5 may be used for the voltage gain. For example, if the noise (or signal) excursion at the input of a gate falls short of $V_{B B}$ by 20 mV , the gate output response is 110 mV less. Another useful relationship is that if the input voltage of a gate is equal to $V_{B B}$, the output voltage is also equal to $V_{B B}$, within perhaps 30 mV .
To determine the combined effects of circuit and system parameters on noise propagation through a string of gates, refer to Figure 1-12. The voltages $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ represent differences in ground potential, while $\mathrm{V}_{3}$ and $\mathrm{V}_{4}$ are $\mathrm{V}_{\mathrm{EE}}$ differences. The output of gate $A$ is in the quiescent LOW state and $V_{\mathrm{PL}}$ is a positive-going disturbance voltage. Now, how large can $\mathrm{V}_{\mathrm{PL}}$ be without causing propagation through gate C? For a starting point, assume all three gates are identical with typical parameters; $\mathrm{V}_{\mathrm{EE}}$ is -4.5 V , the ground drops are zero, and there are no temperature gradients. Voltage parameters of F 100 K circuits are used. With typical circuits and the idealized environment, the maximum tolerable value of $\mathrm{V}_{\mathrm{PL}}$ for propagation is the difference between the nominal $V_{B B}$ of -1.320 V and nominal $\mathrm{V}_{\mathrm{OL}}$ of -1.705 V , or 385 mV . The following steps treat each non-ideal factor separately and the required reduction in $\mathrm{V}_{\mathrm{PL}}$ is calculated.


TL/F/9905-11
FIGURE 1-11. Location of Test Points and Threshold on a Transfer Function


## FIGURE 1-12. Arrangement for Noise Propagation Analysis

Non-Typical $\mathrm{V}_{\mathrm{BB}}$ of Gate B : Specifications provide for $\mathrm{V}_{\mathrm{BB}}$ variations of $\pm 40 \mathrm{mV}$. If the $V_{B B}$ of gate $B$ is 40 mV more negative than nominal, $V_{P L}$ must be reduced by the same amount.
$\Delta V_{\mathrm{PL}}=-40 \mathrm{mV}$
$V_{\mathrm{PL}}=385-40=345 \mathrm{mV}$
Non-Typical $V_{\text {OL }}$ of Gate $A: V_{\text {OL }}$ limits are -1.620 V to -1.810 V corresponding to the $\pm 3 \sigma$ points on the distribution. Statistically, this means that $98 \%$ of the circuits have $V_{\text {OL }}$ values of -1.650 V or lower. Since this value differs from the nominal $V_{\text {OL }}$ by $55 \mathrm{mV}, \mathrm{V}_{\mathrm{PL}}$ must be reduced accordingly.
$\Delta V_{P L}=-55 \mathrm{mV}$
$V_{P L}=345-55=290 \mathrm{mV}$
Difference in Ground ( $\mathbf{V}_{\mathbf{C C}}$ ) Potential between Gates A and B: Since the $V_{C C}$ lead of Gate $B$ is the reference potential for input voltages, $\mathrm{V}_{1}$ in the polarity shown effectively makes the $V_{O L}$ of Gate $A$ more positive. Minimizing ground drops is one of the system designer's tasks (Chapter 5) and its effect on noise margins emphasizes its importance. For this analysis, a value of 30 mV is assumed.
$\Delta V_{P L}=30 \mathrm{mV}$
$V_{P L}=290-30=260 \mathrm{mV}$
Difference in $\mathbf{V}_{\mathrm{EE}}$ between Gates $\mathbf{A}$ and $\mathbf{B}$ : In the polarity shown, $\mathrm{V}_{3}$ reduces the supply voltage for Gate A since it is assumed that Gate B has $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V . The indicated polarities of $V_{1}$ and $V_{3}$ seem to be in conflict if it is assumed that $V_{3}$ represents only ohmic drops along the $V_{E E}$ bus. Since $V_{3}$ may, however, be caused by the use of different power supplies or regulators as well as by ohmic drops, the polarities may exist as indicated. In any actual situation, the designer can usually predict the directions of supply current flow by observation of the physical arrangement. As mentioned earlier, a 1 V change in $\mathrm{V}_{\mathrm{EE}}$ causes a $\mathrm{V}_{\mathrm{OL}}$ change 30 mV , or $3 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{3}$ and adding the 30 mV of $\mathrm{V}_{1}$, the net reduction in supply voltage for Gate A is 0.53 V . Using $3 \%$ of this reduction as the change in $\mathrm{V}_{\mathrm{OL}}$ gives a positive $V_{O L}$ shift of 16 mV , which is a reduction of noise margin.
$\Delta V_{P L}=-16 \mathrm{mV}$
$V_{P L}=260-16=244 \mathrm{mV}$
If the net supply voltage of Gate A is assumed to be -4.5 V , then $V_{1}$ and $V_{3}$ cause Gate $B$ to have a greater supply voltage. This, in turn, causes the $\mathrm{V}_{\mathrm{BB}}$ of Gate B to go more negative at the rate of $25 \mathrm{mV} / \mathrm{V}$ of $\mathrm{V}_{\mathrm{EE}}$ change, or $2.5 \%$.

Noise Margins (Continued)
Thus, for the same values of $V_{1}$ and $V_{3}$, the required reduction of $V_{P L}$ is only 13 mV instead of the 16 mV computed above.
Non-Typical $V_{B B}$ of Gate B: This was considered earlier for its effect at the input of Gate B. It must also be considered for its effect on the excursions of the output voltage of Gate $B$. Since the net input voltage of Gate $B\left(V_{O L}+V_{P L}\right)$ reaches the $V_{B B}$ level of Gate $B$, the output excursion also extends to the $\mathrm{V}_{\mathrm{BB}}$ level and perhaps 30 mV beyond (more negative). This means that the output excursion of Gate B could be 90 mV more negative than the nominal $\mathrm{V}_{\mathrm{BB}}$ of Gate C . This excess excursion must be divided by the voltage gain of Gate $B$ to determine exactly how much $\mathrm{V}_{\mathrm{PL}}$ must be reduced as compensation.
$\Delta V_{P L}=-90 / 5.5=-16 \mathrm{mV}$
$V_{\mathrm{PL}}=244-16=228 \mathrm{mV}$
Non-Typical $\mathbf{V}_{B B}$ of Gate C: The $V_{B B}$ of Gate $C$ could be 40 mV more positive than the nominal value of -1.320 V . Dividing by the voltage gain of Gate $B$ gives the necessary reduction of $\mathrm{V}_{\mathrm{PL}}$.
$\Delta V_{P L}=-40 / 5.5=-7 \mathrm{mV}$
$V_{P L}=228-7=221 \mathrm{mV}$
Difference in $V_{\text {CC }}$ Potential between Gates B and C: For the polarity shown, $\mathrm{V}_{2}$ makes the net voltage at the C input more negative with respect to the $V_{C C}$ lead of Gate $C$. Assume 30 mV for $\mathrm{V}_{2}$ as was done for $\mathrm{V}_{1}$.
$\Delta V_{P L}=-30 / 5.5=-5.0 \mathrm{mV}$
$V_{P L}=217-5=212 \mathrm{mV}$
Difference in $\mathrm{V}_{\mathrm{EE}}$ between Gates B and C : In the polarity shown, $V_{4}$ reduces the supply voltage for Gate $C$, as does $\mathrm{V}_{2}$. As previously mentioned, $\mathrm{V}_{\mathrm{BB}}$ changes with $\mathrm{V}_{\mathrm{EE}}$ at a rate of $25 \mathrm{mV} / \mathrm{V}$, or $2.5 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{4}$,
as was done for $V_{2}$, adding $V_{2}$ gives a net $V_{E E}$ reduction of 0.53 V . This makes the $\mathrm{V}_{\mathrm{BB}}$ of Gate C about 13 mV more positive, with respect to its own $V_{C C}$ lead. This must be divided by the gain of Gate B to determine the effect on the permissible value of $V_{\text {PL }}$.
$\Delta V_{P L}=-13 / 5.5 \cong-2 \mathrm{mV}$
$V_{P L}=212-2=210 \mathrm{mV}$
At this point the more conservatively defined $\mathrm{V}_{\text {NL }}$ (Figure $1-10$ ) should be evaluated and compared with $V_{P L}$. Subtracting the values of $\mathrm{V}_{\mathrm{OL}(\mathrm{Max})}$ and $\mathrm{V}_{\mathrm{IL}(\text { Max })}$, a value of 145 mV for $\mathrm{V}_{\mathrm{NL}}$ is obtained.
The primary advantage of using $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ as the limits of tolerable noise is that they provide for simultaneous appearance of noise on inputs and outputs. Whatever the system designer's preference regarding noise margin definitions, the important factor is to recognize that the $\Delta V_{C C}$ and $\Delta V_{E E}$ between devices decrease the noise margins and therefore should be minimized.

## References

1. Marley, R.R., "On-Chip Temperature Compensation for ECL"', Electronic Products, (March 1, 1971).
2. Marley, R.R., "Design Considerations of Temperature Compensated ECL," IEEE International Convention, (March, 1971).
3. Widlar, R.J., "Local IC Regulator for Logic Circuits," Computer Design, (May, 1971).
4. Widlar, R.J., "New Developments in IC Voltage Regulators," ISSCC Digest of Technical Papers, (February, 1970).
5. Muller, H.H., Owens, W.K., Verhofstadt, P.W.J., "Fully Compensated ECL," ISSCC Digest of Technical Papers, (February, 1973).

## Chapter 2 <br> Logic Design

## Introduction

The F100K family is comprised of SSI, MSI, LSI, logic functions, gate arrays, BiCMOS SRAMs, and PALs. The latest addition to the F100K family is the 300 Series. 300 Series devices are functionally equivalent redesigns of existing F100K devices, but with added enhancements such as: lower power, PCC packaging, extended operating voltage range, military versions and ESD protection of 2000 V (minimum).
This chapter covers basic gates and flip-flops, as well as applications using MSI functions. In most cases a $300 \mathrm{Se}-$ ries redesign is available in place of the referenced 100 Series part. Refer to the Applications section of this databook for the latest publications using ECL logic. Gate Arrays, PALs, and MSI are covered in separate publications. All BiCMOS SRAM applications are included in the Memory Databook.
National F100K ECL logic symbols use the positive logic or "active-HIGH" option of MIL-STD-806B. Logic '1' or "ac-tive-High" is the more positive voltage, nearest ground (typically -0.955 V ). Logic ' 0 ' or "active-LOW'" is the more negative level, nearest $\mathrm{V}_{\mathrm{EE}}$ (typically -1.705 V ).

## OR/NOR Gates

The most basic F100K ECL circuit is the OR/NOR gate (Figure 2-1). If the input ( A or B ) voltages are more negative than the reference voltage $\mathrm{V}_{\mathrm{BB}}$, Q1 and Q2 are cut off (nonconducting) and Q3 conducts, holding the collector of Q3


LOW. Since the base of Q4 is LOW, the pull-down resistor or terminator connected to its emitter makes the OR output LOW. The base of Q5 is HIGH (near ground) and its emitter pulls the NOR output HIGH. If either input is more positive than $\mathrm{V}_{\mathrm{BB}}$, Q1 or Q2 conducts and Q3 is cut off. This makes the base of Q4 HIGH, resulting in a HIGH at the OR output. At the same time, the base of Q5 is LOW and the pull-down resistors or terminator pulls the NOR output LOW. Detailed information concerning F100K ECL circuit basics may be found in Chapter 1.
The F100K family includes two OR/NOR-gate devices. The F100101 is a triple 5 -input OR/NOR and the F100102 is a quint 2 -input OR/NOR with common enable. One element of the F100102 is shown in Figure 2-2; the corresponding truth table is Table 2-1.


TL/F/9899-2
FIGURE 2-2. F100102 OR/NOR Gate
TABLE 2-1. F100102 Truth Table

| $\mathbf{D}_{\mathbf{1 x}}$ | $\mathbf{D}_{\mathbf{2 x}}$ | $\mathbf{E}$ | $\mathbf{O}_{\mathbf{x}}$ | $\overline{\mathbf{O}}_{\mathbf{x}}$ |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | $H$ |
| L | L | $H$ | $H$ | L |
| L | $H$ | L | $H$ | L |
| L | $H$ | $H$ | $H$ | L |
| $H$ | L | L | $H$ | L |
| $H$ | L | $H$ | $H$ | L |
| $H$ | $H$ | L | $H$ | L |
| $H$ | $H$ | $H$ | $H$ | L |

$H=H I G H$ Voltage Level
L $=$ LOW Voltage Level

## Wired-OR Function

A wired-OR function can be implemented simply by connecting the appropriate outputs external to the package (see Figure 2-3). Each output is buffered so that the internal logic is not affected by the wire-OR. This is a positive logic OR, not to be confused with a DTL wired-AND or the internal series gating used for some ECL functions. This wiredOR is especially useful in implementing data busses. For further information see Chapter 4.

Wired-OR Function (Continued)


$F=\overline{\bar{A}+\bar{B}}+\overline{\bar{C}+\bar{D}}$
$=A B+C D$


## AND Function

The positive logic AND function is directly available in F100K ECL (F100104). There are two other approaches which can be taken to solve the problem of implementing an AND.
The first solution is indicated in Figure 2-4. A positive logic OR gate can be redrawn as a negative logic AND gate. To take advantage of this requires active-LOW input terms; but, since practically every F100K circuit provides complementary outputs, this should not be a problem.


TL/F/9899-6
FIGURE 2-4. F100101 Redrawn as AND/NAND Gate
The second possible solution is to use devices in a manner other than that intended, at the cost of package efficiency. The F100117 may be used as a triple 3-input AND/NAND by connecting only one input on each of the OR gates. The F100179 may be used as a single 9-input AND gate by connecting the inputs to $\overline{\mathrm{C}}_{\mathrm{n}}$ and $\overline{\mathrm{G}}_{7}$ through $\overline{\mathrm{G}}_{0}$. The $\overline{\mathrm{P}}_{\mathrm{n}}$ inputs are left open (LOW) and the output is taken from $\overline{\mathrm{C}}_{\mathrm{n}}+8$.

## OR-AND, OR-AND-Invert Gates

The F100117 is a triple 2-wide OR-AND, OR-AND-Invert Gate. The logic diagram and truth table for one section of the F100117 are shown in Figure 2-5 and Table 2-2, respectively. The F100118 5 -wide OA/OAI has OR inputs of 5, 4, 4,4 , and 2.

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care

## Exclusive-OR/Exclusive-NOR Gate

The F100107 is a quint exclusive OR/NOR gate. In addition to providing the exclusive-OR/exclusive-NOR of the five input pairs, a comparison output is available. If the five pairs of inputs are identical, bit by bit, then the common output will be LOW.

## Flip-Flops and Latches

Flip-flops and latches are treated together due to their similarity. The only difference is that latch outputs follow the inputs whenever the enable is LOW, whereas a flip-flop changes output states only on the LOW-to-HIGH clock transition.
The advantage of an edge-triggered flip-flop is that the outputs are stable except while the clock is rising; a latch has better data-to-output propagation delay while the enable is kept active.
Both latches and flip-flops are available three to a package with individual as well as common controls and six to a package with only common controls. There are a total of four parts as indicated below.

|  | Triple w/Individual <br> Controls | Hex w/Common <br> Controls |
| :--- | :---: | :---: |
| Fllp-Flops | F100131 | F100151 |
| Latches | F100130 | F100150 |

Figure 2.6 shows the equivalent logic diagram of $1 / 3$ of an F100131. The internal clock is the OR of two clock inputs, one common to the other two flip-flops. The OR clock input permits common or individual control of the three flip-flops. In addition, one input may be used as a clock input and the other as an active-LOW enable.

Flip-Flops and Latches (Continued)


TL/F/9899-8
FIGURE 2-6. F100131 D Flip-Flop

When the clock is LOW, the slave is held steady and the information on the $D$ input is permitted to enter the master. The transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master, causing the new information to appear at the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master/slave changes when the clock has slow rise or fall times.
The Clear and Set Direct for each flip-flop are the OR of two inputs, one common to the other two flip-flops. The output levels of a flip-flop are unpredictable if both the Set and Clear Direct inputs are active.
The outputs of all F100K flip-flops and latches are buffered. This means that they can be OR-wired; noise appearing on the outputs cannot affect the state of the internal latches.
Table 2-3 is the truth table for the F100131 flip-flop. The truth table for the F100130 latch is similar except the enables are active LOW whereas the F100131 clocks are edge triggered.

TABLE 2-3. F100131 Truth Table

| $\mathrm{D}_{\mathrm{n}}$ | CP ${ }_{\text {n }}$ | $\mathrm{CP}_{\mathrm{c}}$ | $\begin{aligned} & M S \\ & S D_{n} \end{aligned}$ | $\begin{gathered} M R \\ C D_{n} \end{gathered}$ | $Q_{n(t+1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\widetilde{\Omega}$ | $L$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $L$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $L$ | $\sqrt{\Omega}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & L \\ & H \end{aligned}$ |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & X \\ & H \end{aligned}$ | $L^{L}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & Q_{n}(t) \\ & Q_{n}(t) \end{aligned}$ |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $H$ L U |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$U=$ Undefined
$\mathrm{t}, \mathrm{t}+1=$ Time before and after CP positive transition
If eight flip-flops are desired, such as for pipeline register applications, the F100141 Shift Register can be used. Neither reset nor complementary outputs are available. The Select inputs may be used to mechanize a clock enable as shown in Figure 2-7.

## Flip-Flops and Latches (Continued)



TL/F/9899-9
FIGURE 2-7. F100141 as Octal D Flip-Flop

## Counters

The F100136 operates either as a modulo-16 up/down counter or as a 4-bit bidirectional shift register. It has three Select inputs which determine the mode of operation as shown in Table 2-4. In addition, a Terminal Count output, and two Count Enables are provided for easy expansion to longer counters. A detailed truth table for the F100136 is included in the specification sheet. To achieve the highest possible speed, complementary outputs should be equally terminated, i.e., if $Q_{2}$ is used, $\bar{Q}_{2}$ should be equally terminated even if not used. If neither output of a particular stage is used, then both outputs can be left open.

TABLE 2-4. F100136 Function Select Table

| $\mathbf{S}_{0}$ | $\mathbf{S}_{1}$ | $\mathbf{S}_{\mathbf{2}}$ | Function |
| :--- | :--- | :--- | :--- |
| L | L | L | Load |
| L | L | $H$ | Count Down |
| L | H | L | Shift Left |
| L | H | H | Count Up |
| H | L | L | Complement |
| H | L | H | Clear |
| H | H | L | Shift Right |
| H | H | H | Hold |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

## VARIABLE MODULUS COUNTERS

An F100136 can act as a programmable divider by presetting it via the parallel inputs, counting down to minimum and then presetting it again to start the next cycle. Figure 2-8 shows a one-stage counter capable of dividing by 2 to 15. $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ are unconnected (therefore LOW) and the counter thus is in either the Count Down or Parallel Load mode, depending on whether $S_{2}$ is HIGH or LOW, respectively. $\overline{\mathrm{CEP}}$ and CET are also LOW, enabling counting when $\mathrm{S}_{2}$ is HIGH. Immediately after the counter is preset to $N$, which must be greater than one, the LOAD signal goes HIGH and the F100136 starts counting down on the next clock. When it counts down to one, the LOAD signal goes LOW and presetting will occur on the next clock rising edge. Generating the LOAD signal on the count of one, rather than zero, makes up for the clock pulse used in presetting.


TL/F/9899-10

## FIGURE 2-8. 1-Stage Counter

A 3-stage programmable divider is shown in Figure 2-9. The $\overline{T C}$ output of the first stage enables counting in the upper stages, while the $\overline{T C}$ output of the second stage also enables counting in the third stage. The D-input signal to the flip-flop is normally HIGH and thus $\bar{Q}$ is normally LOW. When both the second and third stage counters have counted down to zero, the $\overline{T C}$ output of the third stage goes LOW. When the first stage subsequently counts down to one, the D signal goes LOW, as does LOAD. Presetting thus occurs on the next clock and $\bar{Q}$ goes HIGH to end the $\overline{\text { LOAD }}$ signal and permit counting to resume on the next clock.
In Figure 2-8, the maximum clock frequency is determined by the sum of the propagation delays from $C P$ to $Q$ and the OR gate, plus the setup time from S to CP. The maximum frequency is approximately 220 MHz for typical units or 170 MHz for worst-case units. In Figure 2-9 the critical path is CP to Q of the first stage plus both OR gates, plus the S to CP set-up time of the counters. Typical and worst-case maximum frequencies are 190 MHz and 140 MHz respectively.

## INTERCONNECTING COUNTERS

The terminal count and count enable connections provide an easy method of interconnecting the F100136 counter to achieve longer counts. Figure 2-10 shows a method that uses few connections but has a drawback. The counters are fully synchronous, since the clock arrives at all devices at the same time; the only drawback is that the count enables have to "trickle" down the chain. This results in a lower maximum counting rate since it drastically increases the setup time from enable to clock.
Figure $2-11$ shows a method for partially overcoming these drawbacks. The enable to clock set-up is now one CET to $\overline{\mathrm{TC}}$ propagation delay plus one $\overline{\mathrm{CEP}}$ to CP set-up. The count speed is thus increased. This is best seen by assuming that all stages except the second are at terminal count. At the next clock pulse, the second counter reaches terminal count and the first stage exits terminal count. The command to suppress counting in the third and fourth (and subsequent) stages arrives very quickly (via $\overline{\mathrm{CEP}}$ ). The terminal count from the second stage propagates via $\overline{T C}$ and $\overline{\mathrm{CEP}}$ to the high order stages, but has a full 15 counts to do so.


TL/F/9899-11
FIGURE 2-9. 3-Stage Programmable Divider


TL/F/9899-12
FIGURE 2-10. Slow Expansion Scheme


TL/F/9899-29
FIGURE 2-11. Fast Expansion Scheme

## Counters (Continued)

## DECODING OUTPUTS

Since the complementary outputs from each stage are available, it is an easy matter to decode any value. (Clearly, if many values needed to be decoded one would choose a decoder chip.) Figure $2-12$ shows an F100136 and $1 / 3$ F100101 interconnected to decode 1001 (NINE). Both complementary outputs of NINE are available and there is a spare input on the decoding gate.


TL/F/9899-13
FIGURE 2-12. Decoding States of F100136

## Shift Registers

The F100141 is an 8-bit universal shift register. It can be used for parallel-to-serial or serial-to-parallel conversion and it will shift left or right. The truth table is shown in Table 2-5.

TABLE 2-5. F100141 Truth Table

| $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | $\mathbf{C P}$ | Mode |
| :--- | :---: | :---: | :--- |
| $L$ | L | - | Parallel Load |
| L | $H$ | - | Shift Left $\left(Q_{0} \rightarrow Q_{7}\right)$ |
| $H$ | $L$ | - | Shift Right $\left(Q_{7} \rightarrow Q_{0}\right)$ |
| $H$ | $H$ | $X$ | Hold |

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Don't Care
Figure 2-13 shows the F100141 used as a 7-bit serial-toparallel converter. When Initialize (INIT) becomes active, the next clock pulse presets the register to '10000000', and Register-Full (REG-FULL) becomes inactive. Each time a data bit becomes available, Data-Available (DATA-AVAIL) must be made active during one clock LOW-to-HIGH tran-
sition. This clocks the bit into the register moves the flag bit closer to $Q_{0}$. When the seventh data bit is entered, the flag bit reaches $Q_{0}$ and REG-FULL becomes active. The seven data bits may be removed at this time $\left(Q_{1}\right.$ to $\left.Q_{7}\right)$ and the conversion is complete.


FIGURE 2-13. Serial-to-Paraliel Conversion
Table 2-6 summarizes the control inputs and corresponding F100141 modes for this circuit.

TABLE 2-6. Select Inputs Truth Table

| INIT | DATA-AVAIL | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Mode |
| :---: | :---: | :---: | :---: | :--- |
| L | L | $H$ | $H$ | Hold |
| L | $H$ | $H$ | L | Shift Right |
| H | L | L | L | Preset |
| H | $H$ | L | L | (Illegal) |

H $=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
Figure 2-15 shows a parallel-to-serial converter using the F100136 counter. Figure $2-14$ shows the associated timing diagram. Each time the external device has taken a bit of data, it makes the signal Serial-Data-Accept (SERIAL-DATA-ACPT) HIGH. The shift register shifts right which makes the next bit available and the counter counts up. The Serial-Data-Accept term must be synchronized with the clock. The counter counts to eight after the eighth data bit has been accepted and Parallel-Data-Request (PARALLEL-DATA-RQST) becomes active HIGH. When the device supplying data makes the next byte available, Parallel-DataReady (PARALLEL-DATA-RDY) goes HIGH. On the next clock pulse the shift register loads the new data byte and the counter clears to zero. Table 2-7 shows the operating mode as a function of the control inputs.


FIGURE 2-14. Timing Diagram Parallel-to-Serial Converter

## Shift Registers (Continued)

TABLE 2-7. Parallel-to-Serial Converter Truth Table

| PARALLEL-DATA-RDY | SERIAL-DATA-ACPT | Shift Register |  |  | Counter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Mode | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mode |
| L | L | H | H | Hold | H | H | H | Hold |
| L | H | H | L | Shift Right | L | H | H | Count Up |
| H | L | L | L | Load | H | L | H | Clear |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level


FIGURE 2-15. Parallel-to-Serlal Converter

## Multiplexers

Multiplexers send one of several inputs to a single output. The function can be implemented with standard gates or bus drivers and the wired-OR connection. Figure 2-16 shows the F100123 Hex Bus Driver used as a wired-OR multiplexer. The F100123 devices could be in physically different parts of the system, since they can drive double-terminated busses.
The F100155 is a quad 2-input multiplexer with transparent latches. The device has two select terms and can accept data from either, neither, or both (OR) sources.


FIGURE 2-16. Wired-OR Multiplexer
The F100163 is a dual 8 -input multiplexer with common selects. The F100164 is a single 16-input multiplexer.
The F100163 and F100164 do not feature complementary outputs or an enable for wired-ORing. The F100171 is a triple 4 -input multiplexer with enable and complementary outputs.
Figure 2-17 shows an F100164 multiplexer and F100136 connected to convert 16 -bit parallel data to single-bit serial data. A gate is added to provide complementary serial data. If the input data is stable, then the output data is stable from 6.4 ns after a clock until 2.5 ns after the next clock. This would insure valid data $50 \%$ of the time at a clock rate of 100 MHz . Terminal Count on the counter can be used as a term to indicate the last bit is being transmitted. This can be used as a clock enable to the register containing the parallel data. The propagation delay through the register is masked by the propagation delay through the counter.


FIGURE 2-17. Parallel-to-Serial Data Transmission

## Decoder

The F100170 is a universal demultiplexer/decoder. It can function as either a dual 1-of-4 decoder or as a single 1-of-8 decoder. The outputs can be either active HIGH or active LOW.
If the M input is LOW, then the F100170 is configured as a dual 1-of-4 decoder. Both $A_{2 a}$ and $H_{c}$ must be LOW. Table $2-8$ is a truth table for each half of the F100170; the two halves are completely independent. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{x}}$ is made LOW.

TABLE 2-8. Dual 1-of-4 Mode Truth Table

| Inputs |  |  |  | Active-HIGH Outputs ( $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{b}}$ Inputs HIGH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bar{E}_{1 a} \\ & \bar{E}_{1 b} \end{aligned}$ | $\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{1 \mathrm{a}} \\ & \mathbf{A}_{\mathrm{b}} \end{aligned}$ | $A_{0 a}$ <br> $A_{0 b}$ | $\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$ | $\begin{aligned} & Z_{1 a} \\ & Z_{1 b} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{Z}_{2 a} \\ & \mathbf{Z}_{2 \mathrm{~b}} \end{aligned}$ | $\begin{aligned} & z_{3 a} \\ & z_{3 b} \end{aligned}$ |
| H | X | X | X | L | L | L | L |
| X | H | X | X | L | L | L | L |
| L | L | L | L | H | L | L | L |
| L | L | L | H | L | H | L | L |
| L | L | H | L | L | L | H | L |
| L | L | H | H | L | L | L | H |

[^13]TABLE 2-9. Single 1-of-8 Mode Truth Table

| Inputs |  |  |  | Active-HIGH Outputs ( $\mathrm{H}_{\mathrm{c}}$ Input HIGH) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1} \quad \mathrm{E}_{2}$ | $\mathrm{A}_{2 \mathrm{a}}$ | $\mathrm{A}_{1 \mathrm{a}}$ | $\mathrm{A}_{0 \mathrm{a}}$ | $\mathrm{Z}_{0}$ | $\mathrm{Z}_{1}$ | $\mathrm{Z}_{2}$ | $\mathrm{Z}_{3}$ | $\mathrm{Z}_{4}$ | $\mathrm{Z}_{5}$ | $\mathrm{Z}_{6}$ | $\mathrm{Z}_{7}$ |
| H X | X | X | X | L | L | L | L | L | L | L | L |
| X H | X | X | X | L | L | L | L | L | L | L | L |
| L L | L | L | L | H | L | L | L | L | L | L | L |
| L L | L | L | H | L | H | L | L | L | L | L | L |
| L L | L | H | L | L | L | H | L | L | L | L | L |
| L L | L | H | H | L. | L. | L | H | L | L | L | L |
|  | H | L | L | L | L | L. | L | H | L | L | L |
| L L | H | L | H | L | L | L | L | L | H | L | L |
| L L | H | H | L | L | L | L | L | L | L | H | L |
| L L | H | H | H | L | L | L | L | L | L | L | H |

$\mathrm{M}=\mathrm{HIGH} ;$
$A_{0 b}=A_{1 b}=H_{a}=H_{b}=L O W$
$E_{1}=E_{1 a}$ and $E_{1 b}$ Wired; $E_{2}=E_{2 a}$ and $E_{2 b}$ Wired
H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
If the M input is HIGH , then the F 100170 is configured as a single $1-o f-8$ decoder. $A_{0 b}, A_{1 b}, H_{a}$, and $H_{b}$ must all be LOW. Table 2-9 is a truth table for the F100170 in single 1-of-8 mode. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{C}}$ is mode LOW.
Figure 2-18 and Table 2-10 show a universal decimal decoder and the decode table, respectively. The sense of the outputs can be easily modified. The entire decoder may be enabled with a LOW at the Function input.

Decoder (Continued)
TABLE 2-10. Output Selection

| $A_{0}-A_{3}$ <br> Weighted <br> Input | Selected Output per Input Code |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{8 4 2 1}$ | $\mathbf{5 4 2 1}$ | Excess <br> $\mathbf{3}$ | Excess <br> $\mathbf{3}$ Gray | $\mathbf{2 4 2 1}$ |
| 0 | 0 | 0 | 3 | 2 | 0 |
| $\mathbf{1}$ | 1 | 1 | 4 | 6 | 1 |
| 2 | 2 | 2 | 5 | 7 | 2 |
| 3 | 3 | 3 | 6 | 5 | 3 |
| 4 | 4 | 4 | 7 | 4 | 4 |
| 5 | 5 | 8 | 8 | 12 | 11 |
| 6 | 6 | 9 | 9 | 13 | 12 |
| 7 | 7 | 10 | 10 | 15 | 13 |
| 8 | 8 | 11 | 11 | 14 | 14 |
| 9 | 9 | 12 | 12 | 10 | 15 |

Figure 2-19 shows a scheme to decode five lines with a 1 -of- 32 decoder. Inputs $A_{0}, A_{1}$, and $A_{2}$ are connected to the address select inputs of all four decoders in parallel. Both the true and complement of the two high order addresses are formed and then ANDed together at the decoder enable inputs.
Figure $2-20$ shows a 1-of-64 decoder which uses the LOW outputs of one F100170 to enable one-of-eight F100170 devices whose address inputs are connected together. The unused enable inputs may be used to enable all 64 outputs. The 64 outputs may be either active HIGH or LOW. The propagation delay from address to any output is 4.5 ns maximum.


FIGURE 2-18. Universal Decimal Decoder


TL/F/9899-20

FIGURE 2-19. 1-of-32 Decoder

Decoder (Continued)


TL/F/9899-21
FIGURE 2-20. 1-of-64 Decoder

## Comparators

The F100166 is a 9-bit magnitude comparator which compares the arithmetic value of two 9 -bit words and indicates either $A>B, A<B$, or $\overline{A=B}$.
The unequal outputs are active HIGH so that expansion is simple, Figure 2-21 indicates how two 64-bit words may be compared in 5.4 ns typical. If desired, the $\overline{A=B}$ outputs of the first rank may be OR-wired to obtain an active-LOW $\overline{A=B}$ in 2.7 ns typical.
The F100107 Quint Exclusive-OR/NOR may be used as a 5 -bit identity comparator with a propagation delay of 2.0 ns typical. The F100160 Parity Checker/Generator may also be used as an identity comparator.


TL/F/9899-24
FIGURE 2-21. 64-Bit Magnitude Comparator

## Parity Generator/Checker

The F100160 is a dual 9-bit parity checker/generator. The output (of each section) is HIGH when an even number of inputs are HIGH. Thus, to generate odd parity on eight bits, the ninth input would be held HIGH. One of the nine inputs on each half has a shorter propagation $\left(l_{a}, l_{b}\right)$ delay and is thus preferred for expansion.

Figure $2-22$ shows how to build a 16 -bit parity checker using a single F100160. The typical propagation delay from the longest input is 4.05 ns . This circuit can be turned into a parity generator by replacing "P" at input $\mathrm{l}_{\mathrm{b}}$ with a LOW or HIGH for even or odd parity, respectively.


TL/F/9899-25
FIGURE 2-22. 16-Bit Parity Checker/Generator

## Arithmetic Logic Unit

The F100181 is a 4-bit binary/BCD ALU with a typical propagation delay of 4.5 ns . Output latches are provided to reduce system package count. When the latches are not required, they may be made transparent. Table 2-11 summarizes the functions available in the F100181. Table 2-12 is a summary of add times as a function of word width using the F100181 and, optionally, the F100179 Lookahead Carry Generator. These are calculated using maximum times for flatpak at $25^{\circ} \mathrm{C}$ from the data sheets and assume zero interconnection times. Further, it is assumed that the $S$ (function select) inputs are available very early; their delay paths are ignored. The F100181 specification sheet indicates how the parts are interconnected.

TABLE 2-11. F100181 Functions

| $\mathrm{S}_{3}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Function | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | A Plus $B$ BCD |  |
| L | L | L | H | A Minus B BCD |  |
| L | L | H | L | B Minus A BCD |  |
| L | L | H | H | O Minus A BCD |  |
| L | H | L | L | A Plus B Binary |  |
| L | H | L | H | A Minus B Binary |  |
| L | H | H | L | B Minus A Binary |  |
| L | H | H | H | O Minus B Binary |  |
| H | L | L | L | Identity | $F=A \bullet B+\bar{A} \bullet \bar{B}$ |
| H | L | L | H | XOR | $F=A \cdot \bar{B}+\bar{A} \cdot B$ |
| H | L | H | L | OR | $F=A+B$ |
| H | L | H | H | A | $F=A$ |
| H | H | L | L | Inverse | $\mathrm{F}=\overline{\mathrm{B}}$ |
| H | H | L | H | B | $F=B$ |
| H | H | H | L | AND | $F=A \cdot B$ |
| H | H | H | H | Zero | F = LOW |

[^14]
## Arithmetic Logic Unit (Continued)

TABLE 2-12. Summary of Add Times Using F100181

| Bits | Ripple <br> Carry | 1 F100179 <br> Lookahead <br> Carry | 2 F100179 <br> Lookahead <br> Carries |
| :---: | :---: | :---: | :---: |
| 8 | 11.3 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ |
| 16 | 16.9 | 11.9 | $\mathrm{n} / \mathrm{a}$ |
| 32 | 28.1 | 14.7 | 14.6 |
| 64 | 50.5 | $\mathrm{n} / \mathrm{a}$ | 17.4 |


| Ripple Carry = | (A or B to $\left.\mathrm{C}_{n}+4\right)+\left(\mathrm{C}_{\mathrm{n}}\right.$ to F$)+$ ((D - 2) $C_{n}$ to $C_{n+4)}$ <br> where $D=$ number of 100181 devices |
| :---: | :---: |
| 16-Bit, 1 Lookahead = | (A or B to $P$ or $G)+\left(C_{n}\right.$ to $\left.F\right)+$ ( $t_{p}$ of 100179) |
| 32-Bit, 1 Lookahead = | (A or B to P or G) + ( $\mathrm{C}_{\mathrm{n}}$ to F ) + (tp of 100179) $+\left(C_{n}\right.$ to $C_{n+4}$ of last stage) |
| 32-Bit, 2 Lookaheads $=$ | (A or B to P or G) $+\left(C_{n}\right.$ to $\left.F\right)+$ ( $2 \mathrm{t}_{\mathrm{p}}$ of 100179) |
| -Bit, 2 Lookaheads = | (A or B to P or G) $+\left(C_{n}\right.$ to $\left.F\right)+$ (2tp of 100179) $+\left(C_{n}\right.$ to $C_{n+4}$ of last stage) |

## Multipliers

The F100182 Wallace Tree Adder and F100183 Recode Multiplier can be combined to build extremely fast parallel multipliers. The F100183 data sheet has detailed applications information; Table 2-13 is a summary of delay times and package counts for various operand sizes. The times are typical and do not include interconnection delays.

TABLE 2-13. Multiplier Summary

| Operand Size | Delay (ns) | Device Count |
| :---: | :---: | :---: |
| $16 \times 16$ | 16 | 62 |
| $24 \times 24$ | 22 | 115 |
| $32 \times 32$ | 24 | 186 |
| $64 \times 64$ | 26 | 634 |

## TTL/F100K InterfacingTranslators

The problem of mixing F100K ECL logic levels with TTL logic levels can be easily overcome with the use of level translators. Level translators are designed to convert the input level of one logic family to a level which is consistent with that of another logic family. This enables designers to take advantage of the high speeds offered by F100K ECL in critical system paths and to use other logic families in areas where speed is not as essential. National's wide range of level translators offer designers a solution for most level translation applications.
The F100124 and F100324 are hex translators designed for converting TTL logic levels to F100K ECL logic levels. Both products are functionally interchangeable, as are all the 300

Series redesigns. On the F100124 or F100324, a common Enable input ( E ), when LOW, holds all inverting ECL outputs HIGH and all true ECL outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver.
The F100125 and F100325 are hex F100K ECL-to-TTL translators. F100K ECL-to-TTL level translation is probably the most common application for translators today. Logic designers can take advantage of the high speeds offered by ECL and the high densities offered by TTL memories (DRAMS). The F100125 and F100325 have outputs which are compatible with standard or Schottky TTL. Differential inputs allow each circuit to be used as an inverting, non-inverting or differential receiver. An internal reference voltage generator provides $V_{B B}$ for single ended operation, or for use in Schmitt trigger applications.
For applications which require wider bit functions the F100393 or the F100395 may be more appropriate. The F100393 is a 9 -bit F100K ECL-to-TTL level translator with latched outputs and the F100395 is a 9-bit F100K ECL-toTTL translator with registers. Both products are designed with FAST TTL outputs capable of driving loads of up to 64 mA . A LOW on the latch enable (LE) input of the F100393, latches the data at the input state. A HIGH on the LE makes the latches transparent. A HIGH on either the ECL or TTL output enable ( $\overline{O E E C L}$ or $\overline{O E}$ TTL) inputs, holds the outputs in a high impedance state. For the F100395, a HIGH on the output enable ( $\overline{\mathrm{OE}}$ ) holds the TTL outputs in a high impedance state. A LOW on the clock enable (EN) transfers the data on the inputs to the outputs on a LOW-toHIGH transition. A high on the $\overline{E N}$ input will not change the state of the outputs.
Some applications may require bi-directional level translation on one chip. That is, the ability to direct the translation in either the F100K ECL-to-TTL direction, or in the TTL-toF100K ECL direction. The F100128 and F100328 accomplish this task. The F100128 and the F100328 are Octal F100K ECL/TTL Bi-Directional Translators with Latched outputs. The direction of the translation for these devices is determined by the DIR input, a LOW is for ECL-to-TTL translation and a HIGH is for TTL-to-ECL translation. A LOW on the output enable input (OE), holds the ECL outputs in a cut-off state and the TTL outputs in a high impedance state. The latched outputs of these devices are controlled by the latch enable input (LE). A HIGH on the LE, latches the data at both inputs even though only one output is enabled at the time (Tn or En as determined by the DIR input). A LOW on the LE input makes the latches transparent.
The F100329 is an Octal F100K ECL/TTL Bi-directional Translator similar to the F100328, but employs the use of registers instead of latches. The direction of the translation is also controlled by the DIR input. A LOW on the DIR input will translate in the ECL-to-TTL direction and a HIGH will translate in the TTL-to-ECL direction. A LOW on the output enable input (OE) of the F100329 holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP), even though only one output is enabled at a time (En or Tn, as determined by the DIR input).

## 10K/F100K Interfacing

The problem caused by mixing 10K ECL and F100K ECL is illustrated in Figures 2-25 and 2-26. 10K output levels and input thresholds vary with temperature whereas F100K levels and thresholds remain essentially constant. This means that the noise margins vary with temperature, even if the temperatures of the driving and receiving circuits track. Perhaps the worst case is shown in Figure 2-26, which illustrates F100K driving 10K.


TL/F/9899-26
FIGURE 2-25. 10K ECL Driving 100K ECL


TL/F/9899-27
FIGURE 2-26. 100K ECL Driving 10K ECL

At $+75^{\circ} \mathrm{C}$, the high margins are seen to be less than 100 mV . Clearly this would not represent acceptable DC margins in any real system.
If the use of 10 K ECL in an F100K system is unavoidable, it is recommended that all interfacing be done differentially. This is illustrated in Figure 2.27 which is applicable for either direction.


TL/F/9899-28
FIGURE 2-27. Interfacing 10K and F100K

# Chapter 3 Transmission Line Concepts 

## Introduction

The interactions between wiring and circuitry in high-speed systems are more easily determined by treating the interconnections as transmission lines. A brief review of basic concepts is presented and simplified methods of analysis are used to examine situations commonly encountered in digital systems. Since the principles and methods apply to any type of logic circuit, normalized pulse amplitudes are used in sample waveforms and calculations.

## Simplifying Assumptions

For the great majority of interconnections in digital systems, the resistance of the conductors is much less than the input and output resistance of the circuits. Similarly, the insulating materials have very good dielectric properties. These circumstances allow such factors as attenuation, phase distortion, and bandwidth limitations to be ignored. With these simplifications, interconnections can be dealt with in terms of characteristic impedance and propagation delay.

## Characteristic Impedance

The two conductors that interconnect a pair of circuits have distributed series inductance and distributed capacitance between them, and thus constitute a transmission line. For any length in which these distributed parameters are constant, the pair of conductors have a characteristic impedance $Z_{0}$. Whereas quiescent conditions on the line are determined by the circuits and terminations, $Z_{0}$ is the ratio of transient voltage to transient current passing by a point on the line when a signal charge or other electrical disturbance occurs. The relationship between transient voltage, transient current, characteristic impedance, and the distributed parameters is expressed as follows:
$\frac{V}{I}=Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}$
where $L_{0}=$ inductance per unit length, $C_{0}=$ capacitance per unit length. $Z_{0}$ is in ohms, $L_{0}$ in Henries, $C_{0}$ in Farads.

## Propagation Velocity

Propagation velocity $v$ and its reciprocal, delay per unit length $\delta$, can also be expressed in terms of $L_{0}$ and $C_{0}$. $A$ consistent set of units is nanoseconds, microhenries and picofarads, with a common unit of length.
$v=\frac{1}{\sqrt{L_{0} C_{0}}} \quad \delta=\sqrt{L_{0} C_{0}}$
Equations 3-1 and 3-2 provide a convenient means of determining the $L_{0}$ and $C_{0}$, of a line when delay, length and impedance are known. For a length / and delay T, $\delta$ is the ratio $\mathrm{T} /$. To determine $L_{0}$ and $C_{0}$, combine Equations 3-1 and 3-2.

$$
\begin{align*}
& \mathrm{L}_{0}=\delta \mathrm{Z}_{0}  \tag{3-3}\\
& \mathrm{C}_{0}=\frac{\delta}{\mathrm{Z}_{0}} \tag{3-4}
\end{align*}
$$

More formal treatments of transmission line characteristics, including loss effects, are available from many sources. ${ }^{1-3}$

## Termination and Reflection

A transmission line with a terminating resistor is shown in Figure 3-1. As indicated, a positive step function voltage travels from left to right. To keep track of reflection polarities, it is convenient to consider the lower conductor as the voltage reference and to think in terms of current flow in the top conductor only. The generator is assumed to have zero internal impedance. The initial current $l_{1}$ is determined by $V_{1}$ and $Z_{0}$.


TL/F/9900-1
FIGURE 3-1. Assigned Polarities and Directions for Determining Reflections
If the terminating resistor matches the line impedance, the ratio of voltage to current traveling along the line is matched by the ratio of voltage to current which must, by Ohm's law, always prevail at $\mathrm{R}_{\mathrm{T}}$. From the viewpoint of the voltage step generator, no adjustment of output current is ever required; the situation is as though the transmission line never existed and $R_{T}$ had been connected directly across the terminals of the generator. From the $R_{T}$ viewpoint, the only thing the line did was delay the arrival of the voltage step by the amount of time T .
When $R_{T}$ is not equal to $Z_{0}$, the initial current starting down the line is still determined by $\mathrm{V}_{1}$ and $\mathrm{Z}_{0}$ but the final steady state current, after all reflections have died out, is determined by $V_{1}$ and $R_{T}$ (ohmic resistance of the line is assumed to be negligible). The ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current demanded by $R_{T}$. Therefore, at the instant the initial wave arrives at $R_{T}$, another voltage and current wave must be generated so that Ohm's law is satisfied at the lineload interface. This reflected wave, indicated by $V_{r}$ and $I_{r}$ in Figure 3-1, starts to return toward the generator. Applying

## Termination and Reflection (Continued)

Kirchoff's laws to the end of the line at the instant the initial wave arrives, results in the following.
$I_{1}+I_{r}=I_{T}=$ current into $R_{T}$
Since only one voltage can exist at the end of the line at this instant of time, the following is true:
thus $\quad I_{T}=\frac{V_{T}}{R_{T}}=\frac{V_{1}+V_{r}}{R_{T}}$
also

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{Z_{0}} \text { and } I_{r}=-\frac{V_{r}}{Z_{0}} \tag{3-6}
\end{equation*}
$$

nt wave is shown in Figure 3-2a, before it has reached the end of the line. In Figure 3-2b, a positive $V_{r}$ is returning to the generator. To the left of $\mathrm{V}_{\mathrm{r}}$ the current is still $I_{1}$, flowing to the right, while to the right of $V_{r}$ the net current in the line is the difference between $\mathrm{I}_{1}$ and $\mathrm{I}_{\mathrm{r}}$. In Figure 3-2c, the reflection coefficient is negative, producing a negative $V_{r}$. This, in turn, causes an increase in the amount of current flowing to the right behind the $\mathrm{V}_{\mathrm{r}}$ wave.


TL/F/9900-4
c. Reflected Wave for $\mathbf{R}_{\mathbf{T}}<\mathbf{Z}_{\mathbf{0}}$ FIGURE 3-2. Reflections for $\mathbf{R}_{\mathbf{T}} \neq \mathbf{Z}_{\mathbf{0}}$

## Source Impedance, Multiple Reflections

When a reflected voltage arrives back at the source (generator), the reflection coefficient at the source determines the response to $V_{r}$. The coefficient of reflection at the source is governed by $Z_{0}$ and the source resistance $R_{S}$.
$\rho_{\mathrm{s}}=\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}}$
If the source impedance matches the line impedance, a reflected voltage arriving at the source is not reflected back toward the load end. Voltage and current on the line are stable with the following values.
$V_{T}=V_{1}+V_{r}$ and $I_{T}=I_{1}-I_{r}$
If neither source impedance nor terminating impedance matches $Z_{0}$, multiple reflections occur; the voltage at each end of the line comes closer to the final steady state value with each succeeding reflection. An example of a line mismatched on both ends is shown in Figure 3-3. The source is a step function of 1 V amplitude occurring at time $\mathrm{t}_{0}$. The initial value of $V_{1}$ starting down the line is 0.75 V due to the voltage divider action of $Z_{0}$ and $R_{S}$. The time scale in the photograph shows that the line delay is approximately 6 ns . Since neither end of the line is terminated in its characteristic impedance, multiple reflections occur.
The amplitude and persistence of the ringing shown in Figure 3-3 become greater with increasing mismatch between the line impedance and source and load impedances. Re-



TL/F/9900-6
FIGURE 3-3. Multiple Reflections Due to Mismatch at Load and Source
ducing $\mathrm{R}_{\mathrm{S}}$ (Figure 3-3) to $13 \Omega$ increases $\rho_{\mathrm{S}}$ to -0.75 V , and the effects are illustrated in Figure 3-4. The initial value of $V_{T}$ is 1.8 V with a reflection of 0.9 V from the open end. When this reflection reaches the source, a reflection of $0.9 \mathrm{~V} \times$ -0.75 V starts back toward the open end. Thus, the second increment of voltage arriving at the open end is negative going. In turn, a negative-going reflection of $0.9 \mathrm{~V} \times-0.75 \mathrm{~V}$ starts back toward the source. This negative increment is again multiplied by -0.75 at the source and returned toward the open end. It can be deduced that the difference in amplitude between the first two positive peaks observed at the open end is

$$
\begin{align*}
V_{T}-V^{\prime} T & =\left(1+\rho_{L}\right) V_{1}-\left(1+\rho_{L}\right) V_{1} \rho^{2} L \rho^{2} S  \tag{3-12}\\
& =\left(1+\rho_{L}\right) V_{1}\left(1-\rho_{L}^{2} \rho^{2} S\right) .
\end{align*}
$$

The factor ( $1-\rho^{2} L_{L} \rho^{2} \mathrm{~S}$ ) is similar to the damping factor associated with lumped constant circuitry. It expresses the attenuation of successive positive or negative peaks of ringing.


FIGURE 3-4. Extended Ringing when $\mathbf{R}_{\mathbf{S}}$ of Figure 3-3 is Reduced to $13 \Omega$

## Lattice Diagram

In the presence of multiple reflections, keeping track of the incremental waves on the line and the net voltage at the ends becomes a bookkeeping chore. A convenient and systematic method of indicating the conditions which combines magnitude, polarity and time utilizes a graphic construction called a lattice diagram. ${ }^{4}$ A lattice diagram for the line conditions of Figure 3-3 is shown in Figure 3-5.
The vertical lines symbolize discontinuity points, in this case the ends of the line. A time scale is marked off on each line in increments of 2 T , starting at $\mathrm{t}_{0}$ for $\mathrm{V}_{1}$ and T for $\mathrm{V}_{\mathrm{T}}$. The diagonal lines indicate the incremental voltages traveling between the ends of the line; solid lines are used for positive voltages and dashed lines for negative. It is helpful to write the reflection and transmission multipliers $\rho$ and $(1+\rho)$ at each vertical line, and to tabulate the incremental and net voltages in columns alongside the vertical lines. Both the lattice diagram and the waveform photograph show that $\mathrm{V}_{1}$ and $\mathrm{V}_{\mathrm{T}}$ asymptotically approach 1 V , as they must with a $1 V$ source driving an open-ended line.

Lattice Diagram (Continued)


TL/F/9900-8
FIGURE 3-5. Lattice Diagram for the Circuit of Figure 3-3

## Shorted Line

The open-ended line in Figure $3-3$ has a reflection coefficient of +1 and the successive reflections tend toward the steady state conditions of zero line current and a line voltage equal to the source voltage. In contrast, a shorted line has a reflection coefficient of $\mathbf{- 1}$ and successive reflections must cause the line conditions to approach the steady state conditions of zero voltage and a line current determined by the source voltage and resistance.
Shorted line conditions are shown in Figure 3-6a with the reflection coefficient at the source end of the line also negative. A negative coefficient at both ends of the line means that any voltage approaching either end of the line is reflected in the opposite polarity. Figure 3-6b shows the response to an input step-function with a duration much longer than the line delay. The initial voltage starting down the line is about +0.75 V , which is inverted at the shorted end and returned toward the source as -0.75 V . Arriving back at the source end of the line, this voltage is multiplied by $\left(1+\rho_{\mathrm{S}}\right)$, causing a -0.37 V net change in $\mathrm{V}_{1}$. Concurrently, a reflected voltage of $+0.37 \mathrm{~V}\left(-0.75 \mathrm{~V}\right.$ times $\rho_{S}$ of -0.5$)$ starts back toward the shorted end of the line. The voltage at $\mathrm{V}_{1}$ is reduced by $50 \%$ with each successive round trip of reflections, thus leading to the final condition of zero volts on the line.
When the duration of the input pulse is less than the delay of the line, the reflections observed at the source end of the line constitute a train of negative pulses, as shown in Figure $3-6 c$. The amplitude decreases by $50 \%$ with each successive occurrence as it did in Figure 3-6b.


TL/F/9900-10
b. Input Pulse Duration $>$ Line Delay

TL/F/9900-9
$\rho_{\mathrm{S}}=-0.5$
$\rho_{\mathrm{L}}=\frac{0-93}{0+93}=-1$

## a. Reflection Coefficients for Shorted Line

FIGURE 3-6. Reflections of Long and Short Pulses on a Shorted Line

## Series Termination

Driving an open-ended line through a source resistance equal to the line impedance is called series termination. It is particularly useful when transmitting signals which originate on a PC board and travel through the backplane to another board, with the attendant discontinuities, since reflections coming back to the source are absorbed and ringing thereby controlled. Figure $3-7$ shows a $93 \Omega$ line driven from a $1 V$ generator through a source impedance of $93 \Omega$. The photograph illustrates that the amplitude of the initial signal sent down the line is only half of the generator voltage, while the voltage at the open end of the line is doubled to full amplitude ( $1+\rho_{L}=2$ ). The reflected voltage arriving back at the source raises $\mathrm{V}_{1}$ to the full amplitude of the generator signal. Since the reflection coefficient at the source is zero, no further changes occur and the line voltage is equal to the generator voltage. Because the initial signal on the line is only half the normal signal swing, the loads must be connected at or near the end of the line to avoid receiving a 2step input signal.
An ECL output driving a series terminated line requires a pull-down resistor to $\mathrm{V}_{\mathrm{EE}}$, as indicated in Figure 3-8. The resistor $R_{0}$ shown in Figure 3.8 symbolizes the output resistance of the ECL gate. The relationships between $\mathrm{R}_{0}, \mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{E}}$ and $\mathrm{Z}_{0}$ are discussed in Chapter 4.


TL/F/9900-12

$H=10$ nsidiv
$\mathrm{V}=0.4 \mathrm{~V} / \mathrm{div}$
TL/F/9900-13
FIGURE 3-7. Series Terminated Line and Waveforms


TL/F/9900-14
FIGURE 3-8. ECL Element Driving a Series Terminated Line

## Extra Delay with Termination Capacitance

Designers should consider the effect of the load capacitance at the end of the line when using series termination. Figure 3-9 shows how the output waveform changes with increasing load capacitance. Figure $3-9 b$ shows the effect of load capacitances of $0,12,24,48 \mathrm{pF}$. With no load, the delay between the $50 \%$ points of the input and output is just the line delay $T$. A capacitive load at the end of the line causes an extra delay $\Delta T$ due to the increase in rise time of the output signal. The midpoint of the output is used as a criterion because the propagation delay of an ECL circuit is measured between the $50 \%$ points of the input and output signals.

a. Serles Terminated LIne with Load Capacitance


TL/F/9900-16
b. Output Rise Time Increase with Increasing Load Capacitance


TL/F/9900-17
c. Extra Delay $\Delta T$ Due to Rise Time Increase

FIGURE 3-9. Extra Delay with Termination Capacitance

Extra Delay with Termination Capacitance (Continued)


TL/F/9900-18
a. Thevenin Equivalent for
Serles Terminated Case

$v_{\text {in }}(t)=\frac{V}{a}[t u(t)-(t-a) u(t-a)]$
$u(t)=\frac{0 \text { for } t<0}{1 \text { for } t>0}$
$u(t-a)=\begin{gathered}0 \text { for } t<a, \\ 1 \text { for } t>a\end{gathered}$
$V_{I N}(S)=\frac{V}{a s^{2}}\left(1-e^{-a s}\right)$
$V_{C}(S)=\frac{V}{a r} \cdot \frac{1}{s^{2}(s+1 / \tau)}\left(1-e^{-a s}\right)$
$v_{c}(t)=\frac{V}{a}\left[t-\tau\left(1-e^{-t / \tau}\right)\right] u(t)$
$-\frac{V}{a}[(t-a)$
$\left.-\tau\left(1-e^{-\frac{t-a}{\tau}}\right)\right] u(t-a)$
c. Equations for Input and Output Voltages

FIGURE 3-10. Determining the Effect of End-of-Line Capacitance

The increase in propagation delay can be calculated by using a ramp approximation for the incident voltage and characterizing the circuit as a fixed impedance in series with the load capacitance, as shown in Figure 3-10. One general solution serves both series and parallel termination cases by using an impedance $Z^{\prime}$ and a time constant $\tau$, defined in Figure 3-10a and 3-10b. Calculated and observed increases in delay time to the $50 \%$ point show close agreement when $\tau$ is less than half the ramp time. At large ratios of $\tau / \mathrm{a}$ (where a = ramp time), measured delays exceed calculated values by approximately $7 \%$. Figure 3-11, based on measured values, shows the increase in delay to the $50 \%$ point as a function of the $Z^{\prime} C$ time constant, both normalized to the $10 \%$ to $90 \%$ rise time of the input signal. As an example of using the graph, consider a $100 \Omega$ series terminated line with 30 pF load capacitance at the end of the line and a noload rise time of 3 ns for the input signal. From Figure 3-10a, $Z^{\prime}$ is equal to $100 \Omega$; the ratio $Z^{\prime} C / t_{r}$ is 1 . From the graph, the ratio $\Delta T / t_{r}$ is 0.8 . Thus the increase in the delay to the $50 \%$ point of the output waveform is $0.8 \mathrm{t}_{\mathrm{r}}$, or 2.4 ns , which is then added to the no-load line delay $T$ to determine the total delay.
Had the $100 \Omega$ line in the foregoing example been parallel rather than series terminated at the end of the line, $Z^{\prime}$ would be $50 \Omega$. The added delay would be only 1.35 ns with the same 30 pF loading at the end. The added delay would be only 0.75 ns if the line were $50 \Omega$ and parallel terminated. The various trade-offs involving type of termination, line impedance, and loading are important considerations for critical delay paths.


TL/F/9900-21
FIGURE 3-11. Increase in 50\% Point Delay Due to Capacitive Loading at the End of the Line, Normalized to $\mathbf{T}_{\mathbf{r}}$

## Distributed Loading Effects on Line Characteristics

When capacitive loads such as ECL inputs are connected along a transmission line, each one causes a reflection with a polarity opposite to that of the incident wave. Reflections from two adjacent loads tend to overlap if the time required for the incident wave to travel from one load to the next is equal to or less than the signal rise time. 5 Figure 3-12a illustrates an arrangement for observing the effects of capacitive loading, while Figure $3-12 b$ shows an incident wave followed by reflections from two capacitive loads. The two capacitors causing the reflections are separated by a distance requiring a travel time of 1 ns . The two reflections return to the source 2 ns apart, since it takes 1 ns longer for the incident wave to reach the second capacitor and an additional 1 ns for the second reflection to travel back to the source. In the upper trace of Figure 3-12b, the input signal rise time is 1 ns and there are two distinct reflections, although the trailing edge of the first overlaps the leading edge of the second. The input rise time is longer in the middle trace, causing a greater overlap. In the lower trace, the 2 ns input rise time causes the two reflections to merge and appear as a single reflection which is relatively constant (at $\approx-10 \%$ ) for half its duration. This is about the same reflection that would occur if the $93 \Omega$ line had a middle section with an impedance reduced to $75 \Omega$.
With a number of capacitors distributed all along the line of Figure 3-12a, the combined reflections modify the observed input waveform as shown in the top trace of Figure 3-12c. The reflections persist for a time equal to the 2 -way line delay ( 15 ns ), after which the line voltage attains its final value. The waveform suggests a line terminated with a resistance greater than its characteristic impedance $\left(R_{T}>\right.$
$Z_{0}$ ). This analogy is strengthened by observing the effect of reducing $R_{T}$ from $93 \Omega$ to $75 \Omega$, which leads to the middle waveform of Figure 3-12c. Note that the final (steady state) value of the line voltage is reduced by about the same amount as that caused by the capacitive reflections. In the lower trace of Figure 3-12c the source resistance $\mathrm{R}_{\mathrm{S}}$ is reduced from $93 \Omega$ to $75 \Omega$, restoring both the initial and final line voltage values to the same amplitude as the final value in the upper trace. From the standpoint of providing a desired signal voltage on the line and impedance matching at either end, the effect of distributed capacitive loading can be treated as a reduction in line impedance.
The reduced line impedance can be calculated by considering the load capacitance $C_{L}$ as an increase in the intrinsic line capacitance $\mathrm{C}_{0}$ along that portion of the line where the loads are connected. 6 Denoting this length of line as $l$, the distributed value $C_{D}$ of the load capacitance is as follows.

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{C}_{\mathrm{L}}}{l}
$$

$C_{D}$ is then added to $C_{0}$ in Equation 3-1 to determine the reduced line impedance $Z_{0}$.

$$
\begin{align*}
& Z_{0}^{\prime}=\sqrt{\frac{L_{0}}{C_{0}+C_{D}}}=\sqrt{\frac{L_{0}}{C_{0}\left(1+\frac{C_{D}}{C_{0}}\right)}}  \tag{3-13}\\
& Z^{\prime}{ }_{0}+\frac{\sqrt{\frac{L_{0}}{C_{0}}}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}=\frac{Z_{0}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}
\end{align*}
$$



## a. Arrangement for Observing Capacitive Loading Effects


b. Capacitive Reflections Merging

as Rise Time Increases
c. Matching the Altered Impedance of a Capacitively Loaded Line

TL/F/9900-24

FIGURE 3-12. Capacitive Reflections and Effects on Line Characteristics

## Distributed Loading Effects on

Line Characteristics (Continued)
In the example of Figure 3-12c, the total load capacitance is 33 pF while the total intrinsic line capacitance $/ \mathrm{C}_{0}$ is 60 pF . (Note that the ratio $\mathrm{C}_{\mathrm{D}} / \mathrm{C}_{0}$ is the same as $\mathrm{C}_{\mathrm{L}} / / \mathrm{C}_{0}$.) The calculated value of the reduced impedance is thus
$Z^{\prime}{ }_{0}=\frac{93}{\sqrt{1+\frac{33}{60}}}=\frac{93}{\sqrt{1.55}}=75 \Omega$
This correlates with the results observed in Figure 3-12c when $R_{T}$ and $R_{S}$ are reduced to $75 \Omega$.
The distributed load capacitance also increases the line delay, which can be calculated from Equation 3-2.

$$
\begin{align*}
\delta^{\prime} & =\sqrt{L_{0}\left(C_{0}+C_{D}\right)}=\sqrt{L_{0} C_{0}} \sqrt{1+\frac{C_{D}}{C_{0}}} \\
& =\delta \sqrt{1+\frac{C_{D}}{C_{0}}} \tag{3-15}
\end{align*}
$$

The line used in the example of Figure $3-12 c$ has an intrinsic delay of 6 ns and a loaded delay of 7.5 ns which checks with Equation 3-15.
$1 \delta^{\prime}=/ \delta \sqrt{1.55}=6 \sqrt{1.55}=7.5 \mathrm{~ns}$
Equation 3-15 can be used to predict the delay for a given line and load. The ratio $C_{D} / C_{0}$ (hence the loading effect) can be minimized for a given loading by using a line with a high intrinsic capacitance $\mathrm{C}_{0}$.
A plot of $Z^{\prime}$ and $\delta^{\prime}$ for a $50 \Omega$ line as a function of $C_{D}$ is shown in Figure 3-13. This figure illustrates that relatively modest amounts of load capacitance will add appreciably to the propagation delay of a line. In addition, the characteristic impedance is reduced significantly.


TL/F/9900-25
FIGURE 3-13. Capacitive Loading Effects on Line Delay and Impedance
Worst case reflections from a capacitively loaded section of transmission line can be accurately predicted by using the modified impedance of Equation 3-9.6 When a signal originates on an unloaded section of line, the effective reflection coefficient is as follows.
$\rho=\frac{Z^{\prime}{ }_{0}-Z_{0}}{Z^{\prime}{ }_{0}+Z_{0}}$

## Mismatched Lines

Reflections occur not only from mismatched load and source impedances but also from changes in line impedance. These changes could be caused by bends in coaxial cable, unshielded twisted-pair in contact with metal, or mismatch between PC board traces and backplane wiring. With the coax or twisted-pair, line impedance changes run about $5 \%$ to $10 \%$ and reflections are usually no problem since the percent reflection is roughly half the percent change in impedance. However, between PC board and backplane wiring, the mismatch can be 2 or 3 to 1 . This is illustrated in Figure 3-14 and analyzed in the lattice diagram of Figure 3 -15. Line 1 is driven in the series terminated mode so that reflections coming back to the source are absorbed.
The reflection and transmission at the point where impedances differ are determined by treating the downstream line as though it were a terminating resistor. For the example of Figure 3-14, the reflection coefficient at the intersection of lines 1 and 2 for a signal traveling to the right is as follows.
$\rho_{12}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{93-50}{143}=+0.3$
Thus the signal reflected back toward the source and the signal continuing along line 2 are, respectively, as follows.
$V_{1 r}=\rho_{12} V_{1}=+0.3 V_{1}$
$V_{2}=\left(1+\rho_{12}\right) V_{1}=+1.3 V_{1}$
At the intersection of lines 2 and 3 , the reflection coefficient for signals traveling to the right is determined by treating $Z_{3}$ as a terminating resistor.
$\rho_{23}=\frac{Z_{3}-Z_{2}}{Z_{3}+Z_{2}}=\frac{39-93}{132}=-0.41$
When $V_{2}$ arrives at this point, the reflected and transmitted signals are as follows.

$$
\begin{align*}
V_{2 r} & =\rho_{23} V_{2}=-0.41 \mathrm{~V}_{2} \\
& =(-0.41)(1.3) \mathrm{V}_{1}  \tag{3-21a}\\
& =-0.53 \mathrm{~V}_{1} \\
V_{3} & =\left(1+\rho_{23}\right) \mathrm{V}_{2}=0.59 \mathrm{~V}_{2} \\
& =(0.59)(1.3) \mathrm{V}_{1}  \tag{3-21b}\\
& =0.77 \mathrm{~V}_{1}
\end{align*}
$$

Voltage $\mathrm{V}_{3}$ is doubled in magnitude when it arrives at the open-ended output, since $\rho_{L}$ is +1 . This effectively cancels the voltage divider action between $R_{S}$ and $Z_{1}$.

$$
\begin{align*}
V_{4} & =\left(1+\rho_{\mathrm{L}}\right) V_{3}=\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right) V_{2} \\
& =\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) V_{1}  \tag{3-22}\\
& =\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \frac{V_{0}}{2}
\end{align*}
$$

$\mathrm{V}_{4}=\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \mathrm{V}_{\mathrm{O}}$
Thus, Equation 3-22 is the general expression for the initial step of output voltage for three lines when the input is series terminated and the output is open-ended.

Mismatched Lines (Continued)
Note that the reflection coefficients at the intersections of lines 1 and 2 and lines 2 and 3 in Figure 3-15 have reversed signs for signals traveling to the left. Thus the voltage reflected from the open output and the signal reflecting back and forth on line 2 both contribute additional increments of output voltage in the same polarity as $\mathrm{V}_{\mathrm{O}}$. Lines 2 and 3 have the same delay time; therefore, the two aforementioned increments arrive at the output simultaneously at time 5T on the lattice diagram (Figure 3-15).
In the general case of series lines with different delay times, the vertical lines on the lattice diagram should be spaced apart in the ratio of the respective delays. Figure 3-16 shows this for a hypothetical case with delay ratios 1:2:3. For a sequence of transmission lines with the highest im-
pedance line in the middle, at least three output voltage increments with the same polarity as $\mathrm{V}_{\mathrm{O}}$ occur before one can occur of opposite polarity. On the other hand, if the middle line has the lowest impedance, the polarity of the second increment of output voltage is the opposite of $\mathrm{V}_{\mathrm{O}}$. The third increment of output voltage has the opposite polarity, for the time delay ratios of Figure 3-16.
When transmitting logic signals, it is important that the initial step of line output voltage pass through the threshold region of the receiving circuit, and that the next two increments of output voltage augment the initial step. Thus in a series terminated sequence of three mismatched lines, the middle line should have the highest impedance.
(


TL/F/9900-27
FIGURE 3-14. Reflections from Mismatched Lines


FIGURE 3-15. Lattice Diagram for the Circuit of Figure 3-14

## Mismatched Lines (Continued)



TL/F/9900-29
FIGURE 3-16. Lattice Dlagram for Three Lines with Delay Ratlos 1:2:3

## Rise Time versus Line Delay

When the 2-way line delay is less than the rise time of the input wave, any reflections generated at the end of the line are returned to the source before the input transition is completed. Assuming that the generator has a finite source resistance, the reflected wave adds algebraically to the input wave while it is still in transition, thereby changing the shape of the input. This effect is illustrated in Figure 3-17, which shows input and output voltages for several comparative values of rise time and line delay.
In Figure 3-17b where the rise time is much shorter than the line delay, $\mathrm{V}_{1}$ rises to an initial value of 1 V . At time T later, $V_{T}$ rises to 0.5 V , i.e., $1+\rho_{L}=0.5$. The negative reflection arrives back at the source at time 2 T , causing a net change of -0.4 V , i.e., $\left(1+\rho_{\mathrm{S}}\right)(-0.5)=-0.4$.
The negative coefficient at the source changes the polarity of the other 0.1 V of the reflection and returns it to the end of the line, causing $\mathrm{V}_{\mathrm{T}}$ to go positive by another 50 mV at time $3 T$. The remaining 50 mV is inverted and reflected back to the source, where its effect is barely distinguishable as a small negative change at time 4 T .
In Figure $3-17 c$, the input rise time ( $0 \%$ to $100 \%$ ) is increased to such an extent that the input ramp ends just as the negative reflection arrives back at the source end. Thus the input rise time is equal to 2 T .
The input rise time is increased to 4T in Figure 3-17d, with the negative reflection causing a noticeable change in input slope at about its midpoint. This change in slope is more visible in the double exposure photo of Figure 3-17e, which shows $V_{1}$ ( $t_{r}$ still set for $4 T$ ) with and without the negative reflection. The reflection was eliminated by terminating the line in its characteristic impedance.

The net input voltage at any particular time is determined by adding the reflection to the otherwise unaffected input. It must be remembered that the reflection arriving back at the input at a given time is proportional to the input voltage at a time 2T earlier. The value of $\mathrm{V}_{1}$ in Figure 3-17d can be calculated by starting with the 1 V input ramp.
$V_{1}=\frac{1}{t_{r}} \bullet t$ for $0 \leq t \leq 4 T$

$$
\begin{equation*}
=1 \mathrm{~V} \quad \text { for } t \geq 4 \mathrm{~T} \tag{3-23}
\end{equation*}
$$

The reflection from the end of the line is
$V_{r}=\frac{\rho_{L}(t-2 T)}{t_{r}}$;
the portion of the reflection that appears at the input is
$V^{\prime}{ }_{r}=\frac{\left(1+\rho_{S}\right) \rho_{L}(t-2 T)}{t_{r}} ;$
the net value of the input voltage is the sum.
$V_{1}^{\prime}=\frac{t}{t_{r}}+\frac{\left(1+\rho_{S}\right)+\rho_{L}(t-2 T)}{t_{r}}$
The peak value of the input voltage in Figure 3-17d is determined by substituting values and letting $t$ equal 4 T .

$$
\begin{align*}
\mathrm{V}_{1}^{\prime} & =1+\frac{(0.8)(-0.5)(4 \mathrm{~T}-2 \mathrm{~T})}{\mathrm{t}_{\mathrm{r}}}  \tag{3-27}\\
& =1-0.4(0.5)=0.8 \mathrm{~V}
\end{align*}
$$

After this peak point, the input ramp is no longer increasing but the reflection is still arriving. Hence the net value of the input voltage decreases. In this example, the later reflections are too small to be detected and the input voltage is thus stable after time 6 T . For the general case of repeated reflections, the net voltage $V_{1(t)}$ seen at the driven end of the line can be expressed as follows, where the signal caused by the generator is $V_{1(t)}$.

$$
\begin{aligned}
V^{\prime}{ }_{1(t)}= & V_{1(t)} \\
& \text { for } 0<t<2 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& \text { for } 2 T<t<4 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& +\left(1+\rho_{S}\right) \rho_{S} \rho_{L}^{2} V_{1(t-4 T)} \\
& \text { for } 4 T<t<6 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& +\left(1+\rho_{S}\right) \rho_{S} \rho_{L}^{2} V_{1(t-4 T)} \\
& +\left(1+\rho_{S}\right) \rho_{S}^{2} \rho_{L} V_{1(t-6 T)} \\
& \text { for } 6 T<t<8 T, \text { etc. }
\end{aligned}
$$

The voltage at the output end of the line is expressed in a similar manner.
$V_{T(t)}=0$

$$
\text { for } 0<t<T
$$

$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$ for $\mathrm{T}<\mathrm{t}<3 \mathrm{~T}$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
$+(1+\rho \mathrm{L}) \rho_{S P L} V_{1(t-3 T)}$
for $3 \mathrm{~T}<\mathrm{t}<5 \mathrm{~T}$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$ $+\left(1+\rho_{\mathrm{L}}\right) \rho_{\mathrm{S}} \rho_{\mathrm{L}} \mathrm{V}_{\mathrm{t}(\mathrm{t}-3 \mathrm{~T})}$
$+\left(1+\rho_{\mathrm{L}}\right) \rho \mathrm{S}^{2} \rho_{\mathrm{L}}{ }^{2} \mathrm{~V}_{1(\mathrm{t}-5 \mathrm{~T})}$ for $5 \mathrm{~T}<\mathrm{t}<7 \mathrm{~T}$, etc.

a. Test Arrangement for Rise Time Analysis

b. Line Voltages for $t_{r} \ll T$

c. Line Voltages for $t_{r}=2 T$


TL/F/9900-33
d. Line Voltages for $t_{r}=4 T$


TL/F/9900-34
e. Input Voltage with and without Reflection

## Ringing

Multiple reflections occur on a transmission line when neither the signal source impedance nor the termination (load) impedance matches the line impedance. When the source reflection coefficient $\rho_{S}$ and the load reflection coefficient $P_{L}$ are of opposite polarity, the reflections alternate in polarity. This causes the signal voltage to oscillate about the final steady state value, commonly recognized as ringing.
When the signal rise time is long compared to the line delay, the signal shape is distorted because the individual reflections overlap in time. The basic relationships among rise time, line delay, overshoot and undershoot are shown in a simplified diagram, Figure 3-18. The incident wave is a ramp of amplitude B and rise duration A . The reflection coefficient at the open-ended line output is +1 and the source reflection coefficient is assumed to be -0.8 , i.e., $R_{0}=Z_{0} / 9$.

Figure $3-18 b$ shows the individual reflections treated separately. Rise time A is assumed to be three times the line delay T . The time scale reference is the line output and the first increment of output voltage $V_{O}$ rises to $2 B$ in the time interval A. Simultaneously, a positive reflection (not shown) of amplitude $B$ is generated and travels to the source, whereupon it is multiplied by -0.8 and returns toward the end of the line. This negative-going ramp starts at time 2 T (twice the line delay) and doubles to -1.6 B at time $2 \mathrm{~T}+\mathrm{A}$. The negative-going increment also generates a reflection of amplitude -0.8 B which makes the round trip to the source and back, appearing at time 4 T as a positive ramp rising to +1.28 B at time $4 \mathrm{~T}+\mathrm{A}$. The process of reflection and rereflection continues, and each successive increment changes in polarity and has an amplitude of $80 \%$ of the preceding increment.


## Ringing (Continued)

In Figure 3-18c, the output increments are added algebraically by superposition. The starting point of each increment is shifted upward to a voltage value equal to the algebraic sum of the quiescent levels of all the preceding increments (i.e., $0,2 \mathrm{~B}, 0.4 \mathrm{~B}, 1.68 \mathrm{~B}$, etc.). For time intervals when two ramps occur simultaneously, the two linear functions add to produce a third ramp that prevails during the overlap time of the two increments.
It is apparent from the geometric relationships, that if the ramp time $A$ is less than twice the line delay, the first output increment has time to rise to the full 2 B amplitude and the second increment reduces the net output voltage to 0.4 B . Conversely, if the line delay is very short compared to the ramp time, the excursions about the final value $V_{G}$ are small.
Figure 3-18c shows that the peak of each excursion is reached when the earlier of the two constituent ramps reaches its maximum value, with the result that the first peak occurs at time A. This is because the earller ramp has a greater slope (absolute value) than the one that follows.
Actual waveforms such as produced by ECL or TTL do not have a constant slope and do not start and stop as abruptly as the ramp used in the example of Figure 3-18. Predicting the time at which the peaks of overshoot and undershoot occur is not as simple as with ramp excitation. A more rigorous treatment is required, including an expression for the driving waveform which closely simulates its actual shape. In the general case, a peak occurs when the sum of the slopes of the individual signal increment is zero.

## Summary

The foregoing discussions are by no means an exhaustive treatment of transmission line characteristics. Rather, they
are intended to focus attention on the general methods used to determine the interactions between high-speed logic circuits and their interconnections. Considering an interconnection in terms of distributed rather than lumped inductance and capacitance leads to the line impedance concept, i.e., mismatch between this characteristic impedance and the terminations causes reflections and ringing.
Series termination provides a means of absorbing reflections when it is likely that discontinuities and/or line impedance changes will be encountered. A disadvantage is that the incident wave is only one-half the signal swing, which limits load placement to the end of the line. ECL input capacitance increases the rise time at the end of the line, thus increasing the effective delay. With parallel termination, i.e., at the end of the line, loads can be distributed along the line. ECL input capacitance modifies the line characteristics and should be taken into account when determining line delay.

## References

1. Metzger, G. and Vabre, J., Transmission Lines with Pulse Excitation, Academic Press, (1969).
2. Skilling, H., Electric Transmission Lines, McGraw-Hill, (1951).
3. Matick, R., Transmission Lines for Digital and Commun/cation Networks, McGraw-Hill, (1969).
4. Millman, J. and Taub, H., Pulse Digital and Switching Waveforms, McGraw-Hill, (1965).
5. "Time Domain Reflectometry", Hewlett-Packard Journal, Vol. 15, No. 6, (February 1964).
6. Feller, A., Kaupp H., and Digiacoma, J., "Crosstalk and Reflections in High-Speed Digital Systems", Proceedings, Fall Joint Computer Conference, (1965).

# Chapter 4 System Considerations 

## Introduction

All of National's ECL input and output impedances are designed to accommodate various methods of driving and terminating interconnections. Controlled wiring impedance makes it possible to use simplified equivalent circuits to determine limiting conditions. Specific guidelines and recommendations are based on assumed worst-case combinations. Many of the recommendations may seem conservative, compared to typical observations, but the intent is to help the designer achieve a reliable system in a reasonable length of time with a minimum amount of redesign.

## PC Board Transmission Lines

Strictly speaking, transmission lines are not always required for F100K ECL but, when used, they provide the advantages of predictable interconnect delays as well as reflection and ringing control through impedance matching. Two common types of PC board transmission lines are microstrip and stripline, Figure 4-1. Stripline requires multilayer construction techniques; microstrip uses ordinary double-clad boards. Other board construction techniques are wire wrap, stitch weld and discrete wired.


Stripline, Figure 4-1b, is used where packing density is a high priority because increasing the interconnect layers provides short signal paths. Boards with as many as 14 layers have been used in ECL systems.
Microstrip offers easier fabrication and higher propagation velocity than stripline, but the routing for a complex system may require more design effort. In Figure 4-1a, the ground plane can be a part of the $\mathrm{V}_{\mathrm{EE}}$ distribution as long as adequate bypassing from $\mathrm{V}_{E E}$ to $\mathrm{V}_{\mathrm{CC}}$ (ground) is provided. Also, signal routing is simplified and an extra voltage plane is obtained by bonding two microstrip structures back to back, Figure 4-1c.

## Microstrip

Equation 4-1 relates microstrip characteristic impedance to the dielectric constant and dimensions. ${ }^{1}$ Electric field fringing requires that the ground extend beyond each edge of the signal trace by a distance no less than the trace width.

$$
\begin{align*}
Z_{0} & =\left(\frac{60}{\sqrt{0.475 \epsilon_{\mathrm{r}}+0.67}}\right) \ln \left(\frac{4 \mathrm{~h}}{0.67(0.8 \mathrm{w}+\mathrm{t})}\right)  \tag{4-1}\\
& =\left(\frac{87}{\sqrt{\epsilon_{\mathrm{r}}+1.41}}\right) \ln \left(\frac{5.98 \mathrm{~h}}{0.8 \mathrm{w}+\mathrm{t}}\right)
\end{align*}
$$

where $\mathrm{h}=$ dielectric thickness, $\mathrm{w}=$ trace width, $\mathrm{t}=$ trace thickness, $\epsilon_{\mathrm{r}}=$ board material dielectric constant relative to air.

PC Board Transmission Lines (Continued)
Equation 4-1 was developed from the impedance formula for a wire over ground plane transmission line, Equation 4-2.

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon_{\mathrm{r}}}}\right) \ln \left(\frac{4 h}{d}\right) \tag{4-2}
\end{equation*}
$$

where $\mathrm{d}=$ wire diameter, $\mathrm{h}=$ distance from ground to wire center.
Comparing Equation $4-1$ and 4-2, the term $0.67(0.8 \mathrm{w}+\mathrm{t})$ shows the equivalence between a round wire and a rectangular conductor. The term $0.475 \epsilon_{\mathrm{r}}+0.67$ is the effective dielectric constant for microstrip $\epsilon_{\mathrm{e}}$, considering that a microstrip line has a compound dielectric consisting of the board material and air. The effective dielectric constant is determined by measuring propagation delay per unit of line length and using the following relationship.

$$
\begin{equation*}
\delta=1.016 \cdot \sqrt{\epsilon_{\mathrm{e}}} \mathrm{~ns} / \mathrm{ft} \tag{4-3}
\end{equation*}
$$

where $\delta=$ propagation delay, ns/ft.
Propagation delay is a property of the dielectric material rather than line width or spacing. The coefficient 1.016 is the reciprocal of the velocity of light in free space. Propagation delay for microstrip lines on glass-filled G-10 epoxy boards is typically $1.77 \mathrm{~ns} / \mathrm{ft}$, yielding an effective dielectric constant of 3.04.


TL/F/9901-4

## FIGURE 4-2. Microstrip Impedance Versus Trace Width, G-10 Epoxy

Using $\epsilon_{r}=5.0$ in Equation 4-1, Figure 4-2 provides microstrip line impedance as a function of width for several G-10 epoxy board thicknesses. Figure $4-3$ shows the related $\mathrm{C}_{0}$ values, useful for determining capacitive loading effects on line characteristics, (Equation 3-15).
System designers should ascertain tolerances on board dimensions, dielectric constant and trace width etching in order to determine impedance variations. If conformal coating is used the effective dielectric constant of microstrip is increased, depending on the coating material and thickness.


TL/F/9901-5
FIGURE 4-3. Microstrip Distributed Capacitance Versus Impedance, G-10 Epoxy

## Stripline

Stripline conductors are totally embedded. As a result, the board material determines the dielectric constant. G-10 epoxy boards have a typical propagation delay of $2.26 \mathrm{~ns} / \mathrm{ft}$. Equation 4-4 is used to calculate stripline impedances. ${ }^{1,2}$

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon_{\mathrm{r}}}}\right) \ln \left(\frac{4 \mathrm{~b}}{0.67 \pi(0.8 w+t)}\right) \tag{4-4}
\end{equation*}
$$

where $\mathbf{b}=$ distance between ground planes, $w=$ trace width, $\mathrm{t}=$ trace thickness, $\mathrm{w} /(\mathrm{b}-\mathrm{t})<0.35$ and $\mathrm{t} / \mathrm{b}<0.25$.
Figure 4-4 shows stripline impedance as a function of trace width, using Equation 4-4 and various ground plane separations for G-10 glass-filled epoxy boards. Related values of $\mathrm{C}_{0}$ are plotted in Figure 4-5.


TL/F/9901-6
FIGURE 4-4. Stripline Impedance Versus Trace Width, G-10 Epoxy


FIGURE 4-5. Stripline Distributed Capacitance Versus Impedance, G-10 Epoxy

## Wire Wrap

Wire-wrap boards are commercially available with three voltage planes, positions for several 24 -pin Dual-In-Line Packages (DIP), terminating resistors, and decoupling capacitors. The devices are mounted on socket pins and interconnected with twisted pair wiring. One wire at each end of the twisted pair is wrapped around a signal pin, the other around a ground pin. The \#30 insulated wire is uniformly twisted to provide a nominal $93 \Omega$ impedance line. Positions for Single-In-Line Package (SIP) terminating resistors are close to the inputs to provide good termination characteristics.

## Stitch Weld

Stitch-weld boards are commercially available with three voltage planes and buried resistors between planes. The devices are mounted on terminals and interconnected with insulated wires that are welded to the backside of the terminals. The insulated wires are placed on a controlled thickness over the ground plane to provide a nominal impedance of $50 \Omega$. The boards are available for both DIPs and flatpaks. Use of flatpaks can increase package density and provide higher system performance.

## Discrete Wired

Custom Multiwire* boards are available with integral power and ground planes. Wire is placed on a controlled thickness above the ground plane to obtain a nominal impedance line of $55 \Omega$. Then holes are drilled through the wire and board. Copper is deposited in the drilled holes by an additive-electrolysis process which bonds each wire to the wall of the holes. Devices are soldered on the board to make connection to the wires.
*Multiwire is a registered trademark of the Multiwire Corporation.

## Parallel Termination

Terminating a line at the receiving end with a resistance equal to the characteristic line impedance is called parallel termination, Figure 4-6a. F100K circuits do not have internal pull-down resistors on outputs, so the terminating resistor must be returned to a voltage more negative than $\mathrm{V}_{\mathrm{OL}}$ to establish the LOW-state output voltage from the emitter follower. A -2 V termination return supply is commonly used. This minimizes power consumption and correlates with standard test specifications for ECL circuits. A pair of resistors connected in series between ground ( $V_{C C}$ ) and the $V_{E E}$
supply can provide the Thevenin equivalent of a single resistor to -2 V if a separate termination supply is not available, Figure 4-6b. The average power dissipation in the Thevenin equivalent resistors is about 10 times the power dissipation in the single resistor returned to -2 V , as shown in Figures $5-10$ and $5-13$. For either parallel termination method, decoupling capacitors are required between the supply and ground (Chapter 6).

## a. Parallel Termination


b. Thevenin Equivalent of $R_{T}$ and $V_{T T}$


## c. Equivalent Circuit for Determining Approximate $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ Levels



TL/F/9901-10
d. F100K Output Characteristic with Terminating Resistor $\mathrm{R}_{\mathrm{T}}$ Returned to $\mathrm{V}_{\mathrm{TT}}=\mathbf{- 2 . 0 V}$


TL/F/9901-11
FIGURE 4-6. Parallel Termination

## PC Board Transmission Lines (Continued)

F100K output transistors are designed to drive low-impedance loads and have a maximum output current rating of 50 mA . The circuits are specified and tested with a $50 \Omega$ load returned to -2 V . This gives nominal output levels of -0.955 V at 20.9 mA and -1.705 V at 5.9 mA . Output levels will be different with other load currents because of the transistor output resistance. This resistance is nonlinear with load current since it is due, in part, to the base-emitter voltage of the emitter follower, which is logarithmic with output current. With the standard $50 \Omega$ load, the effective source resistance is approximately $6 \Omega$ in the HIGH state and $8 \Omega$ in the LOW state.

The foregoing values of output voltage, output current, and output resistance are used to estimate quiescent output levels with different loads. An equivalent circuit is shown in Figure 4-6c. The ECL circuit is assumed to contain two internal voltage sources $\mathrm{E}_{\mathrm{OH}}$ and $\mathrm{EOL}_{\mathrm{OL}}$ with series resistances of $6 \Omega$ and $8 \Omega$ respectively. The values shown for $\mathrm{E}_{\mathrm{OH}}$ and $\mathrm{E}_{\mathrm{OL}}$ are -0.85 V and -1.67 V respectively.
The linearized portion of the F100K output characteristic can be represented by two equations:
For $V_{\text {OH: }} V_{\text {OUT }}=-850-6$ OUT
For $V_{\text {OL: }}$ V VUT $=-1670-8$ IOUT
where lout is in $\mathrm{mA}, \mathrm{V}_{\text {OUT }}$ is in mV .
If the range of lout is confined between 8 mA to 40 mA for $\mathrm{V}_{\mathrm{OH}}$, and 2 mA to 16 mA for $\mathrm{V}_{\mathrm{OL}}$, the output voltage can be estimated within $\pm 10 \mathrm{mV}$ (Figure 4-6d).
An ECL output can drive two or more lines in parallel, provided the maximum rated current is not exceeded. Another consideration is the effect of various loads on noise margins. For example, two parallel $75 \Omega$ terminations to $-2 V$ (Figure $4-6 d$ ) give output levels of approximately -1.000 V and -1.716 V . Noise margins are thus 35 mV less in the HIGH state and 11 mV more in the LOW state, compared to $50 \Omega$ load conditions. Conversely, a single $75 \Omega$ load to -2 V causes noise margins 38 mV greater in the HIGH state and 11 mV less in the Low state, compared to a $50 \Omega$ load.

The magnitude of reflections from the terminated end of the line depends on how well the termination resistance $R_{T}$ matches the line impedance $Z_{0}$. The ratio of the reflected voltage to the incident voltage $V_{i}$ is the reflection coefficient $\rho$.

$$
\begin{equation*}
\frac{V_{r}}{V_{i}}=\rho=\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}} \tag{4-5}
\end{equation*}
$$

The initial signal swing at the termination is the sum of the incident and reflected voltages. The ratio of termination signal to incident signal is thus:

$$
\begin{equation*}
\frac{V_{T}}{V_{i}}=1+\rho=\frac{2 R_{T}}{R_{T}+Z_{0}} \tag{4-6}
\end{equation*}
$$

The degree of reflections which can be tolerated varies in different situations, but to allow for worst-case circuits, a good rule of thumb is to limit reflections to $15 \%$ to prevent excursions into the threshold region of the ECL inputs connected along the line. The range of permissible values of $\mathrm{R}_{\mathrm{T}}$ as a function of $Z_{0}$ and the reflection coefficient limitations can be determined by rearranging Equation 4-5.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{0} \frac{1+\rho}{1-\rho} \tag{4-7}
\end{equation*}
$$

Using $15 \%$ reflection limits as examples, the range of the $\mathrm{R}_{\mathrm{T}} / \mathrm{Z}_{0}$ ratio is as follows.

$$
\begin{equation*}
\frac{1.15}{0.85}>\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{Z}_{0}}>\frac{0.85}{1.15} \quad 1.35>\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{Z}_{0}}>0.74 \tag{4-8}
\end{equation*}
$$

The permissible range of the $\mathrm{R}_{\mathrm{T}} / Z_{0}$ ratio determines the tolerance ranges for $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{Z}_{0}$. For example, using the foregoing ratio limits, $R_{T}$ tolerances of $\pm 10 \%$ allow $Z_{0}$ tolerance limits of $+22 \%$ and $-19 \%$; $R_{T}$ tolerances of $\pm 5 \%$ allow $Z_{0}$ tolerance limits of $+28 \%$ and $-23 \%$.
An additional requirement on the maximum value of $R_{T}$ is related to the value of quiescent $\mathrm{I}_{\mathrm{OH}}$ current needed to insure sufficient negative-going signal swing when the ECL driver switches from the HIGH state to the LOW state. The npn emitter-follower output of the ECL circuit cannot act as a voltage source driver for negative-going transitions. When the voltage at the base of the emitter follower starts going negative as a result of an internal state change, the output current of the emitter follower starts to decrease. The transmission line responds to the decrease in current by producing a negative-going change in voltage. The ratio of the voltage change to the current change is, of course, the characteristic impedance $Z_{0}$. Since the maximum decrease in current that the line can experience is from $\mathrm{l}_{\mathrm{OH}}$ to zero, the maximum negative-going transition which can be produced is the product $\mathrm{I}_{\mathrm{OH}} \mathrm{Z}_{0}$.
If the $\mathrm{l}_{\mathrm{OH}} \mathrm{Z}_{\mathrm{O}}$ product is greater than the normal negative-going signal swing, the emitter follower responds by limiting the current change, thereby controlling the signal swing. If, however, the $\mathrm{I}_{\mathrm{OH}} \mathrm{Z}_{0}$ product is too small, the emitter follower is momentarily turned off due to insufficient forward bias of its base-emitter junctions, causing a discontinuous nega-tive-going edge such as the one shown in Figure 4-14. In the output-L.OW state the emitter follower is essentially nonconducting for $V_{O L}$ values more positive than about -1.55 V . Using this value as a criterion and expressing $\mathrm{l}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OH}}$ in terms of the equivalent circuit of Figure 4-6c, an upper limit on the value of $R_{T}$ can be developed.

$$
\begin{align*}
& \Delta V=I_{O H} Z_{0}>1.55-\left|V_{O H}\right| \\
& \left(\frac{E_{O H}-V_{T T}}{R_{0}+R_{T}}\right) Z_{0}>1.55-\left|\frac{V_{T T} R_{0}=E_{O H} R_{T}}{R_{0}+R_{T}}\right| \\
& R_{T}<\frac{\left(E_{O H}-V_{T T}\right) Z_{0}-\left(1.55-\left|V_{T T}\right|\right) R_{0}}{1.55-\left|E_{O H}\right|} \tag{4-9}
\end{align*}
$$

For a $V_{T T}$ of $-2 \mathrm{~V}, \mathrm{R}_{0}$ of $6 \Omega$ and $\mathrm{E}_{\mathrm{OH}}$ of -0.85 V , Equation 4-9 reduces to
$R_{T}<1.64 Z_{0}+3.86 \Omega$
For $Z_{0}=50 \Omega$, the emitter follower cuts off during a nega-tive-going transition if $R_{T}$ exceeds $86 \Omega$. Changing the voltage level criteria to -1.60 V to insure continuous conduction in the emitter follower gives an upper limit of $77 \Omega$ for a $50 \Omega$ line. For a line terminated at the receiving end with a resistance to -2 V , a rough rule-of-thumb is that termination resistance should not exceed line impedance by more than $50 \%$. This insures a satisfactory negatve-going signal swing to ECL inputs connected along the line. The quiescent $\mathrm{V}_{\mathrm{OL}}$ level, after all reflections have damped out, is determined by $\mathrm{R}_{\mathrm{T}}$ and the ECL output characteristic.

## Input Impedance

The input impedance of ECL circuits is predominately capacitive. A single-function input has an effective value of about 1.5 pF for F100K flatpak, as determined by its effect on reflected and transmitted signals on transmission lines.

## Input Impedance (Continued)

In practical calculations, a value of 2 pF should be used. Approximately one third of this capacitance is attributed to the internal circuitry and two thirds to the flatpak pin and internal bonding.
For F100K flatpak circuits, multiple input lines may appear to have up to 3 pF to 4 pF but never more. For example, in the F100102, an input is connected internally to all five gates, but because of the philosophy of buffering these types of inputs in the F100K family this input appears as a unit load with a capacitance of approximately 2 pF . For applications such as a data bus, with two or more outputs connected to the same line, the capacitance of a passiveLOW output can be taken as 2 pF .
Capacitive loads connected along a transmission line increase the propagation delay of a signal along the line. The modified delay can be determined by treating the load capacitance as an increase in the intrinsic distributed capacitance of the line, discussed in Chapter 3. The intrinsic capacitance of any stubs which connect the inputs to the line should be included in the load capacitance. The intrinsic capacitance per unit length for G-10 epoxy boards is shown in Figure 4-3 and 4-5 for microstrip and stripline respectively. For other dielectric materials, the intrinsic capacitance $\mathrm{C}_{0}$ can be determined by dividing the intrinsic delay $\delta$ (Equation $4-3$ ) by the line impedance $Z_{0}$.
The length of a stub branching off the line to connect an input should be limited to insure that the signal continuing along the line past the stub has a continuous rise, as opposed to a rise (or fall) with several partial steps. The point where a stub branches off the line is a low impedance point. This creates a negative coefficient of reflection, which in turn reduces the amplitude of the incident wave as it continues beyond the branch point. If the stub length is short enough, however, the first reflection returning from the end of the stub adds to the attenuated incident wave while it is still rising. The sum of the attenuated incident wave and the first stub reflection provides a step-free signal, although its rise time will be longer than that of the original signal. Satisfactory signal transitions can be assured by restricting stub lengths according to the recommendations for unterminated lines (Figure 4-10). The same considerations apply when the termination resistance is not connected at the end of the line; a section of line continuing beyond the termination resistance should be treated as an unterminated line and its length restricted accordingly.

## Series Termination

Series termination requires a resistor between the driver and transmission line, Figure 4-7. The receiving end of the line has no termination resistance. The series resistor value should be selected so that when added to the driver source resistance, the total resistance equals the line impedance. The voltage divider action between the net series resistance and the line impedance causes an incident wave of half amplitude to start down the line. When the signal arrives at the unterminated end of the line, it doubles and is thus restored to a full amplitude. Any reflections returning to the source are absorbed without further reflection since the line and source impedance match. This feature, source absorption, makes series termination attractive for interconnection paths involving impedance discontinuities, such as occur in backplane wiring.
A disadvantage of series termination is that driven inputs must be near the end of the line to avoid receiving a 2-step
signal. The initial signal at the driver end is half amplitude, rising to full amplitude only after the reflection returns from the open end of the line. In Figure 4-7, one load is shown connected at point $D$, aways from the line end. This input receives a full amplitude signal with a continuous edge if the distance I to the open end of the line is within recommended lengths for unterminated line (Figure 4-10).


TL/F/9901-12
FIGURE 4-7. Series Termination
The signal at the end has a slower rise time that the incident wave because of capacitive loading. The increase in rise time to the $50 \%$ point effectively increases the line propagation delay, since the $50 \%$ point of the signal swing is the input signal timing reference point. This added delay as a function of the product line impedance and load capacitance is discussed in Chapter 3.
Quiescent $V_{O H}$ and $V_{O L}$ levels are established by resistor $\mathrm{R}_{\mathrm{E}}$ (Figure 4-7), which also acts with $\mathrm{V}_{\mathrm{EE}}$ to provide the negative-going drive into $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{Z}_{0}$ when the driver output goes to the LOW state. To determine the appropriate $R_{E}$ value, the driver output can be treated as a simple mechanical switch which opens to initiate the negative-going swing. At this instant, $Z_{\mathrm{O}}$ acts as a linear resistor returned to $\mathrm{V}_{\mathrm{OH}}$. Thus the components form a simple circuit of $R_{E}, R_{S}$ and $Z_{0}$ in a series, connected between $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{OH}}$. The initial current in this series circuit must be sufficient to introduce a 0.38 V transient into the line, which then doubles at the load end to give 0.75 V swing.

$$
\begin{equation*}
I_{R E}=\frac{V_{O H}-V_{E E}}{R_{E}+P_{S}+Z_{0}} \geq \frac{0.38}{Z_{0}} \tag{4-10}
\end{equation*}
$$

Any $\mathrm{IOH}_{\mathrm{OH}}$ current flowing in the line before the switch opens helps to generate the negative swing. This current may be quite small, however, and should be ignored when calculating $\mathrm{R}_{\mathrm{E}}$.
Increasing the minimum signal swing into the line by $30 \%$ to 0.49 V insures sufficient pull-down current to handle reflection currents caused by impedance discontinuities and load capacitance. The appropriate $R_{E}$ value is determined from the following relationship.

$$
\begin{equation*}
\frac{V_{O H}-V_{E E}}{R_{E}+R_{S}+Z_{0}} \geq \frac{0.49}{Z_{0}} \tag{4-11}
\end{equation*}
$$

For the $R_{E}$ range normally used, quiescent $V_{O H}$ averages approximately 0.955 V and $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. The value of $\mathrm{R}_{\mathrm{S}}$ is equal to $Z_{0}$ minus $R_{0}$ ( $R_{0}$ averages $7 \Omega$ ). Inserting these values and rearranging Equation 4-11 gives the following.

$$
\begin{equation*}
R_{E} \leq 5.23 Z_{0}+7 \Omega \tag{4-12}
\end{equation*}
$$

Power dissipation in $R_{E}$ is listed in Figure 5-14. The power dissipation in $R_{E}$ is greater than in $R_{T}$ of a parallel termination to -2 V , but still less than the two resistors of the Thevenin equivalent parallel termination, see Figure 5-10, 5-13 and 5-14.
The number of driven inputs on a series terminated line is limited by the voltage drop across $\mathrm{R}_{\mathrm{S}}$ in the quiescent HIGH state, caused by the finite input currents of the ECL loads. $I_{I H}$ values are specified on data sheets for various types of

## Series Termination (Continued)

inputs, with a worst-case value of $265 \mu \mathrm{~A}$ for simple gate inputs. The voltage drop subtracts from the HIGH-state noise margin as outlined in Figure 4-8a.
However, there is more HIGH-state noise margin initially, because there is less $\mathrm{l}_{\mathrm{OH}}$ with the $\mathrm{R}_{\mathrm{E}}$ load than with the standard $50 \Omega$ load to -2 V . This makes $\mathrm{V}_{\text {OH }}$ more positive; the increase ranges from 43 mV for a $50 \Omega$ line to 82 mV for a $100 \Omega$ line. Using this $\mathrm{V}_{\mathrm{OH}}$ increase as a limit on the voltage drop across RS assures that the HIGH-state noise margin is as good as in the parallel terminated case. Dividing the $\mathrm{V}_{\mathrm{OH}}$ increase by $\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{0}\left(=\mathrm{Z}_{0}\right)$ gives the allowed load input current ( 1 x in Figure 4-8a). This works out to 0.86 mA for a $50 \Omega$ line, 0.92 mA for a $75 \Omega$ line and 0.82 mA for a $100 \Omega$ line. Load input current greater than these values can be tolerated at some sacrifice in noise margin. If, for example, an additional 50 mV loss is feasible, the maximum values of current become $1.86 \mathrm{~mA}, 1.59 \mathrm{~mA}$ and 1.32 mA for $50 \Omega, 75 \Omega$ and $100 \Omega$ lines respectively.

An ECL output can drive more than one series terminated line, as suggested in Figure 4-8b, if the maximum rated output current of 50 mA is not exceeded. Also, driving two or more lines requires a lower $R_{E}$ value. This makes the quiescent $\mathrm{I}_{\mathrm{OH}}$ higher and consequently $\mathrm{V}_{\mathrm{OH}}$ lower, due to the voltage drop across $R_{0}$. This voltage drop decreases the HIGH-state noise margin, which may become the limiting factor (rather than the maximum rated current), depending on the particular application.
The appropriate $\mathrm{R}_{\mathrm{E}}$ value can be determined using Equation $4-13$ for $V_{E E}=-4.5 \mathrm{~V}$.

$$
\begin{equation*}
\frac{1}{R_{E}} \geq \frac{1}{6.23 Z_{1}-R_{S 1}}+\frac{1}{6.23 Z_{2}-R_{S 2}}+\frac{1}{6.23 Z_{3}-T_{S 3}} \tag{4-13}
\end{equation*}
$$

Circuits with multiple outputs (such as the F100112) provide an alternate means of driving several lines simultaneous (Figure 4-8c). Note, each output should be treated individually when assiging load distribution, line impedance, and $\mathrm{R}_{\mathrm{E}}$ value.

## Unterminated Lines

Lines can be used without series or parallel termination if the line delay is short compared to the signal rise time. Ringing occurs because the reflection coefficient at the open (receiving) end of the line is positive (nominally +1 ) while the reflection coefficient at the driving end is negative (approximately -0.8 ). These opposite polarity reflection coefficients cause any change in signal voltage to be reflected back and forth, with a polarity change each time the signal is reflected from the driver. Net voltage change on the line is thus a succession of increments with alternating polarity and decreasing magnitude. The algebraic sum of these increments if the observed ringing. The general relationships among rise time, line delay, overshoot and undershoot are discussed in Chapter 3, using simple waveforms for clarity. Excessive overshoot on the positive-going edge of the signal drives input transistors into saturation. Although this does not damage an ECL input, it does cause excessive recovery times and makes propagation delays unpredict-

a. Noise Margin Loss Due to Load Input Current


TL/F/9901-14
b. Driving Several Lines from one Output


TL/F/9901-15
c. Using Multiple Output Element for Load Sharing

## FIGURE 4-8. Loading Considerations for Series Termination

able. Undershoot (following the overshoot) must also be limited to prevent signal excursions into the threshold region of the loads. Such excursions could cause exaggerated transition times at the driven circuit outputs, and could also cause multiple triggering of sequential circuits. Signal swing, exclusive of ringing, is slightly greater on unterminated lines that on parallel terminated lines; $\mathrm{l}_{\mathrm{OH}}$ is less and $\mathrm{l}_{\mathrm{OL}}$ is greater with the $R_{E}$ load, (Figure 4-9a) making $\mathrm{V}_{\mathrm{OH}}$ higher and $\mathrm{V}_{\mathrm{OL}}$ lower.
For worst case combinations of driver output and load input characteristics, a 35\% overshoot limit insures that system speed is not compromised either by saturating an input on overshoot or extending into the threshold region on the following undershoot.
For distributed loading, ringing is satisfactorily controlled if the 2-way modified line delay does not exceed the $20 \%$ to $80 \%$ rise time of the driver output. This relationship can be expressed as follows, using the symbols from Chapter 3 and incorporating the effects of load capacitance on line delay.

$$
t_{\mathrm{r}}=2 \mathrm{~T}^{\prime}=2 \ell \delta^{\prime}=2 \ell \delta \sqrt{1+\frac{\mathrm{C}_{\mathrm{L}}}{\ell \mathrm{C}_{0}}}
$$

Solving this expression for the line length $(\ell)$ :

$$
\begin{equation*}
\ell_{\text {max }}=\frac{1}{2} \sqrt{\left(\frac{C_{L}}{C_{0}}\right)^{2}+\left(\frac{t_{r}}{\delta}\right)^{2}}-\frac{C_{L}}{2 C_{0}} \tag{4-14}
\end{equation*}
$$

Unterminated Lines (Continued)

c. Load Gate Output Showing Net Propagation Increase for Increasing Values of $\mathrm{R}_{\mathrm{E}}$ : 330 , $510 \Omega, 1 \mathrm{k} \Omega$
FIGURE 4-9. Effect on RE Value on Trailing-Edge Propagation
The shorter the rise time, the shorter the premissible line length. For F100K ECL, the minimum rise time from $20 \%$ to $80 \%$ is specified as 0.5 ns . Using this rise time and 2 pF per fan-out load, calculated maximum line lengths for G-10 epoxy microstrip are listed in Figure 4-10a. The length ( $\ell$ ) in the table is the distance from the terminating resistor to the input of the device(s). For F100K ECL the case described in Figure 4-10a is the only one calculated, since all other combinations are approximately the same. For other combinations of rise time, impedance, fan-out or line char-
acteristics ( $\delta$ and $\mathrm{C}_{0}$ ), maximum lengths are calculated using Equation 4-14. For the convenience of those who are also using $10 \mathrm{~K} E C L$, maximum recommended lengths of unterminated lines are listed in Figure 4-10b to 4-10e.

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| 50 | $1.37^{*}$ | 1.13 | 0.95 | 0.81 |
| 62 | 1.33 | 1.07 | 0.87 | 0.70 |
| 75 | 1.25 | 0.95 | 0.75 | 0.61 |
| 90 | 1.18 | 0.85 | 0.66 | 0.53 |
| 100 | 1.15 | 0.82 | 0.61 | 0.49 |

*Length in inches.
Unit load $=2 \mathrm{pF}, \delta=0.148 \mathrm{~ns} /$ inch
FIGURE 4-10a. F100K Maximum Worst-Case Line Lengths for Unterminated Microstrip, Distributed Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $4.15^{*}$ | 3.75 | 3.45 | 2.85 | 2.45 |
| 62 | 3.95 | 3.50 | 3.15 | 2.55 | 2.10 |
| 75 | 3.75 | 3.25 | 2.85 | 2.25 | 1.85 |
| 90 | 3.55 | 3.00 | 2.60 | 2.00 | 1.60 |
| 100 | 3.45 | 2.85 | 2.45 | 1.85 | 1.45 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.148 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10b. 10K Maximum Worst-Case Line Lengths for Unterminated Microstrip, Distributed Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $4.40^{*}$ | 3.65 | 2.60 | 1.90 | 1.40 |
| 62 | 4.30 | 3.45 | 2.30 | 1.60 | 1.15 |
| 75 | 4.20 | 3.20 | 2.05 | 1.40 | 0.95 |
| 90 | 4.05 | 2.95 | 1.75 | 1.05 | 0.65 |
| 100 | 3.90 | 2.80 | 1.60 | 0.90 | 0.50 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.148 \mathrm{~ns} / \mathrm{in}$
FIGURE 4-10c. 10K Maximum Worst-Case Line Lengths for Unterminated Microstrip, Concentrated Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $3.30^{*}$ | 3.00 | 2.70 | 2.25 | 2.90 |
| 62 | 3.15 | 2.80 | 2.50 | 2.00 | 1.65 |
| 75 | 3.00 | 2.60 | 2.25 | 1.80 | 1.45 |
| 90 | 2.80 | 2.40 | 2.05 | 1.55 | 1.25 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.188 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10d. 10K Maximum Worst-Case Line Lengths for Unterminated Stripline, Distributed Loading

Unterminated Lines (Continued)

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $3.45^{*}$ | 2.85 | 2.00 | 1.50 | 1.10 |
| 62 | 3.40 | 2.70 | 1.80 | 1.30 | 0.90 |
| 75 | 3.30 | 2.55 | 1.60 | 1.10 | 0.75 |
| 90 | 3.15 | 2.35 | 1.40 | 0.85 | 0.50 |
| 100 | 3.10 | 2.20 | 1.25 | 0.70 | 0.40 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.188 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10e. 10K Maximum WorstCase Line Lengths for Unterminated Stripline, Concentrated Loading
A load capacitance concentrated at the end of the line restricts line length more than a distributed load does. Maximum recommended lengths for fiberglass epoxy dielectric and a 0.5 ns rise time are listed in Figure $4-10$ for microstrip. For line impedances not listed, linear interpolation can be used to determine appropriate line lengths. Appropriate line lengths for dielectric materials with a different propagation constant $\delta$ can be determined by multiplying the listed values by the fiberglass epoxy $\delta$ and then dividing by the $\delta$ of the other material. For example, a line length for a material which has a microstrip $\delta$ of $0.1 \mathrm{~ns} /$ inch is determined by multiplying the length given in the microstrip table (for a desired impedance and load) by 0.148 and dividing by 0.1.
Resistor $R_{E}$ must provide the current for the negative-going signal at the driver output. Line input and output waveforms are noticeably affected if $\mathrm{R}_{E}$ is too large, as shown in Figure $4-9 b$. The negative-going edge of the signal falls in stairstep fashion, with three distinct steps visible at point A. The waveform at point $B$ shows a step in the middle of the nega-tive-going swing. The effect of different $R_{E}$ values on the net propagation time through the line and the driven loads is evident in Figure 4-9c which shows the output signal of one driven gate in a multiple exposure photograph. The horizontal sweep (time axis) was held constant with respect to the input signal of the driver. The earliest of the three output signals occurs with an $R_{E}$ value of $330 \Omega$. Changing $R_{E}$ to $510 \Omega$ increases the net propagation delay by 0.3 ns , the horizontal offset between the first and second signals. Changing $R_{E}$ to $1 \mathrm{k} \Omega$ produces a much greater increase in net propagation delay, indicating that the negative-going signal at B contains several steps. In practice, a satisfactory negative-going signal results when the $R_{E}$ value is chosen to give an initial negative-going step of 0.6 V at the driving end of the line. This gives an upper limit on the value of $\mathrm{R}_{\mathrm{E}}$, as shown in Equation 4-15.

$$
\begin{align*}
\text { initial step } & =\Delta \ell \cdot Z_{0}=\frac{\left(V_{O H}-V_{E E}\right) Z_{0}}{R_{E}+Z_{0}} \geq 0.6 \\
R_{E} & =\leq 6.25 Z_{0} \tag{4-15}
\end{align*}
$$

An ECL output can drive two or more unterminated lines, provided each line length and loading combination is within the recommended constraints. The appropriate $R_{E}$ value is determined from Equation 4-15, using the parallel impedance of the two or more lines for $Z_{0}$.
An ECL output can simultaneously drive terminated and unterminated lines, although the negative-going edge of the signal shows two or more distinct steps when the stubs are long unless some extra pull-down current is provided. Figure 4-11a shows an ECL circuit driving a parallel terminated line, with provision for connecting two worst-case untermi-
nated lines to the driver output. Waveforms at the termination resistor (point A) are shown in the multiple exposure photograph of Figure 4-11b. The upper trace shows a normal signal without stubs connected to the driver. The middle trace shows the effect of connecting one stub to the driver. The step in the negative-going edge indicates that the quiescent $\mathrm{I}_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ is not sufficient to cause a full signal for both lines. The relationship between the quiescent $\mathrm{I}_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ and the negative-going signal swing was discussed earlier in connection with parallel termination.

The bottom trace in Figure 4-11 shows the effect of connecting two stubs to the driver output. The steps in trailing edge are smaller and more pronounced. The deteriorated trailing edge of either the middle or lower waveform increas-
a. Multiple Lines


TL/F/9901-19
b. Waveforms at Termination Point A


TL/F/9901-20
c. Equivalent Circuit for Determining Initial Negative Voltage Step at the Driver Output


TL/F/9901-21
FIGURE 4-11. Driving Terminated and Unterminated Lines in Parallel

## Unterminated Lines (Continued)

es the switching time of the cirucit connected to point $A$. If this extra delay cannot be tolerated, additional pull-down current must be provided. One method uses a resistor to $\mathrm{V}_{\mathrm{EE}}$ as suggested in Figure 4-11a. The initial negative-going step at point A should be about 0.7 V to insure a good fall rate through the threshold region of the driven gate. The initial step at the driver output should also be 0.7 V . If the driver output is treated as a switch that opens to initiate the negative-going signal, the equivalent circuit of Figure 4-11c can be used to determine the initial voltage step at the driver output (point $X$ ). The value of the current source $\mathrm{I}_{R T}$ is the quiescent $\mathrm{I}_{\mathrm{OH}}$ current through $R_{\mathrm{T}}$. Using $Z$ ' to denote the parallel impedance of the transmission lines and $\Delta V$ for the desired voltage step at $X$, the appropriate value of $R_{E}$ can be determined from the following equation, using absolute values to avoid polarity confusion.

$$
R_{E}=\left(\left|V_{E E}\right|-\left|V_{O H}\right|-\Delta V \mid\right) \cdot\left(\frac{Z^{\prime}}{|\Delta V|-\left|I_{R T}\right| Z^{\prime}}\right)
$$

For a sample calculation, assume that $R_{T}$ and the line impedances are each $100 \Omega, \mathrm{~V}_{\mathrm{OH}}$ is $-0.955 \mathrm{~V}, \Delta \mathrm{~V}$ is 0.750 V , $V_{E E}$ is -4.5 V and $\mathrm{V}_{T T}$ is -2 V . $\mathrm{I}_{R T}$ is thus 10.45 mA and the calculated value of $R_{E}$ is $232 \Omega$. In practice, this value is on the conservative side and can be increased to the next larger ( $10 \%$ ) standard value with no appreciable sacrifice in propagation through the gate at point $A$.
Again, the foregoing example is based on worst-case stub lengths (the longest permissible). With shorter stubs, the effects are less pronounced and a point is reached where extra pull-down current is not required because the reflection from the end of the stub arrives back at the driver while the original signal is still falling. Since the reflection is also negative going, it combines with and reinforces the falling signal at the driver, eliminating the steps. The net result is a smoothly falling signal but with increased fall time compared to the stubless condition.
The many combinations of line impedance and load make it practically impossible to define just with stub length begins to cause noticeable steps in the falling signal. A rough rule-of-thumb would be to limit the stub length to one-third of the values given in Figure 4-10.

## Data Bussing

Data bussing involves connecting two or more outputs and one or more inputs to the same signal line, (Figure 4-12). Any one of the several drivers can be enabled and can apply data to the line. Load inputs connected to the line thus receive data from the selected source. This method of steering data from place to place simplifies wiring and tends to minimize package count. Only one of the drivers can be enabled at a given time; all other driver outputs must be in the LOW state. Termination resistors matching the line impedance are connected to both ends of the line to prevent reflections. For calculating the modified delay of the line (Chapter 3) the capacitance of a LOW (unselected) driver output should be taken as 2 pF .
An output driving the line sees an impedance equal to half the line impedance. Similarly, the quiescent $\mathrm{IOH}_{\mathrm{OH}}$ current is higher than with a single termination. For line impedance less than $100 \Omega$, the $\mathrm{I}_{\mathrm{OH}}$ current is greater than the data sheet test value, with a consequent reduction of HIGH-state noise margin. This loss can be eliminated if necessary by


TL/F/8901-22
FIGURE 4-12. Data Bus or Party Line
using multiple output gates (F100112) and paralleling two outputs for each driver. In the quiescent LOW state, termination current is shared among all the output transistors on the line. This sharing makes $V_{O L}$ more positive than if only one output were conducting all of the current. For example, a $100 \Omega$ line terminated at both ends represents a net $50 \Omega$ DC load, which is the same as the data sheet condition for $V_{\text {OL }}$. If one worst-case output were conducting all the current, the $V_{O L}$ would be -1.705 V . If another output with identical DC characteristics shares the load current equally, the $\mathrm{V}_{\mathrm{OL}}$ level shifts upward by about 25 mV . Connecting two additional outputs for a total of four with the same characteristics shifts $V_{O L}$ upward another 22 mV . Connecting four more identical outputs shifts $\mathrm{V}_{\mathrm{OL}}$ upward another 20 mV . Thus the $V_{O L}$ shift for eight outputs having identical worstcase $\mathrm{V}_{\mathrm{OL}}$ characteristics is approximately 67 mV . In practice, the probability of having eight circuits with worst-case $V_{O L}$ characteristics is quite low. The output with the highest $\mathrm{V}_{\mathrm{OL}}$ tends to conduct most of the current. This limits the upward shift to much less than the theoretical worst-case value. In addition, the LOW-state noise margin is specified greater than the HIGH-state margin to allow for $\mathrm{V}_{\mathrm{OL}}$ shift when outputs are paralleled.
In some instances a single termination is satisfactory for a data bus, provided certain conditions are fulfilled. The single termination is connected in the middle of the line. This requires that for each half of the line, from the termination to the end, the line length and loading must comply with the same restrictions as unterminated lines to limit overshoot and undershoot to acceptable levels. The termination should be connected as near as possible to the electrical mid-point of the line, in terms of the modified line delay from the termination to either end. Another restriction is that the time between successive transitions, i.e., the nominal bit time, should not be less than 15 ns . This allows time for the major reflections to damp out and limits additive reflections to a minor level.

## Wired-OR

In general-purpose wired-OR logic connections, where two or more driver outputs are expected to be in the HIGH state simultaneously, it is important to minimize the line length between the participating driver outputs, and to place the termination as close as possible to the mid-point between the two most widely separated sources. This minimizes the negative-going disturbances which occur when one HIGH output turns off while other outputs remain HIGH. The driver output going off represents a sudden decrease in line current, which in turn generates a negative-going voltage on the line. A finite time is required for the other driver outputs (quiescently HIGH) to supply the extra current. The net re-

## Wired-OR (Continued)

sult is a " $V$ " shaped negative glitch whose amplitude and duration depend on three factors: current that the off-going output was conducting, the line impedance, and the line length between outputs. If the separation between outputs is kept within about one inch, the transient will not propagate through the driven load circuits.
If a wired-OR connection cannot be short, it may be necessary to design the logic so that the signal on the line is not sampled for some time after the normal propagation delay (output going negative) of the element being switched. Normal propagation delay is defined as the case where the element being switched is the only one on the line in the HIGH state, resulting in the line going LOW when the element switches. In this case, the propagation delay is measured from the $50 \%$ point on the input signal of the off-going element to the $50 \%$ point of the signal at the input farthest away from the output being switched. The extra wiring time required in the case of a severe negative glitch is, in a worst-case physical arrangement, twice the line delay between the off-going output and the nearest quiescently HIGH output, plus 2 ns.
An idea of how the extra waiting time varies with physical arrangement can be obtained by qualitatively comparing the signal paths in Figure 4-13. With the outputs at $A$ and $B$ quiescently HIGH, the duration of the transient observed at $C$ is longer if $B$ is the off-going output than if $A$ is the off-going element. This is because the negative-going voltage generated at B must travel to A, whereupon the corrective signal is generated, which subsequently propagates back toward C . Thus the corrective signal lags behind the initial transient, as observed at C , by twice the line delay between $A$ and $B$. On the other hand, if the output at $A$ generates the negative-going transient, the corrective response starts
when the transient reaches point B . Consequently, the transient duration observed at $C$ is shorter by twice the line delay from $A$ to $B$.


TL/F/9901-23
FIGURE 4-13. Relative to Wired-OR Propagation

## Backplane Interconnections

Several types of interconnections can be used to transmit a signal between logic boards. The factors to be considered when selecting a particular interconnection for a given application are cost, impedance discontinuities, predictability of propagation delay, noise environment, and bandwidth. Sin-gle-ended transmission over an ordinary wire is the most economical but has the least predictable impedance and propagation delay. At the opposite end of the scale, coaxial cable is the most costly but has the best electrical characteristics. Twisted pair and similar parallel wire interconnection cost and quality fall in between.
For single-wire transmission through the backplane, a ground plane or ground screen (Chapter 5) should be provided to establish a controlled impedance. A wire over a ground plane or screen has a typical impedance of $150 \Omega$ with variations on the order of $\pm 33 \%$, depending primarily on the distance from ground and the configuration of the ground. Figure 4 -14 illustrates the effects of impedance variations with a 15 -inch wire parallel terminated with $150 \Omega$ to $-2 V$. Figure $4-14 b$ shows source and receiver waveforms when the wire is in contact with a continuous ground plane.


TL/F/9901-24

## a. Wire over Ground Plane or Screen



FIGURE 4-14. Parallel Terminated Backplane Wire

Backplane Interconnections (Continued)
The negative-going signal at the source shows an initial step of only $80 \%$ of a full signal swing. This occurs because the quiescent HIGH -state current $\mathrm{I}_{\mathrm{OH}}$ (about 7 mA ) multiplied by the impedance of the wire (approximately $90 \Omega$ ) is less than the normal signal swing, and this condition allows the driver emitter follower to turn off. The negative-going signal at the receiving end is greater by $25 \%(1+\rho=1.25)$. The receiving end mismatch causes a negative-going reflection which returns to the source and establishes the $\mathrm{V}_{\mathrm{OL}}$ level. The positive-going signal at the source shows a normal signal swing, with the receiving end exhibiting approximately $25 \%$ overshoot.
Figure $4-14 c$ shows waveforms for a similar arrangement, but with the wire about $1 / 8$ inch from a ground screen. The impedance of the wire is greater than $150 \Omega$ termination, but small variations in impedance along the wire cause intermediate reflections which tend to lengthen the rise and fall times of the signal. As a result, the received signal does not exhibit pronounced changes in slope as would be expected if a $200 \Omega$ constant impedance line were terminated with $150 \Omega$.
Series source resistance can also be used with single wire interconnections to absorb reflection. Figure 4-15a shows a 16 -inch wire with a ground screen driven through a source resistance of $100 \Omega$. The waveforms (Figure 4-15b) show that although reflections are generated, they are largely absorbed by the series resistor, and the signal received at the load exhibits only slight changes and overshoot. Series termination techniques can also be used when the signal into the wire comes from the PC board transmission line. Figure 4-16a illustrates a 12 -inch wire over a ground screen, with 12 -inch microstrip lines at either end of the wire. The output is heavily loaded (fan-out of 8 ) and the combination of impedances produces a variety of reflections at the input to the first microstrip line, shown in the upper trace of Figure 4-16b. The lower trace shows the final output; a comparison between the two traces shows the effectiveness of damping in maintaining an acceptable signal at the output. Figure $4-16 c$ shows the signals at the input to the driving gate and at the output of the load gate, with a net through-put time of 8.5 ns . The circuit in Figure $4-16 a$ is a case of mismatched transmission lines, discussed in Chapter 3.

Signal propagation along a single wire tends to be fast because the dielectric medium is mostly air. However, impedance variations along a wire cause intermediate reflections which tend to increase rise and fall times, effectively increasing propagation delay. Effective propagation delays are in the range of 1.5 to 2.0 ns per foot of wire. Load capacitance at the receiving end also increases rise and fall time (Chapter 3), further increasing the effective propagation delay.

a. Wire over Ground Screen

b. Series Terminated Waveform

FIGURE 4-15. Series Terminated Backplane Wire

Backplane Interconnections (Continued)


TL/F/9901-29
a. Backplane Wire Interconnecting PC Board Lines


TL/F/9901-30
b. Signals into the First Microstrip and at the Loads

c. Input to Driving Gate and Output of Load Gate

FIGURE 4-16. Signal Path with Sequence of Microstrip, Wire, Microstrip
Better control of line impedance and faster propagation can be achieved with a twisted pair. A twisted pair of AWG 26 Teflon* insulated wires, two twists per inch, exhibits a propagation delay of $1.33 \mathrm{~ns} / \mathrm{ft}$ and an impedance of $115 \Omega$. Twisted pair lines are available in a variety of sizes, impedances and multiple-pair cables. Figure 4-17a illustrates sin*Teflon is a registered trademark of E.I. du Pont de Nemours Conpany.

a. Single-ended Twisted Pair


TL/F/9901-33
b. Differential Transmission Reception

c. Backplane Data Bus

FIGURE 4-17. Twisted Pair Connections
gle-ended driving and receiving. In addition to improved propagation velocity, the magnetic fields of the two conductors tend to cancel, minimizing noise coupled into adjacent wiring.
Differential line driving and receiving complementary gates as the driver and an F100114 line receiver is illustrated in Figure 4-17b. Differential operation provides high noise immunity, since common mode input voltages between -0.55 V and -3.0 V are rejected. The differential mode is recommended for communication between different parts of a system, because it effectively nullifies ground voltage differences. For long runs between cabinets or near high power transients, interconnections using shielded twisted pair are recommended.
Twisted pair lines can be used to implement party line type data transfer in the backplane, as indicated in Figure 4-17c. Only one driver should be enabled at a given time; the other outputs must be in the $\mathrm{V}_{\mathrm{OL}}$ state. The $\mathrm{V}_{\mathrm{BB}}$ reference voltage is available on pin 22 of the flatpak and pin 19 of the dual-in-line package for the F100114.
In the differential mode, a twisted pair can send high-frequency symmetrical signals, such as clock pulses, of 100 MHz over distances of 50 to 100 feet. For random data, however, bit rate capability is reduced by a factor of four or five due to line rise effects on time jitter. ${ }^{3}$

## Backplane Interconnections (Continued)

Coaxial cable offers the highest frequency capability. In addition, the outer conductor acts as a shield against noise, while the uniformity of characteristics simplifies the task of matching time delays between different parts of the system. In the single-ended mode, Figure 4 -18a, 50 MHz signals can be transferred over distances of 100 feet. For 100 MHz operation, lengths should be 50 feet or less. In the differential mode, Figures $4-18 b, c$, the line receiver can recover smaller signals, allowing 100 MHz signals to be transferred up to 100 feet. The dual cable arrangement of Figure 4-18c provides maximum noise immunity. The delay of coaxial cables depends on the type of dielectric material, with typical delays of $1.52 \mathrm{~ns} / \mathrm{ft}$ for polyethylene and $1.36 \mathrm{~ns} / \mathrm{ft}$ for cellular polyethylene.


TL/F/9901-35
a. Single-Ended Coaxial Transmission


TL/F/9901-36
b. Differential Coaxial Transmission


TL/F/9901-37
c. Differential Transmission with Grounded Shields

FIGURE 4-18. Coaxial Cable Connections

## References

1. Kaupp, H. R., "Characteristics of Microstrip Transmission Lines," IEEE Transaction on Electronic Computers, Vol. EC-16 (April, 1967).
2. Harper, C. A., Handbook of Wiring, Cabling and Interconnections for Electronics. New York: McGraw-Hill, 1972.
3. True, K. M., "Transmission Line Interface Elements," The TTL Applications Handbook, Chapter 14 (August 1973), pp. 14-1-14-14.

# Chapter 5 Power Distribution and Thermal Considerations 

## Introduction

High-speed circuits generally consume more power than similar low-speed circuits. At the system level, this means that the power supply distribution system must handle the larger current flow; the larger power dissipation places a greater demand on the cooling system. The direct current (DC) voltage drop along ground busses affects noise margins for all types of ECL circuits. Voltage drops along $V_{E E}$ busses have only a slight effect on F100K circuits, but they require consideration to obtain the performance available from the family.

## Logic Circuit Ground, VCC

The positive potential $V_{C C}$ and $V_{C C A}$ in ECL circuits is the reference voltage for output voltages and input thresholds and should therefore be the ground potential. When two circuits are connected in a single-ended mode, any difference in ground potentials decreases the noise margins, as discussed in Chapter 1. This effect for TTL/DTL circuits, as well as for ECL circuits, is illustrated in Figure 5-1. The following analysis assumes some average value of current flowing through the distributed resistance along the ground path between two circuits. For the indicated direction of $\mathrm{I}_{\mathrm{G}}$, the shift in ground potential decreases the LOW-state noise margin of the TTL/DTL circuits and the HIGH-state noise margin of the ECL circuits. If $I_{G}$ is flowing in the opposite direction, it increases these noise margins, but decreases the noise margins when the drivers are in the opposite state. For tabulation of ground currents in ECL, the designs must include termination currents as well as IEE Operating currents. ECL logic boards which use microstrip or stripline techniques generally have large areas of ground metal. This causes the ground resistance to be quite low and thus minimizes noise margin loss between pairs of circuits on the same board.


In practice, two communicating circuits might be located on widely separated PC cards with other PC cards in between. The net resistance then includes the incremental resistance of the ground distribution bus from card to card, while the ground current is successively increased by the contribution from each card. Figure 5-2 illustrates a distribution bus for a row of cards with incremental resistances along the bus.


$i=$ Average Ground Current per Card
FIGURE 5-2. Ground Shift Along a Row of PC Cards
The ground shift can be estimated by first determining an average value of current per card based on the number of packages, the mix of SSI and MSI, and the number and types of terminations. With $n$ cards in the row, an average ground current (i) per card, and an incremental bus resistance $(r)$ between card positions, the bus voltage drops between the various positions can be determined as follows:
between positions 1 and 2: $\mathrm{v}_{1-2}=(n-1)$ ir
between positions 1 and 3: $\mathrm{v}_{1-3}=(n-1)$ ir +
$(n-2)$ ir
between positions 1 and 4: $\mathrm{v}_{1-4}=(n-1)$ ir +

$$
(n-2) i r+
$$

$$
(n-3) \text { ir }
$$

between 1 and $n$ :

$$
\begin{aligned}
v_{1-n}= & \operatorname{ir}\{(n-1)+ \\
& (n-2)+(n-3) \\
& +\ldots+[n-(n-1)]\} \\
& =\operatorname{ir}[1+2+3 \\
& +\ldots+(n-1)] \\
& v_{1-n}=
\end{aligned}
$$

For a row of 15 cards, for example, the total ground shift between positions 1 and 15 is expressed as in Equation 5-1.

$$
\begin{align*}
v_{1-15} & =\text { ir } \sum_{1}^{14} n=\text { ir }(1+2+3+\ldots+13+14)  \tag{5-1}\\
& =105 \mathrm{ir}
\end{align*}
$$

ECL
$\mathrm{V}^{\prime} \mathrm{OL}=\mathrm{V}_{\mathrm{OL}}=+\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}$
$\mathrm{V}^{\prime} \mathrm{OH}^{\prime}=\mathrm{V}_{\mathrm{OH}}+\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}$
$I_{G} R_{G}=\left(V^{\prime} \mathrm{OL}^{-}-V_{O U}=\right.$ Noise Margin Decrease $=I_{G} R_{G}=\left(V_{O H}-V_{O H}\right)$
FIGURE 5-1. Effect of Ground Resistance on Noise Margins

## Logic Circuit Ground, $\mathbf{V}_{\mathbf{C C}}$ (Continued)

The ground shift between any two card positions $j$ and $k$ can be determined as follows for the general case.

$$
\begin{align*}
\mathrm{v}_{\mathrm{j}-\mathrm{k}}= & (n-j) \text { ir }+[n-(j+1)] \text { ir }+ \\
& {[n-(j+2)] \text { ir } } \\
& +\ldots+\{n-[j+(k-j-1)]\} \text { ir } \\
= & (k-j) n i r-i r(j+(j+1)+(j+2)  \tag{5-2}\\
& +\ldots+[j+(k-j-1)]\}
\end{align*}
$$

$v_{j-k}=(k-j) n i r-\operatorname{ir} \sum_{j}^{k-1} n=\operatorname{ir}\left[(k-j) n-\sum_{j}^{k-1} n\right]$
In a row of 15 cards, the ground shift between positions four and nine, for example, is determined as follows.
$\mathrm{v}_{\mathrm{j}-\mathrm{k}}=\operatorname{ir}[(9-4) 15-(4+5+6+7+8)]$

$$
\begin{equation*}
=\operatorname{ir}(75-30)=45 \text { ir } \tag{5-3}
\end{equation*}
$$

The ground shift between the same number of positions further down the row is less because of the decreasing current along the row. Consider the ground shift between card positions 10 and 15.
$v_{10-15}=$ ir $[(15-10) 15-$

$$
\begin{align*}
& (10+11+12+13+14)]  \tag{5-4}\\
= & \operatorname{ir}(75-60)=15 \mathrm{ir}
\end{align*}
$$

These examples illustrate several principles the designer should consider regarding the ground distribution bus and assignment of card positions. The bus resistance should be kept as low as possible by making the cross-sectional areas as large as practical. Logic cards which represent the heaviest current drain should be located nearest the end where ground comes into the row of cards. Cards with single-ended logic wiring between them should be assigned to positions as close together as possible. Conversely, if the ground shift between two card positions represents an unacceptable loss of noise margin, then the differential transmission and reception method i.e., twisted pair, should be used for logic wiring between them, thereby eliminating ground shift as a noise margin factor.

## Conductor Resistances

Conductors with large cross-sectional areas are required to maintain low voltage drops along power busses. For convenience, Figure 5-3 lists the resistance per foot and the cross-sectional area for more common sizes of annealed copper wire. Other characteristics and a complete list of sizes can be found in standard wire tables. A useful rule-ofthumb regarding resistances and, hence, areas is: as gauge numbers increase, resistance doubles with every third gauge number; e.g., the resistance per foot of \#10 wire is $1 \mathrm{~m} \Omega$, for \#13 wire it is $2 \mathrm{~m} \Omega$. Similarly, the resistance per foot of \#0 wire is $0.078 \mathrm{~m} \Omega$, which is half that of \#2 wire.
For calculations involving conductors having rectangular cross sections, it is often convenient to work with sheet resistance, particularly for power distribution on PC cards. Copper resistivity is usually given in ohm-centimeters, indicating the resistance between opposing faces of a 1 cm cube. The sheet resistance of a conductor is obtained by dividing the resistivity by the conductor thickness. These relationships follow.

| AWG <br> B \& S <br> Gauge | Resistance <br> m $\Omega$ Per Foot | Cross-Sectional <br> Area <br> Square Inches |
| :---: | :---: | :---: |
| $\# 2$ | 0.156 | $5.213 \times 10^{-2}$ |
| $\# 6$ | 0.395 | $2.062 \times 10^{-2}$ |
| $\# 10$ | 0.999 | $8.155 \times 10^{-3}$ |
| $\# 12$ | 1.588 | $5.129 \times 10^{-3}$ |
| $\# 18$ | 6.385 | $1.276 \times 10^{-3}$ |
| $\# 22$ | 16.14 | $5.046 \times 10^{-4}$ |
| $\# 26$ | 40.81 | $1.996 \times 10^{-4}$ |
| $\# 30$ | 103.2 | $7.894 \times 10^{-5}$ |

FIGURE 5-3. Resistance and Cross-Sectional Area of Several Sizes of Annealed Copper Wire
Copper resistivity $=\rho=1.724 \times 10^{-6} \Omega \mathrm{~cm} @ 20^{\circ} \mathrm{C}$
Resistance of a conductor $=\rho \frac{1}{\mathrm{~A}}=\rho \frac{\mathrm{l}}{\mathrm{tw}}$
where: $I=$ length $\quad t=$ thickness $\quad w=$ width
Sheet resistance $\rho_{S}=\frac{\rho}{t} \Omega \operatorname{per} \frac{1}{w}$
The length/width ratio ( $1 / \mathrm{w}$ ) is dimensionless; therefore, the resistance of a length of conductor of uniform thickness can be calculated by first determining the number of "squares," then multiplying by the sheet resistance. For example, a conductor one-eighth inch wide and three inches long has 24 squares; its resistance is 24 times the sheet resistance. Since many thickness dimensions are given in inches, it is convenient to express the resistivity in ohm-inch, as follows. $\rho(\Omega \mathrm{in})=.\rho(\Omega \mathrm{cm}) \div 2.54=6.788 \times 10^{-7} \Omega \mathrm{in}$.
The use of sheet resistance and the "squares" concept is illustrated by calculating the resistance of the conductor shown in Figure 5-4. Assume the conductor is a 1 oz . copper cladding with a 0.0012 inch minimum thickness on a PC card.


TL/F/9902-3

## FIGURE 5-4. Conductor of Uniform Thickness

 but Non-Uniform Cross Section$$
\begin{aligned}
\text { Sheet resistance } & =\rho S=\frac{\rho}{t} \\
& =5.657 \times 10^{-4} \Omega \text { per square }
\end{aligned}
$$

The number of squares $S$ for the rectangular sections are as follows.
$S 1=\frac{l_{1}}{W_{1}}=8 \quad S_{3}=\frac{l_{3}}{W_{2}}=3$
The middle average segment of the conductor has a trapeziodal shape. The average of $w_{1}$ and $w_{2}$ can be used as the effective width, within $1 \%$ accuracy, if the $w_{2} / w_{1}$ ratio is 1.5 or less. Otherwise, a more exact result is obtained as follows.
$S_{2}=\frac{l_{2}}{w_{2}-w_{1}} \ln \left(\frac{w_{2}}{w_{1}}\right)=4 \ln 2=2.77$ squares
Total $R=R_{1}+R_{2}+R_{3}=\rho_{s}\left(S_{1}+S_{2}+S_{3}\right)$

$$
=7.51 \mathrm{~m} \bar{\Omega}
$$

## Conductor Resistances (Continued)

As another example, assume that a 1 oz . trace must carry a 200 mA current six inches with a voltage drop less than 10 mV .
$R_{\text {max }}=\frac{V_{\text {max }}}{I}=\frac{0.01}{0.2}=0.05 \Omega$
$0.05=p_{s} \frac{1}{w}$
$\frac{\mathrm{w}}{\mathrm{l}}=20 \rho_{\mathrm{s}}$
$\mathrm{w}=120 \rho_{\mathrm{s}}=(120) 5.657 \times 10^{-4}=67.9 \times 10^{-3}$
$\therefore$ minimum trace width, $\mathrm{w}=68$ mils
At a higher current level, consider the voltage drop in a conductor 20 mils thick, 1.25 inches wide and 3 feet long carrying a 50 A current.
$\rho_{\mathrm{s}}=\frac{6.788 \times 10^{-7}}{2 \times 10^{-2}}=3.364 \times 10^{-5} \Omega$ per square
$V=I R-(50)\left(3.364 \times 10^{-5}\right) \frac{36}{1.25}$

$$
\begin{equation*}
=0.0484=48.4 \mathrm{mV} \tag{5-7}
\end{equation*}
$$

Sheet resistances for various copper thicknesses are listed in Figure 5-5. Standard thicknesses and tolerances for copper cladding are tabulated in Figure 5-6 and resistance per foot as a function of width is shown in Figure 5-7.

| Weight <br> or <br> Thickness | Sheet <br> Resistance <br> $\Omega$ per <br> Square | Thickness | Sheet <br> Resistance <br> $\Omega$ per Square |
| :---: | :---: | :---: | :---: |
| 2 oz. | $2.715 \times 10^{-4}$ | 0.02 in. | $3.364 \times 10^{-5}$ |
| 3 oz. | $1.886 \times 10^{-4}$ | 0.05 in. | $1.358 \times 10^{-5}$ |
| 5 oz. | $1.077 \times 10^{-4}$ | $1 / 16 \mathrm{in}$. | $1.086 \times 10^{-5}$ |
| 0.01 in. | $6.788 \times 10^{-5}$ | $1 / 4 \mathrm{in}$. | $2.715 \times 10^{-6}$ |

FIGURE 5-5. Sheet Resistance for Various Thicknesses of Copper

| Nominal Thickness |  | Nominal <br> Weight | Tolerances <br> By |  |
| :---: | :---: | :---: | :---: | :---: |
| in. | $\mathbf{m m}$ | $\mathbf{o z / f t ^ { 2 }}$ | Weight, \% | in. |
| 0.0007 | 0.0178 | $1 / 2$ | +10 | +0.0002 |
| 0.0014 | 0.0355 | 1 | +10 | +0.0004 |
| 0.0028 | 0.0715 | 2 | +10 | +0.0002 |
|  |  |  |  | -0.0007 |
| 0.0042 | 0.1065 | 3 | +10 | +0.0003 |
| 0.0056 | 0.1432 | 4 | +10 | +0.0006 |
| 0.0070 | 0.1780 | 5 | +10 | +0.0007 |
| 0.0084 | 0.2130 | 6 | +10 | +0.0008 |
| 0.0098 | 0.2460 | 7 | +10 | +0.001 |
| 0.014 | 0.3530 | 10 | +10 | +0.0014 |
| 0.0196 | 0.4920 | 14 | +10 | +0.002 |

FIGURE 5-6. Thickness and Tolerances for Copper Cladding


TL/F/9902-4
FIGURE 5-7. Conductor Resistance vs Thickness and Width

## Temperature Coefficient

The resistances in Figures 5-3, 5-5, and 5-7, as well as those used in the sample calculations, are $20^{\circ} \mathrm{C}$ values. Since copper resistivity has a temperature coefficient of approximately $0.4 \% /{ }^{\circ} \mathrm{C}$, the resistance at a temperature ( T ) can be determined as follows.
$R_{T}=R_{20^{\circ} \mathrm{C}}\left[1+0.004\left(\mathrm{~T}+20^{\circ} \mathrm{C}\right)\right]$
At $55^{\circ} \mathrm{C}$ :
$R=R_{20^{\circ} \mathrm{C}}\left[1+0.004\left(55^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right]=1.14 \mathrm{R}_{20^{\circ} \mathrm{C}}$
When specifying power bus dimensions for PC cards containing many IC packages, designers should bear in mind that excessive current densities can cause the copper temperature to rise appreciably. Figure 5-8 illustrates the ohmic heating effect of various current densities. 1


TL/F/9902-5
FIGURE 5-8. Temperature Rise with Current Density in PC Board Traces

## Distribution Impedance

Power busses should have low AC impedance, as well as low DC resistance, to prevent propagation of extraneous disturbances along the distribution system. As far as current or voltage changes are concerned, power and ground busses appear as transmission lines; thus their impedances can be affected by shape, spacing and dielectric. The effect of geometry on impedance is illustrated in the two arrangements of Figure 5-9. The same cross-sectional area of copper is used, but the two round wires have an impedance of about $75 \Omega$ while the flat conductors have an impedance determined as follows.
$Z_{0}=\frac{377 \mathrm{~d}}{\sqrt{\epsilon} h}$ for $\frac{d}{h}<0.1$
 thick, impedance of the flat conductor pair is only $0.5 \Omega$. Power line impedance can be reduced by periodically connecting RF-type capacitors across the line.


FIGURE 5-9. Effect of Geometry on Power Bus Impedance
*Mylar and Teflon are registered trademarks of E.I. du Pont de Nemours Company.

## Ground on PC Cards

It is essential to assign one layer of copper cladding almost exclusively to ground. This provides low-impedance, non-interfering return paths for the current changes which travel along signal traces when the IC outputs change state. These currents flow from the $V_{C C A}$ pins of the IC packages, through the output transistors, then into the loads and the stray capacitances. These stray capacitances exist from an output to $\mathrm{V}_{\mathrm{EE}}$, output to ground, and to other signal lines. Thus, displacement currents through stray capacitances flow in many paths, but must ultimately return through ground to the output transistor where they originated. To reduce the length and impedance of the return path, the ground metal should cover as large an area as possible and one decoupling capacitor should be provided for every one to two IC packages. Additional capacitors may be needed for multiple output devices. These capacitors should be ceramic, monolithic or other $R F$ types in the $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ range.
The load current returning to an IC package through ground metal is predictable, both in magnitude and in the return path. Since the magnetic and capacitive coupling between a signal trace and the underlying ground provides the transmission line characteristic, it follows that the load current flowing through the signal trace is accompanied by a ground return current equal in magnitude but opposite in direction. For example, in a $50 \Omega$ terminator $\mathrm{l}_{\mathrm{OL}}$ is $5.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}$ is 20.9 mA . Then signal change will cause about 15 mA current change and, as this current change propagates along the signal trace, a current of -15 mA advances along the
ground directly underneath the signal trace. Therefore, if there is an interruption in the ground, the return current is forced to go around it. The 15 mA current change can be reduced by terminating the complementary output of the signal. Then a signal change will direct the current from true output to the complement output reducing the $\Delta$ currents in the ground plane. When it is necessary to interrupt the ground plane, the interruptions should be kept as short as possible; every effort should be made to locate them away from overlying signal lines. When the ground plane is interrupted for short signal lines between packages, these lines should be at right angles to signal lines on the other side to minimize coupling. $V_{E E}$ and $V_{T T}$ distribution lines can also act as the return side of transmission lines, as long as decoupling capacitors to ground are placed in the immediate areas where the signal return current must continue through ground.
Several connections along the edge of a PC card should be assigned to ground to accommodate backplane signal ground. These should be spaced at one-half to one inch intervals to minimize the average path length for signal return currents and to simulate a distributed connection to the backplane signal ground.
Not enough emphasis can be placed on the requirement for a good ground. All input signals are referenced to internal $V_{B B}$ and the $V_{B B}$ is referenced to $V_{C C}$ (ground). Any variation from one side of the board to the other affects the noise margins. To help eliminate some of the variations a separate $\mathrm{V}_{\mathrm{CCA}}$ is provided on F 100 K ECL circuits to power the output drivers and leave the $V_{C C}$ going to internal circuitry unaffected.

## Backplane Construction

In order to take complete advantage of the speeds inherent in F100K ECL it is desirable to construct the backplane as a multilayer printed circuit board. Generally, two internal layers are devoted to ground and $V_{E E}$ and the signals occupy the outside layers. Where power densities are very high, it may be necessary to supplement the power layers with external busses (see Backplane Interconnections, Chapter 4). If it is necessary to use wires to augment the interconnection provided by the traces, less critical signals should use the wires. The wires will exhibit an impedance which can be calculated with the wire-over-ground formula
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{d}$
where $d$ is diameter, $h$ is distance to ground, and $\epsilon$ is dielectric constant.
Bear in mind that if the ground plane is buried inside the board, then both h and $\epsilon$ are made up of multiple components.

## Termination Supply, $\mathbf{V}_{\mathrm{TT}}$

A separate return voltage for the termination resistors offers a way to minimize power dissipation in systems extensively using parallel termination techniques. $A-2 V V_{T T}$ value represents an optimum speed/power trade-off, allowing sufficient termination current to discharge load capacitances while minimizing the average power consumption. Figure 5-10 shows the average values of current, IC power dissipation and resistor power dissipation for various values of the termination resistor $R_{T}$ returned to -2 V . Average values are determined by calculating the output HIGH and output LOW values, then taking the average. These $50 \%$ duty cy-

## Termination Supply, $\mathrm{V}_{\mathrm{TT}}$ (Continued)

cle values are useful in determining the current drain on the -2 V supply and the contribution to dissipation on the logic boards. Peak values of termination current are approximately $60 \%$ greater than the average values listed.
DC regulation of the -2 V supply is not critical; a variation of $\pm 5 \%$ causes a change in output levels of $\pm 12 \mathrm{mV}$ for $50 \Omega$ terminations or $\pm 7 \mathrm{mV}$ for $100 \Omega$ terminations.
The high frequency characteristics of the $\mathrm{V}_{T T}$ distribution are extremely important. Ideally, a solid voltage plane should be devoted to $V_{T T}$. If this is not feasible, the $V_{T T}$ distribution should form a grid using orthogonal traces. In any case, decoupling capacitors to ground should be used to reduce the high frequency impedance.

$V_{T T}=-2.0 \mathrm{~V}$
TL/F/9902-7

| $\mathbf{R}_{\mathbf{T}}$ | $\mathbf{l}_{\text {avg }}$ | $\mathbf{P}_{\mathbf{D} \text { (avg) }} \mathbf{m W}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | IC Output | Resistor |
| 50 | 14 | 14 | 13 |
| 62 | 11 | 12 | 11 |
| 75 | 9.3 | 9.5 | 9.1 |
| 90 | 8.1 | 8.2 | 7.9 |
| 100 | 7.3 | 7.3 | 7.1 |
| 150 | 5.0 | 4.9 | 5.0 |

FIGURE 5-10. Average Current and Power Dissipation for Parallel Termination to -2V

If the terminators used are in Single In-line Packages (SIP) or Dual-In-line Packages (DIP) as opposed to discrete resistors, particular attention must be given to decoupling in order to maintain a solid $V_{T T}$ voltage inside the package. This is necessary to avoid crosstalk due to mutual inductance to $V_{T T}$. SIPs have been developed which have multiple $V_{T T}$ connections and on-board decoupling capacitors.

## $V_{E E}$ Supply

The value of $\mathrm{V}_{E E}$ is not critical for F 100 K since all circuits in the family operate over the range of -4.2 V to -5.7 V . Decoupling capacitors to ground should be used on each card, as previously discussed in connection with the ground on PC cards. In addition, each card should used $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ decoupling capacitors near the points where $V_{E E}$ enters the card.
The current drain for the $V_{\text {EE }}$ supply for each circuit type can be determined from the data sheet specifications. For $\mathrm{V}_{E E}$ values other than -4.5 V , the current drain varies as shown in Figure 5-11 and $5-12$ for SSI and MSI elements respectively. These graphs are made from data from the F100101 and F100179.


TL/F/9902-8
FIGURE 5-11. Supply Current vs Supply Voltage for F100101


FIGURE 5-12. Supply Current vs Supply Voltage for F100179
Series dividers used to obtain Thevenin equivalent parallel terminations increase the current load on the $\mathrm{V}_{\mathrm{EE}}$ supply, as do the pull-down resistors to $V_{E E}$ used with series termination. Average $\mathrm{V}_{\mathrm{EE}}$ current and resistor dissipation for Thevenin equivalent terminations are listed in Figure $5-13$ for several representative values of equivalent resistance. The average values apply for $50 \%$ duty cycle. Peak current values are approximately $11 \%$ greater. Dissipation in the IC output transistor is the same as in Figure 5-10. Average dissipation and $\mathrm{I}_{\mathrm{EE}}$ current for several values of pull-down resistance to $V_{E E}$ are listed in Figure 5-14. The $R_{E}$ values are appropriate for series termination of transmission lines with impedances listed in the $\mathrm{Z}_{0}$ column, determined from Equation 4-12. Peak current values are approximately $12 \%$ greater than average values.
Figures $5-10,13$ and 14 show that the Thevenin equivalent parallel termination method leads to ten times as much dissipation in the resistors as in the single resistor returned to -2 V . Similarly, the dissipation in $\mathrm{R}_{E}$ for series termination is three times the dissipation in the parallel termination resistor to -2 V .

## $\mathrm{V}_{\mathrm{EE}}$ Supply (Continued)



TL/F/9902-10

| $\mathbf{R}_{\mathbf{T}}$ <br> $\Omega$ | $\mathbf{R}_{\mathbf{1} \Omega}$ <br> $=\mathbf{1 . 8 0} \mathbf{R}_{\mathbf{T}}$ | $\mathbf{R}_{\mathbf{2} \Omega}$ <br> $=\mathbf{2 . 2 5} \mathbf{R}_{\mathbf{T}}$ | $\mathbf{I}_{\mathbf{E E} \text { (avg) }}$ <br> $\mathbf{m A}$ | $\mathbf{P}_{\mathbf{D} \text { (avg) }} \mathbf{m W}$ <br> Resistors |
| :---: | :---: | :---: | :---: | :---: |
| 50 | 90 | 113 | 28.2 | 109 |
| 62 | 112 | 140 | 22.7 | 87.9 |
| 75 | 135 | 169 | 18.8 | 72.7 |
| 82 | 148 | 185 | 17.2 | 66.5 |
| 90 | 162 | 203 | 15.7 | 60.5 |
| 100 | 180 | 225 | 14.1 | 54.5 |
| 120 | 216 | 270 | 11.7 | 45.4 |
| 150 | 270 | 338 | 9.4 | 36.3 |

FIGURE 5-13. Serles Divider for Thevenin Equivalent Terminations


FIGURE 5-14. Average Current and Power Dissipation Using Pull-Down Resistor to $V_{E E}$

## Thermal Considerations

System cooling requirements for ECL circuits are based on three considerations: (1) the need to minimize temperature gradients between circuits communicating in the single-ended mode, (2) the need to control the temperature environment of each circuit to assure that the parameters stay within guaranteed limits, and (3) the need to insure that the maximum rated junction temperature is not exceeded.
Temperature gradients are of no practical concern with F100K circuits since they are temperature compensated;
their output voltage levels and input thresholds change very little with temperature, as discussed in Chapter 1. With uncompensated ECL circuits, output voltage levels and input thresholds vary with temperature. This causes a loss of noise margin when driving and receiving circuits are operating at different temperatures. Loss of HIGH-state noise margin occurs when the receiving circuit is at the higher temperature, amounting to approximately $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ of temperature gradient. When the driving circuit is at the higher temperature, the LOW-state margin decreases by approximately $0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ of gradient. The system designer must consider noise margin loss, due to temperature gradients.
Each DC parameter limit on the F100K data sheets applies over the entire $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ case temperature. For uncompensated ECL circuits, parameter limits have different values for different ambient temperatures. Further, ambient temperature specifications are based on a minimum air flow rate of 400 linear feet per minute. Thermal equilibrium must be established for incoming test results of uncompensated ECL circuits to be valid. The time required to attain equilibrium can vary considerably, depending on the internal dissipation of the particular IC type and details of the thermal arrangement. Normally, an adequate waiting time is three to five minutes after power is applied.
The maximum rated junction temperature of F 100 K circuits is $+150^{\circ} \mathrm{C}$. An individual IC junction temperature can be determined by multiplying power dissipation by the junction-to-air thermal resistance $\theta_{\mathrm{JA}}$ and adding the result to the ambient air temperature. The power dissipation is $V_{E E}$ times $l_{\text {EE }}$, from the data sheet, plus the dissipation in the output transistors from Figure 5-10 or 5-14. Thermal resistance is shown in Figure 5-15 as a function of cooling air flow rate. This figure applies when the IC is mounted on a board with the air flowing in a plane parallel to the board and perpendicular to the long axis of the IC package. When air temperature, flow rate and package power dissipation are known, junction temperature is determined as follows.

$$
\begin{equation*}
T_{J}=T_{A}+P_{D} \theta_{J A} \tag{5-10}
\end{equation*}
$$



TL/F/9902-12
FIGURE 5-15. Junction-to-Air Thermal Resistance vs Air Flow Rate

## Thermal Considerations (Continued)

Conversely, when the maximum rate junction temperature $\left(+150^{\circ} \mathrm{C}\right)$, the package power dissipation, and the air temperature are known, the minimum flow rate can be determined by first determining the maximum thermal resistance.
Maximum $\theta_{J A}=\frac{\left(150^{\circ}-T_{A}\right)}{P_{D}}$
For this value of $\theta_{\mathrm{JA}}$ the minimum flow rate is determined from Figure 5-15.
When the system designer plans to depend on natural convection for cooling, it is recommended that thermal tests be conducted to determine actual conditions. The effectiveness of natural convection for cooling varies greatly. For
instance, on a densely packed logic board in a horizontal attitude in still air, the effective ambient temperature for an IC varies with its position. An IC in the middle of the board is subjected to air that is partially heated by surrounding ICs. Additionally, the temperature of the board rises due to heat flow through the component leads. These effects can cause a much higher junction temperature than might be expected.

## Reference

1. Harper, C.A., Editor, Handbook of Wiring, Cabling and Interconnecting for Electronics, McGraw-Hill, 1972.

## Chapter 6 Testing Techniques

## Introduction

The purpose of this chapter is to assist personnel involved with incoming inspection and qualification testing, by discussing the various methods and techniques used in testing ECL devices.
Testing includes verifying functionality, checking DC parametric limits and measuring AC performance. These tasks are particularly difficult for ECL devices in light of the broad range of products: RAMs, PROMs, gate arrays, and logic circuits. Correlation between supplier and user is extremely important. Recognizing the differences between high-volume instantaneous testing, as performed by the supplier, and the user's concern for long term performance in a given operating environment, National guarantees the data sheet limits as specified, although testing may be performed by alternate methods.

## Tester Selection

Although many makes and types of automatic test systems are available and in use today, not all are capable of testing ECL RAMs, PROMs, logic and gate arrays.
Logic and gate array testers require DC Accuracy, subnanosecond $A C$ test capability, and the ability to change software for each device. Software capability and the number of test pins available are major considerations in choosing a gate array tester. Functional, DC and threshold tests are successfully performed on automatic test equipment, but subnanosecond propagation delays are difficult to measure accurately.
The use of dedicated testers to perform high-volume memory testing is very common. Testers containing hardware addressing capability are usually the most efficient. Although basic DC testing is similar for any device type, RAM and PROM functional testing usually require special addressing capabilities to test for pattern sensitivity. The pattern generators and output comparators must have minimum skew to obtain maximum tester accuracy. Functional and AC tests are performed simultaneously; then, DC and threshold tests are performed.
The following considerations must be taken into account when selecting a tester.

## Noise

Since the voltage swing on ECL input and output levels is only about 800 mV , it is very important that the power supplies and voltage drivers be extremely clean and free of spikes, hum, or any other type of noise.

## DC Resolution

The threshold measurements ( $\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$, $\mathrm{V}_{\mathrm{IL}}(\mathrm{Max})$ ) require that input voltage be extremely accurate and repeatable,
i.e., if the $V_{\text {IL }}(\operatorname{Max})$ is specified as -1.475 V , a voltage source of $-1.475 \pm 5 \mathrm{mV}$ is not adequate to accurately test the part. Ideally, the driver and the output comparators should have an accuracy of $\pm 1 \mathrm{mV}$.

## Current Capability

Since ECL is noted for high current requirements, power supplies for $\mathrm{V}_{\mathrm{EE}}$ should be capable of supplying current with a $25 \%$ reserve over the highest powered parts. This reserve should be included because power supplies tend to get noisy when approaching the current clamp. Some ECL LSI parts dissipate over 4.5 W ; therefore, with a $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V , the power supply must provide well over 1A.

## Edge Rates

When testing edge-triggered sequential logic parts such as flip-flops and shift registers, it is important that the rise and fall times of the clock pulses be fast, clean and free from overshoot. If the clock edges are not adequate, the deficiency can be overcome using a Schmitt trigger as shown in Figure 6-1.


TL/F/9903-1
FIGURE 6-1. Typical Schmitt Trigger Circuit
The $68 \Omega$ resistor provides hysteresis by positive feedback, thus improving the edge rates. When energized, the relay provides a path to bypass the Schmitt trigger, so the input currents of the device under test can be measured.

## Functional Testing

The functional operation and truth table for all device types are checked using automatic test equipment. For memory devices, pattern sensitivity and AC characteristics are also tested automatically. Functional testing is usually performed before DC testing. Logic parts are functionally tested in all modes of operation. The inputs are driven using typical $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ values. The outputs are compared against relaxed $V_{O H}$ and $V_{O L}$ limits. The $V_{I H}, V_{I L}, V_{O H}$ and $V_{O L}$ limits are tested during DC testing.

## DC Testing

An automatic tester is used to test all DC parameters listed on the individual data sheet for each input and output. The device may have to be preconditioned to obtain the correct output logic state. The cable length should be kept to a minimum to insure signal integrity.

## Threshold Measurements

Threshold measurement on an automatic tester is probably the most difficult DC test and the test most prone to oscillation. When testing, take one input at a time to threshold; all other inputs remain at full $\mathrm{V}_{I H}$ or $\mathrm{V}_{\mathrm{IL}}$. levels. For example, to test a flip-flop, make sure the output is LOW before test, take the data pin to HIGH threshold, and apply the clock pulse. Verify that the HIGH has been transferred to the output. Next, apply LOW threshold to the data input and clock it through; use hard levels on the clock (full $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ ). Check that the output pin goes LOW.

## Bench Testing

Occasionally, it is necessary to obtain data not easily available from an automatic tester. This is accomplished by testing devices in a universal test board. The typical test circuit board is double-clad copper. All input/output pins go to sin-gle-pole, triple-throw switches so that $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ or a $50 \Omega$ terminating resistor can be connected. Leadless $0.05 \mu \mathrm{~F}$ capacitors decouple all pins to $\mathrm{V}_{\mathrm{CC}}(+2 \mathrm{~V})$ at the socket pins. Access to the device under test is made via banana sockets to the X-Y plotter.
$\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\text {OUT }}$ Plot—The input ramp supply is 0 V to -2 V varied by a multi-turn potentiometer. The input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$ versus output voltage (VOUT) is plotted on an X-Y recorder using the test setup shown in Figure 6-2.
$V_{\text {OUT }} / l_{\text {Out }}$ Plot-The output voltage (VOUT) versus output current (lout) can be plotted using the test setup shown in Figure 6-3.


TL/F/9903-2
FIGURE 6-2. $\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$ Transfer Characteristics


FIGURE 6-3. V ${ }_{\text {OUT }} /$ IOUT Characteristics

## AC Testing

Because few automatic measurements systems have sufficient accuracy to perform subnanosecond testing, AC testing of ECL is one of the most difficult tests to accomplish. To obtain subnanosecond accuracy usually requires special test fixtures and equipment. The physical location of the test fixture, the input driver and the output comparator is very important.
Depending upon the accuracy and repeatability of the automatic tester, a bench setup may be required for correlation. Comparing an air line with known propagation delay to the test setup is recommended.

## AC Test Fixtures

Test fixture design plays a pivotal role in insuring that undistorted waveforms are applied to the Device Under Test (D.U.T.) and that the device output can be monitored correctly.

## Board Construction and Layout

ECL AC bench test fixtures are built on a double-clad printed circuit board or on a multilayer printed circuit board with semi-rigid coax. The power planes are shorted at the device and brought out to banana sockets with the decoupling capacitors at the device. Transmission lines of $50 \Omega$ are maintained from soldered-on BNC or SMA connectors to the D.U.T. Sense lines from the D.U.T. output and input pins to the connectors must be of electrically equal length. For input pins, care must be taken to insure that the force and sense lines are brought directly to the point that makes contact with the D.U.T. For output pins, only the output sense lines are used to monitor the signals. The force lines are disconnected at the device to minimize signal distortion. Special care must be taken to minimize crosstalk and stray capacitance in the area of the D.U.T. For correlation, flatpaks are not tested in sockets but are clamped to the traces of a multilayer PC board. Dual in-line devices are plugged into individual pin sockets instead of normal test sockets. Due to equipment limitations and for correlation, the amplitude, offset, rise and fall time are set up with no device in the test socket.
The bench test fixture to measure toggle frequency utilizes the principles described in the preceding paragraph except that the feedback path between the output and data input is as short as possible.

## Output Termination

All outputs should be terminated with $50 \Omega \pm 1 \%$ resistors. This is especially important for complementary outputs.

When bench testing, the device is offset by $+2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}$ is $-2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}$ is +2 V . Then the $50 \Omega$ input impedance of the sampling oscilloscope acts as the termination resistor to OV . The input and output coaxial cable to the oscilloscope should be cut to exactly the same electrical length.

## Decoupling

Not enough emphasis can be put on the importance of good decoupling on the D.U.T. because oscillations can give erroneous test results. A sampling scope should be used to make sure that oscillation is not occurring.
The value of capacitors used depends on the type of tester used and the frequency of test. Some testers use pulse test; in other words, for each individual test in a program, $\mathrm{V}_{E E}$ is powered up and down. On this type of tester, electrolytictype (i.e., large value) capacitors cannot be used because of the time constant needed to charge the capacitor.
Always start with the minimum decoupling needed to achieve good results, perhaps merely a capacitor between $V_{C C}$ and $V_{E E}$. Capacitors should be placed as close as possible to the D.U.T. to eliminate as much inductance as possible. Only low-inductance capacitors should be used; leadless monolithic ceramic capacitors are very effective.
There are no rigid decoupling rules, and each device type may have its own decoupling requirements. A typical decoupling technique that works well on most F100K devices is to place $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors in the following locations.

- If no offset is used: between $V_{E E}(-4.5 \mathrm{~V})$ and $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}(\mathrm{OV})$ between $\mathrm{V}_{\mathrm{TT}}(-2 \mathrm{~V})$ and ground ( 0 V )
- If +2 V offset is used: between $V_{C C}, V_{C C A}(+2 \mathrm{~V})$ and ground ( 0 V ) between $V_{E E}(-2.5 \mathrm{~V})$ and ground ( OV )
- In most cases, $V_{C C A}$ and $V_{C C}$ should be shorted as close to the D.U.T. as possible. However, if the $V_{C C A}$ and $V_{C C}$ pins are physically separated, individual decoupling capacitors may be necessary.
- For DC test only place a $0.001 \mu \mathrm{~F}$ capacitor: between an input pin and $V_{E E}$ between an output pin and $V_{\text {CCA }}$
Decoupling problems will appear mainly at threshold test. If certain outputs fail, try the decoupling technique, described in the preceding paragraph, on those outputs and the associated inputs. With testers that use the power-hold method, such as the Sentry ${ }^{\circledR}$, large electrolytics can be used in parallel with smaller ( $0.01 \mu \mathrm{~F}$ ) disk capacitors for the high-frequency bypass.


## ELECTROSTATIC DISCHARGE

## Introduction

The study of ESD failures began in earnest back when system designers, faced with very expensive assembly and post-assembly rework, began investigating system failures in great detail. In the course of their study, they checked all the records to determine which devices has passed earlier testing, but had failed once in the system. The data clearly indicated that something in the handling process resulted in higher attrition rates among the devices. Reliability physicists examined the failed devices in minute detail, in some cases subjecting them to examination under high powered scanning electron microscopes.
The problem was found to be one of electrical overstress, and further investigation determined that the cause of the overstress was a phenomenon called electrostatic discharge (or ESD).

## Explanation of How ESD Occurs

The concept of electrostatic discharge is easily understood. Electrostatic energy is static electricity, a stationary charge which can build up in either a nonconductive material or in an ungrounded conductive material. This charge can occur in one of two ways, either through polarization, which occurs when a conductive material is exposed to a magnetic field, or triboelectric effects, which occur when two surfaces contact and then separate, leaving one positively charged and one negatively charged. Friction between two materials increases triboelectric charge by increasing the surface area that comes in contact. A good example of this phenomenon would be the charge one accumulates walking across a nylon carpet. The discharge occurs when one reaches for a doorknob or other conductive surface. The types of ESD with which we will be concerned fall into the category of triboelectric effects. Within this category, various materials have differing potentials for charge. Asbestos, nylon, human and animal hair and wool have a high positive triboelectric potential. Silicon has one of the highest negative triboelectric potentials, followed by such materials as polyurethane, polyester and rayon. Cotton, wood, steel and paper all tend to be relatively neutral, which makes cotton clothing and steel table tops excellent ESD protective materials in environments where ESD problems can be anticipated.
The intensity of the charge is inversely proportional to the relative humidity. As humidity decreases, ESD problems increase. For example, walking across a carpet will generate a 1.5 kV charge at $90 \% \mathrm{RH}$, but will generate 35 kV at $10 \%$ RH. When an object storing a static charge comes in
contact with another object, the charge will attempt to find a path to ground, discharging into the contacted object. Although the current level is extremely low (typically less than 0.1 nanoamp), the voltage can be as high as $35-50 \mathrm{kV}$.

The degree of damage caused by electrostatic discharge is a function of the size of the charge (which is determined by the capacitance of the charged object) and the rate at which it is discharged (determined by the resistance into which it is discharged). This relationship can be shown with a waveform (Figure 1) that utilizes what is termed a double exponential decay pulse. With such a pulse, $99 \%$ of the energy will be dissipated in five time constants, with each time constant established by the resistance and capacitance mentioned above. Where both are low, the discharge rate will be rapid enough to cause damage if the object into which discharge occurs is a semiconductor. As resistance and capacitance increase, both the discharge rate and the risk of damage decrease.


FIGURE 1. Ideal RC Waveform
It is estimated that the value of devices lost to ESD could run as high as $\$ 1$ billion per year. Most electrostatic damage is caused by the handling of devices by personnel who have not taken adequate precautions. One would expect this in light of the fact that the capacitance of the human body ranges from 50 to 200 pF . The ESD characteristics of work surfaces and of materials passing through the area should not be ignored, however, in an attempt to concentrate on the human effect.

## Types of ESD Damage

The damage caused by ESD results from the charge's tendency to seek the shortest path to ground, overstressing any electrical interfaces in that path. There are several different types of damage that result, and each of these tends to be typical of specific component technologies and elements.

## Dielectric Breakdown

Dielectric breakdown occurs when the voltage across an oxide exceeds its dielectric breakdown strength. The single most important factor in this breakdown is the oxide thickness (Figure 2). Thinner oxide is more susceptible to electrostatic punch-through, which leaves a permanent low-resistance short through the oxide. Where there are pin holes or other weaknesses in the oxide, damage will be possible at lower charge levels. It should be noted that semiconductor manufacturers have reduced oxide thicknesses as they have reduced the overall size of the devices. ESD sensitivity has therefore increased dramatically.


TL/F/9903-7
FIGURE 2. Bipolar Transistor
Electrostatic charge which does not actually result in a breakdown can cause lattice damage in the oxide, lowering its ability to withstand subsequent ESD exposure. A weakened lattice will also have a lower breakdown threshold voltage, and this mechanism is voltage dependent.

## Thermal Secondary Breakdown or Junction Burnout

Junction burnout is a significant failure mechanism for bipolar devices, and tends to be power dependent rather than voltage dependent. The interface (or junction) between a P-type diffusion and an N -type diffusion normally has a positive temperature coefficient at low temperatures (that is, increased temperature will result in increased resistance). When a reverse-biased pulse is applied, the junction dissipates heat in its very narrow depletion region, and the temperature increases rapidly. If enough energy is applied, the temperature of the junction will reach a point at which the temperature coefficient of the silicon will turn negative (that is, at which increased temperature will result in decreased resistance). Since the area of the junction is not uniform, hot spots occur. When the melting temperature of silicon ( $1415^{\circ} \mathrm{C}$ ) is reached as a result of the ensuing thermal runaway condition, junction melting occurs in the localized area. If there is an additional energy available after the initiation of melt, the hot spot can grow into a filament short. The longer the pulse, the wider the resultant filament short.
After the occurrence of the transient, the silicon will resolidify. In a relatively short pulse, a hot spot may form, but not grow completely across the junction. As a result, the damage may not manifest itself immediately as a junction short but will appear at a later time as a result of electromigration. Shrinking geometries will decrease junction areas, and this should increase the susceptibility of these devices to ESD related junction problems.

## Metallization Melt

Semiconductor interconnect metallization typically has a small cross-sectional area and limited current carrying capability. As feature sizes continue to be reduced, metallization cross-section will be reduced as well. Reducing metallization line width by half and metallization thickness by half reduces the current carrying capability of that metallization stripe by $75 \%$. Metallization melt, which is a power-dependent failure mechanism, is more likely to occur during short duration, high current pulses, since the only available heat sink (the bonding pad) is nearby and the heat dissipated in the metallization does not have time to flow into the surrounding areas. It can also occur as a side effect during junction melt.

## Latent Failures

Immediate failure resulting from ESD exposure is easily determined: the device no longer works. A failed device may be removed from the lot or from the subassembly in which it is installed, and it represents no further reliability risk to the system. There are, however, devices which have been exposed to ESD but which have not immediately failed. Unfortunately, there has never been sufficient data dealing with the long-term reliability of devices which have survived ESD exposure, although some experts feel that two to five devices are degraded for every one that fails. It should be obvious from an examination of the failure mechanisms described above that there can be significant degradation without immediate failure. Damage can manifest itself in either a shortening of the device's lifetime (a possible cause for many of the infant mortality failures seen during burn-in) or in electrical performance shifts, many of which cause the device to fail electrical test limits.

## ESD Protective Measures

It should be obvious then that there are three principal considerations when dealing with ESD. The first is that the device should be designed in a manner that minimizes ESD sensitivity and incorporates some ESD protective features. The second is that both manufacturers and users must understand the ESD susceptibility of the devices with which they are dealing. Thirdly, both user and manufacturer must understand the generation of and sources of ESD charges well enough to establish proper precautions throughout their plants.

## Device Design

The continuing development of faster and more complex ICs makes it unlikely that we will see a return to thicker oxide layers or larger junctions. Early ICs used fairly simple clamping diodes on the inputs to protect them against voltage transients in the system. Similar, but more complex protective networks can be employed to provide ESD protection. An example of such circuitry is shown in Figure 3 as it is employed in the design of the F100K 300 Series family. Electrostatic discharge (ESD) protection diodes were added to all 300 Series designs specifically in the circuit paths that were most prone to ESD damage on F100K 100 Series products: input-to- $\mathrm{V}_{\mathrm{CC}}$, input-to- $\mathrm{V}_{\mathrm{EE}}$, and output-to- $\mathrm{V}_{\mathrm{CC}}$.


FIGURE 3. 300 Serles ESD Protection CIrcultry

These diodes (D1, D2 and D3) are utilized to shunt the current caused by an ESD voltage pulse away from either the input or output circuitry. Depending on the polarity of the ESD voltage, the diodes either become forward-biased, directing the current into the supply, or go into reverse breakdown, directing the current into the substrate. Either way the ESD-caused current is shunted away from the input and output transistors, avoiding damage to the circuitry. The diodes are designed to be rugged enough to guarantee 2000 V of ESD protection on all 300 Series products (they typically withstand up to 4000V). Even in providing this protection level, these diodes have a negligible impact on input capacitance. Addition of these diodes typically adds only tenths of picofarads to each product's input capacitance.

## Assessing ESD Tolerance Levels

As awareness of the importance of addressing ESD concerns spread, many experts felt that ESD testing had to be uniform if results were to be shared. Method 3015 of MIL-STD-883 was created for the purpose of allowing manufacturers to assess the ESD tolerance levels of the devices they offered and to allow users to determine the ESD sensitivity of the parts with which they were assembling systems. Method 3015 has established a test circuit (see Figure 4) which approximates the resistance and capacitance found in the human body (which continues to provide the major source of destructive ESD). The testing is performed by charging the capacitor in the test circuit and then discharging that capacitor into the unit under test. After testing, a device will be classified as either Class 1, those devices which exhibit ESD-induced failure or degradation at levels between zero volts and $1,999 \mathrm{~V}$; or Class 2 , those which may exhibit ESD sensitivity at levels between $2,000 \mathrm{~V}$ and $3,999 \mathrm{~V}$; or Class 3, those devices which may exhibit ESD sensitivity at levels above $4,000 \mathrm{~V}$ but have passed all testing up to that level. This testing is performed on a sample basis at initial device qualification and need not be repeated unless the device is redesigned. The testing is considered destructive, even for those devices which do not fail.


FIGURE 4. ESD Test Circuit

A device may be characterized as Class 1 in lieu of testing at a manufacturer's discretion. Some manufacturers, concerned with the possibility of latent damage due to inadequate protection of devices which test as Class 2, and concerned that static charges resulting from handling can run as high as 50 kV , have elected to treat all of their devices as Class 1 , thus ensuring that consistent implementation of common handling procedures will provide maximum protection for all devices.
Data generated by an RADC study of electrostatic discharge susceptibility (VZAP-1, Spring 1983) would seem to support that kind of a conservative approach. The data (see Figure 5) shows the point at which failure first occurred for a given device. It indicates that there are a number of devices which can be expected to fail between 2 kV and 5 kV , but few that will survive beyond 10 kV .
Those devices which are classified as Class 1 must be marked with one equilateral triangle, and those classified as Class 2 must be marked with two equilateral triangles to identify them as static sensitive. (Class 3 devices will have no top mark designator.)

TABLE I. Device ESD Failure Threshold Classification

| MIL Class | ESD Tolerance | Top Mark Designation |
| :---: | :---: | :---: |
| Class 1 | 0 V to $1,999 \mathrm{~V}$ | One triangle (i.e., $\mathbf{4}$ ) |
| Class 2 | $2,000 \mathrm{~V}$ to $3,995 \mathrm{~V}$ | Two triangles (i.e., $\mathbf{\Delta 4}$ ) |
| Class 3 | $4,000 \mathrm{~V}$ and above | No mark |

## ESD Precautionary Measures

ESD protective measures fall into two categories: those which shield the device from ESD and those which control the occurrence of ESD. ESD shielding can be accomplished by either grounding all of the device leads together, thus providing a more direct path to ground, or by surrounding the device with insulating material that would keep ESD from reaching the device. The first method is most practical during device assembly and environmental test, the second during shipment and storage. However, neither can be utilized during electrical testing.
Most of the handling of ICs, however, occurs during electrical testing. Testing cannot be performed if the device's leads are shorted together, nor can it take place if the device is within an insulated container. Control of ESD during testing is therefore extremely important. This is accomplished through the grounding of all potential sources of ESD. Stainless steel work surfaces connected to ground
through an appropriate resistive element provide a harmless bleed-off of any charge that occurs. Requiring that all personnel who handle devices wear ground straps can effectively eliminate the human body and its clothing as sources of ESD. It is also important to minimize the handling of devices. This can be partially accomplished through the use of automated test handlers, which allow the devices to be loaded into the testers from ESD-protective rails and returned to those rails from the tester. Equally important is the elimination of any unnecessary testing or test insertions. Semiconductor manufacturers have decreased the number of test insertions for many devices by combining parametric, functional and switching tests onto a single insertion test program. Users have minimized handling by relying more heavily on the testing performed by their vendors and by eliminating incoming testing. Pick-and-place systems and other automated board assembly hardware have also helped to minimize device handling. Most systems manufacturers have also implemented procedures that minimize the handling of boards and subassemblies in order to ensure that devices receive no potentially damaging exposure to ESD after board assembly.

Effective control of ESD, however, cannot be accomplished unless the entire work area is designed around ESD concerns. At the National Mil/Aero facilities, all work areas in which parts may be handled or through which parts may pass have ESD-protective flooring in addition to grounded work surfaces, ground straps for all operators, and other protective features. This level of attention to detail is essential to the minimization of ESD problems.

## Summary

Electrostatic discharge will continue to be a major concern for those who use semiconductor devices. As device geometries continue to shrink, the ESD sensitivity of devices will increase. Only through proper handling and packaging, and through proper attention to ESD concerns will we be able to ensure that long term reliability of key systems is not negatively affected by ESD problems.


FIGURE 5. Failure Rate at Ascending ESD Voltages

# Chapter 7 Quality Assurance and Reliability 

## Introduction

F100K ECL is manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

## Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

## Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. Inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. In these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

## Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon wafers are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.
Bulk Chemical and Material Inspection
Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing F100K wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analyzed to verify their chemical make-up.
Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

## Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

## Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.
Process Audit-Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.
Environmental Monitor-Monitors concerning the process environment, i.e., water purity, air temperature/humidity, and particulate count.
Process Monitor-Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.
Lot Acceptance-Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.
Process Qualification-Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, i.e., epi, aluminum, vapox, and backside gold.
Process Integrity Audit-Special audits conducted on oxidation and metal evaporation processes (CV drift-oxidation; SEM evaluation-metal evaporation).

## Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

## Process Flow

Figure $7-1$ shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.


Process Controls (Examples)
A. Environmental
B. Chemical supplies
C. Substrate examination (resistivity, flatness, thickness, crystal perfection, etc.)
D. Photoresist evaluation
E. Mask inspections
A. Process audit
A. Process audit/qualification
B. Environmental
C. Process monitors (thickness, pinhole and crack measurements)
D. C V Plotting
E. Calibration
A. Process audits
B. Environmental
C. Visual examinations
D. Photoresist evaluation (preparation, storage, application, baking, development and removal)
E. Etchant controls
F. Exposure controls (intensity, uniformity)
A. Process audits/qualification
B. Environmental
C. Temperature profiling
D. Quartz cleaning
E. Calibration
F. Electrical tests (resistivity, breakdown voltages, etc.)
A. Process audits/qualification
B. Environmental
C. Visual examinations
D. Epitaxy controls (thickness, resistivity cleaning, visual examination)
E. Metallization controls (thickness, temperature cleaning, SEM, C V plotting)
F. Glassivation controls (thickness, dopant concentration, pinhole and crack measurements)
A. Process audit
B. Environmental
C. Visual examinations
A. Process audit
B. Inspection

## Quality Assurance

To assure that all product shipped meets both internal National specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (Figure 7-2) are required. A flow, much more detailed than the one presented in Figure 7-2, governs the assembly of the devices and the performance of the environmental, mechanical and electrical tests.

## Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

## Qualification Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or
(3) new packages or assembly processes. Stress tests are run and the results are evaluated against existing reliability levels. These results must be better than or equal to current product for the new product to receive qualification.
New Product Designs-Receive, as a minimum, $+125^{\circ} \mathrm{C}$ operating life tests. Readouts are normally scheduled at 168 hours, 1168 hours and 2168 hours. The samples stressed are electrically good units from initial wafer runs. Additional life testing, consisting of high-temperature operating life test, 85/85 humidity bias tests and bias pressure pot (BPTH) tests, may be run as deemed necessary. Redesigns of existing device layouts are considered to be new product designs, and full qualification is necessary.
New Fabricatlon Processes-Qualifications are designed to evaluate the new process against the current process. Stress tests consist of operating life test, high-temperature operating life test, 85/85 humidity bias test and/or biased

| tion | MIL-STD-883 <br> Method/Condition |
| :---: | :---: |
| Plating (Tin/Gold)—Lead Finish |  |
|  | - |
| QA-Plating | 2003 |
| Inspection/Solderability |  |
| Lead Clip and Form |  |
| Seal, Fine |  |
| (Hermeticity Check) | 1014 |
|  | $5 \times 10^{-8}$ |
|  | $\mathrm{cc} / \mathrm{sec}$ |
| Seal, Gross (Hermeticity Check) | Bubble Test- |
|  | Fluorocarbon |
| Mark and Pack |  |
| QA-External Visual | 2009 |
| QA-Seal, Fine (Hermeticity Check) | 1014 |
|  | $\begin{aligned} & 5 \times 10^{-8} \\ & \mathrm{cc} / \mathrm{sec} \end{aligned}$ |
| QA-Seal, Gross (Hermeticity Check) | Bubble TestFluorocarbon |
| Electrical Test |  |
| QA-Plant Clearance |  |
| Distribution Store |  |
| TL/F/9904-2 |  |

FIGURE 7-2. Generalized Process Flow

## Reliability (Continued)

pressure pot (BPTH) test. In addition, package environment tests may be performed. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.
New Packages or Assembly Processes-Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix shown in Table $7-1$. In addition, $+100^{\circ} \mathrm{C}$ operating life tests, $85 / 85$ humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed.

## Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occurring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported on a monthly basis. When a problem is identified, the respective engineering group is notified, and production is stopped until corrective action is taken.
Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

## Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing.

## Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at all product meetings, which gives high visibility to the reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

TABLE 7-1. Package Environmental Stress Matrix

| Test | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| GROUP B |  |  |
| Subgroup 1 Physical Dimensions | 2016 |  |
| Subgroup 2 Resistance to Solvents | 2015 |  |
| Subgroup 3 Solderability | 2003 | Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$ |
| Subgroup 5 Bond Strength <br> (1) Thermocompression <br> (2) Ultrasonic or Wedge | 2011 | (1) Test Condition C or D <br> (2) Test Condition C or D |
| GROUP C |  |  |
| Subgroup 2 <br> Temperature Cycling Constant Acceleration <br> Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination End-Point Electrical Parameters | $\begin{aligned} & 1010 \\ & 2001 \\ & \\ & 1014 \end{aligned}$ | Test Condition $\mathrm{C}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ Test Condition E ( 30 kg ), $\mathrm{Y}_{1}$ Orientation and $\mathrm{X}_{1}$ Orientation Test Condition D ( 20 kg ) for Packages over 5 gram weight or with Seal Ring Greater than 2 inches |

Reliability (Continued)
TABLE 7-1. Package Environmental Stress Matrix (Continued)

| Test | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| GROUP D |  |  |
| Subgroup 1 Physical Dimensions | 2016 |  |
| Subgroup 2 <br> Lead Integrity Seal <br> (a) Fine <br> (b) Gross <br> Lid Torque | $\begin{aligned} & 2004 \\ & 1014 \\ & 2024 \end{aligned}$ | Test Condition B2 (Lead Fatigue) As Applicable <br> As Applicable |
| Subgroup 3 <br> Thermal Shock Temperature Cycling Moisture Resistance Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination End-Point Electrical Parameters | $\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$ | Test Condition B ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) 15 Cycles Minimum Test Condition $\mathrm{C}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right) 100$ Cycles Minimum |
| Subgroup 4 <br> Mechanical Shock <br> Vibration, Variable <br> Frequency <br> Constant Acceleration Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination End-Point Electrical Parameters | $\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \end{aligned}$ | Test Condition B ( $1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ ) Test Condition A (20g) <br> Same as Group C, Subgroup 2 |
| Subgroup 5 Salt Atmosphere Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination | $\begin{aligned} & 1009 \\ & 1014 \end{aligned}$ | Test Condition A Minimum (24 Hours) As Applicable |
| Subgroup 6 Internal Water-Vapor Content | 1018 |  |
| Subgroup 7 Adhesion of Lead Finish | 2025 |  |

## Design Considerations for High Speed Architectures

## INTRODUCTION

Users and software developers are placing increasing demands on the systems manufacturer to improve the performance of his products. Quite often, these demands can be reduced to two fundamental characteristics of the system, memory array size and system speed. Larger and larger memory arrays are required to support the memory intensive demands of new software applications. Furthermore, as software complexity increases, the system is burdened with more and more software overhead. Greater operating speeds are demanded out of a system in order to support the enlarged software demands without burdening the user with a less responsive system.
Historically, memory array sizes could be improved with the implementation of larger TTL memory devices. The improved density and availability of semiconductor memory devices over the past twenty years is well known. Memory density has improved at roughly a geometric growth rate. To some extent, the memory device could be treated as an ever increasing, self contained black box. The techniques used to integrate a 256 k DRAM are virtually identically to those required of a 1 k DRAM. It was up to the semiconductor manufacturer (and in his best interest) to maintain a logical progression from one device generation to the next. During this same period of time, small to mid-level systems (personal computers, workstations, graphic display stations, etc.) were in their infancy. Eventhough, processors were fairly low in speed and performance, software sophistication was low. Not long ago, systems operating at eight MHz with 32 k of memory were highly respected workhorses. Now, systems are moving into 25 MHz speeds with multi megabyte memories and are pushing into the dual digit MIP ranges.
To satisfy these demands, systems manufacturers are finding themselves more and more involved with ECL device families. ECL devices have always provided improved speeds over TTL devices. In the past, the improved speed was always at the cost of lower memory density, increase power demands, and greater difficulty in system design and integration. For the manufacturer with low power or high density applications, ECL devices were not an acceptable solution. While a large memory array could be constructed out of ECL 256 -bit or 1 k memories, the array typically became so large and power hungry that it became cost prohibitive. Furthermore, processor engines were typically not available to make use of this high speed memory.
With the advent of the National Semiconductor's BiCMOS ECL memory products, the traditional shortcomings related to density and power consumption have been eliminated. ECL memories rival their TTL counterparts in density and power consumption. In addition, these memories retain the traditional ECL speed advantage over their TTL cousins. Furthermore, ECL system environments offer distinct advantages over TTL environments which can enhance system performance.

## System Environments (ECL vs TTL)

As mentioned previously, for low speed/performance systems, ECL devices are more difficult to integrate into a system than TTL devices. This is due to the particular electrical requirements for ECL devices. Correctly implementing an ECL device is more than simply connecting an output of one device to an input of another. The system environment that an ECL device is placed in is defined (loading, network terminations, line impedances, etc.) and the device is designed specifically for this environment. A TTL device on the other hand is not designed for any particular system environment. While this aids the TTL device in fitting into general use applications, it is a major stumbling block for high speed applications.
For example, TTL device outputs are designed for load conditions related to TTL input conditions. Figure 1 a shows a common (databook) TTL test load configuration. This load is an approximation of multiple TTL input loads. When the output is in the HIGH state ( $\geq 2.4 \mathrm{~V}$ ), the load will sink a minimum of 4.0 mA . Conversely, when the output is in the LOW state ( $\leq 0.4 \mathrm{~V}$ ), the load will source a minimum of 8.0 mA . These are common $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}} \mathrm{DC}$ conditions. The device is designed and tested to this set of conditions. As long as the device is placed in an environment such that signal paths are relatively short, the TTL output will behave as expected. However, if the device is placed into a transmission line environment the output characteristics will change depending on the characteristics of the signal line. (A transmission line environment exists if the overall length of the signal path is a significant ( 0.25 ) fraction of the rise/ fall time of the device output. The greater the fraction, the more the environmental effects.) If the transmission line network is designed for this type of loading, then there is a clean signal transmission; unfortunately, it is very difficult to obtain such a network for TTL devices. If the network is not characteristic of this load, then signal reflections and distortions result. These can delay signal propagation speeds through the system and affect overall system performance.


L/D/10098-1
FIGURE 1a. Databook

Theoretically, a transmission line network can be designed for a TTL load. Figure $1 b$ shows the Thevenin equivalent of the TTL load. This equivalent load has the same loading properties as the original load. From this Thevenin load, a transmission line matching load can be derived (see Figure 1c). The transmission line load is equivalent to the databook load with the exception of the physical propagation delay of the transmission line. A device output will behave exactly the same with this load as it would with the databook load. The signal itself would be delayed by the transmission line, but not distorted. A device input at the other end of the line would see an undistorted TTL output waveform.


TL/D/10098-2
FIGURE 1b. Equivalent Loading


TL/D/10098-3
FIGURE 1c. Transmission Line Match

Unfortunately, TTL systems are not designed with this type of loading scheme. Figure 2 shows a more commonly found environment. Note that the signal line impedances are lower than the ideal. High impedances in printed circuit boards are difficult to manufacture and are not commonly found. Quite often $75 \Omega-100 \Omega$ is an upper limit. Also, the transmission line is unterminated. The ideal transmission line load used a $166.5 \Omega$ resistor terminated to 3.33 V . Terminated lines would require an additional power supply and many discrete resistors to implement. These differences equate to reflections on the signal paths. These reflections can result in delays in data transmission.
Figure 3a shows IV curves of TTL inputs and outputs in the HIGH state. These curves can be equated to time domain reflection diagrams illustrating the signal integrity. For the example of a $100 \Omega$ environment, Figure $3 b$ shows the resulting waveforms. For this example, any input at the far end of the line will receive a relatively clean signal. The signal is above the $\mathrm{V}_{\mathbb{I}}$ level at $\mathrm{t}=\mathrm{T}$ and data can be properly identified. The slight bump at $t=3 T$ only cleans up the signal futher. The problem arises if another input is placed near the device output. Due to the reflection from the far end of the line, the input at A (device 2) has to wait until $t=2 T$ before it receives clear identifiable datal Furthermore, any input placed somewhere between the output and the end of the transmission line will see some distorted signal which may not provide a valid data transition until $t=1.5 \mathrm{~T}$. This example is relatively simple; even still, such a reflected delay can amount to a significant percentage of the overall cycle rate and can cause a marked degradation in system speed. Depending on the type of routing scheme used, and the actual impedances of the PCB, even greater delays can occur.


FIGURE 2. "Typical" Application


FIGURE 3a. TTL Transition to High State

For ECL devices placed into their specified environment, reflections are not a concern. ECL devices are designed specifically for ( $50 \Omega$ ) transmission line networks. Figure 4 a shows the databook load for ECL devices. This load is not only the test load for the device, it is also the specified load for the system environment. This load is a Thevenin equivalent and can be easily translated into an equivalent transmission line load (see Figure 4b). As was the case with the idealized TTL transmission line load (Figure 1c), this load will transmit data cleanly with only the physical delay of the transmission line being a factor in propagation speeds.


TL/D/10098-5
FIGURE 3b. Reflection Diagram for Transition to High State

Unlike the typical TTL application, the typical ECL application utilizes this loading scheme (see Figure 4c). Consequently, there are no reflections or distortions of the signal transitions. Figure 5a shows the IV curves of ECL output LOW and HIGH conditions. Figure $5 b$ shows the resulting time domain reflection diagram. This signal is cleanly propagated along the network until it arrives at the end of the line. Due to the fact that it is a properly terminated transmission line, there is no reflection. Any input placed along the line wil see a clean signal transition delayed by the propagation delay of the line to that point! The worst case delay for the signal is $\mathrm{t}=\mathrm{T}$ !

ECL Load Matching


FIGURE 4a. Databook Load
FIGURE 4b. Transmission Line Match


TL/D/10098-7
FIGURE 4c. "Typical" Application

## Data Transmission on ECL Systems



FIGURE 5a. ECL Transition to High State

## ECL System Design Considerations

Due to the terminated impedance environment required by ECL devices, there are a few basic routing rules which must be followed. Before designing an ECL system, an understanding of these basic routing conditions should be understood. Some of the basic considerations are discussed here; a more comprehensive discussion can be found in the National F100K ECL User's Handbook.
The most straight forward connection method was shown in Figure 4c. This method simply places a $50 \Omega$ resistor at the input to the next device to provide a series terminated load. In some cases, it is desirable to connect several outputs to a common bus. This is particularly desirable for ECL devices

## Party Lines



FIGURE 6a

TL/D/10098-8
FIGURE 5b. Reflection Dlagram for Transition to High State
since they have open emitter outputs and are specifically designed to be used in wired-or bus configurations. Figure 6a shows a typical "party line" connection. In this case, care must be taken to minimize the physical distance between the two outputs. If the distance is large enough, the signal line between the two outputs will act as a transmission line (Figure 6b). For the output in device 1 this doesn't cause a problem, because it is at one end of the transmission line. However, device 2 is in the middle of the transmission line. The output in device 2 sees two transmission lines in parallel. The result is that the output sees the equivalent of a $25 \Omega$ transmission line for some length of time. This causes impedance mismatches at the terminated load and results in signal reflections.


FIGURE 6b

Figure $7 a$ shows an incorrect signal termination method. The parallel terminations cause the impedance that the device output sees to drop to $16.7 \Omega$. An impedance mismatch occurs at node A where the transmission lines split. Reflec-
tions and disturbed signal integrity can result. A correct termination method for bus configurations is shown in Figure $7 b$. This configuration has only one terminated load and maintains a $50 \Omega$ environment throughout.


TL/D/10098-11
FIGURE 7a. Incorrect (For High Speed Applications)


FIGURE 7b. ECL Bussing Terminations

## ECL PCB Design Considerations

In order to design a printed circuit board for an ECL system, many factors have to be considered. The ultimate goal is to develop a PCB with transmission line impedances as close to $50 \Omega$ as possible. In order to accomplish this, the geometry of the board itself and the properties of the ECL device must be considered.

Figure 8 shows a PCB cross-section of several $\mu$ strip transmission lines. The factors affecting the overall impedance of the board are the metal thicknesses, widths, heights, and spacings; and the dielectric constants and thicknesses of the dielectric materials. For example, the impedance of a microstrip line can be found from:

$$
Z_{O}=\left[87 / \sqrt{ }\left(e_{r}+1.41\right)\right]^{*} \ln [4.98 h /(0.8 w+t)]
$$

where $\mathrm{h}=$ dielectric thickness, $\mathrm{w}=$ trace width, $\mathrm{t}=$ trace thickness, $\mathrm{e}_{\mathrm{r}}=$ dielectric constant of board material relative to air.
This formula can be used to calculate the undisturbed or "unloaded" impedance of the PCB. Packaged devices have
inherent capacitive and inductive characteristics which can load a PCB transmission line. What is desired from the system point of view is that the final or "loaded" impedance of the board is equal to $50 \Omega$. The capacitance of the device affects the final impedance of the PCB. Figure 9 shows a discrete RLCM model of the transmission line network shown in Figure 8 and Figure 10 shows the effect of adding a device to this network. Capacitors CD1, CD2 are the capacitances of two device inputs. These capacitors are parallel to the capacitors of the transmission line and thus increase the overall capacitance of the transmission line. The inductors (LD1, LD2) are the inductances of two device inputs. Though these inductors are parallel to the transmission line, they do not affect the overall characteristics of the transmission line because they lead into an open circuit (they device itself). Consequently, the dominant effect of adding devices to a PCB is the increased capacitance of the PCB.


TL/D/10098-13
FIGURE 8. Geometric Model of PCB


FIGURE 9. RLCM Network Model for PCB (Unloaded)


FIGURE 10. RLCM Network Model for PCB (Unloaded)

For example, an unloaded PCB transmission line could have the following properties:
$\mathrm{C}_{0}$ (characteristic capacitance) $\approx 1.44 \mathrm{pF} / \mathrm{cm}$
$\mathrm{L}_{0}$ (characteristic inductance) $\approx 3.61 \mathrm{nH} / \mathrm{cm}$
Since the impedance of a transmission line is equal to the square root of inductance divided by the capacitance,
$Z_{0}$ (characteristic impedance) $\approx 50.1 \Omega$ [unloaded].
If we want to place 5 devices along this line ( 10 cm in length) and each device has an input capacitance $\mathrm{C}_{\text {dut }}=$ 2 pF , the resulting impedance of the transmission line would be:

$$
\begin{aligned}
\mathrm{Z}_{0^{\prime}}(\text { loaded }) & =\sqrt{ }(\mathrm{L} \mathrm{~L}) / \sqrt{ }\left(\mathrm{C}_{\mathrm{O}}+\mathrm{C}_{\text {dut }}\right) \\
& =\sqrt{ }(3.61 \mathrm{nH} / \mathrm{cm}) / \sqrt{ }[1.44 \mathrm{pF} / \mathrm{cm}+ \\
& (2 \mathrm{pF} / \text { device } * 5 \text { devices } / 10 \mathrm{~cm})] \\
& \approx 38.5 \Omega
\end{aligned}
$$

This impedance is significantly lower than the $50 \Omega$ impedance which is needed. Consequently, the designer must design his unloaded board to a sufficiently high impedance so that after the board is populated it will measure $50 \Omega$.

## Modeling of Loaded Transmission Lines

Using the RLCM model shown in Figure 10, a SPICE model can be constructed to evaluate the effects of increased device capacitance on the PCB.
Figures 11-13 show the output from such a SPICE model; the transition modeled is a low to high transition at nominal ECL levels. The transmission line model was tuned to a specific capacitance value for the device. As expected, the SPICE output predicts an underdamped condition for the unpopulated board (Figure 11). The transition first overshoots and then undershoots the nominal $\mathrm{V}_{1 \mathrm{H}}$ level. As capacitance is added, the transition gets closer and closer to the ideal matched condition. Figure 12 shows the effects of an "overloaded" line. In this case, the capacitance of the device is not totally compensated by the PCB. Consequently, the signal undershoots and then overshoots the nominal $V_{I H}$ level.
Figure 13 shows the resulting signal of a tuned "loaded" transmission line. Due to the design of the transmission line, the added capacitance of the device is compensated by the intentional addition of increased line inductance.


FIGURE 11


FIGURE 12

## Summary

For maximum performance, layout and construction requirements on printed circuit boards for next generation systems must become more demanding. While at first glance, designing with ECL devices poses more difficulties for a system designer than TTL devices, if the goal is to obtain high system performance then ECL devices offer significant ad-


FIGURE 13
vantages. Because of the fact that they are designed specifically for high speed environments, the ECL device is easier to integrate into a high speed system. With the geometries and characteristics of the printed circuit board and the device considered as a unit, a network can be designed to produce a clean controlled impedance environment for an ECL device much easier than for a comparable TTL device.

## Using the F100250 for Copper Wire Data Communications

Ideal "digital" signals do not exist, especially when the signal must travel from source to destination over any currentcarrying conductor. The world of "digital" signals is truly the world of high-frequency analog and radio-frequency (RF) amplifiers and energy transmission systems. This is especially true for the case of high-speed copper wire data communications networks. The problems of sending signals over the wire interface, whether a printed circuit board or a coaxial cable, require a knowledge of transmission line theory.
To effectively use devices like the F100250 Line Transceiver in high-speed data communications networks, the system designer needs to be acquainted with several subjects among which are: the effects of using pulse excitation on a transmission line, a knowledge of the various forms and modes of data-transmission-line circuit operation, familiarity with the problems of working with long transmission lines, a working knowledge of the driver and receiver, their electrical characteristics, and where and how to use them. This applications note cannot treat the whole subject of "digital" data transmission since the scope of that subject could and has filled whole volumes. This note will touch upon the transmission line topic in conjunction with offering helpful suggestions on how to more effectively use the F100250 Line Transceiver.

## F100250 DESCRIPTION AND OPERATING FEATURES

The F100250 is a quintuple, differential-line transceiver with the unique capability of being able to transmit and receive differential-mode signals simultaneously on the same transmission line. The F100250 is part of the National Semiconductor F100K ECL family. As such it shares ECL interface signal characteristics in common with the F100K family.
The circuit of the F100250 (Figure 1) is comprised of a line transmitter with differential output, a differential receiver with transparent latch, signal separation circuitry, and internal line termination circuitry. The transmitter is a single-ended input to differential-output amplifier which connects to the line through an active-resistive bridge network. This network provides the correct driving-point and termination impedances for the transmission line and forms part of the received-signal separation circuitry.


FIGURE 1. F100250 Block Diagram

National Semiconductor Application Note 582 Jim Mears


The receiver consists of a voltage subtractor and hysteresis circuit followed by an amplifier and emitter-follower output. The receiver has a common-mode voltage immunity of $\pm 1 \mathrm{~V}$. The possibility of oscillation in response to slow rise or fall times is reduced by using hysteresis; and the ability to detect noisy signals is improved. The typical hysteresis level of the F100250 is 50 mV .
The receiver incorporates a transparent latch for data retention in synchronous-type operations. The level-sensitive, latch ENABLE pin simultaneously controls the operation of all latches in the part. Data present on the line inputs ( $L$ and $\overline{\mathrm{L}}$ ) prior to taking ENABLE high is retained in the latch, assuming proper setup and hold timing is met. The latch is fully transparent when ENABLE is low.
Termination is provided internally for 30 AWG twisted-pair lines which have a nominal impedance of $150 \Omega$. Higher or lower impedance values may be accommodated by use of a suitable external termination network.

## Bi-Directionality

The hallmark of the F100250 is its ability to simultaneously send and receive differential-mode NRZ signals over the same line. This operational mode is known as "baseband full-duplex". By contrast, full-duplex operation is normally accomplished using frequency-division multiplex (FDM) techniques. A common example of which is the 103 or 212A telephone line modem. The F100250 uses a balancedbridge to separate the transmitted and received baseband signals.
The F100250 can also operate in a uni-directional manner. It is suggested that the input to the transmitter for the unused direction be held at a fixed mark or space level. The ECL signal inputs (Sin 1-5) incorporate $50 \mathrm{k} \Omega$ pull-down resistors for the purpose of holding the unused input at a low (inactive) logic level.
The F100250 cannot operate in a party-line or multi-drop mode due primarily to the fact that the transmitter outputs cannot be turned off (i.e., made high-Z or TRI-STATE®). Also, connecting more than two devices to the line would cause a multiple mismatch to occur since the device's output is self-terminating. This restriction should present few problems since the primary use for the F100250 will be in the highest speed point-to-point type applications.

## SUITABLE TYPES OF TRANSMISSION LINES

## Twisted-Pair Lines

The F100250 is designed for operation over $150 \Omega, 30$ AWG twisted-pair lines. However, it will operate with a variety of other line types and impedances if an appropriate termination method is used as will be shown in the application example.
Twisted-pair transmission lines (Figure 2) are available shielded and unshielded, singly and in multi-pair cables, in popular ribbon configurations and in combinations of these. Impedances range from $93 \Omega$ for 32 AWG solid, unshielded, ribbon cable to $124 \Omega, 25$ AWG, multiple, individually-


TL/F/9564-2
Note: $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{O}}$
FIGURE 2. Terminating Differential Twisted Pair
shielded pair and the aforementioned $150 \Omega, 30$ AWG, unshielded, individual pair. Twisted-pair lines exhibit substantial attenuation and dispersion. This may be seen as the rounding and slowing of fast rise-time signals as they travel down the line. Attenuation can range from 10 dB to over 30 dB per 100 feet at 100 MHz . Propagation velocities range from 0.66 to 0.78 the speed of light ( 1.3 ns to $1.6 \mathrm{~ns} /$ ft ). In addition, the electrical characteristics of twisted-pair lines do not permit their analysis by the more traditional methods used for coaxial lines. For this reason, the engineer designing twisted-pair wire transmission systems must be equipped to take and interpret measurements on the particular line type chosen for the application. This is the best, and in some cases the only, way in which the capabilities and limitations of the particular driver-line-receiver combination may be understood. Test equipment and fixturing will be described later in this note to help in making meaningful measurements.

## Multiple-Pair Cables

Multiple twisted pair cables are a popular method of interconnecting computing equipment and peripheral devices. Additional considerations must be given when using these types of cables. Some of these are: pair-to-pair coupling and capacitance, pair-to-shield capacitance and pair-to-pair relative propagation delay difference. For example, the propagation delay of a single pair in the cable may be $1.5 \mathrm{~ns} /$ lineal-foot and the relative delay between pairs is $0.5 \mathrm{~ns} /$ lineal-foot. The design value for the actual per-unit delay would be 1.45 ns to $1.55 \mathrm{~ns} /$ lineal-foot. That is, the cable will exhibit a pair-to-pair per-unit-length delta-delay of 0.10 ns . This delta-delay value can be considered additive per unit length between any two given pairs. However, the overall delay value for a length of the cable will be that of the pair with the longest electrical delay. The overall rel-
ative delay of the cable will be the difference between those pairs with the longest and shortest electrical lengths. This is an important delay factor to be considered in determining the minimum unit interval (hence, the maximum data rate) which can be propagated by the network.
There is another point to remember when determining the delay of multi-pair cables. The delay figures specified in cable data sheets (when given) are normally expressed as delay-per-unit cable length. This value is greater than the actual delay-per-lineal-foot of the pair itself because the layers of pairs are laid-up in a spiral wrap. The fact that the outer pairs traverse a greater distance due to the spiral wrap usually means that they have greater delay per unit cable length than the inner layers of pairs.

## Coaxial Cables

Coaxial cables offer a near ideal transmission medium for "digital" data communications signals. Among their more desirable features are: a high degree of shielding, wide bandwidth capability, high velocities of propagation and low attenuation at high frequencies. Coaxial cables are now available paired and in multiple (or ribbon) configurations. Impedances range from $50 \Omega$ to $125 \Omega$ for standard coaxial cables and up to $200 \Omega$ for twinaxial cables. Appendices A and B give a partial list of available coaxial cable with abbreviated data.
Ribbon coax offers a convenient and compact transmission line with mass-termination connector capability. Normally available in $75 \Omega$ and $93 \Omega$ versions, it has excellent shielding properties because of its foil shielding. Available types have moderate attenuation and high propagation velocity.
Terminating coaxial cables is easily done with a parallel termination resistor or by terminating each coax individually as shown in Figure 3.


As with twisted-pair cables, the electrical length of both coaxial cables used for the differential pair must be the same. It is usually desirable to temperature-cycle and flex the cable prior to cutting and measuring to electrical length. This will relieve stresses resulting from manufacturing and storage on spools. Without stress-relieving, the cable may change in physical length and therefore in electrical length with unpredictable results for network timing.

## Measuring the Electrical Length of Cables

Measurement of the electrical length of cables, coaxial or twisted-pair, can be done using a time-domain reflectometer (TDR) which measures physical length by determining the round-trip delay of a fast rise-time pulse signal. The TDR can also be used to check for defects in the cable such as shorts or opens and impedance discontinuities caused by sharp bends or kinks. However, the accuracy of the TDR, usually $1 \%$, does not allow precise length or timing measurements to be made, especially on very short or long lengths. More precise measurements require the use of multi-frequency phase delay techniques using a vector voltmeter or network analyzer and precision frequency sources.

## Transmission Lines on Printed Circuit Boards

Printed circuit wiring may also be used as interconnections for the F100250. Line impedances of $75 \Omega$ to $100 \Omega$ are easily achieved with conventional manufacturing technologies. The main points to observe when laying out differential networks on printed wiring boards are: that both conductors be the same electrical length and that they are the same impedance. This will insure that no skewing of the differential
signal occurs at the receiver input. Skewing appears as an offset in input differential voltage to the receiver.
A wealth of information on printed wiring design is contained in the "F100K ECL Databook and Design Guide". Differential techniques are also covered.

## Estimating Signal Quality

Before proceeding to the F100250 data transmission system design example, some concepts and terms for the various signal abberations which will be encountered need to be defined.
Signal quality is concerned with the variation between the ideal instants of the original data signal and the actual transition times of the recovered data signal (Figure 5). Recovered data transitions may be displaced in time from their ideal instants. This is caused by a new wave arriving at the receiver before the previous wave has reached its final value. This is termed "intersymbol interference". It can be reduced by making the unit interval of the signal long with respect to the rise (or fall) time of the signal at the receiver input. Reducing the modulation rate for a given line length or vice versa will reduce this form of interference.
Another form of received-signal distortion present with synchronous signalling, like NRZ, is "isochronous distortion". This is the ratio of the unit interval to the absolute value of the maximum measured difference between the actual and theoretical significant instants. In other words, it is the percentage of the unit interval that is peak-to-peak time jitter of the data signal (Figure 4). If the peak-to-peak time jitter of the transition were one-half of the unit interval, the isochronous distortion would be $50 \%$.


TL/F/9564-4
Peak-to-Peak Jitter $=\frac{t_{\text {tcs }}}{t_{\text {ui }}} \times 100 \%$
FIGURE 4. Estimating Peak-to-Peak Jitter
"Bias distortion" is the shortening of the duration of the mark-bits with respect to the space-bits or the reverse (Figure 5). It may be caused by a shift of the receiver threshold, asymmetrical driver output levels or both. Together, bias distortion and intersymbol interference are called "systemic distortion". This is because their magnitudes are determined by data transmission system characteristics. Other forms of randomly-occurring distortion such as noise and crosstalk are called "fortuitous distortion". These are due to factors outside the data transmission system.

## Signal Quallty Measurement

Measurements of signal quality on any transmission system should always be designed to show the effects of intersymbol interference and bias distortion. This means that the test signal must be capable of showing both effects. The use of
a simple NRZ dotting pattern (a signal with 50\% duty cycle and frequency of one-half bit-time) cannot show intersymbol interference due to its symmetry. It can show bias distortion as a change in duty cycle for the recovered dotting pattern.
The use of a random NRZ data pattern can show both types of interference by its unpredictable bit sequence. A pseudorandom NRZ data generator built from standard F100K ECL devices is shown in Figure 6. This circuit is capable of producing a random sequence (2E20)-1 bits in length at frequencies up to about 240 MHz . When the data produced by this circuit is transmitted over the line and viewed on a suitable oscilloscope, a so-called "binary eye pattern" will be seen. This pattern results from the superposition of alternating mark and space bits during each unit interval. It is so called because the pattern's center resembles an eye.


FIGURE 5. Blas Distortion


Note 1: Termination resistors not shown.
Note 2: Split supplies for test equipment convenience.
Note 3: Clock input 230 MHz max.
FIGURE 6. F100250 Differential Line Test Circuit

The eye-pattern is a useful tool to measure data signal quality (Figure 7). The spread of transitions crossing the receiver input threshold can be used as a direct measure of isochronous distortion (peak-to-peak jitter). Rise and fall time can be measured by using the self-references of $0 \%$ and $100 \%$ resulting from the long sequence of mark and space bits.

The noise margin of the system can be measured as the height of the trace above or below the receiver threshold level at the sampling instant. The eye-pattern can even be used to determine the characteristic impedance of the transmission line. The method is discussed in Appendix C.


FIGURE 7. Formation of the Binary Eye Pattern

The eye-pattern gives, in some ways, the minimum peak-topeak transition jitter for a given line length, type, pulse code, and modulation rate. This is because the pattern results from intersymbol interference and reflections (if present). Minimum jitter conditions only result if: 1) the mark and space signal levels from the driver are symmetrical and the receiver's threshold is set at the mid-point of these levels; 2) the line is terminated in its characteristic impedance; and 3) propagation delays through both transmitter and receiver for both logic states is symmetrical and without relative skew. Signal quality is reduced if any of these conditions is not met.
The decision threshold shown by the displayed eye-pattern for a particular driver and modulation rate shows the effects of receiver bias (or threshold ambiguity) and offset. The slope is small in the threshold region for signals with greater
than $20 \%$ isochronous distortion. Therefore, small amounts of bias produce large increases in isochronous distortion. A good practice is to design systems to have less than $5 \%$ transition spread as shown in the eye-pattern. This minimizes the effects due to bias and simplifies design requirements for line transmitters and receivers.

## Application Example-

## Putting the F100250 to Work

The F100250 excells at transmitting over twisted pair wiring. Figure 8 shows an example using 50 meters of $106 \Omega$, 26 AWG, unshielded pair. The pair used is one of 25 in a multi-pair cable specifically designed for digital signal transmission. Note that termination resistors have been added for improved impedance matching to the F100250 line terminals. The scope photos in Figures $9 a$ and $9 b$ show the composite signal conditions at the receiver input. Two pseu-do-random signals, 10 MHz and 50 MHz , are present on the line in this example.


TL/F/9564-8
FIGURE 8. Twisted Pair Test Circuit


TL/F/9564-9
FIGURE 9a. Composite Signal at Receiver Input ( 50 MHz ) Showing Both 10 MHz and 50 MHz Signals on the Line (Differential Mode)


TL/F/9564-10
FIGURE 9b. Composite Signal at Transmitter Output ( 50 MHz ) Showing Both 10 MHz and 50 MHz Signals on the Line (Differential Mode)

Figure 9a shows the composite signal at the receiver input for the 50 MHz signal. Note that both signals appear with the received signal ( 50 MHz ) "riding on" the locally transmitted signal ( 10 MHz ). Figure $9 b$ shows the 50 MHz signal as transmitted. Signal attenuation is approximately 2 dB for the 50 MHz signal.


TL/F/9564-11
FIGURE 10a. 50 MHz Signal at Receiver Input. (Intensification Due to Overlapping 10 MHz Signal) $20 \mathrm{~ns} / \mathrm{div}$. Horiz.


TL/F/9564-12
FIGURE 10b. 50 MHz Signal at Receiver Input. $10 \mathrm{~ns} /$ div. Horiz. Peak-to-Peak Jitter is Less Than 40\% Total.

Figures $10 a$ and $10 b$ show the 50 MHz signal at the receiver input. The peak-to-peak jitter from all sources is about $40 \%$ maximum. Figure 11a shows the 50 MHz signal at the line input (differential mode) and Figure 11b shows the recovered 50 MHz signal at the receiver output. The effective jitter can be seen in the recovered signal. It is important to note that the F100250 exhibits no threshold shift which would contribute to bias distortion.


FIGURE 11a. 50 MHz Signal at Transmitter Output (Line Input)


FIGURE 11b. 50 MHz Signal at Receiver Output (Recovered Signal). Shows Effect of Jitter on Output.

APPENDIX A-TWISTED PAIR CABLES

| Cable | Manufacturer | AWG <br> Wire Size | $Z_{0}$ <br> $\Omega$ | $\mathbf{V}_{\mathbf{p}}$ | $\mathbf{C}_{0}$ <br> $\mathbf{p F} / \mathrm{ft}$ | Attenuation <br> $\mathbf{6 ~ d B V}$ Limit <br> $\mathbf{k ~ F e e t ~}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TWISTED PAIR

| Unshielded | Com'l | 28 | 100 | 0.66 | 15.5 | 0.77 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 28 | 120 | 0.78 | 11.0 | 0.9 |
|  |  | 26 | 106 | 0.66 | 12.0 | 2.7 |
|  |  | 24 | 100 | 0.66 | 15.5 | 2.1 |
|  |  | 24 | 120 | 0.66 | 12.8 | 2.5 |
|  |  | 24 | 100 | 0.78 | 12.5 | 2.1 |
|  |  | 22 | 100 | 0.66 | 15.5 | 3.0 |
| Individually Shielded | Com'l | 24 | 100 | 0.78 | 12.5 | 2.1 |
|  |  | 25 | 124 | 0.66 | 12.2 | 1.9 |

APPENDIX B-COAXIAL CABLES

| Cable <br> Type | Manufacturer | Part <br> Number | $\mathbf{Z}_{0}$ <br> $\Omega$ | $V_{P}$ | $C_{0}$ <br> $p F / f t$ | Attenuation <br> $d B / 100 \mathrm{ft}$ <br> $@ 100 \mathrm{MHz}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

COAXIAL

| Single | Com'l | RG-59/U | 75 | 0.78 | 17.3 | 3.0 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Belden | 8281 | 75 | 0.66 | 21.0 | 2.7 |
| Sual | Belden | 9555 | 75 | 0.66 | 20.5 | 3.4 |
|  | Alpha | 9845 | 75 | 0.66 | 20.5 | 3.4 |

TWINAXIAL

|  | Com'l | RG-22B/U | 95 | 0.66 | 16.0 | 3.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Belden | $\begin{aligned} & 8227 \\ & 9207 \\ & 9815 \end{aligned}$ | 100 | 0.66 | 15.5 | 4.1 |
|  | Belden | $\begin{aligned} & 9271 \\ & 9860 \end{aligned}$ | 124 | 0.66 | 12.2 | 5.0 |
|  | Belden | 9182 | 150 | 0.78 | 8.8 | 4.3 |
|  | Belden | 9851 | 200 | 0.76 | 6.7 | 4.0 @ 50 MHz |
| RIBBON |  |  |  |  |  |  |
|  | Belden | 9K750XX | 75 | 0.78 | 17.1 | 7.5 |
|  |  | 9K930XX | 93 | 0.78 | $14 \pm 2$ | 5.0 |

## APPENDIX C-

## MEASURING CABLE IMPEDANCE

The impedance of a length of cable may be determined from simple measurements using the eye pattern. Either of two methods may be used. In one method the voltage reflection from a known termination is used to calculate $Z_{0}$. The second method uses direct resistance measurement to find $Z_{0}$.

## Voltage (Indirect) Method

In the voltage method (Figure C1), the signal generator frequency is set such that the unit interval of the eye pattern is
about twice the round-trip delay of the line to be measured. The peak voltage ( $\mathrm{V}_{\text {peak }}$ ) of the eye pattern cell is measured (Figure C2a) with a known value termination resistor at the far end of the line. Next, the voltage at the end of the bit cell ( $V_{\text {nom }}$ ) is measured. The line impedance can then be calculated using the following formula to about $5 \%$ accuracy.

$$
Z_{0}=R_{t} *\left(\left(2 * V_{\text {peak }} / V_{\text {nom }}\right)-1\right)
$$

For the waveform shown in Figure C2b, a $51 \Omega, 5 \%$ resistor is used as the termination. The peak line voltage is 390 mV . The voltage at the end of the bit cell is 240 mV . This gives a line impedance of $114.7 \Omega$.


TL/F/9564-15
$\mathrm{R}_{\mathrm{T}}=$ Suitable fixed resistor (voltage method) or $250 \Omega$ to $300 \Omega$ variable resistor (cermet potentiometer) for direct method FIGURE C1. Line Impedance Test Setup

$Z_{0}=R_{t}\left(\frac{2 V_{\text {peak }}}{V_{\text {nom }}}-1\right)$
FIGURE C2a


TL/F/9564-17
FIGURE C2b. Voltage Method Waveform

Incidentally, the round-trip delay of the line, represented by the rising portion of the waveform, is 520 ns . Since the cable sample is 50 meters ( 164 ft .) long, the delay per foot can be estimated to be 1.6 ns per foot. (The data sheet for the cable sample used specified the delay of the pair as 1.575 ns to 1.6 ns per foot and the impedance as $101.5 \Omega$ to 105 $\Omega$.)

## Resistance (Direct) Method

The same test setup is used as for the voltage method. A variable resistor is substituted for the fixed termination. The value chosen should be in the range of $250 \Omega$ to $300 \Omega$.


TL/F/9564-18
FIGURE C3a. Under-Terminated


FIGURE C3b. Over-Terminated
Figures C3a through C3c illustrate the three possible condjtions of termination which can be achieved. Figure C3a shows the under-terminated condition where the termination value is greater than the line impedance. Figure C3b is the over-terminated condition where the termination value is less than the line impedance. Finally, Figure C3c shows the condition where the termination is adjusted to match the line impedance. When this condition is achieved, the value of the termination variable resistor, and hence the line impedance, may be read using an Ohmmeter.
Using the direct method to measure the same pair sample gave a value of $105.9 \Omega$ for the line impedance. This method is preferred since it is simple and accurate.

## BIBLIOGRAPHY

"Application Note 62-Time Domain Reflectometry", Hew-lett-Packard Co., 1964.
Ramo, S., J.R. Whinnery, and T. Van Duzer, Fields and Waves in Communications Electronics, 1965, New York: Wiley.
Kirsten, F., "Pulse Response of Coaxial Cables", Counting Note No. CC2-1A, Lawrence Radiation Laboratory.
Langford-Smith, F. (editor), Radiotron Designer's Handbook, 1953, Amalgamated Wireless Valve Co. Pty. Ltd.: Sidney, Australia.
Gaiser, R., "Two-Wire DC Baseband System for Two-Way Simultaneous Data Transmission at High Speeds", Conference Record of 1970 International Conference on Telecommunications, Paper 70-CP-283-COM, pp. 16-33 to 16-41.


FIGURE C3c. Terminated
Metzger, G. and J.P. Vabre, Transmission Lines with Pulse Excitation, 1969, New York, Academic Press.
Krauss, J.D., Ph.D., Antennas, 1950, New York, McGrawHill.
Nahman, N.S. and R.L. Wigington, "Transient Analysis of Coaxial Cables Considering Skin Effect", IRE Proceedings, Vol. 45, Feb. 1957, pp. 166-174.
Nahman, N.S., "A Discussion on the Transient Analysis of Coaxial Cables Considering High Frequency Losses", IRE Transactions on Circuit Theory, Vol. CT-9, No. 2, June 1962, pp. 144-152.
Nahman, N.S. and D.R. Holt; "Transient Analysis of Coaxial Cables Using the Skin Effect Approximation A + B sqrt(s)", IEEE Transactions on Circuit Theory, Vol. 9, No. 5, Sept. 1972, pp. 443-451.
Nahman, N.S., "A Note on the Transition (Rise) Time Versus Line Length in Coaxial Cables", IEEE Transactions on Circuit Theory (Correspondence), Vol. CT-20, No. 2, Mar. 1973, pp. 165-167.
Magnusson, P.C., "Transient Wavefronts on Lossy Transmission Lines-Effect of Source Resistance", IEEE Transactions on Circuit Theory (Correspondence), Vol. CT-15, Sept. 1968, pp. 290-292.
Turin, G.L., "Steady-State and Transient Analysis of Lossy Coaxial Cables", IRE Proceedings (Correspondence), Vol. 45, June 1957, pp. 878-879.

# The ECL System Solution 

National Semiconductor
Application Note 650
Jeff Bunce


Emitter-Coupled-Logic (ECL) has always been the ugly sister in the world of digital bipolar integrated circuit technology, since its introduction in the early 1960's. ECL has been shunned by the average designer due to its large gate power consumption ( $\mathrm{mW} /$ gate in the early days) and the need for controlled impedance circuit boards to minimize noise and signal reflections. Non-TTL level power supplies and non-TTL I/O levels have also made ECL unfavorable to the typical system designer. The only people daring enough to take on the challenges of ECL were the system architects needing to handcraft their CPUs/interfaces for optimum performance. In most other instances, the inherently slower TTL and CMOS logic was tolerable, providing an adequate way to complete the task at hand without having to go through the pain of incorporating transmission line theory in board design. The world of system design has changed however, and ignorance is no longer bliss. TTL/CMOS logic families have advanced to the point where their edge rates and propagation delays demand controlled impedance board design to avoid the same pitfalls that have always been present with ECL.
Forced understanding of transmission line theory for TTL and CMOS has the hidden benefit of making ECL more palettable to the modern system designer. As long as the effort needs to be expended in understanding the problem, why not use the technology that truly offers maximum performance at minimum cost? ECL offers the speed that TTL and CMOS technologies never will, and the affordability and levels of integration unattainable by GaAs and other compound semiconductors. Key to understanding these arguments is that the same advances in process technology that are used to enhance CMOS and TTL logic are invariably used to advance ECL's state of the art. The subsequent improvements result in even faster speeds for ECL at significantly reduced power consumption. GaAs is inherently more expensive than silicon based technologies (due to scarcity of materials and excessive manufacturing costs). Although gate-for-gate GaAs may offer faster logic than ECL, the key variables impacting component delay are not the circuitry and devices for SSI logic, rather interconnect on the die and packaging. GaAs is also much more difficult to manufacture from a materials handling viewpoint and will probably never offer the low costs and levels of density ECL affords. GaAs is a niche product that is best suited for specialty applications, but it has been, is now, and probably always will be the technology of the future. Contrary to the smoke and mirrors GaAs houses use to promote ultra high speed GaAs circuits, GaAs only offers a 1.5 to $3 \times$ improvement in speed over silicon ECL in real operating conditions away from the security of the supercooled environment of the lab. ECL offers 10 to $100 \times$ or more the levels of integration of GaAs at a fraction of the cost.

ECL has also made a number of in roads to maintain its leadership position in the world of silicon base logic. Over the years, ECL has taken advantage of CMOS/TTL processing innovation such that it has overcome its significant power consumption, reducing it from $\mathrm{mW} /$ gate to $\mu \mathrm{W} /$ gate. High speed system design controlled impedance boards are a requirement now for logic families. Contrary to TTL/ CMOS, ECL offers zero skew balanced differential outputs which further simplify logic design as well as minimizing power supply and output switching noise. ECL also offers the end user the ability to "wire-OR" outputs together, generating a positive logic "OR" without the expense of additional components. In addition, National (via Fairchild) introduced the first commercially available temperature and voltage compensated ECL logic family. Unlike CMOS and TTL, ECL's temperature and voltage compensation makes the logic much more insensitive to environmental changes which is extremely important for the military designer. This compensation also eases design verification and system debugging by eliminating intermittant problems which can be masked by opening a system cabinet or taking it into an air conditioned lab for inspection.


TL/D/10575-1
FIGURE 1. Technology Speed/Power Curve
Fully temperature and voltage compensated logic offers much tighter AC specifications (i.e. minimum AC skew) across the entire power supply/temperature range because the logic is regulated and not allowed to drift with environmental changes. These tighter skew windows become increasingly important in local back planes, local distribution of clocks and other control signals, as well as in distributed systems such as modern CAD workstation environments where host-server(s) communication is critical to improving total system throughput. Figure 2 below shows how compensation results in much tighter windows for DC levels as well as AC switching parameters versus those for uncompensated logic.

ECL has come a long way since its early days of the egg fryer SSI/MSI functions and high speed low density SRAMs. Today National is the world premier commodity ECL supplier with the broadest base of ECL product families in the indu-try. National's offerings include: BiCMOS SRAMs with

ECL I/O for cache or high speed bulk memory, the world's first BiCMOS UV EPROM for microcode store, ECL Standard Cell families for custom high speed CPU design, ECL Gate Arrays for custom CPU and interface design, ECL PLDs for user programmable glue logic, and F100K for glue logic. Today's designer has entire ECL toolkit available for system design (see Figure 3).



UNIT LOAD
(d)


FIGURE 3. High Speed ECL I/O Based CPU

National is committed to the military aerospace market for ECL and is capable of offering any of its commercially available ECL products as military grade of "military like" devices on customer demand. National's BiCMOS SRAMs (based on BiCMOS III) combines the best of both CMOS and ECL worlds by melding the low power high density CMOS for the memory array with the ECL for high speed I/O, decoders, and sense amps. National offers a wide variety of very high speed ECL I/O SRAMs including $256 \mathrm{k} \times 1$, $64 \mathrm{k} \times 4$ and $16 \mathrm{k} \times 4$ organizations. Development is well under way on a family of 1 Meg ECL I/O SRAMs with access times of 15 ns or less.

Additionally, National is supporting the designer with soon to be announced BiCMOS ECL I/O $2 k \times 9$ Advanced Self Timed RAM having a maximum access time of $5,7,10 \mathrm{~ns}$. National also has developed a BiCMOS ECL I/O UV EPROM, pin compatible with the 10149 ECL fuse PROM, in 5,7 , and 10 ns speed grades. This UV erasable ECL I/O EPROM can be used as high speed core CPU microcode store or as a programmable decoder and is programmed with standard TTL levels from readily available PROM programmers. Higher density BiCMOS UV EPROMs in development will soon be able to be used as CPU boot ROMs or for program storage.

National's ASPECTTM process has been utilized to provide the military system designer with high speed, high density fully temperature/voltage compensated ECL I/O standard cell capability. Our standard cell library includes mega cells such as a 64-bit floating point ALU processor, a 64-bit floating point multiply processor, multi-port register files, 32-bit barrel shifter, 64-bit funnel shifter, as well as a number of user configurable soft mega cell functions and the standard assortment of gate functions. These cells provide the system architect with the building blocks to design a high speed RISC (reduced instruction set computer) processor tailored for specific applications. Similarly, National's ECL gate array family offers a lower cost, faster turn-around time solution for the CPU/controller design as well as custom interface/ glue logic. National's ECL PALs provide high speed glue logic with the flexibility of user programmability using stan-
dard PAL programming hardware. Last but not least, National's F100K family is the work horse that rounds out the family, delivering SSI/MSI/LSI logic functions. From AND/ NAND and OR/NOR gates to ALUs, Wallace Tree Adders, and Carry Look Ahead Generators, F100K is a complete logic family that provides the glue needed to tie together the larger ECL building blocks. National's F100K family also includes low skew drivers excellent for clock distribution and back plane drivers and bidirectional ECL-to-TTL level translators which allows the high speed ECL system to interface to the slower TTL/CMOS peripherals or subsystems.
In addition to offering a military processed F100K product line, National will soon be offering a fully 883C compliant F100K family subset, initially with approximately 30 device types.

## 10K vs 100K ECL I/O System Considerations

## INTRODUCTION

System designers have long realized the advantages of Emitter Coupled Logic (ECL) for high speed systems. This logic family is based on a differential amplifier and has small signal swings to prevent transistor saturation when switching, thus increasing the switching speed. ECL offers high fanout capability and the ability to drive low impedance transmission lines. National's BiCMOS SRAMs have this high speed logic incorporated in their inputs and outputs, thus remaining compatible with existing ECL logic, while at the same time they take advantage of a high density CMOS memory array. ECL logic comes in two different families; 100K logic in which the input and output voltage levels are temperature compensated (Figure 1), and 10K logic in which the input and output voltage levels vary over temperature (Figure 2). In National's BiCMOS SRAMs both 100K and 10 K I/O levels are voltage compensated. This application note will focus on the possible problems of mixing these two logic families and solutions to these problems.


TL/D/10576-1
FIGURE 1. 100K вICMOS III-Compensated ECL


TL/D/10576-2
FIGURE 2. 10K BICMOS III-Uncompensated ECL

National Semiconductor Application Note 651 Eric Hall

## 100K OUTPUTS DRIVING 10K INPUTS

From the graph of DC specification levels (Figure 3) one can see that at hot temperatures there is only 20 mV of margin between $100 \mathrm{~K} \mathrm{~V}_{\mathrm{OH}} \mathrm{min}$ and $10 \mathrm{~K} \mathrm{~V}_{\mathrm{IH}} \mathrm{min}$. The shrinking margin as temperature increases is due to the decrease in the base to emitter voltage ( $\mathrm{V}_{\mathrm{BE}}$ ) of a bipolar junction transistor. The input reference voltage $\left(\mathrm{V}_{\mathrm{BB}}\right)$ for 10K tracks this temperature dependence while the 100K output levels remain constant across temperature. With this small voltage margin at hot combined with system noise and transmission line bus drop, the 10K inputs may not distinguish a high level from the 100 K driver. For this reason it is recommended using 100 K drivers to 10 K inputs only when the system temperature is maintained below $35^{\circ} \mathrm{C}$ where there is greater than 100 mV of margin. The graph also shows 20 mV of margin between $100 \mathrm{~K} \mathrm{~V}_{\text {OL }}$ min and $10 \mathrm{~K} \mathrm{~V}_{\text {IL }}$ min at hot temperature. This will not result in a functionality problem since these levels are far away from $V_{B B}$ and the 10 K input will easily recognize the low level.

## 10K OUTPUTS DRIVING 100K INPUTS

There are no functionality problems incurred in driving 100 K inputs with 10K outputs (Figure 4). The only possible concern would be that the 100 K input is driven slightly into saturation at hot where $10 \mathrm{~K} \mathrm{~V}_{\mathrm{OH}}$ max is 160 mV higher than $100 \mathrm{~K} \mathrm{~V}_{1 H}$ max. However, shmoo plots show there is no measurable speed degradation in National's BiCMOS SRAMs if this scenario were employed (Figure 5).


TL/D/10576-3
FIGURE 3. 100K Driving 10K


FIGURE 4. 10K Driving 100K

| Device | NM100504 64k $\times 4$ BiCMOS SRAM |
| :---: | :---: |
| Temp | : $85^{\circ} \mathrm{C}$ |
| Shmoo | : TAVQV vs $\mathrm{V}_{\mathrm{IH}}$ |
| Comment: $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ |  |
| $\mathrm{V}_{\text {IH }}$ (V) |  |
| -0.600 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.620 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.640 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.660 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.680 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.700 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.720 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.740 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.760 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.780 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.800 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.820 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.840 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.860 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.880 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.900 | .PPPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.920 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.940 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.960 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -0.980 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.000 | . PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.020 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.040 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.060 | . .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.080 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
| -1.100 | .PPPPPPPPPPPPPPPPPPPPPPPPP |
|  | A............................ |
|  | $\begin{array}{llll}8.8 & 10.3 & 11.9 & 13.4\end{array}$ |
|  | TAVQV (ns) |

FIGURE 5. Shmoo of 100K Device to 10K Input Levels

## 101K

Besides temperature compensation, the other main difference between 10 K and 100 K logic is the recommended supply voltage; -4.2 V to -4.8 V for 100 K , and -4.94 V to -5.46 V for 10K. However, National's 100K SRAMs will perform just as well at $-5.2 \mathrm{~V} \pm 5 \%$ since they are fully voltage and temperature compensated.
The use of 100 K parts at 10 K supplies is commonly referred to as 101K. In fact using the 100K BiCMOS SRAMs at the higher supply voltage will yield better speed ( $8 \%$ decrease in TAVQV), increased alpha particle immunity (from 76 FIT at -4.5 V to 9 FIT at -5.2 V ), at only approximately a $16 \%$ power increase.

## SYSTEM DESIGN CONSIDERATIONS

100 K and 10 K logic can be used in the same circuit if the necessary tradeoffs are understood. It has already been mentioned that the system temperature be kept below $35^{\circ} \mathrm{C}$ when driving 10 K inputs with 100 K outputs. The reason for this is for increased noise margin. There are several key factors to controlling system noise: the use of decoupling capacitors, ground planes, and matching termination impedance. Current spikes from outputs switching are a major cause of noise on $V_{C C}$. Bypass capacitors between $V_{C C}$ and $\mathrm{V}_{\mathrm{EE}}$ and between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{TT}}$ (termination voltage of -2.0V) will help absorb or source current as needed to reduce the transient spikes. Capacitor values of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ are recommended and one capacitor per chip
should be used. The use of a dedicated ground plane should be employed in the multilayer board where the chips are mounted. The importance of a dedicated ground plane is in reducing the resistance in the $\mathrm{V}_{\mathrm{CC}}$ lines. Since $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{BB}}$ are all referenced to $\mathrm{V}_{\mathrm{CC}}$, this will directly affect the noise margin (Figure 6). When possible, two ground planes should be used. One should be used for $V_{\mathrm{CC}}$, which is the high supply for all the logic internal to the chip, and another separate plane should be used for $V_{C C Q}$, which provides a separate ground path for the switching output current. In this case decoupling capacitors should be used between $V_{C C}$ and $V_{E E}$ and between $V_{C C Q}$ and $V_{T T}$. Also important is the use of an AC ground to minimize crosstalk. An AC ground can be any DC signal; $V_{E E}$ or $V_{T T}$ for example. These AC grounds should run between any parallel signal lines. Finally all signal lines should be terminated to reduce reflections which can cause signal errors. Since ECL outputs do not have internal pull down resistors, a terminating resistor to a voltage more negative than $\mathrm{V}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{TT}}=-2.0 \mathrm{~V}\right.$ is recommended) should be used. The terminating resistor should match the impedance of the transmission line, otherwise the reflection voltage will be

$$
v_{R}=v_{O U T}\left[\frac{R_{t}-Z_{O}}{R_{t}+Z_{O}}\right]
$$

where $R_{t}$ is the termination resistance and $Z_{O}$ is the line impedance. The output levels are specified at $R_{t}=50 \Omega$. A much more detailed discussion of transmission line theory can be found in reference 1.


FIGURE 6. Reduced Voltage Margin Due to Resistive Vcc Line

## CASE HISTORY

A major customer has been successfully using National's $256 \mathrm{k} \times 1$ BiCMOS 100 K I/O SRAM in their 10 K I/O system for over a year now. Their secret was to follow the basic formula outlined above: they used one $0.01 \mu \mathrm{~F}$ decoupling capacitor per memory chip, had a solid ground plane, and had matching termination impedance of $50 \Omega$ or $100 \Omega$ for all signal lines. They also have taken advantage of the speed and alpha improvement by using a -5.2 V supply. Another noteworthy point is that this customer uses the DIP package, which is inherently noisier due to higher inductive leads than National's ceramic flat pack.

## SUMMARY

When mixing the two ECL families, the following considerations must be taken into account. The two families have different $V_{B B}$ input reference voltages which implies that when mixing I/O types, the system temperature must
be monitored. Special attention must be given to $\mathrm{V}_{\mathrm{OH}}$ margin at higher temperatures when 100 K outputs drive 10 K inputs. As well, soft saturation may occur at hot when 10K outputs drive 100 K inputs, although National's BiCMOS SRAMs do not suffer speed degradation in such a case. In addition, allowing enough noise margin through proper decoupling, termination and supply of ground planes is always important. Another option available to system designers is 101 K which uses 10 K supply levels but has 100 K I/O. By being aware of all these guidelines, the fastest silicon logic (ECL) together with the density and drive capability of BiCMOS can be used together in either mix or match 10K or 100K systems.

## REFERENCES

1. Matick, R., Transmission Lines for Digital and Communication Networks, McGraw-Hill, (1969).

## Terminating F100K ECL Inputs

## INTRODUCTION

Many F100K designs require that certain inputs be preset to a HIGH or LOW level. Because of the construction of the F100K input circuitry, a LOW can be realized by simply leaving the input OPEN. However, a HIGH must be terminated in a special way, as simply tying the input to $V_{C C} / V_{C C A}$ is unacceptable.

## DESIGN CONSIDERATIONS

The ranges of $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ are -880 mV to -1165 mV and -1475 mV to -1810 mV respectively.
By staying within these ranges, the input conditions are assured. Figure 1 shows the voltage versus current for the F100K input transistor. If the input is tied to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ the input transistor saturates (Point D) which can damage internal circuitry. The best $\mathrm{V}_{\mathrm{IH}}$ to realize a HIGH is a voltage drop of 0.9 V below $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$. As can be seen from the graph, this locates the quiescent point on the flat part of the curve (Point C) midway within the acceptable range of $\mathrm{V}_{\mathrm{IH}}$. Figure 2 shows three ways in which a HIGH can be realized on the input. These circuits allow the user to maintain constant input signals at optimum levels of $\mathrm{V}_{\mathrm{EE}}$ and temperature. Each circuit can handle multiple fanouts, the number depending upon the maximum current capability of the circuit. The designer should be aware that although Figures $2 A, 2 B$ and $2 C$

## National Semiconductor

 Application Note 682 The ECL Applications Staff
supply ECL compatible signal levels, they differ in power consumption and susceptibility to changes in temperature and $V_{E E}$.
For designs where there are multiple unused inputs and extra logic gates available, fanout from the unused gates is possible. As an example of this, one gate of the F100102 is capable of driving ten quiescent inputs at voltage and current levels typical of F100K as shown in Figure 3.
Figure 4 shows, in more detail, the F100K puil-up scheme and the input circuitry. Although the circuits of Figire 2 are good examples, a detailed circuit analysis must include the $50 \mathrm{k} \Omega$ input resistor. In Figure 4A, the resistor ( $\mathrm{R}_{\mathrm{D}}$ ) which sets the diode biasing current is in parallel with the $50 \mathrm{k} \Omega$ input resistor. Likewise, the circuit of Figure $4 B$ shows that $\mathrm{R}_{2}$ is in parallel with the input resistor.
The point to emphasize is never tie an F100K input to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$ in order to realize a HIGH preset. Instead, the following is recommended:

- For a LOW level-leave input open or tie to VEE.
- For a HIGH level-tie input to a diode drop or 0.9 V below $V_{C C} / V_{C C A}$.
Remember also that the $50 \mathrm{k} \Omega$ input resistor must be considered in the circuit parameter calculations.



Note: Nominal values are shown.
FIGURE 2. Equivalent Circuits for HIGH Termination


TL/F/10644-5
FIGURE 3. UtIlizing Unused Gates to Terminate Multiple HIGHs and LOWs


FIGURE 4. Pull-Up Circuit Examples

## 300 MHz Dual Eight-Way Multiplexer/Demultiplexer

National Semiconductor Application Note 683
The ECL Applications Staff


## INTRODUCTION

High speed multiplexing and demultiplexing is an integral part of the fast expanding telecommunications market, and can be used successfully in inter-computer and intra-computer wide-path communications. The National family of F100K ECL components provides an excellent solution to this design problem. This applications note describes a data transmission scheme that can transfer information at the rate of 75 Mbytes per second using only four twisted pair transmission lines.
Using F100341 8-Bit Shift Registers as parallel to serial and serial to parallel converters it is possible to design a simple
mux/demux that can operate at speeds as high as 300 MHz (Figure 1). The data to be multiplexed onto the transmission lines are applied as 16 bits (2 bytes) in parallel to the inputs of the F100341s where they are loaded into the registers under control of a synchronization pulse (SYNC). The mode of the F100341s is then changed to shift right and the data is transmitted on the output lines at the clock rate. When the last bit has been shifted out, the register is loaded with the next data to be transmitted.


FIGURE 1. 300 MHz Dual Eight-Way Multiplexer/Demultiplexer

The clock signal (CLOCK) is a free-running 300 MHz square wave and the synchronization signal (SYNC) goes low for one clock cycle in every eight. These two signals are transmitted along with the data to facilitate synchronized reception at the other end.
At the receiving end, the F100341s are used as simple shift registers that accomplish the task of demultiplexing the data. The SYNC signal controls the loading of the F100351 receiver registers.

## CLOCK AND SYNC GENERATION

The CLOCK signal in this application is a 300 MHz square wave generated with a voltage controlled oscillator coupled with a phase-locked loop. However, any available clock signal may be used at a frequency of DC to 300 MHz .
The SYNC signal is generated with the use of another F100341 connected as in Figure 2. This circuit is self starting, requiring no initialization for proper operation. When
the SYNC signal is low, the data present at the parallel load inputs (P0-P7) are loaded into the register on the next clock pulse. When SYNC goes high (as a result of loading the high value on PO), the mode of the F100341 is changed to shift right and the low loaded from P7 is shifted across the F100341 and appears on the SYNC wire eight cycles later. This in turn causes the F100341 to load again and the cycle repeats. The SYNC signal is high for seven clock cycles and low for one cycle, allowing it to be used as the synchronization pulse for the mux/demux circuit.


TL/F/10645-2
FIGURE 2. SYNC Pulse Generator

## CLOCK AND SYNC WAVEFORMS



## F100336 Four-Stage Counter/Shift Register

## INTRODUCTION

Many system designs require bi-directional counting and shifting functions. In most cases these functions are separate and unique requirements within the system design. For this reason, separate catalog parts are available. In some cases however, there is a requirement to have a device that will allow both counting and shifting functions. This is especially true in arithmetic, timing, sequential, or communication applications. National offers a very versatile counter/shift register in the F100336. This application note describes its function in detail and offers some simple uses.

## DESCRIPTION

The F100336 contains four synchronous, presettable flipflops. Synchronous operation is provided by having all flipflops clocked simultaneously so that all output changes coincide. This mode of operation eliminates counting spikes on the outputs which are normally associated with asynchronous counters. The clock input is buffered and triggers the four flip-flops on the rising (positive-going) edge.
The counters are fully programmable allowing the outputs to be set to either a HIGH (1) or LOW (0). As presetting is synchronous, setting low levels on the select inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{2}\right)$ (see Table I) disables the counter and causes the outputs to agree with the parallel inputs ( $\mathrm{P}_{3}-\mathrm{P}_{0}$ ) on the next rising edge of the clock. Loading is accomplished regardless of the levels of the two enables ( $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ ).

TABLE I. Function Select Table

| $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Function |
| :--- | :---: | :---: | :--- |
| L | L | L | Parallel Load |
| L | L | H | Complement |
| L | H | L | Shift Left |
| L | H | H | Shift Right |
| H | L | L | Count Down |
| H | L | H | Clear |
| H | H | L | Count Up |
| H | H | H | Hold |

National Semiconductor
Application Note 684
ECL Applications Staff


The F100336 features both synchronous and asynchronous clear functions. The synchronous clear is performed by setting a binary five (101B) at the select inputs. On the next rising edge of the clock, the outputs will be forced LOW (0000) regardless of the levels at the enable inputs. A bufferred asynchronous master reset (MR) is provided to clear all outputs LOW (0000) regardless of the levels of the clock, select, or enable inputs.
Count up/count down functions are selected with the select inputs ( $\mathrm{S}_{2}-\mathrm{S}_{0}$ ). These are synchronous operations and the outputs will increment/decrement in value on the rising edge of the clock. Both count enable inputs ( $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ ) must be true (LOW) to count. The terminal count output ( $\overline{\mathrm{TC}}$ ) becomes active-LOW when the count reaches zero in the DOWN mode or fifteen in the UP mode. Its duration is approximately equal to one period of the clock. The $\overline{T C}$ output is not recommended for use as a clock or synchronous reset for flip-flops. See Figure 1 for timing relationships in UP/DOWN counting.
In simple ripple-carry cascading applications the terminal count TC is fed forward to enable the trickle enable (CET) input. This method is increasingly inefficient as the counting chain lengthens. The upper limit of the clock frequency is determined by the clock-to-terminal-count delay of the first stage, the cumulative trickle-enable ( $\overline{\mathrm{CET}}$ )-to-terminal-count delay of the intermediate stages, and the trickle-enable-toclock delay of the last stage. For faster counting rates a carry-lookahead scheme is necessary. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to change over from MAX to MIN in the UP mode, or from MIN to MAX in the DOWN mode. Since the final count cycle takes 16 clocks to complete, there is ample time for the ripple to propagate through the intermediate stages. The critical timing that limits the counting rate is the clock-to-terminalcount of the first stage plus the parallel-enable-to-clock (CEP) setup time of the last stage. Figure 2 shows the connections for the fast-carry counting scheme.

## TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (Preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.
5. Inhibit counting.


TL/F/10646-1
Note: A MR overrides enables, data, and count inputs.
FIGURE 1. F100336 Used as Binary Up/Down Counter


## FIGURE 2. Fast Carry Counting Scheme

Shift right/left modes are performed by making the appropriate selection on the selection inputs ( $\mathrm{S}_{2}-\mathrm{S}_{0}$ ). Each rising edge of the clock will cause the outputs to shift once in the direction which is selected. For shift-left operation, input $D_{3}$ is used as the serial input. For shift-right operation, input $\overline{C E T} / D_{0}$ is used as the serial input. During shift operation the terminal count output reflects the level at the $Q_{3}$ output and the enables are "don't cares". See Figure 3 for shift operation timing relationships and shift sequences.
The F100336 provides two special modes of operation. The complement mode performs a one's complement of the outputs $\left(Q_{3}-Q_{0}\right)$ on the rising edge of the clock input regardless of the levels at the enable inputs. The hold feature is asynchronous and simply stops counting or shifting operations. Both complement and hold are performed with proper selection of the select inputs. For a complete truth table of the F100336 operation, refer to Table II.

## DESIGN CONSIDERTIONS

Presetting the parallel inputs ( $\mathrm{P}_{3}-\mathrm{P}_{0}$ ) may require a mixture of HIGH's and LOW's. A LOW may be preset by leaving the respective input open as the F100336 has a $50 \mathrm{k} \Omega$ resistor to $\mathrm{V}_{\mathrm{EE}}$ on the parallel inputs. A HIGH must never be made by tying the input to $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCA}}$. This saturates the input transistor. Instead the input is set at a diode drop below $V_{C C} / V_{C C A}$ for a preset HIGH.

Unused output pairs ( $\bar{Q}_{n} / Q_{n}$ ) may be left unterminated. However, unused single outputs should be terminated to balance current switching in the outputs. For further details on system design considerations refer to the F100K ECL Design Guide. For AC/DC performance specifications and critical timing parameters refer to the F100336 datasheet.

## APPLICATIONS

Figures 4 and 5 demonstrate the use of the F100336 as UP/DOWN BCD counters. One additional gate is required to detect the limit count. Notice the alternate gate methods in Figure 4. The F100304 shows the classical AND/NAND design similar to TTL and the F100302 shows the OR/NOR design of ECL.
Figure 6 incorporates the use of a F100331 triple D-type flipflop. By using one stage of the F100331, a 50/50 duty cycle can be realized from the divider.
An 8-bit parallel-to-serial shifter can be constructed by cascading two F100336's as shown in Figure 7. The third counter reloads another 8 -bit data word after eight serial counts.

TYPICAL, CLEAR, LOAD, AND COUNT SEQUENCES
Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary twelve.
3. Shift-left using $D_{3}$ as serial input.
4. Shift-right using $\overline{\mathrm{CET}} / \mathrm{D}_{0}$ as serial input.


TL/F/10646-3
Note 1: In shift-right mode $\overline{T C}$ follows the $Q_{3}$ output.
Note 2: In shift-left mode $\overline{T C}$ follows the $D_{3}$ input.
Note 3: $\overline{\mathrm{CEP}}$ is a "don't care" during shifting.
FIGURE 3. F100336 Used as BI-Directional Shift Register

Truth Table
$Q_{0}=$ LSB
TABLE II. Truth Table

| Inputs |  |  |  |  |  |  |  | Outputs |  |  |  |  | Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | CEP | $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ | $\mathrm{D}_{3}$ | CP | $Q_{3}$ | $\mathbf{Q}_{2}$ | $\mathrm{Q}_{1}$ | $Q_{0}$ | TC |  |
| L | L | L | L | X | X | X | $\Omega$ | $\mathrm{P}_{3}$ | $\mathrm{P}_{2}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{0}$ | L | Preset (Parallel Load) |
| L | L | L | H | X | X | X | $\checkmark$ | $\bar{Q}_{3}$ | $\bar{Q}_{2}$ | $\bar{Q}_{1}$ | $\bar{Q}_{0}$ | L | Invert |
| L | L | H | L | X | X | X | $\checkmark$ | $\mathrm{D}_{3}$ | $Q_{3}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{1}$ | $\mathrm{D}_{3}$ | Shift Left |
| L | L | H | H | X | X | X | $\sim$ | $\mathrm{Q}_{2}$ | $Q_{1}$ | $Q_{0}$ | $\mathrm{D}_{0}$ | $\mathrm{Q}_{3}{ }^{*}$ | Shift Right |
| L | H | L | L | L | L | x | $\checkmark$ |  | - $Q_{3}$ | minus |  | (1) | Count Down |
| L | H | L | L | H | L | X | X | $Q_{3}$ | $\mathrm{Q}_{2}$ | $Q_{1}$ | $Q_{0}$ | (1) | Count Down with $\overline{\text { CEP }}$ not active |
| L | H | L | L | X | H | X | X | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ | H | Count Down with CET not active |
| L | H | L | H | X | X | X | $\sim$ | L | L | L | L | H | Clear |
| L | H | H | L | L | L | X | $\checkmark$ |  | $Q_{0}-Q^{1}$ | plus |  | (2) | Count Up |
| L | H | H | L | H | L | x | X | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ | (2) | Count Up with $\overline{C E P}$ not active |
| L | H | H | L | X | H | X | X | $Q_{3}$ | $Q_{2}$ | $\mathrm{Q}_{1}$ | $Q_{0}$ | H | Count Up with CET not active |
| L | H | H | H | X | X | X | X | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ | H | Hold |
| H | L | L | L | $X$ | $X$ | X | $x$ | L | L | L | L | L |  |
| H | L | L | H | X | X | X | X | L | L | L | L | L |  |
| H | L | H | L | X | X | X | X | L | L | L | L | L |  |
| H | L | H | H | X | X | X | $x$ | L | $L$ | $L$ | L | L |  |
| H | H | L | L | X | L | X | X | L | L | L | L | L |  |
| H | H | L | L | X | H | X | X | L | L | $L$ | L | H |  |
| H | H | L | H | X | X | X | X | L | L | L | L | H |  |
| H | H | H | L | X | X | X | X | L | L | L | L | H |  |
| H | H | H | H | X | X | X | X | L | L | L | L | H |  |

$\begin{aligned} \text { © }= & L \text { if } Q_{0}-Q_{3}=\mathrm{LLLL} \\ & H \text { if } Q_{0}-Q_{3} \neq \mathrm{LLLL} \\ \text { (2) }= & L \text { if } Q_{0}-Q_{3}=\mathrm{HHHH} \\ & H \text { if } Q_{0}-Q_{3} \neq \mathrm{HHHH} \\ H= & \text { HIGH Voltage Level } \\ L= & \text { LOW Voltage Level } \\ \mathrm{X}= & \text { Don't Care } \\ \sim= & \text { LOW-to-HIGH Transition }\end{aligned}$
*Before the clock, $\overline{T C}$ is $Q_{3}$ After the clock, $\overline{T C}$ is $Q_{2}$


FIGURE 4. BCD Up Counter (0-9)


TL/F/10646-5
FIGURE 5. BCD Down Counter (9-0)


FIGURE 6. Divide by Five


TL/F/10646-7
FIGURE 7. 8-Bit Shift Left

## Using the F100181 ALU and F100179 Carry-Lookahead

## INTRODUCTION

Speed is of paramount importance in the arithmetic unit of a system design. The National F100181 Arithmetic Logic Unit (ALU) in conjunction with the F100179 Carry-Lookahead offer a high-performance and efficient design solution. Besides the obvious performance benefits, they offer both temperature and voltage compensation which leads to better performance stabilization throughout the guaranteed ranges. Better noise immunity over TTL devices and more efficient designs by using wired-OR logic and complementary outputs are also benefits offered by these devices. This application note describes the function of the F100181 and F100179, offers configurations for their use, and gives a detailed timing analysis of the function settling times.

## F100181 FUNCTIONAL DESCRIPTION

The F100181 is an ALU capable of performing sixteen arithmetic and logic operations on two 4-bit words. The operating mode is selected by four function-select lines ( $\mathrm{S}_{3}-\mathrm{S}_{0}$ ). Arithmetic operations are selected when $\mathrm{S}_{3}$ is LOW, and logic operations are selected when $\mathrm{S}_{3}$ is HIGH. When $\mathrm{S}_{3}$ is LOW, the arithmetic mode can be selected between binary and binary coded decimal (BCD) with the $S_{2}$ input $\left[S_{2}\right.$ is LOW (BCD); $\mathrm{S}_{2}$ is HIGH (binary)]. The remaining functionselect inputs $S_{1}, S_{0}$ select between addition, subtraction, and the basic logical operations (refer to Table I).

Provision for simple ripple-carry cascading is available with the carry output $\left(\overline{\mathrm{C}_{n}+4}\right)$. A carry unit $\left(\overline{\mathrm{C}_{n}}\right)$ is provided for use with arithmetic operations. In BCD mode, it can be used to perform a ten's complement result in subtraction. Likewise, in binary mode, it can be used to perform a two's complement result in subtraction.
A full carry-lookahead scheme is implemented for fast, simultaneous group carry generation by means of propagate $(\bar{P})$ and generate $(\bar{G})$ carries. When used in conjunction with the F100179 carry-lookahead generator, high-speed arithmetic operations can be performed. Table II presents the equations for internal carry-lookahead and $\overline{\mathrm{C}_{n}+4}, \overline{\mathrm{P}}, \overline{\mathrm{G}}$ for the F100181. Refer to the data sheet on the F100181.

## F100179 FUNCTIONAL DESCRIPTION

The F100179 is a high-speed, carry-lookahead generator capable of anticipating a carry across eight 4-bit adders/ ALU's. Carry, generate carry, and propagate carry functions are provided to perform full carry-lookahead across $n$-bit words. Table III presents the four carry output equations. For detailed AC/DC specifications, refer to the F100179 data sheet.

TABLE I. F100181 Carry Output Equations

| $\mathrm{S}_{3}$ | $\mathrm{S}_{2}$ | $S_{1}$ | $\mathrm{S}_{\mathbf{0}}$ | $F_{n}$ <br> Function | $\begin{gathered} G_{n} \\ (n=0 \text { to } \end{gathered}$ | $\begin{gathered} P_{\mathrm{n}} \\ (\mathrm{n}=0 \text { to } 3) \end{gathered}$ | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Internal Signals |  | $\bar{C}_{n}+4$ | $\overline{\mathbf{G}}$ | $\overline{\mathbf{P}}$ |
| L | L | L | L | $\mathrm{F}_{\mathrm{n}}=$ A Plus B Plus $\mathrm{C}_{\mathrm{n}}$ (BCD) | $A_{n} D_{n}$ | $A_{n}+D_{n}$ | $\overline{\mathrm{C}}_{n}+4$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| L | L | L | H | $\mathrm{F}_{\mathrm{n}}=$ A Minus B Plus $\mathrm{C}_{\mathrm{n}}$ (BCD) | $\mathrm{A}_{\mathrm{n}} \overline{\mathrm{B}}_{\mathrm{n}}$ | $\mathrm{A}_{\mathrm{n}}+\mathrm{B}_{\mathrm{n}}$ | $\overline{\mathrm{C}}_{n}+4$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| L | L | H | L | $\mathrm{F}_{\mathrm{n}}=\mathrm{B}$ Minus A Plus $\mathrm{C}_{\mathrm{n}}$ (BCD) | $\bar{A}_{n} B_{n}$ | $\bar{A}_{n}+B_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | $\overline{\mathrm{G}}$ | $\overline{\text { P }}$ |
| L | L | H | H | $\mathrm{F}_{\mathrm{n}}=0$ Minus $B$ Plus $\mathrm{C}_{\mathrm{n}}$ (BCD) | L | $\bar{B}_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | H | $\overline{\mathrm{P}}$ |
| L | H | L | L | $F_{n}=$ A Plus $B$ Plus $C_{n}$ (Binary) | $\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}$ | $A_{n}+B_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| L | H | L | H | $F_{\mathrm{n}}=$ A Minus B Plus $\mathrm{C}_{\mathrm{n}}$ (Binary) | $\mathrm{A}_{n} \bar{B}_{n}$ | $A_{n}+\bar{B}_{n}$ | $\overline{\mathrm{C}}_{n}+4$ | $\overline{\mathrm{G}}$ | $\bar{P}$ |
| L | H | H | L | $\mathrm{F}_{\mathrm{n}}=\mathrm{B}$ Minus A Plus $\mathrm{C}_{\mathrm{n}}$ (Binary) | $\bar{A}_{n} B_{n}$ | $\bar{A}_{n}+B_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | $\overline{\mathbf{G}}$ | $\bar{P}$ |
| L | H | H | H | $F_{n}=0$ Minus B Plus $C_{n}$ (Binary) | L | $\bar{B}_{n}$ | $\overline{\mathrm{C}}_{n}+4$ | H | $\overline{\mathrm{P}}$ |
| H | L | L | L | $F_{n}=A_{n} B_{n}+\bar{A}_{n} \bar{B}_{n}$ | $\mathrm{A}_{n} \mathrm{~B}_{\mathrm{n}}$ | $A_{n}+B_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| H | L | L | H | $F_{n}=A_{n} \bar{B}_{n}+\bar{A}_{n} B_{n}$ | $\mathrm{A}_{n} \overline{\mathrm{~B}}_{n}$ | $A_{n}+\bar{B}_{n}$ | $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| H | L | H | L | $F_{n}=A_{n}+B_{n}$ | $A_{n}$ | $\bar{B}_{n}$ | $\overline{\mathrm{C}}_{n}+4$ | $\overline{\mathrm{G}}^{\text {x }}$ | $\bar{P}$ |
| H | L | H | H | $F_{n}=A_{n}$ | $A_{n}$ | H | $\overline{\mathrm{C}}_{n}+4$ | $\overline{\mathrm{G}}$ | L |
| H | H | L | L | $\mathrm{F}_{\mathrm{n}}=\bar{B}_{\mathrm{n}}$ | L | $\mathrm{B}_{\mathrm{n}}$ | L | H | $\overline{\mathrm{P}}$ |
| H | H | L | H | $F_{n}=B_{n}$ | L | $\bar{B}_{n}$ | L | H | $\overline{\mathrm{P}}$ |
| H | H | H | L | $F_{n}=A_{n} B_{n}$ | L | $\bar{A}_{n}+\bar{B}_{n}$ | L | H | $\overline{\mathrm{P}}$ |
| H | H | H | H | $F_{\mathrm{n}}=$ LOW | L | H | L | H | L |

[^15]
## APPLICATIONS

Logic symbol representations of the F100179 and F100181 are shown in Figure 1 with propagation delay paths. The times shown are maximum values at nominal room temperature $\left(25^{\circ} \mathrm{C}\right)$ and power supply voltage $\left(\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}\right)$ for a flatpak package. The propagation delays from the select inputs (F100181) are ignored since it is assumed that the mode of operation is set prior to application of the input word operands.


TL/F/10647-1
FIGURE 1. F100179/F100181 Propagation Delays

TABLE II. F100181 Carry Output Equations


## RIPPLE CARRY CALCULATION

Figure 2 shows the schematic for simple n-stage cascading, incorporating ripple carry. Regardless of the width of the adder, all stages have a sum and carry from the $A, B$ inputs in 6.6 ns. However, this represents the true sum and carry for stage one. For each succeeding stage, the $\overline{C_{n}}-t o-\bar{C}_{n+4}$ and $\overline{\mathrm{C}_{n}}$-to-F propagation delays must be considered. Therefore, for n -stages the total settling time for the function outputs during addition is:

$$
t_{\text {sum }}=t_{[A, B,-t o-F]}+(n-2) t_{\left[\overline{C_{n}}-\text {-to- } \overline{C_{n}+4}\right]}+t_{\left[\overline{C_{n}}-t o-F\right]}
$$

A 32-bit wide adder requires eight stages $(n=8)$. The propagation time of the operand inputs $(A, B)$ to the function outputs ( $F$ ) of the first stage is 6.6 ns . The propagation time of the carry input ( $\overline{\mathrm{C}_{n}}$ ) to the function outputs of the last stage is 5.0 ns . Each middle stage has a propagation delay, $\overline{\mathrm{C}_{n}}$ to the carry output $\left(\overline{\bar{C}_{n+4}}\right)$, of 2.8 ns . The total settling time of the function outputs is then:

$$
t_{\text {sum }}=6.6+(8-2)(2.8)+5.0=28.4 \mathrm{~ns}
$$

Figure 3 shows graphically the settling times of each of the eight stages.

TABLE III. F100179 Carry Output Equations

$$
\begin{aligned}
& \overline{\mathrm{C}}_{\mathrm{n}}+2=\overline{\mathrm{G}}_{1} \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right) \\
& \bar{C}_{n+4}=\bar{G}_{3} \cdot\left(\bar{P}_{3}+\bar{G}_{2}\right) \cdot\left(\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \cdot\left(\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\
& \cdot\left(\bar{P}_{3}+\bar{P}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right) \\
& \overline{\mathrm{C}}_{\mathrm{n}}+6=\overline{\mathrm{G}}_{5} \bullet\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{G}}_{4}\right) \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{G}}_{3}\right) \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{2}\right) \\
& \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \cdot\left(\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\
& \text { - }\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right) \\
& \overline{\mathrm{C}}_{n+8}=\overline{\mathrm{G}}_{7} \bullet\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{G}}_{6}\right) \cdot\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{G}}_{5}\right) \bullet\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{P}}_{5}+\overline{\mathrm{G}}_{4}\right) \\
& \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right) \\
& \cdot\left(\overline{\mathrm{P}}_{7}+\overline{\mathrm{P}}_{6}+\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right) \\
& \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \\
& \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)
\end{aligned}
$$




FIGURE 3. Timing Line Dlagram for 32-Bit ALU

## 1-LEVEL CARRY-LOOKAHEAD CALCULATION

Figure 4 shows a 16 -bit adder using one level of carry-lookahead for every two ALU's. The reason for this arrangement is that the F 100179 does not provide every $\overline{\mathrm{C}_{\mathrm{n}+\mathrm{x}}}$, but instead provides $\overline{C_{n+2}}, \overline{C_{n+4}}, \overline{C_{n+6}}$, and $\overline{C_{n+8}}$. One F100179 is capable of providing carry-lookahead for 32 bits. The timing line diagram for the 16 -bit ALU with one level of carry-lookahead is given in Figure 5. The equation which describes each 32-bit stage is given by:

$$
\begin{aligned}
& t_{\text {sum }}=t_{[A, B-t o-P, G]}+t_{\left[C_{n}-t o-F\right]} \\
& \left.+t_{\left[C_{n}-t o-\overline{C_{n}}+4\right]}+t_{\left[P, G-t o-\overline{C_{n}}+2\right.}\right]
\end{aligned}
$$

To expand this scheme past 32 bits (eight ALU's) requires that the adder be broken into 32-bit groups connected with ripple carries since group generate and propagate are not available from the F100179. Each 32-bit group past the first one adds one F100179 P, G-to- $\overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$ time to establish the carry into the next 32-bit group. Figure 6 shows this method of interconnection.

## FAST 16-BIt 1-Level Carry-Lookahead

Another method for implementing a 16-bit adder with faster carry propagation is shown in Figure 7. In this example, the full capability of the F100179 is used by forcing carry propagation through the odd-order stages. The carry outputs, $\overline{\mathrm{C}_{\mathrm{n}+\mathrm{x}}}$, are then used to supply the appropriate carry bit to succeeding stages. The equation describing the critical path becomes:

$$
t_{\text {sum }}=t_{[A, B-t o-P, G]}+t_{\left[P, G-t o-\overline{C_{n}+x}\right]}+t_{\left[\bar{C}_{n}-t o-F\right]}
$$



FIGURE 4. 1-Level Carry-Lookahead


FIGURE 5. Timing Line Diagram for 16-Bit ALU with 1-Level Carry-Lookahead



TL/F/10647-8

## FIGURE 8. Timing Line Diagram For Fast 16-Bit 1-Level Carry-Lookahead

## TWO-LEVEL CARRY-LOOKAHEAD CALCULATION

The word widths of 32 bits or more, a two-level carry-lookahead scheme like that shown in Figure 9 is preferred. One of the two F100179's generates a carry for the even-numbered ALU's; the other generates a carry for the odd-numbered ALU's. The timing line diagram for this method is given in Figure 10. The equation describing the 32-bit summation is:

$$
t_{\text {sum }}=t_{[A, B,-t o-P, G]}+t_{\left[P, G-t o-C_{n}+x\right]}+t_{\left[C_{n}-t o-F\right]}
$$



TL/F/10647-9
FIGURE 9. 2-Level Carry-Lookahead


TL/F/10647-10
FIGURE 10. Timing Line Diagram for 32-Bit ALU with 2-Level Carry-Lookahead

TABLE IV. Summary of Add Times

| Bits | Stages | with <br> Ripple Carry <br> (ns) | with <br> (1) F100179 <br> (ns) | with <br> (2) F100179 <br> (ns) |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 2 | 11.6 | $n / a$ | $n / \mathrm{a}$ |
| 16 | 4 | 17.2 | 14.7 | 11.9 |
| 32 | 8 | 28.4 | 14.7 | 11.9 |
| 64 | 16 | 50.8 | 17.4 | 14.6 |

## Section 8

## Ordering Information and Physical Dimensions

Section 8 Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 .3
Physical Dimensions 8-4
Bookshelf
Distributors

## ORDER INFORMATION

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


## For most current packaging information, contact product marketing.

## 14 Lead Ceramic Dual In-Line Package (D)

 NS Package Number J14A

## 16 Lead Ceramic Dual In-Line Package (D) NS Package Number J16A



## 24 Lead Ceramic Dual In-Line Package (0.400" Wide) (D) NS Package Number J24E



## 16 Lead Small Outline Integrated Circuit (S) NS Package Number M16A



## 28 Lead Plastic Chip Carrier (Q) NS Package Number V28A



Note: Pedestal as shown on base is not available for F100K ECL products.

## 16 Lead Ceramic Flatpak (F)

 NS Package Number W16A

detail A

## 24 Lead Quad Cerpak (F) NS Package Number W24B



## NOTES

## NOTES

Bookshelf of Technical Support Information<br>National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.<br>This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.<br>Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.<br>We are interested in your comments on our technical literature and your suggestions for improvement.<br>Please send them to:<br>Technical Communications Dept. M/S 16-300<br>2900 Semiconductor Drive<br>P.O. Box 58090<br>Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK—1990<br>Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

# ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 

SSI/MSI Functions • Peripheral Functions • LSI/VLSI! Functions • Design Guidelines • Packaging
CMOS LOGIC DATABOOK—1988
CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

## DATA ACQUISITION LINEAR DEVICES—1989

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

## DATA COMMUNICATION/LAN/UART DATABOOK—1990 <br> LAN IEEE 802.3 • High Speed Serial/IBM Data Communications • ISDN Components • UARTs Modems • Transmission Line Drivers/Receivers

## DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors
Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

## DRAM MANAGEMENT HANDBOOK—1989

Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A Microprocessor Applications for the NS32CG821

## EMBEDDED SYSTEM PROCESSOR DATABOOK—1989

Embedded System Processor Overview • Central Processing Units • Slave Processors • Peripherals Development Systems and Software Tools

## F100K DATABOOK—1990

Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11C Datasheets ECL BiCMOS SRAM, ECL PAL, and ECL ASIC Datasheets • Design Guide • Circuit Basics • Logic Design Transmission Line Concepts • System Considerations • Power Distribution and Thermal Considerations Testing Techniques • Quality Assurance and Reliability • Application Notes

FACTTM ADVANCED CMOS LOGIC DATABOOK—1990<br>Description and Family Characteristics • Ratings, Specifications and Waveforms<br>Design Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXX<br>Quiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA

## FAST® ${ }^{\circledR}$ ADVANCED SCHOTTKY TTL LOGIC DATABOOK—Rev. 1—1988

Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations•54F/74FXXX

## FAST ${ }^{\circledR}$ APPLICATIONS HANDBOOK—1990

Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders
Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics

## GENERAL PURPOSE LINEAR DEVICES DATABOOK—1989

Continuous Voltage Regulators • Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators Instrumentation Amplifiers • Surface Mount

## GRAPHICS HANDBOOK—1989

Advanced Graphics Chipset • DP8500 Development Tools • Application Notes

## INTERFACE DATABOOK-1988

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers
Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

## LINEAR APPLICATIONS HANDBOOK—1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

## LS/S/TTL DATABOOK—1989

Contains former Fairchild Products
Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL•TTL—Low Power

## MASS STORAGE HANDBOOK-1989

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

## MEMORY DATABOOK—1990

PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECL I/O SRAMs

## MICROCONTROLLER DATABOOK—1989

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

## MICROPROCESSOR DATABOOK—1989

Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals
Development Systems and Software Tools • Application Notes • NSC800 Family

## PROGRAMMABLE LOGIC DATABOOK \& DESIGN MANUAL—1990

Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools Fabrication of Programmable Logic • Application Examples

## RELIABILITY HANDBOOK-1986

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

## SPECIAL PURPOSE LINEAR DEVICES DATABOOK—1989

Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits Surface Mount

## TELECOMMUNICATIONS—1990

Line Card Components • Integrated Services Digital Network Components • Analog Telephone Components Application Notes

## NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

ALABAMA
Huntsville
Arrow Electronics
(205) 837-6955

Bell Industries
(205) 837-1074

Hamilton/Avnet
(205) 837-7210

Pioneer Technology
(205) 837-9300

Time Electronics
(205) 721-1133

ARIZONA
Chandler
Hamilton/Avnet
(602) $231-5100$

Phoenix
Arrow Electronics
(602) 437-0750

Tempe
Anthem Electronics
(602) 966-6600

Bell Industries
(602) $966-7800$

Time Electronics
(602) 967-2000

CALIFORNIA
Agora Hills
Bell Industries
(818) 706-2608

Zeus Components (818) 889-3838

Anaheim
Time Electronics
(714) 934-0911

Chatsworth
Anthem Electronics
(818) 700-1000

Arrow Electronics
(818) 701.7500

Hamilton Electro Sales
(818) 700-6500

Time Electronics
(818) 998-7200

Costa Mesa
Avnet Electronics (714) 754-6050 Hamilton Electro Sales (714) 641-4159

Cypress
Bell Industries
(714) 895-7801

Gardena
Bell Industries
(213) 515-1800 Hamilton/Avnet (213) 217-6751

Irvine
Anthem Electronics
(714) 768-4444

Ontario
Hamilton/Avnet
(714) 989-4602

Rocklin
Anthem Electronics
(916) 624-9744

Bell Industries (916) 652-0414

Sacramento Hamilton/Avnet (916) 925-2216 San Diego Anthem Electronics (619) 453-9005 Arrow Electronics (619) 565-4800 Hamilton/Avnet (619) 571-7510 Time Electronics (619) 586-1331

San Jose
Anthem Electronics
(408) 453-1200

Pioneer Technology
(408) $954-9100$

Zeus Components
(408) 629-4789

Sunnyvale
Arrow Electronics
(408) 745-6600

Bell Industries
(408) 734-8570

Hamilton/Avnet
(408) 743-3355

Time Electronics
(408) 734-9888

Thousand Oaks
Bell Industries
(805) 499-6821

Torrance
Time Electronics
(213) 320-0880

Tustin
Arrow Electronics
(714) 838-5422

Yorba Linda
Zeus Components
(714) 921-9000

COLORADO
Englewood
Anthem Electronics
(303) 790-4500

Arrow Electronics
(303) 790-4444

Hamilton/Avnet
(303) 799-7800

CONNECTICUT
Cheshire
Time Electronics
(203) 271-3200

Danbury Hamilton/Avnet (203) 797-2800

Norwalk
Pioneer Standard (203) 853-1515

Wallingford Arrow Electronics (203) 265-7741

Waterbury Anthem Electronics (203) 575-1575

FLORIDA
Altamonte Springs Bell Industries (407) 339-0078 Pioneer Technology (407) 834-9090

Clearwater Pioneer Technology (813) 536-0445

Deerfield Beach Arrow Electronics (305) 429-8200 Bell Industries (305) 421-1997 Pioneer Technology (305) 428-8877

Fort Lauderdale Hamilton/Avnet (305) 971-2900 Time Electronics (305) 484-7778

Lake Mary Arrow Electronics (407) 333-9300

Largo Bell Industries (813) 541-4434

Orlando
Time Electronics (407) 841-6565

Oviedo
Zeus Components
(407) 365-3000

St. Petersburg Hamilton/Avnet (813) 576-3930

Winter Park Hamilton/Avnet (407) 628-3888

## GEORGIA

Duluth
Arrow Electronics (404) 497-1300

Norcross Bell Industries (404) 662-0923 Hamilton/Avnet (404) 447-7500 Pioneer Technology (404) 448-1711 Time Electronics (404) 448-4448

## ILLINOIS

Addison Pioneer Electronics (708) 437-9680

Bensenville Hamilton/Avnet (708) 860-7780

Elk Grove Village Anthem Electronics (708) 640-6066 Bell Industries (708) 640-1910

Itasca Arrow Electronics (708) 250-0500

Urbana Bell Industries (217) 328-1077

Wood Dale Time Electronics (708) 350-0610

INDIANA
Carmel Hamilton/Avnet (317) 844-9333

Fort Wayne Bell Industries (219) 423-3422

Indianapolis Advent Electronics Inc. (317) 872-4910 Arrow Electronics (317) 243-9353 Beil Industries (317) 634-8200 Pioneer Standard (317) 573-0880

## IOWA

Cedar Rapids Advent Electronics (319) 363-0221 Arrow Electronics (319) 395-7230 Bell Industries (319) 395-0730 Hamilton/Avnet (319) 362-4757

KANSAS
Lenexa Arrow Electronics (913) 541-9542 Hamilton/Avnet (913) 888-8900

MARYLAND
Columbla
Anthem Electronics
(301) 995-6640

Arrow Electronics
(301) 995-0003

Hamilton/Avnet
(301) 995-3500

Time Electronics
(301) 964-3090

Zeus Components
(301) 997-1118

Gaithersburg Pioneer Technology (301) 921-0660

MASSACHUSETTS
Andover
Bell Industries (508) 474-8880

Lexington
Pioneer Standard
(617) 861-9200

Zeus Components (617) 863-8800

Norwood
Gerber Electronics (617) 769-6000

Peabody
Hamilton/Avnet
(508) 531.7430

Time Electronics
(508) 532-6200

Wilmington
Anthem Electronics
(508) 657-5170

Arrow Electronics
(508) 658-0900

MICHIGAN
Ann Arbor
Bell Industries (313) 971-9093

Grand Rapids Arrow Electronics (616) 243-0912 Hamilton/Avnet (616) 243-8805 Pioneer Standard (616) 698-1800

Livonia
Arrow Electronics (313) 665-4100 Pioneer Standard (313) 525-1800

Novi
Hamilton/Avnet (313) 347-4720

Southfield R. M. Electronics, Inc. (313) 262-1582

Wyoming
R. M. Electronics, Inc. (616) 531-9300

## MINNESOTA

Eden Prairia Anthem Electronics (612) $944-5454$ Pioneer Standard (612) 944-3355

Edina
Arrow Electronics (612) 830-1800 Time Electronics (612) 835-1250

Minnetonka Hamilton/Avnet (612) 932-0600

## NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

MISSOURI
Chesterfield Hamilton/Avnet (314) 537-1600

St. Louis Arrow Electronics (314) 567-6888 Pioneer Standard (314) 432-4350 Time Electronics (314) 391-6444

NEW HAMPSHIRE Hudson Bell Industries (603) 882-1133

Manchester Arrow Electronics (603) 668-6968 Hamilton/Avnet (603) 624-9400

NEW JERSEY
Cherry Hill Hamilton/Avnet (609) 424-0100

Fairfield
Anthem Electronics
(201) 227-7960

Hamilton/Avnet (201) 575-3390

Marlton
Arrow Electronics (609) 596-8000

Parsippany Arrow Electronics (201) 538-0900

Pine Brook
Nu Horizons Electronics
(201) 882-8300

Pioneer Standard
(201) 575-3510

Time Electronics
(201) 882-4611

NEW MEXICO
Albuquerque
Alliance Electronics Inc.
(505) 292-3360

Arrow Electronics
(505) 243-4566 Bell Industries
(505) 292-2700

Hamilton/Avnet (505) 345-0001

NEW YORK
Amityville
Nu Horizons Electronics (516) 226-6000

Binghamton Pioneer (607) 722-9300

Buffalo Summit Electronics (716) 887-2800

Commack Anthem Electronics (516) 864-6600

Fairport
Pioneer Standard (716) $381-7070$ Time Electronics (716) 383-8853

Hauppauge Arrow Electronics (516) 231-1000 Hamilton/Avnet (516) 434-7413 Time Electronics (516) 273-0100

Port Chester Zeus Components (914) 937-7400

Rochester
Arrow Electronics
(716) 427-0300

Hamilton/Avnet
(716) 475-9130

Summit Electronics
(716) 334-8110

Ronkonkoma
Zeus Components
(516) 737-4500

Syracuse
Hamilton/Avnet
(315) 437-2641

Time Electronics
(315) 432-0355

Westbury
Hamilton/Avnet Export Div.
(516) 997-6868

Woodbury
Pioneer Electronics
(516) 921-8700

NORTH CAROLINA
Charlotte
Pioneer Technology
(704) 527-8188

Time Electronics
(704) 522-7600

Durham
Pioneer Technology
(919) 544-5400

Raleigh
Arrow Electronics
(919) 876-3132

Hamilton/Avnet
(919) 878-0810

Winston-Salem
Arrow Electronics
(919) 725-8711

OHIO
Centerville
Arrow Electronics
(513) 435-5563

Bell Industries
(513) 435-8660

Bell Industries-Military
(513) 434-8231

Cleveland
Pioneer
(216) 587-3600

Dayton
Hamilton/Avnet
(513) 439-6700

Pioneer Standard
(513) 236-9900

Zeus Components
(914) 937-7400

Dublin
Time Electronics
(614) 761-1100

Solon
Arrow Electronics
(216) 248-3990

Hamilton/Avnet
(216) 831-3500

Westerville Hamilton/Avnet (614) 882.7004

OKLAHOMA
Tulsa
Arrow Electronics
(918) 252-7537

Hamilton/Avnet (918) 252-7297

Pioneer Standard
(918) 492-0546

Radio Inc.
(918) 587-9123

OREGON
Beaverton
Almac-Stroum Electronics
(503) 629-8090

Anthem Electronics
(503) 643-1114

Arrow Electronics
(503) 645-6456

Hamilton/Avnet
(503) 627-0201

Lake Oswego
Bell Industries
(503) 635-6500

Portland
Time Electronics
(503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150 Pioneer Technology (215) 674-4000

King of Prussia Time Electronics (215) 337-0900

Monroeville Arrow Electronics (412) 856-7000

Pittsburgh Hamilton/Avnet
(412) 281-4150

Pioneer (412) 782-2300

TEXAS
Austin
Arrow Electronics
(512) 835-4180 Hamilton/Avnet (512) $837-8911$ Pioneer Standard (512) 835-4000 Time Electronics (512) 399-3051

Carrollton
Arrow Electronics
(214) 380-6464

Time Electronics
(214) 241-7441

Dallas
Hamilton/Avnet (214) 404-9906 Pioneer Standard (214) 386-7300

Houston
Arrow Electronics
(713) 530-4700

Pioneer Standard
(713) 988-5555

Richardson
Anthem Electronics
(214) 238-7100 Zeus Components (214) 783-7010

Stafford
Hamilton/Avnet
(713) 240-7733

UTAH
Midvale Bell Industries (801) 255-9611

Salt Lake City Anthem Electronics (801) 973-8555 Arrow Electronics (801) 973-6913 Hamilton/Avnet (801) 972-4300

West Valley Time Electronics (801) 973-8181

WASHINGTON
Bellevue
Almac-Stroum Electronics
(206) 643-9992

Bothell
Anthem Electronics
(206) 483-1700

Kent
Arrow Electronics
(206) 575-4420

Redmond
Bell Industries
(206) 885-9963

Hamilton/Avnet (206) 881-6697

Time Electronics (206) 882-1600

WISCONSIN
Brookfield
Arrow Electronics
(414) 792-0150

Mequon
Taylor Electric (414) 241-4321

Waukesha
Bell Industries
(414) 547-8879

Hamilton/Avnet
(414) 784-4516

CANADA
WESTERN PROVINCES
Burnaby Hamilton/Avnet (604) 437-6667 Semad Electronics (604) 420-9889

Calgary
Hamilton/Avnet (403) 250-9380 Semad Electronics (403) 252-5664 Zentronics (403) 272-1021

Edmonton Zentronics (403) 468-9306

Richmond Zentronics (604) 273-5575

Saskatoon Zentronics (306) 955-2207

Winnipeg Zentronics (204) 694-1957

EASTERN PROVINCES
Mississauga Hamilton/Avnet (416) 677-7432 Time Electronics (416) $672-5300$ Zentronics (416) 564-9600

Nepean Hamilton/Avnet (613) 226-1700 Zentronics (613) 226-8840

Ottawa Semad Electronics (613) 727-8325

Pointe Claire Semad Electronics (514) 694-0860

St. Laurent Hamilton/Avnet (514) 335-1000 Zentronics (514) 737-9700

Willowdale ElectroSonic Inc. (416) 494-1666

## SALES OFFICES

| ALABAMA | FLORIDA |
| :---: | :---: |
| Huntsville | Boca Raton |
| (205) $721-9367$ | (407) $997-8133$ |
| ARIZONA | Orlando |
| Tempe | $(407) 629-1720$ |
| (602) $966-4563$ | St. Petersburg |
| CALIFORNIA | (813) $577-5017$ |
| Inglewood | GEORGIA |
| (213) $645-4226$ | Norcross |
| Roseville | (404) 441-2740 |
| (916) 786-5577 | ILINOIS |
| San Diego | Schaumburg |
| (619) 587-0666 | (708) 397-8777 |
| Santa Clara | INDIANA |
| (408) $562-5900$ | Carmel |
| Tustin | (317) 843-7160 |
| (714) $259-8880$ | Fort Wayne |
| Woodland Hills | (219) 484-0722 |
| (818) 888-2602 | IOWA |
| COLORADO | Cedar Rapids |
| Boulder | (319) 395-0090 |
| (303) $440-3400$ | KANSAS |
| Colorado Springs | Overland Park |
| (719) $578-3319$ | (913) 451-4402 |
| Englewood | MARYLAND |
| (303) 790-8090 | Hanover |
| CONNECTICUT | (301) 796-8900 |
| Hamden | MASSACHUSETTS |
| (203) 288-1560 | Burlington |
|  | (617) 221-4500 |

MICHIGAN
Grand Rapids (616) 940-0588
W. Bloomfield (313) 855-0166
minnesota
Bloomington (612) 854-8200

MISSOURI
St. Louis (314) 569-9830

NEW JERSEY
Paramus (201) 599-0955

NEW MEXICO
Albuquerque (505) 884-5601

NEW YORK
Fairport (716) 223-7700

Melville (516) 351-1000 Wappinger Falls (914) 298-0680

NORTH CAROLINA Raleigh (919) 832-0661

OHIO Dayton (513) 435-6886 Independence (216) 524-5577

ONTARIO
Mississauga (416) 678-2920

Nepean (613) 596-0411

OREGON
Portland (503) 639-5442

PENNSYLVANIA
Horsham (215) 672-6767

PUERTO RICO
Rio Piedras (809) 758-9211

QUEBEC
Pointe Claire (514) 426-2992

TEXAS
Austin
(512) 346-3990

Houston (713) 771-3547

Richardson (214) 234-3811

UTAH
Salt Lake City (801) 322-4747

WASHINGTON
Bellevue (206) 453-9944

WISCONSIN
Brookfield (414) 782-1818

## National Semiconductor Corporation

2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240

## SALES OFFICES (Continued)

## INTERNATIONAL OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutores
Do Brasil Ltda.
Av. Brig. Faria Lima, 1383
6.0 Andor-Conj. 62

01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Fax: $(55 / 11)$ 211-1181 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: (0-81-41) 103-0
Telex: 527-649
Fax: (08141) 103554
National Semiconductor (UK) Ltd
The Maple, Kembrey Park
Swindon, Wiltshire SN2 6UT
United Kingdom
Tel: (07-93) 61-41-41
Telex: 444-674
Fax: (07-93) 69-75-22
National Semiconductor Benelux
Vorstlaan 100
B. 1170 Brussels

Beigium
Tel: (02) 6-61-06-80
Telex: 61007
Fax: (02) 6-60-23-95
National Semiconductor (UK) Ltd.
Ringager 4A, 3
DK-2605 Brondby
Denmark
Tel: (02) 43-32-11
Telex: 15-179
Fax: (02) 43-31-11

National Semiconductor S.A.
Centre d'Affaires-La Boursidiere Bâtiment Champagne, B.P. 90
Route Nationale 186
F-92357 Le Plessis Robinson
France
Tel: (1) 40-94-88-88
Telex: 631065
Fax: (1) 40-94-88-11
National Semiconductor (UK) Ltd.
Unit 2A
Clonskeagh Square
Clonskeagh Road
Dublin 14
Tel: (01) 69-55-89
Telex: 91047
Fax: (01) 69-55-89
National Semiconductor S.p.A.
Strada 7, Palazzo R/3
l-20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
Twx: 352647
Fax: (02) 8254758
National Semiconductor S.p.A.
Via del Cararaggio, 107
00147 Rome
Italy
Tel: (06) 5-13-48-80
Fax: (06) 5-13-79-47
National Semiconductor (UK) Ltd
Stasjonsvn 18
Postboks 15
N -1361 Billingstadsletta
Norway
Tel: 47-2-849362
Fax: 47-2-848104
National Semiconductor AB
P.O. Box 1009

Grosshandlarvaegen 7
S-121 23 Johanneshov
Sweden
Tel: 46-8-7228050
Fax: 46-8-7229095
Telex: 10731 NSC S

National Semiconductor GmbH
Calle Agustin de Foxa, 27 ( $9^{\circ} \mathrm{D}$ )
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133
Fax: (01) $733-8018$
National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 828-444
Fax: (01) 830-1900
National Semiconductor
Kauppakartanonkatu 7 A22
SF-00930 Helsinki
Finland
Tel: (90) 33-80-33
Telex: 126116
Fax: (90) 33-81-30
National Semiconductor
Postbus 90
1380 AB Weesp
The Netherlands
Tel: (0-29-40) 3-04-48
Telex: 10-956
Fax: (0-29-40) 3-04-30
National Semiconductor Japan
Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299.7000
National Semiconductor
Hong Kong Ltd.
Suite 513, 5th Floor,
Chinachem Golden Plaza,
77 Mody Road, Tsimshatsui East,
Kowloon, Hong Kong
Tel: 3-7231290
Telex: 52996 NSSEA HX
Fax: 3-3112536

National Semiconductor
Australia) PTY, Lid.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victoria, Australia
Tel: (03) 267-5000
Fax: 61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Branch
13th Floor, Dai Han Life Insurance
63 Building,
60, Yoido-dong, Youngdeungpo-ku,
Seoul, Korea 150-763
Tel: (02) 784-8051/3, 785-0696/8
Telex: 24942 NSPKLO
Fax: (02) 784-8054


[^0]:    Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$ ), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
    Note 2: Screen tested $100 \%$ on each device at $+25^{\circ} \mathrm{C}$, only Subgroup A9.
    Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
    Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
    Note 5: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

[^1]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level

[^2]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care

[^3]:    Note 1: F100K 300 Series cold temperature testing is periormed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$ ), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
    Note 2: Screen tested $100 \%$ on each device at $+25^{\circ} \mathrm{C}$, temperature only, Subgroup A9.
    Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
    Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
    Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

[^4]:    L = Low Voltage Level
    H = High Voltage Level
    X = Don't Care

[^5]:    Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
    Note 2: Parametric values specified at -4.2 V to -4.8 V .
    Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
    Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

[^6]:    Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
    Note 2: Parametric values specified at -4.2 V to -4.8 V .
    Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
    Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

[^7]:    $H=H$ HIGH Voltage Level
    L = LOW Voltage Level
    Blank $=\mathrm{X}=$ Don't Care

[^8]:    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level $L=$ LOW Voltage Level

[^9]:    H = HIGH Voltage Level
    $L=$ LOW Voltage Level

[^10]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $X=$ Don't Care
    $==$ LOW to HIGH Transition
    $Q_{n-1}=$ Previous State

[^11]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care
    $\Omega=$ LOW to HIGH Transition
    $\mathbf{t}, \mathbf{t}+\mathbf{1}=$ Time Before and After Clock Positive Transition

[^12]:    Note: This device is guaranteed for $f_{T O G(\max )} \geq 500 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

[^13]:    $M=A_{\text {2a }}=H_{c}=$ LOW
    $H=$ HIGH Voitage Level
    L = LOW Voltage Level
    X = Don't Care

[^14]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level

[^15]:    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
    L = LOW Voltage Level

