Section 7
Rigid Disk Preamplifiers and Servo Control Circuits

Section 7 Contents

DP117X/ μ A117X/DP117XR/ μ A117XR Winchester Disk Read/Write Preamplifiers 7-3
DP501X/ μ A501X/DP501XR/ $\mu A 501 X R 6$ or 8 Channel Read/Write Circuits 7-10
DP24H80/ μ A24H80 Winchester Disk Servo Preamplifiers 7-17
DP2580/ μ A2580 Winchester Disk Servo Preamplifiers 7-19
DP2460/DP2461/ μ A2460/ μ A2461 Servo Control Chips 7-21
2470A Servo Demodulator 7-27

DP117-X/DP117-XR/ μ A117-X/ μ A117-XR Series Winchester Disk Read/Write Preamplifiers

General Description

The DP117-X/DP117-XR, $\mu A 117-X / \mu A 117-X R$ Series High Performance Read/Write Preamplifiers are intended for use in Winchester disk drives which employ center tapped ferrite or manganese-zinc read/write heads. The circuit can interface with up to eight read/write heads which makes it ideal for multi-platter disk drive designs. Designed to reside in the Head/Disk Assembly (HDA) of Winchester disk drives, the Read/Write Preamplifiers provide termination, gain, and output buffering for the disk heads as well as switched write current. Certain write fault conditions are detected and reported to protect recording integrity. The parts are available with internal damping resistor (DP117-R) and without internal damping resistor (DP117).

Features

■ Wide bandwidth, high gain, low noise

- Up to eight read/write channels
- Internal write fault condition detection
- 5.0 V and 12 V power supply voltages
- Independent read and write data lines
- TTL control and data logic levels
- Externally programmable write current

Block Diagram (typical, DP117-x)

Absolute Maximum Ratings All voltages referenced to GND
If Milltary/Aerospace specified devices are required,
DC Supply Voltage
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Plastic	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Junction Temperature Range $+25^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature
Ceramic (Soldering, 60 seconds) $300^{\circ} \mathrm{C}$
Plastic (Soldering, 10 seconds) $265^{\circ} \mathrm{C}$
Internal Power Dissipation (Notes 1 \& 2)
28L-Ceramic DIP
24L-Ceramic DIP
2.50W

18L-Ceramic DIP
1.95W
1.58W
0.97W
0.90W

24L-Ceramic Flatpak
1.39W

Supply Voltage ($\mathrm{V}_{\mathrm{CC} 1}$)
Supply Voltage ($\mathrm{V}_{\mathrm{CC} 2}$)
6.0 V

Write Current (IWC)
Input Voltage Range
Head Select (HSO, HS1, HS2)

$$
-0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}
$$

Write Current (WC)
Voltage in read and idle modes.
(Write mode must be current
limited to -70 mA)
Chip Select (CS) $\quad-0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}$
Read/Write (R/W) $\quad-0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}$

(VD1) (VD2) (V_{CC})	$\begin{aligned} & -0.3 V \text { to }+14 V \\ & -0.3 V \text { to }+14 V \\ & -0.3 V \text { to }+6.0 V \end{aligned}$
Digital Input Voltage Range (V_{IN})	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Head Port Voltage Range $\left(V_{H}\right)$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
WUS Port Voltage Range (Vwus)	-0.3 V to +14 V
Write Current (lw)	60 mA
Output Current (10)	
RDX, RDY	-10 mA
VCT	-60 mA
WUS	+ 12 mA

Recommended Operating Conditions

DC Supply Voltage
$\left(V_{D D 1}\right)$
$\left(V_{D D 2}\right)$
$12 \mathrm{~V} \pm 10 \%$ 6.5 V to $\mathrm{V}_{\mathrm{DD} 1}$ $5.0 \mathrm{~V} \pm 10 \%$ $5.0 \mu \mathrm{H}$ to $15 \mu \mathrm{H}$ 500Ω to 2000Ω $90 \Omega \pm 5.05(1 / 2 \mathrm{~W})$ 25 mA to 50 mA $0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$

Note 1: T_{J} max $=150^{\circ} \mathrm{C}$ for the Plastic, and $175^{\circ} \mathrm{C}$ for the Ceramic.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 28 L -Ceramic DIP at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $24 \mathrm{~L}-$ Ceramic DIP at $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 18 L -Ceramic DIP at $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 24 L -Brazed Flatpak at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 24 L -Ceramic Flatpak at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $28 \mathrm{~L}-\mathrm{PLCC}$ at $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

DC Characteristics $25^{\circ} \mathrm{C} \leq T_{J}<125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions		Min	Max	Units	
Icc	Supply Current		Read/Idle Mode			25	mA	
			Write Mode			30		
IDD	Supply Current		Idle Mode			25	mA	
			Read Mode			50		
			Write Mode			$30+1 w$		
P_{C}	Power Consumption		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	Idle Mode		400		
			Read Mode		600			
			Write Mode, $\begin{aligned} & \mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA} \\ & \mathrm{RCT}=90 \Omega \\ & \mathrm{RCT}=0 \Omega \end{aligned}$		$\begin{gathered} 850 \\ 1050 \end{gathered}$	mW		
$\mathrm{V}_{\text {IL }}$	Digital Inputs	Input Voltage LOW				-0.3	0.8	V
V_{IH}		Input Voltage HIGH				2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
IIL		Input Current LOW	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$		-0.4		mA	
$\mathrm{IIH}^{\text {H}}$		Input Current HIGH	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
V_{OL}	WUS Output		$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V	
lOH			$\mathrm{V}_{\mathrm{OH}}=5.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {CT }}$	Center Tap Voltage		Read Mode		$4.0 \text { (typ) }$		V	
			Write Mode		6.0 (typ)		V	

Write Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{f}($ Data $)=5.0 \mathrm{MHz}, \mathrm{CL}$ (RDX, RDY)
$\leq 20 \mathrm{pF}, \mathrm{R}_{\mathrm{DEXT}}=750 \Omega$ or $\mathrm{R}_{\mathrm{DINT}}$, unless otherwise specified

Parameter	Conditions	Min	Max	Units
Write Current Range		10	50	mA
Write Current Constant "K"		133	147	V
Differential Head Voltage Swing		5.7		V (pk)
Unselected Differential Head Current			2.0	mA (pk)
Differential Output Capacitance			15	pF
Differential Output Resistance	Without Internal Resistors	10k		Ω
	With Internal Resistors	538	1.0k	
WDI Transition Frequency	WUS = LOW	400 (typ)		kHz
Iwc to Head Current Gain		18 (typ)		$\mathrm{mA} / \mathrm{mA}$

Read Characteristics $V_{D D 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{f}($ Data $)=5.0 \mathrm{MHz}, C L$ (RDX, RDY) $\leq 20 \mathrm{pF}$, $\left(V_{\text {in }}\right.$ is referenced to $\left.V_{C T}\right), R_{D E X T}=750 \Omega$ or $R_{D ~ I N T}$, unless otherwise specified

Parameter	Conditions		Min	Max	Unit
Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{mV}_{\mathrm{p-p}} \text { at } 300 \mathrm{kHz} \\ & \mathrm{RL}(\mathrm{RDX}), \mathrm{RL}(\mathrm{RDY})=1.0 \mathrm{k} \Omega \end{aligned}$		80	120	V/V
Dynamic Range	Input Voltage, V_{1}, where gain falls by 10%.$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1}+0.5 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \text { at } 300 \mathrm{kHz}$		-2.0	2.0	mV
Bandwidth (-3 dB)	$\|\mathrm{Zs}\|<5.0 \Omega, \mathrm{~V}_{\mathrm{IN}}=1.0 \mathrm{mV} \mathrm{V}_{\mathrm{p}} \mathrm{p}$		30		MHz
Input Noise Voltage	$\mathrm{BW}=15 \mathrm{MHz}, \mathrm{Lh}=0, \mathrm{Rh}=0$			2.1	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Input Capacitance	$\mathrm{f}=5.0 \mathrm{MHz}$			23	pF
Differential Input Resistance	$\mathrm{f}=5.0 \mathrm{MHz}$	Without Internal Resistors	2k		Ω
		With Internal Resistors	440	850	
Input Bias Current				45	$\mu \mathrm{A}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CT}}+100 \mathrm{mV} \mathrm{p}_{\mathrm{p}}$ p at 5.0 MHz		50		dB
Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{p}_{\text {-p }}$ at 5.0 MHz on $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$ or V_{CC}		45		dB
Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ at 5.0 MHz and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{mV} \mathrm{m}_{\mathrm{p}} \mathrm{p}$		45		dB
Output Offset Voltage			-480	480	mV
Common Mode Output Voltage			5.0	7.0	V
Single Ended Output Resistance	$f=5.0 \mathrm{MHz}$			35	Ω
Internal Damping Resistor			560	1070	Ω

Switching Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V}, \mathrm{~V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{Lh}=10 \mu \mathrm{H}$, $f($ Data $)=5.0 \mathrm{MHz}, R_{D E X T}=750 \Omega$ or $R_{D} \operatorname{INT}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
R/W	$\mathrm{R} / \overline{\mathrm{W}}$ to Write	Delay to 90\% of Write Current		1.0	$\mu \mathrm{s}$
	R/W to Read	Delay to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current		1.0	
$\overline{\text { CS }}$	$\overline{\mathrm{CS}}$ to Select	Delay to 90% of Write Current or to 90% of 100 mV, 10 MHz Read Signal Envelope		1.0	$\mu \mathrm{S}$
	$\overline{\mathrm{CS}}$ to Unselect	Delay to 90\% Decay of Write Current		1.0	
$\begin{aligned} & \text { HSO } \\ & \text { HS1 } \\ & \text { HS2 } \\ & \hline \end{aligned}$	to Any Head	Delay to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope		1.0	$\mu \mathrm{S}$
WUS	Safe to Unsafe-TD1	$\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}$	1.6	8.0	$\mu \mathrm{s}$
	Unsafe to Safe-TD2	$\mathrm{I}_{\mathrm{W}}=20 \mathrm{~mA}$		1.0	
Head Current	Propagation Delay-TD3, TD4	$L h=0 \mu H, R h=0 \Omega$ from 50\% Points		25	ns
	Asymmetry	WDI has 50\% Duty Cycle and 1 ns Rise/Fall Time		2	
	Rise/Fall Time	10\%-90\% Points		20	

Connection Diagrams

Top View
†Order Number μ A1172DC or μ A1172RDC $\dagger \dagger$ See NS Package Number N18A

22-Lead Molded DIP

TL/F/9406-2
Top View
\dagger Order Number μ A1174PC or μ A1174RPC
$\dagger \dagger$ See NS Package Number N22A

Connection Diagrams (Continued)

Functional Description

In the Write mode, the DP117-X/DP117-XR, $\mu A 117-X /$ $\mu A 117-X R$ Series accepts TTL compatible write data pulses on the WDI lead. On the falling edge of each write data pulse, a current transition is made in the selected head. Head selection is accomplished via TTL input signals: HSO, HS1, HS2 (see Table II). Internal circuitry senses the following conditions:

1. Absence of data transitions.
2. Open circuit head connection.
3. Absence of write current.
4. Short circuit head connection.
5. Idle or read mode.

Any or all of the above conditions would result in a high level on the write unsafe (WUS) output signal.
During read operations, the DP117-X amplifies the differential voltages appearing across the selected R/W head lead and applies the amplified signal differentially to data lines RDX and RDY.

Pin Descriptions

Lead	Name	Function
$\overline{C S}$	Chip Select	Chip Select High disables the read/write function of the device and forces idle mode. (TTL)
R/W	Read/Write Select	A Logic High places the devices in read mode and a Logic Low forces write mode. Refer to Table I. (TTL)
H0X, Y through H5X, Y	Read/Write Head Connections	The DP117 has five pairs of read/write connections. The X and Y phases are made consistent with the read output, RDX and RDY, phases. (Differential)
RDX, Y	Read Data Outputs	The chip has one pair of read data outputs which is multiplexed to the appropriate head connections. (Differential)
HSO through HS2	Head Select Inputs	The eight read/write heads are addressed with the head select inputs. Refer to Table II. (TTL)
WC	Write Current Input	This lead sets the current level for the write mode. An external resistor is connected from this lead to ground, and write current is determined by the value of this resistor divided into the write current constant K, which is typically 140V.
WDI	The write data input toggles the write current between the X and Y selected head connections. Write current is switched on the negative edge of WDI. The initial direction for write current is the X side of the switch and is set upon entering read or idle mode. (TTL)	
VDD2	Resistor Center Tap	In some versions (determined by lead availability) of the DP117-X series, a resistor may be connected between RCT and VDD1 to reduce internal power dissipation. If this resistor is not used, RCT must be connected externally to VDD1.
VCT	Center Tap Voltage	The center tap output provides bias voltage for the head inputs in read and write mode. It should be connected to the center tap of the read/write heads.
WUS	A high logic level at the write unsafe output indicates a fault condition during write. Write unsafe will also be high during read and idle mode. (Open collector)	

TABLE I. Read/Write Select

Operating Modes		
Chip Select $\overline{\text { CS }}$	Read/Write R/W	Mode
1	X	Idle
0	1	Read
0	0	Write

TABLE II. Head Select Inputs

Head Selection			
HSO	HS1	HS2	Head Selected (Note 1)
0	0	0	0
1	0	0	1
0	1	0	2
1	1	0	3
0	0	1	4
1	0	1	5

Note 1: If selected head is beyond the capacity of the DP117-X model, the open input condition on the selected input will be reported as an unsafe level at the WUS output.

Timing Diagrams

TL/F/9406-8
FIGURE 1. Head Current Timing

TL/F/9406-9
FIGURE 2a. Unsafe to Safe Timing

FIGURE 2b. Safe to Unsafe Timing

General Description

The $\mu \mathrm{A} 501 \mathrm{X} / \mu \mathrm{A} 501 \mathrm{XR}$ devices are bipolar monolithic integrated circuits designed for use with center-tapped ferrite recording heads. They provide a low noise read path, write current control, and data protection circuitry for eight channels. The $\mu \mathrm{A} 501 \mathrm{X} / \mu \mathrm{A} 501 \mathrm{XR}$ requires +5.0 V and +12 V power supplies and is available in a variety of packages. The μ A501XR differs from the μ A501X by having internal damping resistors.

Features

■ +5.0V, +12V power supplies

- Single- or multi-platter Winchester drives
- Designed for center-tapped ferrite heads
- Programmable write current source
- Easily multiplexed for larger systems
- Includes write unsafe detection
- TTL compatible control signals

Block Diagram

TL/F/9407-6
Note: Caution: Use handling procedures necessary for a static sensitive component.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range

Ceramic DIP and Flatpak	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP and PLCC	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range
Lead Temperature
Ceramic DIP and Flatpak
(Soldering, 60 seconds)
Molded DIP and PLCC
(Soldering, 10 seconds)
Internal Power Dissipation (Notes 2 \& 3)
28L-Ceramic DIP
2.50W

28L-Plastic DIP
1.92W

32L-Brazed Flatpak
1.88W

40L-Ceramic DIP
2.65W

40L-Plastic DIP
28L-Plastic LCC
44L-Plastic LCC
DC Supply Voltage
$V_{D D 1}$ and $V_{D D 2}$
-0.3 V to +14 V
-0.3 V to +6.0 V
Digital Input Voltage Range
-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Head Port Voltage Range
DC Electrical Characteristics
$V_{D D 1}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter		Conditions		Min	Max	Units	
ICC	Supply Current		Read/Idle Mode			25	mA	
			Write Mode			25		
IDD	Supply Current		Idle Mode			20	mA	
			Read Mode			40		
			Write Mode			$20+1 w$		
$\mathrm{PC}_{\text {c }}$	Power Consumption		$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 135^{\circ} \mathrm{C}$	Idle Mode		400	mW	
			Read Mode		650			
			Write Mode, $\begin{aligned} & \mathrm{l} \mathrm{~W}=50 \mathrm{~mA}, \\ & \mathrm{RCT}=90 \Omega \end{aligned}$		880			
			Write Mode, $\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA},$ $\text { RCT }=0 \Omega$		1060			
$\mathrm{V}_{\text {IL }}$	Digital Inputs:	Input Voltage LOW				-0.3	0.8	V
$\mathrm{V}_{1 \mathrm{H}}$		Input Voltage HIGH				2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
IIL		Input Current LOW		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$		-0.4		mA
$\mathrm{IIH}_{\mathrm{H}}$		Input Current HIGH	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
V_{OL}	WUS Output		$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.5	V	
IOH			$\mathrm{V}_{\mathrm{OH}}=5.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
V_{CT}	Center Tap Voltage		Read Mode		$4.0 \text { (typ) }$		V	
			Write Mode		$6.0 \text { (typ) }$		V	

Write Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{Lh}=10 \mu \mathrm{H}$, Rd $=750 \Omega$ (DP501X only), $f($ Data $)=5.0 \mathrm{MHz}, C L$ (RDX, RDY) $\leq 20 \mathrm{pF}$, unless otherwise specified

Parameter	Conditions	Min	Max	Units
Write Current Range		10	50	mA
Write Current Constant "K"		129	151	V
Differential Head Voltage Swing		7.5		$V(p k)$
Unselected Head Transient Current	$5.0 \mu \mathrm{H} \leq \mathrm{Lh} \leq 9.5 \mu \mathrm{H}$		2.0	mA (pk)
Differential Output Capacitance			15	pF
Differential Output Resistance	Without Internal Resistors	10k		Ω
	With Internal Resistors	560	940	
WDI Transition Frequency	WUS = LOW	250		kHz
Head Current Gain to IWC $\left(\frac{I_{W}}{I_{W C}}\right)$.	20 (typ)		$\mathrm{mA} / \mathrm{mA}$
Unselected Head Leakage	Sum of X and Y Side Current		85	$\mu \mathrm{A}$

Read Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{CL}(\mathrm{RDX}, \mathrm{RDY}) \leq 20 \mathrm{pF},\left(\mathrm{V}_{\mathrm{IN}}\right.$ is referenced to V_{CT}), $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, $\mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{Rd}=750 \Omega$, f (Data) $=5.0 \mathrm{MHz}$ unless otherwise specified

Characteristic	Condition		Min	Max	Unit
Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{mV}_{\mathrm{PP}} \text { at } 300 \mathrm{kHz} \\ & \mathrm{RL} \text { (RDX), } \mathrm{RL} \text { (RDY) }=1.0 \mathrm{k} \Omega \text { (AC coupled) } \end{aligned}$		80	120	V/V
Dynamic Range	Input Voltage, V_{I}, where Gain Falls by $10 \%$$V_{I N}=V_{1}+0.5 \mathrm{mV} V_{P P} \text { at } 300 \mathrm{kHz}$		-3.0	3.0	mV
Bandwidth (-3 dB)	$\|\mathrm{Zs}\|<5.0 \Omega, \mathrm{~V}_{\text {IN }}=1.0 \mathrm{mV} \mathrm{PP}$		30		MHz
Input Noise Voltage	$\mathrm{BW}=15 \mathrm{MHz}, \mathrm{Lh}=0, \mathrm{Rh}=0$			1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Input Capacitance	$\mathrm{f}=5.0 \mathrm{MHz}$			23	pF
Differential Input Resistance	$\begin{aligned} & \mathrm{f}=5.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 6 \mathrm{mV} \mathrm{PPP}^{2} \end{aligned}$	Without Internal Resistors	2k		Ω
		With Internal Resistors	530	790	
Input Bias Current (per Side)				100	$\mu \mathrm{A}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CT}}+100 \mathrm{mV} \mathrm{PP}^{\text {at }} 5.0 \mathrm{MHz}$		50		dB
Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{VPP}^{\text {at }} 5.0 \mathrm{MHz}$ on $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$, or V_{CC}		45		dB
Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$ PP at 5.0 MHz and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{mV}$ PP		45		dB
Output Offset Voltage			-480	480	mV
Common Mode Output Voltage		Read Mode	5.0	7.0	V
		Write/Idle Mode	4.3 (typ)		
Single Ended Output Resistance	$\mathrm{f}=5.0 \mathrm{MHz}$			30	Ω
External Resistive Load (AC Coupled to Output)	Per Side to GND		100		Ω
Leakage Current (RDX, RDY)	5.0 < RDX, RDY < 8.0V Write or Idle Mode		-50	50	$\mu \mathrm{A}$
Center Tap Output Impedance	$0 \leq \mathrm{f} \leq 5.0 \mathrm{MHz}$			150	Ω
Output Current	AC Coupled Load RDX to RDY		2.0		mA

Switching Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{Lh}=$ $10 \mu \mathrm{H}, \mathrm{Rd}=750 \Omega, \mathrm{f}($ Data $)=5.0 \mathrm{MHz}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
R/W	$\mathrm{R} / \overline{\mathrm{W}}$ to Write	Delay to 90\% of Write Current		600	ns
	R/W to Read	Delay to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current		600	
$\overline{\text { CS }}$	$\overline{\text { CS }}$ to Select	Delay to 90% of Write Current or to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope		600	ns
	$\overline{\text { CS }}$ to Unselect	Delay to 90\% Decay of Write Current		600	
$\begin{aligned} & \text { HSO } \\ & \text { HS1 } \\ & \text { HS2 } \\ & \hline \end{aligned}$	to Any Head	Delay to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope		600	ns
WUS	Safe to Unsafe-TD1	$\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}$	1.6	8.0	$\mu \mathrm{s}$
	Unsafe to Safe-TD2	$\mathrm{I}_{\mathrm{W}}=20 \mathrm{~mA}$		1.0	
Head Current	Propagation Delay-TD3	$\begin{aligned} & \mathrm{Lh}=0 \mu \mathrm{H}, \mathrm{Rh}=0 \Omega \\ & \text { from } 50 \% \text { Points } \end{aligned}$		30	ns
	Asymmetry	WDI has 50\% Duty Cycle and 1 ns Rise/Fall Time		2	
	Rise/Fall Time	10\%-90\% Points		20	

Write Mode Timing Diagram

TL/F/9407-8

Connection Diagrams

40-Lead DIP

HOX -1	40
HOY-2	39
$\mathrm{NC}-3$	38
NC-4	37
H1X-5	36
H1Y-6	35
$\mathrm{H} 2 \mathrm{X}-7$	34
$\mathrm{H} 2 \mathrm{Y}-8$	33
H3X-9	32
$\mathrm{H} 3 \mathrm{Y}-10$	31
H4X -11	30
H4Y-12	29
H5X-13	28
H5Y-14	27
H6X-15	26
$\mathrm{H} 6 \mathrm{Y}-16$	25
NC-17	24
NC-18	23
H7X-19	22
H7Y-20	21

Top View
Ceramic DIP
*Order Number μ A5018DC or μ A5018RDC
**See NS Package Number J40A
Molded DIP
*Order Number μ A5018PC or μ A5018RPC
**See NS Package Number N40A

28-Lead PLCC

TL/F/9407-3
Top Vlew
Order Number μ A5016QC or μ A5016RQC See NS Package Number V28A

28-Lead DIP

TL/F/9407-5
Top View
Order Number μ A5016DC or μ A5016RDC See NS Package Number J28A
Order Number μ A5016PC or μ A5016RPC See NS Package Number N28B

Application Information

TL/F/9407-7
Note 1: An external $1 / 2 \mathrm{~W}$ resistor, RCT, given by RCT $=90\left(50 / l_{W}\right) \Omega$, where l_{W} is in mA can be used to limit internal power dissipation. Otherwise connect $V_{D D 2}$ to $V_{D D 1}$.
Note 2: A ferrite bead (Ferroxcube 5659065/4A6) can be used to suppress write current overshoot and ringing induced by flex cable parasitics.
Note 3: Limit DC current from RDX and RDY to $100 \mu \mathrm{~A}$ and load capacitance to 20 pF .
Note 4: Damping resistors required on DP501X only.

Pin Descriptions
TABLE I. Description of Lead Functions

Name	Functions
HSO-HS2	Head Select
$\overline{\mathrm{CS}}$	Chip Select: a low level enables device.
R/ $\overline{\text { W }}$	Read/Write: a high level selects read mode.
WUS	Write Unsafe: a high level indicates an unsafe writing position.
WDI	Write Data In: a negative transition toggles the direction of the head current.
HOX-H7X HOY-H7Y	X, Y Head Connections
RDX, RDY	X,Y Read Data: differential read signal out.
WC	Write Current: used to set the magnitude of the write current.
VCT	Voltage Center Tap: voltage source for head center tap.
VCC	+5.0 C
VDD1	+12 C
VDD2	Positive power supply for the center tap voltage source.
GND	Ground

Circuit Operation

The $\mu \mathrm{A} 510 \mathrm{X} / \mu \mathrm{A} 501 \mathrm{XR}$ functions as a write driver or as a read amplifier for the selected head. Head selection and mode control are described in Tables II and III. Both R/W and $\overline{\mathrm{CS}}$ have internal pull-up resistors to prevent an accidental write condition.

WRITE MODE

The Write mode configures the $\mu \mathrm{A} 510 \mathrm{X} / \mu \mathrm{A} 501 \mathrm{XR}$ as a current switch and activates the Write Unsafe Detector. Head current is toggled between the X - and Y -side of the recording head on the falling edges of WDI, Write Data Input. Note that a preceding read operation initializes the Write Data Flip-Flop, WDFF, to pass current through the X-side of the head. The magnitude of the write current, given by
$I_{W}=K /$ Rwc, where $K=$ Write Current Constant is set by the external resistor, Rwc, connected from lead WC to GND.

TABLE II. Mode Select

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathrm{W}}$	Mode
0	0	Write
0	1	Read
1	X	Idle

TABLE III. Head Select

HS2	HS1	HSO	Head
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$0=$ Low Level
$1=$ High Level
Any of the following conditions will be indicated as a high level on the Write Unsafe, WUS, open collector output.

- Head open
- Head center tap open
- WDI frequency too low
- Device in Read mode
- Device not selected
- No write current

After the fault condition is removed, two negative transitions on WDI are required to clear WUS.

READ MODE

In the Read mode the $\mu \mathrm{A} 510 \mathrm{X} / \mu \mathrm{A} 501 \mathrm{XR}$ is configured as a low noise differential amplifier, the write current source and the write unsafe detector are deactivated, and the write data flip-flop is set. The RDX and RDY outputs are driven by emitter followers and are in phase with the " X " and " Y " head ports. They should be AC coupled to the load.
Note that the internal write current source is deactivated for both the Read and the chip deselect mode. This eliminates the need for external gating of the write current source.

National Semiconductor

DP24H80／μ A24H80

Winchester Disk Servo Preamplifier

General Description

The DP24H80 $/ \mu \mathrm{A} 24 \mathrm{H} 80$ provides termination，gain，and im－ pedance buffering for the servo read head in Winchester disk drives．It is a differential input，differential output design with fixed gain of approximately 100．The bandwidth is guar－ anteed greater than 30 MHz ．
The internal design of the DP24H80／$\mu \mathrm{A} 24 \mathrm{H} 80$ is optimized for low input noise voltage to allow its use in low input signal level applications．It is offered in 8－lead DIP，10－lead flatpak， or SO－8 package suitable for surface mounting．

Features

－Low input noise voltage
■ Wide power supply range（ 8 V to 13 V ）
■ Internal damping resistors（ $1.3 \mathrm{k} \Omega$ ）
－Direct replacement for SSI 101A，with improved per－ formance

Connection Diagrams

8－Lead DIP and SO－8 Package

Top View
Ceramic DIP
\dagger Order Number μ A24H80RC
\ddagger See NS Package Number J08A
Molded Surface Mount
\dagger Order Number μ A24H80SC
\ddagger See NS Package Number M08A
Molded DIP
\dagger Order Number μ A24H80TC
\ddagger See NS Package Number N08E

10－Lead Ceramic Flatpak

TL／F／9408－2
Top View
\dagger Order Number μ A24H80FC \ddagger See NS Package Number F10B

Pin Descriptions

Name	Description of Functions
V +	Positive Differential Supply with Respect to $\mathrm{V}-$
V－	Negative Differential Supply with Respect to $\mathrm{V}+$
+ IN	Positive Differential Input
- N	Negative Differential Input
+ OUT	Positive Differential Output
- OUT	Negative Differential Output
NC	No Connection

Internal Power Dissipation (Notes 1 \& 2)

8L-Ceramic DIP	1.30 W
8L-Molded DIP	0.93 W
SO-8	0.81 W
10L-Flatpak	0.79 W
Supply Voltage	15 V
Output Voltage	15 V
Differential Input Voltage	$\pm 10 \mathrm{~V}$

Note 1: $T_{J \text { MAX }}=150^{\circ} \mathrm{C}$ for the Molded DIP and SO-8, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP and Flatpak.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 8 LL -Ceramic DIP at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $8 \mathrm{BL}-\mathrm{Molded}$ DIP at 7.5 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$, the SO-8 at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the Flatpak at $5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ to 13.2 V , unless otherwise noted

Typical Applications

Note 1: Leads shown for 8-lead DIP.
Note 2: $R_{e q}$ is equivalent load resistance.
Note 3: $R_{p}=\frac{R_{L} \bullet R_{e q}}{R_{L}+R_{e q}}$
Note 4: $\mathrm{G}=0.77 \mathrm{R}_{\mathrm{p}}$
Where $R_{p}=$ value from Note 3 (above) in ohms.

DP2580/ μ A2580
 Winchester Disk Servo Preamplifier

General Description

The DP2580 provides termination, gain, and impedance buffering for the thin film servo read head in Winchester disk drives. It is a differential output design with fixed gain of approximately 250 . The bandwidth is guaranteed greater than 30 MHz .
The internal design of the DP2580 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8 -lead ceramic DIP, 10-lead Flatpak, and an SO-8 package suitable for surface mounting.

Features

- Low input noise voltage
- Wide power supply range

Typ. $0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
8 V to 13 V

- Internal damping resistors

Connection Diagrams

8-Lead DIP and SO-8 Package

Top View
†Order Number μ A2580DC $\dagger \dagger$ See NS Package Number N08E
†Order Number μ A2580SC $\dagger \dagger$ See NS Package Number M08A

TL/F/9409-2
†Order Number μ A2580FC $\dagger \dagger$ See NS Package Number F10B

Pin Description

Name	Function
+ IN	Positive Differential Input
- IN	Negative Differential Input
NC	No Connection
V $^{-}$	Negative Differential Supply with Respect to $V_{C C}$
+OUT	Positive Differential Output
-OUT	Negative Differential Output
V+	Positive Differential Supply with Respect to $V_{C C}$
NC	No Connection

Absolute Maximum Ratings

If Millitary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
Ceramic DIP and Flatpak

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

Operating Temperature Range
Lead Temperature
Ceramic DIP and Flatpak
(Soldering, 60 seconds)
$300^{\circ} \mathrm{C}$
(Soldering, 10 seconds)

Internal Power Dissipation (Notes 1 and 2)

8L-Ceramic DIP	1.3 W
10L_Flatpak	0.79 W

SO-8 15V
Supply Voltage 15V
Output Voltage
15 V
Differential Input Voltage $\pm 1 \mathrm{~V}$
Note 1: T_{J} Max $=150^{\circ} \mathrm{C}$ for the $\mathrm{SO}-8$, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP and Flatpak.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 8 L -Ceramic DIP at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 10 L -Flatpak at 5.3 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$, and the $\mathrm{SO}-8$ at $6.5 \mathrm{~mW}{ }^{\circ} \mathrm{C}$.

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+-\mathrm{V}-=8 \mathrm{~V}$ to 13.2 v , unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
G	Gain (Differential)	$R_{P}=100 \Omega,(\mathrm{~V}+)-(\mathrm{V}-)=12 \mathrm{~V}$		250		
BW	Bandwidth (3 dB)	$\mathrm{V}_{1}=0.5 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$	30	65		MHz
R_{1}	Input Resistance			300		Ω
Cl_{1}	Input Capacitance			35		pF
V_{1}	Input Dynamic Range (Differential)	$R_{P}=100 \Omega,(\mathrm{~V}+)-(\mathrm{V}-)=12 \mathrm{~V}$			1	mV PPP
Is	Supply Current	$(\mathrm{V}+)-(\mathrm{V}-)=12 \mathrm{~V}$		28	40	mA
ΔV_{0}	Output Offset (Differential)	$\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{R}_{\mathrm{P}}=100 \Omega$	600		600	mV
V_{n}	Equivalent Input Noise	$\mathrm{BW}=4 \mathrm{MHz}$		0.6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{f}=5 \mathrm{MHz}$	50	65	0.90	dB
$\Delta G / V$	Gain Sensitivity (Supply)	$\Delta(\mathrm{V}+)-(\mathrm{V}-) \pm 10 \%, \mathrm{R}_{\mathrm{P}}=100 \Omega$			0.5	\%/V
$\Delta \mathrm{G} / \mathrm{T}$	Gain Sensitivity (Temp.)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=100 \Omega$		0.16		\%/ ${ }^{\circ} \mathrm{C}$
CMR	Common Mode Rejection (Input)	$\mathrm{f}=5 \mathrm{MHz}$	60	70		dB

Typical Applications (Notes 1-4)

TL/F/9409-3
Note 1: Leads shown for 8-lead DIP.
Note 2: $R_{E Q}$ is equivalent load resistance.
Note 3: $R_{p}=\frac{R_{L} \cdot R_{E Q}}{R_{L}+R_{E Q}}$
Note 4: $G=2.5 R_{P}$
Where $R_{p}=$ value Note 3 (above) in Ω.

π
 National Semiconductor

DP2460/DP2461, μ A2460/ μ A2461 Servo Control Chips

General Description

The DP2460 and DP2461 provide the analog signal processing required between a drive resident microprocessor and the servo power amplifier for Winchester disk closed loop head positioning. The DP2460 and DP2461 receive quadrature position signals from the servo channel; and from these, derive actual head seek velocity as well as posi-tion-mode off-track error. In the seek mode, the Digital to Analog Converter (DAC) is used to command velocity, while actual velocity is obtained by differentiating the quadrature position signals provided at V1 for external processing. The velocity signal (V2), obtained by integrating the motor current, is also available for extra damping, if desired. Further, the DAC may be used for detenting the head off-track for any purpose such as thermal compensation or soft-error retries.

Features

- Microprocessor compatible interface
- Quadrature di-bit compatible
- On board DAC
- Velocity V1 derived from position signal
- Velocity V2 derived from motor current
- Quarter-Track-Crossing signal outputs
- Minimal external components
- Compatible with DP2470 demodulator

Connection Diagrams

TL/F/9410-2

Top View

†Order Number μ A2460QC or $\mu A 24610 C$ $\dagger \dagger$ See NS Package Number V28A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic DIP
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
PLCC
Operating Temperature Range
Lead Temperature
Ceramic DIP (Soldering, 60 sec .)
PLCC (Soldering, 10 sec .)

Internal Power Dissipation (Notes 1 and 2)
28L—Ceramic DIP
2.50W

28L—PLCC
1.39W

Supply Voltage
Analog Common Voltage
All Inputs
15V Max 8.0V Max
$\mathrm{V}_{\text {supply }}$ Max

Note 1: $T_{J} \max =150^{\circ} \mathrm{C}$ for the PLCC, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 28 L -Ceramic DIP at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the 28 L -PLCC at $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$, Analog Common $=5.0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
Digital I/O	Input Voltage LOW					0.8	V
	Input Voltage HIGH			2.0			
	Output Voltage LOW		$\mathrm{l}_{\mathrm{OL}}=2.5 \mathrm{~mA}$			0.45	
	Output Voltage HIGH		$\mathrm{l}_{\mathrm{OH}}=40 \mu \mathrm{~A}$	2.4			
	Input Load Current		$\mathrm{V}_{1}=0 \mathrm{~V}$ to V_{CC}			0.2	mA
Clock Input	Input Comparator Reference Level			2.0	2.5	3.0	V
	Input Impedance			15	20		k Ω
DAC	Linearity (Note 1)			-1		1	LSB
	Resolution				8.0		bits
	Differential Nonlinearity			Monotonicity Guaranteed			
	Full Scale Output Voltage		Direction in High	7.25	7.35	7.45	V
			Direction in Low	2.55	2.65	2.75	
	Zero Scale Voltage				5.0		
	Output Offset Voltage					± 10	mV
	Settling Time (Notes 2, 4)		To $1 / 2$ LSB All bits ON or OFF				$\mu \mathrm{s}$
Position Inputs	Input Voltage Range			1.0		9.0	V
	Input Impedance			15	20		$\mathrm{k} \Omega$
Analog Switch	On Resistance		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 12 V		100	200	Ω
	Off Leakage (Note 3)				2.0	100	nA
Position Output	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}$ Follow Mode	1.0		9.0	V
	Voltage Gain			0.9		1.1	-
	Output Offset Voltage					± 20	mV
Velocity Outputs	Output Voltage Swing		$R_{L}=15 k$	1.0		9.0	V
	Output Offset Voltage	V2				± 20	mV
		V1				15	
lcc	Positive Supply		$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}$		10	15	mA
Iss	Negative Supply		$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}$	-15	-10		mA
$l_{A C}$	Analog Common 1			-2.0	0	2.0	mA
V1-Differentiator	Linearity		$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz} \text { to } 4.0 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{N} / \mathrm{Q}} \leq 10 \mathrm{kHz} \\ & \hline \end{aligned}$		0.25		\%
V2-Integrator	Linearity		$\mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}$ to 4.0 MHz		1.0		\%

Note 1: DAC Linearity is a function of the Clock frequency; Linearity at 1.0 MHz is typically $\pm 1 / 2 \mathrm{LSB}$.
Note 2: DAC Settling Time is approx. $5.0 \mu \mathrm{~s}$, plus a delay of maximum $32 \times$ Clock period i.e., $5+32 \mu \mathrm{~s}$ at Clock $=1.0 \mathrm{MHz}$ Minimum could be $5.0 \mu \mathrm{~s}$.
Note 3: Equivalent to $50 \mathrm{M} \Omega$.
Note 4: Guaranteed, but not tested in production.

Pin Description

Pin No.	Name	Function
INPUTS		
$1-8$	DAC Input Word ($\left.D_{0}-D_{7}\right)$	Programs DAC output, o0000000 = Analog Command Lead 1 = LSB Lead 8 = MSB
9	Latch Enable	Allows present DAC input word to be latched.
10	Seek/Follow Mode	Configures the feedback loop for either seeking or track-following. (High = Seek, Low = Follow)
14	Ground	Analog signal reference input level (5.0V)
15	Analog Common	
16	N	Normal position input signal.
17	Q	Quadrature position input signal.
23	Motor Current +	Motor current sense input to motor current integrator.
24	Motor Current -	4.0 MHz (maximum) input square wave.
26	Clock	Changes the polarity of DAC output from positive to negative consistent with the desired direction of head motion.
27	Direction In/Out	
28	V+	12V supply

Pin No.	Name	Function
OUTPUTS		
11	Track 2^{0} (TRO)	TTL signal whose frequency is 8 times N (or Q).
12	Track 2^{2} (TR2)	TTL signal indicating $N>Q$ (for DP2460). TTL signal whose frequency is 2 times N (or Q) (for DP2461).
13	$\text { Track } 2^{1}$ (TR1)	TTL signal indicating $\bar{N}>Q$ (for DP2460). TTL signal whose frequency is 4 times N (or Q) (for DP2461).
18	Analog Switch	Analog switch to be used externally for changing from seek to follow.
19	Analog Switch	
20	Position Output	Analog signal representing sensed off track ampitude.
21	Velocity 1	Analog output representing velocity processed from position signals N and Q .
22	Velocity 2	Analog output representing the integral of motor current.
25	DAC Output	Used to command velocity and position.

FIGURE 1. Head Actuator Control System

Functional Description

TL/F/9410-4
FIGURE 2. Block Diagram

Figure 2 shows a block diagram of the DP2460/DP2461 Servo Controller.

POWER SUPPLY AND REFERENCE REQUIREMENTS

The DP2460/DP2461 is designed to operate from a single supply of 10 V to 12 V . Also required is a reference voltage of 5.0V called Analog Common which serves two functions; all analog signals will be referenced to this voltage and in addition the internal DAC will use it to set full scale.
A clock signal must be provided as a reference for the internal switched capacitor position differentiator and motor current integrator. The clock signal should be a sine or square wave between Analog Common and ground at a maximum frequency of 4.0 MHz .
All digital inputs and outputs are TTL compatible levels referenced to ground.

INPUT SIGNALS AND TRACK CROSSING OUTPUTS

The input format selected for position feedback is consistent with a large class of sensors that generate two cyclical output signals displaced in space phase by 90 degrees (quadrature signal pairs). These sensors include resolvers, inducto-syns, optical encoders, and most importantly, servo demodulators designed for rigid disk head position sensing.

The input signals N and Q are quadrature quasi trianguiar waveforms with amplitudes of $\pm 2.5 \mathrm{~V}$ nominal referenced to Analog Common. The periods of the input signals are subdivided by internal comparators and logic and sent to the Track Crossing outputs T_{0}, T_{1}, and T_{2}. The relationship of these outputs to the inputs N and Q is shown in Figure 3a (for DP2460) and Figure 3b (for DP2461).
Note that different servo patterns may yield different numbers of track centerlines for each period of the quadrature signal pair. The relationship of T_{0}, T_{1}, and T_{2} to N and Q is independent of track centerlines, leaving the correct interpretations to the microcontroller.

DAC

The DAC is an 8-bit, buffered input, voltage output digital to analog converter. The output voltage with an input code of all zeros is equal to Analog Common. Full scale is equal to Analog Common $\pm 2.35 \mathrm{~V}$. The polarity depends on the Direction In Signal; Direction In High will result in a positive DAC output.
The DAC enable line when high will cause the DAC's input buffer to become transparent, i.e. input data will affect the output voltage immediately. When DAC enable is brought

Functional Description (Continued)

TL/F/9410-5
FIGURE 3a. Track Crossing Outputs (for DP2460)
low the data present on the input lines will be latched and any further changes to the input data will not change the output voltage. The DAC functions in both Seek and Follow Mode. During Seek Mode the DAC output is used as a velocity reference. In Follow Mode the DAC output can be summed into the position reference signal to offset the heads from track center.

ANALOG SWITCH

An uncommitted single pole single throw analog switch with an ON resistance of approximately 100Ω is provided. This switch is ON during Follow Mode.

MODE SELECT

The two major intended operating modes for the DP2460 are controlled by the microcontroller via the SEEK/FOLLOW input. Mode Select input high enables Seek Mode, low enables Track Follow Mode.
SEEK, when asserted by the microcontroller along with DIRECTION and a non-zero VELOCITY value as inputs, causes the actuator system to accelerate in the requested direction. During the ensuing motion, the actuator system will come under velocity feedback control. The velocity feedback signal is created by differentiation of the quadrature position signals and, additionally, by integration of motor current.
FOLLOW, the negation of SEEK, changes the feedback loop to a track-following or position mode. Position servos are typically second order systems and without loop compensation are potentially unstable. External components are used, along with the DP2460, to achieve stable track follow-

TL/F/9410-6
FIGURE 3b. Track Crossing Outputs (for DP2461)
ing performance. Velocity information (V1) is made available as an output in this mode to aid in stabilizing certain loops. If non-zero data is supplied to the velocity latches in this mode, it will result in a track offset in the direction indicated by DIRECTION IN/OUT. Figure 4 shows typical seek operation.

POSITION OUTPUT

When the DP2460/DP2461 is set to Seek Mode the signal from Position Output lead is shown in Figure 5. This signal is made by switching the position inputs, (N and Q) through an inverter if required, (\bar{N} and \bar{Q}) to the output using the track crossing signals. It can be used, if desired, to interpolate between DAC steps by attenuating it and summing it with the DAC output.
Track Follow Mode is entered when the heads are near the end of a seek, usually within one half to one track away from the target track centerline. The final setting to the track center is done by the position loop.
When the device is switched to Follow Mode, the position input signal (N, \bar{N}, Q or \bar{Q}) that is currently selected to the output is latched and the Position Out signal follows the selected position input signal until the device is switched back to Seek Mode. This implies that the switch to Follow Mode must not be made until the signal that will be the correct Position error signal for the target track is present at the output. If track centers are defined as the zero crossings of both N and Q this means that the switch to Follow Mode must be made less than one-half track away from the target track. (This is with respect to the convention of 4 tracks per encoder cycle, so switching must be done within 90° of the period of N or Q.)

Functional Description (Continued)

TL/F/9410-7
FIGURE 4. Typical Seek

VELOCITY OUTPUTS

There are two analog signal outputs representing velocity. The first (V1) is derived by differentiating the position input signals. The entire differentiator is on-chip, using switched capacitor techniques and requires no external components. The transfer function of the differentiator is:

$$
V_{O}=d v / d t(\text { input }) \times 14.3 / f \text { (clock) } \mathrm{Hz}
$$

As an example; a 10 kHz triangular signal pair into N and Q of 6.0 V peak-to-peak amplitude ($\mathrm{dv} / \mathrm{dt}=120 \mathrm{kV} / \mathrm{s}$) would result in a velocity voltage output of 1.716 V referenced to Analog Common with a clock of 1.0 MHz . The polarity will be positive if N is leading Q by 90 degrees and negative if Q

TL/F/9410-8
FIGURE 5. Position Output during Seek Mode
is leading N . This block functions during both Seek and Follow modes.
The second velocity output is obtained by integrating a voltage proportional to the current in the motor using the following function:

$$
\mathrm{dv} / \mathrm{dt}(\text { out })=V\left(+l_{\text {in }}--l_{\text {in }}\right) \times 2 \times 10^{-4} \mathrm{f}(\text { clock }) \mathrm{Hz} .
$$

The motor current integrator output is clamped to Analog Common during Follow Mode and is released at the initiation of a seek.
Figure 6 shows a typical application setup for the Servo Control chip.

FIGURE 6. Typical Application Setup

National Semiconductor

2470A Servo Demodulator

General Description

The new 2470A servo demodulator decodes the quadrature di-bit pattern from the dedicated servo surface providing position and data information.

Features

- Quadrature positions signals
- Phase locked to servo pattern with embedded lock indication
- Track data and track clock for data encoding
- AGC amplifier with 36 dB range

■ Servo fields to 400 kHz

- Compatible with the 24 H 80 servo preamp and 2460 servo control chip
- Standard 5 V and 12 V supplies
- New phase detector eliminates jitter due to dropped sync's
- New lock detector uses sync pulse location to determine sync. Dropped pulses are not out of sync conditions.
- New $\pm 20 \%$ VCO with extended frequency capability ($>30 \mathrm{MHz}$)
- New totem pole TTL outputs
- New sync detector eliminates one shot multivibrator setting
- New sample and hold circuits eliminate output droop and glitching of the quadrature circuits
- New reference centers the quadrature outputs in the 12V supply
- New sync window controller prevents erroneous pulses from reaching the phase detector for a second level of jitter prevention

Connection Diagrams

7

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature
Ceramic DIP (10 sec .)
$300^{\circ} \mathrm{C}$
Internal Power Dissipation 2.5W
Supply Voltage $V_{C C D}$
Supply Voltage $\mathrm{V}_{\mathrm{CCA}}$

2470A Electrical Specification $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{VCCA}}=12 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
AGC AMPLIFIER					
Max Voltage Gain AGC Range Frequency Response Input Voltage Range Output Voltage Common Mode Voltage	$\begin{aligned} & \text { Input Freq. }=1 \mathrm{MHz} \\ & \text { Input Freq. }=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & \\ & 30 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 46 \\ & 36 \\ & 10 \\ & 3.3 \\ & 8.2 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 3.6 \end{gathered}$	dB dB MHz mV VPP V
QUADRATURE OUTPUTS (Referred to 6V ref; $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k}$)					
Output Voltage Output Impedance Output Offset Voltage Output Current	$R_{L}=20 k$ (Note: Out Impedance)	3.0	$\begin{gathered} 3.3 \\ \pm 5 \\ 5 \end{gathered}$	$\begin{gathered} 3.6 \\ 100 \\ +20 \\ 6 \end{gathered}$	$V_{P P}$ $\boldsymbol{\Omega}$ mV mA
VOLTAGE REFERENCE					
Output Voltage Output Current		5.88	$\begin{gathered} 6.00 \\ 5 \end{gathered}$	$\begin{gathered} 6.12 \\ 6 \end{gathered}$	$\begin{gathered} V \\ m A \end{gathered}$
$\mathrm{V}_{\text {co }}$					
Max Frequency $\mathrm{V}_{\text {co }}$ (Ctr)			30		MHz
PLL. System Performance using sine ${ }^{3}$ Waveform as Servo Reference. Frame(center) $=\mathrm{V}_{\text {co }}$ (center)/divider ratio.					
Acquisition Range		$\pm 10 \%$	$\pm 15 \%$		frame(ctr)
Dropped Sync Endurance		15	40	-	frames
Maximum Frame Rate		400			kHz
LOGIC					
Input Voltage Low Input Voltage High Output Voltage Low Output Voltage High		$\begin{array}{r} 2.0 \\ 2.7 \\ \hline \end{array}$		0.8 0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Risetime	10\%-90\%		9	20	ns
Falltime	10\%-90\%		4	14	ns
DIVIDER TABLE Ratio $=\mathrm{V}_{\text {CO }}$ Frequency \div Frame Rate					
DIVPAG1 DIVPAG2 0 0 1 0 0 1 1 1	RATIO 32 64 96 128				
Power Supply Ratings					
$\begin{aligned} & \mathrm{V}_{\mathrm{CCD}}(5 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{CCA}}(12 \mathrm{~V}) \end{aligned}$			$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Features of the 2470A Servo Demodulator

1) The sync detecting operation is based on the servo disk's own timing and eliminates the need to precisely set a resistor-capacitor time constant for the di-bit detecting one shot timer. The new circuit uses a single low precision capacitor.
2) The phase detector has a linear phase vs. output detection scheme as an improvement over the one shot scheme. The circuit performs no detection for dropped sync pulses and when in lock as defined by the lock detector, it will only detect in a predefined window. These features eliminate jitter caused by dropped pulses and/or bad servo areas on the disk. Also eliminated are the phase detector external components.
Out of lock conditions require acquisition aids to achieve lock. Should a sync pulse show outside the sync window (2 of 32 counts in a servo field), aperature control circuits realign the sync pulse with the sync window by resetting the decoder and enlarge the next window to find a sync pulse with the VCO's $\pm 20 \%$ tuning range. The limited range on the VCO prevents 2 X locks. The aperature control prevents the dropped pulse ignoring phase detector from achieving non-integral false locks. The window realignment and enlargement is disabled during lock to prevent erroneous sync pulses from upsetting the decoder.
3) The new lock detector ignores dropped pulses in testing for in and out of lock conditions. Should a sync pulse appear the detector records whether or not it appeared in the normal sync window. The lock detector uses four consecutive sync pulses either all out or all in the sync window to determine lock status. The lock detector enables and disables the aperature control for the phase detector and the sync data detector.
4) The 2470A has a VCO with improved performance. It has $>30 \mathrm{MHz}$ operation and a restricted tuning range of $\pm 20 \%$. Tuning circuits will reduce jitter due to parasitic couplings into the VCO.
5) New sample hold circuits for the N and Q decoders eliminate the droop in the N and Q outputs. The sample holds are opened immediately after the peak detection is complete. This eliminates droop induced offsets and glitching.
6) TTL totem pole outputs eliminates the need for resistive pullup for the output. Switching times of 10 ns are achieved.
7) The analog reference is 6 V . Centering in the 12 V supply lines is easier. The 6 V reference maintains compatibility with the 2460 servo controller and the 24 H 80 preamp.

List of Lead Functions

Lead	Name	Function
INPUT SIGNALS		
23	DIVPAG1	Programs the prescaler for the VCO
4	DIVPAG2	Divide ratios are 32, 64, 96 and 128
7	CURPRG	Voltage sets PLL charge pump bias current
15	$V_{\text {EE }}$	Ground OV
3	$V_{C C D}$	+5 V supply
28	$\mathrm{V}_{\text {CCA }}$	+12V supply
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { INP } \\ & \text { INN } \end{aligned}$	Composite inputs to the AGC amplifier
OUTPUTS		
13	TRKCLK	Clock output for data during lock, TTL
14	TRKDAT	Data from dropped sync puises TTL
10	CLK	VCO output TTL
21	COMPOUT	Output of AGC amplifier @8.2V CM
19	$V_{\text {REF }}$	6 V reference for N and Q outputs
16	NOUT	Normal position signal @6V CM
17	QOUT	Quadrature position signal @6V CM

List of Lead Functions (Continued)

Lead	Name	Function
EXTERNAL COMPONENTS		
2	SYNCAP	Timing capacitor for the sync detector
5-11	$\mathrm{V}_{\text {CAP }} 1$ \& 2	VCO timing capacitor
8-9	Rate 1\&2	PLL loop filter
27	BALBYP	DC offset restore filter capacitor.
24	AGC1	AGC system loop filter
12	AGC2	AGC2 Pin includes an amplitude control function. This pin has a nominal voltage of 5 V . The amplitude increases according to the formula: $\frac{V_{(\text {COMPOUT P-P) }}-V_{(C O M P O U T ~ N O M ~ P-P) ~}}{}=-0.7$ AGC2 is Pin 12 and COMPOUT is Pin 21.
6	$\mathrm{R}_{\text {SET }}$	Sets the VCO bias currents 1 < 2 mA
$\begin{gathered} 20,22, \\ 1,18 \end{gathered}$	SHCAP 1... 4	Four sample hold capacitors

SYNC DET APERATURE

SYNC PULSE
RECOVERED

TL/F/9411-3
The sync pulse gate is triggered by the sync det aperature and is locked open until the sync goes to zero. The locking mechanism prevents clipping the negative edge of the sync.

FIGURE 1. Sync Detector Diagram

This test circuit runs at about a 136 kHz frame rate

FIGURE 4. 2470A Test Circuit

